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Introduction

Ed Barbeau

0.1 Challenging: a human activity

In modern society, mathematics is a prominent part of the school syllabus. It
is praised for its utility and regarded as a foundation of our modern
technological society. Yet school mathematics is the locus of much concern
and criticism. Many leave school uncomfortable with, if not disdainful of, the
subject.

Even those who get good grades may lack fluency and appreciation of its
structure and significance. Mathematicians themselves may see little that
reflects the character of mathematics as they experience it.

The blame for this situation is often laid at the door of the demands of a rigid
syllabus and the imperatives of assessment.

We need to analyze these complaints. Mathematics is a highly structured
subject. It is hard to see how one can proceed very far without orchestrating
topics and assessing the mastery of its students from time to time to make sure
they are prepared to make further progress. But does this mean that mathema-
tical instruction should embrace so much mechanical learning and rely on recall
and stock situations?

The issue is really one of ownership—who owns the mathematics?
Too often, the answer is ‘‘the system’’ or ‘‘the teacher’’. From the pupils’

perspective, it seems imposed from without to achieve extrinsic goals. For
many, it makes little sense. To be sure, mathematics can be difficult, but is it a
difficulty one would want to surmount?

In the third book of the ‘‘Divine Comedy’’, Dante’s pilgrim is advised by
Beatrice that

convienti ancor sedere un poco a mensa
però che ’l cibo rigido c’hai preso,
richiedi ancora aiuto a tua dispensa.
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Apri la merte a quel ch’io ti paleso
a fermalvi entro; ché non fa scienza
sanza lo ritenere, avere inteso.

Or, in English

you must stay longer at the table
because the food you have eaten is tough
and needs time for digestion.

Open your mind to what I shall reveal
and keep it there; whoever has heard
and not retained, knows nothing.

Paradise, Canto V, 37–42

This could be applied to the student of mathematics. She must learn to
be patient, open the mind, and seek resilient rather than transient
understanding.

These are qualities that require the learner to draw on internal resources. If
the student is permitted to be passive, she may become alienated and resist
accepting this responsibility.

The task of the teacher and expositor is to present the subject in such a way as
to awaken these resources.

Danesi (2000) suggests the key to this conundrum. He notes that ‘‘puzzles
have been around since the dawn of history’’ and that people have ‘‘been so
fascinated by seemingly trivial posers, which nonetheless require substantial
time and mental effort to solve, for no apparent reward other than the simple
satisfaction of solving them’’. He asks,

Is there a puzzle instinct in the human species,
developed and refined by the forces of natural selection
for some survival function? Or is this instinctual love
of puzzles the product of some metaphysical force buried
deep within the psyche, impelling people to behave in ways
that defy rational explanation?

Danesi sees this propensity for puzzles as tightly bound up in human
culture. There is a natural curiosity to be found in every human civilization;
the environment poses wonders, threats and opportunities that must be
understood and exploited by beings lacking many of the physical advantages
of the beasts but endowed with a powerful mind. However, it is not just
necessity but choice that leads people to accept challenges, as is borne out by
the popularity of such recreations as Sudoku, topological puzzles and games of
all sorts.

We should not overlook the social aspects of challenge that involve both
cooperation and competition. In sports and the arts, the participant is moti-
vated by a goal—a game or concert—and collaborates with others, a coach or
conductor for expert guidance and colleagues for support and inspiration for
the achievement of excellence.

The pursuit of the goal leads to the acquisition of new skills.
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However, the goal must be commensurate with the abilities and character-
istics of the group; one plays with teams of comparable skill or performsmusical
pieces whose technical requirements can be mastered with reasonable effort and
expenditure of time.

Thus, growth is promoted through the presence of an appropriate challenge.
On the one hand, there is an aversion to the aridity of much school mathe-

matics, and on the other a natural attraction to challenge. This Study is
predicated on the possibility that the first can be counteracted by an exploita-
tion of the second.

First, we discuss the fundamental question, ‘‘what is challenge?’’
We shall examine sources of challenge and identify contexts in which expo-

sitors can introduce challenge. We will address the fundamental question as to
whether challenges enhance learning.

This Study places the issue on the international agenda and has as its purpose
to press for an answer to this question and to develop our understanding of the
role of challenge.

0.2 Challenges and education

The tendency to see education in terms of formal institutions designed to
meet societal goals has become very pronounced in many countries. We are
told that children must be educated in order to fit them for various careers, in
order that the nation becomes competitive and in order that economic success
is achieved.

This is too narrow an outlook. Every society has provided some kind of
initiation to prepare its young to accept the demands, responsibilities and
privileges of adulthood.

In less sophisticated societies, this has tended also to provide children with a
succession of socially useful tasks, so that they maintain a feeling of cohesion
with the larger community. This is described in a very graphic way in the early
chapters of Haley’s novelRoots (1976) which recounts in considerable detail the
first seventeen years of the life of Kunta Kinte as he is progressively integrated
into the Madinka tribe in Juffure (now in Gambia) prior to his enslavement in
the eighteenth century.

However, modern education often can separate children from the larger
society and insulate children in their own world. So we should think of educa-
tion in terms of three time frames.

Modern citizens may as a matter of course spend a third of their lives in some
kind of school. Accordingly, we have to think of education for the present, a
schooling that is immediately rewarding for the student in and of itself, a
schooling in which the pupil experiences the joy of learning and growth as
well as integration into the adult world through a broadening of interests and
points of contact.
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Properly handled, mathematics can be part of this. In many mathematical
situations, children with their curiosity and mental agility are in a position of
equality with adults. In particular, mathematical challenges become not only a
way in which they can feel intellectually alive and productive, but also some-
thing that can be shared outside of their own age group.

To be sure, schooling must allow students to function as citizens and
employees, and to provide opportunities for work that is appropriate and
productive (in whatever sense we want to use this word) for the individual.
This is education for the near future that will open doors and prepare for
the next stage of life. It can be claimed that exposure to mathematical
challenges can support the resourceful flexibility of thought and deeper
mathematical understanding that will make the preparation of students
more successful.

But there is more to life than a job; many seek fulfillment through other
activities and jobs. This is often movingly portrayed in descriptions in the press
of rich lives of some quite ordinary people who have suffered some disaster.

In particular, through schooling we produce new generations whose interest
and curiosity will see that the arts and sciences and all such tokens of human
excellence do not vanish, but transcend our individual mortality. This is educa-
tion for the far future.

This dichotomy between the transitory nature of human existence and the
nobility of human achievement is strikingly expressed in the two answers that
the Old Testament provides for the question, ‘‘What is Man?’’

Man is like to vanity: his days are as a shadow that passeth away.
Ps. 144:4

Thou has made him a little lower than the angels, and has crowned him with glory and
honor. Thou madest him to have dominion over the works of Thy hands; Thou has put
all things under his feet.

Ps. 8:5–6

The lesson of the first is to redeem each moment in education, and of the
second, to plunge students into the broad stream of civilized achievement and
development.

As we shall see in this volume, mathematical challenges have a place in all
aspects of education and intellectual growth, whether in a formal school setting
or through informal means such as clubs, museums, books, magazines, games
and puzzles, or the Internet.

The history of mathematics is a long saga of great thinkers pushing the
bounds of their knowledge by formulating and solving problems. It seems
clear that they exulted in their growing mastery of ideas as step by step they
progressed from the most basic ideas in number and geometry to the magnifi-
cent edifice that we know today as mathematics.

This ICMI Study is predicated on the premise that we can duplicate some of
this sense of entitlement and mastery among the public, both within and with-
out school, by the use of mathematical challenges.
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0.3 Debilitating and enabling challenges

Already, mathematics often challenges both school children and the general
population, but for reasons that often discourage and alienate.

Difficulties may result from poor curricular and pedagogical design that
shroud in mystery what should be clear and overwhelms with tedious detail
what should be surveyable.

Schools may be afflicted with teachers who themselves are uncertain of their
mathematics, or whose mathematical training ill equips them to anticipate
possible stumbling blocks to learning even basic mathematics.

Sometimes, students get locked into a conceptualization that is not at all
productive, so that they cannot move beyond their frustration.

Is it possible for students to learn mathematics and the general public to
understand it if theymust accept someone else’s formulation of it? Or should we
bring in lay people as participants, providing a direct opportunity to grapple
with the ideas and devise their own patterns of thought?

If the latter, is it through the posing of challenges, problems and investiga-
tions, that the learner is brought into a collaborationwith the teacher, each alive
to his own particular responsibilities?

0.4 What is a challenge?

For the purpose of the Study, we will regard a challenge as a question posed
deliberately to entice its recipient to attempt a resolution, while at the same time
stretching their understanding and knowledge of some topic. Whether the
question is a challenge depends on the background of the recipient; what may
be a genuine puzzle for one person may be a mundane exercise or a matter of
recall for another with more experience.

Furthermore, a challenge may or may not be appropriate. An inappropriate
challenge is one for which the background of the recipient is so weak that she
may not understand what is at stake or does not possess or is unable to create
the tools needed to engage with it. A good challenge is one for which the person
possesses the necessary mathematical apparatus or logical skill, but needs to use
them in a nonstandard or innovative way.

A good challenge will often involve explanation, questioning and conjectur-
ing, multiple approaches, evaluation of solutions for effectiveness and elegance,
and construction and evaluation of examples.

Following Danesi (2002), we can expect a latent willingness for people to
accept challenges provided a suitable stimulus can be devised. This is an
optimistic message which, as we shall see in the following chapters, has already
been validated in many individual situations across the globe. Indeed, we have
seen enough instances that we can analyze what is likely to be effective and what
is likely to be counterproductive.
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We see in mathematical challenge an idea that will revitalize discourse about

the role of mathematics in the educational culture. In schools, it may help to

equip students to face future challenges in life by fostering desirable attributes

such as patience, persistence and flexibility, to learn content more richly and

exploit connections, to identify and develop their mathematical capabilities, to

become self-actualized and confident, to experience the pleasure of engagement

and the joy of success and to participate in a community of learning.
We can see through challenge a kind of relationship between a learner and a

learning opportunity, mediated by the engagement of the individual. In the

diagram below, we list the ingredients in the sphere of the learner alongside

activities that could be in the learning environment that affect them.

The opening chapter provides many examples of challenges. We look at

where they come from, what they are about and what makes them work. It is

hoped through this chapter to indicate to the educator or teacher in mathe-

matics who may not have an advanced background in the subject the scope of

challenges, and to encourage them to think through some of these themselves

as a way of honing their ideas about their possible use with students and the

public.
We emphasize that good challenges are like good musical compositions or

poems; they infiltrate into the broader culture and are passed down from one

generation to another.
Some will have broad appeal, while others will be treasured only by the

cognoscenti.
The second chapter studies challenges beyond the classroom. Over the last

century, particularly in the last fifty years, many different occasions for being

challenged mathematically have been introduced, from newspapers and maga-

zines, and an ever-increasing variety of competitions, to the work of artisans in

the creation of topological and other puzzles (the Rubik’s cube being a
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notorious example), as well as to mathematics ‘‘museums’’, clubs and web sites.
The scope of these is examined and several examples are studied in detail.

Of course, no examination of this topic would begin to cover it without
acknowledging the intensive intervention of technology. Technology not only
serves to augment the effectiveness of traditional resources, such as books and
journals, lectures and schools, but it also provides a handy and extensive library
of information and problems; it provides electronic tools to aid learning,
experimentation and understanding on a scale impossible to conceive of until
now.

Its novelty and power has made possible brand new interactive programs
and the capacity for in-depth investigations in number theory, combinatorics,
probability and geometry by students. With the modern computer, new areas of
mathematics have been opened out, such as dynamical systems and stochastic
processes, and some of this is accessible to students. Moreover, the Internet has
made it convenient for mathematicians and students to collaborate easily.

Chapter Three takes stock of these developments, sorting out what is avail-
able, assessing how they relate to existing methods of pedagogy and dissemina-
tion, analyzing the issues at stake, and describing ways in which they can
support the use of challenge.

In Chapter Four, the promotion of mathematical learning through the use of
challenges is examined through several case studies. The role of the teacher is
critical, for she must seek out appropriate material, calibrate and orchestrate
the challenges given, ensure that students are properly prepared to meet them,
analyze what makes them successful and see that the classroom environment is
conducive to an effective experience.

Chapter Four touches briefly on an area that this author feels has not been
given due attention—the use of mathematical fallacies. Two decades ago, he
persuaded the editors of the College Mathematics Journal to initiate a depart-
ment, ‘‘Fallacies, Flaws and Flimflam’’, devoted to the collection of flawed
mathematical proofs and solutions in the hope that this might be of use to
teachers. His own experience suggests that it can be a serious problem for
students to troubleshoot a flawed argument, that the attempt to do so may
lead to an appreciation of some rather subtle mathematical points, and that
students come to appreciate the need for care. Indeed, the reader may have been
in the position of marking a student solution, ‘‘smelling a rat’’, but being hard
pressed to winkle out the error, for good students can make interesting mis-
takes. Even ‘‘howlers’’—manifestly incorrect or inappropriate techniques that
lead to a correct answer—can lead to a fruitful investigation into the situations
for which they may actually ‘‘work’’ and the reasons for this. One source of such
material is Movshovitz-Hadar and Webb (1998).

In Chapter Five, the emphasis is on the cooperative facing of a challenge by
some community of students and their teachers or mentors, whether it be in a
mathematics laboratory, special schools, a school assembly, a classroom or a
jamboree where teams compete in the consideration of an experiment or
research problem.
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The success of any educational regime in the schools depends on a well-
prepared corps of teachers. If the use of challenges in schools is to be successful,
then the formation and professional development of teachers needs to be
suitably reformed. Teachers need to be convinced that what they are required
to do authentically represents mathematics and is of lasting benefit to the
student. They must be prepared to reassess the way in which they interact
with the students.

Most importantly, they must come to see themselves as practitioners of
mathematics, sharing their own experience and joy of mathematics. Thus, in
their training, teachers need to grapple with mathematical challenges them-
selves, so that they know how to support their students and can model good
mathematical behavior. Such considerations are the burden of Chapter Six,
which opens with a discussion of the nature of challenges in school andwhy they
are important. Some examples of challenges, their design, and the responses
they elicit are given.

Psychological considerations are important. What is it that might prevent
teachers from using challenging problems? What effect does their knowledge
and beliefs have on their willingness and ability to handle challenging problems?
What can be said about the development of the brain? The chapter next deals
with the factors that lead to effective pedagogy and the role of professional
development.

Finally the chapter provides a description of some pre-service and in-service
programs. In China, the new curriculum that promotes the use of challenging
problems has resulted in a Shanghai study, ‘‘Teacher Action Education’’, to
promote the effectiveness of teachers in adopting the spirit of the reforms and
achieving student learning goals.

In Münster, Germany, cadet teachers directly experience mathematical
challenges and have to reflect on their own mental processes; their formation
involves teamwork, critical discussion of videotaped lessons and research,
resulting in the production of educational materials. Similarly in New Zealand,
a numeracy development project brought about extensive professional
development.

Likewise, at Northern Kentucky University in the USA, pre-service teachers
take a course that embraces work on challenging problems alone and in groups,
with sharing of solutions and preparation of examples to be used in schools.

Chapter Seven follows this up with a look inside the classroom. The issue is
one of priorities, as teachers have to make sure that they cover the syllabus and
prepare students for various tests. Nevertheless, it is argued that challenges
should and can be part of the classroom experience. However, in many situa-
tions this goes against the grain of the existing culture. Teachers need to
examine their own attitudes and be prepared to interact with the pupils in a
less authoritarian way.

Those responsible for curriculum design and assessment need to question
whether their policies inhibit or promote an authentic and productive mathe-
matical experience in the classroom. This is the theme of Chapter Eight in which
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assessment issues in the framework of challenge are considered in four coun-
tries, and assessment is evaluated as to its role in promoting learning and its
implications for curriculum and assessment. The chapter concludes with some
research questions needing further investigation.

While challenges have always been part of mathematical exposition in some
small way, they have now come to the forefront in our conception of classroom
practice and public exposition. This Study has intervened at a time when there
has been a lot of activity and experience that can be assessed. The time has come
for a gathering of the available materials and the formulation of research and
field trials involving the use of challenges that will allow us tomove forward in a
sound and measured way.

I am particularly indebted to Jean-Pierre Kahane, Roza Leikin, Ralph
Mason and Peter Taylor for contributing perspectives that informed this
chapter.
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Chapter 1

Challenging Problems: Mathematical Contents

and Sources

Vladimir Protasov, Mark Applebaum, Alexander Karp, Romualdas Kašuba,

Alexey Sossinsky, Ed Barbeau, and Peter Taylor

This chapter gives many examples of challenging problems, categorized accord-
ing to the settings in which they occur, both in and beyond the classroom. Some
challenges arise as extensions of normal classroom practice; other challenges,
some of very recent origin, become popular among the general population,
while still others are created especially for contests for different populations of
students. In some cases, a detailed discussion of their origins and uses is
provided. It should become clear to the reader the extent to which they betoken
the vitality and the creativity of the mathematical enterprise and show how
much of a ‘‘human endeavor’’ mathematics is. The final section provides a
summary of the place of context and content in the creation and use of
challenges. This chapter focuses on challenges given in the form of individual
problems; challenges that occur in extended investigations are mentioned
briefly in the final section and will be considered in later chapters.

1.1 Introduction

Challenges in mathematics are not new. Once people began to observe numer-
ical and geometric patterns and sought to account for them, difficult problems
emerged naturally to challenge their wits and to force them to organize their
knowledge and explain the underlying concepts more precisely. During the
Renaissance, mathematicians who had discovered a new technique might
show off their knowledge by posing a challenge problem that others, not
privy to their strategy, could not solve. In the Enlightenment, prizes were
offered for those who could make some progress on some pressing mathema-
tical problem of the day.

Inmodern times, the first challenges aimed specifically at studentswere posed
in magazines and in competitions, with Hungary being an early leader. These
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challenges were created especially for this purpose, so that it became a battle of
wits between themathematicianswho set them to confound the students, and the
students who might arrive at a solution, often in an unanticipated way.

However, as the popularity of games like bridge, topological puzzles, and
Sudoku and other puzzles in the popular press indicate, there is a taste for
challenges of a mathematical type among non-mathematicians as well. Indeed,
in almost every culture there is an ancient tradition of posing mathematical
problems.

It is therefore plausible that both tradition and culture support the introduc-
tion of challenges both into the classroom and into public events to enhance the
appreciation of and facility in mathematics among both students and the
general population.

However, the mathematician or teacher who introduces challenges into an
environment must be aware of the particular circumstances. In the classroom, it
is important to be as inclusive as possible, while for extracurricular activities,
where participation is voluntary, the educator cannot force anyone to take part
and must select material carefully to ensure success.

As we shall see in the final section of this chapter, the research literature has
devoted insufficient attention to the issue of the appropriate selection of chal-
lenges. The aim of the next four sections is to encourage educators to engage
and contribute to the discussion of challenges and their use. We provide a set of
problems used in a variety of situations and earnestly encourage the reader first
to try them, then reflect on the thought processes that they evoke, what they
convey about the nature of mathematics and how different types of recipients
might respond.

A good challenge can be thought of as a work of art, similar to a poem, a
musical composition or a painting. All of these are of no account without an
appreciative audience. Accordingly, the creativity and elegance of a challenge
should be matched by the discernment to calibrate it so that the challenge
entices but does not overwhelm those with whom the challenger wishes to
make communion.

1.2 Challenges within the regular classroom regime

Quiteabitof time inthenormalclassroomis spent in teachingstandardresultsand
techniques, and applying them to stock situations. Understandably, pupils may
not appreciate the significance of the work nor retain and use it effectively later.

Accordingly, it may be useful to adapt a mundane question to make pupils
think more deeply about structure of this mathematics and shine a light on its
salient features. Here are some examples:

Challenge 1.2.1 (Ages 6 to 8): Six-year-old Danny is discussing even and odd
integers with his father, a research mathematician and a talented teacher.
Danny has learnt what even and odd integers are: ‘‘It’s an even number of
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people when they can split up into pairs and no one will be left out, and an odd
number if one person doesn’t have a partner to hold hands with.’’

Danny is asked to prove that the sum of two odd numbers is an even number.
After some hesitation and mumbling, his face suddenly lights up and he cries
out: ‘‘Of course, of course, the two people who didn’t have a partner, they find
each other, they start holding hands, so the number is even!’’

Discussion: If it can be said that one purpose of education in general is to
encourage the child to be aware of and discriminating towards the world
around her, this is particularly true in mathematics. Necessarily, the mathe-
matics syllabus covers a lot of concepts and procedures; it is a hazard that pupils
can fall into a mechanical mode, reciting definitions and performing operations
while unaware of the significance and utility of what they are doing.

We need to insinuate into the situation something to increase awareness and
fluency. The posing of questions designed to make a pupil pause and take stock
is one way to do this.

The reader is invited to formulate her own response as to why the sum of two
odds is even, and then think about situations in which this can be asked and how
one might expect pupils of various ages to respond.

Two aspects stand out. First, in order to answer the question, the responder
needs a workable definition of ‘‘even’’ and ‘‘odd’’. By workable, we mean
something that can be appealed to. What would be the understanding of a
young child? Perhaps it might be that odd and even numbers alternate in
counting, putting 1 in the odd pile, 2 in the even, and so on. How would a
child with this viewpoint tackle the question? Perhaps the criterion is the
remainder upon division by 2. Would an eight-year-old work with this defini-
tion? A secondary student with some knowledge of arithmetic modulo 2 might
use this approach. Or would children be likely to follow Danny in pairing off?

The second aspect is that the pupil is being asked to prove a general proposi-
tion with infinitely many instances. Normally, one thinks of proofs as occurring
much later in the school career, perhaps not until high school geometry. Is a
child of Danny’s age likely to be ‘‘up to’’ handling such a proof?

That the sum of two odds is even might be accepted through empirical
observation—every example shows that it is true. In the same way, every
robin has a red breast. Some children might not progress much further than
this. But this particular challenge puts on the table a new and different aspect of
mathematics. Accompanied by similar future challenges, a child’s perception of
mathematical truth and the power of reasoning to illuminate what can never be
checked directly will be deepened.

Thus, we see how a challenge can originate from the desire of a teacher to
induce her charges to probe more deeply into the mathematics.

It is this feeling of elation (Danny’s response) that one should try to induce in
setting challenges before classes.

Challenge 1.2.2 (Ages 9 to 11): Take the digits 1, 2, 3, 4, 5 and 6. Using each
exactly once, form two numbers for which the difference is as small as possible.
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Discussion:Generally, children master skills by working examples provided
by the teacher. But one might better create a sense of ownership by asking
children to create examples of their own. To begin with, a teacher might
simply ask pupils to form two numbers from the six digits and find their
difference. However, by introducing the optimization question, she provides
a goal that induces the pupils to look more carefully into the ingredients of
the situation and pay attention to what factors govern the size of the
difference.

There are a number of realizations that students will reach, probably impli-
citly. The first is that to make the difference small, the numbers chosen should
both have three digits. The teacher may wish to draw out explicitly why this is
so.

The second is that the leading digit of the larger number (minuend) exceeds
the leading digit of the smaller (subtrahend) by 1. The third is that the digits
after the leading one of the subtrahend should form as large a number as
possible while the digits after the leading one of the minuend should form as
small a number as possible. The answer is given by 412 � 365 = 47.

This is an example of what a teacher can do with a simple computation. The
set of digits could be varied and both the largest and smallest sums, differences,
products, quotients and exponentials formed by two numbers using those digits
can be found. Another nice problem that lends itself to group work is to take the
ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 and use them to construct three numbers,
the largest of which is the sum of the other two. What are the smallest and
largest such sums?

1.2.1 Challenge from observation

Sometimes a challenge can be built on an interesting observation. There are
likely many pupils who have noted with interest that the sum and product of
two 2s are the same.

The teacher can exploit this by asking pupils to find other examples of pairs
of numbers that have the same sum and product. The numbers involved can be
just positive integers, or rationals.

Here is another way to generalize the property:

Challenge 1.2.3 (Ages 10 to 15): Determine all possible ways of finding two
pairs of positive integers such that the sum of each of the pairs is equal to the
product of the other.

Discussion: Take a few minutes to think about this ‘‘two pairs’’ problem. Do
we need to know something about the relative sizes of the sum and the product
of two positive whole numbers? How easy is it to generate an example? How
would we know that we have a complete set of examples?

In tackling this challenge, one makes the key observation that for one of the
pairs, the sum must be at least as great as the product. It may be that some
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children have never considered this possibility, having dealt only with situations
for which the opposite is true. The number 1 might not have been used as a
multiplier. We can see the possibility of counteracting a bias that multiplication
always makes things larger, a prejudice that can later confound a child’s hand-
ling of products of numbers other than integers.

Pre-algebra students may solve this problem informally and intuitively
using trial and error. With algebra, a more systematic attack is possible.
The condition that a + b � ab can be converted to (a � 1)(b � 1) � 1,
which for unequal positive integers a and b implies that one of the variables is
equal to 1. Or one can draw from the conditions a + b = cd and ab = c +
d, the equation (a � 1)(b � 1) + (c � 1)(d � 1) = 2. The only possibilities are
{(2, 2), (2, 2)} and {(2, 3), (1, 5)}.

The challenge can be extended. What happens if we allow negative integers?
Or we could ask that the product of each pair is twice (or some other multiple
of) the sum of the other.

1.2.2 Challenge from a textbook problem

Sometimes a challenge can be made from a standard textbook problem that will
encourage students to look beyond a merely algorithmic approach to a more
holistic stance towards a problem.

Challenge 1.2.4 (Ages 11 to 14): (This problem appeared in a first algebra text.)
Aman is standing in a theatre line. 5/6 of the line is in front of him and 1/7 of the
line is behind him. How many people are in the line altogether? Without setting
up an equation, argue that the answer must be 42.

More generally, we can pose this situation. Aman is standing in a theatre line
with the fraction x of the line in front of him and the fraction y behind, where x
and y are fractions written in lowest terms. If x and y are such that the problem
makes sense, then that answer must be the least common multiple of the
denominators of x and y.

Discussion: This problem was originally posed in a graduate course on
problem solving for practicing secondary teachers, as part of a discussion on
the creative use of textbook exercises. Is it clear that the answer must be 42?
Would the reader have realized this without being prompted? Certainly, one can
set up an equation and solve it; the exercise came from a text chapter on this
very topic. But does the algebraic formalism reveal aspects of the situation that
are worth noting?

The key observation is that, in the original problem, the number of people in
the line must be divisible by 6 and 7, so that the numbers before and behind are
integers. So the total number of people is a multiple of 42. Why must it be 42
itself, rather than a larger multiple? Expressing the reason clearly and comple-
tely is an expository challenge for even the brightest students.
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1.2.3 Increasing fluency with fractions

While we are on the topic of fractions, there are some challenges that can be
used to help students become more fluent with them and gain some under-

standing of inequality relations among them.
A good area for this Study is that of Egyptian fractions, those whose

numerators are 1.

Challenge 1.2.5 (Ages 11 to 15): Solve the following equation for the natural
numbers x, y, z:

1

x
þ 1

y
þ 1

z
¼ 1:

Discussion: There is an obvious solution for this: (x, y, z) = (3, 3, 3). Some

pupils may also know about (x, y, z) = (2, 3, 6). The challenge here is to get an
exhaustive set of solutions.

The first task in meeting this challenge is to reduce the level of complication
by taking advantage of symmetry. Without loss of generality, we can assume
that x � y � z. Making this additional assumption is a mathematical gambit

that would probably not be taught as a regular part of the syllabus, but one does
not require much experience in problem solving to see how such assumptions
become standard.

Ordinary syllabus problems also tend to be directive in the sense that the
student follows a standard procedure and goes directly after the solution. This
particular challenge illustrates that it is often a good idea to get an overview of

the situation before beginning the grind of hunting for solutions. We note that
the integers required cannot all be very large. In particular, if all the integers
exceed 3, the left side must be less than 1. Also it is clear than x > 1.

So we have to consider two cases: x= 3 and x= 2. The first yields only one
possibility. The second requires that y= 3 or y= 4, so we can now list all the

solutions, the two mentioned above and (x, y, z) = (2, 4, 4).
If students become interested in this challenge, it can be generalized to having

any number, say n, of unit fractions on the left. If there are n fractions on the
left, we might ask how large the largest denominator can be.

Challenge 1.2.6 (Ages 11 to 18): Determine all the integers n exceeding 2 for
which there exist distinct positive integers x, y, z such that

4

n
¼ 1

x
þ 1

y
þ 1

z
:

Discussion: It is a conjecture of Paul Erdös that 4/n admits such a representa-
tion for all n� 3. This problem works well with secondary students in particular
because most cases can be handled within a short space of time.
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Like many challenges, progress depends on making a key observation, in this
case that

1

k
¼ 1

kþ 1
þ 1

kðkþ 1Þ :

Many students discover this after playing around a bit. This allows us
to dispose immediately of the case that n is an even number: i.e. we can write
n= 2m. Thus,

4

n
¼ 2

m
¼ 1

m
þ 1

m
¼ 1

m
þ 1

mþ 1
þ 1

mðmþ 1Þ :

It turns out that generally within an hour a class can arrive at a set of cases
that cover every number n that does not leave a remainder 1 when divided by 24.
This is a nice example that illustrates how one can make some progress on a
natural mathematical question, yet find that some parts of the question remain
intractable.

1.2.4 Engaging with algebra

For many secondary students, the study of algebra is quite tedious. The fact
that nowadays a large percentage of the population studies high school mathe-
matics andmany of these find frustration with algebra probably accounts for its
downgrading in the syllabus.

However, the result is that many students do not engage in algebra to a
degree that permits fluency and ability to make actual use of it. Without this
ability, it is easy for students to see their studies as pointless.

Some students have no desire to study technical mathematics, and, if their
ambitions lie in another direction, they should not be penalized for avoiding it.
The experience of the remaining students can be enriched if we restore to the
standard syllabus more challenging material.

A standard complaint about many students of mathematics is that they tend
to be driven by formulae and do not appreciate the structure behind a formula.
Factoring polynomials is one way to ameliorate this deficiency.

There is a ‘‘trapdoor’’ aspect to factoring. It is a mundane task to expand the
product of two polynomials; to factor this product into its irreducible compo-
nents requires a range of skills and sensitivity to structure that will help students
mature as mathematicians. Here are a few examples:

Challenge 1.2.7 (Ages 13 to 17): Factor

(a) 4(a2+b2) + 21b2 � 20ab � 36;
(b) 6x2y � 15y � 5x+ 18xy2.
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Discussion: While there is no grand scheme that allows us to factor any
polynomial, nevertheless there are some rules of thumb that students will pick
up from experience and allow them to factor with increasing success. Success
will also depend on recognizing certain forms and analyzing the structure of the
polynomial to be factored. For example, in (a), the student might combine the
terms in b2 and note the difference of two squares, of a linear polynomial and of
6. In (b), onemight isolate the terms of like degree and pull out common factors.

We can observe an analogous situation in elementary calculus, where differ-
entiation of functions can be handled by a set of easily learnt rules, but
integration requires more skill and judgment.

Challenge 1.2.8 (Ages 13 to 17): Factor

(a) a10 + a5 + 1;
(b) 2(x5 + y5 + 1) � 5xy(x2 + y2 + 1).

Discussion: Part (a) is a nice challenge in which the ‘‘breaking down’’
approach is unlikely to lead to success. A good start is the observation that
the polynomial has the form x2 + x+ 1, and recognizing that this in turn is a
factor of x3 � 1.

So we build up to factor a15� 1, which has the given polynomial as a factor.
However, this binomial is not only a difference of cubes but also a difference of
fifth powers, so that it can be factored according to two different strategies:

a15 � 1 ¼ ða5 � 1Þða10 þ a5 þ 1Þ ¼ ða3 � 1Þða12 þ a9 þ a6 þ a3 þ 1Þ:

At this stage, the students need to understand the significance of the result
that every polynomial is uniquely given as a product of irreducibles. In
particular, a2 + a+ 1 is an irreducible factor of a3� 1, and so must be a factor
of a10 + a5 + 1.

Indeed, the required factorization is

ða2 þ aþ 1Þða8 � a7 þ a5 � a4 þ a3 � aþ 1Þ:

An alternative approach recognizes that all the roots of the given polynomial
are those 15th roots of unity that are not 5th roots of unity and that two of its
roots are imaginary cube roots of unity.

Part (b) provides a challenge of a different sort. In this case, one can work
from the symmetry in x and y. Making the substitution s= x+ y and p= xy,
we find that the polynomial can be rendered as

2½sðs4 � 5s2pþ 5p2Þ þ 1� � 5pðs2 � 2pþ 1Þ ¼ 10p2ðsþ 1Þ � 5pð2s3 þ s2 þ 1Þ
þ 2ðs5 þ 1Þ;

which has s+ 1 as a factor. The desired factorization is
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ðxþ yþ 1Þð2x4 � 2x3yþ 2x2y2 � 2xy3 þ 2y4 � 2x3 � x2y� xy2 � 2y3 þ 2x2�
xyþ 2y2 � 2x� 2yþ 2Þ:

Challenge 1.2.9 (Ages 15 to 19): Find the smallest possible value of

fðxÞ ¼ cos 2x� x cos xþ x2=8 for all real x:

Discussion: Here is a challenge designed to help rid students of the habit of
blindly following an algorithm without paying attention to any special char-
acteristics of the situation. One can see how the problem was created using a
square involving cos x and then made more mysterious by converting cos2 x to
its equivalent involving cos 2x.

This is a ‘‘wolf in sheep’s clothing’’ sort of challenge. The student tries a
standard derivative approach and gets into a mess. How can this be avoided?
Noting the middle term, a mixture of x and cos x, one might recall that cos 2x
can be written in terms of cos2 x and see if we can get a perfect square some-
where. Indeed

fðxÞ ¼ 2ðcos x� x=4Þ2 � 1:

1.2.5 Pedagogies to help development

The foregoing classroom challenges indicate how one can start with straightfor-
ward material, and by providing either a twist or asking a natural question, can
help authenticate the mathematical experience. In addition, for this to be
effective, we need a pedagogy that does not force students to engage with
these on their own unsupported, as has so often happened in the past.

Students can often be asked to work in groups so that they can share ideas
and can be allowed time to reflect on the problems, knowing that they cannot
always be expected to answer questions immediately. Any decision to introduce
challenges in the classroom also requires that the whole system of teaching and
assessment be reviewed so that different aspects of the classroom experience are
not working at cross purposes.

1.2.6 Combinatorics

In addition, there are problems not immediately connected with the syllabus
that can be used in the classroom to good effect.

Combinatorics is an area in which little specific background is needed for
some situations and children can be expected to be as successful in meeting a
challenge as an adult. We discuss a few possibilities.
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Challenge 1.2.10 (Ages 9 to 15): In a supermarket there are different goods that
weigh from 1 kg to 40 kg (all the weights are integers). The boss who likes
mathematical problems decides to buy only four different counterweights for
weighing any of the goods. Will he succeed? Which counterweights should he buy?
Alternatively: What is the minimum number of counterweights sufficient to

weigh all goods with integer weights between 1 kg and 40 kg inclusive, with a
conventional balance and two pans?

Discussion: This has broad appeal. One approach is to simplify the situation,
either by reducing the number of weights available or by trying to weigh goods
from 1 kg up to a smaller number of kilograms. The key to a successful prosecu-
tion of the problem is to realize that counterweights can be used in the same pan
as the goods to be weighed. Thus, students might note that two counterweights
of 1 kg and 3 kg will weigh goods from 1 kg to 4 kg inclusive. Extending to three
and then to four weights, students might come up with the table:

Number of counterweights Counterweight Weight of goods

1 1 1

2 1, 3 1, 2, 3, 4

3 1, 3, 9 1–13

4 1, 3, 9, 27 1–40

Now the students can come to a conclusion. In the elementary grades,
students might not have the tools to justify their answers rigorously, but they
will be able to understand that their answer is correct. This particular challenge
invites a generalization to n weights; by looking at the data, some students will
be able to conjecture what the situation will be.

1.2.7 Geometry

Geometry is another area that lends itself to challenges that can be approached
by the general school population.

Challenge 1.2.11 (Ages 11 to 17): Given four distinct points in the plane, there
are six distinct pairs of them and each pair determines a distance between the
two points. In general, one would expect the six distances so obtained to be all
different, but sometimes some of them are equal. Find all the configurations for
which the six distances involve at most two different numbers.

Discussion: One issue that arises with this challenge is for students to realize
what is being asked—that is, possibilities that are essentially different. Most
children realize intuitively that two configurations are not to be distinguished if
one can be obtained from the other by an isometry or similarity, but some do
have a difficulty with this point.
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This challenge has the agreeable characteristic that most classes can find a
possibility quite readily: the four points are at the vertices of a square. In all
there are six possibilities, and pupils experience more or less difficulty in finding
them all. One is a 60-120 rhombus and there are three more for which three of
the points are at the vertices of an equilateral triangle. The one that is generally
missed is 72-108 isosceles trapezoid. However, in the case of one class, the first
example given was the trapezoid. When asked how this was arrived at, a student
responded that he took a regular pentagon and deleted one of the points.

Challenge 1.2.12 (Ages 11 to 15): (a) A unit square ABCD is partitioned into
four regions by means of line segments AE and BF where E is the midpoint of
BC and F is the midpoint of CD. Suppose that AE and BF intersect at P.
Determine the areas of the four regions, BPE, PECF, PFDA and ABP.

(b) A unit square ABCD is partitioned into nine regions by means of
segmentsAE,BF,CG andDHwhere E, F,G andH are the respective midpoints
of BC, CD, DA and AB. Determine the area of the middle region.

Discussion: Here are challenges designed to break a particular mindset
among pupils, to wit the automatic application of formulae and making of
calculations. Teachers who find their pupils calculating distances and trying to
use the standard area formulae should challenge them to see if the structure of
the situation can be exploited.

Once students take this perspective, they progress quite rapidly. In the case of
(a), they do not arrive at sufficiently many relationships to complete the solution:

½APB� þ ½BPE� ¼ 1=4

½PECF� þ ½BPE� ¼ 1=4

½APB� þ ½APFD� ¼ 3=4:

The additional bit of information that is needed is to observe that triangles
APB and BPE are similar with factor 2, so that [APB] = 4[BPE ].

Problem (b) can be solved by folding out small corner right triangles onto the
adjacent trapezoids and converting the figure to a cross of five squares. How-
ever, in one class, an interesting issue was raised by a student, that is, whether
the middle region was indeed a square. This was a question that needed an
answer, and it turned out to be a significant challenge for the class to find one.
When they were persuaded that the figure was most probably a square based on
the symmetry, it became a non-trivial task to actually describe that symmetry.

Challenge 1.2.13 (Ages 12 to 17): A regular tetrahedron ABEF has a common
face ABE with a square-based regular pyramid ABCDE with apex E, where all
edges of both figures have the same length. This conjunction of the two solids
yields a new polyhedron. How many faces does it have?

Discussion: This problem is a misfire on a multiple-choice examination in
1980 from theUS Educational Testing Service (#44 on 3CPT1). It was evidently
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thought that the correct answer was 7 (the conjunction of the two solids

obliterates one face of each, so that the resulting solid inherits three faces

from the tetrahedron and four from the pyramid); some takers of the test

objected that the answer should be 5. Indeed, after the conjunction, two faces

of the pyramid are coplanar with two respective faces of the tetrahedron.
That this is true is not obvious, especially if one conceives of the tetrahedron

sitting obliquely like a carbuncle on a face of the pyramid. However, a change in

perspectivemakes thematter clearer. Translate thepyramid along the edgeDA so

that we get a second pyramidABB1A1E1 that abuts the first along the edgeAB.

All edges have unit length, and we note that EE1 has unit length (being the

distance of translation). Thus, ABEE1 is a tetrahedron all of whose sides have

length 1, and so must be regular and congruent to ABEF.
This example shows that a problem can be made challenging if a straightfor-

ward way of solving it does not work; students are encouraged to look for a

different approach. See Barbeau (2000, pp. 61–62), Brown and Walter (1990)

for further information.

1.2.8 Other settings for school challenges

Some challenges for pupils can be suggested from the events of everyday life,

applications and puzzles.

Challenge 1.2.14 (Ages 11 to 17): On Tuesdays after school, Ivan has tennis

practice near the Taganskaya metro station, whereas his school is near Kievs-

kaia. Since both metro stations are on the circular line and are diametrically

opposite, Ivan got into the habit of taking the first train arriving at the Kievs-

kaia station independent of its direction (clockwise or anticlockwise).
After a while, he noticed that he would ride in the clockwise direction on

average about three times as often as in the anticlockwise direction. He could

not understand why this was occurring, as he knew that the interval between

trains in either direction was always two minutes and the train schedule on

Tuesday afternoons was always the same. Why did this occur?
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Discussion: This problem was given in a mathematics circle for 15- and16-
year-olds whose participants were learning elements of probability theory. At
first, the students could not understand why this was possible. They insisted
that the events of going in either direction were equally probable. Finally, one of
them figured it out. The anticlockwise train apparently always arrives at Kievs-
kaia 30 seconds after the clockwise train, he noticed, and then the next clock-
wise train comes 90 seconds later.

This problem (in company with Challenge 1.2.12) illustrates how students
can be stymied by jumping to a conclusion while neglecting some possibilities.
In this case, implicit in the problem, but not spelled out, is the possibility that
two recurrent processes with the same period can have different phases.

In mathematical research, as well as in real life, in order to achieve some-
thing, care must be taken to analyze and understand the situation, place it in an
appropriate context, make sure that possibilities and assumptions are clear, and
carefully formulate it. It is rather rare that problems are perfectly stated.
Challenges with ambiguities, vague wording and gaps generate the need to
work with students so that they can appreciate what the challenge really
involves. This is an important facet of mathematics education, both for those
students who will become professional mathematicians and for those who will
use their mathematically trained minds to overcome real-life problems.

One practical problem is that of college admissions. Students apply to a list
of colleges, ranked according to preference; colleges admit students ranked
according to some criterion. The colleges hope to do this with a minimum
number of reversions wherein the students who are accepted pass up the
invitation in favor of a superior offer. A simplified version of this is the
Marriage Problem (Gale and Shapley 1962):

Challenge 1.2.15 (Ages 15 to 18): There are an equal number of men and
women. A matchmaker has the task of pairing them off into married couples,
but he must do this in such a way that there is no incentive for a mixed pair to
cheat. In other words, he must avoid a situation in which some man prefers
someone else’s wife to his own and at the same time that other wife prefers him
to her own husband. Can this always be done? If so, describe a procedure that
will achieve this.

Discussion: This is a fine problem for secondary students, as it involves no
technical mathematics whatsoever, just imagination and basic reasoning. Stu-
dents can be walked through some specific examples involving small numbers of
men and women to get a feel for the situation. However, the perhaps surprising
result is that an algorithm to find an appropriate pairing always exists and is
straightforward to describe.

Briefly, the process involves several rounds. Each man and each woman
ranks the individuals of the opposite sex in order of preference. In the first
round, each man proposes to the top woman on his list; and each woman
provisionally accepts the proposal of the most preferred suitor. If each
woman gets a proposal, then the process terminates and the pairing has the
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desired property. Otherwise, there is at least one woman without a proposal and

at least one man who has been refused.
At the beginning of subsequent rounds, each man crosses from his list all

those women who have refused him, and proposes to the top woman remaining.

Any woman receiving a proposal provisionally accepts the most preferred

among any individual provisionally accepted in previous rounds and her suitors

on this round. This continues until the process terminates with no more refusals

(as it must do); the provisional acceptances become permanent and a pairing is

obtained that satisfies the condition.
Of course, there is another, possibly different, solution where the women do

the proposing.

Challenge 1.2.16 (Ages 12 to 18):A magician has 100 cards numbered from 1 to

100 inclusive. He puts them into three boxes, a red one, a white one and a blue

one, so that each box contains at least one card.
A member of the audience selects two of the three boxes, chooses one card

from each and announces the sum of the numbers of the chosen cards. Given

this sum, the magician identifies the box from which no card has been taken.
How many ways are there to put all the cards into the boxes so that this trick

always works? (Two ways are considered different if at least one card is put in a

different box.)

Discussion: Even though this problem was posed on an IMO examination

(2000), like the 4/n problem of Challenge 1.2.6 it has a simpler component that

makes it suitable for an ordinary class. While it is no easy task to determine all

possible allocations of cards to boxes, it is possible with a little imagination to

envisage such possibilities.
One can only speculate on how the discovery of the result of the problem was

made, or whether this problem was constructed especially for competition or

arose out of some research result. In any case, it is attractive because of its

natural setting and the ease with which it is posed.
Some students may realize that there is nothing special about the number 100

and perhaps experiment with fewer cards to get a feel for the situation. So this

challenge has the advantage that the student can get into it right away. Doubt-

less, some students relying on their experience would realize that one could sort

the cards according to residues modulo 3, putting all cards with numbers

congruent to 0 in the red box, congruent to 1 in the white and congruent to 2

in the blue. Some might arrive upon the solution of putting card 1 alone in the

red box, card 100 alone in the white box and the rest in the blue.

Challenge 1.2.17 (Ages 15 to 18): Determine a number which at once (a) is

divisible by 2007, (b) has 2007 digits, (c) ends with 2007 and (d) has 2007 as the

sum of its digits.

Discussion: The observation that 2007 = 9� 223 suggests a simple strategy:

take 2007 occurring 223 times in the digits (making sure that the number starts
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and ends with 2007) and then fill up with 0s. For example, 20070...[1115
times]...02007...[222 times]...2007.

One can get more elaborate examples. Since 2007 = 9� 223, we just need to
arrange that the sum of the digits is a multiple of 9, the number is clearly
divisible by 223 and has the requisite number of digits. We include the digits
in order 223 9x times and 2007 y times so that 7(9x) + 9y= 2007, or 7x+ y=
223, and then fill in with 0s. We can take x= 31 and y= 6 and have the number
223...[279 times] ...2230...[1146 times]...02007...[6 times]...2007.

This is a nice challenge of a somewhat different character than the previous
ones, as it is usable with a wider audience. Its attractiveness lies in its rather
symmetric statement with respect to 2007. Students could be challenged to find
more ‘‘interesting’’ examples.

One way in which pupils may experience the ‘‘thrill of the chase’’ is in the
detection of patterns. While formally, mathematics is all about establishing
results, some of the hardest work is done in isolating what it is that one really
wants to prove.

This depends on vigilance, experimentation and sensitivity to patterns. For
example, a pupil seeing the numerical equations 32 + 42 = 52 and 52 + 122 =
132 may be encouraged to wonder whether these are but two of a whole flock of
similar or analogous relations. What ‘‘similar’’ and ‘‘analogous’’ means is a
matter of judgment. Sometimes, it is not always the case that one’s expectations
of a generalization are satisfied, or perhaps satisfied in the way one may expect.
Consider the pair of equations: 32 + 42 = 52 and 33 + 43 + 53 = 63. Another
example of a pattern that does not continue is 1! = 1!, 1!3! = 3!, 1!3!5! = 6!,
1!3!5!7! = 10!.

There is another way to proceed from the basic 3-4-5 Pythagorean
relationship.

Challenge 1.2.18 (Ages 11 to 17):Verify that the following numerical equations
are true:

32 þ 42 ¼ 52

102 þ 112 þ 122 ¼ 132 þ 142

212 þ 222 þ 232 þ 242 ¼ 252 þ 262 þ 272:

These are the first three equations in a sequence of equations. What do you
think the next two equations should be?

Discussion: This has been tried a number of times quite successfully. There are
many ways that the students can try to extend the pattern. It is an early observa-
tion that the number of terms on each side of the equation increases by one with
each equation and that there is one more term on the left side than on the right.
Usually, students focus on the leading term of the left side, often by checking first
differences. However, some notice that 3 = 1� 3, 10 = 2� 5, 21= 3� 7, which
leads to a conjecture for the leading term of the fourth equation. Occasionally,
students can extend the pattern knowing only the first two equations.
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While a formal proof of the general equation requires a bit of skill in setting it
up, verifying a particular case in an insightful way gives pretty convincing
evidence that the general case is likely to be true. The only background needed
is the result that the sum of the first n odd positive integers is n2.

Thus, for example,

ð252 þ 262 þ 272Þ � ð222 þ 232 þ 242Þ
¼ ð252 � 242Þ þ ð262 � 232Þ þ ð272 � 222Þ
¼ 49ð1þ 3þ 5Þ ¼ 72 � 32 ¼ 212;

where a difference of squares factorization is used on the second line.
To find the 57th (say) term in the sequence, note that it will have 58 terms on

the left side, 57 on the right side. Since (57 + 58)2 = 1152 = 13225 = 6612 +
6613, and 57 � 115 = 6555, we get the equation

65552 þ . . .þ 66122 ¼ 66132 þ . . .þ 66692;

whose truth can be checked by imitating the verification of the third equation
given above.

Pattern challenges of this type not only enhance the propensity of students to
be observant and resourceful, they tend to work well with students of varying
abilities since there are often several ways of describing the pattern. For more
advanced classes, they pose the additional challenge of providing a proof of
conjectures made.

1.3 Challenges in popular culture

In the introduction, reference was made to popular culture as the source of
challenges. Some problems go back hundreds of years. For example, many
cultures have a version of the following boat crossing problems:

(a) A man has a wolf, a goat and a cabbage, and wishes to cross a river.
However, the size of the boat requires that he can take at most two of his
possessions with him. If he cannot leave the wolf alone with the goat, or the
goat alone with the cabbage, explain how he can make the crossing.

(b) Three couples (husbands and wives) come to a river and wish to cross. The
only boat available can hold at most two people. If no woman can be left in
the presence of a man unless her own husband is also present, explain how
the couples can cross the river.

Other popular types of problems involve having a number of vessels of
varying capacities, some full of liquid, with the requirement of obtaining a
fixed volume of liquid. For example, three ungraduated beakers can hold 19,
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13 and 7 liters of fluid; the 13-liter and 7-liter beakers are full, the 19-liter beaker

is empty. By pouring liquid from one beaker to another, obtain exactly 10 liters.
However, new challenging problems are appearing all of the time. The most

obvious recent manifestation is the popularity of Sudoku puzzles, which are

carried inmany newspapers andmagazines around the world. Another problem

that has attracted a great deal of public attention is the Monty Hall (Car-and-

goats) problem:

Challenge 1.3.1 (Ages 12 to 110): A game show host tells a contestant that he

wins the prize behind one of the doors A, B, C that the contestant selects. The

contestant is told that behind two of the doors there is a goat and behind

the remaining one there is a car. The contestant naturally would prefer the

car. The contestant points to door A. However, before revealing what is behind

door A, the host opens door C to reveal a goat. He then invites the contestant to

consider if he wishes to stick with door A or switch his choice to door B.
Since now there is a goat behind one of the doors A or B, and a car behind the

other, it appears that it does not matter whether the contestant switches. What

would you advise?

Discussion:While some form of this problem has been in existence for more

than a century, it came into prominence about two decades ago after appearing

in a syndicated column, ‘‘Ask Marilyn’’, published in weekly supplements of US

papers. Readers sent in their questions to Marilyn Savant. This was one, and

Savant’s answer was hotly contested by many of her readers, including several

mathematicians. A history of this problem and the controversy is described in

the references below.
The problem has become part of the educational regime and has appeared in

many professional development sessions and textbooks. Those that immerse

themselves in the problem often resolutely hold fast to their opinion, so the

teacher needs to be careful to let the discussion evolve so that students are not

squelched by the dead weight of authority (which was attempted by several

mathematicians who responded to the original column of Marilyn Savant). For

further references see Barbeau (2000, pp. 86–90) and Berlov et al. (1998).

Challenge 1.3.2 (Ages 10 to 110): You are given twelve billiard balls and an

equal-arms balance. The twelve balls look identical and eleven of them have

exactly the same weight. The twelfth has a different weight. Using the balance a

minimum number of times, determine which ball has the different weight from

the rest and whether it is heavier or lighter.

Discussion: This problem is at least sixty-years-old, and was passed around

Toronto schoolyards in the 1940s. It is a sort of problem that children can get

into as it admits a lot of trial and error. Indeed, it is likely that some people will

have a good instinct as to how to select the balls at each weighing.
However, it does yield to a more systematic and reasoned approach. First,

one can argue that at least three applications of the balance are required. There
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are 24 possible ‘‘states of the world’’, as there are 12 possibilities for the odd ball
and two possibilities as to its weight relative to the others.

Each application of the balance has three possible outcomes according to
whether the pans balance or the left or right pan goes down. Thus, each
outcome of the balance splits the number of outstanding possibilities into
three categories.

After the first balancing, one result will leave at least eight outstanding
possibilities to be tested. After the second, there may be at least three. If it can
be arranged that there are no more than three, then the third balancing might be
contrived to distinguish them.

This realization allows one to devise a strategy for solving the problem. Thus,
the first balancing should compare one set of four balls with another set of four.
It can be seen that whatever happens will be consistent with exactly eight of the
possibilities. The second weighing should narrow the number of cases to at most
three.

1.3.1 Another schoolyard problem

Another ‘‘schoolyard problem’’ from the 1940s has recently made a
reappearance.

Challenge 1.3.3 (Ages 10 to 110): Three men go into a hotel and pay $10 each
for a room. After the men go upstairs, the desk clerk realizes that he made an
error and should have charged only $25 for the three of them. Accordingly, he
calls over a bellhop and asks him to return five dollars to the men. As he climbs
the stairs, the bellhop figures, ‘‘What the heck? Those three guys won’t know the
difference. I’ll give them one dollar apiece and keep the other two.’’ That is what
he does. So in the end, each man pays $9 for the room—that’s $27, and the
bellhop gets $2—that’s $29. What happened to the other dollar?

Discussion: This problem is a trap for the facile thinker, and requires of the
solver a willingness to carefully analyze the status of the various disbursements.
Of course, the two dollars kept by the bellhop along with the twenty-five kept by
the desk clerk made up the twenty-seven dollars ultimately spent by the three
individuals.

1.3.2 A Russian problem

Ofmore recent vintage is the following problem, purported to be fromRussia as
a test for talented students. However, this exquisitely contrived problem
deserves broader public exposure.

Challenge 1.3.4 (Ages 12 to 110): A table that is free to rotate has four deep
wells embedded in its surface, symmetrically placed at the vertices of a square.
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Inside each well is a drinking glass, either upright or inverted, but not all
oriented the same way.

The wells are deep enough that you cannot see their contents. The table
rotates and stops at random. You are permitted to place your hands in up to
two of the wells, determine the state—upright or inverted—of each glass, and
change the state of none, one or both of them. This is repeated. Your task is to
ensure that the glasses are eventually all in the same state—all upright or all
inverted. A bell sounds at the moment the task is successfully completed.

Is it possible to ensure success? If so, how can it be achieved?

Discussion: The implicit answer is that the task can be completed, although it
is far from obvious to many that this is so. After all, one might reason, there
may be a well that one never has the opportunity to visit.

The apparent randomness of the outcome of each rotation of the table seems
to confound an orderly approach. However, in order to make progress, the
solver needs to realize three things. First, it is only required that the glasses end
up the same way, not that they end up in a particular state. So if one well is never
visited, one should try to arrange things so that all the other glasses have the
same state as that in the unvisited well.

Secondly, one in fact does have distinguishable choices at each move—either
select adjacent wells or diagonally opposite wells.

Thirdly, the sounding or non-sounding of the bell actually does give infor-
mation upon which inferences can be made.

Now the problem can be solved in a straightforward way, as there are only
two ways to make each move. After the first two moves, if the bell does not
sound, one can always arrange that three glasses are upright and one is inverted.
It turns out that at most three more moves are needed for success.

Astonishingly, if one tightens the rules to deny to solver the ability to
determine the state of the glasses, but only to specify the two wells to be visited
and the final state of the glasses in the well, the problem can be solved with a
maximum of seven moves.

1.3.3 The Microsoft problem

The next problem is known as the Microsoft problem as it is said to be used by
Microsoft interviewers to determine suitable candidates for employment.

Challenge 1.3.5 (Ages 12 to 110): Four men and a flashlight (with a
weak battery) are out for a walk on a very dark night. They come to a bridge,
which is so rickety that at most two can cross at a time and for which one needs
to carry the flashlight to see one’s way. One man can cross the bridge in
one minute, the second takes a minimum of two minutes, the third a minimum
of five minutes and the fourth a minimum of ten minutes. What is the
minimum amount of time required to get all four men from one bank to the
other?
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Discussion: It is clear that at least three crossings of the bridge are necessary,
with one person bringing the flashlight back after the first two crossings. This
problem has the treacherous feature that most people accept without question
that the fastest man returns with the flashlight so the others can cross. It is thus
easy to lock into the answer of 19 minutes for three crossings, where the lengths
are determined by the slower three men in turn (accompanied by the quickest)
and two returns by the quickest.

Salvation comes only with the realization that the one returning with the
flashlight after the second crossing need not be one of the two who has just
crossed the bridge. Thus, we can have the two slowest cross together (to
save time in the forward direction), provided we have arranged that the two
quickest are already on the other side to cover the two return trips with the
flashlight.

For school use, the problem can be generalized to the following: Replace
the numbers 10, 5, 2 and 1 by a, b, c and d respectively, where a > b > c >
d > 0. What is the condition on the variables that the obvious solution of
sending the quickest back with the flashlight each time is in fact the
optimum solution?

1.3.4 A problem from children’s literature

A recent trend in problems is the occurrence of logical problems where people
guess the color of a hat that is placed on their heads when they can see the hats
on all heads but their own. One such problem has in fact made it into the
children’s literature (Nozaki and Anno 1985).

Challenge 1.3.6 (Ages 10 to 110): There are three people and five hats, two of
which are green and three are red. The people are seated in a ring, so that each
can see the heads of the other two, but not her own head. Three of the five hats
are placed at random on their heads. Every ten seconds a gong sounds. At the
sound of the gong, all those who are certain of the color of their hats raise their
hands (but do not speak).

Is it possible for each person eventually to determine the color of her own hat?

Discussion:At first blush, it seems that it is not possible for anyone to be sure
of her own color when both green hats are not placed. But it is important to
realize that, as in the rotating table problem with the bell, the lack of an action
may give useful information. If two green hats are placed, the remaining person
immediately infers her own hat is red and raises her hand, the others then
realizing that this sudden decision is possible only when both wear green. If
no hand is raised after the first gong, then there are either three red hats placed
or two red and one green hat.

Since, at this stage, everyone knows that there is at most one green hat
placed, anyone seeing such a hat will raise her hand. And each person can use
logical reasoning to identify their hat.
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1.3.5 A probabilistic element

An interesting twist on the hat problem introduces a probabilistic element.

Challenge 1.3.7 (Ages 12 to 110): Three knights have rescued the beautiful
daughter of the king from a fierce dragon. In return, the king has offered the
three a chance to win a vast fortune. He tells the knights that he will place them
in a circle and place on the head of each, either a green or a red hat. He tells them
that, while each can see the hats of the others, no one sees his own hat.
Furthermore, there must be absolutely no communication among them.

When he claps his hands, at least one person must speak and all speakers
must identify the color of their own hats. If so, they will win the fortune. If
anyone is mistaken, the fortune is lost.

At this stage, it seems that the best that can be done is for one knight to speak
and he will have an even chance of being correct. However, the king gives them a
chance to improve the odds in their favor. He tells them that they can confer
ahead of time and agree on a strategy for speaking. Is it indeed possible to devise
a strategy that will allow the knights a better than even chance of winning the
fortune?

Discussion: It seems counterintuitive that the odds can be improved. How-
ever, the knights can arrange that their probability of bagging the fortune is 3/4.
Simply have any knight who sees the same color on the heads of his two
companions guess the opposite color for his own hat. This strategy loses only
if all three have the same color hat.

1.3.6 Concluding comments

All of these modern problems have the potential to become classics.
They are constructed with a minimum of complication, but often have a

paradoxical character to them. It may be that what is required seems impossible
or counterintuitive, or that there is insufficient information. Sometimes it is
easy to overlook a possibility or to jump to a conclusion, based on an assump-
tion that is not supported by the problem.

In each case, the problem deserves respect for its elegance and the creativity
of its (often unknown) author. But what is most attractive is a kind of commu-
nion with the poser whose wits are to be matched. The gauntlet is thrown down;
is the solver equal to the challenge?

1.4 Challenges from inclusive and other teacher-supported contests

As will be discussed in Chapter 2, competitions can be classified either as
inclusive or exclusive. Inclusive competitions are sourced from outside the
classroom and written at possibly many schools and by up to hundreds of
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thousands or even millions of students. Examples of these are the AMC com-

petitions held by the Mathematical Association of America, the Canadian

Mathematics Competition held by the University of Waterloo, the Australian

Mathematics Competition, the European Kangaroo, and the Challenges run by

the UK Mathematics Trust.
There are also other competitions for the broader, but still talented, student

population, which are again conducted by an organization outside the class-

room. These are written within schools under the supervision of teachers, who

receive support materials to help them deal with anticipated questions. One

example of this type is the Mathematics Challenge for Young Australians,

conducted by the Australian Mathematics Trust, and in which students have

several weeks to explore problems under teacher supervision.
In these competitions, the assumed syllabus does not go beyond what is

taught in the classroom. However unlike TIMSS and PISA, which are designed

to test the classroom knowledge of students with ‘‘curriculum-bound’’ problems

not normally regarded as challenging, these competitions will contain problems

in which students use their knowledge to explore problems to which they can

relate.
This can lead to the students bridging their knowledge with reasonably

accessible tools such as the pigeonhole principle, proof via methods such as

contradiction, cases or invariance, Diophantine equations, enumeration tech-

niques, graph theory and discrete optimization.
The more talented among these students tend to become independent lear-

ners, though many continue to be mentored by teachers or professors from

outside the classroom. Some progress to Olympiad competitions, which will be

discussed in Section 1.5.
In this section we will discuss and illustrate the skills developed with exam-

ples drawn from such competitions as those listed above and the International

Mathematics Tournament of Towns, an international competition based in

Russia, which is also discussed in Chapter 2.

1.4.1 Diophantine equations

Diophantine equations, which are linear equations with integer solutions,

provide an excellent extension path for secondary students. The following

problem is taken from an inclusive competition and had a good response.

Challenge 1.4.1 (Ages 13 to 15): Red rose plants are for sale at $3 each and

yellow ones for $5 each. A gardener wants to buy a mixture of both types (at

least one of each) and decides to buy 13 in total, with more yellow ones than red

ones. The number of dollars he spent could be

ðAÞ 51 ðBÞ 67 ðCÞ 65 ðDÞ 58 ðEÞ 57:
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Discussion: Because of the finite nature of the problem, the student

could canvass all the possibilities, working out the amounts when the

number of yellow flowers varies from 7 to 12 inclusive (yielding all odd

numbers between 53 and 63 inclusive). However, the problem could be done

algebraically. Here, the students are challenged to define suitable variables

and construct the necessary functions. Logical thinking, along with strict

attention to the conditions of the problem, will lead students of average

ability to the solution (which is borne out by the statistics of the

competition).

1.4.2 Pigeonhole principle

This elementary idea (also discussed in Chapters 6 and 7), thought to have

been first articulated as such by Dirichlet (see Chapter 7) and often known

as Dirichlet’s principle, is simply a statement that if there are pigeons to be

placed into pigeonholes, and there are more pigeons than pigeonholes, then

some pigeonhole will contain more than one pigeon. The statement can be

extended to cover cases where the number of pigeons is more than double,

treble, and so on, the number of pigeonholes, requiring the existence of

pigeonholes with at least three, four, and so on, pigeons inside. The follow-

ing is an example of an accessible problem whose solution is best wrapped

up using this idea.

Challenge 1.4.2 (Ages 13 to16): Ten friends send greeting cards to each other,

each sending 5 cards to different people. Prove that at least two of them sent

cards to each other.

Discussion: The words ‘‘at least’’ are the ones which give the experienced

student the clue that the pigeonhole principle will be useful here. However

the student lacking such experience might ask how many routes from sender

to recipient are possible. Since each of the ten friends can send to nine

others, there are 90 available routes. However, each pair of friends is

involved in 2 routes, so that there are 45 pairs. If more that 45 cards are

sent, then by the pigeonhole principle, two of the transmissions must be on

the same route in opposite directions. In this case since each student actually

sends 5 cards, there are 50 transmissions altogether and thus two friends do

send cards to each other.
Such challenges can generate discussion as to other situations where the

pigeonhole principle is applicable, such as in combinatorics, number theory

and geometry. However, while a useful tool, it does require special circum-

stances for its application. Two problems can look quite similar. One can be

handily dispatched by the principle and the other can be very difficult indeed. It

requires judgment and insight to detect when the principle can be used and to

identify the ‘‘pigeons’’ and the ‘‘pigeonholes’’.
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1.4.3 Discrete optimization and graph theory

Discrete optimization is quite a different skill than that found in calculus. The

standard method, which should be applied in an optimization problem with

integer variables, involves two steps, one showing existence, and the other

showing optimality, that is, giving an argument to show that the proposed

solution cannot be exceeded. The following example, from the International

Mathematics Tournament of Towns, is one in which there is a nice use of

Eulerian graph theory, which is also a useful tool in networking problems.

Challenge 1.4.3 (Ages 15 to 18):A village is constructed in the form of a square,

consisting of 9 blocks, each of side length l, in a 3 by 3 formation. Each block is

bounded by a bitumen road.
If we commence at a corner of the village, what is the smallest distance we

must travel along bitumen roads, if we are to pass along each section of bitumen

road at least once and finish at the same corner?

Discussion: This problem is also an excellent interactive classroom problem.

Students can try for some time to improve their first results until everyone is

convinced they have a result which cannot be beaten.
The shortest route does turn out to be of length 28l, with existence shown by

the diagram.

The optimality part of the proof is a little more difficult, requiring the graph

theory reminiscent of the Königsberg bridges. It is noted that there are three

types of node, those with 2, 3 and 4 joining lines. In the case of the even-

numbered ones a shortest path can go through them optimally, with an inward

route matched by an outward route. However there are eight nodes with three

joining lines, which means they have to be visited twice, involving an apparent

wasted visit. Assuming they are in four pairs and that an extra route can be

shared between a pair, there are at least four extra routes required. Since there

were 24 routes in any case, the shown route travelling along 28 links is optimal.
Diagrams: Composers of problems such as this often face the issue of

whether or not to include a diagram in the problem statement. The level of

challenge can be quite different for such problems dependent on whether or not
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a diagram is provided. In inclusive competitions and in classroom use diagrams
are more common. In advanced competitions such as the International Math-
ematical Olympiad, constructing the diagram is usually part of the challenge
and diagrams are rarely if ever provided in the description of the problem.

1.4.4 Cases

Quite often experimentation with a situation leads to a conclusion that a result
can only be established after an exhaustive consideration of a mutually
exclusive set of cases. This method is usually known as proving by cases. The
challenge is two-fold. First, one needs to identify the cases that might apply and
to describe them in a way that is clear, efficient and preferably non-overlapping.
Secondly, one needs to ensure that the cases are exhaustive, that nothing is left
out. This can be illustrated by the following problem, one of the more challen-
ging problems from the Australian Mathematics Competition.

Challenge 1.4.4 (Ages 15 to 18):The sum of n positive integers is 19. What is the
maximum possible product of these n numbers?

Discussion:This problem is also excellent for classroom interaction. Students
can try to obtain maximum products with various selections but soon discover
that high numbers adding to 19 don’t seem to help, while at the other extreme
the number one is also useless. Students will eventually see that a summand m
bigger than 4 can always be replaced to good effect by 2 and m � 2. They will
also see that 4 can always be replaced by 2 and 2. They will also be able to
formally dispose of the case of an integer being 1. So they are left to consider
only sums that use the numbers 2 and 3. The situation is finally resolved by
noting that replacing any three 2s in the sum by two 3s will increase the product.

In this problem, students might ask whether the number 19 plays an essential
role, or whether the same argument is available when this number is replaced by
some other. A common practice in competition problems is to ask students to
look at a particular instance of a general result; a student who is aware of this
may often establish the general result, often by a more effective argument as the
solver is not distracted by irrelevant factors particular to the situation.

A secondary challenge for a more senior student studying calculus is to
decide whether there is a continuous version of the challenge and formulate it
exactly.

1.4.5 Proof by contradiction

One of the most famous proofs in mathematics, that the square root of 2 is
irrational, is made by contradiction and is accessible from school mathematics.
It is often seen that a direct proof promises to look very complicated and these
are the occasions to try contradiction. The following problem, taken from the
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International Mathematics Tournament of Towns, is most easily solved by

contradiction.

Challenge 1.4.5 (Ages 15 to 18): There are 2000 apples, contained in several

baskets. One can remove baskets and/or remove any number of apples from any

number of baskets. Prove that it is possible to have an equal number of apples in

each of the remaining baskets, with the total number of apples being at least 100.

Discussion: This is hardly in the form that a student might encounter at

school, and the initial challenge is to figure out what is being asked. The

indeterminacy of the situation and the variety of possibilities for removal of

apples and baskets boggles the mind. An efficient way to control the situation is

to suppose that the result is false. As the reader will see in the solution, within

this large contradiction are a number of smaller ones to be negotiated.
Suppose that we have a configuration of apples and baskets for which the

result fails to hold. It does not change the problem if we assume that all empty

baskets have initially been removed. Then the number of remaining baskets

does not exceed 99; otherwise, we could leave an apple in each basket and get a

contradiction.
In a similar way, we see that number of baskets with at least two apples

cannot exceed 49; the number of baskets with at least three apples cannot exceed

33, and so on. We now estimate the number of apples in the baskets. This

cannot exceed

99þ 49þ 33þ 24þ . . .5100ð1þ 1=2þ 1=3þ 1=4þ . . .þ 1=99Þ
5100ð1þ 1=2þ 1=2þ 1=4þ . . .þ 1=64Þ5100ð7Þ ¼ 700:

However, this contradicts the assumption that there are at least 2000 apples.

1.4.6 Enumeration

Combinatorial problems are popular in challenges because they can be less

dependent on classroom knowledge and therefore be fair ways of identifying

potential problem solvers. Enumeration is a popular source of such problems.

Enumeration problems, properly set, can be solved in the time allocated and

they have the advantage of challenging the student later to try to generalize, to

enable similar problems to be solved from an algorithm.
A good example is the derangement class of problems, of which the following

problems from the Australian Mathematics Competition are good accessible

examples.

Challenge 1.4.6 (Ages 13 to 15): In how many ways can a careless office boy

place four letters in four envelopes so that no one gets the right letter?
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Discussion: It is possible for a junior high school student to list and count all
the cases. Then the student might find the answer if there had been five letters
instead of four. If she looks at higher cases too difficult to count, she might find
the famous derangement formula.

Challenge 1.4.7 (Ages 13 to 16): In the school band, five children each own their
own trumpet. In howmany ways can exactly three of the children take home the
wrong trumpet, while the other two take home the right trumpet?

Discussion: This is a variation of the derangement problem in which some
matchings are correct and others incorrect. It is possible again for students to
count the cases, as the statistics from this inclusive competition showed, and to
look for generalizations.

1.4.7 Invariance

Discovering an invariant in a problem can lead to a simple resolution of an
otherwise intractable problem. The method of invariance applies in a situation
where a system changes from state to state according to various rules, and some
property which is important to the statement of the problem remains
unchanged in each transition.

This method is very well illustrated by the following famous problem from
the International Mathematics Tournament of Towns, not just for its mathe-
matical properties, but for other various associated aesthetic features.

Challenge 1.4.8 (Ages 15 to 17):On the island of Camelot live 13 grey, 15 brown
and 17 crimson chameleons. If two chameleons of different colors meet, they
both simultaneously change color to the third color (e.g. if a grey and brown
chameleon meet they both become crimson). Is it possible they will all even-
tually be the same color?

Discussion: If the original number of chameleons had been 15 of each color, it
is clear that pair-wise choices of chameleons of the same color pairs would lead
to 45 chameleons all of the third color. However with this starting configuration
all attempts to obtain the same result fail. The student needs to find a basic
property of the starting numbers 13, 15, 17 which remains unchanged during
every meeting of two chameleons of different colors. In fact, no two of the three
numbers of colored chameleons leave the same remainder upon division by 3.

1.4.8 Inverse thinking

Sometimes there can be useful challenges involved by thinking in the inverse
direction. Here is a problem from the Mathematics Challenge for Young
Australians.
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Challenge 1.4.9 (Ages 14 to 16):AFibonacci sequence is one in which each term
is the sum of the two preceding terms. The first two terms can be any positive
integers. An example of a Fibonacci sequence is 15, 11, 26, 37, 63, 100, 163, ...

� Find a Fibonacci sequence which has 2000 as its fifth term.
� Find a Fibonacci sequence which has 2000 as its eighth term.
� Find the greatest value of n such that 2000 is the nth term of a Fibonacci

sequence.

Discussion: Generally one thinks of a Fibonacci sequence in the forward
direction. Here, as is common in an inverse thinking scenario, instead of being
given the data and then finding the results, we are given the results and are asked
to find the data. It is a challenge for students to think this way.

The student can do this by searching through various second-last terms and
working back. In doing so, depending on which term they choose, they can
work back uniquely but some choices will not go back far. If the second last
term is less than 1000, the third last term is greater than 1000 and that is as far as
we can go, as the next term would be negative. We do not do much better if the
second last term is too high.

The student can eventually focus in on a small range of values for which the
sequence can be traced back a few terms, and then finally the one which goes
back optimally. The Golden Ratio can be discovered in extended thinking of
this problem, which makes a nice surprise.

1.4.9 Coloring problems

There is a famous problem in which an 8 by 8 checkerboard has it top-left and
bottom-right squares removed. One is then asked whether 31 dominoes (1 by 2)
can be placed over the remaining 62 squares. At first sight this can seem a
tantalizing problem with the student trying for some time to show an arrange-
ment. However, as with the chameleon problem, a solution is not reached and
the student is left wondering why not. In the end, the reason is obvious. Each
domino necessarily covers one square of each color in the normal checkerboard
coloring scheme. However the two squares removed are of the same color,
leaving an imbalance.

The following problem, taken from the International Mathematics Tourna-
ment of Towns, is an extension of this idea.

Challenge 1.4.10 (Ages 14 to 18): A 7 by 7 square is made up of sixteen 1 by 3
tiles and one 1 by 1 tile. Prove that the 1 by 1 tile lies either at the centre of the
square or adjoins one of its boundaries.

Discussion: This problem has a rather surprising result and at first sight, with
all the combinations possible, seems almost impossible to prove. But an exten-
sion of the domino question above, coloring with 3 colors instead of 2 and
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looking at the resultant way in which a 3 by 1 domino might cover squares of the

board, makes the problem accessible.

1.4.10 Concluding comments

The common feature of all these problems is that no difficult calculations are

needed anywhere, which helps to ensure that students in a normal class can

reach out to the problem from their normal experience. All of the problems

require the discipline of clear thinking, which will enhance the general problem-

solving capacity of the student.
Major advances in our society often emerge from the disciplined solution of

apparently simple problems. For example, Euler’s analysis of the bridge pro-

blem led to a higher level of knowledge which is central to modern technology

today. For him to have been able to develop an idea beyond what was known is

similar to the challenges which people continually face on a day-to-day basis.

1.5 Challenges from Olympiad contests: Students independent

of classroom teacher

There are students who wish to go beyond mass contests. They have to become

more independent, as their teachers often cannot support them adequately.

Usually they participate in national Olympiads and a fortunate few participate

in the International Mathematical Olympiad. Calculus is not involved in these

contests.
However, students are expected to be fluent in concepts of proof, and to

learn in detail advanced topics in geometry, algebra, number theory and com-

binatorics. A complete list of IMO problems from 1959 to 2003 can be found at

www.kalva.demon.co.uk/imo.html.
The teachers who organize and coach students for contests of this kind are

highly dedicated and proficient mathematicians, who are themselves expert

creators and solvers of problems and skilled at leading students forward.
The posing of challenges is most refined when the audience is specialized.

Many appear in problems sections of mathematical journals, for which the

solvers must have significant skill and experience.
While problems have to be relatively elementary for mass contests (and there

is a particular talent in setting problems that are at once interesting and

accessible to an ordinary school student), it is at the level of national

and international contests that the setting of challenges is most demanding

and rewarding.
On one side, problems committees often consist of mathematicians and

teachers of some eminence, and on the other, the solvers are students with a
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great deal of talent and natural intuition augmented by a technical sure-footed-

ness and breadth of knowledge in the traditional contest areas.
Since both coaches and students can find a wealth of material on the Inter-

net, there is a premium placed on problems that are new, interesting and yet not

so abstruse as to bar almost everyone from attempting them.

Challenge 1.5.1 (Ages 13 to 20): Let A= 44444444, B be the sum of the digits of

A,C the sum of the digits ofB andD the sum of the digits ofC.What isD? (IMO
1975).

Discussion: In principle, the problem is trivial. Simply work out what A is,

sum the digits and continue until you are finished. In fact, in one class where this
was tried, one student used the mathematical software Maple to computeA; the

result ran to several pages of digits. However, this is not only impractical but
highly prone to error.

If this problem is to be solved within the time allotted for a contest without

electronic aids, the question has to be reworked. Can we find out bits of informa-
tion aboutD that will allow us to deduce its value, even without knowing exactly

the value of A, B and C? An experienced student will recall that one invariant
under the summing of digits of a number is the remainder modulo 9 (‘‘casting out

nines’’), so once this remainder is known for A, we know it also for D.
It is clear that A > B > C >D; the question is how fast is the decrease. Since

A < 10,0004444 = 1017776, we see that A has fewer than 20,000 digits so that the
value of B is less than 9 � 20,000 = 180,000, and the value of C is less than 46.

This makes D no bigger than 12.
Even though this problem is of Olympiad caliber, it also works well in a class

where the teacher is in a position to prompt the students towards the winning

strategy. The value of problems of this type is that students learn that when one
cannot enter by the front door, there is often a back entrance that can be used.

Challenge 1.5.2 (Ages 14 to 20): We call a positive integer alternating if every

two consecutive digits in its decimal representation are of different parity. Find
all positive integers n such that n has amultiple which is alternating. (IMO 2004)

Discussion: This problem is inviting in that one can begin by looking at
particular examples. One can eliminate multiples of 20. However, as expected

for a problem in the IMO, the problem was difficult.
One solution was provided by an Australian student who proceeded by a

number of steps, showing in turn that powers of 2, powers of 5, twice powers of
5 and numbers not divisible by either 2 or 5 have alternating multiples. Any

number not divisible by 20 is equal to a multiple of one of these. The crucial
lemma is that, if a has an alternating multiple and b is divisible by neither 2 nor

5, then ab has an alternating multiple.

Challenge 1.5.3 (Ages 14 to 20): Twenty-one girls and twenty-one boys took

part in the mathematics competition. Each contestant solved at most six pro-
blems. For each girl and each boy, at least one problem was solved by both of
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them. Prove that there was a problem that was solved by at least three girls and
at least three boys. (IMO 2001)

Discussion: Combinatorial problems of this type are standard fare on high-
level competitions. While the easier ones can be handled with a few basic
principles, such as the pigeonhole principle, more advanced ones require a lot
of combinatorial experience on the part of both the setter and the solver. The
initial solution of this one was quite complex, requiring at least two pages and
double summations, but in the end a simpler solution was found.

Challenge 1.5.4 (Ages 14 to 20):Assign to each side b of a convex polygon P the
maximum area of a triangle that has b as a side and is contained in P. Show that
the sum of the areas assigned to the sides of P is at least twice the area of P.
[IMO 2006]

Discussion: This result is easy when the polygon is a quadrilateral or regular
with any number of sides. It thus becomes a natural conjecture for convex
polygons in general. It is attractive, simply stated and quite believable.

In fact, this is a really tough problem; it was the final problem on the IMO. It
is further discussed at imo2006/dmfa/si/problems.html . The solution can be
found at imo2006.dmfa.si/imo2006-solutions.pdf .

Challenge 1.5.5 (Ages 12 to 20): A young man walks into a 7-Eleven store and
asks for four items. The assistant tells him that his bill is 7.11 euros, since the
product of the four prices is exactly 7.11. The young man explains indignantly
that one is supposed to add together the four prices, not to multiply them. ‘‘Oh,
dear!’’ exclaims the shop assistant, who then sums the four numbers. But, can
you imagine, the right sum turns out to be 7.11 too. How much did each item
cost? [Swedish, Challenging problems, 2003/2004]

Discussion: This is a particularly difficult example of a type of problem that
can be given in a public venue. In principle, the solution is straightforward, a
matter of ‘‘search and destroy’’. The trick is to set up the structure so that this
can be done efficiently and quickly. If there are too many cases, then one runs a
high risk of either making a mistake or leaving something out.

The use of decimal fractions may be for some a confounding feature, so one
can convert the problem to one of cents rather than euros. This leads to the pair
of equations for the prices:

aþ bþ cþ d ¼ 711 ¼ 3279

abcd ¼ 711ð106Þ ¼ 26325679:

Now it is a matter of gathering evidence. Exactly one price is a multiple of 79
(one of 79, 158, 257, 316, 395, 514, 593, 632) and at most three prices are
multiples of 5.

It is not possible for three prices to be amultiple of 25, so one of themmust be
a multiple of 125 and, clearly, not at the same time a multiple of 79 (giving the
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possibilities 125, 250, 375, 500). This reduces the field of possibilities, but the
analysis still requires some care and proficiency.

The answer is (1.20, 1.25, 1.50, 3.16) in euros.

Challenge 1.5.6 (Ages 15 to 20): Solve the equation nontrivially

8 cos x cos 4x cos 5x ¼ 1:

(Barabonov et al. 2002)

Discussion: Trigonometric problems such as this one are always enticing for
the connoisseur, as they are particularly suited to challenge a student who must
select from a wealth of identities those that will suit the purpose. An obvious
trial solution by inspection is to let x be a multiple of p/6, but attempts along
these lines lead to �1 rather than +1 as a value of the left side. This ‘‘red
herring’’ makes the problem more delicious.

However, a stroke of inspiration is still possible. If one hits upon the idea of
making cos 4x= 1, then we should try x=p/12. The left side becomes

4 cos p=12 sin p=12 ¼ 2 sin p=6 ¼ 1;

and we have a solution.
A more systematic approach involves using the product-sum conversion

rules. Since

2 cos x cos 5x ¼ cos 4xþ cos 6x;

the equation becomes

4ðcos2 4xþ cos 4x cos 6xÞ ¼ 1;

from which x= p/12 is an easy guess.
Alternatively, we could render the equation as

2 cos 2xþ 2 cos 8xþ 2 cos 10xþ 2 ¼ 1

and make the substitution t = cos 2x to obtain

0 ¼ ð4t2 � 3Þð8t3 þ 4t2 � 4t� 1Þ

and thus find a solution. Thus, we have a well-constructed problem with a
multiplicity of solutions. However, the cubic factor has at least one real root
between 0 and 1, so there are evidently other solutions not so easily described.

Challenge 1.5.7 (Ages 15 to 20): Prove the inequality a2 + b2 + c2 � 4S
p

3
where a, b and c are the sides and S is the area of a triangle.
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Discussion: Like the previous problem, this too involves trigonometry, but in
a geometric setting, so that one can look to various areas such as algebra,
coordinate geometry or vector geometry for solutions. The solver has a variety
of tools and must make a productive selection. Because of this, a class of
students may produce many different solutions (one class found nine different
ones), so that there is the additional challenge of finding one that is as elegant as
possible. Some relied on standard inequalities such as that of the arithmetic and
geometric means, while others used some more obscure results from trigono-
metry. However, students with an elaborate approach may face difficulties in
working out the details, while the solutions that are the most basic seem not
only more natural but have the bonus of avoiding awkward technicalities.

For example, one of the briefest starts with a rendition of the inequality in
vector form

a:aþ c:cþ ðc� aÞ:ðc� aÞ � 2
p

3a� c;

where the origin of vectors is atBwhile a and c represent respectively the vectors
BA
�!

and BC
�!

: This leads to the scalar equation

a2 þ c2 � ac cosB � p3ac sinB;

which is also obtainable using the Law of Cosines and a standard area formula.
The difference of the two sides can be manipulated to

ða� cÞ2 þ 2acð1� sinðBþ p=6ÞÞ;

which is clearly nonnegative. Equality occurs if and only if the triangle is
equilateral.

Challenge 1.5.8 (Ages 15 to 20):What digit does the numberM= (
p

2 + 1)500

have in the 100th position after the decimal point?

Discussion:While this problem may be a challenge to a novice contestant, it
has become such a standard type that the experienced solver will know exactly
the trick involved. The sum of the number M and its surd conjugate is an
integer. As the surd conjugate is less than 1, it becomes merely a technical
task to complete the solution.

Challenge 1.5.9 (Ages 13 to 20): Solve the equation x2 + 4[x] + 3 = 0, where
[x] denotes the largest integer that does not exceed x.

Discussion: Without the greatest integer function, this would be a standard
quadratic equation. The challenge is created by ‘‘breaking the pattern’’. While
students may have met the greatest integer function, its appearance in this
setting is novel and unbalancing. The challenge comes from the combining of
apparently incompatible notions.
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How to solve it? Perhaps one might begin by checking for integer solutions:
x= �3 and x= �1 both satisfy the equation. To get other solutions, we need
to narrow down the field. If x is not an integer, we have [x]< x< [x] + 1, so that

x2 þ 4xþ 34x2 þ 4½x� þ 34x2 þ 4ðx� 1Þ þ 3 ¼ x2 þ 4x� 1:

This allows us to deduce that [x] must be either�4 or�5 and obtain that x is
either �p13 or �p17.

Thus there are four solutions. The presence of the greatest integer term
breaks the rule of quadratics having but two roots, and a curious student
might be challenged to investigate the number of possible solutions equations
of this form can have.

Challenge 1.5.10 (Ages 13 to 20): Find the area of the set in the plane deter-
mined by the inequality

ðy3 � arcsin xÞðx3 þ arcsin yÞ � 0:

Discussion: A student may begin by sketching the graphs of the curves,
noting that, because of the functions involved, x and y must both lie between
�1 and +1 inclusive. The challenge here is that the standard approach is simply
unmanageable and another perspective is needed. Denoting the set by M, the
crucial observation is that a 90 degree rotation about the origin takes M to its
complement in the square, so that its area is half that of the square.

This challenge is similar to Challenge 1.2.13, in which a new way of looking
at the situation makes the solution easy. An easier version with the same idea is
to determine the area under the graph of y = sin2 x for 0� x� p/2; in this case,
consider a half-turn about the point (p/4, ½).

Challenge 1.5.11 (Ages 13 to 20):Given a circle with diameterAC, draw a chord
BD passing through a given point F in AC so that the quadrilateral ABCD has
the largest possible area.

Discussion:Many challenging problems are based on what might be called a
‘‘hidden target’’ principle. Roughly speaking, one is required to find the value,
but the only way to solve it is to find a different value and then connect it to the
given one. This problem given to the 1980 Moscow Mathematical Olympiad by
I.F. Sharygin illustrates this principle. One can see how it might have been
created by working backwards from a simple problem, a common technique in
the creation of competition problems.

First, note that if BD is a diameter, then F is the center of the circle and the
result is straightforward. Henceforth, assume that F lies strictly between the
centre of the circle and C.

The crucial idea is to pass from the area of ABCD (which is inconvenient to
deal with) to the area of triangle OBD, where O is the centre of the circle. After
this ‘‘change of target’’, the problem is almost standard. Observe that
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[ABC ]:[OBF ] = AC:OF = [ADC ]:[ODF ], so that [ABCD]:[OBD] = AC:OF.
Thus, instead of maximizing [ABCD], we maximize [OBD]. Since the sides OB
andOD are constant, the largest area corresponds to the largest value of the sine
of the angle BOD. This is 1 whenOF/OC� ffiffiffi

2
p

=2, and is also attained when BD
is orthogonal to AC.

1.6 Content and context

Amathematics educator, in giving students amathematical problem, attempts to
solveapedagogicalone.Differentexamplesofmathematical challengeshavebeen
presented in this chapter. Such challenges may be used in the most diverse peda-
gogical situations. Consequently, analysis should and must focus on the interac-
tion between their pedagogical and mathematical aspects, both with respect to
theircreationandwithrespect totheirapplication. Inotherwords, itmust focuson
the interaction betweenmathematical content and pedagogical context.

In general, considerable attention has been devoted in the scholarly literature
to the influence of various parameters that shape and determine the context in
which mathematical education takes place. (For example, cultural-historical
parameters have been addressed in D’Ambrosio 1990, and Leung et al. 2006,
while the effects of the students’ rangeof abilities havebeenexamined inSheffield
1999.) However, there has been a dearth of discussion of the concrete practices
involved in selecting mathematical assignments for various educational situa-
tions. Recently, this topic has attracted increasing attention, as evidenced by the
work ofArbauch andBrown (2005) and by the publication of the special issue of
the Journal of Mathematics Teacher Education devoted to mathematical tasks
(2007 No. 4). Such studies must be continued and expanded. The aim of what
follows is to urge educators to engage in such research and to suggest several
topics that deserve to be explored in greater depth.

Usiskin (2000) identifies eight levels in the development of talent, from the
levels of the uneducated person and the ‘‘ordinary’’ American schoolchild at the
bottom, to the level of Gauss at the top. Such a classification is naturally some-
whatarbitrary:Usiskin’s levels canbesubdivided further,andconversely, several
of them can be united into one. Nonetheless, Usiskin poses the significant
problem of development to the next level and expresses confidence in the realiza-
tion of such a program.Our ownbasic premise is that students need challenges at
every level of development. However, the selection of assignments at every level
and in each situation must be accomplished in its own distinctive way.

1.6.1 Three groups of requirements for assignments

It may be argued that three groups of nonmathematical requirements must be
taken into account in selecting any problem for any challenge:
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� the students’ cultural-educational level;
� the students’ psychological characteristics;
� the pedagogical problem being addressed.

It is undesirable, and often impossible, to offer problems that rely on knowl-
edge or conceptions that the students do not possess. For example, educators
putting together problems for middle school students must usually avoid exces-
sive generality and abstraction. Problems involving real-life linguistic details
that are unfamiliar to the student are likewise infeasible.

By way of a simple example that confirms these claims, it was once observed
that a student teacher gave students a ‘‘Problem of the Week’’ that dealt with
similar figures. Wishing to make it more understandable and vivid—and thus
more interesting for the students—the teacher formulated the challenge as a
problem about making reduced photocopies. It turned out, however, that no
one in the class had encountered a photocopier before. Therefore, although the
problem was well within the students’ mathematical abilities, it was not under-
stood by any of them.

The second group of requirements compels educators to anticipate the
influence that, for example, success or failure will have on the students’ percep-
tion of mathematics and on their involvement in it. Naturally, much depends on
a purely pedagogical effort to create an atmosphere in which even those stu-
dents who fail to solve various problems will feel sufficiently at ease; but a great
deal is also contingent upon the way in which the mathematical assignments are
selected and structured. The ability to anticipate students’ perceptions relies on
an analysis of their individual abilities (where this is possible), but also on the
consideration of group characteristics: those who have repeatedly taken part in
national mathematics Olympiads will react differently to the fact that they fail
to solve a problem, than those who are first-time participants in an Olympiad at
the school level. Consequently, in the latter instance, the inclusion of excessively
unfamiliar problems may turn out to be unacceptable.

Finally, mathematical challenges may be given for various different pur-
poses: to involve students in mathematics, to develop their level of education
and to involve them in research, to assess them, and for other aims. One should
also not forget about other attributes of different pedagogical situations: the
Olympiad problem, for instance, is one that, by definition, students should be
able to solve in a few hours (and in reality much faster); in selecting problems
aimed at involving elementary school students in mathematics, particular atten-
tion must be given to making the formulation engaging. In each case, the
specific nature of the situation must be taken into account when assignments
are being selected and composed.

In this respect, it is important to study the experience accumulated by
educators in different countries. Compare, for example, the aforementioned
Challenge 1.2.7 (a) from the Russian (Farkov 2004, p. 45) and Challenge 1.2.7
(b) from the American (Flener 1989, p. 10), problems books which were written
as an aid to conducting local mathematics Olympiads in schools.
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Both problems are typical ‘‘school-level’’ problems, in the sense that nothing
is required to solve them except a certain degree of accuracy in the application
of techniques studied in school. At the same time, the combination of these
techniques goes beyond the limits of what is demanded in ordinary classes: one
cannot immediately remove a factor or immediately make use of the formula of
a difference of squares.

In this way, the problems offered for inclusion in local school Olympiads
turn out to be challenges that are in some sense closest to school-level problems.
Furthermore, in determining their distance from school-level problems, many
technical details must be taken into account: the number of steps in the solution,
the place in which the grouped terms of an expression appear, and so on; all of
these elements are significant. The two problems are quite similar. Yet it is clear
that not every problem that could be considered challenging in one country
would have the same status in another country, even if it appears in a similar
pedagogical situation. Studying which problems are considered challenging (in
Olympiads or in a regular pedagogical setting) can facilitate a better under-
standing of the specifics of mathematics education in different countries.

1.6.2 Challenges in classrooms: identifying patterns
in their appearance

Cooney (1985) has described a beginning teacher who believed that genuine
problem solving—that is, doing challenging tasks—should take place during
every classroom session, but who at the same time was convinced that chal-
lenges could be drawn only from recreational mathematics and not from what
the students were learning in their textbooks. This is obviously not the case. For
example, Challenge 1.2.4 grew out of a perfectly routine school problem taken
from a textbook. However, in order for standard textbook problems to be
developed into genuine challenges, and in order for teachers—or better yet,
students—to pose such problems, a special atmosphere of openness towards
construction and exploration must arise in the classroom (Brown and Walter
1990, Watson and Mason 2005). How such an atmosphere may be achieved,
how it is achieved in different countries, and what are the basic existing
techniques and patterns used for creating such an atmosphere—all these are
topics that deserve further investigation.

On the other hand, vast sets of challenging problems have been and continue
to be created in different countries precisely on the basis of ordinary school-
level mathematics. In effect, new fields have appeared in school-level mathe-
matics, in which active research continues to take place. One salient example is
the case of Russia, where problems books for schools offering advanced teach-
ing of mathematics or for elective courses in mathematics are published on a
regular basis (Sharygin 1989–1991, Galitsky et al. 2001, Karp 2006). Such
problems books reflect both the history of mathematics education, with some
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problems taken from books of the nineteenth century, and the contemporary
creativity of teachers and examination administrators. Sometimes, the content
of such problem books is highly specific and adapted to a specific curriculum,
while in other cases it can be successfully used in other countries. In either case,
it is important to become acquainted with the work that has been done in this
respect in different countries.

1.6.3 The psychology of the art of writing problems as a research
problem

The process of putting together a new challenge can unfold in many different
ways. The general claim can be made, however, that literally all aspects of the
task faced by a writer and compiler of problems are connected with the specific
context in which the problems will be posed. This concerns even such charac-
teristics as the beauty of the mathematical problem.

Let us return, for example, to the problem on finding the area of the region
defined by the inequality (y3 � arcsin x)(x3 + arcsin y) � 0 (Challenge 1.5.10).
The experienced solver of problems will be attracted by its unexpectedness and
beauty. However, this problem is unlikely to be seen as beautiful by someone
who has never solved standard problems on finding areas. On the contrary,
such a student will see it only as pointlessly cluttered and unwieldy. The writer
of this problem had his audience in mind, to some degree, when he wrote the
problem, and based on an informal analysis of what the audience generally
expected, he formulated a problem that thwarted those expectations. Insofar as
the writers of problems play with and manipulate their audiences, the psychol-
ogy of the art of problem writing resembles the psychology of art (Karp 2004),
and as such, it deserves further study.

1.6.4 Using different areas of mathematics in different contexts

The problems of Challenge 1.2.7 are challenging for students with little contact
with mathematics. Those of Challenge 1.2.8, also devoted to factorization, will
be challenging for far more experienced problem solvers. However, in higher-
level Olympiads, problems with such straightforward formulations as
‘‘Factor . . .’’ were quite rare. On the whole, such problems turn out to be too
technical; contemporary writers and compilers of high-level Olympiads avoid
not only school-level solutions, but school-level formulations as well. Factor-
ization may turn out to be a necessary element in the solution of a problem—or
more precisely, a sub-problem, which solvers must pose on their own—but it
rarely constitutes the entire problem for the well-prepared student who is
interested in mathematics. Paradoxically, factorization problems are probably
equally unsuitable for students who are not interested in mathematics.
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If we believe that even those who are planning to devote themselves exclu-
sively to the humanities in the future must nonetheless become acquainted with
mathematics, then we must offer them challenging problems, both in class and
in extracurricular work. However, these problems cannot be completely iden-
tical to the problems offered to students who intend to deal with mathematics in
the future; if they were, they would fail to win student interest. One promising
approach is to use new non-traditional areas of mathematics, for example, the
mathematics of elections, which looks at different election strategies and out-
comes (COMAP 2006). This can be both engaging for a humanities student and,
at the right level, not difficult even for a ninth-grader.

The pedagogical context in this case compels us to look for new areas of
mathematicswherein to find challenges.Weobserve the sameprocess inworking
withmathematically gifted students,where all newareas ofmodernmathematics
are used to formulate problems (Berlov et al. 1998). The choice of the mathema-
tical field from which challenges are drawn is not quite arbitrary. In most cases,
it is directly or indirectly determined by the context. The context spurs us to
search for new forms of presentation and new ways of structuring problems.

1.6.5 The structure of problems and the form of their presentation as
a means of responding to context and transforming it

In extracurricular activities as well as in classroom practice, problems must not
be seen in isolation from one another, but as representing specific groups
(blocks or spaces, the terminology varying according to author, Karp 2002,
Watson and Mason 2005). Classical examples of problems book (such as Pólya
and Szegö 1976), in which problems were structured in order to instigate and
help students engage in systematic and deeper investigations, can have an
impact on the writing of assignments in areas of mathematics far more elemen-
tary than those to which the problems books are devoted. The craft of the
problem writer consists in being able, while taking into account an existing
context, to alter it gradually in a certain direction and thus enrich the students’
mathematical notions.

Consequently, it becomes useful to study the structure of mathematical
assignments, the way in which the different parts of a problem set are inter-
related. The ‘‘morphology’’ of problem blocks—as they are assembled in dif-
ferent countries—is a worthy topic of investigation.

1.6.6 The issue of mathematics teacher education

The crafting of problems and challenges has a role to play in teacher education
as well. One might suppose that a rather large number of teachers do not
consider the selection of challenges and indeed of any mathematical
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assignments to be a part of their work at all (Skott 2001). Meanwhile, it is
precisely the teacher who, at least at the beginning, poses challenges for students
and encourages them to pose them for themselves. It is therefore vital to
understand how to prepare teachers who are capable of doing such work.
This topic is discussed in the special issue on mathematical tasks of the Journal
of Mathematics Teacher Education (2007, No. 4) and in a number of chapters in
this volume. The investigation and dissemination of good practice in this area of
teacher education is inextricably linked to the degree of success that school
teachers will have in the exploitation of problems and mathematical challenges
in their classes.

1.6.7 Conclusion

In this section, we have mainly concentrated on listing questions and topics for
further research. Indeed, mathematics education research in this area is only
beginning. But an enormous amount of experience has been accumulated,
internationally. The generalization and dissemination of this experience is a
task of great practical and scientific importance.
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Chapter 2

Challenges Beyond the Classroom—Sources

and Organizational Issues

Petar Kenderov, Ali Rejali, Maria G. Bartolini Bussi, Valeria Pandelieva,

Karin Richter, Michela Maschietto, Djordje Kadijevich, and Peter Taylor

This chapter surveys the existence of many particular types of beyond class-

room mathematics challenges from around the world, discusses the value and

describes special features of each type and gives a very large number of exam-

ples which indicate the wide variety of types of challenge which successfully

operate around the world.

2.1 Introduction

The classroom is only one of the ‘‘homes’’ of education. The process of convey-

ing and/or acquiring information and knowledge takes place inmany forms and

in many places. There are highly efficient ways of learning today which by-pass

the classroom. Printed materials (books, journals and newspapers), radio,

television and the World Wide Web are powerful information sources that

operate parallel to schools. Many students undertake extra learning of mathe-

matics in what are known as clubs or ‘‘circles’’, that is, specially invited groups

of students from typically more than one school who meet with an independent

teacher to develop their mathematical knowledge.
Tasks given to students as ‘‘homework’’ or ‘‘take home’’ exams also contri-

bute to the ‘‘beyond school education’’ in some countries. One should take into

account the educational role of different extracurricular activities which are

conducted outside regular classroom hours such as competitions, mathematics

houses or camps. In addition, one should not neglect the impact on learning of

communication and interaction with more experienced peers, friends, parents,

relatives, specially invited friends and other volunteers. All of these factors,

taken together, form a kind of ‘‘beyond classroom education’’ which comple-

ments, extends and enriches what has been achieved in the classroom.
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The ‘‘beyond classroom education’’ has one specific and important role which
deserves tobementionedexplicitlyandseparately.The school educational system
in themajority of countries is designed to serve the needs of studentswith average
abilities because the latter constitute the majority in the class. The educational
requirements and standards are set up in such a way that even students with
lower abilities could cover them, albeit with significant efforts. This means that
many students are learning less in the classroom than their capabilities might
allow. Further, students of higher ability do not necessarily attract the same
level of attention from their teachers as those who experience difficulties.

The standard school curriculum and syllabus requirements do not represent
a real obstacle or challenge for higher achievers. They are not prompted to
apply more efforts during the educational process and, as a result, their abilities
and even talents can remain undiscovered and undeveloped if they rely purely
on what is available in the classroom.

On the other hand, every society needs high level professionals in all areas of
sciences, economics and social sciences. This kind of professionalism rests on
identification, development and cultivation of higher abilities and talents. It is
achieved through continually motivating and challenging those whose talents
and abilities can be developed. Unlike other resources, such as mineral deposits,
which disappear once discovered and used, the abilities and the talent of a given
person will disappear forever if not discovered, developed and used.

This is where beyond classroom education has an irreplaceable and promi-
nent role: to challenge the minds of those with higher abilities and talents. This
refers especially to mathematics where insight and understanding are obtained
as a result of a solid investment of time and effort. This role of beyond class-
room education is well recognized today in many countries. It has prompted the
existence of an impressive variety of activities designed to challenge theminds of
those who could achieve more.

The most popular and earliest developed beyond classroom activities of this
type have been the different competitions and competition-like activities. They
take various forms in different countries but there are many success stories of
whole generations of strong mathematicians who may not have developed as
such otherwise, and the vast numbers of students entered in competitions
annually now is a mark of success.

These competitions exploit the intrinsic desire of human beings to compete
with others and allow students to exhibit their abilities and talents. They also
motivate the future participants in competition and competition-like events to
work hard in order to be among the winners. This, in turn, deepens mathema-
tical knowledge and improves competition skills.

It is well known that there are many students who dislike mathematics,
because they never had a chance to feel mathematics and enjoy it or maybe
because they were not fortunate to be exposed to adequate teaching. Beyond
classroom education has a role here as well.

In this chapter we describe several types of activities which belong to beyond
classroom education and have already been tested and used in many countries.
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Taken together these activities form a ‘‘Challenging Environment’’ (on national
and international levels) where young people can exhibit and develop their
abilities in the field of mathematics or can enjoy mathematics by observing
and feeling its essence and beauty. These activities provide the ‘‘context’’, the
infrastructure, in which challenging happens.

In Chapter 1, we discussed the mathematical content suited to challenge
young minds, while in Chapter 3 we turn our attention to the contribution that
information and communication technologies can make to challenging
environments.

2.1.1 Working as individuals and in teams

An important issue about mathematics competitions is whether students should
work individually or in teams. Arguably there is a role for both. Certainly
learning in teams can be valuable and an important foundation for later life.
Most international competitions are individually based but some training for
this can usefully be done in teams. Some countries, such as Iran, have found that
students can perform more successfully in individual competitions if they have
had prior training working in teams, and team competitions have increasingly
become part of their profile.

Norway has developed another example of a successful team competition.
Students work in teams comprising their whole class in the KappAbel contest
(see Section 2.2.1.2).

2.1.2 Involvement of teachers

Most countries have been concerned about the difficulty of getting strong
involvement from other than a few committed teachers. As a result quite
innovative methods have been designed to increase this with much success.
Teachers are required to score results and are encouraged to propose problems,
prepare their students and supervise volunteers. As an example, Iran (Rejali
2003) in particular has a good record of being able to organize events so that
teachers become involved without the need for experienced problem creators or
university professors to be present. The same has applied also for competitions
in statistics. The direct experience for teachers in these activities can add
significantly to their professionalism and confidence. Often experiencing the
atmosphere has a very positive impact on the teachers.

2.2 Environments for challenging mathematics

Mathematics competitions were the earliest form of challenge in a beyond the
classroom context and are still arguably the most popular as measured by
participation numbers across the world. One of the Affiliated Study Groups
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(ASG) of ICMI is the World Federation of National Mathematics Competi-

tions (WFNMC), which was founded principally on a base of interest in

competitions, but has since broadened its interests to encompass such activities

as mathematics clubs (or circles), mathematics camps, mathematics days and

journals (see WFNMC 2002).
However there is also a number of other beyond the classroom activities

which provide challenge and which are outside the stated interests of WFNMC.

The best example of this is probablymathematics exhibitions, of which there are

a number of notable ones.
Here we provide a list of some of the main sources, together with some

indication as to how the writers see their main strengths.

� Mathematics competitions. Competitions come in two main categories.
Traditionally the main competitions were the exclusive competitions, typi-
fied by national and international Olympiads. But the latter half of the
20th century has seen the rise of inclusive competitions, in which entry
numbers go into hundreds of thousands, and which provide challenge for
the average student. Examples of these are in the USA, Canada, Australia
and Europe (the Kangaroo, or Kangourou, based on the Australian model,
has annual entries in the millions). Exclusive competitions are perceived to
be strong in identifying mathematics ability and thinking skills, enriching
mathematical knowledge and skills and providing a path for nurturing
high achievers, while inclusive competitions have provided recreation and
fun through mathematics and raised public awareness of mathematics.

� Mathematical journals, books and other resources. These are seen as particu-
larly strong at enriching mathematical knowledge and skills and also in
nurturing high achievers.

� Research-like activities and conferences, projects. These are also seen as
important in nurturing higher achievers, giving them experience of life as a
mathematician, as well as identifying and enriching mathematics skills.

� Mathematics exhibitions, mathematics playgrounds, mathematics rooms,

historical displays, mathematics and science centers. These are seen to be
particularly strong at providing recreation and fun through mathematics
and in raising public awareness, but they certainly provide a challenging
environment, sometimes identifying a different type of student than the one
who excels in competitions.

� Mathematics clubs or circles. These are generally designed to nurture talented
students and develop their knowledge and skills to a higher level.

� Mathematics houses. These are environments for enriching mathematical
knowledge and skills. They provide recreation and enjoyment, and because
of their physical presence they raise public awareness. These houses are also
a place for identifying talented students.

� Mathematics lectures. In various forms these provide a mechanism for
enriching and nurturing talented students.
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� Public lectures, columns in newspapers, magazines, movies, TV, books and

general purpose journals. These events all popularize mathematics and pro-
vide recreation and fun through mathematics for the public at large.

� Mathematics days and open houses at universities and science centers. Nor-
mally conducted in a recreational atmosphere, they raise public awareness
but can also identify and enrich talented students.

� Mathematical modeling programs. These can at various levels introduce a
student to an enjoyment of mathematics and help a talented student to a
greater understanding.

� Correspondence programs. Particularly useful for students in remote loca-
tions, these can provide all students with challenge at their level.

� Interdisciplinary workshops, games, puzzles, short term exhibitions. These can
have a wide range of values, depending on the actual programs.

� Web sites. There is a range of web sites from those which provide Olympiad
style enrichment to those from which students at any level can access infor-
mation and learn.

� Mathematics camps, summer schools, summer institutes. Depending on their
theme, these can be held for very advanced students, or have broader themes,
for example, exploring what mathematicians do in normal life.

� Family mathematics programs. These are often in the public domain and take
a recreational and fun approach.

� Presence of mathematics in community fairs and events. Again these normally
take on a recreational and fun approach in the public domain.

This list is indicative rather than exhaustive. We now discuss some of these in
more detail.

2.2.1 Mathematics competitions

First, it should be noted that Kenderov (2006) and Kenderov (2007) provide
definitive commentary on the role and extent of competitions as they currently
apply, and also their history.

It is not easy to trace back the origins of mathematics competitions for
school students. According to V. Berinde (2004) a primary school math com-
petition with 70 participants was held in Bucharest, Romania, as early as 1885.
There were eleven prizes awarded to two girls and nine boys.

Nevertheless, it is widely accepted today that the Eötvös Competition in
Hungary (1894) is the forerunner of contemporary mathematics (and physics)
competitions for secondary school students. Its model is still widely used today.
The competitors were given four hours to solve three problems individually (no
interaction with other students or teachers was allowed). The problems in the
Eötvös Competition were specially designed to challenge and check creativity
and mathematical thinking, not just the acquired technical skills; the students
were often asked not only to give the correct answer, but also to provide the
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reasons why this was the correct answer. As an illustration, we give here the
three problems from the very first Eötvös Competition in 1894.

P1. Show that the set {(m, n): 17 divides 2m+ 3n} coincides with the set {(m, n):
17 divides 9m+ 5n}.

P2. Given a circle C, and two points A, B inside it, construct a right-angled
triangle PQR with vertices on C and hypotenuseQR such that A lies on the
side PQ and B lies on the side PR. For which A, B is this not possible?

P3. A triangle has sides length a, a+ d, a+ 2d and area S. Find its sides and
angles in terms of d and S. Give numerical answers for d= 1, S= 6.

(Complete collections of problems from this competition can be found in
Rapaport 1963a, Rapaport 1963b, Liu 2001.)

To compete means to compare your abilities with the abilities of others.
Thus, the broader the base of competition, the better would be the comparison.
This seems to be the driving force behind the natural transition from school
competitions to town competitions, to national and to international competi-
tions. The Eötvös competition was the beginning of a remarkable development.
The idea migrated from country to country, each time getting enriched both as
to the style of conducting the competition and as to the mathematical content.

In 1934 a mathematical Olympiad was organized in Leningrad, USSR (now
St. Petersburg, Russia). This event was unique (and still is) in that students need
to submit some of their solutions orally. AMoscow Olympiad was also founded
shortly after.

In the middle of the 20th century, the flagship of math competitions, the
International Mathematics Olympiad (IMO) , was born. In 1959, the first IMO
took place in Romania with participants from seven countries: Bulgaria,
Czechoslovakia, German Democratic Republic, Hungary, Poland, Romania,
and the Soviet Union (USSR). The second IMO (1960) was organized by
Romania as well, and since then it has been hosted by a different country
every year (except 1980, when no IMO was held).

Originally, each country had the right to send a team of up to eight high
school students guided by a team leader and a deputy team leader. In 1982 the
number of students in a national team was reduced to four students. Since 1983
a national team has consisted of up to six students accompanied by a team
leader and a deputy team leader. Over the years the number of participating
countries has increased and in 2007 the IMO in Vietnam was attended by
competitors from 93 countries.

The conduct of the IMO is subject to strict and formal rules which regulate
every aspect of the competition: participation, problem selection, assessment of
solutions, distribution of medals, and many other essential details. More
details and information on the IMO can be found on its official site
www.imo-official.org/.

The competition itself occupies two consecutive days. On each day the
students have 4.5 hours to solve three problems. The problems are selected by
an international jury comprised of team leaders as well as representatives of the
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host country. There is no official syllabus for the IMO but the problems are
accessible to the most talented secondary students. The problems are difficult
and their solution requires a significant degree of inventive ingenuity and
creativity. The solution to a problem is worth seven points. The perfect score
is, therefore, 42 points.

After the competition, there is a social program for participants so that they
can get to know each other, discuss different solutions to the problems and
share future plans. Team leaders also exchange experience and good practices
on such matters as the creation of new ‘‘Olympiad’’ problems and preparation
of students.

Officially, IMO is a competition for individuals. Participants are ranked
according to the points scored. On this basis, the medals are distributed.
Unofficially, as in the Olympic Games, the medals and points obtained by the
participants in a certain team are accumulated in order to rank the countries.
This provides an opportunity for international comparison.

IMO is the most prestigious international mathematics competition today.
To participate successfully in IMO, countries had to develop their own systems
of competitions in order to identify students with high abilities and to motivate
them for hard work. It is noteworthy that the existence of the IMO led to
International Olympiads in other sciences—physics, chemistry and biology. In
1989 under the auspices of UNESCO the first International Olympiad in
Informatics (computer science) was organized in Bulgaria. There are also new
Olympiads in some narrower disciplines (or sub-disciplines), although these are
not as large as the biggest five science Olympiads, and are not recognized by
every country. Further, the resources of many countries restrict them to attend-
ing only the original five broad scientific Olympiads.

2.2.1.1 Inclusive competitions

Today the world of mathematics competitions encompasses millions of stu-
dents, teachers, research mathematicians, educational authorities, publishers
and parents. Hundreds of competitions and competition-like events with
national, regional, and international importance are organized every year. A
remarkable international cooperation and collaboration has gradually emerged
in this field. How the system works can be seen from the following story.

The Mathematical Association of America first held a national competition,
open to all, with multi-choice problems in 1950. The University of Waterloo
followed with a Canadian competition of the same kind in 1963 (see cemc.
uwaterloo.ca). Such papers, with problems for students of broad ability groups,
were marked on computers with answer sheets read by optical readers.

Australian mathematician Peter O’Halloran, while on sabbatical leave at the
University of Waterloo over 1972/73, observed these events and identified
the potential to hold such a competition in Australia. This event was held for
the first time in Canberra in 1976 and was so popular that the competition
went national as the Australian Mathematics Competition (AMC) (see
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www.amt.edu.au/eventsamc.html). The AMC run by the Australian Mathe-
matics Trust (based at the University of Canberra ) involves up to half a million
participants, larger than the Canadian Mathematics Competition. In turn, the
European competitionLeKangourou desMathématiques (modeled, as the name
suggests, after the AMC) (see www.mathkang.org/), which started in the
nineties, in 2005 involved 3.5 million students from different countries.

Some national competitions are truly impressive too. The Mathematical
Olympiad for public school students was initiated in Brazil in 2004 (see
www.obmep.org.br/). In 2006 it alone had 12 million participants!

It would not be an exaggeration to say that the rise and the development of
mathematics competitions is one of the characteristic phenomena of the 20th
century. It deserves to be studied and analyzed. However this is not an easy
task. A glance at the World Compendium of Mathematics Competitions
(www.amt.edu.au/wfnmccom.html) maintained by the AustralianMathematics
Trust and at MathPro Press (www.mathpropress.com/competitions.html) (a list
of web sites related to competitions maintained by Stanley Rabinowitz) reveals
a variety of competitions which resist any classification attempts.

The terms ‘‘inclusive’’ and ‘‘open’’
There is a distinction between these terms. The term ‘‘inclusive’’ (WFNMC
2002) in the sense used here means that a large number of students of all
standards participate. However there are competitions which are ‘‘open’’ in
the sense that anyone can enter, which have wide participation in terms of
numbers, but which would not be regarded as ‘‘inclusive’’. A good example of
this is the Mathematics Challenge for Young Australians, run by the Australian
Mathematics Trust, which is open to all and attracts up to 15,000 students
annually.

This is an event in which students have three weeks to discuss problems
which have stages, starting normally with an easy question, but building up a
theme step by step to something more advanced. Because the student can
consult with various people, including their teachers, there are no prizes, and
the student is essentially competing with herself, and potentially gaining the
satisfaction of solving a challenging problem.

However the participants are intended to be in the top 10 to 20 per cent
ability level and so this would not be regarded as ‘‘inclusive’’.

2.2.1.2 Different types of competition

While ‘‘inclusive’’ (intended for all) competitions are intended for students of a
wide range of abilities, ‘‘exclusive’’ (by invitation only) events target talented
students. (Examples of the second type are the IMO and competitions con-
ducted to select a national team for IMO.) There are ‘‘multiple-choice’’ compe-
titions where each problem is supplied with several possible answers, from
which the competitor has to find (or guess, as no justification is required) the
correct one. In contrast, ‘‘classical style’’ competitions (like the Eötvös
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Competition and IMO) require students to present arguments (proofs) in

written form. In ‘‘correspondence’’ competitions like Tournament of Towns

(www.amt.canberra.edu.au/imtot.html), the students do not necessarily meet

each other, but write the papers under supervision in their home towns (without

the need to travel, such competitions are cheaper to organize). Such competi-

tions are also organized by many journals (see Section 2.2.2).
In ‘‘presence’’ competitions the participants are competing together in the

presence of other competitors. This enables all students to participate under the

same conditions. There are even mixed-style competitions, with a presence-style

first stage and correspondence-style subsequent stages. Competitions may also

be ‘‘individual’’ (for ranking of students, like IMO), or ‘‘team competitions’’

where the score of the whole team is what matters and students might cooperate

in the solution process.
The competitions may differ by age of participants (primary school students,

secondary school students, students in colleges and/or universities). Competi-

tions differ also by affiliation of participants: from one school, from several

schools or from all schools in a town, nationwide competitions and interna-

tional competitions. However there are competitions which escape such

classifications.
There are also competitions in special topics of mathematics. For instance

Iran has a statistics competition and Australia has a statistics poster

competition.
Here are some (of the many) examples:

1. An exclusive competition of interactive style. The competition Euromath is
a European cup of mathematics (www.cijm.org/index.php?option=com_
content&task=blogcategory&id =17&Itemid=8). Each team is composed
of 7 people: students from primary school to university and one adult. The
six best teams are chosen to participate in the final competition by the results
of their work on logical games. In the final, these teams work in front of
spectators. To win, a team needs to be quick and to have good mathematical
knowledge but the most important thing is l’esprit d’équipe.

2. Another model of an inclusive competition. KappAbel (www.kappabel.com/
index_eng.html) is a Nordic competition for 14-year-olds in which whole
classes participate as teams. The first two rounds consist of problems dis-
tributed on the Internet and downloaded by the teacher. Within a 90-minute
time limit, the class discusses the problems and decides how to answer each
problem. The third round is divided into two parts: a class project with a
given theme (ending with a report, a presentation and an exhibition), and a
problem-solving session run as a relay where two boys and two girls repre-
sent the class. Recent themes have been Mathematics and local handicraft
traditions (2000), Mathematics in games and play (2001), Mathematics and
sports (2002), Mathematics and technology (2003), Mathematics and music
(2004), Mathematics and communication (2005) and Mathematics in holi-
days (2006). The three best teams from the third round meet on the following
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day for the final, which is a problem-solving session with an audience
consisting of teams that did not make it to the final (www.kappabel.com/
overskriftside-eng.html).

3. Ontario Math Olympics. This is a team contest for year 7–8 students. First, it
runs in each region. There are school teams of 4 students (2 boys, 2 girls,
2 year 7, 2 year 8), which complete various mathematics tasks for the whole
day. Usually, there are four 30-minute team activities in the morning and
three or four 15-minute activities in the afternoon. The results are announced
at the end of the day. During the breaks, there are some mathematics games
or fun activities that involve all participants. The best two teams from each
region compete in the Provincial Math Olympics hosted in June over two
days at some Ontario University.

4. International Mathematics Tournament of Towns. The International Mathe-
matics Tournament of Towns is amathematics problem-solving competition
in which towns throughout the world can participate on an equal basis.
Students participate in their own towns which involves minimal transport
and administrative costs.

The Tournament is conducted each year in two stages—Autumn and
Spring. Each stage has two papers, an ‘‘O’’ level and an ‘‘A’’ level, which
are spaced roughly one week apart. The A level paper is more difficult, but
offers more points. Students and their towns may participate in either stage
or level, or in both levels and both stages.

The Tournament is open to all high school students. Students are awarded
points for their best three questions in each paper, and their annual score is
based on their best score in any of the four papers for the year.

There are two versions of each paper, known as the Senior and Junior
papers. Students in Years 10 and 11 (the final two years of high school in the
Russian nomenclature) are classified as senior participants and therefore
attempt the senior paper. So that Year 10 students are not disadvantaged
their scores are multiplied by 5/4. Younger students, in Years 9 and below,
attempt the junior paper. To ensure that the scoring is fair to all levels of
students, Year 8 students have their scores multiplied by 4/3, Year 7 students
have their scores multiplied by 3/2 and Year 6 students and below have their
scores multiplied by 2.

Students who exceed a certain minimum score are awarded a diploma
by the Russian Academy of Sciences. Local organizing committees also
present their own awards. The Tournament is managed by a central
committee in Moscow, which is a subcommittee of the Russian Academy
of Sciences.

The Tournament dates back to the late 1970s in the USSR. At that time,
the National (All-Union) Olympiad of the USSR was based on a system that
gave relatively little opportunity to students in the larger republics such as
Russia and Ukraine.

The first Tournament was known as the Olympiad of Three Towns
(Moscow, Leningrad and Riga) and was held in the 1979–1980 academic
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year. Participation quickly grew and the Tournament changed to its current

name in the following year.
The Tournament had difficulty in obtaining political recognition in its

early years, but its popularity grew and it finally won recognition in 1984

when it became a subcommittee of the USSR Academy of Sciences. The
support of the USSR Academy of Sciences allowed the Tournament to

become international. This attracted entries initially from Eastern Europe,

particularly Bulgaria, where a national committee was formed.
The Tournament was confined to Eastern Bloc countries until 1988, when

Canberra was invited and participated. Since then the Tournament

has continued to grow with over 100 towns participating recently. New

towns in recent Tournaments included Buenos Aires and Bahia Blanca
(Argentina), Luxembourg (Luxembourg) and Subotitsa (Yugoslavia).

Other entries have come from Australia, Canada, Colombia, Germany,

Greece, Iran, Israel, New Zealand, Slovenia, Spain, UK and USA.
The problems of the Tournament papers are very challenging and provide

a good source of classical mathematics problems at the high school level.

Five volumes of Tournament of Towns problems and solutions have been

published by Taylor (1992, 1993, 1994), Taylor and Storozhev (1998) and

Storozhev (2005). The Tournament’s web site is at www.amt.edu.au/
imtot.html.

5. The Mathematics A-Lympiad. The Freudenthal Institute has established the
A-Lympiad competition which has two rounds. In the first round, teams of
students compete for a full day at their own school. There is also a second
international round in which about 16 teams compete over a whole weekend,
in a conference centre in a Dutch national park.

The main aim of this competition is teaching problem solving or modeling
by providing appropriate tasks to practice these skills. It is a mathematics

competition for teams of three or four students. The teams work on an open-

ended assignment in which problem-solving and higher-order thinking are
required to analyze a real-world situation. The result of the assignment is a

written report.
The competition is intended for students in years 11 and 12 (ages 16–18) of

secondary schools. The Freudenthal Institute of Utrecht University in the

Netherlands (www.fi.uu.nl/alympiad/en/welcome.html) started the compe-
tition about ten years ago. It provides a challenging atmosphere for team

work, as well as mathematical modeling experience for high school students.

2.2.1.3 Some general comments

Information about mathematics competitions and competition-related activ-

ities is regularly published in Mathematics Competitions, the journal of the
World Federation of National Mathematics Competitions (www.amt.edu.au/

wfnmc.html).
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There are opponents of competitions and a number of arguments arise.
These matters are addressed in the Proceedings of Discussion Group 16 at
ICME-10 (Taylor et al. 2004).

One of the problems with the classroom is that a school curriculum is rather
restricted and cannot suit all. Competitions enable students to be exposed to
other aspects of mathematics and for them to apply the skills they have to new
situations. Competitions enrich the learning experience of hundreds of thou-
sands, in fact millions of students who participate in the inclusive competitions.

Competitions and mathematics enrichment activities can be viewed as events
that provide impetus for subsequent discussions among students (as well as
among their teachers, friends and parents). From the viewpoint of acquiring
new mathematical knowledge (facts and techniques) these ‘‘after competition
discussions’’ might be as important as the preparation for and the competition
itself. Many mathematicians owe a significant part of their knowledge to just
such ‘‘corridor mathematics’’. From this point of view, the social programs
organized after competitions provide additional importance.

2.2.2 Mathematics journals, books and other published materials
(including Internet)

Although they are important for identifying mathematical ability, the competi-
tions themselves can be the culmination of a challenging situation. Their
benefits accrue to those students who have undergone a period of mathematical
enrichment that involves a lot of time and effort as they improve their knowl-
edge and skills.

To motivate and encourage such students, a variety of supports have
emerged: activities such as circles, clubs and camps, attractive educational
materials, mentorship through personal contact or correspondence, journals
and electronic materials (websites, compact discs, games and software).

In addition to the Eötvös competition the year 1894 was notable also for the
birth of the famousmath journalKöMal (an acronym of theHungarian name of
the journal, which translates to ‘‘High School Mathematics and Physics
Journal’’). Founded by Dániel Arany, a high school teacher in Györ, Hungary,
the journal was essential for the preparation of students and teachers for compe-
titions. About one-third of each issue was devoted to problems and problem
solving and readers were asked to send in solutions. As noted by G. Berzsenyi in
the preface of Oláh et al. (1999), about 120–150 problems were published
in KöMal each year, and about 2500–3000 solutions were received. The best
solutions and the names of their authors were published in subsequent issues.

This type of year-round competition helpedmany young people discover and
develop their mathematical abilities. Many of them later became world-famous
scientists. For more information in this respect, see the journal web site
(www.komal.hu).
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About the same time, a similar development occurred in Hungary’s neigh-

bor, Romania. The first issue of the monthly Gazeta Matematică, an important

journal for Romanian mathematics, was published in September 1895. The

journal organized a competition for school students, which improved in format

over the years and eventually gave birth to The National Mathematical Olym-

piad in Romania.
The journal played another important role too. For legal reasons, it was

transformed to Society GazetaMatematică in August 1909. The following year,

the Romanian Parliament approved the legal status of the new society and

this is considered to be the birthday of the Romanian Mathematical Society

(Berinde 2004).
There are many examples around the world of journals designed to stimulate

student interest in mathematics. These journals contain historical articles,

expository articles on contemporary subjects of interest, such as the four

color theorem and Fermat’s Last Theorem, and problem corners, where new

problems are posed, other current problems from Olympiads are discussed and

students may submit their own solutions. Examples of such journals in Eastern

Europe, where the traditions are older, are KöMal (Hungary) and Kvant

(Russia). In the West outstanding examples are Crux Mathematicorum

(Canada),Mathematics Magazine (USA),Mathematical Spectrum (UK), Para-

bola and Function (Australia), and Mathematical Digest (South Africa).
There are many publications which enrich and challenge the student’s inter-

est in mathematics. Which young mathematicians can we find who has not been

influenced by expository books on mathematics, such as Courant’s What is

mathematics? or papers or problems in journals likeMathematical Intelligencer,

American Mathematical Monthly or Mathematics Magazine. In the English

language the Mathematical Association of America has a massive catalogue

and the Australian Mathematics Trust has a significant number of publications.
In Russian, there is also a very rich resource, traditionally published through

Mir. In the French language the Kangourou and other publishers have a

prodigious catalogue, as does the Chiu Chang Mathematics Education Foun-

dation in the Chinese language.
This list refers to just a few major languages, but there are other mathematics

journals in the world that motivate students. For example, in Iran, there is an

expository journal called Yekan, which interested young high school students

for its problems without solutions! But there were also some papers in this

journal about the so-called new mathematics and set theory at a time when the

school curricula did not contain any set theory.
As a result of observations of the effect of this Iranian journal on the interest

of students (Rejali 1989), publications of some expositorymathematics journals

were proposed and today there are many expository mathematics journals in

Iran.
It is impossible to list all possible references with information about printed

materials. One could follow the links at www.mathkang.org/ksf/index.html
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(France), www.amt.edu.au (Australia), and www.maa.org/ (USA) for a rich
variety of printed resources.

A relatively recent development is the publication of the MATHEU
Manual. The MATHEU Project was carried out with the support of the
European Community within the framework of the Socrates Program. Its
complete name is ‘‘Identification, Motivation and Support of Mathematical
Talents in European Schools’’ (www.matheu.eu/). The Project networked the
efforts and the experience of the different countries in the work with higher
ability students in mathematics.

The Manual (MATHEU 2006), the outcome of the MATHEU Project,
contains a sequence of ‘‘ladders’’ designed to challenge the minds of students
(and teachers). Climbing a ladder is possible only if the person increases his/her
knowledge. Each ladder is a self-contained mathematical text, focused on a
specific mathematical topic, which could be used by teachers or by students in
their work in and beyond the classroom.

In essence the ladder is a succession of mathematical problems, explanations
and questions for self-testing, ordered in such a way that the degree of difficulty
increases slowly. By working up the ladder-text, the student, as well as the
teacher, could elevate their mathematical knowledge. Using the ladder, stu-
dents, and teachers, can enrich, deepen and test their knowledge on a specific
mathematical topic.

The lower part of the ladder is rooted in the normal curriculum material
studied in class. As ‘‘steps’’, one has mathematical problems, definitions and
explanations, pieces of information and other challenges that the learner has to
master in order to acquire the higher level of understanding of the material.
Depending on their individual abilities the students advance, that is, ‘‘climb’’, to
different heights on the ladder. The degree of advancement will single out higher
ability students. Therefore the ladders help identify talented students too.

If the ladder is well designed and consists of interesting and challenging
problems, it will attract and motivate the students to apply more time and
energy in studying mathematics.

2.2.3 Research-like activities, conferences, mathematics festivals

The majority of contemporary competitions cultivate the ability to answer
questions and problems posed by other people. However, the ability to for-
mulate questions relevant to a problem or situation is also important, especially
in scientific research.

A drawback of classical competitions is that success depends on the student
having, not only a good mind, but a quick one. With a limited time allowance of
usually three or four hours, most competitions impose significant stress on
participants. Not only do they have to solve the problem correctly, but do so
quickly in the presence of other competitors.
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However there are many highly creative students who do not perform well
under pressure. Such students often come up with new and valuable ideas a
mere day (or even just five minutes) after the end of the competition, yet receive
no reward or incentive.

Traditional competitions disadvantage such students, even though some of
them could become good inventors or scientists. What matters in science is
rarely the speed of solving difficult problems posed by other people. More
often, what matters is the ability to formulate questions, to generate, evaluate,
and reject conjectures, to come up with new and non-standard ideas. All these
activities require ample thinking time, access to information resources in
libraries or on the Internet, communication with peers and experts working
on similar problems, none of which are allowed in traditional competitions.

Obviously, other types of competitions are needed to identify, encourage,
and develop such minds. Such competitions should reflect the true nature of
research, containing a research-like phase, along with an opportunity to present
results to peers—precisely as it is in real science.

As a matter of fact such competitions designed to identify students with an
inclination to scientific (not only mathematical) research already exist.

2.2.3.1 Jugend Forscht (youth quests), Germany and Switzerland

Jugend Forscht in Germany celebrated its 40th anniversary in 2005. It is an
annual competition for students under the age of 21, who work, alone or in
teams, on projects of their own. The projects are presented at special sessions,
where the winners are awarded (www.jugend-forscht.de).

Switzerland has a similar competition, which is organized annually by the
Schweizer Jugend Forscht (Swiss Youth Quests) Foundation, established in
1970. The competition covers all scientific directions, including social sciences
and humanities (www.sjf.ch).

2.2.3.2 Research Science Institute (RSI), USA

In fact, Jugend Forscht was originally modeled on the many ‘‘Science Fairs’’ in
USA. We mention only one such program from USA here, because it empha-
sizes mathematics, has an international character and was successfully used as
a model for similar programs in other countries.

The Virginia-based Center for Excellence in Education (CEE)
(www.cee.org) was founded by Admiral H. G. Rickover in 1983. The major
CEE event is the Research Science Institute (RSI). Each summer approximately
75 high school students gather for six weeks. They are selected from the United
States and other countries and participate in a rigorous academic program
which emphasizes mathematics, sciences, and engineering.

Only outstanding students, who are carefully selected, are admitted to this
program. The RSI starts with a series of professional lectures in mathematics,
biology, physics and chemistry. The students are paired with experienced
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scientists and mentors, who introduce them to interesting research topics and
share with them the joy and excitement of exploring new territories. The RSI
days are filled with research, evening lectures, as well as recreations such as
sports and ultimate Frisbee. At the end of the program, the students present
their own research, both in written and oral form, and awards are given to the
best performers (www.cee.org/rsi/).

The RSI is an international program: almost a third of its students come
from other countries. It provides a unique environment for talented students
from different parts of the world to meet, live and work together for a relatively
long period of time. The networking and friendships fostered by the RSI
program are important for the future development of the participants. The
fact that they know each other could make their future collaboration more
fruitful.

2.2.3.3 High School Students’ Institute for Mathematics and Informatics,

Bulgaria

The Virginian RSI model was adapted to Bulgarian conditions and traditions
and in 2000 a High School Students’ Institute of Mathematics and Informatics
(HSSIMI) was created.

Throughout one academic year, the involved high school students (grade
8–12) work on freely chosen topics (projects) inmathematics and/or informatics
(computer science). They work individually or in teams and are supervised by a
teacher, a university student, a relative, or just any specialist in the field, willing
to help. In fact, some recent HSSIMI projects were successfully supervised by
former HSSMI participants, who are now university students.

HSSIMI organizes three major events: two competition-like student confer-
ences and a summer school. The first student conference is held in January and
the second one is a stand-alone (but otherwise regular) section at the annual
spring conference of the Union of Bulgarian Mathematicians (UBM) in April.
The latter section is the most visited event during the spring conference of
UBM. It is attended by university professors, researchers, teachers, parents
and school peers.

To participate in the HSSIMI events, students submit a written paper (or
software product) with the results of their work. Specialists referee the sub-
mitted projects, assess the materials, and suggest improvements. Students pre-
sent their results at the conferences and both content and presentation skills are
evaluated by the jury. Winners receive awards. As a special award, two of the
winners are sent to USA as participants in the above mentioned RSI.

The authors of the best projects are invited to a three-week summer school.
During the first two weeks, eminent specialists from universities, research
institutes, and software companies give lectures and practical courses in mathe-
matics and informatics.

As in similar programs, the main goal of this preliminary training is to
expand the students’ knowledge in topics of their interest and to offer new
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problems for possible projects. During the third week, students hold a High
School Students Workshop, where they briefly present their ideas for new
projects.

For the relatively short period of its existence, the HSSIMI has become a
valuable addition to the (rather densely populated) system of traditional com-
petitions in Bulgaria. As was expected, the HSSIMI attracted students who
were not regular participants in the traditional competitions.

2.2.3.4 Mathematics festivals, Iran

Students who get involved in studying and doing cooperative research in
schools or outside their schools during their school years learn to do research
and learn mathematics more eagerly. The experience of doing research in
school years makes students successful young researchers in their university
work.

In Iran there are many festivals for young students to present their papers or
discoveries about mathematics. Every year there is a student festival in which
students present their achievements. The Kharazmi Festival has different sec-
tions. Young researchers can present their discoveries or papers in this presti-
gious Festival.

One year, a group of high school students presented their discoveries about
fractals found in ancient buildings of Isfahan. This work was done as a project
in the Isfahan Mathematics House (IMH), with the cooperation and guidance
of architects. This group succeeded in gaining a good result at the Kharazmi
Festival. After this success, these students were more anxious to learn mathe-
matics. There are several reports in which the benefits of early years’ research
were presented. Other festivals such as Isfahan Mathematics House Festival
and Fars High School Student Festival are all providing a challenging atmo-
sphere for students of mathematics throughout the country.

The experience of the Isfahan Mathematics House (IMH) and many other
institutes throughout the world prove that research-like activities and oppor-
tunities for students to present their findings and the results of their studies
make a challenging atmosphere in which they can learn mathematics.

When a student gets a chance to present a lecture at a national or local
conference or is recognized at a festival, it makes him or her excited to learn
more and achieve better results in future. All of these activities provide a
challenging atmosphere to encourage further learning.

2.2.4 Mathematical exhibitions

Exhibitions, in the sense of gathering material together for people to view or
interact with, are becoming increasingly common. These are generally outside
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the classroom and may be aimed as much at the general public as they are at
students. They can also take place in a variety of settings from schools to
museums to shopping malls to the open air.

We mention here several examples of these. The idea of a science centre is to
present scientific phenomena in a hands-on way. This means that visitors are
challenged by a real experiment and then try to understand it. Some countries,
for example, Australia (Questacon, www.questacon.edu.au/ in Canberra) and
Israel (The Israel NationalMuseum of Science, Technology and Space, in Haifa
www.MadaTech.org.il) have national science centers which include mathema-
tical experiments.

There are also science centers devoted exclusively to mathematics, for
instance the Mathematikum (www.mathematikum.de/) in Germany (which
is discussed in more detail in Section 2.2.4.2) or Giardino di Archimede
web.math.unifi.it/archimede/archimede/index.html ) in Italy or Atractor in
Portugal (Chaves 2006). These permanent centers, best visited with a
guide, attract tens and hundreds of thousands of visitors per year. Instru-
ments for museums, laboratories or mathematics centers may be very
expensive.

There are also annual exhibitions, varying in content from year to year.
An example of this which attracts tens of thousands of visitors per day is
the Salon Culture et Jeux Mathématiques in Paris. Further, there are also
occasional exhibitions, such as the international exhibition Experiencing
Mathematics (www.mathex.org/MathExpo/EnHomePage). Sponsored by
UNESCO and ICMI jointly with other bodies it was presented in
2004 at the European Congress of Mathematics and the 10th International
Congress on Mathematical Education (ICME-10). This is discussed in
Section 2.2.4.2.

Exhibitions can have a special theme, such as the one at the University
of Modena and Reggio Emilia featuring mathematical machines
(www.mmlab.unimore.it/on-line/Home.html). These machines are copies
of historical instruments that include curve drawing devices, instruments
for perspective drawing and instruments for solving problems. The math-
ematical machines exhibition is discussed in more detail as a case study in
Chapter 5.

2.2.4.1 Historical background

The root of mathematics exhibitions may be theWunderkammern (small rooms
of curiosity) in the 17th century, where mathematics instruments and models
were on show together with other ‘‘wonderful’’ scientific artifacts (including
improbable stuffed beings made up of pieces of different animals). Famous
examples were the perspective rooms (Baltrusaitis 1984). These were not for the
general public; kings and nobles organized them to astonish and display their
power to their visitors.
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Scientists and mathematicians of the time had an ambiguous response

(as often happens with any popularization of science). No real scientific

intention of popularization was included; yet the cabinets and shelves

where the marvels were on show evolved into the first museums of

science.
In mathematics, they evolved to the displays of mathematical instruments

and models that were common in universities in the nineteenth and early

twentieth centuries. Here too, the audience was not the general public, but

mathematicians and students. Thus, the exhibitions became linked to educa-

tion. In the second half of the twentieth century, the number of mathematical

exhibitions increased and tended to incorporate hands-on exhibits to involve

visitors.
Exhibitions can be classified into one of three types, according to aim.

1. Exhibitions to illustrate mathematical ideas or processes. These are aimed at
the general public, including teachers and students, and the exhibitors are
normally mathematicians.

The challenge, for exhibitors, is to communicate abstract mathematical

ideas without misrepresenting them, while the challenge for visitors is to

reconsider their own attitudes towards mathematics.
When discussing challenge for visitors, it might be considered awkward

not to include mathematics challenge in the form of solving a mathematical

problem. Yet problem solving scarcely works when somebody stands for a

few minutes in front of an exhibit in a noisy room! In exhibitions that take

place in shopping centers, the ‘‘contact’’ of visitors is considered even when it

lasts a few seconds.
Examples of such exhibitions include mathematical corners in science

centers (e.g. Prague, Boston, San Francisco), Mathematikum in Gießen,

Mathematica viva in Lisbon,Giardino di Archimede in Florence,Matemilano,

Matetrentino, and others in Italy, UNESCO Exhibition (Paris), exhibitions

for the year 2000 and other special events.
2. Exhibitions to illustrate some methodology for teaching. These address the

general public, but the focus is specifically directed to teachers and educa-
tors. The exhibitors tend to be mathematics educators.

In these exhibitions, the challenge for exhibitors is to create teaching and

learning environments that combine epistemological analysis with cognitive

and didactical needs, while the challenge for visitors is to fixed ideas about

how mathematics can be taught.
Examples of such exhibitions include the Mathematical Machines exhibi-

tion in Modena and the Mirrors exhibition in Oporto.
3. Exhibitions to illustrate the product of didactical innovation. These exhibitions

are aimed at the general public (including teachers, students and educators),
and particularly towards parents and the local community. The exhibitors
can be teachers, students and sometimes parents.
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The challenge for exhibitors here is to bridge the gap between school and
out-of-school experiences, while the challenge for visitors is to their own
views about mathematics in school.

An example is Matematica nella realtà by Emma Castelnuovo, held at
École Decroly in Belgium.

The reader is also referred to the Study Volume for ICMI Study 5,
Popularization of Mathematics, particularly the chapters on mathematics
education.

In every exhibition (as the exhibition space and the visitors’ time are not
unlimited!) a choice has to be made between the following:

� to focus on one particular topic; or
� to explore a lot of mathematical ideas.

The aim in each case is different. The former aims to show the depth of
mathematical experience and to illustrate at a micro-level the network of math-
ematical processes. The latter aims to show the width of mathematical experience
and to illustrate at a micro-level the network of mathematical processes.

Examples of the former include, Oltre il compasso (Beyond the compass, by
Giardino di Archimede) in Italy, andMathematicalMachines (Modena), and the
exhibition on Perspective at la Villette in Paris.

Examples of the latter are Mathematikum and UNESCO.
Before discussing some particular examples, we refer to the page of the

Il Giardino di Archimede site web.math.unifi.it/archimede/archimede_
NEW_inglese/presentazione2.html , where there is a discussion of what it
means to exhibit mathematics, with a focus on philosophy.

2.2.4.2 Examples of exhibitions

We now discuss some well-known exhibitions in more detail.

Example 2.1: Hands-on Mathematics at Mathematikum (in Gießen).
The idea of the science centre Mathematikum has roots more than 10 years

old. In 1993 Albrecht Beutelspacher (Professor of Mathematics at the Univer-
sityGießen ), together with a group of his mathematics students, started the first
activities in hands-on mathematics.

The project had a simple goal: to give all people interested in mathematics, or
even the not so interested, the opportunity to discover the beauty of mathe-
matics by performing hands-on experiments.

‘‘Being amazed is the first step to get behind the mathematical secrets’’,
Professor Beutelspacher has said.

Starting with only a few geometrical exhibits in 1994, the project grew to
more than 100 hands-on mathematics exhibitions in different German cities,
supported by Professor Beutelspacher and his team. The activities of Albrecht
Beutelspacher culminated in the opening of the science centreMathematikum in
November 2002.
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Now Mathematikum is a very big hands-on mathematics exhibition in its

own building. But Mathematikum is much more than a mathematical museum

or exhibition in the common or traditional sense. Under the motto ‘‘learning by

doing’’ the students, their teachers and their families are invited to learn mathe-

matics using their hands, to think about mathematical experiments and phe-
nomena and to find out mathematical secrets.

This special mathematics centre connects the exhibition of mathematical

experiments with a lot of other activities. These include:

� workshops for children or students on special mathematical problems (such
as the 2006 workshop ‘‘Number summer’’ on the mathematics of Pascal’s
triangle);

� ‘‘Maths for kids’’: children’s lectures with mathematical topics dealing with
daily life, nature and the world around us;

� ‘‘Themathematical couch’’: mathematical talks between students and invited
mathematicians;

� science weekends;
� Art in mathematics: special expositions.

Important educational aspects include:

� giving a creative environment for doing mathematics; given a real thematic
problem, understanding the situation, trying to find out the solution by
experiments and understanding by doing;

� for all students: doing – understanding – loving mathematics;
� accompanying the mathematical experiments by theoretical information.

Thus, Mathematikum lives up to its motto. Its web site is at www.

mathematikum.de.

Example 2.2: The 2004 Exhibition sponsored by UNESCO and ICMI.
Let us consider an example from this exhibit. In the tiling and symmetries
corner of the exhibition Experiencing Mathematics (www.mathex.org/

MathExpo/TilingsSymmetries), some colored wooden shapes are offered with

a very short message on a poster.

Tiling techniques
Can we cover a floor with tiles of any shape without gaps or overlaps?

Many shapes work but not all, as, for example, a regular pentagon. Tiling

patterns, which repeat periodically by translations, are well understood and

their symmetries allow 17 different types of patterns.
The study of these types and their symmetries is based on group theory as

devised by EvaristeGalois. If we want to tile more freely—not periodically—the

study is far from being finished. So, is it possible to tile using only one shape? It’s
a mystery! Tiling patterns find applications in mathematics, crystallography,

codes, particle physics and other fields.

Chapter 2: Challenges Beyond the Classroom—Sources and Organizational Issues

So
cie

ty
 E

di
tio

n



Challenges are only given. When visitors manipulate the material on their

own, they are not expected to solve a mathematical problem, but to broaden
their view of mathematics in several respects:

� mathematics may have aesthetic qualities;
� mathematics is not a frozen body as it still contains mysteries;
� mathematics may have applications (in tiling floors);
� mathematics may concern also physical objects.

This is an example of informal (or lifelong) learning. The visitor may find
that a negative attitude towards mathematics they might have developed can be
reversed. The organizers state their aim clearly:

Welcome to MathExhibition. We hope that you will take pleasure to go through this site.
This exhibition is aimed particularly at young people, their parents and their teachers, but
it is hoped that the ideas will interest all those who want to learn more about Science in
general and Mathematics in particular.

The same material may be used—in the exhibition itself or in an attached
laboratory—under the guidance of an operator who can offer hints for reflec-
tion. The unprogrammed exploration is replaced by a more directed investiga-

tion that suggests paying attention to angles in order to understand why shapes
may or may not tile a floor. The manipulation of physical objects may, in some
cases, be substituted by movies or animations (as in the many web sites con-
cerning tiling). These contexts are examples of non-formal education, where
educational aims are not as strong as in the school system and do not usually
reach any assessment step.

Finally, the same exhibit (maybe in multiple copies) may be used in a
classroom, under teacher control with an explicit link to the mathematics
curriculum. Children may be given challenging problems concerning the

discovery of regularities. For instance, they are asked to measure angles by
means of a protractor and to look for patterns, when a ‘‘perfect’’ tiling is
made.

Example 2.3: Istituto e museo di storia della scienza Firenze (Italy): Exhibition of
scientific instruments
This museum (see galileo.imss.firenze.it/ ) comprises exhibitions and learning
materials on the history, the exploration and the use of historical mathematical
instruments such as

� materials and possibilities to reproduce the instruments;
� interactive learning materials on the mathematics (geometry) and on the

history of the instruments;
� multimedia applications (see brunelleschi.imss.fi.it/esplora/compasso/

index.html );
� children’s lectures on the instruments, their history and the mathematics

behind;
� hand outs for children.
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Special features include

� online exhibitions;
� online learning;
� educational activities for school groups (see www.imss.fi.it/espo/

index.html).

Example 2.4: Museo della Matematica del Comune di Roma: I Racconti di
Numeria
This is an exhibition with learning materials on historical instruments and
mathematical models, and includes

� materials to understand the mathematics behind the instruments and
models;

� children’s lectures (see http://www2.comune.roma.it/museomatematica/).

Example 2.5: Historical mathematical collections in universities or high schools
Examples are the mathematical collection of the universities Göttingen or
Halle.

Exhibition and learning materials on the history, the exploration and the use
of historical mathematical instruments and models include

� handouts for reproducing the models;
� interactive learning materials;
� multimedia applications;
� children’s lectures on special models, on the mathematics of the models, on

the history of mathematics;
� solving of historical problems connected with the instruments or models.

2.2.5 Mathematics houses

Since 1999, in Iran, teams of teachers and university staff have estab-
lished what are called Mathematics Houses throughout the country.
The Houses are meant to provide opportunities for students and teachers
at all levels to experience team work by being involved in a deeper
understanding of mathematics through the use of various media. These
include information technology and independent studies, feeling the
essence of mathematics and learning about the history and applications
of mathematical sciences, playing mathematics games and studying inter-
disciplinary ideas such as mathematics and art, studying mathematics and
the ancient Iranian heritage and buildings, studying mathematics and
genetics, mathematics and social sciences, and medical or engineering
mathematics.

Team competitions, e-competitions, using mathematics in the real world,
studies on the history of mathematics, the connections between mathematics
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and other subjects such as art and science, general expository lectures, exhibi-
tions, workshops, summer camps and annual festivals are some of the non-
classic mathematical activities of these houses. See Appendix 2.4.1 for more
information about these houses.

The houses provide opportunities for public mathematics awareness,
especially for families of the students. They also present mathematics
through recreation and fun by playing with mathematics tools, learning
the applications of mathematics and observing the mathematical contri-
bution to art and other areas of science, technology, social or medical
aspects of life.

The members of the houses can demonstrate their mathematical ability and
thinking skills, and the houses can identify these abilities. Students enjoy the
atmosphere of cooperative working and exchanging information in these
houses and this helps to enrich their mathematical knowledge and skills.

Teachers and talented students may take part in all the activities or special
programs of the houses, and in this way the houses nourish the higher achievers.
Mathematics House is a playground and a center for providing good challen-
ging infrastructure and its aim is to answer all the questions on the problems of
the challenges in mathematics education. It provides an up-to-date state of art
for making necessary challenges for teachers and students.

We do note that some other activities listed in this section are similar to the
concept of the Mathematics House, such as the Adam Ries house referred to in
Section 2.2.13.2.

The Mathematics organization Archimedes (see Appendix 2.4.2), located in
Serbia, may be viewed as another similar organization, because of its permanent
physical presence, but there are some differences in philosophy between these
organizations, probably due to the personalities of the energetic people who
founded them.

2.2.6 Mathematics lectures

In many mathematics departments weekly colloquia are designed for pre-
senting new ideas, exchanging knowledge and introducing new discoveries.
This is a good tool for enhancing research activities, starting joint research
work and introducing new areas. They also provide a challenging atmo-
sphere for the lecturer as well as the audience, prepare the students for
presentations of their ideas and promote learning about different branches
of mathematics.

Inmany schools, districts and societies’ meetings, mathematics lectures given
by appropriate people will help audiences (mostly teachers and students)
exchange ideas and experiences and learn more about different methods of
teaching, applications and the concepts of mathematics. These lectures may
be delivered by invited speakers from universities or schools (teachers or even
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students), and the follow up questions and works on the subject make a
challenging atmosphere for learning and doing mathematics.

Such lectures occurwidely; examples are those in theUKby theRoyal Society
and the Sunday afternoon science lectures in Toronto by the Royal Canadian
Institute. These latter lectures have been given each year since 1849 and have
recently generally included one or two on mathematics in each season. Many
museums also conduct science lectures which include mathematics topics.

By giving mathematics lectures all around the world mathematicians
like Paul Erdös inspired many from their audiences to become researchers.
As an example of an eminent case one can see in the biography of Kurt
Gödel the influence of the lectures given by Furtwängler on Gödel’s
switch into mathematics (see www-history.mcs.st-andrews.ac.uk/Biographies/
Godel.html).

2.2.7 Mentoring mathematical minds

As discussed in Sheffield and Gavin (2006), one aim of mentoring is to narrow
the gap between the established level and the potential for each student. Many
countries have programs to prepare students for advanced rounds of competi-
tions. For example, members of the national team often train over several
months for the IMO. There is evidence that such programs are successful
(Carroll and Carroll 2004).

2.2.8 Mathematics camps, summer schools

Camps and schools run for several days, sometimes a week or two where all
participants are accommodated for the whole period. Along with mathematical
activities, such as lectures, workshops, friendly competitions, small or large
research investigations, there are contrasting social and recreational activities.

Benefits include:

� The opportunity tomeet and have access to some prominentmathematicians
and educators (they usually are in the organizing team or in the academic
team) is so appealing and motivating to the students that they feel recog-
nized, respected and privileged, which is a strong motivator for further
improvement.

� Students get to know each other better in an informal environment, which
helps build connections and friendship for many years to come. Good
students keep in touch exchanging ideas on their further work, thus, moti-
vating and supporting each other in future.

� Because the group of students is relatively homogeneous and many hours
can be dedicated to a topic or investigation, it is possible to deliver a high-
quality rigorous program that can greatly enrich the students in the long run.
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Several examples are given in the next sections.

2.2.8.1 International Mathematics Tournament of Towns summer camp

The Tournament of Towns referred to in Section 2.2.1.2 also has a summer
camp, to which winners of the competition are invited.

The camp is held in a country setting, a different place each year. The
students arrive and there are a few in-depth problems presented to them. It
will start with some work which is readily accessible, gradually developing an
idea, until the last part is typically unknown even to the problem author. The
authors are experienced composers of problems who stay at the camp for the
week-long duration of the camp.

Students can work individually but usually work in teams. In the middle of
the week they formally report back on their progress and at the end of the week
there are prizes for the best solutions. Sometimes students have been known to
solve open problems.

The camp has a number of other activities going simultaneously. There can
be activities which are not mathematical, and a number of interesting ad hoc
lectures are given, not just relating to the set problems.

2.2.8.2 International mathematics kangaroo summer camps

These are organized every year in several European countries, as a reward for
the national winners of the European Kangaroo contest. For a week, interna-
tional groups of students gather together and participate in many activities that
involve team work, some friendly competitions, many recreational activities
and trips.

2.2.8.3 Summer School Festival UM+

This festival runs every year in July for several days. It is the final round of the
national contest for young talents UM+, for students from Years 4 to 7,
organized by the Bulgarian mathematics magazine Mathematics PLUS.

The participants are selected from the best performing students after the
three correspondence rounds of the contest. At the festival, they attend lectures
and participate in workshops led by outstanding teachers and mathematicians.
The tradition started in 1994, when the first UM+ festival was organized within
the program of the Second Conference of the WFNMC in Pravetz, Bulgaria.
Then the first participants were honored to meet face-to-face legends of mathe-
matics such as Paul Erdös and Peter O’Halloran.

2.2.8.4 The Canadian seminar

This camp, for about 50 students who are the winners of the Canadian national
inclusive competition, is held at the University of Waterloo for a week each
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June. The students live in a college of the university, and experience a number
of activities, including lectures by invited mathematicians, problem-solving
sessions, and some fun activities such as mathematics relays.

2.2.8.5 Isfahan summer camps

Students who take part in Isfahanmathematics summer camps (see www.math-
house.org) are usually developing interest in other activities of the house and in
doing so learn more mathematics. Those who attend these camps or summer
schools learn mathematics through playing games, living together and enjoying
social life. These camps and summer schools provide useful and efficient tools,
not just for learning mathematics, but also teach the participants to hone social
skills.

2.2.8.6 The Institute for Advanced Study in USA

This organization has a long history of running these programs (see www.
admin.ias.edu/ma/1999/index.html).

2.2.9 Correspondence programs

These programs provide access to challenging activities for a wide range of
interested students, many who live in remote areas and cannot be taught face-
to-face. While the form and details vary, generally students get regular problem
sets that have to be solved with a deadline of a week to a month.

These solutions go to professionals who send comments along with a collec-
tion of model solutions. Materials from past rounds are available and can be
used as a resource for self-directed learning and training. These programs help
identify talented students who may lack the opportunity to participate in
contests and other challenging activities.

Correspondence schools and programs are very helpful and provide good
opportunities for challenging mathematics.

Examples include

� Mathematical Olympiads Correspondence Program (Olymon ), Canada (see
www.cms.math.ca/Competitions/MOCP/ and www.math.utoronto.ca/
barbeau).

� The national contest for young talents UM+, for students from grade 4 to 7,
organized by the Bulgarian mathematics magazine Mathematics PLUS,
Bulgaria. This contest runs in three correspondence rounds, where ten
problems are posted. The students who submit the best solutions to these
problems are invited to participate in the aforementioned three-day mathe-
matics camp UM+.
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� The national competition for students in grade 5 to 7 organized by the
Bulgarian mathematics magazine MATEMATIKA. This competition
runs in several correspondence rounds during the year. The best students
participate in the final round, where they compete face-to-face.

� A correspondence school for secondary students was established in
Lithuania (Stankus and Kasuba 2006) to reach students across the country.
This school, first operating during the Soviet era from 1969 to 1989, was
supported by mathematicians at Vilnius University . Students of the school
were first given a theoretical background. Problems were published in a
Lithuanian daily newspaper, and a selection of these was chosen for students
to write up their solutions and submit them for marking. This school has
been renewed in the year 1998 on a wider basis with the cooperation of
several universities, teachers and students. The Lithuanian Mathematical
Society is also involved. The main object of this school is competition which
provides a good atmosphere for challenging mathematics.

� In some Australian states, because of the remoteness of some students from
the city in which themain IMO training takes place, state directors substitute
face-to-face teaching with equivalent correspondence programs, which are
often successful in identifying students for the IMO team; in any case, they
lift the standard of participating students.

� In Iran, the university student members of the Isfahan Mathematics House
correspond with Iranian and foreign scholars who live in the country or
abroad, in order to develop their research skills (see www.mathhouse.org).

� In USA, the Gelfand Correspondence Program in Mathematics (GCPM)
was established by I. Gelfand in 1990. It is administered by faculty and staff
at the mathematics department of Rutgers University and is open to high
school students all over the United States. Although it is based on experience
from the Moscow Correspondence School, the GCPM program has been
designed to be compatible with American education. Participation inGCPM
is valuable for students intending to continue the study of mathematics or
mathematically based sciences. The goal of GCPM is not just the education
of future scientists, but enhancing a student’s intellectual abilities, andwill be
useful for a student no matter what career they ultimately choose. For many
students the most important component of a correspondence school is
interaction with the mentors, teachers or scientists, which provides a catalyst
for challenging mathematics outside the classroom later (see gcpm.rutgers
.edu/more.html).

� Leipziger Schülergesellschaft fürMathematik (Mathematical Student Society
Leipzig) is a correspondence program combined with seminar activities and
camps or weekends. The central idea is challenging mathematically inter-
ested and gifted children with different activities under the supervision of
mathematicians.
This society offers to mathematically interested and gifted children different
programs to enable them to come together and be engaged with mathe-
matics. The main activities are seminars that regularly take place at the
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University of Leipzig and are conducted by students and mathematicians
from the mathematics department. These seminars address mainly high
school students in Years 5 to 12 in the Leipzig region.
Interested pupils who cannot come to the meetings are sent letters with
course material and exercises for their year level. The participants prepare
answers and send them back. The tutors prepare sample solutions and
remarks on the participants’ solutions that are returned and discussed in
three or four meetings held later in the academic year. Each year during the
summer holiday time the society offers a special summer camp with math-
ematical training.
Additionally, for students in Years 9 to 12 the society organizes seminar
weeks and seminar weekends (once per academic year for about 20 partici-
pants) with a more academic character. There the tutors (students and
mathematicians from themathematics department of theUniversity) present
lectures and discussions at an advanced mathematical level and give intro-
ductory classes on higher mathematics.

� Mathematical student journals or materials combined with a mathematical
correspondence problem contest. These include: Die Wurzel (mathematical
student’s journal (grade 5 to 12), supported by the University of Jena ), and
Monoid (mathematical student’s journal (Years 5 to 12), supported by the
University of Mainz, see www.mathematik.uni-mainz/monoid). A further
example is Problems of the Month, a correspondence program supported by
the Hamburger Schülerzirkel Mathematik and given to all schools of Ham-
burg (www.hh.schule.de/ifl/mathematik/zirkel.htm).

� As another example, in MATh.en.JEANS (also discussed in Section 5.3.5)
each team works in collaboration with a university researcher who has
proposed a problem, ideally connected to their research, on which the
students work for a long period (often up to a full school year).
MATh.en.JEANS is a virtual laboratory of mathematical research (investi-
gation), under the auspices of a scientific committee, open to all whether
curious laymen, amateurs or professionals, that allows them

(a) to learn about and better appreciate problems under investigation by
professional mathematicians;

(b) to follow a research protocol beginning with a question that is at once
open (that is, the complete answer is not known) and accessible (it is
posed in immediately understandable terms).

Givenmathematical problems of different levels the students are invited to solve
them and to send their solutions to mathematical experts. Very good solutions
are published in the journal of MATh.en.JEANS (see www.mjc-andre.org/
pages/amej/accueil.htm). There are some important didactical aspects of the
program, including

(a) learning mathematics by solving interesting problems at home (under a
relaxed, in some sense, but not really isolated atmosphere), and
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(b) problem solving and solution discussion (via correspondence)

� problem solving;
� formulating the solution, or possibly formulating questions to an

expert;
� understanding the answer of an expert;
� thinking about the answer;
� starting to solve the problem with the hints of the expert.

2.2.10 Web sites

ICT (Information and Communication Technology) is a good medium for
the propagation of mathematical challenges; this will be treated in detail in
Chapter 3. Both teachers and students enjoy the use of the Internet to acquire
mathematical information. Especially for younger students, electronic books,
competitions and weblogs are important tools for learning. Pozdnyakov (2006)
noted that computers can be used to stimulate student research.

The web makes possible chat rooms that enable problem solvers around the
globe to communicate, share notes and exchange problems. Significantly, in
this environment, students are self-motivated and learn together without the
need of teachers.

Many societies, associations and even schools make use of their web sites to
teach mathematics. However, the most popular site among students aspiring to
compete in national and international Olympiads is the Art of Problem Solving
(www.artofproblemsolving.com) founded by Richard Rusczyk.

2.2.11 Public lectures, columns in newspapers, magazines, movies,
books, general purpose journals

Mathematics can be interesting, exciting and attractive. Unfortunately, for
many, it is no more than arithmetic calculations and simple practical
measurement.

One of the first steps toward promotingmathematics challenges is to increase
public awareness on what mathematics is and what mathematicians do. This is
closely related to improving the publicity of mathematics-related events from
all areas (research, education, applications, etc.) in the media and making them
accessible to a larger number of people. To date, everything excellent that
happens in mathematics institutes and laboratories is isolated and known in
the first instance only to a relatively small group of specialists. If something
comes via the media to the general attention of the public there can be mis-
understandings among journalists. It is helpful to involve public relations
specialists in the process of preparing and presenting mathematics news to the
public in a popular, attractive and concise way.
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Not only will this de-demonize the nature of mathematics as something too
abstract to be applicable, but also it will show the variety of problems and
themes mathematics comprises. As a result it then has more potential to seem
connected to people’s everyday life experience.

There has been an increasing trend for mathematics to be a background to
movies, plays and books (such as A Beautiful Mind, Proof and The Da Vinci
Code) and there is an increasing trend for the proof of theorems (Fermat,
Poincare) and news events such as announcements of Fields Medals and the
backgrounds of the winners to be reported. There has, for example, been
considerable coverage of the Fields Medal announcements for former IMO
Gold Medalists Perelman and Tao, and interesting stories about them.

2.2.12 Math days, open houses, promotional events for school
students at universities

Examples of such events include:

� Mini-enrichment courses are organized by some universities in Ontario.
Every year during the first week of May, high school students participate
in a variety of mini-enrichment courses, taught by university professors.
They have the opportunity to observe laboratories and research centers,
and to get first-hand impressions on the everyday work of scientists and
researchers. They increase students’ interest and knowledge, and are not
restricted to highly motivated and capable students only.

� Within Education week in May, the Department of Mathematics at Ottawa
University, together with the Canadian Mathematical Society, organizes
Mathematics Horizons Day for senior high school students (grade 11).
About 30 schools participate, each with a team of four students. In the
morning, the students attend a lecture on a selected math theme, presented
by a faculty member. In the afternoon, they participate in a team contest,
where they have to solve a sequence of 10 problems, divided into two rounds
of five (known as a Math Regatta). The best three teams get trophies. For
more information see www.mathstat.uottawa.ca/community/outreach_en.
html.

� There are many other examples of successful Mathematics Days designed on
similar models: Canberra (Australia) and Ulm (Germany) are two of many
sites.

2.2.13 Mathematics fairs

These events are not competition-based and are designed to enable large num-
bers of students to experience some mathematics, in the form of lectures,
displays, and interactive experiences, certainly providing challenge.
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2.2.13.1 Canadian Andy Liu model

A very good example is the SNAP Math Fairs, founded by Andy Liu in
Edmonton, AB, Canada. The acronym makes its characteristics clear:
Student-centered, Non-competitive, All-inclusive, Problem-based. A descrip-
tion with sample exhibits can be found on the website www.mathfair.com.

An active proponent of such fairs in Ontario is Tanya Thompson, who has
organized them in Collingwood, Toronto and Ottawa. We describe an Ottawa
example—a fair involving Year 7 students—to illustrate how interdisciplinary
projects can be used to create a challenging environment. From about fifty
problems and puzzles (some of them classical, such as the one of the farmer
crossing the river with a wolf, goat and cabbage) proposed by the teacher, each
student (or group of students) selects one.

They are required to write a story using characters from the Wizard of Oz
that present the problem and to produce a poster that allows other students to
try or demonstrate the problem. After the projects are completed, they are
presented at a school exhibition where parents, teachers and other students
are invited to participate. The presenting students played the role of authorita-
tive guides who have to give suitable hints to those who attempt their problems.

2.2.13.2 A mathematical house for younger children (Years 1 to 5)

Located in thehistorical houseof the arithmetic teacherAdamRies inAnnaberg,
Germany, the arithmetic school gives younger students opportunities todiscover
the history ofmathematics as well as special historical mathematical techniques.

Special activities for children’s groups beyond the classroom include:

� children’s lectures and workshops on the arithmetic of Adam Ries with and
without the abacus;

� children’s lectures and workshops on the mathematics of the Adam Ries era;
� workshops on historical mathematical problems of the Adam Ries era;
� workshops on the history of mathematics of the Ries era.

Important educational aspects are:

� learning mathematics in (a special) historical context;
� understanding basic mathematical techniques by using them for historical

problems;
� understanding the connection of mathematics and history through special

problems;
� opportunities for team work.

The web site is located at www.adam-ries-bund.de.

2.2.13.3 Mathematics day at universities

Examples are at Universities of Kaiserslautern and Hamburg. These are differ-
ent from themore purely competition-based Mathematics Days such as those in
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Canberra (University of Canberra and Australian National University) and
Ulm (University of Ulm) (Section 2.2.12). At these events mathematics depart-
ments invite students of all grades to visit the university and to discover
mathematics with activities such as:

� students’ lectures with mathematical topics dealing with actual mathemati-
cal research;

� children’s lectures with mathematical topics dealing with daily life, nature
and the world around us;

� mathematics team contests;
� workshops on special mathematical problems.

2.2.13.4 Long night of mathematics at the high school, Karlsruhe

This activity involves lectures on interesting mathematical problems or topics
given by mathematicians of the high school.

Important educational aspects include

� learning mathematics and doing mathematics in a nearly authentic research
context;

� gaining experience in problem solving and discussing problems with
mathematicians;

� being able to work at different levels.

2.2.13.5 India

The Montessori school in Lucknow has organized a series of mathematics
and computer fairs, known as Macfairs. According to its web site (www.
cmseducation.org/macfair), their goal is to expose the young ‘‘to technology
of tomorrow through a series of grueling and interesting competitions’’. In the
belief that competitions are a vital component of education, the events ‘‘strive to
create a competitive atmosphere that is free of all limitations, prejudices and
distinctions’’.

2.2.14 Mathematical quizzes

The popularization of mathematics and the growth of motivation for learning
mathematics can be promoted by mathematical quizzes—a particular form of
competition (on an individual or a team basis) that uses questions typically
solvable in 10–30 seconds. Answers to such questions require prompt and
meticulous thinking, contributing also to the development of mathematical
reasoning.

Such quizzes can be stand-alone events, or can be very suitably run in
conjunction with other events such as mathematics days and fairs.
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2.2.14.1 The mathematical organization Archimedes

This organization has arranged more than hundred mathematical quizzes so
far, usually during summer and winter mathematical camps and mathema-
tical performances. Among these was the quiz ‘‘Sharpen Your Mind’’ on a
regional broadcasting station with seven episodes. These quizzes have been
appreciatively received by both the competitors and the audience. Archi-
medes’ quiz usually involves three or four teams of 3–5 students from differ-
ent grades, who solve the majority of problems in 10–30 seconds. The number
of questions is usually between 10 and 15. Two quiz questions (one for
younger and one for older students), taken from Kadijevich and Marinković
(2006), are given here.

� Express 0 using three 3s (by using the digit three times, write an expression
that is equal to zero). Time: 10 seconds. Answer: (3 � 3) / 3 or (3 � 3) � 3.

� A box contains blue, green and red balls (in sufficient numbers for each
color). How many balls should be minimally taken from this box in a blind
draw to have at least four balls of the same color? Time: 20 seconds. Answer:

10 balls.

The experience of the Archimedes club suggests that tasks for mathematical
quizzes, directed to challenges beyond the classroom, should be used in the
classroom as well, to refresh regular mathematics education for the cognitive
and affective benefits for all students.

2.3 Concluding remarks: challenging infrastructure—a powerful

motivational factor

Young people are natural competitors. They like challenges and contests. As far
as mathematics is concerned, participation in any form of competition (or
competition-like event) brings a lot of benefits. Here is an incomplete list of
them:

� Competitions provide an opportunity to compare to others and to elevate
standards.

� Competitions build character and life-long skills such as perseverance, rea-
soning, communication and independence.

� Competitions motivate students to work hard preparing and practicing,
because they are able to see feasible goals and real benefits from making
the effort.

� Participating in some competitions, mathematics camps and schools pro-
vides interesting opportunities for socializing—students travel, meet new
friends, experience exciting moments and build a network for further con-
tacts. In this light, the competitive activities contribute to this very important
aspect of their life as adolescents.
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� Students willingly push themselves towards learning at a higher level of
complexity, improving academically and achieving significant results. In
the long run, the process of training and practicing for a contest is often
more beneficial than the contest itself. A healthy portion of stress (if that is
the right word, as it is free of the stress of normal assessment which has a
more official status) is a powerful positive force in this process.

� Students learn to manage stress, they learn how to cope with negative
emotions in case they do not win, and how to benefit and learn from their
mistakes.

� It is a rewarding activity and brings the joy of success, pride of work well
done and recognition by society. It builds self-esteem and motivates for
further efforts.

� The benefits of competitions become even more significant when children
have already got a sense of mathematics while in elementary school. The
number of contests suitable for younger students seems to increase each year,
providing further opportunities.

It is important to choose the challenge, regarding form and complexity to
suit the age, abilities and training of the participants. Challenges can be
adapted to all levels of achievement. Even those with limited abilities can
benefit from a challenging environment. They will be involved in the investiga-
tion and strategizing from the outset, and so gain an intimacy with the mathe-
matics involved. As a bonus, they may improve their skills at taking tests and
managing stress.

It is also important to set achievable goals for each student. In some contests
and for some students, the simple fact of participation is a great success. The
principle of the Olympic Games is strongly exuded in Mathematics Olympics—
let everybody participate in the game and do their best and let the best ones (on
the day) win. But the spirit is largely to compete, show respect for your fellow
competitors, and use the event to help widen your circle of friends.

2.4 Appendix

We describe here two organizations which, in recent decades, because of the
diligence of a small number of committed teachers, have established strong
programs with an ongoing physical presence.

Prominent organizations around the world have developed infrastructure
for a range of enrichment programs, such as those at the Australian Mathe-
matics Trust and the University of Waterloo in Canada, but the two described
here are lesser known, and indicate what might be achieved with limited
financial resources.

There are similarities between the organizations discussed here, but there are
also some differences in philosophy. However they do form models of what
could be achieved elsewhere.
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2.4.1 Iran: what is a Mathematics House?

Mathematics Houses have become a distinct institution in Iran, with support of

various kinds from municipal councils. We give here some background to the

Iranian version, which is a relatively new, but rapidly growing phenomenon.
Although we have mentioned many mathematical centers in Section 2.2, the

Mathematical Houses in Iran are distinctive. Their mandate is to provide an

infrastructure to explore challenging mathematics outside of the classroom, not

only for the benefit of teachers and students with a concomitant effect on the

education system, but also for the public at large. Indeed, they are supported in

part by municipal councils.
Isfahan Mathematics House, the first of its kind, was established as a

project for the World Mathematical Year 2000 with the help of the Isfahan

Municipal Council. Its operation in this historical and cultured city is the fruit

of cooperation among mathematicians who love young people, mathematics

and education.

2.4.1.1 History

To prepare for the World Mathematical Year (WMY), the First Iranian

Mathematics Education Council (1st IMEC) was organized in Isfahan in

1996. This led to the establishment of Mathematics Teachers’ Societies across

Iran, the enrichment of mathematics education and the provision of informa-

tion technology facilities for teachers and their students. A high commission

headed by the President of Iran for the observance of the WMY was set up, and,

in 1997, took as a goal the creation of mathematics houses to function in part as

centers of research. The first one opened in Isfahan in 1997.
The goals of these were:

1. popularizing mathematics;
2. investigating the history of mathematics;
3. investigating the applications of mathematics, statistics and computer

science;
4. developing information technology;
5. expanding mathematical sciences among young students;
6. promoting team working among young students and teachers.

through:

� procuring facilities for non-conventional education;
� introducing new instructional techniques;
� establishing scientific data banks;
� encouraging joint and collaborative research;
� modeling and applying mathematical sciences;
� welcoming relevant novel ideas.
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To date, there are mathematics houses in Isfahan, Neishabour, Tabariz,

Yazd, Kerman, Khomein, Kashmar, Sabzevar, Babul, Zenjan, Gazvin, Gon-

bad and Najafabad. To regulate the cooperation among these, a high commis-

sion for the chain of houses has been established. The web site for IMH is

www.mathhouse.org.

2.4.1.2 Audiences

As the houses serve as a playground for non-conventional education, an infor-

mation center for the history of mathematics and a place to familiarize young

people with various mathematical sciences through observation, collaboration

and access to resources, they serve the general public, students of all levels and

their families, including gifted and blind students, teachers and even university

professors, graduate students, researchers and artists.

2.4.1.3 Activities

1. Lectures (popular and special topics)

One of the main activities is a series of public lectures directed to both

professionals and amateurs that are designed to expose the history and scope

of mathematics and its significance for their lives. Each year at the Isfahan

Mathematics House (IMH) there are five or six expository lectures as well as

special talks for special groups of students, teachers and members of the

house.
Especially popular are talks about the mathematics of architecture, as

Isfahan is a showpiece for the achievements of ancient scientists and

architects.
Special talks on mathematics and its applications by Iranian and foreign

scholars help different groups use ideas in their own investigations. Talks

and workshops on mathematics education help teachers become aware of

new pedagogical developments and to find ways to achieve a better learning

environment in their classes.
2. Mathematics and information technologies exhibitions

Mathematics and statistics lectures and playrooms allow observers, stu-

dents especially, the opportunity to experiment with mathematical tools to

develop a feel for mathematics and its different branches and applications.

There are special ‘‘days’’ and ‘‘weeks’’ in which exhibits create a challenging

environment for visitors, particularly children and their families.
The houses provide computer facilities where participants can use

and develop software, access the Internet and be taught mathematics elec-

tronically. Many of them have their own site with pages for statistics,

e-competitions and teaching tips.
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2.4.1.4 Activities for high school students

Expositorymathematics workshops are held regularly to encourage cooperative
research among students and to acquaint them with mathematical concepts.

� Research groups

High school members of the houses join a research group. They work in
various fields and present the result of their investigations in annual festivals
or in publications.

� Mathematics team competition

IMH organizes the participation of students in the International Tourna-
ment of Towns; unlike other cities, Isfahan students participate as teams
instead of individually. In October, 2006, a new statistics team competition
was organized.

� The Isfahan school net

To establish electronic communication for schools and provide information
technology for education and research, IMH established the Isfahan School
Net.

� Robotics workshops

Workshops have been instituted to acquaint students with robotics and
organize student robotics teams.

� Camps and problem-solving workshops

These activities are designed to popularize mathematics and expand the
experience of young people through the provision of challenging situations
to spur mathematical learning.

2.4.1.5 Activities for university students

� Statistics day

This is observed annually with the assistance of student scientific societies to
foster research work among them.

� Research groups

Research groups of university students are organized to help them participate
in collaborative research through electronic communication with Iranian
researchers abroad. Interdisciplinary studies and research are their main
functions.

� Entrepreneurship

University students have the opportunity to design web pages and software.

� Introductory workshops

Students become versed in using mathematics and statistics software.

2.4.1.6 Activities for teachers

� Research groups

To motivate and support teachers as well as secondary and tertiary
students in research, IMH has organized teachers’ research groups
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in various educational fields. This has also been done by some other
houses.

� Information technology workshops

The workshops are held in conjunction with scientific societies for teachers
to train them in the use of modern educational devices and to acquaint them
with information technology.

� Teachers’ workshops

IMH has conducted workshops on goals, standards and concepts of mathe-
matics education in elementary schools for teachers. High school teachers
are served by workshops on new secondary courses and information
technology.

2.4.1.7 Other activities

Apart from the activities described above, the houses host seminars for studying
problems of university entrance examinations with the cooperation of major
universities and educational organizations, which lead to modifications in the
admissions process. The houses also exchange ideas among themselves, as well
as with a number of professional organizations, such as the Adib Astronomy
Centre, the Iranian Mathematical Society, the Iranian Statistical Society, the
Isfahan Mathematics Teachers’ Society, the Iranian Association for Mathe-
matics Teachers’ Societies, the Scientific Society for the Development of Modern
Iran, the Ababasir Educational Centre and the Science and Art Foundation.

2.4.1.8 Library

IMH and some other houses maintain specialized libraries which provide access
to other information resources in the country, particularly the library of the
Teachers’ Research Centers as well as the I.P.M. library in Tehran.

2.4.1.9 Laboratories

The mathematics, statistics and physical science laboratories provide good
facilities for visiting students and teachers of many levels. At IMH, a group of
researchers are preparing the blind to invoke their hearing acumen to use
standard computer facilities and access the Internet and software packages.

2.4.1.10 Achievements

In a short period, the houses have altered how students can learn mathematics
and introduced new methods for teachers. They have presented new ideas,
nationally and internationally, for developingmathematical sciences, promoted
information technology among students and teachers, and enjoyed success in
teaching mathematics and computer science to the blind.
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In 2002, the houses received first prize and special recognition in the fifth
round of awards of the Society for the Development of Sciences of Iran. IMH
teams won the 2001 and 2002 Kharazmi National Festivals. The houses are
receiving increased recognition internationally.

2.4.2 Serbia: the mathematics organization Archimedes

In Belgrade, Serbia, there is a fascinating organization, which acts as a high-
level base where students are challenged, and is a place to visit much like the
Iranian Mathematics Houses. It has an open, democratic structure, but is
largely under the inspiration of a very remarkable and dedicated mathematics
teacher by the name of Bogoljub Marinković. There is a building in central
Belgrade which acts as a mathematics house, catering for students of a range of
standards. The club attracts the most skilful teachers and is in effect the centre
of training of students who will form the nucleus of the Serbian IMO team. The
following information is based on Kadijevich and Marinković (2006).

The organization is called the Archimedes Mathematical Club, and has the
web site www.arhimedes.co.yu. Archimedes is much more than a normal club
because of its activities and respectable results concerning challenging mathe-
matics beyond the classroom, and in-service professional development of
mathematics teachers. For example, students who have improved their mathe-
matical knowledge and skills in Archimedes’ mathematical schools and camps
have traditionally been among the best solvers at local examinations, and at
regional, state and international mathematical competitions. Despite such a
continuous success, the financial support from the state and other local autho-
rities has been minimal, with most of the drive behind the club coming from
teachers acting in a voluntary capacity.

As regards challenging mathematics beyond the classroom, Archimedes has
dealt with most questions raised by the ICMI Study 16 Discussion Document
for more than thirty years. In order to justify this statement, we summarize
below some of the club’s activities and the main lessons learned from these
activities.

2.4.2.1 Activities

Archimedes was founded in 1973 and its main goals are

� the organization of mathematical schools as well as summer and winter
mathematical camps ;

� the popularization of mathematics and science in general;
� the organization of mathematical competitions;
� the organization of in-service professional development of mathematics

teachers;
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� the formation of a specialized library containing some of the leading national
and international mathematical publications;

� the publication of various materials for mathematics education (tests, books,
booklets, magazines).

Archimedes’ members are mathematics teachers and students at all educa-
tional levels as well as mathematical enthusiasts and other interested adults.
Archimedes’ teachers are not only experts from universities and other institu-
tions, but also distinguished teachers from primary and secondary schools.
Archimedes is governed by an 11-member board.

Basic statistics (1973–2007)

� mathematical schools and camps: more than 22,000 students in schools (33
generations) and about 10,000 students in 95 camps (about 44,000 lessons
delivered);

� popularization of mathematics and science: 75 popular lectures or presenta-
tions and about 200 other gatherings (quizzes, exhibitions, etc.), about
23,000 persons present;

� mathematics team competition: 62 competitions with more than 3,400 teams
(one team per school) comprising 4 or 5 students (about 15,000 students);

� InternationalMathematics Tournament of Towns: participation of Belgrade
team for the regular part and Serbian students for the final summer
conference;

� Kangaroo-like competitions in 2006 and 2007 with about 7,000 and 14,000
participants, respectively;

� in-service teacher professional development: 1,330 presentations/lectures for
primary and secondary teachers of mathematics and informatics (at semi-
nars and other professional events) with about 55,000 teachers present;

� specialized mathematics library: about 25,000 books and about 5,500 issues
of journals and magazines with many rare publications (about three-quarters
of these publications are available to teachers and students);

� publication production: about 300 titles of various publications published in
more than two million copies;

� registered members: about 27,000 members; more than 90 per cent are pupils
and students and 800–1,000 members are active each year.

2.4.2.2 Lessons learned

Challenging mathematics should be arranged in a continuous and well planned way.
Ineachgrade, students in theArchimedes schoolshavea90-minute lessoneach

week over 25–30 weeks. There are two programs for deepening and extending
mathematical knowledge. For students who like mathematics but are not com-
petition minded, there is a standard program. For students with a good record
at mathematical competitions who have passed Archimedes’ entrance examina-
tion , there is an advanced program. Each program concludes with a test.
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The test’s results are very good because not only do students work in
homogenous groups, but they are also taught by distinguished teachers (many
of whom have developed their expertise within Archimedes). A continuous and
well-planned use of mathematical challenges is also arranged for candidates for
national teams for international mathematical competitions, enabling Archi-
medes’ students to be the most successful members of these teams.

Mathematics competitions should require both basic and advanced mathematical
knowledge.

A team mathematics competition (an open team championship of Serbian
secondary schools) arranged by Archimedes has proved a good combination of
team and individual competitions at a national level. These competitions are
arranged for lower secondary school (Years 4–8) and upper secondary school
(Years 9–12). Each team includes one student from each grade.

To help students gradually and successfully deal with challenges, students in
each grade work on two groups of tasks: the first group comprises tasks
reflecting the official mathematics curriculum, while the second one
consists of non-standard tasks from the additional mathematical curriculum
(Marinković 2004). Tasks used in Archimedes are usually (1) non routine, (2)
with good mathematical ideas behind them, (3) interesting with respect to
formulation and content, (4) with nice and perhaps unexpected answers, and
(5) with short outline solutions that requires students to attend to details.

Challenging mathematics should use mathematically isomorphic tasks that differ
contextually.

If not resolved appropriately, the re-use of challenging tasks may be an
significant obstacle to their infusion into mathematics education. An appro-
priate approach may be found in creating and using sets of mathematically
isomorphic problems that differ contextually. Such sets may comprise tasks
that have mathematical themes that are very similar or isomorphic. Another
possibility is to have sets of tasks whose solution methods are very similar or
identical. What follows is a sample of tasks with the same mathematical themes
taken from Kadijevich and Marinković (2006).

� At a test each student correctly solved at least five tasks. Also, each task was
correctly solved exactly by four students. Were there more students or tasks
at this test? [Hint: Start with 5s < 4t.]

� Marabs and Sarabs live in one country. Each Marab knows 9 Marabs and 7
Sarabs, whereas each Sarab knows 6 Marabs and 8 Sarabs. Are there more
Marabs or Sarabs in that country? [Hint: Make use of 7m=6s.]

Challenging mathematics requires challenging professional development of
mathematics teachers.

To help teachers deal with challenging mathematics, Archimedes has orga-
nized a continuous and well-planned in-service professional development pro-
gram for mathematics teachers. This development is based upon ten lectures/
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presentations per year (one permonth except for July andAugust) as well as 6–8
lectures/presentations arranged during the traditional one-day winter seminar.
However, even such continuous and well-planned professional development of
mathematics teachers has had a small global impact on the use of mathematical
challenges in the classroom.

According to the results from Archimedes’ mathematical competitions, prob-
ably just about 5–10 per cent of all students have met mathematical challenges in
the way cultivated by Archimedes. A promising way to improve matters requires
Archimedes to have more challenging professional development of mathematics
teachers that makes use of some versatile digital tools as detailed in Chapter 3.
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Chapter 3

Technological Environments beyond the Classroom

Viktor Freiman, Djordje Kadijevich, Gerard Kuntz, Sergey Pozdnyakov,

and Ingvill Stedøy

This chapter discusses several options that technology can bring tomathematics
teaching and learning, in providing access to many challenging virtual resources
that become easily available to all learners. Recent studies point to new challen-
ging learning opportunities that may be enhanced by technology by means of
dynamic and interactive tools of modeling and experimenting. Finally, recent
developments of flexible and sophisticated communication tools create numer-
ous virtual spaces where people can meet, ask questions, discuss, and work
collaboratively on challengingmathematical learning tasks. We present a broad
view of existing worldwide practices and analyze concrete examples that deepen
our understanding of the advantages and disadvantages related to integrating
technology into challenging mathematical activities in and beyond the class-
room. We conclude with several research paths that are opening in this rela-
tively new field of study in mathematics education.

3.1 Introduction

Playing different roles in different stages of human development, technology
serves as a tool facilitating mathematical computing, application of mathema-
tical knowledge, model building and investigating and learning mathematics.
Inspired by the image of mathematical challenge as an idea to revitalize dis-
course about the role of mathematics in education culture, in classrooms and
beyond, we can emphasize the potential benefits of technology in promoting
and/or providing of mathematical challenge as a tool to develop curiosity,
imagination, inventiveness and creativity.

As educators, we can also see a close connection between technology and
mathematics throughout history and in all cultures, especially in the recent
development of technology based on the new generations of computers and the
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Internet. These push our perception of mathematical activity beyond the limits

of traditional educational forms and settings, offering new challenging oppor-

tunities of doing and learning mathematics for all.
Chapter 7 of this Study Volume discusses the role of technology in making

challenging tasks in the classroom accessible at the lower school levels. At the

same time, technology gives also numerous challenging opportunities to ‘‘break

the walls of the classroom’’ and to bring everyone into the wonderful and

fascinating world of mathematics through the freedom of entertainment and

freedom of learning, freedom of fun and freedom of challenge. (‘‘Technology

breaks the walls of the classroom’’ is an expression used by Jean-Marie De

Koninck, the author of the 29-episode TV series C’est mathématique and the

more recent project ShowMath (www.smac.ulaval.ca/showmath/) at his open-

ing speech of the 2004 winter meeting of the Canadian Mathematical Society

(www.math.ca/).)
Moreover, this freedom of choice in technology offers a unique source for

intrinsic motivation that helps to combine in one activity entertainment with

learning and fun with challenge. This particular role of technology, or ICT

(Information and Communication Technology), the term used in a much

broader sense, has been underlined by Kennewell (2004, p. 96) as a catalyst of

challenging activities:
‘‘ICT can bring difficult tasks within the ZPD (Zone of Proximal Develop-

ment, in the Vygotskian sense, discussed in more detail in Section 6.2.2.3 and

also discussed in Sections 4.5.4 and 7.3.2) of more pupils through screen cues

that provide scaffolding not available from the teacher. Tasks can be motivat-

ing and enjoyable because of the interactivity. Conjecture and risk taking are

encouraged by the provisionality so that pupils can learn constructively from

their mistakes. This fosters perseverance which enables pupils to meet the high

expectations placed on them and appreciate the role of personal effort in

achieving success.’’ (Vygotsky 1978)
An unprecedented growth of web-based educational resources allows Klotz

(2003) to affirm that ‘‘in mathematics, as in other disciplines, the Web is

expanding our concept of the classroom itself, changing what gets learned

and how, affecting student-teacher relationship, and providing access to new

types of mathematical activities and resources that can be used by teachers’’.
Mathematical challenges can be differentiated to meet the educational needs

of all learners, by giving them access to tools unavailable in the classroom.

Learning environments enhanced by technology offer access to traditional

mathematics outside the classroom as well as to new forms of mathematics

unrealizable in classroom settings.
Chapter 2 of this Study Volume analyzes a number of types of beyond the

classroom activities that generate different outcomes such as public awareness,

recreation and fun, identification of mathematical abilities and thinking skills,

enriching mathematical knowledge and skills, and helping to nurture high

achievers with more challenging mathematics.
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In this chapter, we will analyze how technology may contribute to the
realization of these outcomes and look at its advantages and disadvantages.
We will study in depth how technology can become a catalyst of challenging
mathematical activity beyond the classroom. We will discuss what kind of
challenging mathematics can be supported by technology, analyze different
technological tools that help to create challenging learning environments, as
well as discuss the diversity of forms of challenging mathematics supported by
these tools.

At the same time, we will study several examples of new opportunities of
challenging mathematics that can be created by use of technology. We will also
analyze pedagogical and technological issues that mathematics educators may
face if they want to integrate technology into challenging mathematical activity
in and beyond the classroom.

3.2 Technology and challenging mathematics beyond the classroom:

tool of learning and fun

We can categorize the activities offered through technology into four groups:

� mathematical publications and media addressing the general public and
professional mathematicians (TV programs, books, magazines);

� mathematical events addressed to the individuals, community and family
(conferences, fairs, competitions);

� general, mathematics-specific, and interdisciplinary activities (puzzles,
games, clubs, circles, correspondence schools);

� web-based resources in mathematics (encyclopedias, dictionaries, discussion
forums, applets, learning scenarios, lessons).

Activities from the first can be presented in electronic form (text and multi-
media), provide users with information about activities and give immediate
feedback through discussion, blogs and wikis. With a user-friendly system of
management, technology gives access that is both flexible and adaptable to user
needs any time, anywhere and for everyone.

The activities from the second group can be supported by virtual resources
(Internet or CD-ROMs) giving information about the events and allowing
registration (online) and communication with other participants. The third
group can be enhanced by all resources mentioned as well as online and CD-
ROM-based interactive resources (in the form of applets). The last group
contains all kinds of resources including those that can only be used with the
help of technology (programming, multimedia design, modeling, investiga-
tions, etc.).

Mariotti (2002) sees technology as a catalyst transforming socio-mathematical
norms. More specifically, she stresses a new kind of relationship between
problems and knowledge regarding the type of problem as well as the process
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of solution. It might be a direct relationship in the case of symbolic manipulators

such as DERIVE or an indirect one when professional software like EXCEL

or AUTOCAD can be used to solve mathematical problems. The reference

Mariotti (2002) made to the classical work of Papert remains valid in terms of

unprecedented opportunities that information technology separately and in all

combinations opens in terms of the quality of learning environments at work, at

school, and in recreation.
Technology can enhance the mathematical development of young children

offering them attractive challenging environments. Parents can provide chil-

dren with these activities in the form of educational software (CD-ROMs) and

multiple resources on the Internet. These activities can stimulate logical think-

ing (puzzles, patterns, card games, and many others), number and spatial skills

(adjusting to the level of children), categorization, ordering, classification and

grouping abilities (leading to the higher levels of conceptual thinking in the

Piagetian sense).
There are three major types of educational software that provide children

with mathematical challenge: sets of learning activities of different kinds,

animated stories that allow children to explore a situation while engaged in

mathematically challenging activities, and finally, all kinds of creativity soft-

ware that allow children to build their own world by using, among many

options, mathematical structures such as models, shapes, and transformations.
As examples of the first type of activities, we can name Millie’s Math House

(www.kidsclick.com/descrip/millies_math.htm), Mighty Math Number Heroes

(www.kidsclick.com/descrip/mm_numbhero.htm), Thinking Things collection

1–3 (www.kidsclick.com/descrip/tt3.htm), JumpStart Learning System

(www.knowledgeadventure.com/), ADIBOU (www.adibou.com/), Math Rab-

bit’s collection (www.learningcompany.com/), and many others. The second

type can be illustrated with animated story books like Disney’s Mulan, Arthur’s

Computer Adventures, The Cat in the Hat, Winnie the Pooh and Tiger Too

(www.superkids.com/aweb/pages/reviews/e_read/3/sw_sum1.shtml). The third

type of activities can be done with all kinds of creative artist’s software like

KidPix, Read, Write and Type (www.learningcompany.com/).
All kinds of electronic mind-boosting games can also be useful to nurture

mathematical curiosity in very young children by challenges: LEGO, chess,

checkers, cards, TIC-TAC-TOE, puzzles, labyrinths, and others (www.funbrain.

com/; www.crocodilus.org/; mzone.mweb.co.za/residents/profmd/challenges.

html; www2.toulouse.iufm.fr/rallye/; www.legoeducation.com/store/SearchResult.

aspx?pl=7&pt=8&bhcp=1; www.chessmaster.com/us/; compgeom.cs.uiuc.edu/

�jeffe/mathgames.html).
All these computer-based activities are very attractive to young learners

because of multimedia features (colors and animations), high level of adapt-

ability giving children free choice of activity, friendly feedback and easy-to-use

interfaces that they can personalize. Interactivity is another factor attracting

young learners.

Challenging Mathematics In and Beyond the Classroom

So
cie

ty
 E

di
tio

n



Much of this technology-supported educational and recreational material

may help children sharpen their minds as they move on through their schooling.

They complement the regular classroom.
During school years, learners can benefit also from all kinds of online

mathematical challenging activities, such as math clubs and problem-solving

contests. They can become members of informal online mathematical commu-

nities building strong interpersonal ties. We will analyze some examples of these

activities in later sections. These kind of mathematical activities are very

important since they can give everyone access to the variety of mathematical

resources and activities which can be offered only by technology.
It is very important to mention that this variety of resources supported by

technology, and the high level of their adaptability to the needs of different

categories of learners are key elements that can provide appropriate challenges

to mathematically gifted children and children with special needs or disabilities.

Some of these children may, for various reasons, not be able to attend school.

For them, technology becomes the only window into the world of mathematics.

Kennewell (2004) analyzes four different roles that ICT can play in providing

differentiation:

� by task: different pupils are working on different aspects of the problem
during project-based activity;

� by response: interactivity of ICT allows able pupils go beyond the basic
learning objectives making and testing their own conjectures during
investigation;

� by support: ICT resources are generally adaptable to the level of pupil’s
understanding guiding her with appropriate cues;

� by resource: ICT supported educational resources can be created in different
formats (images, words, layouts) that can be suitable to pupil’s learning
capacity.

We stress the crucial role of ICT resources in compensating for disabilities to

enable pupils with vision or hearing problems to function at a higher level than

they would otherwise be able to attain.
The multiple intelligences theory also supports these particular roles of ICT

(Campbell et al. 2006). Regarding development of logical mathematical intelli-

gence it puts an emphasis on modeling and simulation as methods of mathe-

matical activity that combine mathematical challenges with various multimedia

tools that give an immediate retroaction to the learner.
It allows the latter to move further than simple use ‘kill-and-drill’ computer

programs in order to reach superior levels of Bloom’s taxonomy. For example,

the Quebec-based site Récréomath (www.recreomath.qc.ca) proposes enrich-

ment activities that go beyond traditional classroom mathematical practices.
As students move to the higher grades of their schooling, theymight face new

challenges such as a choice of profession that may require a higher level of

mathematical knowledge than might be provided by schools. Many technology

Chapter 3: Technological Environments beyond the Classroom

So
cie

ty
 E

di
tio

n



resources are available for self-learners, helping them to prepare for all kinds of
exams and competitions.

Adults can also find many useful and interesting ways to deal with challen-
ging mathematics through many mathematical entertainments, popular math-
ematical e-literature, and lifetime learning opportunities. Finally, everyone who
uses mathematics of any kind at work can find in technology some personal
challenges.

3.3 What kind of challenging mathematics beyond the classroom

can be supported by technology?

Information and communication technology (ICT) has radically modified our
working space. Educational technology (ET) , on the contrary, has rather
marginally contributed to changing ways of teaching and learning so far.
However, there is a considerable potential for ET to be meaningfully integrated
into the process of teaching and learning in general (Jonassen 2004) and
mathematics in particular (King et al. 2001, Guin et al. 2005). Today’s level of
ET development allows use of powerful digital tools and learning environments
that can help teachers extend their work to the new ‘‘going beyond the class-
room’’ mathematics practice. For example, an automated theorem prover can
be integrated with a geometric microworld in such a way that properties,
suggested by experiments on constructed objects, can be not only formally
verified (e.g. WinGCLC at www.emis.de/misc/software/gclc/), but also added
with their illustrations and proofs to a knowledge repository for later uses
(Janicic and Quaresma 2006).

3.3.1 Types of digital tools and their support for challenging
mathematics

3.3.1.1 A context for thinking skills and digital tools

The ISTE (International Society for Technology in Education) Educational
Technology Standards for students require students to use educational technol-
ogy as versatile tools for creativity and innovation, communication and colla-
boration, research and information fluency, as well as for critical thinking,
problem solving and decision making (www.iste.org). As one digital tool (e.g.
Casio ClassPad) can be used for creativity, research fluency and decision mak-
ing, types of digital tools should rather be defined with respect to relevant
aspects of knowledge such as development, presentation, and sharing.

By doing this, we can, following Jonassen (2000), make a distinction between
semantic organization tools (e.g. databases and concept maps tools), dynamic
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modeling tools (e.g. spreadsheets and microworlds), interpretation tools (e.g.
search tools and visualization tools), knowledge construction tools (e.g. hyper-
media and multimedia tools), and conversation tools (e.g. asynchronous and
synchronous conferencing tools). Furthermore, as computers should be used in
constructivist ways that ‘‘engage learners in representing, manipulating, and
reflecting on what they know, not reproducing what someone tells them’’
(Jonassen 2000, p. 10), learners should try to utilize these tools primarily as
mindtools.

According to Jonassen (2000), a degree to which a particular type of digital
tool is used as a mindtool depends on whether, and to what extent, this tool type
promotes different thinking skills, among which he underlines the following:

� critical thinking skills, which involve major skills of evaluating, analyzing,
and connecting;

� creative thinking skills, which call for general skills of elaborating, synthesiz-
ing, and imagining;

� complex thinking skills, which comprise three major types of skills: designing,
problem solving and decision making.

Although the degree to which one digital tool is used as a mindtool depends
upon the features of learner, assigned task, and utilized learning environment,
different types of digital tools may provide support for different major thinking
skills.

Our analysis of Jonassen (2000) reveals that while all nine types of major
thinking skills reported can be promoted by tools for semantic organization,
dynamic modeling and knowledge construction, interpretative tools can mostly
promote skills of evaluating, connecting and imagining. Additionally, although
conversation tools mostly promote skills of evaluating, elaborating, and synthe-
sizing, they can also promote skills of designing, problem solving and decision
making, especially when asynchronous conferencing tools are used.

3.3.1.2 Challenging mathematics in this context

The expression challenging mathematics is typically used to describe mathe-
matics or a mathematical task that is interesting and perhaps enjoyable, but not
easy to deal with or attain. Although the degree of challenge of a particular task,
which can be described in terms of a range and depth of major thinking skills
required, obviously depends upon the features of the learner and learning
environment, many tasks that can require the learner to transfer, justify,
check, compare, extend, integrate or apply some mathematical results can be
challenging.

Challenging tasks may particularly be those that require the learner to relate
mathematical entities (concepts or procedures), by considering, for example,
their different representations, views or applications (Kadijevich 2007). Solu-
tions to such connecting tasks appropriate for learning projects beyond the
classroom are primarily supported by a dynamic modeling tool, which, for
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example, enables simultaneously-updated displays in algebraic and geometric
windows (e.g. Casio ClassPad and TI-Nspire). In addition, a semantic organi-
zation, interpretation or knowledge construction tool may be used.

Challenging mathematics entails going beyond the traditional presentation,
understanding and use of mathematics. A challenging task is thus, for example,
one that requires mathematics teachers to present the historical, structural and
applicative issues of the examined topic, enabling different learning paths
within that topic. Such a task is called Historical Structural Applicative
(HSA) (Kadijevich 2004). What digital tools are needed to support the chal-
lenges of this task?

Being an instructional design task, the principal tool is a knowledge construc-
tion tool (e.g. hypertext writing environment StorySpace, multimedia authoring
software Opus or web development package MS Front Page). Types of digital
tools that support meeting challenges of its underlying subtasks are:

� interpretation tools for historical and structural issues (a search tool like
Google for historical issues and a visualization tool such as JavaView for
structural ones);

� dynamicmodeling tools for structural and applicative issues (e.g. GeoGebra,
Fathom and TI-Nspire).

Solutions of task HSA may be attained through a collaborative work sup-
ported by a conversation tool (e.g. ClearWiki). Of course, at a simple level, tools
for knowledge construction and conversation may be attained by widely used
software such as MS Word (use its option File/Save as web page) and Mozilla
Firefox (explore your e-mail account by using web-mail service).

The development and use of solutions to task HSA, due to its complexity, are
more suitable for mathematics learning beyond the classroom. In order to make
this learning more successful, learners should be, for mathematically complex
tools, scaffolded through a process that transforms digital tools they use (i.e.
impersonal devices) into their digital instruments (i.e. personal devices). This
process, called instrumental genesis, is usually hindered by some features of the
applied tools, which should be recognized and adequately pedagogically treated
(Guin et al. 2005).

3.3.2 Two approaches to challenging mathematics by hypermedia
learning

3.3.2.1 Learning through design

Hypermedia is multimedia hypertext, that is, hypertext expressed in several
media such as text, graphic, sound and animation. As already underlined, hyper-
media and multimedia tools are used for knowledge construction. As developers
of instructional material learn more from these materials than their users, envir-
onments for developing hypermedia, multimedia or web applications (e.g. Opus,
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StorySpace orMSFront Page) can be powerful tools for knowledge construction
(Jonassen 2000), especially when learning units are based upon soundmultimedia
learning principles like those given in Mayer (2001).

Mathematics teachers may develop multimedia mathematical lessons that
respect the following six requirements:

1) use at least words and pictures to develop multimedia lessons;
2) achieve a good technical realization of the developed artefact;
3) present the mathematical structure of the examined topic;
4) show the application(s) of this topic;
5) make possible different learning paths within the topic;
6) deal with relevant conceptual and procedural mathematical knowledge and

their relation.

A recent study examined the implementation of the six requirements for
future Serbian teachers of mathematics (Kadijevich 2004). The teacher first
made the Serbian designers aware of the six requirements and some web sites
where suitable, applet-based lessons could be found. A five-week group project
was then set with no technical support given. Suggestions for improvements
were sent to students who asked for feedback using e-mail.

HTML pages based on applets or other kinds of animations (simple hyper-
media) were successfully developed for various topics despite missing technical
skills at the beginning (using software such as Euklid, developing and using
Java applets within web pages). It was much easier for the designers to fulfill
requirements 3) and 4) than 5), which was in turn much easier than 6). Many
students liked the project because it encouraged teamwork and creativity.

The outcomes of this study show that mathematics teachers can cope with
HSA-like tasks with some success, which would be higher when pedagogy is
appropriately linked to technology to support the use of various types of major
thinking skills. By using a detailed approach to hypermedia design with various
digital tools, further research may thoughtfully examine the learning difficulties
and opportunities of this kind of learning.

3.3.2.2 Learner-tailored instruction

According to Cassarino (2003), e-learning should be based upon the delivery of
interactive content according to the user’s choice of the implemented states of
learning and the built-in navigational modes supporting the chosen state that
differs from state to state. To attain this end, a hypermedia/multimedia solution
to task HSA may be, developed, for example, in a general way that can be
personalized for particular learners according to their preferences for learning
path, targeted competence, and instructional mode, such as:

� learning path: from applicative issues, to structural and epistemological
issues, to historical issues (defined by available sequencing of the implemen-
ted global issues);
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� targeted competence: making connections (chosen from those available of the
implemented competences);

� instructional mode: exploring and examining different standpoints and their
consequences (selected from a list of available strategies or components of
the implemented instructional design).

Of course, available options for learning path, targeted competence and
instructional mode (possibly constraining each other) may differ from topic
to topic.

Such a conceptualized generator of personalized solutions to the HSA task,
which should also help the learner challenge the applied learning process,
appears as a tool of the future. However, there is already a platform that is
close to this generator called ActiveMath (www.activemath.org).

This web-based, multi-lingual platform combines cutting edge approaches to
e-learning and intelligent tutoring systems: individual courses are assembled
according to learning goal, learning scenario, competences, learning content
and preferences specified by the learner; during tutoring, realized according to
the learner’s model, the learner can take the initiative; the learner can explore
and negotiate with his/her model generated by the system; the structures of the
examined mathematical domains can be visualized; and the content of Active-
Math can be searched by using both text search and semantic search.

Such a platform clearly helps learners engagemore explicitly in the process of
knowledge construction (Melis et al. 2006). As the use of several Computer
Algebra systems is supported by ActiveMath (the work on a collaborative
discussion tool is under way), the user can indeed make use of various tools
for semantic organization, dynamic modeling, interpretation and knowledge
construction to ease meeting challenges of mathematical content and its pre-
sentation, as well as challenges of the management of their e-learning.

Further research may thus examine how different aspects of the learner’s
work with ActiveMath (designing instruction and learning from it with its
possible modifications) influence his/her cognitive, metacognitive and affective
e-learning outcomes.

3.4 Making mathematics beyond the classroom more challenging

Here we discuss what kind of technological environments might make mathe-
matics beyond the classroom more challenging and we investigate related
technological, pedagogical and social issues.

The opportunity to manage an environment is a powerful internal stimulus
for human activity. In other words it means use of an environment as a tool for
realization of mental plans (Vygotsky). Constructive activity is a prime example
of such a possibility. Using computer programs allows constructive activities
such as the creation of geometrical or mechanical virtual objects. That gives a
new challenging dimension to such a productive class of problems as ‘‘problems
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with straightedge and compasses’’. It expands this area by ‘‘problems in geome-
trical transformations’’, ‘‘problems in geometrical measuring’’ and ‘‘problems in
relation to analytical and geometrical representations of objects’’, and can
foster mathematical investigations in and beyond the classroom.

In this context one can ask if such well-knownmind-boosting tools as LOGO
can still be used in providing young learners withmathematical challenges. As it
has been argued by Maddux et al. (1997), self-correcting, highly motivating
LOGO can provide practice in spatial relationships as well as using mathe-
matics in an arena free of negative associations and experiences. Building
special technology-supported environments for distractible children, who do
not often succeed at school, can help them be more successful in mathematics
and thus have positive mathematical experiences. They may, at the same time,
change their attitude towards mathematics and improve social skills and peer
relations.

3.4.1 Software to support mathematical investigation

Dynamic geometry software, formal calculation tools, spreadsheets, graphic
design software and calculators are extraordinary tools of mathematical inves-
tigation. One who masters these instruments won’t take long to use them to
search for patterns and invariants making conjectures (which itself is an impor-
tant piece of mathematical competence to be acquired) and trying to test them
and prove those which seem to be plausible.

Utilization of these tools helps the user get more autonomy and power to test
different hypotheses and study particular in-depth cases. By intelligent and
inventive use of different software, modifying parameters and changing registers,
students get more insight into problems. Themore the user becomes creative with
these tools, the better performing they can become. Moreover, technology tools
favor development of such important qualities of human activity in general and
mathematical activity in particular, as initiative, invention and creativity. With
the help of technology, mathematical activity can be enriched adding an experi-
mental dimension that can be somehow lost in traditional learning environments.
This dimension, in its turn, can enhance mathematical questioning.

Use of this kind of software also brings a new domain into extracurricular
mathematical activities like statistics (using spreadsheets to generate random
data upon certain criteria) and mathematical modeling. These two domains are
significant examples of how technologymight enhancemathematical experiment.

Today’s mathematicians have to develop, as early as possible, a competence
inmathematical experimentation with technology. Therefore, there is a need for
more problems, in and beyond the classroom activities, that integrate fully all
the technological advantages and challenges we have discussed.

At the same time, technology can play the role of a Trojan horse due to the
pixel-type nature of the computer screen. Critical evaluation and reflection of
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results obtained with technology become an important part of the investigation
process. Students must be aware of situations such as ill-conditioning related to
approximations and graphs obtained with calculation tools that might not yield
accurate answers. This awareness has to be part of their learning so that their
discoveries and control of technology have a solid mathematical base.

Technology lets one deal with new kinds of mathematical activities which are
not part of the traditional school curriculum. According to Rubin (1999),
increasing the number of tools for dealing with complexity is one of the most
important developments in technology for mathematicians. We stress that
accessibility for mathematicians, as for students, of tools of mathematical
modeling like Mathematica, AgentSheets, StarLOGO and MAPLE make it
possible to investigate by simulation. Examples of such activities includemodels
of natural systems (most popularly, predator/prey systems).

Using a tool to explore these patterns not only gives students the opportunity
to learn about a biological interaction, but teaches them about functions,
variables, cyclical functions and sensitivity analysis. Exploring these concepts
by hand is practically impossible, since the number of calculations necessary to
yield any kind of pattern is astronomical. A whole new area of mathematics
becomes suddenly available to middle and high school students.

Another example is the rise of the field of chaos. Previously the field of study
for a few mathematicians, chaos is now an example of the connection between
mathematics and art facilitated by technology. Even middle school students can
create tessellations with Tessellmania or fractal images with simple program-
ming languages. As has been mentioned by Rubin (1999), ‘‘the implications of
the rise of chaos in the mathematical community have yet to filter through the
educational system, but the addition of such an engrossing and artistic topic
may turn out to be an opportunity to engage and challenge more students’’.

Due to their very universal nature, the technology tools of mathematical
simulations and modeling can play an essential role in various challenging
activities beyond the classroom, like mathematical competitions, Olympiads,
mathematical recreations, expositions addressed to general public. They can
also stimulate more challenging mathematical activities within the classroom.

Use of computer tools changes the nature of mathematical activities. Now
we can assert the existence of experimental mathematics. The experimental
work helps to search for mathematical properties and verify conjectures pre-
ceding theoretical proof. The same tendency can be seen in the process of
teaching mathematics. For example, creators of problems for Olympiad com-
petitions use the tools of dynamic geometry to search for geometrical invariants
to be proved by contestants. This represents a significant shift in a new direction
using ideas of experimental mathematics with technology to enhance challen-
ging mathematics beyond the classroom.

The essence of many interesting mathematical facts can be shown by means
of visualization tools, which are provided by modern computer technologies.
Use of such material in the pedagogical process of teaching mathematics will
nurture the interest of the students to study important mathematical ideas.
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The understanding of some difficult mathematical laws becomes accessible to

students, who had difficulties in understanding them previously.
We must take account, not only of the stimulus, but also of pedagogical

obstacles in introducing challenging mathematics. An interesting and challen-

ging problem may appear to be inconsequential to a student lacking knowledge

and experience. Accordingly, the student needs an opportunity for discussion in

order to appreciate the subtleties and difficulties. Textbook problems should be

augmented by tools for verifying partial solutions. This will give a second life to

these books and expand the spectrum of problem types, helping to facilitate or

even replace communication between student and teacher. Computer tools

provide alternative ways to verify students’ assertions. Such verification may

be partial to check the correspondence between the solution and the necessary

conditions for it. But it could suffice in leading the student to understand some

mistake or mistaking of the problem. Further development of computer instru-

ments will make it possible to use tools for the verification of theorem proving

in and beyond the school settings.

3.4.2 Numerical working spaces

New opportunities for challenging mathematics are related to the Internet-

based virtual so-called Numerical Working Spaces (NWS) . They may offer

the learner a unique opportunity to benefit from all these tools at the same time,

namely software for experimentation and modeling, diverse databases (such as

mathematical, pedagogical and didactical knowledge bases, problem banks,

banks of clearly explained problem solutions, philosophical and conceptual

issues) and communication and discussion space for all users. They are thus

adaptable to all challenges independently of their form, allowing the public at

large to discover and to deepen their mathematical knowledge and expertise.
The NWS is therefore a powerful tool for preparation of contenders (groups

or individuals) for mathematical competitions (Rallies, Kangourou, Olym-

piads) (www.cijm.org/; www.mathkang.org/default.html; cemc.uwaterloo.ca/;

www.amt.edu.au/mcya.html; www.math.toronto.edu/oz/turgor/archives.php).
They also provide an opportunity to extend the realm of mathematical

exposition to virtual reality and to continue a dialogue with the public. A

NWS is also a tool that makes possible online meetings for different mathema-

tical groups and clubs. It can also be used inside the classroom giving a further

taste of mathematics for beginners.
For example, Math Forum (mathforum.org ) is one such numerical working

space that contains the following elements:

� The Problem of the Week which offers a new challenging non-standard math
problem every other week that can be answered online or offline, with the
opportunity for feedback from mentors.
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� Ask Dr. Math in which all participants can get advice from professional and
expert volunteers.

� Math Tools allows exploration and discussion about the use and rating of
the variety of interactive tools for understanding mathematical concepts.

� Teacher2Teacher invites educators from around the world to work together
on many challenges of teaching and learning mathematics.

� Other options include online mentoring and teacher professional develop-
ment, face-to-face workshops and collaboration with practicing teachers.

Most of these services at Math Forum were developed with research funding

and volunteer support. Some of them now charge a nominal fee for operating

costs.
There exist a number of NWSs that give access to all through a public

Internet site. But it is also possible to develop a spirit of a virtual community,

by restricting access to those with a username and password that can be

obtained through electronic registration. More information can be required in

the case of groups (mathematics clubs) whose aim is preparing formathematical

rallies and competitions. Very often, NWSs offer different levels of access

adapting to every user’s need, which reflects the very nature of the NWS.
To construct an efficient NWS, one needs to create the highest possible level

of flexibility for opening or locking access to particular tools based upon

pedagogical objectives, tasks and activities, and categories of users.

3.4.2.1 NWS1. Goal adaptable databases

Depending on the goals of the mathematical activities within a NWS, databases

can accomplish several functions: knowledge base (facts and formulas needed

to solve particular problems), problem base (problems from past years for

mathematical competitions with solutions), discussion forums, comments

from teachers and experts. Data can be organized in different forms: texts,

multimedia applets, videos of conferences, and so on.
For example, in order to construct a site with mathematical problems, we

need to create mechanisms to present and discuss solutions, to classify and store

problems and solutions. The site devoted to research in a concrete area of

mathematics must have a system of references to other works in this area,

special journals, information about conferences, a mechanism for publication

of results, and so on. Sites which aim to invite the broader public must be

grounded in brilliant and highly innovative ideas, which would attract new

people to do challenging mathematics. One such site is www.websudoku.com/ .
The content of databases is constantly updated by offering a larger number

and variety of electronic documents and activities. It becomes a kind of collec-

tive memory of competitions, expositions and all kinds of mathematical activ-

ities whose aim is to provide every member with mathematical challenge and

entertainment, thus deepening their knowledge, in particular, of complex areas
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of mathematics as well as nurturing public interest in mathematics by means of
puzzles, games and recreation.

The immediate, diverse and flexible access to these electronic documents
changes radically the very nature of mathematical learning beyond the class-
room, giving more power, and giving the user more autonomy in choosing the
time, the place and the type of challenging mathematical activity.

3.4.2.2 NWS2. Communication and exchange

There are different communication tools that can also be used in these virtual
spaces to enable direct chat, and file and video exchange between members.

A group of people who participate in a common activity via the common
information space build a so-called community of practice. The main feature of
such a community of practice is to create a common information space as a
necessary mechanism for the achievement of goals which are common for this
group.

Students who join such communities may belong to different classes or
schools; they may have different ages and different goals of participation for
activity beyond the classroom. Some of them would be interested in participa-
tion in Olympiad-related activities, others would be involved in some kind of
research activity, but all of them find an additional source of motivation in the
opportunity to communicate with peers and experts. Anyone might find a
partner for the purpose of discussing questions, propositions and conjectures.

Each contribution is carefully kept in the computer memory, organized in a
form that allows users to follow the development of discussion and to interact
with other users (publimath.irem.univ-mrs.fr/biblio/AAA05010.htm). The vir-
tual communication space becomes thus a vehicle of co-construction and shar-
ing of knowledge in which everyone can contribute. The discussion is monitored
and directed by teachers and experts. They can intervene, bringing new ideas
and asking new questions.

The main advantage of the Internet is that it provides an opportunity for
people to communicate with each other from different parts of the world.
Another advantage is that the role of teachers can be fulfilled by people who
do not necessarily have direct educational training (such as scientists or specia-
lists in specific areas). But there are corresponding disadvantages. People in
virtual space groups may have no experience of working together, in contrast to
the traditional classroom where students may study together over a long period
of time.

So participants of virtual common space must learn to use common lan-
guage, which can be inconvenient for some participants (the term ‘‘language’’
here means all avenues of communication) and may affect the quality of
exchange and productivity of work. Finally, group participants may have
different interests and background regarding the context of the activity. So we
must take into account all these factors in implementing challenging mathe-
matics beyond the classroom by Internet-based learning environments.
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Several examples of existing communication spaces prove their high educa-

tional potential to stimulate different categories of learners to engage with more

challenging mathematics in and beyond the classroom, increasing their motiva-

tion and engagement (publimath.irem.univ-mrs.fr/biblio/AAA05010.htm).
In such learning environments teachers and experts would have to adjust to

new roles and functions as moderators and guides. They would have more

freedom to take charge of the most difficult questions by reformulating them,

giving hints and clues. The community would free them of other easier issues
handling them by themselves. The activity helps to create a network of members

in which everyone’s input would be welcomed and appreciated.

3.4.2.3 NWS3. Freedom for learning mathematics

If one compares features of an activity beyond the classroom with those in the

classroom, the main difference would be ‘‘mental freedom’’. In activity beyond

the classroom, many restrictions, which are typical for classroom activity, are
eliminated. There are no restrictions in choosing content, no limitations of time

and age.
So themain question in the creation of a technological environment is how to

support the mental freedom of students to assist them in studying mathematics.
Technological environments for supporting activity beyond the classroom can

be distributed between two big groups:

� technological environments for common use; they will support any common
activity without restrictions on content;

� technological environments for supporting special mathematical needs.

The first group is good for supporting ‘‘near mathematics’’ activities where

special tools for organizing mathematical information are not needed.
The next group is necessary for discussing mathematical results by writing

formulas, doing algebraic transformations, drawing pictures. For such pur-
poses there are special tools such as ‘‘virtual mathematical blackboards’’ or

dynamic geometry software, which give a great variety of communication

means. An interactive technological environment can test a solution of a

problem and eventually point to some mistakes, helping students in under-
standing of the problem and in discussing productive ideas on how to solve it.

Communication via Internet may be supported by pedagogical assistance,

which would articulate the mathematical ideas of participants or give hints for

open-ended problems.
A NWS gives its members full freedom to choose the time and duration of

their connections to the space. All members are free to participate in the

discussion, ask questions and share their ideas, and be in full and efficient

control of a chosen activity. This freedom breaks down hierarchy and depen-
dence on teachers, supervisors and other members. Everyone becomes a partner

in the search for solutions and answers in a context where trial and error is a
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normal and well accepted strategy that frees the spirit of discovery and creativ-
ity, allowing full expression of ideas and development of a collective mind.

The new learning tools enhanced by technology modify essentially the ways
of dealing with all kinds of mathematical challenges. They change the well-
known teaching-learning routine where the teacher plays the important role
of knowledge holder and translator, and students are passively consuming
information and methods, which gives them a certain feeling of comfort. It is
not surprising that both teachers and students may meet such profound change
with some controversy. But those who accept and adapt to the new rules of a
NWS could find pleasure of freedom and autonomy of teaching and learning.

3.4.2.4 NWS4. Local, regional and worldwide expansion

The flexibility and adaptability of NWSs (along with required resources) expand
rapidly, attracting experienced and gifted mathematicians, and at the same time,
others who just like to taste the beauty of mathematics. Sites which can be
particularly useful are language specific for languages other than English, like
Spanish and Russian, which are languages common to many countries.

For a common information space to be effective, its participants must share
common features and goals.

In the next section, we will analyze some examples of NWS and their possible
contribution to mathematical challenges.

3.4.3 Issues related to cost and maintenance

In order to develop and run a NWS, we need to take into account several issues
related to the technical and financial components, because of the complexity of
such systems. For example, we need not only find optimal technical solutions
but also constantly upgrade and replace some of their components or re-
structure them completely. There are costs of programming, hosting, content
development, management andmonitoring by experts, which require stable and
continuous financing. This issue has to be carefully studied from the very
beginning of the project. A modular structure would facilitate the development,
and much experimentation is needed to find the most efficient format and
optimize costs.

3.4.4 Psychological difficulties

We have alluded to psychological discomfort as another obstacle to be con-
sidered with technical and financial issues. We might expect resistance from
teachers concerned with losing control over the development of their students.
They might fear being challenged by learners who might go beyond their
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expertise. In these new environments, teachers have to accept the same uncom-
fortable role as learners as their students (in all its technical, pedagogical,
didactical and cognitive aspects).

We can say that the real challenge of bringing more challenging mathematics
beyond the classroom is related to the willingness of teachers to be challenged.
They have to realize that it is a real pleasure to move from unknown to new
knowledge, even if it comes along with a hard, sometimes even destabilizing,
search for solutions to difficult problems. But how would a teacher challenge
students without being challenged? Accordingly, it is important to cultivate the
culture of challenge in the process of initial teacher training, ensuring that new
generations of teachers become more receptive to challenges in NWSs, in
teaching and learning.

3.5 Challenging mathematics beyond the classroom using Internet-

based learning environments

In their analysis of issues related to online collaborative learning in mathe-
matics, Nason and Woodruff (2004) reveal two obstacles in establishing and
maintaining computer-supported knowledge building communities (CSCL) in
mathematics: the inability of most ‘‘textbook’’ mathematics problems to elicit
fruitful discussion (a content-related issue), and the limitations of the represen-
tational tools to be used (a technology-related issue). They thus opt for inno-
vative approaches to be used in mathematical CSCL, allowing for the creation
of authentic mathematical problems that involve students in model-eliciting
mathematical experiences and in developing new tools to represent mathema-
tical problems, to allow more constructive hypermedia-mediated discourse
(Nason and Woodruff 2004, p.104). In the following section, we will discuss
how these innovations can help to build challenging mathematical virtual
environments and analyze several promising pedagogical and technological
solutions.

3.5.1 Problem of the week challenge

We have known for many years that problem-solving abilities play an impor-
tant part in the development of mathematical understanding. Recent work
(Lampert and Cobb 2003, Sfard 2003) has also revealed that the role of com-
munication should be more emphasized in the learning processes used to con-
struct an understanding of mathematics concepts. ‘‘When students are given the
opportunity to communicate about mathematics, they engage thinking skills
and processes that are crucial in developing mathematical literacy’’ (Pugalee
2001, p.296).We can then say that communicating mathematical ideas is part of
building mathematical understanding. However, those communication
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activities need to be authentic and they have to make sense for the students. The
use of information and communication technologies (ICT) can become a great
tool to create significant activities. As a matter of fact, the National Council of
Teachers of Mathematics (2002) asserts that technology is an essential compo-
nent in the learning and teaching of mathematics. Not only can technology
guide the mathematical concepts that are being taught but it could also increase
the learning potential of students by offering a variety of challenging problems.

In her model for the development of mathematically promising children,
Sheffield (1999) opted for the use of multidimensional tasks within the scope of
a heuristic and open model, which would contribute to the development of
abilities to create, make links, investigate, communicate, and evaluate. In short,
in order to succeed in teaching mathematics, it is necessary to create a good
equilibrium between the routine and well-structured tasks, and those more
creative and innovative. The students need to create a solid repertoire of
positive experiences in problem solving, which would allow them to develop
their self-confidence and potential (Klein 2003).

Several recent studies report a positive effect of virtual problem-based envir-
onments on the pupils’ motivation toward mathematics. For example, the
NRICH Project (www.nrich.math.org) was created in 1996 with the original
idea to provide the most talented students with enriched resources online that
are not otherwise available in schools. In their framework for mathematics
enrichment, the authors of the project share their research findings:

� Such on-line resources are not suitable solely for the most able, but have
something to offer pupils of nearly all abilities.

� Enrichment is not only an issue of content, but a teaching approach that
offers opportunities for exploration, discovery and communication.

� Effective mediation offers a key to unlocking the barriers to engagement and
learning (Piggot 2004).

An example of a pedagogically powerful virtual environment has been
created within the project Math Forum (mathforum.org ).Members of a virtual
community interact around the services and resources participants generate
together. These interactions provide a basis for participant knowledge building
about mathematics, pedagogy, and/or technology. The interactions also con-
tribute to what might be described as a Math Forum culture that encourages
collaboration on problem posing and problem solving (Renninger and Shumar
2002).

Seeing a problem-solving communication process as a teaching approach
brings yet another dimension to such projects. The project Solving Mathema-
tical Problems within a Virtual Environment was started by a group of educators
from several Quebec universities (Charbonneau 2000). It promotes a connec-
tion between teacher training programs and schools, setting up a virtual bank of
mathematical problems and a computer environment for discussion and com-
munication. The Internet-based project CASMI (www.umoncton.ca/casmi)
was created in 2000 on the following three assumptions:
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� Challenging problem solving is an essential part of learning mathematics.
� Communication plays a significant role in reaching a higher level of under-

standing of mathematics.
� ICT could help create authentic learning situations in mathematics attract-

ing a larger population of students to rich mathematical resources.

CASMI became one of the more informal educational resources developed

tomotivate school students from all school levels to solve challenging problems,

and thus contribute to the deepening of their understanding of mathematical

concepts and the improvement of their abilities to reason and to communicate

mathematically. Pursuing a long-time tradition of mathematicians challenging

each other with difficult problems by normal mail, it turned out to be a valuable

example of meaningful integration of technology into a mathematics classroom

of the 21st century.
As a result of a close collaboration between the university and the schools,

the project had three original goals:

� to be a tool to help francophone schoolchildren develop problem-solving
and communication skills;

� to be a tool for pre-service teacher training in mathematics education, help-
ing students to learn how to integrate technology in a mathematics class-
room, how to evaluate a solution of mathematical problem in a formative
way, and how to understand children’s mathematical reasoning and ideas
beyond it;

� to be a resource for teachers for challenging activities in and beyond the
classroom (Vézina and Langlais 2002).

The functioning of CASMI is quite simple. Every Monday morning (for 30

weeks during the school year), four problems are posted on the web site.

Problems are divided in the following way: one problem intended for students

at the level Kindergarten to Year 2, one problem for students at the elementary

level (Year 3 to Year 5), one problem for students at the middle school level

(Year 6 to Year 8), and finally one problem for students at the high school level

(Year 9 to Year 12). Students have the week to send their solutions, which

should include sufficient explanation to meet the requirements on communicat-

ing mathematical information, using a web-based form or e-mail. Once the

solutions are received, the pre-service teachers’ work begins.
Grouped in teams, they have to assess the work done by the students. First,

they look at all the solutions that were sent. Then they write constructive

messages aimed at improving students’ problem solving abilities. The messages

are personally sent to each student who has given an e-mail address for receiving

feedback. They also select from all the solutions received some that can be

defined as exemplary for featuring on the web site. Some pre-service teachers

were also occasionally involved in creating problems for the web site. The

dynamic between the pre-service teachers and the students from the school

system seems to be a positive one. It meets the different needs of both groups
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of participants: helping to improve problem solving and communication abil-
ities for some and to develop better teaching and assessment strategies for
others.

The CASMI virtual community is built upon a few basic principles:

� Friendly welcome: Every student from Kindergarten to Grade 12 is welcome
to join the community at any time; it is free of charge and obligation.

� Math challenge: Everyone can submit a solution to any challenging math
problem and send it to the CASMI team.

� Formative feedback: School students who send their solution get a personal
comment from a university student; this comment is always positive and
encouraging; it aims to encourage each participant to be persistent and
continue to participate.

� Variety: The CASMI environment is open to a variety of styles and strate-
gies; they attempt to understand different ways of thinking.

� Open communication: Communication is a vehicle of the community as it
promotes knowledge sharing and knowledge building through collaboration
and discussion.

In fact, the importance of challenge in mathematics through problem solving
and communication turns out to be an important discovery pre-service teachers
makewhile undertaking aCASMIproject withinmathematics education courses.
This evidence is confirmed by schoolchildren who say (although in fewer num-
bers) that this feedback helps them to improve their problem-solving skills.

Research data also show that the university students findCASMIbeneficial for
the development of mathematical communication with young children (Freiman
et al. 2005). This communication is fruitful when it is bidirectional. This means
that pupils are encouraged to communicate their mathematical ideas using a
variety of tools. Pre-service teachers should be able to understand this variety,
to appreciate it and to guide children through their problem-solving process.

As an informal resource, CASMI gives pupils a chance to choose an appro-
priate problem and solve it at their own pace using their own strategy and
communication tools. The fact that each participant gets a personal comment
from a university student can be seen as a motivating and challenging factor for
schoolchildren. They see that their work attracts the attention of other people
and is being socially validated by personal attention or even public recognition.
Children become directly aware of this recognition when their solution is posted
as interesting or their name is placed on the congratulation list.

3.5.2 Collaborative problem solving: challenge and historical
context

What would happen if we gave the same open-ended problem to learners from
20 different classrooms and asked them to work together using the same virtual
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collaborative space? Such observations can be made by readers of the magazine
Activités mathématiques et scientifiques through the remote access given by the
IREM of Montpellier to the collaborative learning space Plei@d (sudest.
pleiad.net) that records all activity.

Here is the text of one Babylonian problem.

3.5.2.1 A Babylonian problem

In Mesopotamia fields are trapezium-shaped.
A land surveyor is to share a field equally between two brothers. The field is a

trapezium. The two bases are 7 and 17; the two shared areas are both trape-
ziums.

We observe the following Babylonian vocabulary:

� 17 is the ‘‘top width’’.
� 7 is the ‘‘lower width’’.
� The fair share line which is parallel to the two bases is called the ‘‘middle

width’’.

Question: Find the middle width.

Twenty classes were split into six groups of three or four. Exchanges were
recorded within each group by a tutor, and a project team coordinated all
activities. The tutor led discussion, helped to settle some issues and gave
suggestions. One of these suggestions was to use CABRI dynamic software
(which was not used by students spontaneously to test their conjectures).

The problem was addressed initially to older students (2e–Terminale, in
French, or Years 10 to 12). However, it also attracted some groups of students
from Grades 6e–5e (in French, or Years 6 and 7) to whom it presented addi-
tional challenge. In fact, the younger students were surprisingly ingenious and
creative.

One of the teachers of these classes realized this and they decided to use this
problem in the beginning of the school year in order to install an atmosphere of
investigation into the classrooms. This investigation helped to introduce later
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important concepts of area, Thales theorem and equations. So children could see
the utility of what has to be learnt. In addition, the use of CABRI software was
seen by students not as an external tool imposed by teachers but rather accepted it
as a meaningful and important tool for problem solving and investigation.

3.5.2.2 L’Agora de Pythagore: virtual communityof young mathematical

philosophers

L’Agora de Pythagore (euler.cyberscol.qc.ca/pythagore/nav/index.html ) is a vir-
tual learning community that invites several groups of schoolchildren to partici-
pate in discussion forums linked to mathematics, its nature and its learning.

The discussion starts in the classroom where the teacher takes up with the
students some philosophical-mathematical questions. Students will then pursue
this discussion with peers around the world using an Internet-based environ-
ment. Pallascio (2003) analyzes an example of such discussion proposed by a
group of students around the question of what geometric shapes can be con-
structed only by straightedge and compasses, and why the ancient philosophers
became so interested in this question. Following the discussion, the researchers
made interesting observations. For example, contrary to the fact that mathe-
maticians of ancient times believed that well-known constructability problems
like duplication of a cube could be somehow solved, today’s children would
right away believe that it is non-solvable.

In the conclusion to his analysis Pallascio (2003) notes that in such commu-
nities there is a need for an expert who can play the role of a scientific guide.
They also ask what could be a source of motivation for children to participate
actively in the discussion. It seems that the vehicle for this participation would
be the role of the student not only as an actor in the process of learning but also
as the author, creator of their knowledge. The environment supported by
technology creates thus an educational situation in which students can interact,
interpret, build on conjectures, and produce reflective arguments.

3.6 Effect on practices of teachers

The advent of technology has led to reconsideration of the function of the
teacher. Instead of working alone in the classroom, she can exchange ideas
and collaborate with others. Her role changes from that of knowledge provider
to that of learner and guide in a challenging technological environment.

It has to be stressed that with technology not only do the classroom’s
physical boundaries tend to disappear but so also do boundaries between
teachers and learners. In fact, everyone becomes a learner independent of the
chosen activity. According to Putnam (2003), for students, computers and
calculators provide new ways to represent abstract mathematical ideas, rich
sites with realistic data for mathematical problem solving, and computational
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tools that can enable them to focus on ‘‘higher level’’ aspects of problem solving.

For teachers, technologies give unprecedented opportunities to access informa-

tion and interactions with others.
Video and multimedia hold great potential for representing teaching and

learning in rich ways that can serve as examples for others and support self-

study and improvement. On another side, the immense Internet-based source of

mathematical activities of all kinds seems to bring new dimensions to mathe-

matics education, if we as educators would ‘‘focus on the expressive possibilities

of the Internet and engage distributed population in challenging, constructing,

and discussing knowledge’’ (Iseke-Barnes 2001, p. 302).
Furthermore, Hollebrands and Zbiek (2004) report a new possible role of

teacher as collaborator. This opportunity arises in a situation when technology

allows students to explore roads unfamiliar to the teacher or not part of the

activity the teacher had planned. In such situations, for example, students can

get an opportunity to pose a novel problem and to enter a different area of

mathematics. Teachers can then make their way with the student as collabora-

tor by testing together conjectures leading to the development of a new solution

that yields interesting mathematical connections.
This shift of teacher-learner roles also puts emphasis on the development of

communities of teachers in order to co-create and to share resources, ideas and

experiences. The creation of sites and the remote exchange about emblematic

software (dynamic geometry, computer algebra, spreadsheets, etc.) help the

teacher to come out from isolation and from doubt related to difficulties of

the teaching job. The information gets circulated, training is permanent, experi-

ments, whether successful or disappointing, are circulated. Everyone’s ideas are

made available for all. The individualistic teacher discovers collective

intelligence.
We give four examples which illustrate the evolution of choice.

3.6.1 Mathenpoche

The program Mathenpoche (‘‘Maths in the pocket’’) (mathenpoche.sesamath.

net/ ) virtually speaks for itself. A small number of French teachers, forming an

association, have given themselves the mission of creating online resources to

cover all of the mathematics taught inCollège (Years 6–11). Those resources are

to be available to teachers without cost, with parents also having free access.

They asked many colleagues, over various sites, to suggest ideas for exercises.

Scripts were written and put online. They were tested in classes on a large scale,

and improved according to the criticisms that were received. A vast exchange

occurred between hundreds of teachers, leading to the evolution from basic

multiple-choice items to more delicate and elaborate forms, including open

problems.
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Groups were constituted in various IREMs so as to create resources, which

integrate into their collection all the ideas and experiences accumulated over

thirty years of educational and didactic research. Supported by its numerous

participants, the collection evolves, becomes richer and diversifies. No doubt, it

is the one most commonly used in French Collèges (secondary school, Years 6

to 11). An official experiment was lead by the Ministry of Education in the

département of ‘‘Seine et Marne’’ (département here means one of the 95 French

administrative districts). Some 80 per cent of the teachers in charge of sixième

(Years 6 to 7) participated on a volunteer basis. Teachers, pupils and parents

unanimously approved the experience. It is to be carried further in cinquième

(Years 7 to 8) in the following year. Mathenpoche will probably expand con-

siderably in the coming years and become a standard for the teaching of

mathematics in France. Extensions to primary schools and lycée (Years 11 to

13) are being studied.

3.6.2 WIMS

WIMS (Web Interactive Mathematics (now Multipurpose) Server: wims.

univ-mrs.fr/ with the English version available at wims.univ-mrs.fr/wims/

wims.cgi? lang=en&+session=69F0DBD8AC.1&+module=home), a vir-

tual tool for sharing, has many points in common with Mathenpoche.
It was created by just one man, Gang Xiao (a Professor at Nice University),

and it is now involves many colleagues from a number of departments. Among

those are many teachers of mathematics from collège, lycée or université.

Though it was created in order to teach mathematics, there is no reason why

it could not be used to teach other subjects like chemistry, electricity, French

and English. That interesting prospect would also apply toMathenpoche which

could be diverted to fields other than mathematics. The powerful tools of ICT

have broad application, so that even the Ministry of Education might find

possibilities in economies of scale.
Unlike Mathenpoche, whose creators provide the content, WIMS is depen-

dent on the users to develop content. Each user is invited to become a creator of

exercises and activities in turn. Being tested and improved by use, online

resources gradually gain in importance. But the fields covered by that basis

depend on the conceivers’ centers of interest. A data base of mathematics

exercises is implemented (unlikeMathenpoche, which tries to cover all the fields

included in the programs of secondary schools, WIMS only deals with the

themes suggested by its creators) and offered, free of charge, to everyone.

That work is collective and not exhaustive.
LikeMathenpoche, WIMS allows the creation of virtual classes, which makes

it a tool well adapted to the work of a teacher with a class or group of students.
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3.6.3 PUBLIREM

PUBLIREM (www.univ-irem.fr/index.php?module=Publirem&func=view)
is a search engine for the various online resources of the French IREM. Most
of the resources evolved in various research groups over several years. They
provide rich and complex situations. These resources are not directly meant for
the students. They require the mediation of a teacher who draws inspiration
from them and adapts them to the needs of his class. Teachers find it useful for
planning, and can use the source collaboratively. PUBLIREM is scarcely used
in comparison withMathenpoche. (At first sight students can be set to work on
Mathenpochewithout any special preparation. But there is a risk of poor results
and of loss of control of the class.)

Many other sites could be mentioned, which are close in spirit to the three
sites briefly described in this section. They are a collective work and they leave,
in their trail, an important collection of exchange, criticisms, and improve-
ments. Teachers who take part benefit from the intense intellectual activity
thus generated and in which they eventually take part. In France this has been a
considerable revolution.

3.6.4 La main à la pâte

It is with the siteLamain à la pâte (meaning ‘‘Hands on’’, www.lamap.fr/), often
referred to as LAMAP, that we can fully measure the power of transformation
brought by a quality site with ideas on the teaching of science and on teachers’
practices.

Like PUBLIREM and unlike Mathenpoche, LAMAP is not directly meant
for student use. It offers scientific resources (not particularly mathematics-
oriented, but promoting an experimental attitude in scientific matters) in
great quantity and quality to teachers of the elementary school (Years 1 to 6)
to adapt to the level of their class. They can complete their own scientific
training, which may be insufficient. They can find scientists and educationalists
with whom they can exchange virtually or by personal contact.

Concurrently with the teaching of science, LAMAP insists on the importance
of language for the purposes of description, debate or explanation: each pupil
expresses one’s scientific observations and conclusions in one’s own words, in
one’s notebook of experiences.

An internal LAMAP seminar took place in September 2005 to re-evaluate the
place ofmathematics on the site. A fundamental questionwas: canmathematics be
included in the experimental process which characterizes LAMAP? It was con-
cluded that it can if teams of teachers adapt to that experimental spirit some
situations that were created within the framework of mathematics. That approach
is yet to be completed. Teams must be set to work in the LAMAP spirit to imagine
new situations using primary schools mathematics. (A site in statistics is in
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preparation. It will cover a field ranging from elementary school to lycée, that is,
the end of secondary education. The experimental aspect will be very important in
it.)

The French Ministry of Education, as a result of the quality of the site and
the support of Georges Chapak (www.biocrawler.com/encyclopedia/Georges_
Charpak), has profoundly changed the programs and methods of teaching
science in elementary schools. The way of thinking and process of LAMAP
have been largely adopted.

Within a few years, LAMAP has become globalized. Seminars and sites
multiply from Brazil to China, from Germany to Africa, thus continuing to
improve the access to science to learners from an early age.

3.7 General discussion

The process of ICT integration in educational practices is relatively new. It has
neither a long history nor traditionally accepted theoretical frameworks. It is
however a booming field of study and a principal driver of innovative educa-
tional practices. An important body of research has proved it generally to be of
high educational potential and offers a positive impact of technology on the
learning and teaching of all subjects in and beyond the classroom.

Unlimited access to resources generated or supported by many types of
technology creates many opportunities for challenging mathematics in and
beyond the classroom. In previous sections we critically analyzed underlying
theoretical principles of development and implementation of challenging math-
ematical environments enhanced by technology, and also several practical
applications of these principles that confirm the role of ICT as a catalyst of
expansion of challenge beyond the classroom. In particular this looked at:

� context-sensitive new learning opportunities adaptable to particular needs of
individuals and groups and promoting mathematics among the general
public (attractions, competitions, discussions, recreations);

� tools that support traditional mathematical activities and create new oppor-
tunities in computation, modeling, visualization, search for information,
communication allowing dynamic virtual mathematical investigations and
complex problem solving;

� virtual spaces that integrate several tools and expand social and cognitive
activities to the community level allowing common data (resources) collec-
tion and sharing, and knowledge building and sharing;

� roles of individuals and groups in mathematical activity when the learner
becomes more active, autonomous and intrinsically motivated, the teachers
in their turn become learners and collaborators, as well as guides and
facilitators; specialists and experts play new roles of software and content
developers together with educators; many human resources are involved in
management and marketing activities.
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With our concept of using technology to provide challenges beyond the

classroom, we can enunciate several principles for an ICT-enhanced educa-

tional space. First, there is freedom to choose the activity. Secondly, there is

great potential to elevate mathematical thinking through the use of appropriate

content, not necessarily tied to curriculum, with multiple resources created and

animated by experts, with no restrictions on time of access and open to all social

and cognitive characteristics, as well as theories of learning and pedagogical

interaction. In this environment, the computer serves to empower the mind in

the solution of challenging problems.
Our survey shows that pedagogically and technologically efficient integra-

tion of ICT supported resources in beyond the classroom practices depends

highly on the successful resolution of several issues.

3.7.1 Conception

Issues include:

� how to produce challenging educationalmaterial with the help of technology—
all questions related to the development and maintenance which includes
factors of time, costs and human and technological resources;

� how to make it known to potential users (learners, educators, and general
public), promotion, access, search engines (possibility of informational over-
flow—too many resources);

� how to construct and manage common information space and challenging
mathematical activities—financial needs, learning theory based on technical
and pedagogical support (Vygotsky, instrumental and environmental gen-
esis), organization and control, access, security and ethical issues, reliability
of the content, interactivity, adaptability, speed;

� how to provide different groups of users with access to rich resources (we
need tools for collecting and cataloguing, creating a place on the Internet and
building a network of challenging mathematics and challenging information
systems).

3.7.2 Forms

There are different ways of relating ICT and challenge in mathematics, through

� providing challenging mathematical activities of all kinds (such as puzzles,
games);

� investigating different mathematical structures;
� creating challenging mathematical communities (such as math clubs);
� establishing forums for discussion;
� providing competitions.
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(ICT tools are not normally used in competitions, but the forms of mathe-

matics competitions are often diversified. A problem might be posed in a very

different way. For example, candidates might be directed to find a property of a

certain figure or to discover an equation.)
Participation in these activities may have a positive impact on all participants

in many aspects:

� fun (emotional and social pleasure);
� deeper understanding of mathematics;
� boosting and empowering of the mind;
� new ways of learning (more creative, divergent thinking);
� use of a variety of learning tools;
� adjustment to individual needs (such as adapting for pace and style)—

personal challenging environments;
� stimulation and motivation to pursue mathematical activities;
� evaluation of accomplishments (publication);
� access to challenging, special instruments for experimental mathematics

environments;
� adaptation of resources to a particular population of learners;
� provision of the pleasure of performing difficult intellectual work;
� provision of a rich context for mathematical work;
� discovery of new interdisciplinary links;
� discovery of new faces of mathematics (showing that mathematics can be

more than solving routine problems and doing exercises);
� appreciation of the usefulness of mathematics;
� development of a social identity—being a part of the community.

3.7.3 Content

In order to ensure the realization of the opportunities discussed above, we need

to re-create mathematical environments to which technology could add more

challenging components:

� programming contests: informatics contests without formal programming;
� construction algorithms: how to construct concrete figures, new pictures

with other data;
� computer algebra systems;
� statistical multifunctional software;
� Geogebra (an algebra and geometry package used in schools);
� experiencing data: using Excel one can experiment with different data,

looking for patterns not only to solve problems but find questions;
� real data collected from the Internet (sometimes requiring one to complete

an electronic form);
� mathematics clubs on the Internet;
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� interactive games with mathematical content (e.g. save a community of
mathematicians, magic squares, Sudoku);

� tools of construction and investigation (LOGO, dynamic geometry software
(Geometry Sketchpad, CABRI)).

3.7.4 Implementation

Practical questions on implementation will include:

� to whom resources are directed (ICT for specialists and for teachers);
� how to start and to boost challenging learning ICT activities beyond the

classroom;
� how to keep learners challenged: will they continue? will they change their

attitude?
� how to evaluate resources;
� how to improve the quality of a site: obtaining feedback from visitors,

monitoring activity;
� how to maintain statistics of visitors (number of users may decrease with

increasing difficulty of mathematical content).

3.7.5 Research

Wehave pointed out how ICT can havemany positive impacts onmathematical
teaching, learning, and recreations. There is an important body of research that
has studied these impacts in formal educational settings.

For example, the study of the efficacy of online teaching conducted by
Taylor and Maor (2000) used the Constructivist On-Line Learning Environ-
ment Survey (COLLES) to assess university students enrolled in online
courses with respect to perceptions, professional relevance, reflective think-
ing, interactivity, cognitive demand, affective support, and interpretation of
meaning.

While preliminary results report that students have high expectations in
relationship to reflective thinking and affective support, relevance and inter-
pretation, the study raises questions about cognitive support and interactiv-
ity. The former is related to the perception that the role of the tutor in
challenging their assumptions, stimulating their thinking and modeling
good discourse and reflective thinking is important, but not always. Excep-
tions would be cases of monologue-like interaction rather than dialogues and
discussions.

However, there are relatively few studies that involve challenging mathema-
tical activities beyond the classroom. One of these studies was conducted by the
NRICH.team (Jones and Simons 2000). Research data collected from students’
questionnaires revealed some important characteristics of such activities:

Challenging Mathematics In and Beyond the Classroom

So
cie

ty
 E

di
tio

n



� The main source of information about web sites came from browsing the net
and recommendation from parents to teachers.

� Access to such resources can be sometimes from the school, sometimes
from home, and in a few cases from a public library or other public access
location.

� For most young participants there was no access to other extracurricular
facilities (such as ‘‘mathematics clubs’’) at their school.

� The majority of pupils accessed NRICH about once a month. They mostly
accessed the pages of mathematics problems and puzzles.

� There was little difference between the relative usage of NRICH by girls and
boys.

� Pupils had positive views about the activities organized by the NRICH
project and almost half of them said that NRICH was better than the
mathematics they did in school.

� Most pupils argued that NRICH had made them more interested in mathe-
matics and more likely to continue studying mathematics.

One of the important characteristics of ICT integration as a research field

consists in a constant development of technological tools based on new and

innovative pedagogical ideas. For example, the NWS, mathforum.org, has

developed a new project called VMT (Virtual Math Team, vmt.mathforum.

org/vmt/TheVMTProject.pdf).
It gives members of this Internet community an opportunity to form differ-

ent groups using three types of virtual environment: open rooms for anyone,

restricted rooms for people invited by the person who created them, and limited

rooms allowing someone whowas not originally invited to ask for permission to

join.
It also creates opportunities for various types of challenging mathematical

activities like posing and solving problems together, exploration of open-ended

mathematics situations in order to develop interesting questions related to

studying structural properties of the world, and finally, organization of discus-

sion on an open topic related to mathematics, such as perplexing questions or

difficult homework problems.
The immense information available on the Web along with stimulating

digital or computational resources gives the potential of the Internet to link

learners with sources of knowledge around the world. The VMT project

explores these advantages of technological innovations offering unique oppor-

tunities for engrossing mathematical discussions, which are rarely found in

traditional classrooms that depend on one teacher, one textbook and one set

of exercises, to engage and train a room full of individual students over a long

period of time.
The experience documented by the Math Forum research team shows that

the traditional forms of learning can now be supplemented through small-group

experiences of VMT chats, incorporating a variety of adaptable and tailored

personal interactions.
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It is also important to underline that as with many other challenging math-
ematical activities, those which are enhanced by technology have to be created
and maintained by countless enthusiasts who like to share their ideas and
expertise, devote their time and energy and thus contribute to the promotion
of mathematics.

As examples of such combinations of collective and individual work, we can
cite the Interactive Mathematics Miscellany and Puzzles site for teachers,
parents and students who seek engaging mathematics (www.cut-the-knot.org/
index.shtml) and the site of the Moscow center of continuous mathematics
education (www.mccme.ru/). These examples illustrate the limitless nature of
resources that can be created or collected to educate and entertain everyone
who loves mathematical challenge.

Summarizing our findings, we can say that study of challenging mathematics
enhanced by technology is an important and promising field of research and
development and has an enormous potential to influence both innovative
technological and educational development and real ‘‘in and beyond the class-
room’’ practice.

3.8 Conclusion

Technology can bring new dimensions in challenging mathematical activities in
and beyond the classroom. ICT, when used appropriately, supports teaching
and learning in terms of resources, tools, and contexts. But it has to be made
clear that technology cannot completely replace standard methods of mathe-
matical work and play.

Sometimes, the use of technology can even lead to the incoherent representa-
tion of mathematical objects and relationships, and thus to incorrect conclu-
sions or solutions. So some critical thinking and logical mindtools should be
applied to analyzing all outcomes. Moreover, challenging experimental math-
ematical activities done by means of technology do not eliminate the necessity
of proving discovered results (www.lettredelapreuve.it/PreuveAvertFR.html).
In many cases, a paper-crayon environment thus keeps its value and even
proves to be more efficient on many occasions.

It is also a fact, validated by research, that the most important advantage of
using technology is the diversification of teaching and learning approaches,
rediscovery of dynamic aspects of mathematics, and, especially, learning through
communication with others. All these aspects have to be taken into account by
educational systems in mathematics whether or not technology is being used.
However technology can help indirectly to give a new boost to mathematical and
non-mathematical activities, providing new challenges to everybody.

Technology . . . increases the range and nature of experiences that can be provided for
the learning of [complex and abstract] subject matter... The interactive character of
modern technology can support reasoning by amplifying the nature and boundaries of
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scientific models of objects and events. But the full realization of the potential of such
experiences will still rely on students’ access to conversation partners who carry on
discussions in which these models and concepts are validated. Technology should not
be seen as replacing such communication but rather as providing a resource for
supporting it. (Säljö 1999)

We summarize what technology can bring to all members of the worldwide
community in terms of mathematical challenge beyond the classroom.

1. Technology can give access to the resources that cannot be otherwise
accessed.

2. Technology can provide a free choice of resources based upon the level and
the particular needs.

3. Technology can provide dynamic tools of mathematical investigation giving
a chance to modify parameters of an activity in an interactive way.

4. Technology is a valuable tool of communication about mathematics with
other people.

5. Technology empowers the people with the instruments, facilitating routine
operations and more sophisticated mindtools.

Technological tools finally help to build more complex and, at the same
time, more adequate mental representations of mathematical objects, struc-
tures, and operations through model building and experimentation, thus
contributing to the promise of more positive experiences in mathematics for
everyone.
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Chapter 4

Challenging Tasks and Mathematics Learning

Arthur B. Powell, Inger Christin Borge, Gema Inés Fioriti, Margo Kondratieva,

Elena Koublanova, and Neela Sukthankar

In this chapter, we present a view of didactical goals of challenging mathema-
tical problems and the cognitive importance of problem-solving schemas. We
distinguish between mathematical tasks, exercises and challenging problems
and discuss how challenging problems promote the construction of problem-
solving schemas. Similar in purpose to the nine case studies presented in
Chapter 5, we offer six diverse examples of challenging mathematics problems
from varied cultural and instructional contexts. For each example, we examine
issues related to its mathematical, cognitive and didactical aspects. Two exam-
ples are research-based and accompanied by analysis and discussion of stu-
dents’ work, while the other examples are informed by considered reflection on
their use in practice. In the aggregate, the examples illustrate how challenging
mathematics problems are suitable for a range of learners and diverse didactical
situations; how such problems can be instruments to stimulate creativity, to
encourage collaboration, and support the formation of problem-solving sche-
mas; and, finally, how the use of challenging problems invite educators to study
learners’ emergent mathematical ideas, reasoning and schemas.

4.1 Introduction

4.1.1 A goal for challenging mathematical problems

In many countries, students have come to experience school mathematics as
cold, hard, and unapproachable, a mysterious activity quite distinct from their
everyday lives and reserved for people with special talents. After repeated failure
in school mathematics and estrangement from the discipline, students often
assume a view similar to what a student once expressed to the first author:
‘‘mathematics is something that you do, not something that you understand.’’
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Similar views emerge from other students’ school experiences. A considerable
proportion of such students become excluded from meaningful participation
in academic mathematics. This is particularly true of students who are members
of socially excluded sectors of their societies, lacking in privileged economic or
social capital, to use Bourdieu’s (1986) categories. As Zevenbergen (2000) notes,
‘‘aspects of pedagogy and curriculum. . .can exclude students . . . [since] patterns
of language, work, and power are implicated in the construction ofmathematics,
it becomes [important] to understand how we can change our practices in order
that they become more accessible and equitable for our students’’ (p. 219).

To contribute toward making mathematics more accessible and equitable or
less exclusionary and, thereby, more inclusive, this chapter posits the use of
mathematical tasks that have particular characteristics. Even further, in addition
to the social function of inclusion, such tasks have important psychological and
cognitive consequences. The chapter will explicate how engaging students in
solving challenging mathematical problems can lead them to construct effective
and important problem-solving schemas. The pedagogical goal is to engage
students with different mathematical backgrounds in different settings so that
they can further develop their mathematical ideas, reasoning and problem-
solving strategies, as well as enjoy being mathematical problem solvers.

4.1.2 Importance of schemas in mathematical problem solving

A paramount goal of mathematics education is to promote among learners
effective problem solving. Mathematics teaching strives to enhance students’
ability to solve individually and collaboratively problems that they have not
previously encountered. To discuss the role of schemas in achieving this goal,
we first discuss our understanding of problem solving and then that of schemas.

The meaning of mathematical ‘‘problem solving’’ is neither unique nor uni-
versal. Its meaning depends on ontological and epistemological stances, on
philosophical views of mathematics and mathematics education. For the pur-
poses of this chapter, we subscribe to how Mayer and Wittrock (1996) define
problem solving and its psychological characteristics:

Problem solving is cognitive processing directed at achieving a goal when no solution
method is obvious to the problem solver (Mayer 1992). According to this definition,
problem solving has four main characteristics. First, problem solving is cognitive—it
occurs within the problem solver’s cognitive system and can be inferred indirectly from
changes in the problem solver’s behavior. Second, problem solving is a process—it
involves representing and manipulating knowledge in the problem solver’s cognitive
system. Third, problem solving is directed—the problem solver’s thoughts are moti-
vated by goals. Fourth, problem solving is personal—the individual knowledge and
skills of the problem solver help determine the difficulty or ease with which obstacles to
solutions can be overcome. (p. 47)

Coupled with these cognitive and other psychological characteristics, pro-
blem solving also has social and cultural features. Some features include what
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an individual or cultural group considers to be a mathematical problem
(D’Ambrosio 2001, Powell and Frankenstein 1997), the context in which an
individual may prefer to engage in mathematical problem solving, and how
problem solvers understand a given problem as well as what they consider to be
adequate responses (Lakatos 1976). In instructional settings, students’ problem
solving activities are strongly influenced by teachers’ representational strate-
gies, which are constrained by cultural and social factors (Cai and Lester 2005).

An attribute that distinguishes expert mathematical problem solvers from
less successful problem solvers is that experts have and use schemas—or
abstract knowledge about the underlying, similar mathematical structure of
common classes of problems—to form solutions to problems. In general terms a
problem schema, as Hayes (1989) characterizes it ‘‘is a package of information
about the properties of a particular problem type’’ (p. 11).

The role of schemas in mathematical problem solving has been investigated
by psychologists and cognitive scientists, as well as mathematics education
researchers. Below is a summary of this research (Schoenfeld 1992):

� Experts can categorize problems into types based on their underlying math-
ematical structure, sometimes after reading only the first few words of the
problem (Hinsley et al. 1977, Schoenfeld and Hermann 1982).

� Schemas suggest to experts what aspects of the problem are likely to be
important. This allows experts to focus on important aspects of the problem
while they are reading it, and to form sub-goals of what quantities need to be
found during the problem-solving process (Chi et al. 1981, Hinsley et al.
1977).

� Schemas are often equipped with techniques (e.g. procedures, equations) that
are useful for formulating solutions to classes of problems (Weber 2001).

To illustrate the notion and utility of schemas for problem solving, consider
the following problem: Two men start at the same spot. The first man walks
10 miles north and 4 miles east. The second man walks 4 miles west and 4 miles
north. How far apart are the two men? In discussing a similar problem, Hayes
(1989) notes that when experienced mathematical problem solvers read this
statement, it will evoke a ‘‘right triangle schema’’ (problems in which individuals
walk in parallel or orthogonal directions to one another can often be solved by
constructing an appropriate right triangle and finding the lengths of all of its
sides). A technique for solving such problems involves framing the problems in
terms of finding the missing length of a right triangle, setting as a sub-goal
finding the lengths of two of the sides of the triangle, and using the Pythagorean
theorem to deduce the length of the unknown side.

4.1.3 Mathematical tasks, exercises, and challenging problems

In the mathematics and mathematics education literature, no universally
accepted definition exists for the mathematical terms ‘‘task’’, ‘‘problem’’, or
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‘‘exercise’’ and for the appellation ‘‘challenging’’ when describing a mathema-
tical task or problem. In this chapter, as a starting point, we use Hayes’s (1989)
sense of what a problem is: ‘‘Whenever there is a gap between where you are
now [an initial situation] and where you want to be [an adequate response], and
you don’t know how to find a way [a sequence of actions] to cross that gap, you
have a problem’’ (p. xii).

In other words, ‘‘a problem occurs when a problem solver wants to transform
a problem situation from the given state into the goal state but lacks an obvious
method for accomplishing the transformation’’ (Mayer and Wittrock 1996,
p. 47). For something that may or may not be a problem, to talk about it, we
use the generic term ‘‘task’’. To complete a mathematical task, a problem solver
needs to apply a sequence of mathematical actions to the initial situation to
arrive at an adequate response. Even before applying mathematical actions, the
problem solver will have to represent the gap virtually or physically—which is
to say, to understand the nature of the problem (Hayes 1989).

The definition provided by Hayes as well as that provided by Mayer and
Wittrock suggest grounds to distinguish between two closely related tasks: exer-
cises and problems. Distinguishing these terms cannot be done without consid-
eration of the problem solver. A mathematical task is an exercise to an individual
learner if, due to the individual’s experience, the learner knows what sequence of
mathematical actions should be applied to achieve the task (such as knowing
what equation into which to insert givens). In contrast, solving a mathematical
problem involves understanding the task, formulating an appropriate sequence
of actions or strategy, applying the strategy to produce a solution, and then
reflecting on the solution to ensure that it produced an appropriate response.

A mathematical problem may present several plausible actions from which
to choose (Schoenfeld 1992, Weber 2005). We call a mathematical problem
challenging if the individual is not aware of procedural or algorithmic tools that
are critical for solving the problem and, therefore, will have to build or other-
wise invent a subset of mathematical actions to solve the problem.

For instance, most proofs in high school geometry are problems, and some-
times difficult ones, since the prover needs to decide which theorems and rules
of inference to apply from many alternatives (Weber 2001). However, proofs
that require the prover to create new mathematical concepts or derive novel
theorems would make these proofs challenging problems. To solve challenging
mathematics problems, learners build what are for them new mathematical
ideas and go beyond their previous knowledge.

4.1.4 Use of challenging problems to promote
schema construction

In mathematics education, challenging mathematical problems have psycholo-
gical and cognitive importance. Since ‘‘problem-solving expertise is dependent
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upon the acquisition of domain-specific schemas’’ (Owen and Sweller 1985,
p. 274), many researchers argue that an important goal of the mathematics
curricula should be to provide students with the opportunities to construct
problem-solving schemas (De Corte et al. 1996, Nunokawa 2005, Reed 1999).
What is less clear is how this goal should be achieved. Marshall (1996) argues
that the issues of how students construct problem-solving schemas and what
types of environments or instructional techniques might foster these construc-
tions are open questions in need of research.

Some psychologists and mathematics educators have suggested that students
construct schemas by transferring the solution of one problem to another
superficially different but structurally analogous problem (Novick and
Holyoak 1991, Owen and Sweller 1985). Unfortunately, students often have
difficulty seeing the deep structure of problems and transferring the solution of
one problem situation to another (Lobato and Siebert 2002, Novick and
Holyoak 1991). Accordingly, it is suggested that schema construction can be
facilitated by providing students with basic problems to which that schema
applies, both to increase the likelihood of successful transfer and to minimize
the cognitive load that students use to solve these problems, thus leaving more
resources available for learning (Owen and Sweller 1985). Contrary to these
findings, discussing a long-term research project on the development of stu-
dents’ mathematical reasoning, Francisco and Maher (2005) report evidence
that students often develop a rich understanding of essential ideas in the context
of solving complex, challenging problems. In this chapter, in one specific
example among others, we will illustrate how students developed a powerful
combinatorial schema while solving strands of problems that were challenging
(in the sense described earlier in this chapter).

4.2 Categories of challenging mathematics problems

There are many different categories of mathematics problems that are suitable
as challenges for a learner or a group of learners. This diversity is also discussed
and illustrated in Chapter 5 of this volume, and Chapter 3 has treated the issue
of challenging mathematics and the use of information and communication
technologies. Whether a specific mathematics problem is a challenge depends
on the mathematical experience of an individual learner. Nevertheless, appro-
priate challenges can be given to mathematically talented students as well as to
socially excluded and struggling students, be they children, teenagers, or adults.

Moreover, as will be discussed later in this chapter, there are important
pedagogical, psychological and social reasons that all students should be
engaged with challenging mathematics problems. In this chapter, we present
different types of challenging problems, some of which are about paradoxes,
counterintuitive propositions, patterns and sequences, geometry, combinato-
rics and probability. It goes without saying that the categories of challenging
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problems that we present are neither comprehensive nor exhaustive: there are
many areas of elementary and advanced mathematics that our examples do not
include.

Not only is it important to consider the type of problems to use but also to
contemplate the physical setting and pedagogical climate in which they are
used. For instance, the setting might be formal as a school classroom or
informal as an afterschool program or with street kids or adults learners in a
public space. The pedagogical approach may include collaborative or coopera-
tive learning with an instructor as a facilitator or involve groups of learners
presenting their solutions. The actual mathematical challenge may be selected
by students or be a sequence of challenging problems that contribute to students
building problem-solving schemas.

4.3 Challenging mathematics problems and schema development

We present six diverse examples of challenging mathematics problems from
varied contexts, one in this section, four in Section 4.4, and a final one in Section
4.5. Some of the examples that we present contain several challenging problems.
The first and third examples are empirically based, while the remaining four are
informed by reflection on practice. Following the presentation of each example,
we provide three types of analysis: mathematical, cognitive, and didactical. The
two research-based examples are each also accompanied by an analysis of
students’ work and a discussion.

4.3.1 Strands of challenging mathematical tasks

In this section, based on analysis of Weber et al. (2006), we exemplify how over
time students can develop an important and effective combinatorial schema
from their work solving a strand of challenging problems. The students’ build-
ing of problem-solving schemas related to combinatorics occurred within the
context of a longitudinal study, now in its 20th year, tracing the mathematical
development of students while they solve open-ended but well-defined mathe-
matical problems (Maher 2005).

The problems are challenging in the sense that students often initially are not
aware of procedural or algorithmic tools to solve the problems but are asked to
develop them in the problem-solving context. The strand of problems presented
here are used in an environment in which collaboration and justification are
encouraged, and teachers and researchers do not provide explicit guidance on
how problems should be solved or whether the solution that students develop is
correct or not, that judgment being left to the students.

One aspect of this study was that students worked on strands of challenging
tasks—or sequences of related tasks that may differ superficially but designed
to pertain to identified mathematical concepts. The use of a strand of
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challenging problems allows teachers and researchers to trace the development

of students’ reasoning about a particular mathematical idea over long periods

of time (Maher and Martino 1996).
This study in which the challenging mathematics problems were used has an

important distinguishing feature. Most studies examining schema construction

or transfer take place over a short period of time in conceptual domains in which

students have limited experience (Lobato and Siebert 2002). However, mean-

ingful mathematical schemas are likely constructed over significant stretches of

time after students become accustomed to the domain being studied.
Hence, Anderson et al. (1996) argue such studies seek evidence of schema

usage and transfer in placeswhere one is least likely to find it.We are not aware of

long-term studies in mathematics education that address schema acquisition.

Hence, the longitudinal and empirical nature of the study that Maher (2005)

describes has the potential to offer unique research findings in an important area.
The following set of mathematical challenges is an example of the problems

in a strand of combinatorial tasks. Working of the problems in the strand

allowed students to develop mathematical ideas and reasoning strategies within

a particular domain.
To provide a comprehensive sense of the possibility that students can

develop problem-solving schemas within a specific mathematical domain, we

detail a case of five students from a research project at Rutgers University

(Weber et al. 2006).
First, we present three problems—challenging for the particular group of

students in the study—a brief mathematical analysis of the problems, and

indicate cognitive, mathematical structures that learners can build from enga-

ging with these problems. Next, we will provide results and a discussion of how

a group of five students solved the three problems. Following this presentation,

in the next section, we present other examples of mathematics problems,

challenging for the context in which they have been used.

4.3.2 Examples from a strand of challenging mathematical tasks

The Four-Topping Pizza Problem
A local pizza shop has asked us to help design a form to keep track of certain

pizza choices. They offer a cheese pizza with tomato sauce. A customer can then

select from the following toppings: peppers, sausage, mushroom and pepperoni.

(No halves!) How many different choices for pizza does a customer have? List

all the possible choices. Find a way to convince each other that you have

accounted for all possible choices.

A Towers Five-Tall Problem
Your group has two colors of Unifix cubes. Work together and make as many

different towers five cubes tall as possible, each with three red and two yellow
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cubes. See if you and your partner can plan a good way to find all the towers
four cubes tall.

The Taxicab Problem
A taxi driver is given a specific territory of a town, shown below. All trips
originate at the taxi stand. One very slow night, the driver is dispatched only
three times; each time, she picks up passengers at one of the intersections
indicated on the map. To pass the time, she considers all the possible routes
she could have taken to each pick-up point and wonders if she could have
chosen a shorter route.

What is the shortest route from the taxi stand to each point? How do you
know it is the shortest? Is there more than one shortest route to each point? If
not, why not? If so, how many? Justify your answer.

4.3.3 Mathematical analysis

The answer to the first task is
P4
r¼0

4
r

� �
¼ 24. The second has as an answer

5
2

� �
¼ 5!

2!3!
¼ 10 or, equivalently,

5
3

� �
. The answer to the third task is

5
1

� �
¼ 5!

1!4!
¼ 5;

7
4

� �
¼ 7!

4!3!
¼ 35 and

10
5

� �
¼ 10!

5!5!
¼ 252 for the three

pickup points. However, these problems all have the same underlying mathe-
matical structure that can be associated as a ‘‘Pascal’s triangle schema.’’ The
students in the research project had not studied combinatorics, were not

Challenging Mathematics In and Beyond the Classroom

So
cie

ty
 E

di
tio

n



familiar with the standard notation for permutations or combinations, and yet,
as we will show, they correctly solved the three problems by other means.

4.3.4 Cognitive analysis

Based on teaching and research experiences, the mathematical ideas and rea-
soning strategies that students are likely to develop or engage include the
following:

1. counting without omission or repetition;
2. symmetry;
3. powers of 2;
4. Pascal’s triangle;
5. counting the number of distinct subsets, combinations

n
r

� �
¼ nCr;

6. reasoning by controlling variables (determining which independent variable
to change and manipulating this independent variable to determine changes
in the dependent variable);

7. reasoning about isomorphism (see Table 4.1).

Table 4.1 Taxonomy of isomorphisms among three mathematical tasks

Taxicab Towers Pizzas

Objects East and south
vectors

Red and blueUnifix
cubes

Different toppings

Actions Go east or south Affix red or blue
Unifix cube

Add a topping or no
topping

Products Different shortest
taxicab routes

Different Towers Different Pizzas

4.3.5 Students’ work on problems from a strand
of challenging tasks

Weber et al. (2006) prepared the work excerpted in this section for the
ICMI Study 16. The students whose work is analyzed are participants in
the long-term study described by Maher (2005). Here, Weber et al. (2006)
examine how a group of five students (Ankur, Jeff, Brian, Michael and
Romina) solved the three problems presented above when they were in 10th
and 12th grades.

4.3.5.1 How many pizzas are there with four different toppings?

In a 10th grade session, Ankur, Jeff, Brian and Romina used case-based reason-
ing and various counting strategies to obtain the correct answer—fifteen pizzas

Chapter 4: Challenging Tasks and Mathematics Learning

So
cie

ty
 E

di
tio

n



with toppings plus one pizza with only cheese and tomato sauce. Michael
developed a binary representation to create each of the pizzas. Each of the
pizzas was represented using a four-digit binary number, where each topping
was associated with a place in that number, where a one signified that the
topping was present on the pizza and a 0 signified that the topping was absent.
For instance, with the four toppings—pepperoni, sausage, onion and mush-
room—the binary number 0010 would refer to a pizza with only onions.
Michael was able to use this notation to explain why 16 pizzas could be formed
when there were four toppings available and convinced his group that there
would be 32 pizzas if there were five toppings available (the other group
members believed that there would be 31, not 32 pizzas).

At the end of the session, the researcher asked the group if this problem
reminded them of any other problems. Brian responded ‘‘towers’’—referring to
the problem of forming four-tall towers from red and yellow cubes. However,
Ankur noted the problems were ‘‘similar, but not exactly the same’’, since more
than one yellow could appear in an acceptable tower, but you couldn’t list
mushroom more than once on the toppings of the pizza. All of the students at
this time accepted Ankur’s explanation. The following week, Michael repre-
sented the towers problem using binary notation—the nth digit in the notation
refers to the nth cube in the tower, with a 0 signifying a yellow cube and a 1 a red
cube. For example, 0010 would represent a four-tall tower in which the third
block was red but the other three were yellow. Hence, using this binary nota-
tion, Michael was able to show his group a correspondence between the towers
and the pizzas. (For an elaborated analysis of Michael’s binary representation
and how he used it to indicate an isomorphism between the towers and pizza
problems, see Kiczek et al. 2001.)

There are two things worth noting about these problem-solving episodes.
First, when students were initially comparing the pizza and towers problems to
one another, they did not seem to see the deep structure between the problems.
In fact, Ankur argued the problems differed significantly. The connections
between the problems were not immediately perceived but were only con-
structed by Michael after reflection. Secondly, the notational system that
Michael developed while working on the pizza problem was critical for the
construction of his correspondence.

4.3.5.2 Linking the pizza problem, the towers problem, and Pascal’s triangle

One month later, students were invited to further explore the relationship
between pizza problems and tower problems. They were asked to determine
how many five-tall towers could be formed with three yellow blocks and two
red blocks. Using Michael’s binary representation, they translated this pro-
blem to determine how many five-digit binary numbers with three 0s and two
1s could be formed. By controlling for where the first one in this sequence
occurred, the students were able to deduce that 10 such towers could be
formed. Note that the methods Michael developed to cope with the previous
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pizza problems were now a scheme that the students used to make sense of a
new pizza problem (see Uptegrove 2004). After obtaining their solution, a
researcher introduced students to Pascal’s triangle, explained how the nth row
of Pascal’s triangle were the coefficients of the expression (a + b)n, and that
the terms in Pascal’s triangle were often represented using combinatorial
notation. For instance, the fourth row—1, 4, 6, 4, 1—can be written as

4
0

� �
4
1

� �
4
2

� �
4
3

� �
4
4

� �
. She then asked the students to try to understand

what these coefficients might mean in terms of what they’ve just done. After
thinking about these problems, the students were able to make these links.
They noticed the 10 that appears in the fifth row in Pascal’s triangle corre-

sponding to the expression
5
2

� �
also corresponded to five-tall towers with

two red blocks (and three yellow blocks). Further investigations led these
students to describe the relationship between Pascal’s triangle and the pizza

problem—namely, that the
n
i

� �
entry in Pascal’s triangle corresponds to the

number of pizzas that could be formed with i toppings if there were n to

choose from. These students could also explain why
n
i

� �
¼ n!

i!ðn� iÞ! and

n
i

� �
þ n

iþ 1

� �
¼ nþ 1

iþ 1

� �
(Pascal’s Identity) were true by using the towers

problem and the pizza problem.

4.3.5.3 Solving the taxicab problem

Two years later, Michael, Romina, Jeff and Brian (now in 12th grade) were
given a version of the taxicab problem. In essence, they were asked how many
ways that a taxi could take a shortest route along a grid to go four blocks down,
one block right; three blocks down, four blocks right; and five blocks down, five
blocks right. This qualified as a challenging problem for the students. The
solution to this problem more or less requires the application and use of
combinatorial techniques, yet the students solving this problem had not used
such techniques before to solve novel problems. The initial stages of the stu-
dents’ activity were exploratory in nature. They worked to make sense of the
problem, posed some initial conjectures that turned out to be incorrect (for
example, the distance from the starting point to the endpoint would tell you the
number of shortest routes), and tried to answer the question by explicitly
drawing and counting the routes.

Romina asks if it would be possible to ‘‘do towers’’ to the problem. Michael
and Romina note that the distance to one of the points is 10 and wonder if
the total number of shortest routes to that point is 210. Later, the students
attempted to solve the problem by finding the number of shortest routes to
corners close to the point of origin (e.g. there are two shortest routes to go
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one down, one right; three shortest routes to go two down, one right). They

produced a table like the following:

In the table, themth by nth cell represents the number of shortest paths to go

m units to the east, n units south.
Romina notices that the fourth diagonal of this table is the sequence 1, 4, 6, 4,

1 and declares, ‘‘it’s Pascal’s triangle’’, where the diagonals in the table corre-

spond to the rows of Pascal’s triangle. Jeff notes that the 12 and the 15 in the

next diagonal would not be correct if this was the case and asks Brian to re-

evaluate the number of routes it takes to go four over and two down. When

Brian announces that he found 15 routes,Michael comments, ‘‘it means that it is

the triangle.’’ A little later, Romina writes a 20 in the box for three right, three

down while Brian worked on re-computing this value. At this point, Michael

asks his colleagues how they knew it was 20. Jeff responds that if they can show

the triangle works, they don’t need to verify that it’s 20.
To understand why Pascal’s triangle would provide the number of shortest

routes to any points on the grid, Romina announces that she will try and relate

the triangle back to the towers and focuses on the 1 2 1 diagonal. She notes that

all of the points on this diagonal are two away from the starting point and this

also forms the second row of Pascal’s triangle. Further, she notes a connection

between the middle entry in that column—with towers, the middle entry would

refer to a two-tall tower with one yellow and one red block; with taxicabs, this

refers to a trip with one across and one down. Likewise, the entry two down, one

right, would refer to a tower that was three-tall, with two yellow and one red

blocks, or the taxicab location three away, with two down and one across. The

students filled in the rest of their grid in accordance with Pascal’s triangle. For

instance, when they filled in the cell for five down, two over, they reasoned that

the number of routes would correspond to the fifth entry of the seventh row of

Pascal’s triangle (not counting the beginning 1) since it would be ‘‘five of one

thing and two of another thing.’’ At a researcher’s request, Michael also

explains the connection between Pascal’s triangle and the pizza by using his

binary number notation. For the taxicab geometry problem, a 0 would indicate

going down and a 1 would indicate going across. Hence, using the example of

going two down and one across, one would need to find the number of binary
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strings that have two 0s and one 1. In their work relating Pascal’s triangle to the
pizza problem, the group had already established that this would be the first
entry (ignoring the first 1) of the third row of Pascal’s triangle. Finally, the
group was able to use these constructions to answer the given questions, for
instance, the number of shortest routes to the point that was five right and five
down would correspond to the fifth entry of the tenth row of Pascal’s triangle.

4.3.5.4 Discussion—strand and schema

In the first two excerpts above, we illustrated how students constructed a
powerful problem-solving schema for solving combinatorial problems. We
then illustrated how students applied that schema to solve the challenging
taxicab geometry problem. The application of this schema not only allowed
them to construct the solution to the problem, but it also provided them with a
deep understanding of their solution and enriched the schema that they had
constructed. In this section, we will discuss four aspects of our problem-solving
environment that enabled students to make these constructions.

First, students were asked to work on challenging problems. If students were
asked to work on problems for which they had already had strategies, they may
have attempted to see whether various techniques that they had learned would
be applicable to the problem. As the students needed to develop techniques to
make progress on these problems, this was not an option for these students. A
particularly important precursor toward developing the schema that these
students constructed was the development of useful ways of representing the
problem. Michael’s binary representation of the towers and the pizza problem,
in particular, paved the way for students to see the deep structure that these
problems shared. One general finding from the longitudinal study was that
students developed powerful representations in response to addressing challen-
ging problems (Davis and Maher 1997, Maher 2005).

Secondly, students were asked to work on strands of challenging problems
that were superficially different but shared the same mathematical structure.
This provided students with the environments in which schemas could be
constructed. Researchers also fostered this construction by encouraging stu-
dents to think about how the problems they were solving might be related to
problems that they had solved in the past. However, we believe that having
students work on strands of challenging tasks is a necessary but not sufficient
condition for schema construction and usage. Students also need time to
explore the task and benefit from heuristics that guide their explorations in
productive directions.

Thirdly, students were given sufficient time to explore the problems and were
also given the opportunities to revisit the problems that they explored. The
students did not instantly see the connections between the towers and pizza
problems, nor did they see how the taxicab problem was related to either of
these problems. It is especially noteworthy that students initially believed that
the towers and pizza problems were similar, but also differed significantly, and
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that Romina’s initial suggestion to relate the taxicab problem to the towers was
not immediately pursued. Further, as the students revisited problems, their
representations of the problems became increasingly more sophisticated,
enabling them to see links between the problem being solved and previous
problems on which they had worked. As Uptegrove (2004) illustrates, many
of the connections students made could be traced back to problem-solving
sessions on which they worked months or years before.

Finally, as Powell (2003) emphasizes, the heuristics that students used in
their problem solving enabled them to relate the problem situation to their
schema. Among the heuristics that the students used were the following: solve a
difficult problem by solving easier ones (before finding the number of shortest
routes to a location ten blocks away, find the number of shortest routes to a
location two blocks away); generate data and look for patterns; and see if there
is an analogy between this problem and a familiar one (Powell 2003). Without
the use of these heuristics, the links to an existing schema may not have been
made. However, the disposition to use such heuristics was likely developed
during the students’ years of solving challenging problems (Powell 2003,
Uptegrove 2004). Moreover, these students’ co-constructed schemas through
a process that Powell (2006, p. 33) terms socially emergent cognition.

4.4 Other examples and contexts for challenging mathematics

problems

In this section, we present four other examples of challenging mathematics
problems and describe the context in which each has been used. In the fifth
section, we present another category of challenging tasks: paradoxes. As noted
earlier, the second example in this section is empirically based, while the
remaining three are informed by reflection on practice.

4.4.1 Example: Number producer

The Context
The problem we will discuss as an example of a challengingmathematical task is
called the Number Producer, and we consider two different settings where it has
been used. In the first setting, the participants were students taking part in an
entrance interview for the University of Oxford, UK. The student, while alone
with the interviewer, was given problems on a piece of paper and had paper
available for calculations. The Number Producer was given as one of the
problems the student should attempt to solve in front of the interviewer, to
provide information on his or her potential as amathematics student, and hence
on whether to offer this student a place. The student was given some time to
think about the problems before the discussion with the interviewer started.
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(The Number Producer was suggested as a problem by Juliette White of the

Open University, UK, and has its origin with Smullyan (1982)).
In the second setting, the participants were third- and fourth-year mathe-

matics students at a teacher training college in Vestfold, Norway. They were

presented with the Number Producer problem in class where it was talked

through. They were then given the problem as an assignment to hand in after

five days. Some worked in groups, others individually. Some asked for and

received hints and clarification via e-mail. After the solutions had been handed

in, there was a discussion of the process.

The Number Producer
In this problem, a numbermeans a positive integerwritten in decimal notationwith

all its digits non-zero. IfA andB are numbers, byABwe mean the number formed

when the digits ofA are followed by the digits ofB, and not the product ofA andB.

For any number X, the number X2X is called the associate of the number X.
There exists a machine. When you put a number into the machine, after a

while a number comes out of the machine. However, the machine does not

accept all such numbers, only some. Those numbers accepted by the machine

are called acceptable. We say that a number X produces a number Y if X is

acceptable and when X is put into the machine, Y comes out of the machine.
The machine obeys three rules:

R1. For any number X, the number 2X is acceptable, and 2X produces X.
R2. If a number X is acceptable and produces Y, then 3X is acceptable and

produces the associate of Y.
R3. If you cannot decide that a number is acceptable from R1 and R2, then it

is not.

Questions:

1. What is the associate of 594?
2. For each of the numbers listed below, find whether or not it is acceptable. If it

is acceptable, find the number it produces.

(a) 27482
(b) 435
(c) 25
(d) 325
(e) 3325
(f) 33325
(g) 345
(h) 333
(i) 32586

3. Can you describe the numbers that are acceptable?
4. Can you think of a number that produces itself?
5. Can you think of a number that produces its associate?
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Mathematical Analysis
We note that the presentation of the problem is as it was given to the Norwegian
participants (translated). In the interview setting, questions 2 and 3 were
grouped together as one question, as were questions 4 and 5.

Those who know about functions might think ‘‘function’’ instead of
‘‘machine’’ when they read through the Number Producer. The first question
is posed in order to build up the mathematical action that whenever one sees the
symbol AB, one should think concatenation, and not multiplication, of the
numbers A and B, and also posed to assist students to grasp the definition of
the associate of a number. Hence, one should find that the associate of 594 is
5942594.

Questions 2 and 3 help the problem solver understand how the machine
works: the numbers in (b), (g) and (h) are examples of not acceptable numbers,
whereas the others are acceptable. Also note the order of the given numbers in
question 2 (a) is acceptable (and produces 7482); (b) is not acceptable; (c–f)
should help the problem solver to see and create a pattern (with answers 5, 525,
5252525, and 525252525252525, respectively); followed by (g) and (h) which are
not acceptable; and finally we have (i) as a ‘‘check’’ for the understanding (which
produces 5862586). From this, the problem solver might have created the
algorithmic tool for answering question 3: the acceptable numbers are of the
form ‘‘(possibly 3s)2(a number)’’.

Once the problem solver has been able to do these questions, he or she can try
to solve the final two questions, using what he or she now knows. (The answers
to questions 4 and 5 are ‘‘yes, 323 produces itself’’, and ‘‘yes, there is also a
number that produces its associate. . .,’’ which we leave for the reader to find!)

Cognitive Analysis
For a challenge to have a positive effect on learning, it should not be too
difficult, but ‘‘just out of reach’’. That is, it should be within the zone of proximal
development, as it is referred to in Vygotskian terms (Vygotsky 1978, defined in
this Study Volume in Section 6.2.2.3 and also discussed in Sections 3.1 and
7.3.2). For a particular group of learners, an appropriate challenge has to have
the possibility of being mastered. In the Number Producer, there are mathema-
tical and cognitive challenges, where the definitions and the notation must be
understood and accepted. For example, it might help to think of the numbers as
an alphabet in this problem. In any case, a learner also has to accept the rules the
machine obeys, which in turn creates new mathematics for the learner.

In the first setting (the interview), all the students accepted the challenge
immediately and some quickly started talking while others thought for a few
minutes. The interviewer started asking questions to see whether the student
had understood. Through various degrees of hints, they all managed to answer
the questions given in the Number Producer. This particular setting forced the
students to be extremely focused. They all said it was an interesting problem,
and managed to give most answers very quickly. Through the discussion the
interviewer could follow the process the students went through to understand
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how the machine worked, hence learning new mathematics. It was obvious that
none of them had seen this problem before. Seeing that they could talk through
the problems with the interviewer rather than just presenting the answers they
could come up with gave a positive feel to a stressful situation. Being able to
discuss a mathematical challenge in such a setting is a valuable experience.

In the second setting (that of the teacher training students), the Number
Producer was given as one of several problems to illustrate mathematical
thinking as part of the history of mathematics. One idea was to make the
students give some thought to how new mathematics develops. Since this was
the first assignment of the course, there were no immediate complaints, and all
the students went away to make an attempt at the problem.

However, it turned out the students spent a lot of time on it and found it very
hard. Most of them got frustrated with it and thought it was too difficult for
them. They tried seeking help from others. Most of them managed to hand in
partial solutions, while a few didn’t hand in anything at all. As one of the
students said, ‘‘This is a problem where we had to think for ourselves and
couldn’t look up a formula.’’ Many students had searched for help in textbooks
without luck. To these students the problem was challenging, in the sense we
described in Section 4.1.3—the problem solver is not aware of procedural or
algorithmic tools that are critical for solving the problem, and therefore will
have to build or otherwise invent a subset of mathematical actions to solve the
problem.

As for the solutions, some students just wrote the answer, whereas others
elaborated so that one could follow their process. From this, it was clear that
they asked themselves good questions in order to figure out how the machine
worked, and hence learned something new. And so they built what are for them
new mathematical ideas and went beyond what they previously knew.

In the discussion that followed, several points were made. Some felt that this
sort of problem could be destructive in the sense that some students lose
confidence when they cannot produce an answer at all. Further, they spent a
lot of time on the problem, and some felt it was a waste of time when they could
not find any answers. However, it turned out that several students had started
thinking about why this challenge was given, and one said, ‘‘I didn’t interpret it
as traditional maths, but thinking back I realize that maybe it was.’’ Also, they
learned what it was like to not always be able to solve a problem completely;
they were obviously used to handing in almost perfect solutions to assignments.

Didactical Analysis
The background of the participants and the setting in which the challenge is
given has implications for learning. For example, in the case of the Number
Producer, the teacher candidates were not used to and hence didn’t expect to be
challenged the way they were, whereas the interviewed students were certainly
expecting a challenge. Another difference was that the teacher candidates had
more time to think about the problem, but they did not have the interviewer
with whom to discuss their insights. This makes the learning processes and the
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outcomes very different, and hence influences the effect of the challenge on
learning.

Another point to be made about the effect on learning from this example is
motivation. The person presenting the challenge and the people receiving it
must have some sort of agreement beforehand: Why do this? The interviewed
students receiving the Number Producer were very clear on their motivation (in
a non-typical classroom situation). The teacher training students (who were in a
typical classroom situation), it turned out, were not.

Variation to the curriculum requires interesting and useful challenges in
order to have a positive effect on learning. For example, one of the teacher
candidates faced with the Number Producer said, ‘‘It wasn’t an interesting
exercise, but one can’t expect all exercises to be interesting to everyone.’’

Still, the Number Producer is an example of a challenge that can be an
addition to the curriculum. For one thing, it doesn’t require a lot of background
theory. All the ingredients are explained in the problem statement. The first few
questions helped the students find out how the machine works, whereas the
final few questions were themselves new challenges. These new challenges are
easier to accept if you have done the first questions, then you want to apply the
things you have learned. Learning something new and being challenged on it
immediately enhances learning. ‘‘Now that you have understood how the
machine works, can you find a number which produces itself?’’ It is in human
nature to learn, and we all need to be challenged on what we learn, otherwise we
lose interest.

4.4.2 Example: Pattern sequence

The Context
The turmoil following the 2001 crisis in Argentina led tomany students dropping
out of school. The severity of the situation is indicated by the following statistics:
35 per cent of youth between the ages of 15 and 24 neither study nor work; 13 per
cent of teenagers abandon school; the unemployment rate among those under 29
years old is 13 per cent, among whom 54 per cent live in poor households.

In 2004, the government of Buenos Aires started the Back-to-School pro-
gram for secondary students, in line with the Zero Dropout Plan (for more
information, see www.buenosaires.gov.ar/areas/educacion/desercioncero),
which targets adolescent school leavers living on the margins of society. Its
aim is to provide a curriculum equivalent to that of compulsory secondary
education that will lead them to gain the necessary official certificates and
grades to get a dignified job. Since 2002, in the city of Buenos Aires, education
has been compulsory until the students are 16 (Law no. 898 on compulsory
secondary education).

The ZeroDropout Plan targets an important sector of the young population.
The participants in the Back-to-School program must be at least 19 years old
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and have interrupted their education for at least a year, but be interested in and
committed towards completing their secondary education and show commit-
ment towards it. A significant number of these students have experienced failure
in both their primary and secondary schooling, and many of them combine
their education with family and work responsibility.

Some students dropped out of school many years ago, while others have
poor primary education. Many of them do not even know the multiplication
and division algorithms nor can they use basic procedures for subtraction.
Some have a criminal record or suffer from drug addiction. Attendance is
poor and a high rate of absenteeism interferes with continuity. Particularly in
first year, many have difficulty in adapting to the school environment.

Pattern and Sequence Problems
The initial problems given to the students required them to describe the general
step or the result of a regular process, such as the addition of the first n natural
numbers or the calculation of the number of elements of a certain geometric
configuration. The geometrical context helped students recognize the equiva-
lence of different descriptions of the pattern.

The teacher presented the following sequence of figures built with matches
and explained how they should be further assembled.

(a) Determine the number of matches needed to form the sixth figure in the
sequence.

(b) Howmanymatches would be needed to build the 100th figure in the sequence?
(c) Find a formula for the number of matches in the nth figure.
(d) Is it possible for one of the figures to be composed of 1549 matches? 1500

matches?

Mathematical Analysis
Algebra can be understood as a tool to model and handle problems of a certain
type. The process that students go through to obtain a formula for the number
of elements of a collection is reflected in the form of the expression found. At the
same time, this process helps students to appreciate the meaning of a ‘‘letter’’
used as a variable and get a feel for the correct use of algebraic expressions.
Moreover, different approaches to the same problem may illuminate a discus-
sion on the equivalence of different expressions and how algebraic expressions
can be transformed.

From this perspective, for the students in the project, a challenging activity is
the production and validation of formulas using natural numbers. We intend
that students look for patterns, find formulas to describe them and produce
arguments to validate them. The teacher is not expected to ‘‘teach’’ the formulas
nor the students to ‘‘apply’’ them; rather the students have a chance to speculate,
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create, test and validate them. The problems are designed to admit multiple
approaches and formulas for the same process.

Cognitive Analysis
The work of the students illustrates how equivalent formulas are found for the
number of matches required for n squares. For example, students who saw each
new square as resulting from the addition of three matches produced the
formula n.3 + 1. Another formula 2.n + n + 1 came from students who
counted the horizontalmatches in pairs, added in the verticalmatches completing
the squares and finally the initial vertical match. Other students gave the formula
4 + 3(n� 1), noting the four matches for the first square and the three additional
matches for each new square. Finally, some students gave 4.n� (n� 1), counting
fourmatches for each square and then subtracting the number of verticalmatches
that were double-counted.

Harmonizing the equivalent expressions provided a basis for introducing the
notions of common factor and distributivity. Thus, in showing the equivalence
of 4+3(n�1) and 3n+1 many students used the concept of multiplication as
repeated addition. They considered 3(n� 1) as (n� 1) + (n� 1) + (n� 1) and
recorded the sum vertically, as for natural numbers:

n� 1

n� 1

n� 1

3n� 3

Then they added by associating on the one hand the ns and on the other hand
the�1s leading to establish the equation 3(n� 1)¼ 3n� 3. We observed that the
students implicitly made use of the commutative and associative properties in
connectionwith addition although they hadnot learned the symbolic formulation.
From this, the common factor and the distributive property, which the students
had not yet worked with, could be formalized. Eventually, students would write
such equations as 4 + 3(n � 1)¼ 4+3n � 3¼ (4 � 3) + 3n¼ 1 + 3n= 3n+ 1.

Proving the equivalence of two formulas is a gateway to algebraic manipula-
tion. When a formula involving a variable arises in some context, students can
check special cases numerically.

We conclude with an examination of the work of some students who
answered the questions as to whether the sequence contained a diagram requir-
ing 1549 or 1500 matches.

While some calculations were tentative, the following one led to a correct
answer:

301 ¼ 100

�5

1501 ¼ 500
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By this, the students wished to express that if 301 matches are needed for the

100th figure, then for the 500th figure, they would need 301 � 5 � 4, the

subtraction for the number of matches that repeat when concatenating five

series of 301. They multiplied 16 by 3 for the matches needed for an additional

16 squares, and these added to the 1501 yielded 1549 matches, the number

required for the 516th figure in the sequence.

Didactical Analysis
The problem was developed in one of the reinsertion schools in Villa Lugano, a

neighborhood of the city of Buenos Aires. The teacher we collaborated with had

a strong commitment to the project, positive expectations of her students and a

sound mathematical education. We collaborated in designing problems that

were to challenge her students mathematically.
We expect that the performance of the students on this problem would help

provide a benchmark for suitable mathematical challenges. We plan to formu-

late what is a challenge from a theoretical perspective as well as from the

perspective of the teacher and students. Together with them, we will study

from a socio-cultural perspective how mathematically challenging activities

can motivate students to participate in the mathematics classroom and how a

particular way of handling interactions among the participants can contribute

to a classroom culture that facilitates participation as a step towards learning.

4.4.3 Examples: Probability

The following two examples demonstrate how challenging mathematical pro-

blems can be used to engage students in a post-secondary, introductory prob-

ability course. In such a course, students have difficulties in seeing connections

between basic probabilitymodels andword problems of a varying verbal content,

that are based on these models. Furthermore, a typical dilemma for students in

this course is to combine, in a proper way, intuitive and strictly mathematical

approaches to problem solving. In order to stimulate students’ creativity, the

following course project was offered to students at Community College of

Philadelphia. The students have the option of selecting a challenging problem

from external sources or attempting one suggested by their instructor. In the

examples below, students selected the first problem, and the instructor offered the

second. Both problems were solved and presented to the class by students.

Foot-and-Mouth Disease Problem
� One person per hundred people has the infectious Foot-and-Mouth disease.
� The probability of a person with this disease testing positive is 0.9, and

the probability of a person who does not have this disease testing positive
is 0.2.

� What is the probability that a person who tests positive has the disease?
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Three Cards Problem
� Suppose you have three cards: a black card that is black on both sides, a

white card that is white on both sides, and a mixed card that is black on one
side and white on the other.

� You put all the cards in a hat, pull one out at random, and place it on a table.
The side facing up is black.

� What is the probability that the other side is also black?

Mathematical Analysis
The level of difficulty of both problems is higher than that of standard problems
in this course. The solution of the Foot-and-Mouth disease problem involves
such notions as conditional probability, complete probability and Bayes’
formula.

This is one solution presented by a student:
We define events as ‘‘Yes’’: a person has the disease; ‘‘No’’: a person has no

disease; ‘‘Pos’’: a person is tested positively; ‘‘Neg’’: a person is tested negatively.
We can see P(Yes)¼ 0.01 and P(No)¼ 0.99.
Then

PðPos=YesÞ ¼ 0:9 PðPos=NoÞ ¼ 0:2:

What is P(Yes/Pos)?
Now the ‘‘branch probability’’

PðYes=PosÞ � PðPosÞ ¼ PðPos=YesÞ � PðYesÞ ¼ PðPos \ YesÞ:

Using Bayes’ formula:

PðYes=PosÞ ¼ PðPos=YesÞ � PðYesÞ
PðPosÞ ;

that is,

PðYes=PosÞ ¼ PðPos=YesÞ � PðYesÞ
PðPos=YesÞ � PðYesÞ þ PðPos=NoÞ � PðNoÞ ;

that is,

PðYes=PosÞ ¼ 0:9� 0:1

0:9� 0:01þ 0:2� 0:99
¼ 9

207
¼ 1

23
¼ 0:043 	 4%:

An alternative solution was also presented based on a tree diagram and
evaluating branch probabilities.

The Three Cards problem is a well-known example of a counterintuitive
problem. This problem is discussed broadly in the literature (Nickerson 2004)
and on the Internet (en.wikipedia.org/wiki/Three_cards_problem). There are
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various solutions of this problem based on notions of reduced sample space,
conditional probability, and multiplication of probabilities.

This problem contains two types of challenge: mathematical and psycholo-
gical. While the mathematical challenge is to find a solution, the psychological
one is to be confident of one’s solution even if it may disagree with one’s
intuition. An effective approach to solving the problem is to consider six
faces, three black and three white, with probability 1/6 for each face.

One of the solutions, based on Bayes’ theorem, is as follows: if event E is to
draw a card black on both sides, and event F is to see a black face, then

PðE=FÞ ¼ PðE \ FÞ
PðFÞ ¼ PðF=EÞ � PðEÞ

PðFÞ ¼ 1� 1=3

1=2
¼ 2

3
:

Another possible solution is based on the formula for conditional probabil-
ity and the reduced sample space for faces.

A quite popular approach employs the idea of labeling faces of three cards. If
B1 and B2 are black faces on the black card, and B3 is a black face on the mixed
card, then one can see that the probability of a black face being B1 or B2 is 2/3.

The Three Cards problem was offered in two introductory probability
courses and a calculus-based probability and statistics course, 50 per cent of
whose students were undergraduate majors in mathematics. In all three classes,
25 students in each, approximately 60 per cent of students gave the same wrong,
‘‘intuitive’’ answer (it was ½), and three students in each class presented the
correct answer and solution.

Cognitive Analysis
In the introductory probability course, many students are future elementary
school teachers. However, some of them may be placed in a category of
‘‘remedial and struggling’’ mathematics students with a strong math anxiety.
The goal of this course project is to combine methods of challenging and
collaborative learning to help students develop logical thinking and creativity,
both of which are critical for future teachers.

In the course project, there was a general opinion among students that a
word problem with an appealing content, even if it is difficult, is more stimulat-
ing than an easier but boring, non-contextualized problem. For instance, the
Foot-and-Mouth disease problem was uptodate in its content since this disease
was discussed widely in the press at that time. In addition, the result, showing
that the probability that a person who tested positively has the disease is as low
as 4 per cent, stimulated an active discussion about reliable interpretation of test
results.

During the work on the project, students appreciated having independence
and a stress-free atmosphere. All students, including individuals with a weak
background, found that they benefit from solving and presenting challenging
problems. Capable students, not previously identified in class, can be recog-
nized as informal group leaders in this process.
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Didactical Analysis
In the project, students were randomly divided into study groups and were
asked to find challenging, curriculum-related problems, satisfying certain cri-
teria, and present their solutions to the class. Each group was also encouraged
to solve and present a second problem from the set of challenging problems
offered by the instructor.

The project started with class discussion about its purpose and possible
outcomes. Students had four weeks to prepare the assignment. At the end,
students completed a questionnaire and evaluated the course, choice of pro-
blems, quality of presentations and effectiveness of the project.

Importantly, most of the groups selected interesting, amusing problems no
matter how difficult they were, and prepared their presentations carefully.
Students clearly described ideas and concepts related to each problem, accu-
rately explained methods and formulas applied and operated validly with
mathematical notions many of which they found difficult in routine class
studies. The audience met presentations with a great interest; every presentation
generated a number of questions and was accompanied by animated discussion.
In evaluating the project overall, students found this activity stimulating and
helpful for their success in the class. We believe that carefully selected challen-
ging problems can be incorporated into the introductory probability curricu-
lum and may be used dynamically throughout the entire course.

4.4.4 Examples: weekly problems

The problems discussed below are different from the ones discussed so far, as
they were given in a class taught in English to students with a different first
language. For the students in Papua New Guinea’s University of Technology in
Lae, English is a second or third language, so learning mathematics may require
multiple translations. They may find it hard to interpret a problem, but can
normally solve it once it is explained to them. The use of mathematical logic, the
conversion of word problems to mathematical ones and their solution is very
challenging for them (Sukthankar 1999).

In 1992, Sukthankar and her colleagues started a feature in the University
of Technology weekly publication, Reporter, called ‘‘Fun With Mathematics,’’
which contained mathematical quizzes. The problems were designed to create
interest in mathematics and to encourage maximum participation by the appro-
priate provision of clues. They tried to add problems which would not only
challenge students to improve their mathematical skills but also teach them how
to translate word problems symbolically with proper mathematical interpreta-
tion and correct use of technical English words.

They found that a little help from the lecturers made a big difference in the
number of participants who used the clues to research a particular topic and
arrive at a solution. There were prizes awarded every week to the winning
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students. The student response to these quizzes was excellent, and consequently,
the Department of Mathematics and Computer Science decided to extend
this feature of mathematical quizzes to the weekly publications of other uni-
versities and tertiary institutions in Papua New Guinea. This idea led to the
establishment of the Annual Mathematics Competition for all tertiary institu-
tions in the country.

Below are five sample problems chosen from the weekly quizzes:

Problem 1: If three dice are thrown, what is the probability that the sum of
numbers on the top faces is not more than 15?

Problem 2: Tim and John celebrate their birthdays today. In three years, Tim
will be four times as old as John was when Tim was two years older than
John is today. If Tim is a teenager, what is his age?

Problem 3: In a test given to a large group of people, the scores were normally
distributed with mean 70 and standard deviation 10. What is the least
whole number score that a person could get and yet score in about the top
15 per cent?

Problem 4: The numbers p, q, r, s and t are consecutive positive integers,
arranged in increasing order. If p + q + r + s + t is a perfect cube and
q+ r+ s is a perfect square, then what is the smallest possible value of r?

Problem 5: Sheep cost $40 each, cows $65 each and hens $2 each. If a farmer
bought a total of 100 of these animals for a total cost of $3279, then how
many sheep, cows and hens did he buy?

Mathematical Analysis
Methods for solving all these problems are different. The solutions involve knowl-
edge of counting elements in the sample spaces, solutions of simultaneous equa-
tions, normal distributions, properties of prime numbers and mathematical logic.

In Problem 1, the first thing that the students needed to note was that it was
much easier to count the number of sums greater than 15 than the number of
sums less than or equal to 15. Then they had to ensure that no arrangement was
missed or repeated while calculating the number of ways. This is a good
problem in which to learn how to calculate the sample space systematically.
The students always had problems understanding phrases like ‘‘more than,’’
‘‘less than,’’ ‘‘not more than,’’ ‘‘not less than,’’ ‘‘at least,’’ ‘‘at most,’’ and so on.
The solution of Problem 1 was a double challenge since it required correct
interpretation and then a mathematical solution.

Students found it hard to translate the apparently confusing wording of
Problem 2 into a mathematical equation in two variables. Let t and j denote the
ages of Tim and John. When Tim was two years older than John is today, John’s
age was less than John’s present age j by the difference between Tim’s present age
and his age when he was two years older than John, namely t � (j + 2). Thus,
John’s earlier age was j � (t � j� 2)¼ 2j� t+ 2. From the given conditions we
get t + 3¼ 4 (2j � t + 2), which gives us 5t¼ 8j + 5. Hence 5(t � 1)¼ 8j
and since Tim is a teenager, this implies that t¼ 17.
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Problem 3 is a typical example of a straightforward probability problem,
involving conversion of a normal distribution to a standard normal distribution
and finding the probabilities using the standard normal distribution probabilities
table. Although it is not so much mathematically challenging, it was a challenge
for the students to interpret the problem correctly.

The solution for Problem 4 is based on properties of prime numbers. If we
denote the five consecutive numbers as n � 2, n � 1, n, n + 1 and n + 2, then
from the given conditions, we have to find the least n such that 5n is a perfect
cube and 3n is a perfect square. The smallest n that satisfies both of these
conditions has to be divisible by 52 and also, since 3 divides n, must be divisible
by 33.

Hence n¼ 52� 33. Most students started by writing the consecutive numbers
as n, n+ 1, . . . , n+ 4. They soon realized that it was getting too complicated
to derive from the given information 5n+ 10 as a perfect cube and 3n+ 6 as a
perfect square, the smallest possible n + 2. Then of course, they chose the
sequence n � 2, n � 1, n, n + 1, n+ 2 and arrived at the solution.

Problem 5 deals with properties of integers and logical elimination process
which are used in simple number theoretical problems very often. A sheep costs
$40, a cow costs $65 and a hen costs $2. Let s, c and h be, respectively, the
number of sheep, cows and hens. We note in passing that cmust be odd and that
the units digit of hmust be 2 or 7. These facts can be used to help narrow down
the search, or as a check on the answer. We have two equations

40sþ 65cþ 2h ¼ 3279

and

sþ cþ h ¼ 100:

Subtracting twice the second from the first gives 38s + 63c¼ 3079.
Since 19(2s + 3c) + 6c¼ 19(162) + 1, we see that 6c � 1 must be divisible by
19. Hence, c must have a remainder 16 when divided by 19. Since c is odd and
63c < 3079, we must have c¼ 35. This quickly leads to s¼ 23 and h¼ 42. The
same problem can also be solved inmanyways using congruence and divisibility
properties.

Cognitive Analysis
The students knew how to calculate the number of ways to get a particular sum
with a two dice problem, but to extend to three dice was challenging for most of
them. To find the number of ways to get a sum equal to 8 on two dice A and B,
some students took the following systematic approach of listing combinations
like (6,2), (5,3), (4,4), (3,5) and (2,6). This method uses an approach of starting
with a 6 on the first die and then decreasing the numbers to 5, 4, 3 and 2 and
getting the appropriate numbers on the second die to make the sum 8. By this
method, no combination is missed and all possible combinations are counted.
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The same idea is extended for the three dice problem. By the same method, it

was easy to calculate the 10 combinations that give the sum 15 on three dice:

(6,6,3), (6,5,4), (6,4,5), . . .. Not all students could think of this combinatorial

method. Instead, some tried to pick up the combinations giving the sum 15 at

random and had no reliable way of checking whether they had considered all

the possibilities. Once shown how to arrive at a definite answer by a systematic

counting approach, they appreciated the combinatorial method.
The phrase ‘‘not more than 15’’ was confusing for some students. We nor-

mally do not notice this problem with students who have English as their

mother tongue. They were not sure whether the expression, ‘‘the sum on the

top faces of three dice not more than 15,’’ meant 3 � sum � 14 or 15!
In Problem 2, one needs to interpret carefully the verbal expression into an

equation. Students needed help to get the equation 5(t � 1)¼ 8j. Some could

easily derive the answer t¼ 17 from the equation since Tim is a teenager and 8

has to divide t�1.
For solving problems on normal distribution, it should be noted that a

problem of the following type was easier for students to solve:
‘‘If X is normally distributed with mean �¼ 16 and standard deviation �¼ 4,

find the probability P (X < 10).’’
However, it would take them longer to solve if it was worded as follows:
‘‘The weekly salaries of 5000 employees of a large corporation are assumed to

be normally distributed withmean $640 and standard deviation $56. Howmany

employees earn less than $570 per week?’’
The students had been exposed to solving quizzes involving elementary

number theory, geometry and mathematical logic. Therefore more than half

of them could solve Problem 4 correctly. For the rest, it was challenging but

within their reach!
Students solved problem 5 in different ways. It is a good exercise to find the

properties of numbers using mathematical logic. By observing carefully the

costs of each sheep, cow and hen, the number of animals and the total cost,

the method reduces the number of choices for integers to be the number of

sheep, cows and hens bought totaling to 100 with total cost $3279.

Didactical Analysis
An important outcome of these efforts was that students realized that solving

math problems could be fun. They were involved in small study groups and had

personal consultations with lecturers. They felt that they were enjoying mathe-

matics as a subject and it is not as intimidating as they had earlier thought.
We also used this opportunity to concentrate a bit more on our female

students and find out the reasons for their lack of active involvement in class-

room mathematics learning. Mathematics is still regarded as a male subject,

especially in PapuaNewGuinea. Boys always dominated classroom discussions

and were expected to do better in education than girls. Girls have almost never

taken part in any mathematical discussion and for most of the time were silent
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listeners. They seemed to lack the ability to initiate any mathematical activity
(Sukthankar and Wilkins 1998).

During an academic semester in 1997, ten first-year female students from the
University of Technology who identified themselves as having low self-concept in
their ability to learn mathematics were studied (Sukthankar and Wilkins 1998).
During the first half of the semester, they were interviewed and their performance
was closelymonitored as well as their manner of study and classroom participation.

Then in the second half, they were especially encouraged to participate in the
weekly mathematics quizzes; their lecturers also gave them additional help. We
learnt from the interviews that the use of computer algebra systems for their
course work and understanding of mathematical concepts was beneficial. They
were also given extra help to prepare for the term tests. After the tests, their
strength and weaknesses were discussed and they were appropriately tutored.
They were also given special problem solving sessions and were encouraged to
enroll for the AnnualMathematics Competition. We found that over the period
of almost six months, there were some positive changes in their attitude towards
mathematics. They participated in the Annual Mathematics Competition. This
time we found that almost all of them were very enthusiastic to compete, there
was an urge to do better and their final results were very considerably beyond
their expectations. During the interviews, we found that the main cause of their
inability to do mathematics was deeply rooted in the social and cultural factors
of their society. Overall, they felt incompetent and had a low self-esteem, and
could not see the relevance of studying higher mathematics once they could do
basic mathematics. A change in attitude improved their performance and as a
result they felt more confident to take up higher studies.

4.5 Example: the challenge of a contradiction and schema

adjustment

As for the examples presented in the previous section, the presentation of the
following example results from considered reflection on practice.

4.5.1 Inconsistency, contradiction and cognitive development

In addition to developing schemas, it is important to ensure a certain flexibility
and richness in a learner’s overall schema system. A poor or rigid schema system
may force a problem solver to use a very specific representation, and as a
consequence, to choose a non-optimal or inadequate solution method or
approach. One example of this is the so-called Einstellung effect or mechaniza-
tion of thought, when a solver, based on her repetitive practices, forms a certain
stereotype and tends to use the same method again and again without noticing a
novel element that critically changed the situation.
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For instance, when asked to find the area of a right triangle with hypotenuse
equal to 12 units and altitude drawn to the hypotenuse equal to 7 units, a solver
uses the usual area formula 12(7)/2 without noticing that a right triangle with
such measurements simply does not exist! (Applebaum and Leikin 2007).
Familiarity with inconsistent questions can cause a solver to focus in the future
on making sense of the given information before proceeding towards a response
or conclusion. Checking data for consistency should be completed prior to
selecting a formula or solution method.

A flexible schema can lead to efficiency. For example, it is inefficient to solve
the quadratic equation, x2 � 123456790x + 123456789¼ 0, by calculating the
discriminant and using the standard formula for roots. If one observes that the
constant term is just one less than the middle coefficient, one can use the Viete
theorem or the factor theorem to obtain the answer immediately without
calculation.

A novice problem solver can easily overlook a trap offered by a problem. In
contrast, an expert’s schema system includes, besides methods and procedures,
possible error and verification techniques that make use of multiple representa-
tions and often prevent the solver from using flawed reasoning andmaking false
statements.

In the rest of this section, we illustrate how inconsistent and contradictory
propositions can be used for further development of a learner’s cognitive
system.

Based on her practices, a learner forms a set of domain-specific expectations
about the nature of problems and statements. She develops ways to judge and
form an opinion about what is likely to be true and what is not. Often, a
statement that surprises a learner or challenges her expectations will stimulate
the whole process of understanding the subject. It may also help to break the
learner’s stereotypes and uncover clarity in the realm of explicit rules and
formal theories.

Say, for instance, one is able to illustrate that 1¼ 2 by certain mathematical
manipulations and reasoning. The problem then becomes one of locating the
error (logical, algebraic or arithmetic) that leads one to the impossible outcome.
Notice that the main psychological feature of the situation that distinguishes it
from other forms of intellectual inquiry is the presence of the appealing voice of
the problem, the voice that essentially passes the ownership of the question
directly to the learner. The very fact of the impossibility of the conclusion forces
the learner to search for an inconsistency in the reasoning apparently accepted
as truthful just a moment ago. The following problems illustrate the situation.

4.5.2 What do you do if you have to prove that 1¼ 2? and other
paradoxes

This section gives four paradoxical problems of different nature. They are
followed by a short comment about mathematical reasons and instructional
implications.
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Problem 1: Consider the following algebraic derivation:

1. Let a¼ b.
2. Then a2¼ ab.
3. Then a2 � b2= ab � b2 or, equivalently, (a + b)(a � b)¼ b(a � b).
4. Then a+ b¼ b.
5. Since a¼ b due to step 1, we have 2b¼ b.
6. Thus, 2¼ 1.

Problem 2:Draw a semicircle of diameter 2. Then draw two semicircles, one on

each of the halves of the diameter. Then draw four semicircles, one on each

quarter of the new diameters, and so on.

Note that the length of the very first semicircle is p, and so is the sum of the

lengths of the next two semicircles, as well as the sum of the next four. One can

reason then in fact it will remain true for any positive power, n, of 2. On the

other hand, when the power n is getting larger and larger, the curve consisting of

2n semicircles gradually approaches the segment of length 2. This apparently

proves that p¼ 2.

Problem 3: Three traveling salesmen have car trouble and are forced to

spend the night at a small town inn. They go in and the innkeeper tells

them, ‘‘The cost of the room is $30’’. Each man pays ten dollars and they

go up to the room. The husband of the innkeeper says to her, ‘‘Did you

charge them the full amount? Why not give them five bucks back since

their car is broken and they hadn’t planned to stay here.’’ She then

brings the men five one-dollar bills and each man takes one while the

other two dollars rest on the table. Originally each man paid ten dollars:

10 � 3¼ 30; now each man has paid nine dollars 9 � 3¼ 27 and there are

two dollars sitting on the counter: 27 + 2¼ 29. The last dollar has

disappeared. (Note that this problem was also used as an example in

Chapter 1.)
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Problem 4: Areas paradox: this figure ‘‘proves’’ that 64¼ 65.

The tasks presented in this section may be viewed as illustrations of challen-

ging conceptual tasks in the sense that Kadijevich (1999) describes.

4.5.3 Brief comments on the paradoxes in Problems 2 to 4

Problem 2 is deeper and trickier than Problem 1. It appears in the framework of

real analysis, and leads to the old philosophical questions. Does a segment

consist of a collection of points? Is a point just a circle with radius zero? How do

we justify the limit whenever such an operation appears in our reasoning? What

is convergence and why do we talk about different types of convergence?
Now, Problem 3 perfectly illustrates the joke about the existence of three

kinds of people: those who can count and those who can’t. The resolution turns

on properly allocating the amounts. The $27 consists of the $25 kept by the
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innkeeper and the $2 not returned to the men. It does not include the $3 given

back to the men.
Finally, Problem 4 is an interesting visual illusion. If one looks at the side

lengths of the triangles and rectangles involved in the figure, one notices that
they are 3, 5, 8, 13, some of the Fibonacci numbers Fk+1= Fk + Fk�1, k> 1. It
is remarkable that the illusion is based on the property of Fibonacci numbers

Fk
2 � Fkþ1Fk�1 ¼ 1;

�� �� which implies smallness of the difference of the slopes,

Fk
Fk�1

� Fkþ1

Fk

����
���� , especially if one pick large values of k.

4.5.4 Analysis of Problem 1

Mathematical Analysis
The algebraic expressions AX¼BX and A¼B are equivalent only if X is not 0.

In our example, X¼ a � b is zero since a¼ b. Thus reduction from AX¼BX to
A=B is not possible. Since a forbidden step was made (passing from line 3 to 4)
a contradictory conclusion occurs. Note that the reduction from line 3 to 4 still
makes sense if a¼ b¼ 0. But then the reduction from line 5 to 6 is not possible

for the same reason.

Cognitive Analysis
If A¼B then AX¼BX for all X. Students often tend to mistakenly treat

an implication (if-then statement) as an if-and-only-if statement. Thus the
reduction from AX¼BX to A¼B could be taken mistakenly as an equivalent
to the initial one.

The reduction AX¼BX to A¼B works in the majority of cases (all but
X=0). Students tend to ignore this special case and proceed formally. If an
algebraic example is relatively long and the student is relatively new to the

activity, she would tend to follow the main route and ignore the rare case. Her
working memory would be occupied by other tasks such as factoring and the
assumption that this case could be temporarily put aside. At the moment of
reduction the joy of finding similar factors on both sides of the equation

dominates the fact that this factor is equal to zero.
Technically, the students know about the rule that division by zero is not

allowed. However, it is often a dead rule, one on a list of other rules. Students
may accept it formally and easily overlook it in practice. When the paradox is
demonstrated and the contradiction in line 6 reveals itself, the student tries to
find why the contradiction occurs. She knows that 2 is not equal to 1, and that

forces her to resolve the contradiction, to find where something went wrong.
The fact that there are only six lines supports her hope for success. A paradox
presents a kind of self-appealing (self-contained) challenge.

Compared to an algebraic exercise that just requires simplifying an expres-
sion, this one, which leads to a contradiction, provides a motivation to check
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the derivation and locate the mistake. When a student finds that violation of a
certain rule leads to a contradiction, the student gets to understand the reason
behind why the rule is worth remembering and obeying. This example illustrates
how a paradox serves as a disequilibrator of learner’s schemas, and how under-
standing of an algebraic rule develops from rethinking (restructuring) a schema.

Didactical Analysis
The mathematical challenge of Problem 1 may be given to students familiar with
algebraic derivations. Students with experience and success in similar algebraic
problems are expected to be able to resolve the contradiction. The fact of the
contradiction is obvious. To ensure that the whole problem belongs to the ZPD
(Zone of Proximal Development (Vygotsky 1978, also see Section 6.2.2.3)) of a
learner, the teacher provides sufficient training in algebraic reductions andmakes
sure that students can do and check their algebra. Some students will tend to
substitute numbers in place of letters to check the derivations. This is a possible
approach as long as the student does algebraic substitution consistently.

In the experimental setting (Kondratieva 2007), the paradoxes from Pro-
blems 1 and 4 were given to first- and second-year university students to be
resolved in class during a ten-minute period. The students were not tested nor
taught algebra or geometry immediately prior to the task since they had all
passed a placement test, and therefore, it was implicitly assumed that they had
already been trained in the subjects. The experiment showed that:

1. Everyone was intrigued and motivated by the contradictions.
2. Not everyone was able to find the reasons for the contradictions. Some

students were able to locate the wrong line in Problem 1, but no clear
explanation was given. Even fewer students were successful with Problem 4.

3. Good students found that the problems were not difficult but were never-
theless interesting. They said that they learned to stay alert while doing
formal derivations or trusting a pictorial proof.

4. Some students composed their own examples of paradoxes using similar
ideas. Such a task was not assigned, and the fact that they did so voluntarily
illustrates an important human tendency to mimic-and-create during the
process of acquisition of new knowledge.

4.5.5 Concluding remarks

While there are different levels of difficulties in the apparent contradictions
we have considered, they all have in common the intrinsic call for a resolution,
when, rephrasing Aristotle’s metaphorical idea, the mind experiences itself in
the act of making a mistake. And then it makes sense.

The role and place of paradoxes in the process of cognitive development can
be identified within Piaget’s theory of equilibration, which refers to the Kantian
epistemological proposition that the knower constructs her knowledge of the
world. Paradoxes disequilibrate a learner’s schemas, and that is the starting
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point of the process of accommodation of a portion of new information. Then
the learner will go through stages ranging from ‘‘beyond belief’’ to acquisition of
knowledge with justification.

If we want students to learn how to verify and validate their solutions and to
critically read others’ work, we need to familiarize them with situations invol-
ving contradictions and paradoxes. They then need to know how to handle such
situations and how to analyze and arrive at possible resolutions and explana-
tions. That is why an exposition of paradoxes is so valuable.

We conjecture that the phenomenon of paradoxes drives the whole of human
intellectual development because the challenge of a contradiction is the main-
spring of learning on both individual and historical levels. Therefore, these
types of challenges cannot be ignored but instead need to be carefully analyzed
and promoted as instructional tools inside and beyond the classroom.

4.6 Conclusion

The preceding examples of challengingmathematics problems together with the
descriptions and analyses of students’ responses to them illustrate that students
benefit socially and cognitively from engagement with challenging problems.
The qualitative analyses suggest that the gains are evident in the short term and
are intellectually important over time. Students build adequate and sophisti-
cated strategies to solve challenges.

From a cognitive perspective, through meaningful engagement over time
with problems within a strand of mathematics, students build effective and
important problem-solving schemas. They develop insights into the mathema-
tical structure of related problems and this knowledge becomes schematized.
Moreover, students need to develop flexible schemas since rigid ones may
inadvertently cause a problem solver to choose a non-optimal or inadequate
solution method or approach. Resolving inconsistent and contradictory pro-
positions or paradoxes can support the development of flexible schemas.

Most research on schema construction has been done using traditional
psychological paradigms, investigating how and (more often) to what extent
individuals can construct and apply schemas in a short period of time. The
research of Weber et al. (2006), which forms the basis of the examples in Section
4.3, differs from this paradigm significantly, looking at how students developed
schemas over time, all the while solving challenging problems. They believe that
this change in perspective radically altered the nature of their findings. If their
research participants were given straightforward problems, they would not
have had the need to develop the useful representations for these problems
that were critical for their schema construction.

If they were only given a short period of time to explore these problems, the
schemas also would likely not have been constructed. In fact, students initially
did not see the deep connections between the various problems on which they
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worked. Hence, looking at the processes that individuals use to form and use
schemas in relatively short periods of time is looking at only a subset of the
processes used in this regard. The work of Weber et al. (2006) demonstrates that
studying the way that students solve challenging strands of problems over
longer periods of time provides a more comprehensive and useful look at how
students can construct and use problem-solving schemas.

As this chapter has illustrated, challenging mathematics problems are suita-
ble for a range of audiences and didactical situations. They are apt as interview
questions for entrance into university mathematics programs to obtain win-
dows into how students think mathematically; as investigations for teacher
candidates to further develop their own mathematical understanding and to
acquire insight into how learners learn mathematics; as supplements to or
material integrated throughout a course; as a means to reinsert marginalized
students into mathematics, providing them with a context with which to enter-
tain their minds; and, by placing mathematical challenges in a university’s daily
or weekly newspaper, as vehicles to popularize and create interest in mathe-
matics among students studying the subject in a language other than their own.

Challenging mathematics problems can be instruments to stimulate creativ-
ity, to encourage collaboration and to study learners’ untutored, emergent
ideas. We have also shown that they are appropriate for secondary and post-
secondary students as well as for high-achieving and low-achieving learners.
From a didactical perspective, it is important that the problems require little
specific background and generally can be attempted successfully by students of
varying mathematical backgrounds.

Economic and social capital need not be markers of who can participate in
mathematics. In Fioriti and Gorgorió (2006), from which the example in Sec-
tion 4.4.2 is excerpted, the authors indicate how it is possible to engage socially
excluded youngsters with challenging mathematics problems so that they are
reinserted into school settings and thereby widen their possible social and
academic participation in their society. Clearly, there are a host of socio-
economic realities that need to be addressed to truly democratize academic
and social participation. However, engaging students of diverse backgrounds in
challenging mathematics problems contributes to this larger goal.

Making mathematics less exclusionary and more inclusive depends on shift-
ing from traditional pedagogies and procedural views of mathematics learning
(Boaler and Greeno 2000). It requires reversing a common belief among tea-
chers that higher-order thinking is not appropriate in the instruction of low-
achieving students (Zohar et al. 2001). If challenging mathematics problems
were used in settings such as formal classrooms and other informal arenas,
learners might begin to recognize mathematics as accessible and attractive (cf.
Zohar and Dori 2003). They would have opportunities to build mathematical
ideas and reasoning over time, develop flexible schemas and inventive problem-
solving approaches, and become socialized into thinking mathematically.

As Resnick (1988) suggests: ‘‘If we want students to treat mathematics as an
ill-structured discipline [that is, one that invites more than one rigidly defined
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interpretation of a task]—making sense of it, arguing about it, and creating it,
rather than merely doing it according to prescribed rules—we will have to
socialize them as much as to instruct them. This means that we cannot expect
any brief or encapsulated program on problem solving to do the job. Instead,
we must seek the kind of long-term engagement in mathematical thinking that
the concept of socialization implies’’. (p. 58)

If mathematics educators and teachers adopt a long-term perspective on the
development of problem-solving schemas, then a paramount goal of mathe-
matics education—to further learners’ effective problem solving—would be
more achievable.
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Chapter 5

Mathematics in Context: Focusing on Students

Maria G. Bartolini Bussi, Sharada Gade, Martine Janvier, Jean-Pierre Kahane,

Vincent J. Matsko, Michela Maschietto, Cécile Ouvrier-Buffet, and Mark Saul

This chapter presents nine case studies in which school students engage in
challenging mathematics outside their immediate classroom environment. In
each case, students are encouraged to collaborate in investigations that go
beyond the standard curriculum and creatively use the ingredients of the
particular context. In Italy, students visit a mathematical laboratory to under-
stand and utilize mathematical machines. Morning assembly at an Indian
school brings students from many classes together in the solution of mathema-
tical problems. Four of the projects are from France: students analyze the
configuration of a heap of sand, pursue astronomical investigations with soft-
ware, obtain a flavor of research by having secondary school teams investigate
interesting problems, and are presented at all levels with open-ended research
problems. There are three programs from the United States, the first, an
advanced geometry sequence for secondary students completing the regular
syllabus early, the second, activities arising from exhibits in an art museum, and
the third, using the school lawn to deepen student understanding of geometric
constructions. All such activities need to be evaluated for their effectiveness, so
that they move from just being initiatives of dynamic individuals to serve as the
foundation for systemic improvements in the way in which students learn,
understand and use mathematics. In the early part of this chapter, we briefly
mention how research into such activities might be approached.

5.1 Introductory comments

For centuries, teachers such as John Comenius (Jan Komensky, 1592–1670), a
Czech educational reformer, and Maria Montessori (1870–1952) have appre-
ciated the benefits of actively involving learners in their education, consigning
the teacher to the role of a wise guide.
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Accordingly, we can expect that challenges that invite and engage students

would be effective in and beyond the mathematics classroom. Some questions

emerge naturally. For example, we can ask

� whether challenges can be used to motivate students for study in mathe-
matics and science;

� how mathematics can be linked to popular culture;
� how challenges can stimulate the enjoyment of mathematics.

More intrinsically, we can enquire also

� whether challenges lead to a deeper understanding of concepts and the
nature of mathematics;

� whether challenges improve retention and help better correlate ideas and
techniques;

� whether challenges foster more facility and resourcefulness in the use of
mathematical ideas and techniques.

The design of a general framework in which to study, compare, and contrast

the implementation of challenging experiences in mathematics becomes crucial.

Several aspects must be considered: the diversity of contexts and the use of

various artifacts; the distinguishing characteristics of challenging mathematics;

the cooperation of teachers and researchers; obstacles to a successful

implementation of mathematical challenges in classrooms, mathematics

laboratories, scientific museums, and popularization events; and the categor-

ization and evaluation of challenges. We include in this chapter a description of

long-running programs to help us identify the salient features of such a

framework.
The philosophy of learning through being challenged evokes two types of

questions. On the one hand, there are psychological ones dealing with expecta-

tions, motivation, disequilibrium, Zone of Proximal Development, and short-

term processes, for example. On the other, there are organizational issues , such

as stability, consistency, didactical content, and suitable contexts.
Following a general presentation of the position of the learner in a challen-

ging environment, several case studies will be described. They will illustrate how

educators in diverse settings have successfully implemented mathematical chal-

lenges in and beyond the classroom. Here is a brief summary (consistent with

elsewhere in this Study Volume, authors of the individual case studies are

identified in the Acknowledgements):

� 5.3.1 Mathematics laboratory: In amathematics laboratory, students work in
groups with mechanical devices designed to produce conic sections. Their
study is guided by worksheets (depending on the grade level). Students
present the results of their explorations.

� 5.3.2 Indian school: Mathematical challenges are periodically given to stu-
dents at the morning assembly in school. Occasionally these challenges take
on a life of their own, being discussed by students and modified into other
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challenges. In these cases, a special bulletin board is created so that all
students may see the problem and its solution.

� 5.3.3 Sand pouring: Inspired by an exhibition in the Jardin des Plantes in
Paris, students who participated in the Rallye mathématique de Paris (2000)
and the Rallye mathématique de la Sarthe (2003) experimented with pouring
sand on a flat surface. They discovered that the angle between the sides of the
conical heap and the surface is always the same. This problem can also be
taken to the classroom in an extended form.

� 5.3.4 Hands-on Universe, Europe: Interactive astronomy is brought to class-
rooms from primary school to university. Begun at the University of Cali-
fornia at Berkeley, this collaborative project between researchers and edu-
cators is spreading globally. The European group has developed special
software for students to practice science and mathematics.

� 5.3.5 MATh.en.JEANS: Young research mathematicians develop a list of
interesting problems, which are then selected by teams of high school stu-
dents. Each problem is selected by two teams from different schools. Teams
explore the problems, sometimes with the aid of the proposers, and then
present their results. MATh.en.JEANS is the organization responsible for
coordinating these activities.

� 5.3.6 Applied geometry: Many high school students complete calculus at the
end of their eleventh year. For such advanced students at Quincy High
School (Illinois), a special course has been designed. The focus is on various
topics in two-, three-, and four-dimensional geometry, with an emphasis on
hands-on work.

� 5.3.7 Open-ended problems: Students and teachers of all levels, primary
school through university, are presented with open-ended research problems
inmathematics (such as polyomino exclusion problems). The context may be
the classroom, teacher training, or a special event. Participants design their
own problems, and are assisted by a professional mathematician. Results of
their work are presented both orally and through poster presentations.

� 5.3.8 Mathematics and art: Students visit a local art museum and see how
symmetry and topology are involved in artwork. In teams, they go on a
geometrical ‘‘treasure hunt’’.

� 5.3.9 Lawn constructions: Using sticks and brightly colored yarn, students
perform geometrical constructions on a large, flat lawn. They then analyze
their constructions using pictures of their work taken from a nearby tall
building.

5.2 Discussion of contexts for challenges

Of course the feature common to all mathematical challenges is mathematics

itself. While setting challenges mathematical facts are not presented by an

authority. Rather, through explorations, students arrive at results and modes
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of reasoning on their own. This process of discovery allows them to learn
mathematics in amoremeaningful way. New cognitive processes are developed.

We discuss in turn different aspects of the context for mathematical
challenges:

1) the social learning environment;
2) the time element;
3) instruments and objects;
4) pedagogical methods.

Clearly, there is a great diversity in social learning environments for math-
ematical challenges. While the case studies highlight many of these, many
educators spend much of their time in classrooms. Thus they need to accept
the challenge of making the classroom both engaging and challenging. Many of
the challenges described here and elsewhere in this Study Volume may be
adapted for classroom use. For example, many teachers could use problems
from mathematics contests or Olympiads in the classroom. Teachers may also
recruit parents to introduce and discuss challenges at home; we do not deal with
this possibility here.

The duration of mathematical challenges varies greatly. While an exhibition
visit may consume only a single afternoon, programs such asMATh.en.JEANS
take place over the course of an entire year. Some classroom challenges may be
met within a single classroom session, while in a course for advanced students,
they may last for the entire school year. Often, the challenge must be adapted to
suit a given time frame; many allow this sort of flexibility.

Even greater diversity occurs with the instruments and objects used in the
design and implementation of mathematical challenges: special instruments
may be constructed for use in a mathematical laboratory; an innovative use
may be found for an ordinary material like sand; one classroom project used
three thousand donated compact discs.

Educators use many pedagogical methods to engage their students in chal-
lenges. An effective strategy is to design these so that they can experiment and
discover mathematical principles. This is usually followed up by recording their
thoughts in a mathematical journal or making a presentation to classmates,
family members, or a group of researchers; not only is this exciting for the
students, but a different kind of learning takes place when they discover and
formulate results for themselves. Journals are especially important when chal-
lenges are spread over a longer period of time, as they enable students to review
their thoughts whenever the challenge is revisited.

The relationship between student and teacher is implicit in the use of peda-
gogical method. For with a challenge, a student may pose questions whose
answers might not be clear to the teacher. Indeed, the teacher might not even
know the outcome of the challenge. Thus the didactical contract, in the sense of
Brousseau (1997), evolves as the challenge gains momentum.

Students and teachers also have relationships with others, such as parents,
the popular press, granting bodies, and the professional community. In France,
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there are several mathematics publications directed to different age groups.

Their goal is to popularize mathematics among students, teachers and the

public at large. They generate discussion in the classroom and in the home. In

some countries, such as the United States, professional mathematicians are

encouraged to take a more active role in primary and secondary education so

that students are encouraged to proceed to a higher level.
The evaluation of mathematical challenges is both important and complex.

Their very nature forces a significant qualitative component. The challenges

themselves must be assessed for difficulty, appropriateness and ability to sup-

port particular curricular and affective goals. The degree of engagement and the

consequent long-term effects among students must be evaluated. Students may

judge how a challenge induced them to change their thinking and take stock of

what they had already learned. Teachers may reflect on how a challenge has

altered their perspective on their pedagogy and on the mathematics. How can

challenges be assessed externally? Reliable positive assessments of challenges

may lead to administrators and designers of syllabi becoming convinced of the

need for more mathematical challenges in the learning environment.
It is evident that contexts for challenge in mathematics are many and varied.

However, even with a well-designed challenge, there may be obstacles to intro-

ducing it to a learning environment. The need to adhere to a prescribed syllabus

may not allow time to consider additional topics. Money may be lacking to

obtain the necessary materials. The attitude of administrators towards mathe-

matics may be counterproductive. There may be students whose mother tongue

is not the language of instruction. Students may use the Internet which may

show solutions to challenges that one might otherwise use.

5.2.1 Highlight on long-term studies

It is important to recognize that, in order to be effective, the use of challenges

should not be an occasional diversion but should become part of one’s philo-

sophy of teaching. Many of the challenges described in this chapter take place

over a long period. This makes the processes more complex with a greater

chance of obstacles arising over the longer time frame. Thus, the wise use of

class time is an important consideration. In some countries, such as Italy,

teachers teach students for more than one year. Accordingly, they must plan

in the long term, especially as many feel responsible for the development of the

personalities of their students.
In the past, it has been easier for educational research to focus on short-term

studies. However, new research techniques developed in Europe and North

America make the complexity of long-term projects more accessible to study. It

is beyond the scope of this chapter to review all of this work, so we limit our

discussion to two examples and provide some references to the literature.
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5.2.1.1 Ingénierie didactique

Drawing on the theory of didactical situations (Brousseau 1997), French
researchers in mathematics education created a concept known as ‘‘didactical
engineering’’ (Artigue 1989). This theory takes into account the complexity of
the classroom, and considers the relationship between research and practice in
learning environments. The focus is on the ‘‘situation’’, a system of conditions
enabling a group of students or an institution to solve a problem. Each situation
incorporates the ‘‘didactical triangle’’ of teacher, learner, and knowledge, and
the relationships among the parts of this triangle. Ideally, the system and its
evolution can be modeled.

Just as the idea of ‘‘situation’’ extends that of ‘‘problem,’’ the concept of
‘‘didactical engineering’’ extends that of ‘‘didactical design’’. The object of
didactical engineering is to create and test a sequence of didactical situations
as tools for the teacher, to make explicit the options available in using these
situations, and to justify the choice among these options theoretically and
experimentally.

Each option is viewed from two perspectives: a global perspective concerning
the consistency of the entire sequence, and a local perspective concerning the
individual situations. The engineer specifies the various stages and didactical
variables of each situation, always keeping in mind the motivation of the
student and the objectives of the sequence. Interactions between students and
situations should be characterized, if possible.

Now the sequence is ready for experimentation, followed by an analysis
based on data collected during each session. Data may take the form of
observations, video, or written protocols. This comparison between theory
and practice is crucial, as it validates using the sequence as a tool for learning
and teaching, or suggests possible improvements to the design. Most French
researchers use this model in studying the application of theoretical ideas in the
classroom.

5.2.1.2 Activity theory

In this approach, individual processes are understood only in the context of
social processes. This is because people do not passively absorb and react to
stimuli, but rather actively explore and transform their physical and social
environments. Mellin-Olsen (1987) analyzed the design and implementation
of long-term studies from the perspective of activity theory, and in Nordic
and other countries, some scholars are using a similar approach.

In this view, mathematical ideas are considered historical ‘‘artifacts’’ of
human culture (Vygotsky 1998). Therefore, the process of learning to think
mathematically is a process of enculturation. This is clearly an interpersonal
activity involving the student, teachers, peers, and others.

Artifacts may also include instruments such as straightedge or compasses.
They may be used by individuals or groups to solve mathematical problems.
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Students working in a group may, over time, formulate abstract principles as a

result of their concrete experiences.
This process has been observed in groups of students solving the following

problem (Bartolini Bussi 1996): Students are given a perspective drawing of a

table, and are asked to draw a small ball in the center of the table. They may use

instruments, and must explain their reasoning.
Students from Year 2 through to university level have found this problem

challenging. Most students, including adults, try connecting the midpoints of

opposite sides of the quadrilateral representing the top of the table. However,

since the table is drawn in perspective, this procedure does not lead to a correct

solution.
Working together, students formulate postulates of perspective drawing,

such as ‘‘if three points line on a straight line, their perspective images also lie

on a straight line’’. Once they formulate enough postulates, the problem shifts

from the concrete to the abstract. Instead of working with concrete drawings,

students begin to reason using the abstract principles they have developed. This

process moves them closer to the solution: place the ball at the intersection of

the diagonals of the quadrilateral. Students then justify this solution using the

abstract postulates they have formulated.

5.2.2 Conclusion

Creating and implementing mathematical challenges is ambitious and demand-

ing. It is hard to create a learning environment that engages students in a

challenge and stimulates the development of their mathematical reasoning

abilities. In this regard, it is not just the student who is challenged. We as

educators are also challenged.
It is hoped that the case studies included in this chapter will serve as inspira-

tion. Interested readers may contact any of the authors for more details on their

work. We must work together to insure that mathematical challenges are

available to all students everywhere.

5.3 Case studies

5.3.1 The Laboratory of Mathematical Machines

The Laboratory of Mathematical Machines (the MMLab), in the Department of

Mathematics in Modena (Italy), is involved in both didactical research and the

popularization of mathematics (such as exhibitions). It contains a collection of

instruments (mathematical machines) for the teaching and learning of geometry.

The MMLab is visited by both teachers and students (www.mmlab.unimore.it).
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5.3.1.1 Learning environment

The MMLab is open to classes during the whole school year. When teachers

decide to come to the MMLab, they reserve it and choose to study either conic

sections or geometrical transformations. In this section, we would like to draw

attention to some aspects which characterize MMLab activity.

1. A session at theMMLab is structured differently from a visit to an exhibition
or a classical mathematical classroom—only the beginning can be compared
to a ‘‘standard’’ visit, where a presenter introduces the exhibits.

2. In the MMLab, the ‘‘rules of the game’’ are made known to teachers (even if
it is the first time that they accompany the classes), but are not imparted to
the students who know only the chosen topic.

3. The three subjects involved in the MMLab session (i.e. the animator, stu-
dents and teacher) play different roles. The animator is the voice of history
and mathematical culture. He or she supports and controls the working
groups, guides the pupils’ presentations, and validates their answers. The
pupils are visitors and manipulators. They sketch, formulate conjectures,
and discuss, and they present their work. Usually, students do not play so
many different roles during a mathematics class. Only the teacher’s role is
not well defined in our laboratory session: he/she is a kind of ‘‘joker’’ and is
relieved of the responsibility of teaching during a MMLab session. More-
over, the teacher can, on one hand, be an observer of pupils’ exploration
processes; on the other hand, he/she can experiment with a different kind of
mathematical session without being directly involved.

Generally, this new situation can determine different relationships among the

pupils, between the pupils and teacher, and between pupils and mathematics.
In order to analyze the laboratory format and compare this with other

situations such as the classroom and ‘‘standard’’ visits to exhibits, we distinguish

among formal education, non-formal education and informal learning (EC

Communication 2001, Rogers 2004, Rodari et al. 2005, SEEQUEL Project

2004).
Briefly, ‘‘formal education’’ takes place in a planned way at recognized

institutions such as schools, colleges, and universities. Teachers mediate the

learning in a prescribed setting. ‘‘Non-formal education’’ shares with formal

education the characteristic of being mediated, but the motivation for learning

may be wholly intrinsic to the learner. It typically does not lead to certification.

‘‘Informal learning’’ results from personal exploration and discourse and may

occur spontaneously in situations in everyday life. These distinctions are noted

in Chapter 2 where mathematics exhibitions are treated. Because it is difficult to

determine the boundaries between them and the importance of the context,

recent approaches suggest considering a continuum between formal and infor-

mal learning.
Thus, the MMLab’s activity may include both non-formal and formal

education or, in other words, is between non-formal and formal education.
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Indeed, a MMLab session does not entirely correspond to a mathematics
classroom concerning a didactical long-term project (formal education): time,
objectives and handling are different. Nevertheless, the session does not fit non-
formal education, because of the presence of the teacher and the animators and
the management of the session.

5.3.1.2 Duration

A laboratory session lasts an hour and a half. Three stages constitute each
session.

Stage 1: The chosen topic is introduced. This stage is conducted by the
MMLab personnel, using both physical instruments present at the
MMLab and interactive/non-interactive simulations (Cabri II Plus,
Cinema 4D).

Stage 2: Pupils are invited to form small groups (four or five pupils), which
receive a mathematical machine and a worksheet to guide their
exploration.

Stage 3: Each group presents the studied mathematical machine to their
fellow pupils. It is an important institutionalization moment (Brousseau
1997), because the results of each group work session are shared by the
class and the teacher. In this way, those results belong to the class’s
repertoire and they can be recalled by the teacher after the session.

5.3.1.3 Instruments

The practice of using tangible instruments in mathematics (especially in geo-
metry) was historically included in the work ofmathematicians. In theMMLab,
there are many different kinds of mathematical machines (Bartolini Bussi and
Maschietto 2006). A mathematical machine (in geometry) is an artifact that is
designed to force a point, a line segment, or a plane figure (supported in a way as
to make it visible and touchable) to move according to a determined mathema-
tical law. Two hundred such machines (examples in Figures 5.1 and 5.2) have
been reconstructed with a didactical aim, according to the design described in
historical texts from classical Greece to the 20th century.

5.3.1.4 Pedagogical methods

The use of instruments in mathematics education is supported by the Vygotskian
construct of semiotic mediation (Bartolini Bussi 2000, Bartolini Bussi and
Mariotti 2008, Bartolini Bussi et al. 2005, Maschietto 2005, Maschietto and
Bartolini Bussi 2005), which is built around three different poles:

1) the cultural-historical pole, to describe the features of technical and psycho-
logical tools which have the potentiality of creating ‘‘new forms of a cultu-
rally-based psychological process’’ (Vygotsky 1987);
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2) the didactic pole, to describe the way of designing, implementing and ana-
lyzing processes of semiotic mediation;

3) the cognitive pole, to describe the process of internalization of interpsycho-
logical activity, that creates the plane of individual consciousness.

The MMLab is a good example of what has been called a ‘‘mathematics

laboratory’’ by the Teaching Commission of the Italian Mathematical Society

(UMI-CIIM).
We can imagine the laboratory environment as a renaissance workshop, in

which the apprentices learned by doing, seeing, imitating, and communicating

with each other, in one word: practicing. In the laboratory activities, the

construction of meanings is strictly bounded, on one hand, to the use of tools,

and on the other, to the interactions between people working together (without

distinguishing between teacher and students).
The enactive mode of knowledge (Bruner 1967) is usually limited to young

people in mathematics education, as if the importance of handling objects and

exploring space decreasedwith age. In some cases the confidence in the power of

Figure 5.2: Perspectograph

Figure 5.1: Ellipsograph
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the concrete experience itself was surely excessive, as if the mathematical mean-
ings were transparent from the procedures embodied in it.

5.3.2 Seeding mathematical challenges at morning assembly
at a school in India

Morning assemblies are common in Indian schools. Students and teachers
gather to be led in prayer, sing the school song, hear invited speakers on specific
topics, or commemorate special occasions. The event is not tied to the curricu-
lum and varies from school to school. At Vidyaranya High School, Hyderabad,
the twenty minutes occupied by morning assembly were used creatively. Tea-
chers had the opportunity of presenting any interesting topic for discussion with
students and fellow teachers. This provided the opportunity to seed mathema-
tical challenges.

Sharada Gade taught mathematics at the middle grades, having the same
students for two or three years in a row. Sometimes, at the assembly, the school
combined high school and middle school students; sometimes, they were kept
separate. She had the opportunity to set mathematical challenges for students
she had taught, was currently teaching, or would teach in the coming years. In
setting a challenge, there were three considerations. First, what would the
challenge be about? This depended upon who would be present in the assembly
and what she thought would interest them. She could build upon a current topic
in the curriculum, or offer something she had learnt herself elsewhere in the
discipline of mathematics. Secondly, discussion of challenges in this setting
provided an open invitation to everyone to participate. Thirdly, could she
communicate the challenge in the time available?

Not all students accepted the challenge. The provision of the challenge took
the form of an invitation, and those students accepting the challenge were
encouraged to get in touch with her again during the day. At times they shared
their solutions; at other times they shared the excitement about what one, a pair,
or a group of them experienced in attempting the challenge. As a teacher, this
provided valuable feedback as well as further opportunity. First, students’
responses gave her an idea of what kinds of problems challenged students,
combined with the nature of the mathematics that challenged them. Secondly,
she established contact with the students interested in the mathematical chal-
lenges she set.

Access to interested students allowed her to put students across different
grades in touch with each other. At times this created a kind of friendship or
kinship that she initiated but did not pursue further. At other times interest in a
particular challenge was taken a step further. Could the challenge be attempted
using other skills and techniques? Was the use of an equation necessary? Could
the present challenge be a background upon which to set another? At times the
challenge that was seeded in the morning resulted in students bringing forth
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challenges from their home, set by a friend, aunt, or uncle. Some of these were

also shared with other students at a pinup board, either in the classroom or in

common areas between classrooms.
Seeding challenges and keeping interest in them alive, beyond the teaching-

learning of the curriculum in the classroom, called for an alert disposition in her

role as a teacher. The processes she initiated demanded time and attention to

dynamical situations which were not envisaged or anticipated. However, the

very setting forth of a dynamic process had benefits for routine curriculum

teaching-learning as well, since the students were some of the same individuals

inside her classroom. With challenges at morning assemblies as background, it

was possible to create, without additional effort, the elusive aspect of interest in

the subject of mathematics. The attitude of questioning, seeking solutions,

conjecturing, and attempting questions became commonplace in the learning

environment for mathematics in the classes she taught.
In the nature of seeding challenges described above, the time element for

each varied. Some students were not even attentive for the twenty minutes;

some were interested only as long as their friends were; but for some, the

challenges lasted the bus ride home, for some the weekend. The flexibility of

such an approach on behalf of the students was intentional, since by the process

she wished to appeal to their voluntary disposition and interest, not making

challenges part of either regimen or routine. The combination of creating

interest in a mathematical challenge, her authority as a teacher at the morning

assembly, accompanied by a voluntary disposition, led to and demanded a

plurality of pedagogical methods.
Sometimes the twenty minutes of discussion across a hundred students

resolved the challenge. At other times the challenge was pursued in a more

focused manner in the mathematics class that followed the morning assembly,

where a solution was debated among thirty students. At still other times a group

of students from different classes met to discuss the challenge in the intervals

between classes. On occasion a group of students presented a challenge at the

morning assembly themselves.
Sharada’s goal in setting challenges was generally a simple one: that of

questioning the present knowledge that any student displayed, thereby extend-

ing their current knowledge of mathematics and in mathematics. Since she

became fairly well acquainted with the interests and abilities of her students,

she came to the obvious realization that a challenge for one student was not a

challenge for another.
Mathematics usually considered routine was in itself challenging for many.

For example, finding the lowest common multiple (LCM) of the algebraic terms

3x2y and 4xy2z was challenging for some, just as finding the LCM of 15 and 18

was challenging for others. Finding the volume of a toothpaste carton through

application of the algebraic formula was easier for some than making, with

paper and scissors, one with a certain volume, or even making one with twice

the dimensions of a given carton. Examples of challenges follow.
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Example 5.3.2.1
Observe the pattern which emerges on conducting the following three steps.

Step 1. Take any number to start with.
Step 2. If the number obtained is odd, triple it and add one; if the number

obtained is even, halve it.
Step 3. Repeat Step 2 with the number which results from performing

Step 2.

For some students finding the 4, 2, 1 pattern that emerges was a challenge,
where for others it was the use of the number 27 in the first step. For the more
adept, the challenge was to find out if a regular pattern resulted from any other
sequence of steps or stated conditions.

Example 5.3.2.2
Find the difference between 825 and its reverse. Is it a multiple of 9?

Find the difference between the two-digit number ‘ab’ and its reverse. How
can you say whether it is or not a multiple of 9?

The extension of this challenge into related challenges was not very difficult
for Sharada’s students.

In summary, the practice of seeding mathematical challenges was enabled
and supported by the way the morning assembly was conceptualized in the
school, and how Sharada was able to capitalize on the opportunity to make
mathematics challenging and exciting. The seeding of challenges and nurturing
of them in the school spawned a welcome culture of teaching-learning in
mathematics.

The practice provided an opportunity not only for the setting of a particular
mathematical challenge, but also for the development of a particular challenge
both between peers and across time. The seeding of mathematical challenges
and making the related practice ‘‘common knowledge’’ enabled a greater sense
of awareness of the creativity and cultural inheritance of mathematics in the
students and thereby also in the school. For more details see Gade (2004).

5.3.3 Heaps of sand: what we can do with sand in and beyond the
classroom with a mathematical aim

In 2000 an exhibition was constructed in the Jardin des Plantes in Paris by the
artist, Jean Bernard Métais (www.jbmetais.com/), with the assistance of scien-
tists from Jussieu University in Paris. It provides the inspiration for a challenge
for the participants of the Rallye mathématique de Paris.

On similar lines, students of a scientific workshop (a multidisciplinary learn-
ing environment where students are free to study as they choose) in a school at
Nantes (in the west of France) studied the form of some heaps of sand. Four
pupils and their teacher explained their work at the Salon Culture et Jeux
Mathématiques in Paris.
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Sand is a special material, and a scientific workshop at the Château

d’Olonnes in the west of France, has been studying the substance since 1990

(www.chez.com/sable/).
In collaboration with other sciences, we can engage our students in many

experiences that involve observation andmeasurement, alongwith the challenge

of accounting for what is seen. For example, one discovers that regardless of the

type of sand, when poured upon a flat plane, sand gathers into a heap that is

always a cone with a constant base angle equal to about 35 degrees.
We describe the tasks that were presented in the first Rallye mathématique de

Paris (family teams) and also in the Rallye mathématique de la Sarthe (compe-

tition for whole classrooms). In both contests, the questions were similar; they

are given here in simplified form.

Example 5.3.3.1
Look at the heaps of sand in front of you.

Using pictures of these heaps, take several measurements of the base angle �.
You will note that the angle appears to be constant. Determine the average of

your measurements.
What is the geometrical form of the heap? Measure the base diameter of the

heap and determine the volume of sand.
Now we open a small hole exactly at the centre of the base of the heap.
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Sand pours through it to form another heap underneath the plane of the

first.
When does sand stop pouring from the top heap? We note that this

happens when the base angle is equal to �. Describe the form of the upper

heap of sand at the end of the experiment. Draw the vertical cross-section

of the upper heap through a diameter. What is the volume of sand in each

part?

For longer durations, this activity can be extended to last for perhaps

six hours in the final year of middle school. The pupils of a class are broken

into small teams and presented with a situation that requires them to observe,

model and calculate. The role of the teacher is just to set the experiment in

motion. Each team is evaluated on the basis of the observations and conclusions

recorded in journals and on an oral presentation.
There are several levels of challenge for the students to account for in their

observations. The most basic is that the heap of sand is symmetrical, so what

kind of symmetry is exhibited and why? Moreover, the shape of the heap

seems to be independent of the amount of sand involved, which raises the

whole issue of scale. Whether the sand fills a cup or the back of a dump truck,

it appears that the shape of the heap is invariant. When sand from a top heap is

allowed to leak into a bottom heap, students might relate the shape of that

part of the top heap vacated by the sand to the shape of the lower part; the two

parts of course have the same volume, but will they also be congruent? Is this

to be expected? Such questions have both mathematical and physical

components.
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5.3.4 SalsaJ: astronomical software

‘‘Hands-on Universe’’ is an international project for teaching astronomy

from primary school to university. This project, started at the University

of California at Berkeley, is thriving and growing actively in many other

places in the world, for instance in Europe (EU-HOU). It is the result

of collaboration between researchers in astrophysics and teachers of

mathematics and science.
The projects are based on real observations, possibly acquired by the stu-

dents themselves through a worldwide network of automatic telescopes linked

to the Web. The observations can be manipulated with special software, such as

SalsaJ, developed by the European component, and integrated into pedagogical

resources.
Using this software, students can practice science and engage in challenging

mathematical activities. A full description of the program along with descriptions

of many projects and software can be obtained from the website www.euhou.net.
Here you can see a very small example of the activities developed in a

scientific workshop. The title of this workshop was ‘‘Cratères et volcans dans

le Système Solaire’’.

Example 5.3.4.1 Study of a shock crater on Mars

1) What is the shape of a pixel?
2) Describe this image—not only the main crater, but also other disturbances

on the ground of Mars (compare with other examples of craterisation on the
Moon or on the Earth). Can you say where the Sun is?

3) Using the scale indication, calculate the value of one pixel (in meters).
4) Infer the diameter of this crater. Explain your method.
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Using the tools line, and afterward analyze and then crop, we can discover the
number of pixels on the 1500 meters, sub-picture.

We can know that, in this case, one pixel is approximately 20 meters.
Using again the same tools (line, analyze and crop), we can discover that the

diameter of this crater is 2500 meters.
Furthermore, we can do the same operations again and again to obtain more

details about the disturbances resulting from the shock. For example, we can

measure the crown around the crater where the ground is modified.

5.3.5 Mathematical challenges around Orsay

MATh.en.JEANS is a network of mathematics clubs operating across France

that was founded approximately two decades ago. A description of its scope

and activities can be found on the website mathenjeans.free.fr/amej/

accueil.htm. A secondary school teacher may decide to create a club, and,

with the permission of the headmaster, can contact the MATh.en.JEANS

association which provides access to consultants and mathematical problems

and activities. Each year there is a national congress that focuses on particular

topics.
L’Université Paris-Sud at Orsay is one centre of activity. Apart from its

participation in MATh.en.JEANS, there are numerous contacts between its

mathematicians and secondary students. Challenging activities for students

are built around visits to the laboratory of mathematics at Orsay and to the

Institut des Etudes Scientifiques in Bures/Yvette by classes of secondary school
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students, in particular at the occasion of the so-called Fête de la Sciences, held

every year in the fall.
Longer term activities take place as part of MATh.en.JEANS, whose local

coordinator is Professor Pierre Pansu in the Department of Mathematics. A

sample of one of their activities, on Bezier curves, is described at the site

www.math.u-psud.fr/�pansu.courbes.html. Young research mathematicians

in the department propose a list of problems. Each subject can be chosen by

two teams of high school students at different schools, who explore the pro-

blems by themselves, sometimes with the help of the proposers. A sample of

themes may be found at the webpage www.math.u-psud.fr/�pansu/

sujets_0708.html.
In any case, there is contact between teams and the proposers during the

whole process, which lasts several months. The process ends with a national

event, where teams come from the whole of France to present their reports

during an afternoon. In 2006 the congress took place at La Cité des Sciences et

de l’Industrie in Paris, where the theme wasPourquoi fait-on des mathématiques?
The subjects in 2006 included combinatorics, number theory, probability,

magic squares, theory of automata, graph theory and econometrics. Here is one

of the tasks, a generalization of a chessboard’s knight’s tour problem:

Example 5.3.5.1
ABCD is a rectangular board, withAB= 20 and BC= 12. It is partitioned into

20�12 unit squares. A positive integer r is given. One is allowed to go from one

square to another if and only if the distance between their centers is exactly
p
r.

Is it possible to go by steps from the square with vertex A to the square with

vertex B?

The teams that worked on this problem consisted of young people in the final

grade of high school (lycée) who were interested in mathematics.
This is a problem in number theory. First, it has to be decided what values of

r actually permit one to go from one square to any of the other squares. In other

words, for the problem to be solvable, it is necessary that r= (a2+b2), where a

and b are nonnegative integers representing the horizontal and vertical dis-

tances between the two squares.
However, it is not obvious which values of this form actually work; there is a

system of Diophantine equalities and inequalities to explore.
The students could have used complex numbers in approaching this pro-

blem, but none did. Because the possible values of r were limited by the size of

the board, no general criterion for the values for rwas needed. Nevertheless, the

general result was guessed by both teams.
From a didactical perspective, it is significant that students and teachers were

in the same position with respect to this problem. This is an unusual situation

for the teacher, one appreciated by the students. The atmosphere of the whole

class benefited. Not all teachers can face a situation where they appear as

learners along with the students, but this is typical of a true research situation.
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The fact that the proposers were young research mathematicians helped to
establish a good relationship.

The student reports to an audience consisting of members of other teams,
their teachers and mathematicians from the university, were both serious and
enthusiastic. They enjoyed the subject and explained their results, using com-
puters as well as the blackboard, in an almost professional way.

An interesting feature of the final event was a debate that followed the
lecture, ‘‘Why do we do mathematics?’’ The audience was faced with opposing
opinions of two famous mathematicians, Fourier and Jacobi. Shortly after
Fourier died, in 1830, Jacobi wrote a letter to Legendre saying that Fourier
had been wrong in criticizing Abel and himself for avoiding work on questions
of public interest or problems raised by the natural sciences. Fourier, he wrote,
should have known that ‘‘le but unique de la science est l’honneur de l’esprit
humain’’ (‘‘the sole purpose of science is to honour the human spirit’’). Actually,
Fourier had expressed his opinion a few years earlier: ‘‘L’étude approfondie de
la nature est la source la plus féconde des découvertes mathématiques’’ (‘‘the
thorough investigation of nature is the most prolific source of mathematical
discovery’’). Of course, these are very different opinions.

The audience was invited to express its opinion by a vote. The votes for
Jacobi were cast almost unanimously from students and teachers, while the
votes for Fourier, together with the refusal to choose, overwhelming came from
university people who were there. It can be guessed that the vote for Jacobi
would have been almost unanimous among university people also, some thirty
years ago.

5.3.6 Challenging gifted high school students

At Quincy Senior High School in Quincy, Illinois, USA, an increasing number of
eleventh graders complete calculus. The Creative Problem Solving in Mathe-
matics course (CPSM) was designed to challenge these students in the twelfth
grade. Developed under the leadership of Dr. Sandra Spalt-Fulte of the Quincy
Public Schools in 1996, CPSM is now in its tenth year and is team taught by Todd
Klauser of Quincy High School and Dr. Vince Matsko of Quincy University.

The text for the course is an innovative geometry manuscript, ‘‘Polyhedra
and Geodesic Structures’’ (Matsko 2005). A detailed outline of the course is
provided below.

Students have found the course exciting and valuable. Former students
occasionally return as guest speakers to talk about careers in mathematics-
related fields. One former student remarked that CPSM was the most beneficial
course in preparing for college. Another, referring to her individual project,
said, ‘‘it has been the most wonderful experience for me.’’ Others said, ‘‘I [was]
challenged and learn[ed] about new areas of math that I never knew existed’’,
and, ‘‘because of the class size we [were] able to enjoy the learning in an
environment unlike that of any of my other classes.’’
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Below is the current topic-by-topic syllabus of CPSM, with the approximate

length of time spent on each topic. Class meets five days a week for 47 minutes.

One day every two weeks is Problem Day, which consists of presentations of

solutions to two problems assigned over the two-week period. These problems

are chosen to expose students to various topics in mathematics and to develop

technical writing ability. Problem areas include number theory and Diophan-

tine equations, combinatorics, calculus and probability.
Students select individual topics for a research project sometime in the

third quarter. Occasional class days are devoted to work on these projects.

The three-week project period at the end of the year allows for students to give

twenty-minute presentations on their projects. They must also write a ten-page

summary paper. Students sometimes work in pairs on larger projects. Past

projects include building stellations of an irregular dodecahedron, constructing

a harmonograph, writing programs to render three-dimensional computer

graphics, cryptography, and designing a geodesic house.
In addition to the individual projects, students undertake a more extensive

class project. For a recent example, see the Q-Ball at www.vincematsko.com/.
Hands-on work, whether in the form of drawing mathematical envelopes or

building polyhedra, is an integral part of the course. A ‘‘B’’ next to a topic

indicates that individual or class building projects are a part of that unit. A ‘‘G’’

next to a topic indicates that students use Geometer’s Sketchpad during the unit.
Chapter numbers refer to the draft manuscript ‘‘Polyhedra and Geodesic

Structures’’ (Matsko 2005). Some chapters are not covered in class but are

handed out for self-study and possible use for individual projects. Material

for other topics is given as class notes.

1. G: Basic Constructions (Appendix A, 1 week). Basic compasses and straight-
edge constructions are reviewed.

2. Trigonometry (Chapter 0, 1 week). A review of important trigonometric
relationships is given.

3. G: Angles and Constructions (Chapter 1, 1 week). The construction of
regular figures and the trigonometric functions of 36 degree and 72 degree
angles are introduced.

4. BG: The Platonic Solids (Chapter 2, 1 week). Geometric and algebraic
enumerations of the Platonic solids are given.

5. BG: Spherical Trigonometry (Chapter 3, 2 weeks). Basic formulas are
derived and used to calculate the edge and dihedral angles of the Platonic
solids. Non-Euclidean considerations are emphasized.

6. BG: Taxicab Geometry (2 weeks). Students explore the geometry of the
‘‘taxicab’’ metric (Krause 1986).

7. BG: Geodesic Structures (Chapter 4, 2 weeks). Spherical trigonometry is
applied to the design and construction of geodesic spheres.

8. BG: The Archimedean Solids (Chapter 5, 1 week). The Archimedean solids
are enumerated both geometrically and algebraically.
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9. Angles and Archimedeans (Chapter 6, 2 weeks). Spherical trigonometry is
applied to calculating the edge and dihedral angles of the Archimedean solids.

10. G: Geometrical Inversion (2 weeks). Inversion in a circle is presented,
including extending the plane by adding a point at infinity.

11. BG: Geodesic Structures, II (Chapter 7, 1 week). Further techniques for
creating geodesic spheres are derived using spherical trigonometry.

12. Antiprisms and Snub Polyhedra (Chapter 8, handout only).
13. B: Duality (Chapter 9, 1 week). Duals of the Platonic and Archimedean

solids are discussed. Edge and dihedral angles are calculated using spherical
trigonometry.

14. Geodesic Structures, III (Chapter 10, handout only).
15. B: Deltahedra (Chapter 11, 1 week). The deltahedra—convex polyhedra

with equilateral triangular faces—are enumerated. Dihedral angles are
found using spherical trigonometry.

16. Kepler-Poinsot Polyhedra (Chapter 12, handout only).
17. Euler’s Formula (Chapter 13, handout only).
18. Coordinates of Polyhedra (Chapter 14, 2 weeks). Cartesian coordinates in

three dimensions are found for the vertices of the Platonic solids and some
Archimedean solids.

19. G: Mathematical Envelopes (2 weeks). A parameterized family of lines
gives the illusion of curvature; the apparent curve is the envelope. Calculus
is used to find a Cartesian equation of an envelope given a parameterization
of lines (Boltyanskii 1964).

20. Matrices and Symmetry Groups (Chapter 15, 2 weeks). The symmetry
groups of some of the Platonic solids are represented as groups of matrices.

21. Graph Theory and Polyhedra (Chapter 16, 2 weeks). The adjacency of
vertices on a polyhedron may be represented as a graph. Various properties
of such graphs are discussed.

22. Projects (3 weeks).

Creative Problem Solving in Mathematics is a stimulating, challenging

course for talented students. Its demands on the instructors are perhaps greater

than for a typical high school course; the teacher may need to learn new topics

and devise ways to present them at an appropriate level. In our case, the

involvement of a university faculty member (Vince Matsko) as mentor to a

high school teacher (Todd Klauser) was especially valuable. Currently, Matsko

visits the CPSM classroom once or twice weekly as time permits. It is important

to consider either release time from the usual course load or other forms of

compensation when involving a university faculty mentor.
Also crucial is the support of school administrators. The enthusiasm of the

coordinator for the mathematics curriculum in the public schools (Dr. Sandra

Spalt-Fulte) cannot be overstated. Without Spalt-Fulte’s vision, dedication,

and ability to coordinate diverse groups of stakeholders, the development of

CPSM would not have been possible.
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5.3.7 Maths à Modeler: research situations for teaching
mathematics

The context of research and the solving of open questions form the breeding
ground of scientific knowledge. We shall assume that an epistemological
and didactical study of ‘‘real mathematical research situations’’ (that is,
situations which are crucial to the core of ongoing mathematical research,
still partially unsolved) is promising and has an innovative teaching and
learning potential.

Research Situations for the Classroom (RSC) can be considered as the
transferring of mathematical research to the classroom, at different levels and
in different contexts (for example, in primary and secondary schools, univer-
sities, and teacher training programs, but also for the public at large, as in
scientific museums or popularization events). They give access to the study of
mathematical growth.

Since 1991, we have devised and studied several RSC from a theoretical and
experimental point of view. They have proved to be interesting in many ways:
in the type of situations and tasks to be achieved, in the knowledge and skills
developed, and in the teacher’s role in the classroom.

5.3.7.1 Research situations for the classroom (RSC): a definition

From our viewpoint, a RSC must fulfill the following criteria (Godot and
Grenier 2004).

1. A RSC is akin to a professional research strategy. It must be related in some
way to unsolved questions for the following reason: the student will be
confronted with tough questions, putting him/her in a real research situa-
tion. Both teacher and student are in the same position as the researcher.

2. The initial question should be easily accessible. In particular, the question
should be easily understood by students, and the problem should not
demand heavily formalized mathematics.

3. Possible initial strategies are in view, and can be considered without requir-
ing specific prerequisites.

4. Several research strategies and several developments are possible, from the
point of view of mathematical activity (construction, proof, calculation) as
well as from the point of view of the mathematical concepts involved.

5. A solved question can possibly lead to other fresh questions.

The main incentive in studying and implementing such situations in the
classroom lies in the fact that these RSC offer an opportunity to grasp specific
transversal knowledge and skills (i.e. skills and knowledge which straddle
mathematics, used in a variety of mathematical contexts). These include prov-
ing, conjecturing, refuting, creating, modeling, defining, extending but also
transforming a questioning process, being able to mobilize non-linear
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reasoning, experimenting, decomposing-recomposing, and having a scientific
responsibility.

All these points may have a place in French curricula under the heading key
word ‘‘scientific activity’’. Of course this has only partially to do with problem
solving, but the way in which we consider RSC leads us to go beyond the frame
of problem solving and heuristics as defined by Schoenfeld, for instance
(Schoenfeld 1985).

The RSC we implement in classroom have been used for a long time in
various workshops (like MATh.en.JEANS described in Section 5.3.5) from
elementary school to university, and have been studied from a theoretical
point of view both by teachers and by a group of researchers from various
departments. Since 2003, a project has been underway: Maths à Modeler
(www.mathsamodeler.net). The current team is composed of researchers both
in discrete mathematics andmathematics education. The field of discrete mathe-
matics is actually a good environment for learning, training and popularizing
mathematics and mathematical heuristics. The core problems of researchers in
mathematics education concern the nature of the relationship between the
knowledge and the management of RSC.

To develop this point, note that we can distinguish between knowledge
(savoir in French) and knowing (connaissance in French), as is done by Bala-
cheff and, later, by Brousseau. Brousseau (1997) finds it important not to
confuse these two notions because they have different meanings. He makes
explicit the relationship in these words:

The distinction between knowledge and knowing depends primarily on their cultural
status: a piece of knowledge is an institutionalized knowing. (Brousseau 1997, p. 62)

From our perspective, students dealing with RSC are supposed to construct
and mobilize mathematical heuristics such as modeling, proving, refuting and
defining. For the teacher who guides students during their research, it is not
easy to manage a research process involving several heuristics. How can she
help students? What kind of knowing are the students able to mobilize and
construct? How will the teacher institutionalize knowing in order to contribute
to the construction of pieces of mathematical knowledge which are as transver-
sal and undefinable as modeling and proving?

This is a crucial problem. Teachers should have skills to use RSC in their
classrooms, feel comfortable using them and also have confidence in such
situations. Actually, this does not seem obvious because these Research Situa-
tions come from current mathematical research and are still partially unsolved.
(This may frighten teachers who usually possess knowledge.) So, the researchers
of Maths à Modeler try to explain to teachers how to guide RSC and how the
knowledge may be attained by the students in order to convey to them the
essence of RSC.

In a general way, the theoretical background uses the theory of didactical
situations (Brousseau 1997). The designing of a full theoretical framework is
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actually at stake. It concerns the design, the development, and the management
of RSC as a whole (Godot and Grenier 2004, Knoll and Ouvrier-Buffet 2006,
Ouvrier-Buffet 2006). Let us now present such a RSC and the guidance we can
propose to a teacher.

5.3.7.2 Hunting the beast!

Let us consider a given territory (a rectangle on the grid in the present case).

A beast is a given polyomino constituted by a few squares, (see below)

or . A trap is a single square .
We have to position traps on the territory in such a way that no beast can be

placed. The aim is to position the smallest number of traps.
This problem resembles optimization problems. Indeed, in order to prove the

optimal value, it is necessary to produce a solution with this value on the one
hand, and to prove that we cannot do better on the other hand. The problem,
which has given us food for thought for this RSC, is due to Golomb (1994).

In the classroom

We shall now describe the chronology of an experiment consisting of five
sessions (one hour each). Hunting the beast! was used experimentally and
observed by didacticians and mathematicians in several contexts (at the end
of the elementary level, with psycho-pathologic pupils with mental and beha-
vior disorders, at the secondary level, and in teacher education). We would like
to point out that students work in groups (3 to 5 per group) on RSC for the
usual cognitive and didactical reasons. A teacher and an educational researcher
are present. All the participants are in the same role: researcher.

Let us describe some important features about the roles of each protagonist.
Students are both in the position of researcher and project manager. They are
not expected to demonstrate notional knowledge. The instructor, called
Manager-Observer (MO), is also in the position of researcher, but he is also a
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project manager in an unusual position. His functions are to identify transversal
knowledge learning opportunities and bring assistance without leading and/or
hinting. The MO is not a custodian of knowledge but a catalyst. The MO may
be the teacher and/or the researcher.

The next presentation about Hunting the beast! is conducted through
mathematical and didactical problematics. The progress of the RSC Hunting
the beast! is as follows (we can obviously generalize such a process to another
RSC).

1) Devolution of the situation and the problem of optimization : each group
of students chooses a beast (consisting of at most 5 squares) to hunt on an
8 by 8 grid. We note that mathematicians do not necessarily know the
optimal solution in each case.

Different groups propose solutions. The Manager-Observer removes one
trap from the students’ solution to see if a beast can be introduced. If this is
not possible, then it may be that the optimization problem is solved: we have
excluded the beast with the fewest traps. However, this raises a subtle issue.
Is it in fact the configuration with the fewest traps? In other words, is such
a ‘‘local’’ optimum a ‘‘global’’ optimum? The group may believe so, until
another group produces a better solution.

2) Research on a particular case: the next session concerns the hunt for the 3 by

1 beast on a 5 by 5 grid.

After solutions have been found for 11, 10 or 9 traps, students produce
solutions using only 8 traps.

Students are usually persuaded that the optimum is 8 traps because they

tried and failed several times with 7 traps. A crucial point appears then: the

necessity of a proof. The position of the MO becomes important to engage

students in a rational proof problematic. He can refer to simplest cases

(to prove that it is impossible with 1, 2 or 3 traps, for example).
A ‘‘tiling’’ argument may appear during the proving process: if one can

put 5 disjoint beasts on the territory, then at least 5 traps are required. In our

case, one can prove that 8 traps are necessary.
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3) Research on a particular case: the next session concerns the hunt for the beast

on a 5 by 5 grid.
The organization of this session is similar to the previous one: the

students build upon the previous proof process. Nevertheless, the tiling

argument for this beast is not enough because one can put at most 8 beasts

on a 5 by 5 grid. In the diagram below, we see that we can catch the beast with

10 traps.

Thus, we know that the optimum number of traps lies between 8 and 10

inclusive. Such results are common in mathematical research. However, we

can refine the tiling proof in order to prove that 10 traps are necessary. We

have obtained this proof from some groups of students. The following

figure shows a sketch of the proof. Note that each square area requires

two traps.
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4) Application of students’ strategies: students apply their ideas and/or methods
to larger territories (7 by 7 squares, for instance).

5) Realization of a poster and an oral presentation: students describe their own
research processes: ideas, results, methods, and also conjectures. Students
present these in a seminar called Maths à Modeler Junior in our research
laboratory.

Excerpts (pupils, 10 years old)

Let us bring to the reader some pupils’ conclusions (their mathematical produc-

tion is very close to the previous development). They underline that they began

to learn to:

� work together;
� listen to each other;
� not say ‘‘it’s impossible’’ right away;
� simplify a problem to examine it more closely;
� try to prove and find arguments;
� discuss these proofs with each other;
� understand flaws in reasoning.

These sentences speak for themselves.

Conclusion and didactical perspectives

These RSC have been inspired by current mathematical research. They have

been designed to train participants to use concepts and modes of reasoning

more attuned and in keeping with the practice of active research mathemati-

cians. RSC give us a chance to study the cognitive processes of students going

through doubting, conjecturing, refuting, generating new counter-examples,

and testing. A window is thereby opening on the educational potential of

those studies. We are now planning to engage in a collaborative effort to work

out tools fine-tuned to suit the different grades of students for the evaluation

and design of such experiments in the classroom. In order to promote the use

of research situations in teacher education and in the classroom, we must

consider the management and practical implementation of such situations.
We try to arrive at a theoretical framework. But how can this be achieved in

the absence of a researcher in the classroom? In fact, the presence of a researcher

in the classroom has two advantages: the researcher is not the ‘‘knowledge
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holder’’, contrary to the classical position of the teacher. It makes the devolu-
tion (in Brousseau’s sense) of the research process easier for the students.
Moreover, the researcher can explain and show concretely how to manage
such RSC, that is, how to transmit the research process to the students and
how to deal with the students’ procedures and issues. Besides, the researcher can
underline how to identify the students’ processes. This last point cannot be
easily and concisely expressed.

In the absence of the researcher, the teacher should take charge of the
devolution of the research process and the guidance of the situation. It requires
that the teacher has been trained previously. In other words, the teacher must
have experienced the situation in order to understand both the research process
involved and the position of ‘‘being a researcher’’. The teacher must also have
witnessed a RSC. That is the reason that researchers of Maths à Modeler
regularly go into classrooms in order to convey RSC to teachers and to create
a researcher-teacher network for further experimentations.

It is particularly desirable that our experiments are realized also with under-
achievers. Ultimately, experiments in standard classes should then be easier. To
work and experiment with several audiences allows the emergence of invariants
in the use of Research Situations in the Classroom. With underachievers for
instance, we notice that their relation to mathematics upgrades from a bad one
to a more confident one. This ‘‘psychological’’ fact (i.e. the students’ relation to
mathematics is modified when they work on RSC) has to be studied too in order
to describe all the stakes and potentialities offered by Research Situations.
Maths à Modeler now proposes concrete support for teachers with a

researcher in the classroom and didactical cards that provide the teacher with
a basis for further use of Research Situations. The experiments of these last few
years have emphasized a structure for the guidance of the RSC which is easy to
convey to teachers (such as the foregoing script for Hunting the beast!). Now,
we have to go beyond this stage, in mathematics education, to renew the
relationship of a teacher to knowledge within the didactical contract.We should
also develop a more precise characterization of the MO’s behavioral and
cognitive style. Such an attitude is essential for a good transmission of RSC
from the researchers to the teachers. Several theoretical frameworks have been
used in this perspective but the design of such a useful framework is still at stake.

5.3.8 Mathematics and art

This challenge involves a visit to a local art museum. Students engage in two
interesting challenge activities.

Challenge 5.3.8.1

The study of symmetry is a subtext of much of the algebra and geometry we
teach. Sometimes it is useful to keep the symmetry below the surface, as intuitive
motivation for the techniques we discuss. But sometimes it is important tomake
symmetry a subject of direct inquiry.
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In the latter case, geometric symmetry is perhaps the easiest form to approach.
Students can observe and exploit symmetries in geometric figures more quickly
than in algebraic expressions. For some students, merely observing the symme-
tries and distinguishing the different types is a challenge. Others may need a
greater challenge, one that involves a more formal study of the composition of
symmetries and the group structures to which this operation gives rise.

Whatever the level of challenge sought, it is important to start the work with
concrete objects: diagrams, paper folding, pictures, and so on. The following is
an example of one adventurous way of approaching this subject.

New York City’s Metropolitan Museum of Art has a fine collection of
objects from Islamic cultures. These objects offer wonderful examples of a
large variety of finite symmetry groups. For students living in Western Eur-
opean cultures, the viewing of these objects is, quite literally, a different way of
looking at the world.

If we examine artifacts from most European cultures, we distinguish mostly
finite symmetry groups of even order, usually of order 2, 4, or 8, and including
both rotations and line reflections (i.e. the dihedral group of order 2, 4, or 8).
Islamic art, however, exploits many more types of reflection. Students often
find it interesting that some objects can be ‘‘right- or left-handed’’; that is, their
symmetry groups do not contain line reflections. They rarely see, in other
contexts, symmetry groups of odd order.

Every year, the students of Mark Saul in New York take a trip to the
Metropolitan Museum of Art to go on a ‘‘treasure hunt’’ to find objects with
these types of symmetry. They first get a quick tour of the collection, including a
brief introduction to the cultures which produced these artifacts and a few
examples of objects with symmetry groups of odd order, and symmetry groups
which do not include line reflections.

They are then divided into teams. Each team is challenged to find ten objects
with interesting symmetries. They are rewarded for finding symmetry groups of
odd order: a group of order 2n receives n points, while one of order 2n+1
receives a full 2n+1 points. They are also rewarded for finding symmetry
groups which don’t contain reflections: a group without reflections receives
double the number of points it would, had it included reflections (so that such a
group of order 2n receives 2n points, and such a group of order 2n+1 receives
4n+2 points). Only groups of order 12 or less are considered lest students spend
too much time counting the 100-fold symmetry of a large object.

(Some of the most interesting mathematics in Islamic art involves infinite
groups of symmetry: those that include translations as well as rotations and line
reflections. Unfortunately, the Metropolitan Museum of Art does not have
enough examples of these in the collection to use for study. Perhaps in some
other localities the activity could be significantly extended.)

Students get ‘bonus’ points (5) for finding examples of two-dimensional
designs which form knots or links. Since they can submit only ten objects,
they must choose carefully which objects will give them the highest score.
They write down the acquisition number of each object, a mathematical
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description, and its score. Then teams exchange papers, and check each other’s
work.
Challenge 5.3.8.2

While not central to the mathematics curriculum, topological properties of
objects can make for interesting student investigations, particularly on an
intuitive level. The notion of the genus of an object (roughly, the number of
‘holes’ it has) is one that students find intriguing. Simple as it may seem, it is
sometimes a significant challenge to perform a topological transformation of
one object into another to see that they have the same genus.

African artists, carving in wood or working in ceramics, have created objects
which are interesting aesthetically and also topologically. On their annual trip
to the Metropolitan Museum of Art in New York City, my students visit
the extensive African collection, and answer questions about the genus of
various objects.

Students study objects selected in advance, and try to find pairs of objects
with the same genus. They are asked to look at the design of the object, not its
execution. (So, for example, holes used to attach a mask to the wearer’s body,
which are not usually part of the design of the mask, are not counted.) They end
up looking at the objects in a new and unusual way.

As it builds onlyminimally on previousmathematical experience, this activity
offers a fresh start for students. This is a particular benefit to remedial students,
or students who have not otherwise experienced success in the classroom.

Often, ordinary visitors to the museum are intrigued by the students’ con-
versation and will ask them to explain the mathematics. For remedial students,
this is sometimes the first occasion they have ever been considered experts in
anything mathematical.

5.3.9 Lawn constructions

The topic of geometric construction is often misunderstood. The classic (Eucli-
dean) development of geometry involves construction using unmarked straight-
edge and collapsible compasses. The latter is usually not discussed in curricula:
there is no simple tool which will not allow the student to ‘‘transfer’’ distances, and
Euclid himself, in his first two propositions, shows that any construction which
can be done with ‘‘rigid’’ compasses can also be done with collapsible compasses.

Indeed, the importance of constructions lies not in the particular instruments
selected to do the constructions, but rather in the restriction to the particular
tools chosen, and the resulting analysis of the problem at hand. So it can be
useful, in the classroom, to consider construction using folded paper, or con-
struction using both sides of a straightedge, or two linked straightedges, or a
device which performs line reflections. This challenge provides another example
of a construction environment.

For many years, co-author Saul was lucky enough to teach in a school with a
large, flat lawn. On nice days in June or September, he would use this resource
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to work with students on construction problems. He got a box of medical

tongue depressors (sticks about 10 cm long) to use as stakes, and balls of

thick, bright, colored yarn, and asked students to do large-scale constructions

on the lawn. The points were indicated by the stakes and the lines by the yarn.

The allowable operations were developed as students worked. They could

stretch yarn between two stakes, measure one length of yarn against another,

or describe circles by swinging the yarn in an arc, with a fixed point as center.

Their intersection points with lines could be indicated, and circular arcs could

be approximated with segments.
To begin, students were asked to perform many lawn constructions that they

had learned with straightedge and compasses: dropping and erecting perpendi-

culars, bisecting segments or angles, and so on. They found that they could

bisect a segment simply by halving the length of yarn representing that segment

(measuring one half against another). They could create a right angle by

forming lengths of yarn in the ratio 3:4:5, then constructing a triangle out of

them. Sometimes students invented new operations with yarn and stakes. If

they could justify them to others, they were allowed to use them in their

constructions. These added possibilities gave them new ways to think about

construction problems.
They were then asked to perform some new constructions. For example, they

were asked to construct a rectangle that is not a square, and then find its center.

In this construction, they had to understand that it was not enough to make the

opposite sides of the figure equal: they had to be sure it contained a right angle

(some students figured out that they could do this by drawing two segments—

the diagonals—that were equal and bisected each other). They also had to know

that the center of the rectangle was the intersection of its diagonals. All these

insights gave new meaning to the theorems they had studied back in the

classroom.
In trigonometry, students were challenged to construct a regular dodecagon,

then its largest diagonal (a diameter of its circumscribing circle), then the

segments perpendicular to this diagonal from each of the vertices. Having

done this, they could then approximate a sine curve by copying these segments

at equal intervals along a line, perpendicular to that line. This activity gave them

insights into what sine actually measured.
In pre-calculus, students used yarn and stakes to construct conic sections.

They constructed parabolas with a given focus and directrix, and hyperbolas

and ellipses with given points as foci. The construction of the ellipse usually

ends up to be a large-scale version of the classic string-and-thumbtack con-

struction. Sometimes, students enjoyed ‘‘acting out’’ Kepler’s law: planets in

orbit sweep out equal areas (from the focal point) in equal times. That is, they

walked around the ellipse, going slower the further they were from the sun.

While there was no quantitative lesson to be had here, and perhaps no real

challenge, the opportunity is a good one to fix in the students’ minds this

interesting, and somewhat counterintuitive, phenomenon.
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In all these cases, after the completion of the construction, and before the
students dismantled it (for clean-up), they climbed to a high floor of a nearby
building to observe their construction for accuracy. Sometimes they took
photographs of their constructions. An examination of the photographs often
led to new discussions about the nature of projections. They could recognize the
rectangle they constructed in the photograph, but could also recognize that its
image was actually a parallelogram because of the angle at which the photo-
graph was taken.
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Chapter 6

Teacher Development and Mathematical

Challenge

Derek Holton, Kwok-cheung Cheung, Sesutho Kesianye, Maria Falk de Losada,

Roza Leikin, Gregory Makrides, Hartwig Meissner, Linda Sheffield,

and Ban-Har Yeap

In this chapter we look at the issues around teacher professional development as
they relate to teaching using mathematical challenges. We look at what mathe-
matics is; discuss why challenging mathematics problems are important in

school classrooms; give some examples of problems that can provide a chal-
lenge in a classroom situation; and suggest some barriers that might inhibit the
use of challenging problems. We then look at the mathematics education
research that is relevant to the theme of the chapter. This is followed by effective
pedagogy and teacher preparation, which includes both theoretical and prac-
tical aspects and suggestions for someone who may want to design a profes-

sional development project using challenging mathematics.

6.1 Introduction

6.1.1 What is mathematics and what are mathematical
challenges?

At the heart of the discussion on challenges in the mathematics classroom
that is taken up over this chapter and the next two, is the notion of what
mathematics is. We consider the subject to be made up of two interconnecting
parts. One of these is the content that has developed over centuries. This
covers everything from basic facts to calculus and beyond. This part of

mathematics contains most of what is commonly taught and examined in
school systems. It contains the rules and algorithms with which we are all
familiar.
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However there is more to mathematics than this. There is also the creative

side, the processes that lead to the solution of open problems and to the
generation and consolidation of new mathematical knowledge. This creative
side is a key ingredient in research, in the history of the discipline, and in the
development of the mathematical thinking of each individual student. If we
define problem solving as solving problems when the way to a solution is not
immediately clear, this side of mathematics harbors the processes used in

solving challenging mathematical problems. This part of mathematics is
where experimentation may be needed in order to make conjectures. It is
where conjectures may either fall to refutations or promote proofs, both of
which may need to be achieved by example or by argument. Further, it is where
problems are extended and generalized. A more complete discussion of this side
of the subject can be found, for example, in Hadamard (1945), Hardy (1969),

Holton et al. (2001), Lakatos (1976), Pólya (2004), Tall (1980) and Thomas and
Holton (2003).

Mathematical challenges are not just difficult problems (see Chapter 1).
Furthermore a mathematical problem is only a challenge with respect to an
individual or a group at a given time. The same problem may be a challenge
for one student and a routine problem for another. However, challenging
problems for able students are not necessarily different in nature from chal-
lenging problems for regular students. The solution for the same problem may
also be scaffolded differently to provide challenges on several levels, as we

shall see with the problems in Section 6.1.3 below (and see, for example,
Sheffield 2003).

Of course the teacher is central in promoting the mathematical understand-
ing and learning of students by choosing appropriate tasks and providing expert
assistance. Many mathematics educators (for example, Simon 1997 and
Steinbring 1998) suggest that learning may be facilitated by using a cyclic
model of teaching in which teachers first provide their class with challenging
learning opportunities. By then noting and reflecting on the results of the

interactions with their students, teachers can adjust their initial plans. In this
context, handling a mathematical challenge should be a part of the didactical
contract—a set of implicit rules that determine students’ expectations from
their teacher and teachers’ expectations from their students (Brousseau 1997,
Sierpinska 2007).

Throughout this chapter and the next two chapters we will assume that it is
important that teachers’ pedagogical content knowledge contains four aspects.
These are

1. a recognition of the two interlocking aspects of mathematics content and
process described above;

2. an awareness of the cognitive and social processes of learners;
3. the ability to adjust teachers’ learning agendas in the light of their interac-

tions with students;
4. an awareness of the nature and importance of mathematical challenges.
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6.1.2 Why are challenging mathematics problems important
in school?

We will focus here on five aspects of this complex question. It goes without

saying that we want students to develop a robust conceptual image of mathe-

matics as a discipline and to enjoy the mathematical experience. Following on

from the first section then, one answer to the question posed in the section title is

that challenging problems help students to have a better understanding of what

mathematics is and how mathematics develops.
This aspect concerns students’ impressions of mathematics and the beliefs

that are generated in them and developed by them in the process of problem

solving, beliefs that subsequently exert a considerable influence on their beha-

vior (Schoenfeld 1991). As Pólya (2004, p. 172) wrote, ‘‘Teaching the mechan-

ical performance of routine mathematical operations and nothing else is well

under the level of the cookbook.’’ Within such a mechanical framework, it is

impossible to develop an interest in mathematics, an understanding of its

significance, the ability to apply it in even slightly nontrivial situations, and

above all, even the ability to conceive of any such application (Cooney 2001,

Cooney and Krainer 1996).
But there is a second consideration that is no less important. The memoriza-

tion of basic techniques, which is precisely the object of solving myriads of

nearly identical exercises at the cost of avoiding more substantive assignments,

in fact is also achieved most effectively through routine problem solving. The

studies of memory conducted by Luria (2004) support the conclusion that ‘‘the

more difficult an intellectual activity is, the more conducive it is to the memor-

ization of the materials to which it is devoted’’ (p. 220). The crucial fact

regarding problem solving is that the operations which it requires the students

to perform can only be made sense of—can only be seen as ‘‘meaningful

structures’’—when they are contextualized within a broader framework; in

other words, only through solving more challenging problems.
Practicing teachers are familiar with situations in which, having worked

partly through the exercises given on a worksheet, students seem to begin to

perform the operations that are demanded of them correctly. A short while

later, however, everything has been forgotten. This is hardly surprising: there

has been no interpretation, no ‘‘making sense of’’, and no intellectual work, not

to mention the absence of any positive emotional reaction, the importance of

which in the process of memorization was also emphasized by Luria (Karp

2006).
This also raises the third matter, that of developing and interweaving ade-

quate mathematical processes and mental images to get an appropriate mental

concept of a problem, a Vorstellung in German (for details see Meissner 2002).

From Dual Process Theory we know that two types of Vorstellungen develop,

partially independent of, and sometimes even conflicting with, each other.

Type 1 is mainly intuitive and spontaneous and based on ‘‘common sense’’.
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On the other hand, type 2 is reflective, analytical and logical (Kahneman and
Frederick 2005, Leron and Hazzan 2006).

In mathematics education largely it is the second type that is developed in
regular schoolwork. But to work successfully on a challenging problem both
are essential, a sound and mainly intuitive ‘‘common sense’’ and a conscious
knowledge of rules and facts. To produce strong mental representations of
mathematics both types of Vorstellungen must develop and work together. The
challenging problems are needed in order to nurture balanced Vorstellungen.

The first three aspects of the importance of challenging mathematics apply
to all students no matter what their ability. A fourth aspect that we wish to
propose is that challenging problems are of vital importance for mathemati-
cally able students. These students can become unmotivated and bored very
easily in ‘‘routine’’ classrooms unless they are challenged and yet it is com-
mon to hold back our brightest students. This continues to be the case today
in the United States, over twenty-five years after the National Council of
Teachers of Mathematics noted that, ‘‘The student most neglected, in terms
of realizing full potential, is the gifted student of mathematics’’ (NCTM 1980,
p. 18).

Much more recently, in a study of the effects of teachers and schools on
student learning, William Sanders and his staff at the Tennessee Value-Added
Assessment System found: ‘‘Student achievement level was the second most
important predictor of student learning. The higher the achievement level, the
less growth a student was likely to have’’ (DeLacy 2004, p. 40). Challenging
problems in school appear to be a step in the direction of addressing this
problem of the more able students and may help them to develop more quickly.

Finally, in their comprehensive analysis of mathematics lessons in the US,
Germany and Japan, Stigler and Hiebert (1999) pointed out the importance of
the kind of mathematics that is taught. They say, ‘‘If the content is rich and
challenging, it is more likely that the students have the opportunity to learn
more mathematics and to learn it more deeply’’ (p. 57).

The researchers consider the quality of school mathematics as a function of
content elaboration, content coherence, and making connections, and state
that the quality of mathematics at each lesson contributes to the development
of students’ mathematical understanding. Mathematical tasks that the teachers
select as well as the settings in which the students are presented with them
determine the quality of mathematical instruction (Leikin 2004b).

6.1.3 What do challenging mathematical problems for school
classrooms look like?

Here we present four examples of challenging problems or situations that
have been used in school settings. They illustrate a range of uses of challenging
problems. The first one, the Six Circles problem, is not explicitly connected to
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normal curriculum content (though it does need a knowledge of arithmetic and

algebra), but it does provide a method of introducing students to the mathema-

tical processes of experimenting, conjecturing and proving. It is also a problem

where a variety of approaches is possible.
The second problem, the Decimal Grid, is a challenge that has been specifi-

cally designed to make students aware that the product of two numbers is not

always bigger than either of the two original numbers. The Triangle of Odd

Numbers is used in a professional development course for teachers and also

allows a range and depth of approaches. Finally the Dirichlet Principle is

specifically designed for mathematically able students. It is not linked to most

curricula and can be undertaken by students outside the classroom. However, it

can be used by teachers to allow exploration and to connect different mathe-

matical fields.
Before continuing, we note that it is well known that a crossword or a

Sudoku puzzle loses its ‘‘challenge’’ when we look at the solution before we

have tried to solve it ourselves. The same is true for working on a mathema-

tical challenge. Therefore we will ask the reader to attempt the problems

given here before reading the next parts of this section. This will help to get

a better understanding and relevance of the different solutions that we

describe later.
At this point too we should note that all of these problems are challenging in

some way for all students, not just for the very able mathematicians in the class.

6.1.3.1 The Six Circles problem

This problem can be used with a class of students where there is a range of

abilities. The Six Circles problem (Holton 2003) has a number of points where

students might stop while still having engaged in a challenging activity. The

problem asks if the numbers 1 through 6 can be put into the six circles (see

Figure 6.1) so that the sum of the numbers on each side of the triangle is the

same. (Each number can only be used once.)

Figure 6.1: The Six Circles problem
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Note that if there is an answer, it can quickly generate five others by use of
the symmetries of the equilateral triangle. For simplicity we will consider these
to be the same answer.

There are at least six potential challenges or staging posts here (Holton
2006). After each staging post, given a student’s ability, they or their teacher
may decide that they have gone as far as they can. A first challenge is to find one
answer; a second is to see how many answers there are; a third is to show that
there are only four answers; a fourth is to extend the problem from the set
{1, 2, 3, 4, 5, 6} to other sets of six numbers; a fifth is to conjecture which sets
of six numbers will work here; and a sixth is to prove the conjecture. Further
challenges can be introduced by asking the students to find another proof, to
formulate additional ‘‘what if’’ questions, and so on.

This investigation has the advantage of being able to be tackled by all
students, even those in elementary school, because in its early stages it only
requires a knowledge of arithmetic and the application of logical arguments. It
also has the advantage of giving elementary students a great deal of practice
with number sense and addition facts in a challenging manner that will facili-
tate their internalization of and fluency with these basic facts. Further, it will
also give secondary students a chance to practice algebraic skills in an open
situation.

With help, bright elementary students can show that there are only four
answers. This can be done without algebra by noting that, because 1 has to be
on one side, the highest sum it can be involved in is 12 (= 1 + 6 + 5). A similar
argument with 6 shows that the side sum has to be at least 9. By looking at how
9, 10, 11 and 12 can be made up using the numbers 1 to 6, it can be shown that
there are only four answers to the original problem.

Because it seems to need algebra, a complete proof of which sets of six different
numbers can be put into the six circles to produce equal side sums is not accessible
until upper secondary school. However students can learn to make convincing
arguments using techniques such as making exhaustive, organized lists and
analyzing the possibility that the numbers that must be used in the corners
must add to a multiple of three. In the process of using such problems a teacher
can see where a student’s talents lie and help to develop them.

6.1.3.2 Decimal grid task

In the grid of Figure 6.2, select a path from A to B. Change the direction after
each numbered step. Multiply together (with a calculator) the decimal numbers
on each step you go along. Find the path with the smallest product.

You have 4 trials. What is your answer? What is your smallest product?
The problem solvers start working, individually or in small groups. The reader

should do the same. Please answer the questions before you continue reading. Be
warned, there is more to this problem than you might think.

After about 10 to 15 minutes the class might be asked for solutions. Who
got 62.121. . . as their smallest product? Who got 1.89? Who got 0.3564?
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Who else got a product between 1 and 0.1? Who got a product between 0.1

and 0.01? Who got one between 0.01 and 0.001? Is there a product smaller

than 0.001?
Then the challenge continues: Find a better path than you had. Try to

explain the paths to others. Are there rules for finding better paths? Is there a

chance of finding the best path?
Before you continue reading, please make three or four notes about possible

strategies or arguments which could come up in the discussion.
Now we will summarize strategies and experiences that have been reported in

the past:

(a) I do not remember why I chose a specific path;
(b) I always took the smallest number at each point (this strategy gives

62.121. . .);
(c) I took as few steps as possible (2.5 � 8.4 � 0.3 � 0.3¼ 1.89);
(d) I looked for as many ‘‘zeros’’ as I could (13.2 � 0.5 � 0.6 � 0.3 �

0.3¼ 0.3564);
(e) After 5.9 (second step) we can continue with smaller factors (0.7 � 5.9 �

0.5 � 0.6 � 0.3 � 0.3¼ 0.11151);
(f) I was looking for small ‘‘detours’’ (instead of 13.2 go 0.7� 5.9; instead of 5.4

go 0.5 � 0.6; instead of 8.4 go 5.9 � 0.7; . . .);
(g) I discovered a ‘‘cycle’’ (. . . � 0.6 � 0.8 � 0.3 � . . .);
(h) I tried to use a ‘‘small path’’ more than once (‘‘small path’’ means decimal

less than 1);
(i) I ran through the cycle (see (g)) many times.

Analyzing the different paths we also find some assumptions that were made

but that were not mentioned:

Figure 6.2: The Decimal Grid
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(j) multiplication produces bigger numbers;
(k) make no ‘‘detours’’;
(l) reach the goal B as quickly as possible;
(m) do not go ‘‘backwards’’.

In this problem several cognitive jumps can occur. For example:

(n) an unconsciously existing notion, ‘‘multiplication makes bigger’’, may be
destroyed;

(o) a new experience can become conscious: ‘‘multiplication does not always
give a bigger result’’;

(p) amore concrete realization is ‘‘for multiplication, decimals bigger than 1 are
quite different from decimals less than 1’’;

(q) another new experience might be ‘‘more factors may lead to a smaller
product’’;

(r) repeating the ‘‘cycle’’ (. . .� 0.6 � 0.8 � 0.3 � . . .) several times makes the
product smaller and smaller;

(s) repeating the ‘‘cycle’’ (. . .� 0.6 � 0.8 � 0.3 � . . .) again and again, we might
reach zero.

Discussion is very important in the completion of problems like the above

because there are often conflicts between intuitive and analytical Vorstellungen.

Speaking about their experiences makes students’ unconscious Vorstellungen

conscious and leads to revelations, as for example, in (n) to (s).

6.1.3.3 Triangle of odd numbers

Teachers need to experience solving challenging problems themselves to better

appreciate student problem-solving experiences.
Each week, teachers enrolled in a graduate course at Northern Kentucky

University on Assessment Techniques in K–12 Mathematics tackled a different

problem themselves and then took the problems back to their own students.

The students of these teachers ranged in age from 6–17, and teachers were

consistently amazed at the depth of understanding exhibited by their students.
Teachers often noted that students found enjoyment in challenges that had

sometimes stumped the teachers, and frequently found solutions that the tea-

chers had not thought of. One such problem asked students to find the next

three lines in the diagram below and to find where the number 289 was. Work

from Tyler, aged 7, and Dan, aged 16, is shown below. Again we note that there

is more here than first meets the eye.
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Tyler’s first response was:

As a second grade student, Tyler was using subtraction to find the answer. Next

Tyler was asked to find the row that contained 289 andTyler responded as follows:

Tyler first noticed the pattern of finite differences increasing by 2 each time in

the numbers at the end of each row on the right-hand side. When he ran out of

space on the right, he noticed a similar pattern in the first number in each row.

When he got to 307, he realized that he had passed 289 and noted on the

previous line that he needed one-half of the row. When asked to find another

pattern, he noted the following:
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Dan, a high school student, used algebraic reasoning to explain why the

middle number in each row was a perfect square.

A.

B. The number 289 can be found in the centre of row 17. 289 is equal to 172. By
looking at the chart, one notices that the mean and median (middle number)
are equal to the row number squared. For example, the median of the third
row is nine (32). Therefore, it can be inferred that the median of the seven-
teenth row is 289 (172). The proof behind this is as follows:

Since each row has the number of numbers equal to the row number,

one can add the row numbers to determine the number of numbers in

total. Therefore, by the end of row n, this equals 1 + 2 + 3 + ... + n.

Then, the fact that the sum of a series is equal to n(n+ 1)/2 combined with

the fact that each term equals its number doubled minus one, one finds

that the last term is equal to (n(n + 1) � 1). Therefore, to find the first

term, one merely needs to find the last for the previous row and add two,

making (n(n – 1) � 1 + 2).
Representing the first number in the row by (n(n – 1) � 1 + 2)

and the last by (n(n + 1) – 1), the mean is therefore

ðnðn� 1Þ � 1þ 2Þ þ ðnðnþ 1Þ � 1Þ
2

¼ ðn
2 � nþ 1Þ þ ðn2 þ n� 1Þ

2
¼ 2n2

2
¼ n2:

C. The sums of the consecutive rows are consecutive perfect cubes: 1, 8, 27, 64,
125, . . . The sum of all numbers from one to n gives us the mean of row n.
For example 1+3=4, mean of row 2, 1+3+5=9, mean of row 3,
1+3+5+7=16, mean of row 4. The diagonal columns increase by 2
more each time as one goes along, 2,4,6,8,. . . from one left diagonal, and
4,6,8,10,. . . from one right diagonal, and so on. This pattern also holds true
for the even-numbered triangle
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The pattern in part B doesn’t hold true in this even-numbered triangle.
In this case, the squared row number is one less than the mean of the row
whether it is even or odd.

6.1.3.4 The Dirichlet Principle

The project MATHEU (www.matheu.eu) is designed to produce methods and
supporting materials for the identification, motivation and development of
students with higher abilities in mathematics. The kernel of these supporting
materials is a set of ‘‘ladders’’. Each ladder is a self-containedmathematical text,
focused on a specific mathematical topic, which can be used by teachers or
students both inside and outside the classroom. Ladders are sequences of
mathematical problems, explanations and questions for self-testing, ordered
so that the degree of difficulty, and amount of content, increases slowly.

The ladder entitled the DIRICHLET PRINCIPLE was prepared by Sava
Grozdev (2006) of the Institute of Mathematics and Informatics, Bulgarian
Academy of Sciences. This ladder involves a series of graded questions on
the Dirichlet Principle (also known as the pigeonhole principle). After an
introduction the principle is stated as: if m objects are distributed into n groups
andm> n, then at least two of the objects are in one and the same group. This is
followed by a series of problems.

Problem 1. There are 367 pupils in a school. Show that at least two of them
celebrate their birthdays on one and the same day.

Problems 4 and 5 lead to a theorem:
Theorem If n is a natural number, then from arbitrary n+ 1 natural numbers

one could chose two such that their difference is divisible by n.
We give here two of the problems from the next sequence that demonstrate

the use of the principle applied to points in a square.
Problem 10. Given is a 5� 5 square, which is divided into 25 unit squares. In

an arbitrary way 26 points are marked on the square. Prove that at least 2 points
fall on one of the unit squares.

Problem 14. Given is a 3� 3 square with 9 unit squares. One of the numbers
�1, 0 or 1 is written on each of the unit squares. Prove that at least two of the
sums of all the rows, columns and diagonals are equal.

Problem 15 then leads to a more general version of the Dirichlet Principle
which we state after the problem.

Problem 15. A glutton ate 10 sweets from a candy box with 3 kinds of sweets.
Find the greatest possible value of n to be sure that the glutton has eaten at least
n sweets of the same kind.

The more general form of the Dirichlet Principle is: if m objects are distrib-
uted into n groups andm> nk, where k is a natural number, then at least k+ 1
objects fall into one of the groups.

This leads on to a number of applications in Problems 16 to 22. Among the
final three problems, the principle is used not to consider the distribution of
objects but rather the number of groups.
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Wewill saymore about the pedagogy of these and other challenging problems
in Section 6.3. The Dirichlet Principle is also discussed in Chapters 1 and 7.

6.1.4 What barriers might prevent teachers from using
challenging problems?

There are several reasons that teachers may not use challenging problems.
Not the least of these is the lack of an overview of mathematics that sees
the process side as being significant. Two possible reasons are that this view
has never been presented to them or that they have failed to grasp
its importance. Furthermore the latter may be due to limitations in their
subject-matter knowledge and pedagogical content knowledge so that they
are not able to take their class further than the material of their current
textbook.

Another reason might be that a straight top–down teaching of algorithms
and procedures requires less ability and knowledge than organizing cooperative
processes of discovery learning or teamwork. This might also be linked with a
teacher’s view that their students are low achievers and so teachers have low
expectations for them. Low achievers customarily learn mathematics through
pedagogical strategies that are more procedural and simplified than knowledge
generating (Boaler et al. 2000, Houssart 2002, Siber 2003, Zevenbergen 2003).

It is also possible that teachers have not been motivated to undertake
challenges in their classes. This may simply be the result of mistakenly believing
that only the more able students can benefit from such an approach (Leikin
and Levav-Waynberg 2007). Further, they may believe that they do not have
adequate resources at their disposal.

Finally the teachers’ lack of use of challenges may have systemic founda-
tions. Various social or educational policies or economic conditions may be at
the heart of the problem. Teachers’ understanding of mathematics and peda-
gogy within the community of practice is bounded by socially constructed webs
of beliefs, which determine teachers’ perception of what should be done (Brown
et al. 1998). Thus, appropriate use of challengingmathematics by teachers is not
a simple task and is sometimes impossible given that contemporary school
mathematics is strongly result-oriented and mostly topic-centered (Schoenfeld
1991). These social conditions may lead to a curriculum that holds no place for
challenges. This is especially so if teachers perceive the school curriculum and
available instructional materials as the prescribed sources of knowledge (Leikin
and Levav-Waynberg 2007).

One further factor, especially in the upper levels of secondary school, may
be assessment. Especially where there are high stakes examinations, teachers
may not feel that they can stray too far from the standard problems that are to
be found in the examination because of pressure from parents, students and the
school administration.
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6.2 Research

6.2.1 What do we know about the effect of teachers’ knowledge
and beliefs on the teaching and learning of challenging
mathematics?

In this section we look at the literature on teaching and teachers’ knowledge and

beliefs. This leads to a model of teachers’ knowledge.
Epistemological analysis of teachers’ knowledge reveals significant complex-

ities in its structure (Scheffler 1965, Shulman 1986, Wilson et al. 1987). We now

introduce a three-dimensional model of teacher’s knowledge, which describes

this complexity (Leikin 2006, based on Scheffler 1965, Fischbein 1987, Kennedy

2002, Shulman 1986). In the context of this ICMI Study, we present this model

in relation to the teachers’ role in promoting challenging mathematics (see

Figure 6.3).
Dimension 1 The axis ‘‘Types of knowledge’’ is based on Shulman’s (1986)

components of knowledge. Teachers’ Subject-Matter Content Knowledge (SM

in Figure 6.3) comprises their own knowledge of challenging mathematics, and

their ability to tackle mathematical problems themselves using both critical and

creative thinking. It is important that teachers have a broad view of

Figure 6.3: Dimensions of teachers’ knowledge (from Leikin 2006)
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mathematics that encompasses both content and process and they should
realize the value of challenges in the subject that have been noted above.
(Note this is also frequently called Subject Content Knowledge and given the
acronym SCK, which is used in Section 7.3.4.)

Teachers’ Pedagogical Content Knowledge (PC in Figure 6.3, frequently
also given the acronym PCK, as used in Section 7.3.4) includes

� knowledge of how students deal with challenging mathematics;
� teachers’ knowledge of appropriate learning settings that can be matched to

particular mathematical content and to particular mathematical classrooms;
� identifying, developing and supporting each student’s potential;
� helping students to communicate their mathematical discoveries;
� motivating students to engage in increasingly complex mathematical

challenges.

Teachers should have a number of challenges as part of their pedagogical
repertoire that are appropriate both for different parts of the curriculum and for
a range of students and they should renew these challenges constantly.

Teachers’ Curricular Content Knowledge (CC in Figure 6.3) includes knowl-
edge of mathematical challenges in different types of curricula and the under-
standing of different approaches to teaching challenging mathematics.

Dimension 2 ‘‘Sources of knowledge’’ is based on Kennedy’s (2002) classifi-
cation of teachers’ knowledge according to the sources of its development.

Teachers’ Systematic Knowledge is acquired mainly through systematic
studies of challenging mathematics and related pedagogy in colleges and uni-
versities, and through reading research articles, journals and professional
books. This knowledge tends to be theoretical, codified and abstract, and
concerns the teachers’ sense of responsibility.

Craft Knowledge is largely developed through classroom experiences with
challengingmathematics. Kennedy argues that teacher knowledge of this type is
mainly intuitive and makes an incremental and cumulative impact on teachers.

Prescriptive Knowledge is acquired through institutional policies, which are
transparent in tests, accountability systems, and texts of diverse nature. It is
motivated mainly by teachers’ sense of responsibility to students and to com-
munity and will have the strongest influence on teachers’ decisions concerning
the implementation of challenging mathematics in their classes.

Dimension 3 ‘‘Conditions and forms of knowledge’’ differentiates between
teachers’ Formal Knowledge, which is mostly connected to teachers’ planned
actions, Intuitive Knowledge as determined by teachers’ actions that are not
premeditated (Atkinson and Claxton 2000), and teachers’ Beliefs, which are
expressed in teachers’ concepts of teaching. Intuition is a form of knowledge
distinct from the formal (deductive) form, in which the person does not feel the
need to prove formally or factually an interpretation or representation. Beliefs
are ‘‘abstract things, in the nature of a habit or readiness’’ that express ‘‘a
disposition to act in a certain way under certain circumstances’’ (Scheffler
1965, p. 76).
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Thus, professional development programs and/or courses that are aimed at
the development of teachers’ awareness of, and favorable disposition toward,
offering students the opportunity to experience different types of challenges in
school mathematics have to take into account the complexity of teachers’
knowledge. Such courses consider teachers’ intuition as the basis for the devel-
opment of their formal knowledge. On the other hand, they should consider
teachers’ beliefs and be aimed at developing teachers’ enthusiasm for the
introduction of challenging mathematics in school.

6.2.2 What other factors are important to teaching and learning
challenging mathematics?

Teachers also need to be introduced to, and involved in, research in this area
so that they begin to understand better the practical side of using challenging
situations. Below we consider aspects of motivation and the work of Vygotsky.
This is followed by the need for more research on challenging mathematics.

The main reason for teachers to study this research is to learn how students
reason. In a professional development course on this material, for example, the
reasoning of gifted and talented students may be compared with the reasoning
of regular students and that of the teachers themselves. Mathematical challenge
is the context for this research on students’ mathematical reasoning. The
courses may include reading studies by well-known researchers, individual
research projects or collaborative research with students.

6.2.2.1 Motivation

Motivated teachers, as described by the Oregon School Boards Association
(2006) (see www.naen.org), are ones who not only feel satisfied with their jobs,
but who also are empowered to strive for excellence and growth in instructional
practice. Teacher motivation is one of the driving forces and determinants of
how a teacher functions, particularly so, in the area of challengingmathematics.
Here, more attention should be paid to the work content factors (NCES 1997)
as these are associated with intrinsic motivation. These factors concern profes-
sional development, recognition, challenging and varied work, increased
responsibility, achievement, empowerment, authority, and so on (Frase 1992).
These are simply about the things that would enable and motivate a teacher to
achieve the goal of ensuring that learning occurs.

Intrinsic motivation is perceived to have the potential for sustaining lifelong
learning and professional development for both prospective and in-service
teachers. Creating a mind-set in which lifelong learning is appreciated, pro-
moted and enabled forms a very useful base for attracting teachers towards
work on challengingmathematics. They would then view challenge as a learning
opportunity rather than an obstacle to be avoided. Teachers who are intrinsi-
cally motivated to tackle challenging problems themselves are much more likely
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to present challenging problems to their students. Since this is related to the
development of positive attitudes, efforts should be made in teacher develop-
ment to engage teachers in activities known to have the potential for changing
attitudes. Teachers with a positive mind-set towards working with challenging
mathematics will not only be in a position to employ challenging mathematics
in their instruction but may also take the initiative to develop this area in their
spheres of professional influence, be these their school, their locality or even
their own country.

6.2.2.2 Brain development

Research has shown that the brain changes structurally as well as functionally
depending on learning and experience. Regular opportunities for tackling
challenging mathematical problems have the potential to change the human
brain for life. This has tremendous implications for all levels of education (see
www.newhorizons.org/neuro/front_neuro.html).

6.2.2.3 Zone of proximal development

The power of Vygotsky’s ideas lies in his explanation of the dynamic interde-
pendence of social and individual processes. In contrast to those approaches
which focus on internal or subjective experience and behaviorist approaches
which focus on the external, Vygotsky conceptualized development as the
transformation of socially shared activities into internalized processes. In this
way he rejected the Cartesian dichotomy between the internal and the external.
By way of contrast, Vygotsky (1978) looked at the unity and interdependence of
the internal and external, starting from birth. To address the way in which this
social and participatory learning took place, Vygotsky (1978) developed the
concept of the zone of proximal development (ZPD) , which he defined as ‘‘. . .
the distance between the actual developmental level as determined through
independent problem solving and the level of potential development as deter-
mined through problem solving under adult guidance or in collaboration with
more capable peers’’ (p. 86). Teachers need to be able to find the appropriate
ZPD for each student in the presentation of challenging problems.

The notion of ZPD is central both to teachers’ knowledge and to the knowl-
edge of teacher educators. Learners, students and teachers, face difficulties
when coping withmathematical tasks. The principles of ‘‘developing education’’
(Davydov 1996), which integrate Vygotsky’s (1978) notion of ZPD, and Leon-
tiev’s (1983) theory of activity, claim that to develop students’ mathematical
reasoning the tasks should neither be too easy nor too difficult. Challenging
teachers with ‘‘powerful tasks’’ is fundamental for teacher development
(Krainer 1993).

The ZPD is also discussed elsewhere in this Study Volume, particularly in
Sections 3.1, 4.5.4 and 7.3.2.
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6.2.3 What other research is needed?

There is considerable room for research into the effect of teaching and learning
through challenges both with teachers and with students. Research is necessary
in challenging mathematics classrooms to see what changes might be expected
in both students’ and teachers’

� content knowledge;
� attitudes toward mathematics;
� willingness to continue in mathematical pursuits;
� risk-taking and up-taking of other challenges.

6.3 Effective pedagogy

6.3.1 What is the role of the teacher in a class where challenging
problems are used?

Jaworski (1992, 1994) offers a teaching triad, which is consistent with construc-
tivist perspectives of learning and teaching. The triad synthesizes three ele-
ments, which are involved in the creation of opportunities for students to
learn mathematics:

� the management of learning;
� sensitivity to students;
� mathematical challenge.

Although apparently quite distinct, these elements are often inseparable.
According to Jaworski (1992, p. 8) ‘‘this triad forms a powerful tool for making
sense of the practice of teaching mathematics’’. According to this triad, in any
classroom situation the teacher should include mathematical challenges and
know how to manage the learning process in accordance with students’ reason-
ing and needs.

In this section we list a number of roles that we think a teacher in a challen-
ging mathematical classroom should have. These are:

1. enjoying solving problems;
2. promoting challenging mathematics;
3. fostering enjoyment of mathematics;
4. assisting students to communicate their ideas;
5. motivating and encouraging the use of a variety of techniques and

approaches;
6. celebrating students’ achievements;
7. allowing students to try their own ideas.

Generally, these are in no particular order, but the first and most funda-
mental of these is a necessary attribute to establishing a challenging
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environment in the classroom. Above all, teachers themselves should enjoy

solving mathematical problems. Unless teachers are fluent in solving problems

and are able to think critically and creatively, it will be difficult for them to

engender these abilities in their students.
Steinbring (1998) has a model in which teachers offer learning opportunities

to their students in which the students operate and construct knowledge of

school mathematics in an autonomous way. This occurs by subjective inter-

pretations of the tasks in which they engage and by ongoing reflection on their

work. The teachers are responsible for the design of learning situations in which

students deal with challenging mathematics. By observing the students’ work

and reflecting on their learning processes the teacher constructs an understand-

ing, which enables variation of the learning opportunities in ways that are more

appropriate for the students.
Consequently the learning opportunities that teachers provide for their

students are a function of that teachers’ knowledge. (Similar arguments about

the importance of teachers’ knowledge for students’ learning may be found in

many places, for example, Artzt and Armour-Thomas 2002, Ball 1992, Ball and

Cohen 1999, Simon 1997). To be able to increase their own knowledge and so

design appropriate learning situations to teach challenging mathematics, tea-

chers should be continually looking for problems for themselves to solve as well

as for their students. Teachers might also think about creating problems for

their students and encouraging students to create problems for themselves and

their peers. With this background, teachers will be better able to support and

encourage students to tackle new problems.
Such teachers would have to be very motivated to engage in challenging

mathematics since research shows that not many teachers display the qualities

of perseverance required in dealing with mathematical challenges (Shroyer and

Hancock 1997). Additionally it would seem that one of the reasons for educa-

tion is to support students for both lifelong learning and to solve new problems

as they arise in everyday life. By using challenging questions inmathematics, the

subject can support this type of learning.
Secondly, and perhaps obviously, the teacher should promote challenging

mathematics in school. Not all learning, even mathematical learning, takes

place in class, as we have seen in Chapters 1, 2 and 3. Teachers should be

aware of, if not involved in, extracurricular opportunities for challenging

mathematics such as individual and group competitions, math clubs/circles,

problems, mentors, weekend and summer math programs and exhibitions. In

addition, they should be aware of what is available on the web through such

sites as www.nrich.maths.org.uk and www.nzmaths.co.nz . All of these sources

provide fresh challenges for teachers and students alike.
A third role for the teacher, and one of the aims of teaching generally, is to

identify each student’s potential and develop and support their learning. In

addition, their critical and creative abilities should be developed and their

enjoyment of math should be encouraged and fostered.
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In the process of solving problems, it is not sufficient to simply get an answer.
This is because it is not clear that the student knows how to solve the problem
until an argument has been given. Further by writing, or otherwise commu-
nicating the reason for their results, the student’s understanding is developed.
Consequently a fourth role for the teacher is that of assisting students in
communicating their ideas and solutions.

The use of ladders and rich mathematical problems (see Section 6.1.3)
encourages students to engage in increasingly more complex mathematical
challenges. This is a fifth role for the teacher—to motivate students to go deeper
into mathematics in contexts that are both pure and applied, and both are part
of and outside the required curriculum.

Often a class will find a number of different ways to solve a given problem.
For instance, to prove that there are precisely four answers to the Six Circles
problem one can use several approaches. The teacher should encourage the use
of a variety of techniques, resources and technologies, and ensure that the
students realize that many problems can be approached from different angles.

The sixth role of the teacher is to explicitly recognize a student’s successful
achievement in mathematics. This may range from simply commenting to the
student when a good job has been done to public recognition when a good result
has been achieved in an external math competition, say.

The last role is being able to let go. There are many anecdotal examples of
teachers who have suggested to students that they should stop the approach
that they are using and work on the teacher’s suggestion. Students who will not
take the teacher’s advice or who stick to their own method may well solve the
problem their own way.

Teachers might be open to learn from their students. And perhaps more
importantly, they must realize the importance of giving control to students.
After all, education is for life and students will not always have a teacher to
turn to. It is important that students develop their own ways of tackling
problems.

So it is important for teachers to realize that their responses to certain
situations should be more meta-cognitive. Questions like ‘‘Have you seen
something like this before?’’ and ‘‘What if you tried a simpler case?’’ are
more valuable for students in the long run, than ‘‘Why don’t you write that
as x+ 2¼ 7?’’ Meta-cognitive scaffolding such as this prepares students for
the next problem as well as for independent learning (Holton and Clarke
2006).

6.3.2 What is effective pedagogy for classrooms using
challenging mathematical problems?

From the start we should say that the literature shows that there is no general
teaching method that will generate high performances in all students (Hiebert
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et al. 2003). In fact, Watson and De Geest (2005, p. 223) note that, after

studying teachers who seemed to make a difference to their students’ learning,

some practices ‘‘would have comfortably fitted into a typical ‘reform’ class-

room; some would have comfortably fitted into a classroom in which silent

textbook work was the norm’’.
However, there were some common themes that appeared in Watson and De

Geest’s study. They found that the kinds of teachers’ practices that lead to

active and purposeful learning include:

� developing routines of meaningful interaction;
� choosing how to react to correct and incorrect answers;
� giving students time to think and learn;
� working explicitly or implicitly on memory;
� using visualization;
� relating students’ writing and learning;
� helping students to be aware of progress;
� giving a range of choice;
� being explicit about connections and differences in mathematics;
� offering, retaining and dealing with mathematical complexity;
� developing extended work on mathematics;
� providing tasks which generate concentration and participation.

This list is reinforced in a review of research on numeracy practices by Brown

et al. (1998), who found that good teaching practices include:

� the use of higher order questions, statements and tasks which require
thought rather than practice;

� an emphasis on establishing, through dialogue, meaning and connections
between different mathematical ideas and contexts;

� more autonomy for students to develop and discuss their own methods and
ideas.

Clarke and Clarke (2004) have a similar list from their work with teachers of

students in the early years of school. However, they feel that the features listed

below may apply across all levels of schooling:

� focusing on important mathematical ideas;
� providing structured and purposeful tasks that engage children;
� using a range of materials/representations/contexts;
� making connections between mathematical ideas;
� engaging students’ mathematical thinking through a variety of organiza-

tional structures;
� establishing an effective learning community;
� having high but realistic mathematical expectations of all learners;
� encouraging mathematical reflection;
� using assessment effectively for learning and teaching.
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In his examination of the video lessons that accompanied the Trends in

International Mathematics and Science Study (TIMSS) Watson (2004) noted

two main ideas: the presentation of mathematical concepts and the level of

student engagement.
In lessons from Japan and Hong Kong, the difficulties of the problems that

students were exposed to were not played down. In fact, instead of simplifying

problems down to their technical level, classes focused on the relationships and

complexities within the mathematics.
So what seems more important than teaching style or classroom organization

for enhancing student performance is the creation of a community of ‘‘apprentice

mathematicians’’ who are all actively involved in the cognitive demands of the

problems with which they are presented. To achieve this community, the teacher’s

role can be thought of as developing the kind of challenges that contribute to what

mathematicians actually do. Watson et al. (2003), after their work on the Improv-

ing Attainment in Mathematics Project (IAMP) , list among these practices:

� choosing appropriate techniques;
� generating a student’s own enquiry;
� contributing examples;
� predicting problems;
� describing connections with prior knowledge, giving reasons;
� finding underlying similarities or differences;
� generalizing structure from diagrams or examples;
� identifying what can be changed;
� making something more difficult;
� making comparisons;
� posing their own questions, giving reasons;
� working on extended tasks over time;
� creating and sharing their own methods;
� using prior knowledge, dealing with unfamiliar problems;
� changing their minds;
� initiating their own mathematics.

(This extends and reinforces the concept of mathematics that we outlined in

Section 6.1.1.)
These aspects are not readily easy to achieve either for teachers or students.

The IAMP project showed that there was student progress in their ability to

work with more difficult and extended problems over a period of two years.

Students also became better and more confident at tackling more complex and

unfamiliar tasks.
As far as teachers are concerned, those who are self-sustaining, generative

learners (Thomas and Tagg 2005) are the ones who learn most from profes-

sional development. They are able to connect ideas from professional develop-

ment to their own classrooms. As they teach, they continue to reflect on and

adapt what they have learned (Bicknell and Anthony 2004, Higgins et al. 2004).
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Teachers’ pedagogical competence appears to be strongly related to their per-
sonal beliefs and their desire to learn continually.

Similarly, Chambers and Hankes (1994, pp. 286–7) refer to the intent of the
Cognitively Guided Instruction Project as ‘‘to help teachers understand chil-
dren’s thinking, give the teachers an opportunity to use this knowledge in their
classrooms, and give them time to reflect on what happens as a result of using
this knowledge’’.

Although many of the studies that we have quoted here do not explicitly
mention challenging mathematics, it is clear that to achieve the high mathema-
tical performance that they are capable of, students have to be challenged.

We acknowledge here our indebtedness to the best evidence synthesis of
characteristics of effective pedagogy in Mathematics/P�angarau by Anthony
and Walshaw (2007) on which this section was based. They used a series of
international studies to ‘‘identify a set of fundamental principles that inform the
work of the effective classroom teacher. In the studies met thus far, these
principles were enacted in various ways, by different teachers, and in different
classroom settings. We have made use of the following principles to guide our
evidence-based synthesis:

� acknowledgement that all students, irrespective of age, have the capacity to
become powerful mathematical learners;

� commitment to maximize access to mathematics;
� empowerment of all to develop mathematical identities and knowledge;
� relationships and connectedness of both people and ideas;
� holistic development for productive citizenship through mathematics;
� interpersonal respect and sensitivity;
� fairness and consistency.’’

6.4 Teacher preparation

6.4.1 What is the role of professional development in encouraging
classes with challenging mathematical problems?

In this section we consider what role professional development has in encoura-
ging and aiding teachers to use challenging mathematics in their classrooms.
Throughout we make little distinction between the part played by pre-service or
in-service education. Consequently when we refer to ‘‘teachers’’ we generally
mean both teachers involved in in-service activities and prospective teachers in
pre-service education.

6.4.1.1 Modeling

First we underline here the importance of modeling with teachers the challen-
ging approach to teaching that we would like them to use in their classroom.
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Two premises underlie our comments in this section.

1. Many teachers fail to grasp the relationship between university under-
graduate mathematics and school mathematics (Franks and Tuncali 2004,
Moreira and David 2004).

2. Teachers tend to organize their classroom and inform their teaching in much
the same way as they were taught (Brown et al. 1990, Cobb et al. 1990,
Scharm and Lappan 1988, Shulman 1987).

With respect to the first of these, the objective is that teachers develop a

profound understanding of fundamental mathematics as an essential feature of

their mathematical education. In this way they should see how to provide rich,

challenging and creative opportunities in their classes by exploring the way

higher mathematics relates to school mathematics (Ma 1999).
In working towards this end, the following practices of effective pedagogy in

mathematics that we have singled out from previous sections should bemodeled

in teacher development programs. These are:

� establishing meaning and connections;
� being explicit about connections;
� describing connections with prior knowledge;
� making connections between mathematical ideas.

One of the ways to model the incorporation of challenges into every learning

situation is to provide mathematical textbooks specifically designed for tea-

chers that relate higher mathematics directly to school mathematics—by tra-

cing the progressive construction of meaning for mathematical concepts—and

explore challenging problems in each context (Acevedo and de Losada 1997,

2000). Challenges, that explore in breadth and depth the richness of funda-

mental mathematics, are a key element of this process.
The perspective of ‘‘challenging mathematics for the teacher’’ that includes

full treatment of appropriate higher mathematics and clear ties to fundamental

mathematics can be especially fruitful for understanding the nature of mathe-

matical challenge (English 1997, Sfard 1994, Lakoff and Núñez 2000).
In this respect, the history of mathematics shows clearly that new mathe-

matics can be created even when based on partially inadequate or incomplete

mathematical concepts. (Thus Euler produced many beautiful results in math-

ematical analysis although the meaning he gave to the concepts of infinity and

even of the real number system was seriously flawed). Properly oriented, this

will encourage the teacher to present challenging problems that deal with a

particular concept or concepts, even when students have yet to construct a fully

adequate meaning for the concept.
Additionally, this approach allows the teacher to understand the original

challenging nature of problems that have become routine, and to extract extra

mathematical mileage even from that part of mathematics described above as

content.
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Furthermore, turning to the second premise, if specific preparation in school
mathematics and challenges for school mathematics is missing in teacher devel-
opment, teachers will resort to their own school experience for guidance in
presenting school mathematics to their students, potentially perpetuating the
emphasis on content over process and the absence of challenging material in
mathematics classrooms.

Thus in all teacher development activities the facilitator should serve as a
model, incorporating challenge as a fundamental aspect of the mathematics to
be treated both in extended pre-service courses (Blanton 2002, McNeal and
Simon 2000) and in short-term, self-contained enrichment experiences for the
teacher. (For a recent example, see McGatha and Sheffield 2006.)

Leikin and Winicky-Landman (2001) consider a course that focuses on
challenging tasks, types of tasks and types of mathematical challenges. The
teachers cope with challenging mathematics as learners and so undergo the
same experiences that their students will face. Although the development of
Subject-Matter Knowledge (Section 6.2.1) is the explicit purpose of the course,
Pedagogical Content Knowledge and Curricular Content Knowledge are devel-
oped implicitly through facing different learning experiences.

6.4.1.2 Didactical content

It is of fundamental importance also to consider didactical content. Profes-
sional development in the area of challenging mathematics must include work
on actual challenging mathematical problems. This is especially so for teachers
in elementary school as they may not have had sufficient background in
mathematics to see the possibilities that problem solving can provide. But it
should not be overlooked with secondary teachers. In either case it will offer
chances to model pedagogical methods with them and provide examples for
their future classroom use.

The challenging situations considered here should involve examples that are
appropriate for the level at which the teacher is teaching and at the teacher’s
level of ability. In the former case they will be useful for the future. In the latter
case they will enable teachers to experience the learning process that their
students will experience, in particular the thrill of success.

Classroom management techniques should be part of the didactical content
of professional development. Matters such as the presentation of problems,
individual and group work, questioning techniques, the use of oral mathema-
tical discussion and time management must be considered. Assessment in this
situation is clearly important too but we leave that discussion until Chapter 8.

Project M3: Mentoring Mathematical Minds (Gavin et al. 2006), a five-year
collaborative research effort in the United States, emphasizes the use of a
student-centered inquiry approach that encourages students to think like
mathematicians, asking questions that enable them to make sense of mathe-
matics. Student study units have been developed to add depth and complexity
to the typical elementary mathematics curriculum.
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Each lesson has ‘‘Think Deeply’’ questions and a Mathematician’s Journal
that students use to develop and organize their mathematical reasoning. These
questions generally follow an investigation where students are asked to delve
deeply into a ‘‘big idea’’ in mathematics, and are designed to assist students in
organizing their thinking and making sense of the concept. Students who are
ready for more challenge are presented with ‘‘Think Beyond’’ questions that
encourage them to probe further into the mathematics. Students frequently
work with a partner and in small groups that provide stimulating and necessary
dialogue to foster conceptual understanding.

This is often followed by whole class discourse, giving students an opportu-
nity to further develop and consolidate their own mathematical reasoning and
questioning skills as they work with classmates to develop complex skills and
analyze concepts. Students in the program have had significant gains over a
comparison group of like ability on standardized tests as well as on an open
response assessment that contains released items from the National Assessment
of Educational Progress (NAEP) and the Trends in International Mathematics
and Science Study (TIMSS) . (See www.projectm3.org.)

In addition, it is important that time should be spent on technology (includ-
ing graphic calculators, individual computers and math labs), visual and phy-
sical models, manipulatives, and (external) visualization and (internal) imaging.
One advantage of this is to enable students to produce a number of examples
quickly and so have access to a wider range of experience.

The new technological environment, therefore, can change the nature of
mathematical tasks from proof to inquiry. Inquiry dialog (Wells 1999) has
been seen as a way of increasing the quality of school mathematics. Inquiry
tasks are usually challenging, cognitively demanding, and stimulate highly
motivated students. In such an environment students are encouraged to con-
jecture, debate the conjectures, search for explanations and proofs and discuss
their preferences regarding different ways of solution (Yerushalmy et al. 1990).

The use of technological tools allows children to enjoy engaging in geome-
try, pattern and number sense activities. Among these technological tools are
games, dynamic geometry environments (DGE) and graphical algebra tools.
Games allow both structured practice and free exploration as well as the
development of strategies based on analysis and inference, and are linked to
real-life experiences. Use of these tools can include suggestions for relating the
software with hands-on classroom activities and home practices.

Using DGE students can investigate geometric concepts inductively, make
conjectures, and then frame deductive arguments to prove or refute their con-
jectures. Teachers can guide their students by asking scaffolding questions that
challenge students and change the quality of mathematics in the classroom
(Rasmussen 1996). Technology may transform the content of the algebra
curriculum.

The learning sequence applied with the support of a technological tool can
help to make mathematics that was once assumed to be difficult for students
become ‘‘natural’’ (for example, recursive thinking, visualizing equations in two
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unknowns in three dimensions). Technologically-supported curricula can lead to
change in students’ cognitive hierarchies, though such change may have as much
to do with the curriculum as it has to do with technology (Yerushalmy 2004).

6.4.1.3 Practica

Even for teachers who have taught for several years, much can be gained by
working in a classroom with an experienced teacher (see Section 6.4.2.3).
Having the chance to experiment with new ideas under guidance is invaluable
for changing teaching practice. Here we look at an example of this use of
practica. We also consider the use of outstanding student work and look at
ways of assessing professional development.

6.4.1.4 Mathematical coaching

To be effective, professional developmentmust be ongoing, deeply embedded in
teachers’ classroom work, specific to grade levels or academic content and
focused on research-based approaches. The Kentucky Center for Mathematics
housed at Northern Kentucky University designs and offers professional devel-
opment for state-wide mathematics coaches who work with other teachers in
their school buildings or districts. This professional development is designed to
build teacher’s knowledge of mathematical content, pedagogy, and students,
and to create a state-wide electronic (see www.kentuckymathematics.org) and
face-to-face support network where teachers can share and critique ideas about
teaching and learning mathematics.

Mathematics coaches begin a program in the summer with two weeks of
intensive training in pedagogical content knowledge as well as coaching strategies
and techniques for working with adults. During the school year, coaches work
with other teachers for at least half of their time and meet online with other
coaches weekly to discuss challenges and share tips and successful strategies.

6.4.1.5 Outstanding student work

Analyzing student work is an effective strategy for improving teacher under-
standing and appreciation of student thinking and ability. Once teachers see
examples of outstanding student responses to challenging problems, they are
more willing to continue to offer additional problems of this type. (See Looking
at Student Work: www.lasw.org or the results of competitions on the local,
national or international level.)

6.4.1.6 Teacher-innovator model

One way to investigate the effects of professional development activities on
teachers’ propensity to include challenge in the mathematics classroom is by
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using the 4-I Model. This model is adapted from the teacher-innovator model
developed to study teachers’ responses to an educational reform (Yeap 2006).

The model comprises four stages—Ignoring, Imitating, Integrating and
Internalizing.

Teachers at Level 0 (Ignoring) are indifferent to the need to provide chal-
lenge in the mathematics classroom even though they are aware of the curricu-
lum requirements for its inclusion and have attended professional development
courses that encourage the inclusion of challenge.

Teachers at Level 1 (Imitating) design tasks that are structurally the same as
those that they have encountered during the professional development courses.
Any differences though are superficial.

Teachers at Level 2 (Integrating) are able to make structural changes to the
tasks they have used during professional development courses.

Teachers at Level 3 (Internalizing) believe in the use of challenge in the
mathematics classroom. They may not even use any of the tasks used during
the professional development course. However, their actions indicate that the
culture of the classroom is one where challenge is present and valued.

6.4.2 Some in-service and pre-service programs

There are many projects reported in the literature that provide professional
development for teachers. We present four of these in some depth below.
However, two other useful contributions of the same type that were presented
at the ICMI Study are the CASMI Project (see www2.umoncton.ca/cfdocs/
casmi/casmi/index.cfm, Section 3.5.1, Freiman and Vézina 2006, Freiman
et al. 2005a, Freiman et al. 2005b) and the Association Rallye Mathématique
Transalpin (Grugnetti and Jaquet 2006). Both of these essentially provide
problem-solving activities for students but they also provide valuable profes-
sional development for teachers. Another example from Singapore can be
found in Chapter 8.

6.4.2.1 A Chinese experience

The essence of the new Chinese Mathematics Curriculum Standards is the
promotion of understanding and the use of challenging problems. After the
release of these standards, the Shanghai Research Institute of Educational
Science embarked on a study entitled ‘‘Teacher Action Education’’ to help
teachers in Shanghai familiarize themselves with the rationale and logistics
of the standards. The research team identified two key aspects of a model of
teacher professional development as a result of a questionnaire survey (Gu and
Yang 2004). These two aspects are:

1. Teachers need exemplary lessons to guide their professional development.
The guidance should be facilitated by curriculum reform specialists and
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experienced teachers who would like to make a shift toward the new curri-
culum standards.

2. Teachers need to work together with the curriculum reform specialists and
other experienced teachers as a team to prepare lessons, carry out the teach-
ing experiments as planned, reflect on all aspects of the teaching experiments,
and come up with revised teaching experiments as follow-up actions.

The two steps of reflection are important characteristics of the basic model of

Teacher Action Education (see Figure 6.4). First, a teacher conducts a lesson in

the usual manner. This lesson is then discussed with the curriculum reform

specialists and other experienced teachers in the project team. The gaps between

the teacher’s conceptions and those espoused in the curriculum standards (e.g.

ideas of mathematization) are then identified. The original lesson is then rede-

signed and taught to a new class as a teaching experiment by the same teacher.

This lesson is reflected upon again.
This second time of reflection will focus on whether students acquire the

desired knowledge with understanding and the desired skills with proficiency.

The lesson is subsequently redesigned again and experimented with by the same

teacher in a third class of students. Those lessons that succeed through these

teaching experiments may be used as exemplary lessons for documentation and

dissemination both to local schools and to schools in other parts of China.

Figure 6.4: Basic Model of Teacher Action Education
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6.4.2.2 A German experience

Pre-service experiences from Münster help prepare student teachers to become
open to using mathematical challenges in their future classrooms. (Some of this
material can be found in Meissner 1995 and 1996). First of all they themselves
must experience work on mathematical challenges. They must also learn team
work and they must learn to learn by doing. Learning by listening and being
told is not sufficient. On the other hand, in addition to their own and often
unconscious experiences, they must consciously learn about the mental pro-
cesses which may be happening when working on a mathematical challenge.
They must also experience how to bring that theoretical knowledge into prac-
tice. To summarize, they must gain experiences and they must become able to
reflect on them. Only then might they be able to guide and help their future
students.

Three different learning environments help pre-service teacher trainees in
Münster to reach these goals and the other goals of Section 6.3.1.

First, teamwork is encouraged. In many mathematics faculties the students
just ‘‘listen to’’ or ‘‘follow’’ the mathematical lectures, and parallel to these
lectures they must solve homework problems and participate in small groups
(10 to 30 students) where the best solutions of the homework problems then get
presented. A system that was practiced in the Netherlands by Hans Freudenthal
was introduced in Münster and has been used for more than 20 years.

The students form three-person teams to solve their homework problems.
Every week each team works together first individually, then all the teams come
together into one big seminar room to discuss questions that have not yet been
completely resolved. Here an exchange of views and experiences between dif-
ferent teams begins. When there is no team nearby with a hint or a successful
idea of how to continue with the problem, students can raise their hands to get
help from one of the tutors or staff members.

The goal of this session is that each team should actively find solutions that
can be written up by the team after this session. For many students this is the
first time that they have experienced speaking and discussing mathematics. As a
result, they learn to formulate and to answer questions and their existing
knowledge is actively expanded.

Secondly, video is used extensively. To work on challenges needs flexibility
and creativity. This is necessary for both mathematical content and for the
process of learning mathematics. But flexibility and creativity cannot be taught
theoretically, neither as a list of algorithms, procedures or activities, nor as a list
of theories, properties and rules. Flexibility and creativity must be experienced
personally and then be reflected on later.

Video can assist in several ways. When pre-service teachers are practicing
teaching in schools, an experienced university staff member videotapes the
lessons. After the lesson the pre-service teachers discuss their individual obser-
vations of the lesson and then study the videotape. The tapes provide a valuable
learning experience.
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Another use of video is to record groups of student teachers solving a
mathematical challenge. They are encouraged to argue and discuss the problem
and can work with objects or manipulatives. These videos are then analyzed in a
teacher pre-service seminar.

In seminars on mathematics education, students are often asked to deliver an
oral presentation together with a written report. In some of the Münster
seminars the students get a choice, they also can produce a video to present
the topic. Many creative video spots have been produced which are later used in
other mathematics education lectures or seminars.

Finally, pre-service teachers learn as researchers. There are many similarities
between solving a mathematical challenge and doing successful research. The
pre-service students in Münster are involved in empirical research projects
where they produce materials and tests, prepare and teach lessons, observe
and analyze teaching sessions, and evaluate. Finally they write a report related
to a partial aspect of the project. The topics of this research vary widely from
topics that concentrate on curriculum development, to teaching methods, to
topics that further a deeper and better understanding of the psychological
aspects of teaching and learning mathematics.

6.4.2.3 A New Zealand experience

Motivated by the poor 1995 TIMSS results (Garden 1997), New Zealand
developed their Numeracy Development Projects (NDP) on the basis of
research into children’s number understanding and learning. (For the basic
material and some understanding of the NDP, see www.nzmaths.co.nz/
Numeracy/index.aspx).

For New Zealand teachers, the NDP was novel in both the approach to the
delivery of basic arithmetic and the method of professional development. The
delivery centers on problems where students are encouraged to use their own
solution method. Challenges are considered to be important in all students’
understanding and learning (Wright 2006).

As this was a new approach to teaching arithmetic for almost all primary
teachers, professional development was required on a national basis. So facil-
itators were trained in the delivery methods and based in the country’s six major
institutions of teacher education. The outline program was available to teachers
in print and on the Ministry’s web site. However, the facilitators were the key
people in the professional development process. They first introduced the
project to teachers from local clusters of schools using workshops. They also
went into schools and worked with individual teachers in their own classrooms.
This work consisted of giving sample lessons, co-teaching with the classroom
teachers, and observing their lessons. The facilitators’ pedagogical approach in
workshops was the same as was expected from teachers in their classrooms.

This last observation is of fundamental importance both in the NDP and in
professional development generally. Professional development that mirrors
what is expected of teachers in their own practice appears to be very effective
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(Leikin 2003, 2004a). Hence we would advocate this approach in any profes-

sional development around challenging mathematics. We note that this
approach is time intensive and therefore expensive to operate. However, for a
national change in approach to teaching basic number it appears to have been
fairly successful, at least as judged by student performance (Ell et al. 2006).

6.4.2.4 An American experience

Each state in the United States has its own laws governing teacher certification
and within each state, different universities prepare teachers slightly differently.
In most instances, students must take an exam and meet other standards to

enter a teacher certification program.
Upon completion of all courses, they must take another exam to receive

initial certification or licensure in addition to receiving a Bachelors or Masters
degree. Teacher education programs might be on either the graduate or under-
graduate level and almost always require practical courses and student teach-
ing, where the prospective teachers work with students at the appropriate grade
levels and subject areas.

At Northern Kentucky University pre-service teachers at the elementary,
middle or secondary level take one three-credit mathematics education class
(45 contact hours) focusing on teaching and learning mathematics. This is

combined with a field-based practicum class where they work with an experi-
enced teacher to teach mathematics to students at the appropriate level. In this
mathematics education class, as well as in the previous 3–12 mathematics
content classes, challenging and creative mathematics is stressed.

Pre-service teachers work on challenging mathematics problems individually
and in small groups, share a variety of solutions, often using technology and
concrete hands-on and/or visual models, and then use similar problems with
elementary, middle or high school students.

Lesson plans for the mathematics they will teach to K–12 students, following
state guidelines, must include a description of how the lesson will be differen-

tiated for special education students who may have difficulty learning mathe-
matics, as well as how to cater for gifted and talented students who may have
already mastered the mathematical concept that is the topic for the day. Pre-
service teachers study theories of learning mathematics, curriculum design,
analysis, and evaluation and the effects of assessment of various types. They
learn to guide students to ask questions, such as those beginning with ‘‘why,
why not, what if, when does that work, and how many ways might I . . .’’, that
lead students to focus on making sense of more complex concepts and to dig
more deeply into related mathematical ideas.

Professional development for practicing teachers might take place in grad-
uate university classes, in sessions offered by school districts, embedded in
everyday practice, online and through formal or informal lessons or topic
study groups.
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6.5 Summary

6.5.1 Overview

In this chapter we have looked at the various aspects of professional develop-

ment and the theoretical basis that is required to enable and assist teachers to

teach using a challenging mathematics approach. Here we summarize the basic
aspects of professional development that we consider to be valuable in any

professional development program.

6.5.1.1 Fundamental principles

The list from Anthony and Walshaw (2007) that we quoted at the end of

Section 6.3.2 provides a possible framework for professional development in

this area. In summary, we want to give students a better learning, under-

standing and appreciation of mathematics as a subject in its own right and a

tool for solving real problems. In doing so we acknowledge that all students,

irrespective of age, have the capacity to become powerful mathematical
learners. This does not mean that we expect all students to want to complete

PhDs in mathematics but it does mean that all learners can be guided to see

relationships between apparently different parts of mathematics. They can

also be empowered to see for themselves how mathematics develops. In the

process they can be encultured into mathematics and become apprentice

mathematicians.

6.5.1.2 Aims

Clarke and Clarke (2004) noted that the effective teachers involved in their

Australian study believed that mathematical learning should be an enjoyable
experience, had a good knowledge of the subject, and made known their pride

and pleasure when their students were successful. These would seem to be

overall aims to which all professional development might aspire.
But fundamental to student gains is teacher knowledge (Hill et al. 2005). This

has two aspects: the teachers’ own mathematical knowledge and their pedago-

gical knowledge. As far as their personal mathematical knowledge goes, tea-

chers should acquire:

� a deeper knowledge of mathematics content and processes;
� an understanding of the relationship between higher mathematics and school

mathematics;
� an enthusiasm for solving challenging problems;
� an ability to tackle challenging situations;
� a knowledge of where to find suitable challenges;
� a knowledge of challenges outside the classroom.
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On the pedagogical side, in order to develop a classroom of apprentice
mathematicians they should:

� have a theoretical knowledge of how students’ learn;
� be able to use appropriate scaffolding;
� be able to develop cooperation between students;
� encourage both written and oral communication between students.

6.5.1.3 Modeling

Professional development can range from direct delivery in person or by the
web for a relatively few students, up to a national project. In all cases we feel
that it is important to model what it is that teachers will be expected to develop
in their classrooms. As part of the program, it is also valuable to see teaching in
action. Even better, teachers value and are more easily persuaded, if someone
involved in the development process can actually work with their class and
show how the process they are proposing can produce gains by their students.
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Chapter 7

Challenging Mathematics: Classroom Practices

Gloria Stillman, Kwok-cheung Cheung, Ralph Mason, Linda Sheffield,

Bharath Sriraman, and Kenji Ueno

In this chapter we examine classroom practice issues related to teachers provid-
ing mathematical challenges in their everyday classrooms. We examine how
challenging mathematics can become the essence of mathematics classrooms,
how challenging mathematics can be designed for the everyday classroom and
how classroom artifacts and practices can be designed for mathematical chal-
lenges. Finally, the question of suitable research designs for research into class-
room practices associated with the use of challenging mathematics in everyday
classrooms is addressed and illustrated.

7.1 Challenging mathematics—the essence of mathematics

classrooms

Our challenge as educators is not just to make challenging mathematics avail-
able in school. It is to enable, invite and scaffold students to accept and exploit
the challenge that richer mathematical understandings can offer them (Mason
and Janzen Roth 2004). Consider the following task used by Mason and Janzen
Roth in one of a series of design experiments (Cobb et al. 2003, English 2003)
which will be overviewed later in this chapter.

The tennis ball problem: Consider the following problem for which you are
given a set of resources you might use. For each use of a resource, there is a
point-cost that reduces the total for your team. Up to 100 points will be
awarded for a clear and accurate solution. The resources are:

� a tube container just large enough for the 3 tennis balls it holds: 60 points;
� a tennis ball: 30 points;
� a cloth tape measure: 20 points;
� a meter stick: 10 points;
� a 1-meter string: 5 points.
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You have 10 minutes to decide on the resources you might use. You then
have a further 10 minutes to answer the question.

Question: By what percentage does the height of the tube container for the
tennis balls exceed the distance around the tube (or vice versa)?

This task has been used to introduce a unit of mathematics that engages
students in looking more deeply into the formulae for the circumference and
area of circles. The students who participated in the design experiment had
learnt in previous years that C=2pr, C=pd and A=pr2, but it was a repeated
source of disappointment for the researchers how few students actually con-
sidered using the relationships summarized by the formulae to answer the
problem, and so answer the question without buying any resources. Why so
few? Why have the capable students we teach chosen to develop a purely
procedural understanding of the mathematical relationships they are studying?
Mason and Janzen Roth posit that this is a consequence of students not
perceiving the potential benefits, including the intrinsic satisfaction, available
to them if they accept the challenge of developing richer understandings. What
is it about classroom practices that foster this shallow understanding of the
power of mathematical relationships?

We could, of course, be pessimistic and take Vinner’s line that ‘‘there are two
essential conflicting elements in the human psychology which are active in the
domain of teaching and learning mathematics: the need for meaning and the
ritual schema’’, and ‘‘there is no chance that one tendency will take over the other.
The educatorswill continue their call formeaningful learning,whereas themasses
of students will prefer the ritual (procedural) approach’’ (Vinner 2000, p. 121).

Alternatively, we could throw up our hands and say perhaps this lack of
depth in student understanding of concepts underpinning formulae, say, is an
artifact of classroom practices which result from different teaching styles. The
King’s College Project (Askew et al. 1997), for example, which studied teaching
styles in the UK found three that were prevalent: transmission, discovery
learning and connectionist.

Teachers adopting a connectionist viewpoint, for example, would use chal-
lenging activities such as problem solving in the classroom, by building on
students’ current knowledge and existing connections between mathematical
ideas to look flexibly at a problem to make sense of it and generate new
connections in innovative ways. This is a far cry from the transmission of
procedures that work in familiar contexts but are quickly discarded by students
as useless in slightly novel situations (Stillman and Galbraith 2003, p. 183).

In contrast to the transmission method of instruction, which is often seen as the
traditional approach in Western mathematics classrooms, a traditional method in
Japanese elementary school is to solve a problem through full-class discussion.
With a skilful teacher, the children can learn more than the curriculum intends.

The Japanese open approach (Hino 2007, Nohda 2000, Shimada 1977,
Tejima 2000) ‘‘offers opportunities for especially bright students to exercise
their creative abilities and devise insightful ways to deal with mathematical

Challenging Mathematics In and Beyond the Classroom

So
cie

ty
 E

di
tio

n



topics and problems’’ (Hashimoto and Becker 1999, p. 101). When using the
open process aspect of this approach, the focus is ‘‘on different ways of solving a
problem when the answer is unique’’ (Hashimoto and Becker 1999, p. 101).
As an example of this practice, suppose the class is given the problem of dividing
4/5 by 2/3. One student might observe that 6 is the least common multiple of
2 and 3, and write

4

5

 2

3
¼

4� 6

2

5� 6

3

¼ 4� 3

5� 2
¼ 12

10
:

The children can then come to realize that this method is equivalent to the
standard algorithm and can be used with other choices of fractions. ‘‘It is
important how [the] teacher leads students to make relationships on the basis
of different conceptions’’ (Tejima 2000, p. 252) of the process, as in this case.
However, the different conceptions could also be of the problem formulation or
what counts as a solution, if it is an open-ended problem. From the teacher’s
point of view, this dynamic is unpredictable. Consequently, the teacher requires
deep mathematical understanding and sure skills in order to handle the situa-
tion. However, when the challenge of such an alternative solution process is
taken up rather than dismissed and the approach succeeds, the children deepen
their mathematical experience. What is it about the classroom practices in this
approach that ensures this ‘‘meta-learning’’ (Nohda 2000, p. 30) occurs?

7.1.1 Why do we need challenges in regular classrooms?

Organizing mathematical challenges in overloadedmathematics lessons, whether
they be short open or closed problem-solving tasks (Sriraman and English 2004),
or investigations (Ponte 2007), mathematical modeling tasks (Galbraith et al. in
press, Kadijevich 2006) or projects involving extended challenging tasks parti-
cularly those involving real-world contexts, can be time-consuming. Therefore,
there must be valid reasons for doing so. There are indeed pay-offs for teachers
using challenging mathematical tasks in regular classrooms.

First, when well-planned in accordance with a theory of knowing, such as
Gardner’s Theory of Multiple Intelligences (1983, 1999) or Tall’s Theory of
Mathematical Growth (2006), challenging mathematics classroom practices
enable students to develop a fuller understanding of the many aspects of a
mathematical concept, enriching their concept image. A student’s concept
image is ‘‘the set of all the mental pictures associated in the student’s mind
with the concept name, together with all the properties characterizing them’’
(Vinner and Dreyfus 1989, p. 356).

Teaching the same concept using multiple channels and perspectives (that is,
teaching with and through multiple intelligences) is one promising way to allow
students to learn concepts with deep understanding (Cheung 2003). Students’
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concept images become enriched through challenging tasks if, for example, the
tasks allow students to see that there are more transparent forms of the same
concepts in different situations. This happens when the Chickens and Pigs
problem (‘‘There are pigs and chickens in a farmyard. Altogether, there are 23
heads and 68 legs. How many chickens and how many pigs are there?’’) is solved
using a spreadsheet rather than by hand. Thus finding a solution to a particular
task is of little benefit in itself, rather the enrichment comes when the students
are able to look across several situations or several solutions and see the
different manifestations of the concept, some of which are more easily recogniz-
able and separable from the task context than others.

Secondly, setting the mathematical tasks in real-life situations not only
makes the challenges more personally relevant to the daily life of students
(Kadijevich 2006), but also affords students opportunities to approach the
challenges at different levels of mathematization (Freudenthal 1973). Julie
(2007) is one of the few researchers who have investigated the real-life contexts
that learners prefer to learn about in mathematics class or through mathe-
matics. He confirmed that students show ‘‘strong interest in issues of direct
personal appeal bolstered by a high media visibility’’ (p. 201). However, in
agreement with Skovsmose (1998), he points out that schooling is also about
‘‘foregrounding’’ issues that ‘‘learners do not as yet perceive as interesting’’
(p. 201) so such real contexts for challenges need not be restricted to current
interests if a long-term perspective is taken. Students will have greater oppor-
tunities to encounter similar challenges in their everyday lives as they grow
older. Their experiences will accumulate through these encounters.

According to Freudenthal, there are four levels of mathematization which
could be the basis for real-world tasks: (1) the situation level where knowledge
and strategies specific to the domain in which the task is set are used in the task
context; (2) the referential level where models and strategies refer to the task
context; (3) the general level where the focus is on mathematical strategies and
models for the task context; and (4) the formal level involving working with
formal mathematical notation and procedures. (See Gravemeijer (1999) and
Cheung (2005) for an explanation and illustrative examples.) Such tasks need
not be at a higher level of mathematization to be challenging, though. In the
research of Mason and Janzen Roth (2005), for example, tasks such as whether
it is possible to draw a square of area 10 cm2 have proved to be challenging for
Year 9 secondary students.

Thirdly, when students engage in solving challenging mathematical tasks,
they are placed at a psychological boundary between their comfort zone and
risk-taking. Challenges teach students how to sustain themselves in uncer-
tainty—a skill relevant for lifelong learning—and successes with challenges
prepare students for real life. As real life is often messy and may not be easily
reduced to simple mathematical forms, challenges help students become aware
of the intricate details and the significance of the roles these details may play for
solving the challenges. Therefore, it is essential that mathematical challenges
should be presented at different forms ofmathematization so that students at all
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grade levels can experience how open-ended real-life problems may be
approached by mathematicians and their teachers.

7.1.2 How often should challenges be used and for whom?

It is essential that challenging experiences be provided regularly (Kadijevich
and Marinković 2006, Silver and Stein 1996). Students need the opportunity to
engage with such tasks on many occasions. They may not always engage with a
particular challenging task but encountering several over time will give multiple
opportunities for them to access such tasks and bring them to the realization
that it is an expectation of all students to be able to do so.

The regular use of challenges in classrooms with appropriate structuring or
scaffolding of the task as necessary (Mason et al. 2005, Sheffield 2003, Stillman
et al. 2004) indicates to all that solvingmathematical challenges is applicable for
all students of various learning abilities (Woodward and Brown 2006) and
experiential backgrounds, and as such it is one viable way to address inclusion
and intellectual diversity (Sriraman 2006).

All students should be challenged and should challenge themselves to learn
deeper mathematics in our classrooms, as challenge is one of the characteristics
of academic tasks that motivate learning, according to Paris and Turner (1994).
Amit et al. (2007) see it as a ‘‘social obligation’’ that we ensure ‘‘no child be
denied thematerials, conditions, and kinds of teaching necessary for developing
goodmathematical thinking and the social and economic benefits deriving from
it’’ (p. 75). Williams (2003a, b, 2006) suggests this is possible through the
development of resilience.

‘‘Resilience relates to how a child explains occurrences in their day-to-day
encounters with the world’’ (Williams 2003b, p. 374). Resilience is ‘‘an ‘opti-
mistic orientation’ to the world characterized by a positive explanatory style
where successes are perceived as permanent, pervasive, and personal, and fail-
ures as temporary, specific, and external (Seligman 1995)’’ (Williams 2003b,
p. 752). According to Williams (2003a), ‘‘resilience, and inclination to pursue
novel mathematical ideas, appear to be mutually sustaining (overcoming a
mathematical challenge conditions an optimistic orientation and an optimistic
orientation increases student inclination to pursue the next challenge)’’ (p. 758).

Not all students display resilience but rather can be seen as displaying
pessimism or somewhere in between these two. However, Seligman (1995) has
found that the resilience of a child can be altered over time. Using Csikszent-
mihalyi’s (1992) concept of flow as a framework, he found ‘‘that in overcoming
small challenges to gain successes, the child’s inclination to undertake future
challenges was increased’’ (Williams 2003b, p. 378). Williams describes flow and
its effects as ‘‘an optimal learning condition that may occur when a person
works just above their present skill level on a challenge almost out of reach.
Individuals or groups in flow become so engrossed with the task at hand that
they lose awareness of self, time and the world’’ (p. 378). Those challenges that
develop resilience are self-set as individuals or groups spontaneously decide to
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explore unfamiliar mathematics encountered in a challenging task set by the
teacher (Williams 2006).

Thus, what is being advocated here is regular use of challenging problems
within which groups or individuals have opportunities to set their own chal-
lenges at a level of difficulty that is appropriate for them. Through teachers
providing opportunities for mathematical challenges for all students, there is
the potential for students to develop resilience, if they are not already displaying
it, and an inclination to desire to pursue more mathematical challenges.

7.2 Designing challenging mathematics for classrooms

7.2.1 Setting the scene

Before we can consider how challenging mathematical activities and tasks
might be designed for the everyday classroom there are three issues that must
be addressed. First, it is necessary to consider the nature of the mathematical
understandings that we expect to be deepened by use of these challenges.
Secondly, teachers need to be aware of the nature and extent of the gap between
what they are currently doing in mathematics classrooms and what is possible
using mathematical challenges. Thirdly, it is necessary to point out that when
mathematical challenges are being used, students need to be made aware that
the rules of the didactical game (Brousseau 1997, Mercier et al. 1999) have
altered and so the didactic contract (Brousseau 1997) needs to be renegotiated.

7.2.1.1 Nature of mathematical understandings expected to be deepened

In designing challenging activities and tasks for the regular classroom, our
purpose is not to restrict and confine students with activities or tasks that
students find palatable and the mathematical payoff is limited, rather we
want an invitational package that not only draws students towards the activity
but also has the qualities of mathematical inquiry that will sustain it.

Thus, ‘‘we must do more than invite people to our mathematical game—we will
have to play host to ensure all the guests feel the pleasure of addressing an
intellectual challenge’’ (Mason 2000, p. 111) through engaging in meaningful and
rewarding mathematical thinking. The processes that are required to solve chal-
lenges and themeta-cognitive knowledge and strategies that can be brought to bear
during application of those processes are also considered content, when it comes to
the understanding necessary to engage with challenges fruitfully in the classroom.

7.2.1.2 The gap between what is being proposed and present practice

Teachers are often not aware that their own teaching practices contribute to the
students in their classes not experiencing or not desiring to be challenged in their
mathematics classrooms. However, the gap between present practice and what
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is being proposed may not be all that wide as the following vignette from Japan

illustrates.
Primary teachers in Japan use the area of a rectangle as a starting point for

finding the area of a circle. In Years 4 and 5, 10 and 11 year olds already know

the formula for area of a rectangle (Takahashi 2006) and are given many

small problems about area for complicated configurations such as those in

Figures 7.1 and 7.2. Students are asked questions such as: Which has the bigger

area, the area in Figure 7.1(a) or that in Figure 7.1(b)? If the perimeter of

a figure is longer, is the area bigger?

How can you find the area for a complicated configuration such as in

Figure 7.2(a) or (b)?
Students begin by cutting out rectangles then progress to drawing rectangles

to find answers to these questions. Then students are asked to compare the areas
of the following figures (Figure 7.3).

One student might propose to compare these figures by regarding them as the
bases of boxes and then filling themwith small balls represented by circles as shown
in Figure 7.4. So the area of Figure 7.3(b) is bigger than that of Figure 7.3(a).

Figure 7.1: Complicated configurations for comparing area and perimeter for Year 4 and 5
students

Figure 7.2: Complicated configurations for finding area for Year 4 and 5 students
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Another student raises a doubt about the applicability of the proposed

method pointing out that circles will never fill up the rectangles. At this point,

there are several ways for the teacher to handle the challenge to the first solution

method. One possibility is to use circles of different radii, progressively making

the radii smaller and smaller. In this case students will see the essence of the idea

that a certain infinite process is necessary. Then the teacher has the opportunity

to explain, or students can be given the opportunity, to find for themselves that

to discover the area of configurations such as Figures 7.2(a) and 7.2(b), even if

rectangles are used, an infinite process is still needed. This would be a good

prelude to considering the area of a circle. Another possibility is to ask what

happens if we use dice to cover the bases of the boxes instead of balls.
However, if teachers think these questions will merely make the students

puzzled, they might take the point of view that it would be better just to skip the

question (and so skip the challenge) saying that it would result in the same

answer by using rectangles or circles anyway. In this instance, the teacher just

wants to make things simple and ignores the challenge of using circles, which is

much more difficult: an opportunity lost.

Figure 7.3: Comparing area of rectangles task for Year 4 and 5 students

Figure 7.4: Using balls to compare areas
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After these preparations, students are asked to find the area of a triangle

themselves by using rectangles and known formulae for these (Figure 7.5).

Students then find areas for a parallelogram, trapezium and a circle

(Figure 7.6). However, unless the challenge is taken up in the teaching

moment, rather than avoided, the link to the deeper notion of infinite processes

(Figure 7.7) is lost.

Figure 7.6: Finding areas of standard figures by Year 4 and 5 students

Figure 7.5: Finding area of triangle from rectangles solution by Year 4 and 5 students
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Thus, teachers are the key to effecting change in the classroom. However,

they need to be convinced themselves that it is necessary to go in a new direction

(Pehkonen 2007) and to engender students with confidence that challenges are

essential in the classroom. Continually avoiding the addressing of challenges

denies students the opportunities to learn from engaging in them. It is impera-

tive therefore that the teacher suspend judgment for a while when these seren-

dipitous challenges arise and see what prevails.

7.2.1.3 Clarifying changes in expectations

According toMercier et al. (1999), ‘‘Brousseau defines the didactical contract as

a system of reciprocal expectations between teacher and pupils, concerning

knowledge, which contract is setting both pupil’s and teacher’s acts and can

explain them thereby’’ (p. 343). Furthermore, ‘‘Modeling a teaching situation

consists of producing a game specific to the target knowledge among different

subsystems: the educational system, the student system, themilieu, etc.’’ (Brous-

seau 1997, p. 47). But what happens when the implicit rules for this didactical

game have to be changed? If students are used to doing several short quick tasks

in every lesson where the mathematization of such tasks has been fully laid out

before them, then introducing a task that now requires, say, that they work out

the mathematization themselves and that they are expected to persist for several

lessons working on the same task is a contravention of the usual didactical

game. Students need to be alerted to the changes in the teacher’s intentions and

expectations in the new didactical situation.
Thus, when introducing mathematical challenges into the classroom,

whether they are short or long tasks, abstract or set in a real-world context,

attention must be given to this issue of clarifying expectations. Failure to do so

can result in few outcomes related to the mathematical purpose of the lesson or

Figure 7.7: Finding the area of a circle by the infinite process of using rectangles of decreasing
width
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organizational difficulties and frustrations for both teachers and students (see
Cheung 2006, for an example).

7.2.2 Task design

Kadijevich and Marinković (2006) in making a plea that regular curriculum
content be the source of challenging tasks in the regular classroom, suggest that
mathematical quizzes involving questions which are solvable in 10 to 30 seconds
be used. These quiz items should ‘‘require a prompt and meticulous [form of]
thinking, contributing to the development of mathematical reasoning’’ (p. 34).
Sample items are:

� Amouse’s body is 12 cm in length and this is one-third of the length of its tail.
How long is the tail? (15 seconds are allowed for primary students to answer.)

� Write down an expression for 100 by using (a) 5 six times; (b) 3 seven times.
(30 seconds are allowed for Years 7 to 9 students to answer.)

The development and use in regular classrooms of sets of challenging tasks,
which are isomorphic with respect to the mathematical content or solution
method, are also advocated by Kadijevich and Marinković (2006). Examples
of the former types of tasks are:

Marking pens: Twomarking pens cost more than three pencils. Do 5marking
pens cost more than 7 pencils (no discount offered)?

Parking stations: Two parking stations in a town are competing for custo-
mers. At present, more cars can be parked in one parking station that has two
levels than in another one with three levels. As a result, the parking station with
three levels will be extended to five levels. Will an extension of the first men-
tioned station from two levels to three levels enable it to continue to have more
parking space than the extended second station?

Examples of tasks that are isomorphic with respect to method would be non-
routine area tasks, which are all solvable using translation of geometric figures
to gain an insight into a simple method of solution. Exemplar tasks can be
found in Kadijevich and Marinković (2006). Design features that should be
borne in mind in developing such tasks are: ‘‘(1) there is a good mathematical
idea behind the task; (2) the task is not routine; (3) the task is interesting with
respect to formulation and content; (4) the task has a nice and perhaps unex-
pected solution(s); (5) the task requires its solver to stretch his/her mind; and
(6) the solution of the task is usually short and not complicated, enabling the
solver to use knowledge and skills traditionally learned in the classroom’’ (p. 35).

Another source of challenging tasks for the regular classroom is real-world
tasks. Designing extended real-world investigative tasks that present manage-
able and engaging challenges for lower secondary students is not without
challenges as was shown in the RITEMATHS project, (extranet.edfac.unimelb.
edu.au/DSME/RITEMATHS/). (RITEMATHS was a collaborative research
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project, funded by the Australian Research Council Linkage Scheme, involving
the Universities of Melbourne and Ballarat, six schools and Texas Instruments
as industry partners.)

Despite thoughtful consideration by the teacher in both designing the tasks
used in one part of the project, and providing timely task scaffolding at points
during task implementation when students were expected to be challenged by
the cognitive demand of tasks, there were always differences between the moves
expected of students, the challenges and what transpired. Some students took
up the challenges as expected but for others these same challenges did not
eventuate as the significance of particular requirements of the tasks were
missed, or the mathematical implications of results produced during the task,
which should generate challenge, were not realized. At other times, unforeseen
challenges arose for individual students as they discovered different complex-
ities in their unanticipated interpretation of tasks (Stillman 2006).

As an example of the former, in the task, Shot on Goal, one pair of students
were challenged by their interpretation of the task when they tried to mathe-
matize the run line. The teacher expected the students to consider a player
approaching the goal on a run line parallel to the sideline. Instead of advancing
down their specified run line in 1 m intervals which would have kept the line of
the path parallel to the sideline, this pair of students took a stepped trajectory
towards the goal considerably increasing the challenge beyond that expected of
them.

The major elements of Shot on Goal Task from RITEMATHS research
project are:

Many ball games have the task of putting a ball between goal posts. The shot on the
goal has only a narrow angle in which to travel if it is to score a goal. In field hockey or
soccer when a player is running along a particular line (a run line parallel to the side
line) the angle appears to change with the distance from the goal line. At what point on
the run line, has the attacking player opened up the goal to maximize the possibility of
scoring the goal?
Assume you are not running in the GOAL-to-GOAL corridor. Find the position for
the maximum goal opening if the run line is a given distance from the side line. As the
run line moves closer or further from the side line, how does the location of the position
for the widest view of the goal change?

7.2.2.1 Rephrasing as a means of tweaking a task for different grade levels

Another illustrative example of a challenging mathematical task set in an
everyday context applicable to Years 7 to 12 is presented below. This task will
be further modified in order to demonstrate how mathematical challenges
might be introduced into regular classrooms at all grade levels through a
process of rephrasing. This task has been used by Cheung (2006) in teaching
experiments in Macao, but it is a common task in secondary schools in many
contexts worldwide although not all versions or implementations are challenges
(French 2002, Harvey et al. 1995, Pierce and Stacey 2006). As will be discussed
later in this chapter, whether or not a task is challenging for a particular student
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is very much dependent on the actions of the teacher and other students and the
student’s own abilities and experiences.

Open box problem (initial version): Use a sheet of 12 cm � 12 cm cardboard,
cut away four corners, fold and glue to form an open box to hold asmany things
or as much as possible.

When this problem is introduced for student project work, individually or as
a group, it is advisable for the teacher to phrase it in a manner that establishes a
better connection with everyday life and appears more personally relevant to
the students. For example, the problem may be stated as:

Open box problem (rephrased in an everyday context): Using the cardboard
(12 cm� 12 cm) provided, form any kind of open box to contain as many paper
clips as possible (or contain as much rice as possible).

The rephrased problem provides students with the opportunity to change a
realistic practical problem into a mathematical problem for solution. If this
happens, the student is encouraged to approach the problem at the lowest level
of mathematization, that is, the situation level (Freudenthal 1973, Gravemeijer
1999). Before assigning the problem to the students, the teacher needs to consider
carefully what background knowledge and skills are available for the students in
order to arrive at a solution. At the situation level, students engage in both hands-
on andminds-on activities. They need tomake an open box and then find the one
box that contains the largest number of clips. Teaching experiments conducted in
Macao with this problem (Cheung 2006) revealed that some younger students do
not knowhow tomake an open box. They simply treat the task as a paper-folding
exercise to come up with a container and then see how many clips it can contain
without spilling. Their attempts to make such containers are by no means
systematic. They simply treat the task as a mathematical game where the con-
tainer holding the most wins, not realizing they might not have stumbled upon
the one that contains the most possible. They do not see that the mathematical
purpose is to find the relationship between volume and height of the open box.
They fail to see the relationship between the height of the box and the length of
the side of the square cut from the corners of the cardboard.

Another interesting observation is that some students are reluctant to cut
away corners from the cardboard when the open box is made. Interviews
conducted after the teaching experiments revealed that there is a misconception
preventing them from doing so, namely, students possess an intuition that the
more that is cut from the cardboard the lower the volume of the open box
enclosed from the remaining cardboard will be. This illustrates that teachers
should always be ready to learn from their students, and teachers should treat
their not knowing an unexpected phenomenon such as this as an asset, not a
shortcoming. This is because these moments give direction for future teaching
that can be based on these misconceptions or alternative conceptions.

In this task, as in all mathematical challenges, teachers need to know what
the gap is between what is proposed for them to accomplish mathematically and
what the students may do.
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Students in Macao learn how to conceptualize and calculate the volume of a

cuboid before Primary 6. Cuboid and capacity are two mathematical terms that

may prompt students to adopt a mathematical approach for a solution. The

problem could be rephrased accordingly.

Open box problem (rephrased in an everyday context with mathematical hints):

Using the cardboard (12 cm� 12 cm) provided, form an open box in the form of

a cuboid with an internal capacity as large as possible. (Paper clips, rice, ruler,

calculator, etc. may be provided if students opt to solve the problem using an

experimental approach, or a combination of experimental and mathematical

approaches.)

Students need to form a net in the form of a cross in order to have it

folded and glued into an open box. Four identical square corners with

equal lengths need to be cut from the cardboard in order to form the

cross. Students may experiment with how much rice or how many paper

clips the open box is able to contain, and/or go straight to use of the

volume formula of the cuboid to calculate the internal capacity of the open

box. For those students who adopt an experimental approach, they need to

continue making more boxes of different sizes and make the necessary size

comparisons accordingly. For those students who adopt a mathematical

approach, they need not make more boxes once they can make sense of the

calculations done to the first box.
Instead, they can try different heights of the cuboids and calculate the

corresponding internal capacity to come up with an optimal solution. Since

the mathematical approach adopted makes references to a concrete case in

order to help reasoning, this solution process is at the referential level of

mathematization (Freudenthal 1973, Gravemeijer 1999). In order to reach the

optimal solution, students may make tabulations to find relationships between

the height of the cuboid and the internal capacity of the open box.
However, those students who insist on adopting an experimental approach

will not know whether their solutions are optimal or not. What they are

targeting are better and better solutions by making more and more boxes.

The level of mathematization still remains at the situation level of mathemati-

zation.However, realizing thatmathematical challenges are essential to develop

reasoning, the teacher should suspend judgment for a while and should not

usher students into a higher level of mathematization right away, ‘‘as it is the

extent to which the locus of knowledge generation is with the learners which

makes the difference’’ (Watson 2004, p. 366).
This task can be assigned as a group project so that students not only learn

with each other but also learn from each other. When students of a hetero-

geneous group engage in collaborative exchanges, they can contribute their

intellectual strengths and at the same time have their weaknesses scaffolded by

their peers. The effectiveness of peer scaffolding is, however, mediated by the

appropriateness of task-related questions framed by their peers ‘‘and the extent
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to which one learner attends to the questions (and other contributions) of the
other’’ (Clarke 2001, p. 310).

For a project the teacher could, for example, ask the group to guess which of
the following five cases, that is, those with 1 cm, 2 cm, 3 cm, 4 cm, and 5 cm
square corners, should be cut to form the required net. Research done in Macau
classrooms (Cheung 2006) shows that the 1 cm, 2 cm and 4 cm cases are
students’ favorite choices. Some students choose the 1 cm case because it entails
the least amount of paper cut from the cardboard and therefore they think this
results in an open box of the largest internal capacity. Some students choose the
4 cm case because they believe that if the cuboid resembles a cube then the
volume of this cube should be the largest. However, they forget that the net is to
be folded into an open, not closed, box.

Students choose the 2 cm case because they perceive the open box to have a
broad base area and yet have considerable height to produce a large enclosed
volume. In this task, the mathematical challenge becomes one of seeking to find
the relationship between the height of the open box and the internal capacity of
the box formed. Even senior primary (Cheung 2006) and junior secondary
students without knowledge of advanced mathematics, for example, inequal-
ities and calculus, can generate some solutions using a variety of approaches.

At the referential level of mathematization, one has to be aware that it is still
very difficult for the teacher to explain to students why the 2 cm case produces
an open box with maximum capacity. The teacher can only point out that it is
the largest amongst the five cases under consideration. In this regard, reformu-
lating the mathematical challenge to higher levels of mathematization, such as
the general or formal levels (Freudenthal 1973, Gravemeijer 1999), is required
for a convincing explanation. This case will be considered in the context of
answering our next question.

7.2.2.2 Does the nature of the task change with increasing grade level?

With increasing grade level the sophistication and the breadth of mathematics
that students can bring to solving a challenge increases. Returning to the
example of the Open Box problem, the problem can easily be rephrased to
afford higher levels of mathematization.

Open box problem (rephrased in mathematical context affording higher levels

of mathematization): Given a sheet of cardboard of dimensions a cm � a cm,
what is the maximum capacity of the open box that can be formed from it?

This statement of the problem may be regarded as a typical textbook pro-
blem for senior secondary students. At the general level of mathematization, no
open box needs to be made by the students and the length of the sides of the
cardboard needs not be specified numerically. Students can simply make
sketches of the net of an open box and use the sketch to formulate a non-linear
equation relating capacity of the open box V cm3 with length of the side of the
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corner cut x cm. Using the non-linear equation, students find the maximum
value of V without recourse to the original problem situation.
V= f(x) = x.(a � 2x)2, where a is the length of the side of a piece of square

paper, is therefore a model used for relating variables having non-linear rela-
tionships of third degree. Students may solve this problem if they possess
knowledge of inequalities. At the formal level, using V = f(x), students solve
the maximization problem using formal mathematical methods such as
differentiation.

One difficulty faced by students at the general and formal level of mathema-
tization is that their attention is often exhausted on the correct formulation of
V= f(x), and success in tackling the task depends on whether they canmake use
of the mathematical knowledge and skills taught to them during formal lessons.
If they cannot formulate an equation and if they are unwilling to investigate the
problem at a lower level of mathematization, they cannot proceed further. In
this sense, such textbook problems may not be considered as mathematical
challenges at all. In contrast, relaxing problem conditions and constraints can
make problems more challenging than can requiring the use of sophisticated
formulae and techniques.

Open box problem (rephrased with a relaxation of problem conditions and

constraints): Given a 12 cm � 12 cm square piece of cardboard, construct an
open box in the form of a cuboid with an internal capacity as large as possible.
You are not allowed to waste any of the cardboard. Any cardboard that is cut
away should be taped back to the net.

This problem is open-ended and can be assigned to both junior and senior
secondary students. Students generally need to start from the situation level of
mathematization to come up with one tentative solution first. After that, they
need to attempt alternativemethods and find out if other solutions exist. Since it
is often time-consuming to experiment with more cases by hand, students may
simulate the problem situations using a computer or graphing calculator.

If a maximal solution is being sought, then the problem needs to be solved at
the general or formal levels using sophisticated mathematical methods, for
example, partial differentiation, or alternatively, graphical or symbolic manip-
ulation techniques assisted by technology. The ultimate solution relies on the
application of the Lagrange multiplier method. The constraint is that the area
of the net equals 144 cm2 because no paper is to be wasted. After derivation, V
can be shown approximately equal to 166.28 cm3.

7.2.2.3 Do we need new topics for challenges or can we find them within

the existing curriculum?

Although the topics in existing curricula have not been exhausted as sources,
there are some areas that could prove fertile ground for a source of challenges.
Sriraman and English (2004) make a case for combinatorics as the topic is
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‘‘accessible to students starting at the elementary levels because it builds from
simple enumerative techniques’’ (p. 183). In Sriraman and English (2004) exam-
ples are given of the use of combinatorics problems as challenges in primary
school. Sriraman (2006) suggests that in addition the area of number theory is a
good source of challenges. Sriraman and Strzelecki (2004) offer suggestions for
challenges in number theory. In Section 7.4, Sriraman’s use of challenges from
both these areas in secondary classrooms will be reviewed.

7.2.2.4 How can technology be incorporated into task design to facilitate the use

of mathematical challenges?

Use of electronic technologies such as calculators and image digitizers can
reduce the cognitive demand of tasks through ‘‘supplementation’’ and/or ‘‘reor-
ganization’’ of human thought (Borba and Villarreal 2005) by carrying out
routine arithmetic calculations, algebraic manipulations, or graph sketching;
acting as an external store of interim results; or overlaying visual images within
an interactive coordinate system to facilitate analysis. However, these technol-
ogies also have potential to influence the complexity of what students do as they
transform classroom activity and allow new forms of activity to occur.

Regulation of this complexity is a further opportunity for teachers to med-
iate cognitive demand, and therefore the challenge, of tasks through careful
crafting of tasks and management during implementation. In particular, use of
multiple representations, easily accessible with graphing calculators and tasks
amenable to electronic technology use, harness opportunities for students to use
technology to stimulate higher order thinking in investigating real-world situa-
tions. Within tasks, diagrammatic, numerical, symbolic, graphical and alge-
braic representations can be intentionally employed to support bridge-making
from one representation to another and to provide opportunities for interpreta-
tion across representations, as well as from each representation back to the
situation being investigated.

As Dede (2004) points out, several projects implementing well-formulated
technology-based designs have demonstrated that ‘‘typical middle years stu-
dents [are capable of] mastering science and mathematics previously thought
appropriate to teach only’’ (p. 111) to students at higher schooling levels.
However, two challenges middle years students face when engaging in extended
investigations for the first time (Loh et al. 2001) are the inability to recognize
when to keep records and failure to plan and monitor progress effectively. It is
thus prudent for teachers designing extended tasks for the lower secondary
years, initially at least, to provide timely instructions throughout task state-
ments supporting recording of key information, a planned solution, checking
and verification of results. As student task expertise and familiarity with tech-
nology grow, some ‘‘fading’’ of this scaffolding (Guzdial 1994) should occur,
particularly that related to task structuring and technological tool selection and
instructions. This is not to say mathematical analysis tools need be withdrawn.
On the contrary, ‘‘learning to ‘work smart’’’ in a technology-rich learning
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environment may involve ‘‘learning to establish one’s own scaffolds for perfor-
mance, and fading these may be beside the point’’ (Pea 2004, p. 443).

7.3 Designing classrooms for mathematics challenges

7.3.1 How do we teach students strategically to address a challenge?

To help students not only to address the mathematical challenges with which
they have been presented but also to deepen their mathematical reasoning and
develop their mathematical creativity, students can be encouraged to question
the answers to the challenges, not just answer the questions. The use of a
student-centered inquiry approach that encourages students to think like math-
ematicians, asking questions that enable them to make sense of mathematics, is
one of the critical aspects of the Project M3: Mentoring Mathematical Minds
(Gavin et al. 2006). This curriculum and research study in the United States is
designed to nurture mathematical talent and creativity in elementary students
by creating challenging, creative and motivational curriculum units for stu-
dents. The deeper mathematical reasoning occurs when students begin to create
and solve their own challenges, realizing that each solution is just the beginning
of a new investigation.

Just as students answer questions of ‘‘who, what, when, where, why, and
how’’ in writing an article for the school newspaper, they can learn to ask and
answer these same questions as they investigate, create and extend mathema-
tical challenges. All students can and should challenge themselves to deepen and
extend their mathematical reasoning and abilities.

Some suggested questions for students as they create and solve mathematical
challenges are:

� Who? Who has a new or different idea? Who is right?
� What or what if? What sense can I make of this problem? What is the answer?

What are the essential elements of this problem? What is the important
mathematics? What patterns do I see in these data? What generalizations
might I make from the patterns? What proof do I have? What if I change one
or more parts of the problem?

� When? When does this work? When does this not work?
� Where? Where did that come from? Where should I start? Where might I go

next? Where might I find additional information?
� Why or why not? Why does that work? If it does not work, why not?
� How? How is this like other mathematical problems or patterns that I have

seen? How does it differ? How does this relate to real-life situations or
models? How many solutions are possible? How do you know you have
found all the possible solutions? How many ways might I use to represent,
simulate, model or visualize these ideas? How many ways might I sort,
organize and present this information?
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Students of all ages can learn to deepen their mathematical reasoning and

enjoyment by asking themselves these questions. The questions might be asked

in any order as they fit the problem under consideration. The use of these

questions is developed further in Extending the Challenge in Mathematics:

Developing Mathematical Promise in K–8 Students by Sheffield (2003) where a

variety of challenges with samples of student work are presented.
Students are using the heuristic shown in Figure 7.8 as they work on pro-

blems. Students may start at any point on the diagram and proceed in any order

that makes sense to them. They might do the following:

� relate the problem to other problems that they have solved;
� investigate the problem, think deeply and ask questions;
� evaluate their findings;
� communicate their results;
� create new questions to explore.

As they begin to learn to think like mathematicians, students might change

the order of the steps and of the questions that they ask once they begin the

exploration of the problem. Throughout the problem solving, students should

be evaluating their work, making connections, asking questions, communicat-

ing results and creating new problems to investigate.
For example, in one problem in Extending the Challenge in Mathematics,

students begin by investigating which of the following numbers can be the sum

of two consecutive numbers: 15, 18, 57, 58, 228 and 229. They relate this to

earlier problems that they have done with odd and even numbers. They then

investigate numbers that can be the sum of three consecutive numbers and

relate this to work with multiples of three and finding the mean of a set of

consecutive numbers. Students are then encouraged to ask related, sometimes

divergent questions.
Some students extend their investigations to sums of four or more consecu-

tive numbers and investigate why numbers that are a sum of four consecutive

numbers are not multiples of 4. Some students do more work with mean and

median while others investigate other patterns with sequences and series. One

very interesting investigation involves trying to find all numbers that cannot be

Figure 7.8: Heuristic used
whilst solving challenges
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written as the sum of any number of consecutive counting numbers. Finding
these numbers and proving that they can never be the sum of consecutive
numbers challenges even the most outstanding mathematics students.

Another challenge that lends itself to this graded treatment is Challenge 1.2.6
in Chapter 1.

In this way, the challenges for the students are differentiated according to
their background and interests, and all students develop a deeper understanding
of the topic under consideration. The teacher observes and supervises, chal-
lenges students who are ready to move to a higher level, gives hints to students
whomight be frustrated and ready to give up on a difficult question, and decides
when to bring students together as pairs, small groups, or as a whole class to
discuss their findings and probe possible misconceptions.

7.3.2 How can we make sense of the pedagogical challenge of having
students appreciate challenge in mathematics?

Perhaps the giants of twentieth century pedagogy offer valid starting points.
Piaget (1950) offers us a way to think about students’ changing orientations to
their subject matter. He suggests that as learners we are all more comfortable
adding on to our current knowledge and understandings, a process he calls
assimilation. Yet it is not by assimilation that students come to change their
conceptual orientations. Students are reluctant to change how they perceive
themselves in relation to their environment (accommodation), and will do so
only in the face of relatively persistent discomfort with the fit between their
orientation and some aspect of their environment. It is not difficult for teachers
to offer discomfort, that is, cognitive dissonance (Festinger 1957), although
some teachers may be reluctant to do so (Pierce and Stacey 2006). (Consult
www.learningandteaching.info/learning/dissonance.htm for a brief primer on
cognitive dissonance.) The challenge lies in having students accept the discom-
fort as an invitation to change or grow, rather than rejecting the discomfort as a
source of frustration. Here, it is Vygotsky’s (1978) idea of the zone of proximal
development (ZPD) that helps us organize our pedagogy when we offer
students opportunities to grow beyond their current capabilities. (This is
defined in this Study Volume in Section 6.2.2.3 and discussed in Sections 3.1
and 4.5.4.)

We must fit what we offer to students into this region beyond what they can
already do independently, and sense what they can do with the scaffolding we
can offer them in their relationship with us and the classroom in which they are
learning. Scaffolding, a term first introduced by Wood et al. (1976), is the
interpersonal and strategic supports that teachers and classmates can offer
learners to enable them to learn beyond what they can do on their own. ‘‘Each
task has a relative cognitive value for an individual. Tasks that are too easy or
too hard have limited cognitive value’’ (Diezmann and Watters 2002, p. 78).
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However, if students engage in tasks of high relative cognitive value for them,
potentially they can explore the cognitive challenge of engaging with mathema-
tically challenging tasks and enhance their learning (Diezmann and Watters
2000, 2002). This suggests that we can offer significant invitations to grow or
change (dissonance) (Neighbour 1992) only when we also offer significant
scaffolding that enables students to see their engagement beyond their comfort
zone as likely to generate success for them.

It must be borne in mind, however, that these are starting points, not ending
points. If this is truly scaffolding in the sense ofWood et al. (1976), it needs to be
accompanied by cycles of diagnosis of the student’s level of performance and
the need for scaffolding which then results in an adjustment of the level of
scaffolding required (Pea 2004, Stone 1993). Thus, the level of scaffolding fades
(Collins et al. 1989, Guzdial 1994) over time. Pervasive forms of support where
the scaffolding is not dismantled enable only what Pea (2004, p. 431) calls
‘‘distributed intelligence’’ with the conquering of the challenges, in this case,
being ‘‘accomplished’’ not achieved. Scaffolding also needs to be targeted to the
needs of individuals and not be ‘‘provided to the whole class on the pretext that
all students will benefit’’ (Diezmann andWatters 2002, p. 78). AsDiezmann and
Watters add, ‘‘the gifted students are likely to be most adversely affected by
unnecessary scaffolding’’ (p. 78).

7.3.3 The role of textbooks

We should not underestimate how textbooks might affect the classroom prac-
tice of teachers providing challenges. Both their content and the way they are
used have an impact.

Textbooks could be written so that challenging activities are the philosophy
and leading idea behind them, and not merely fragmented parts of the content
of the book. Sadly, this is rarely the case in practice. There is research evidence
that many mathematics textbooks in various countries contain few challenging
tasks and often the level of challenge is not as high as expected. Haggarty and
Pepin (2001, 2002), in a study conducted in 15 lower secondary schools in
England, France and Germany found that French textbooks provided students
with more challenging tasks than did their English and German counterparts.
Furthermore, in Sweden where mathematics textbook tasks are grouped into
strands according to difficulty to assist the teacher in differentiation of learning
to suit learners’ differing abilities, Brändström (2005) found when she examined
Year 7 mathematics textbooks ‘‘the level of challenge is low in almost all
strands, even those intended to be higher’’ (p. 4).

However, there is some recent evidence that the situation is improving
in some countries (e.g. Germany) where there has been ‘‘a shift in mathe-
matics textbooks for all grades from rather algorithmically oriented tasks
to more demanding problems’’ (Reiss and Törner 2007, p. 440). It would
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appear, though, that in many countries teachers might need to look for
specialist publications rather than the chosen textbook for sources of
challenges.

Even when textbooks have a more than adequate supply of challenging
tasks, how these tasks are implemented in the classroom by teachers can affect
the cognitive demand placed on students as they engage with the task.
Henningsen and Stein (1997) and Stein et al. (1996) have found that the high
level of cognitive demand of textbook tasks can be reduced by teachers who
remove the challenging aspects of such tasks. Teachers often diffuse challenge
in textbook tasks when students start to struggle, whereas struggle is what
challenges are all about.

This practice is fueled by a belief that ‘‘all but the most able pupils [need]
routine and relatively low level demands made of them’’ (Haggarty and Pepin
2001, p. 124). On other occasions teachers pre-empt difficulties that students
might have with challenging tasks and intervene unnecessarily (Diezmann and
Watters 2002, Stillman et al. 2007). One of the practices teachers must foster
when using challenging tasks is the patience to allow struggle and not to
intervene too early.

7.3.4 Managing the challenge

One of the reasons that is often given for a reluctance by teachers to use
challenges in the classroom is a lack of knowledge of effective ways to manage
all the divergent processes arising when challenging projects or tasks are used.
Several strategies are offered that teachers who use challenges in their classroom
employ to cope with this diversity.

The use of open questions by teachers (Sullivan and Clarke 1991) is often
advocated in mathematics classrooms as a means of facilitating the deeper
thinking required when using mathematical challenges. However, as Herbel-
Eisenmann and Breyfogle (2005) point out ‘‘merely using open questions is not
sufficient’’ (p. 484) to ensure this occurs. Often teachers use a questioning
technique called ‘‘funneling’’ (for examples, see Herbel-Eisenmann and Brey-
fogle 2005, Goos et al. 2007, pp. 51–54) where questioning is used in such a
manner that group or ‘‘classroom discussion [converges] to the thinking pattern
of the teacher’’ rather than that of the students (Goos et al. 2007, p. 54). This can
be desirable when students are early in their experiencing of challenging tasks in
the classroom, particularly extended challenging tasks, as the teacher’s inten-
tion may be to scaffold students along a particular solution pathway, so that
they all experience the processes involved in solving such a task and have some
insight into the complexity of their management of strategic resources in this
process. If funneling questions are being used for this purpose, it is necessary
that the teacher brings to the foreground the ‘‘meta-cognitive purpose of the
questions’’ being used ‘‘and explicitly encourages students to start asking
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themselves these same questions. As students take responsibility for doing this,
the teacher then fades the scaffolding’’ (Goos et al. 2007, p. 54). The levels of
scaffolding provided and how long these are sustained are dependent on the
level of schooling of the students undertaking the activity, the abilities of
individuals (Diezmann and Watters 2002) and the previous experience of the
students with challenging tasks.

Another questioning technique called ‘‘focusing’’ (for examples, see Herbel-
Eisenmann and Breyfogle 2005, Goos et al. 2007, pp. 54–58) allows students to
‘‘articulate their thinking’’ (Goos et al. 2007, p. 58) about the challenge. During
classroom discussion of a challenge, ‘‘the teacher asks clarifying questions and
restates aspects of the solution to keep attention focused on the discriminating
aspects of the particular student’s solution. However, for this to be used
effectively, the teacher must be able to see the essence of a mathematical task
and, on a moment-by-moment basis, the essence of a task solution preferred by
a student’’ (Goos et al. 2007, p. 58).

The guiding basis for group or class discussion is the lines of thought of the
students, not the teacher (Doerr and English 2006). Use of this technique
effectively requires that teachers have both well developed PCK and SCK
(specifically Mathematical Content Knowledge (MCK) ) with respect to the
use of challenges. (See Chapter 6, particularly Section 6.2.1, and Leikin 2006,
for an explanation of these terms.)

It is not unusual that students faced with challenges in the classroom, no
matter what form they take, will ‘‘seek to reduce the task complexity by seeking
specific input from the teacher’’ (Doerr and English 2006, p. 9). Often, however,
teachers using extended challenges find themselves under sustained pressure as
many students simultaneously seek their help with different parts of the task. In
this situation a technique observed in the RITEMATHS research project (see
Section 7.4.2.1) has proved useful. One or two students who the teacher knows
has expertise in the part of the task in question are designated ‘‘experts’’ for the
other students to consult for a limited period of time. The student experts are
only to be consulted in the same way as a student would ask for assistance from
the teacher with his or her own solution. They are not meant to tell or impose
their solution on the student asking for assistance. For example, a studentmight
be using a spreadsheet for a numerical solution to a task and decide to graph the
data but not know how to do this. An announced spreadsheet expert can then
be consulted instead of the teacher.

7.3.5 How can teachers introduce mathematical challenges into the
regular classroom?

When challenging tasks are used with middle school students, teachers use a
variety of methods to introduce the tasks to students. In Section 7.4.4.2, Olga
Medvedeva’s approach to introducing abstract mathematical challenges in the
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regular classroom is outlined. Her approach is based on the ideas of Davydov
(1972/1990) and is basically a guided deep analysis of an abstract mathematical
task beginning with the heuristic, solving a simpler problem in order to
facilitate students’ identification of the essential relationships and underlying
structure of the problem, and to enable them to generalize to structurally similar
problems.

When teachers use extended real-world challenging tasks in lower secondary
school (Years 8 to 10), the cognitive demand required for task formulation by
middle school students is high, potentially leading to a blockage in this early
phase of the solution if students were to find the level of challenge too high for
them to engage with the task. To help overcome this, teachers use a variety of
methods to ensure students do not have difficulty interpreting the situation
(Stillman and Brown 2007). These include physical demonstrations often invol-
ving concrete props in which students participate or observe; writing activities
such as stating the aim of the task or the goal they have to reach; debating;
dynamic computer simulations; and scale drawing or other forms of diagram
drawing by both students and teacher. These activities serve to bridge the
enactive and iconic worlds as well as being a means of introducing some
structure, which reduces some of the cognitive load when there are no cues as
to how to deal with the information in the situation presented.

7.4 Designing research for challenging mathematics classroom

practices

7.4.1 Fruitful research designs for examining challenges

In the following sections, we will suggest and illustrate three types of classroom-
based research designs that we believe are fruitful for exploring and researching
classroom practices related to the role of challenging tasks in everyday mathe-
matics classrooms. These are design-based research, Japanese lesson study and
teaching experiments conducted by teacher researchers.

7.4.2 Design-based research

Design-based research (Collins et al. 2004) where iterative cycles of design,
implementation, evaluation and refinement are used to improve educational
practice has potential for researching classroom practices related to the use of
challenges and is already being used for this purpose (Mason and Janzen Roth
2004, 2005, 2006, Stillman 2006). The purpose of design experiment research as
a form of educational research is to explore the qualities of student under-
standings and their development of further understanding as the development
of instructional resources progresses through these cycles (Lobato 2003).
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Researchers and teachers work collaboratively to test theories in everyday
classroom settings. Both theory and practice inform the design phases and are
informed by what transpires during each teaching experiment (Palinscar 2005)
as shown in Figure 7.9.

This example is from an Australian research project where the final imple-
mentation cycle for a set of extended tasks developed by teachers and researchers
in the RITEMATHS project (extranet.edfac.unimelb.edu.au/DSME/RITE-
MATHS/) is shown to be informed by a theory about the mediation of cognitive
demand of the tasks by teacher actions, as well as wisdom of practice documents
prepared by teachers about previous experiences with the tasks, and conditions
for success identified by classroom observation in the previous two cycles.

In addition, during this third and final implementation it is indicated that
data will be collected about student perspectives on practice. The project will be
described more fully in the next section.

7.4.2.1 An Australian Example

An Australian research project investigated how teachers engineer learning

environments in their classrooms to accommodate increased cognitive demands

of tasks involving real-world applications and how students negotiate such

challenges.
Teachers at this level of schooling make use of challenges of this form in

order to facilitate students’ development of an integrated view of necessary

competencies to approach challenging tasks, to deepen knowledge of mathe-

matical concepts and procedures they have already encountered in the class-

room through application in novel and complex situations and the use of a wide

variety of representations, sometimes simultaneously in the same phase of the

solution and in different phases of the solution.

Figure 7.9: Design research cycle used for teacher/researcher meeting in the RITEMATHS
Research Project

Chapter 7: Challenging Mathematics: Classroom Practices

So
cie

ty
 E

di
tio

n



According to Kadijevich (2007), ‘‘the degree to which mathematical learning
is successfully attained depends on the degree to which learner[s] can success-
fully cope with the coordination of different mathematical entities (competen-
cies, activity, knowledge types, representations, etc.)’’ (p. 7). It was not the
intention of the teachers who were designing and using extended tasks in this
project to focus on just one of these aspects at a time, a common failing of
mathematics teachers according to Kadijevich (2007).

The design and sequencing of extended investigative tasks so the cognitive
demand matches students’ needs at a particular stage in the development of
their mathematical, technological, and investigative procedure knowledge were
issues of interest to teachers in the project. At the beginning of the project, it was
hypothesized that management of cognitive demand of teaching tasks in tech-
nology-rich teaching and learning environments is mediated through careful
tuning by the teacher of the interplay between (a) task scaffolding, (b) task
complexity and (c) complexity of technology use (Stillman et al. 2004).

Task scaffolding is the degree of cognitive processing support provided by
the task setter that enables task solvers to solve complex tasks beyond their
capabilities if they depended on their cognitive resources alone. Task structure
(e.g. carefully sequenced steps or a bald task statement), type of technology
chosen (e.g. a real-world interface tool such as a data logger or a mathematical
analysis tool such as a calculator), and whether technological assistance rather
than by-hand calculation is privileged, all contribute to task scaffolding. Whose
choice it is to decide all of these also contributes to the level of task scaffolding.

The complexity of a real-world task can be characterized by identifying and
assessing the level of those attributes of the task that contribute to its overall
complexity. These are potentially numerous aspects contributing via the math-
ematical, linguistic, intellectual, representational, conceptual or contextual
complexities of the task (Stillman and Galbraith 2003).

Overall task complexity also varies along a continuum from simple to com-
plex with the latter presenting a challenge for many students. For a particular
task, students focus on only a subset of attributes when assessing overall task
complexity (Stillman and Galbraith 2003) but these indicative cues contribute
to their sense of challenge with the task.

One project school developed a lower secondary mathematics curriculum
(Years 8–10) providing opportunities for engagement in extended investigation
and problem-solving tasks, set in real-world contexts considered meaningful for
students by the teachers. A major focus was in Year 9. During the Year 9
program, in keeping with local curriculum requirements, students were intro-
duced to a mathematical model being used to describe the relationship between
variables in a real situation, and then being used to predict an outcome in terms
of a response variable when a control variable is altered. A series of extended
real-world tasks was designed by one teacher, and the implementation and
refinement of these tasks was studied in depth over the lifetime of the project.

Adoption and implementation by other classroom teachers who have differ-
ent motivations for the use of real-world tasks and/or electronic technologies in
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the lower secondary years, means the integrity of the task is not guaranteed even
if the design can be shown to be worthwhile. Some of the tasks from this first
school were modified by members of the research team and teachers at other
project schools where they were then implemented to fit the different conditions
existing at that school.

One research question investigated during the project was how can tasks be
implemented in different contexts (e.g. shorter time frame, teachers and stu-
dents used to more highly structured investigations) but the level of challenge
and engagement be retained. As Blum and Leiss (2007) point out, there is a lack
of research as well as knowledge amongst teachers ‘‘of appropriate ways for
teachers to act when diagnosing students’ solution processes and when inter-
vening in cases of students’ difficulties’’ (p. 223). In particular, they highlight a
lack of knowledge of strategies for ‘‘independence-supporting’’ interventions in
demanding mathematical tasks (p. 230).

The difficulty for teachers is to decide when it is necessary to intervene and
the nature of that intervention. In several implementations of the tasks in the
project, it was observed that blockages to students’ progress differed in type and
cognitive demand (Stillman et al. 2007).When blockages were induced by a lack
of reflection on interim results, or incorrect or incomplete knowledge, students
were observed overcoming these blockages without teacher intervention when
allowed to continue to struggle and resolve the situation themselves. Students
appeared to do this by genuinely reflecting on their mental image of the problem
and their approach. This reflection, sometimes stimulated by reflective ques-
tions built into the task booklet included the potential to recognize and hence
rectify the application of incorrect or incomplete knowledge.

However, there were also instances of blockages observed where students
were engaged in cognitive dissonance that prevented them from activating
procedures to unblock their progress. These students persisted in attempting
to assimilate, rather than accommodate (Piaget 1950) new contradictory infor-
mation into their chosen structure for the task.

In this instance, successful teacher intervention that supported independent
progression on the task involved the promotion of reflective learning where the
teacher first tried to alter the students’ current mental model through reflection
and then the actions of the student. Thus, for example, rather than say a group’s
model was wrong, the teacher used the group’s model to produce an incongruity
that the students themselves were able to perceive before focusing attention on
what actions might be employed to rectify the situation.

Being able to recognize when students are facing mere lower intensity
blockages, which they should be able to resolve themselves if they engage in
genuine reflection (self-initiated or orchestrated by the teacher or task sheet), is
a critical teaching competency when using challenging tasks in the classroom.
Students do learn from resolving these situations themselves, so by allowing
them to persist rather than pre-empting when intervention is necessary, seems a
pre-requisite for task implementation that does not reduce the challenge
intended in the task. Likewise, being able to recognize and intervene in a
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manner that promotes reflective learning when students are experiencing cog-
nitive dissonance beyond that which they can resolve themselves will also ensure
the level of challenge and engagement with such tasks is retained.

7.4.2.2 A Canadian example: can students think like Archimedes?

Mason and Janzen Roth (2004, 2005, 2006, 2007) have used three cycles of
design experimentation using instructional resources and strategies that delib-
erately and aggressively attempt to reorient students’ approaches to learning
mathematics toward the challenge of developing conceptual understandings
rather than the stockpiling of additional procedures. This teaching program
uses challenging mathematical activities (e.g. the Tennis Ball problem, Section
7.1) drawn from an academic study of the history of mathematics to accomplish
its educational goals.

The curriculum design for these teaching experiments began with a study of
the history of mathematicians’ inquiries into circle relationships, especially
those of Archimedes (Cuomo 2000, Eves 1960) and early Chinese mathemati-
cians (Liu 2003). The history of mathematics provides a context for presenting a
narrative of mathematics as an ongoing process developing, through thoughtful
effort, our communalmathematical understandings (Arons 1988,Mason 1999).
Historical framings of mathematics provide a way to put a human face on the
mathematics that students encounter, offering context and story-lines to enliven
the content, and role or process models for students to view as examples
(positive and negative) for their ownmathematical efforts (Mason 2003, Stinner
and Williams 1998).

Although individuals’ understandings do not necessarily follow the histor-
ical order in which mathematics developed, the historical structure of the
discipline offers a framework within which educators can think about the
educational sequence and structure of topics (Mason 2001, Rudge and Howe
2004). The history of mathematics gives us the mathematical version of the
inquiry processes behind the content. Design experiment research may give us
the mechanism, over time, to develop instructional versions of those processes
that preserve the spirit, challenge and intrinsic rewards of the mathematician’s
original inquiries.

The research has now completed three full cycles of design, implementation
and redesign. The first cycle of curriculum development incorporated the
responses of mathematicians and educators to instructional activities attempt-
ing to represent the cognition of Archimedes that is summarized by the pi-based
circle formulae all students learn to use. It is difficult to reconstruct the cogni-
tion of ancient mathematicians in producing their results in mathematics as
often just the result with justification, not the thinking that produced it, is all
that is recorded in surviving treatises. However, in the case of Archimedes, a
copy of a letter written by himself entitled The Method and preserved on the
surface of a palimpsest was found in 1906. This discovery and technological
advances since its restoration to the scrutiny of academics in 2001 provide us
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with an insight into his thinking about the inquiry processes he carried out in
investigating the relationships among the measures of circles, not just the final
result (Hoffman 1988, Netz and Noel 2007). ‘‘Specifically, in the case of Archi-
medes’ work with circles and with pi, The Method shows his thinking to be: (a)
geometric: inscribing, circumscribing; (b) empirical: specific examples, specific
quantities; (c) algebraic: general quantities, relationships; and (d) conceptual:
extending sequences to infinity (early calculus)’’ (Mason and Janzen Roth 2005,
p. 2).

For the students who were to be the audience for the curriculum activities
designed by Mason and Janzen Roth, the qualities of the thinking of Archi-
medes that were desired were: ‘‘(a) tangible—practical, tactile, visible; (b)
exploratory—questing, noticing, connecting; and (c) thoughtful—abstracting,
wondering, generalizing’’ (Mason and Janzen Roth 2005, p. 2).

In the second cycle (Mason and Janzen Roth 2005), academic Year 9
students interacted with a prototype unit of instruction, including a sequence
of six guided instruction student inquiries built around historical vignettes. In
the final cycle (Mason and Janzen Roth 2006, 2007), the unit was adapted to
challenge the understandings of the nature of mathematics held by a group of
academic Year 12 students.

Each cycle has provided opportunities to better understand how to engage
students in the challenge of deep understanding of algebraic formulae. First and
foremost, students hold a wide range of beliefs and values about the nature of
academic mathematics and its rightful place in school. Some held an instru-
mentalist view of mathematics (Ernest 1989, cf. traditional view, Dionne 1984)
as a set of ideas and formulae to be learned for use in applications and in further
study. Others held a conceptual view of mathematics as a collection of ideas
with internal and interconnected coherence (cf. Platonist view, Ernest 1989,
formalist view, Dionne 1984). Some saw mathematics as a field of present-tense
inquiry in which they could participate through problem solving and inquiry in
the kinds of thinking that are part of our culture and history (cf. problem-
solving view, Ernest 1989, constructivist view, Dionne 1984); others saw mathe-
matics as a collection of artifacts from past inquiries to be apprehended and
remembered. When probed, students portrayed their beliefs as deeply
embedded in their lived histories as learners of mathematics and as products
of their personal experiences and their social environments.

Students’ initial understandings of the functions and relationships that the
circle formulae summarize (for mathematicians) were disappointingly shallow.
Yet, the shallowness is clearly remediable, through engaging students in
challenging mathematical inquiries related to those relationships (Mason and
Janzen Roth 2005, 2006).

It is known that ‘‘beliefs have a powerful impact on our thinking and action,
and they work for the rationality of our decisions. Thus to know students’
beliefs is vitally important’’ (Furinghetti and Pehkonen 2000, p. 23) for those of
us attempting to bring change through curriculum development. It is thus
crucially important to find that students of all orientations towards
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mathematics, including instrumentally orientated students, accepted the chal-

lenge presented to them and were open to perceiving mathematics as Mason

and Janzen Roth’s historically grounded curriculum presents it, as a complex

human enterprise available to their abilities.

7.4.3 Japanese lesson study

Japanese lesson study (Fernandez and Yoshida 2004, Isoda et al. 2007) ‘‘refers

to a process in which teachers progressively strive to improve their teaching

methods by working with other teachers to examine and critique one another’s

teaching techniques. . . .[It] functions as a means of enabling teachers to develop

and study their own teaching practices’’ (Baba 2007, p. 2). It appears to be an

ideal method to ensure classroom practices related to using challenges in

mathematics classrooms can be improved in the long term by generating,

accumulating and sharing ‘‘practitioner knowledge . . . within a system [that

ensures the transformation of] such knowledge into a professional knowledge

base’’ (Hiebert et al. 2002, p. 10).
Indeed, in sketching a brief history of lesson study in mathematics education

in Japan, Isoda (2007) points out that it was the vehicle ‘‘for the emergence of

teaching methods that focus on problem solving, which today are globally

recognized as models of constructivist teaching’’ (pp. 13–14). This has led to

‘‘the problem-solving approach [becoming] well known as a major way of

teaching mathematics in Japan’’ (p. 14).
Although lesson study methodology for research and professional develop-

ment has spread to other countries, a particular feature that should be repli-

cated if it is to be used in connection with challenges in the classroom is the

pivotal role played by researchers and supervisors interested in this area. These

‘‘university researchers are expected to have accumulated deep knowledge of

teaching practice . . . so that they can provide constructive and well-informed

comments on lessons observed and the ensuing discussions’’ (Stephens and

Isoda 2007, p. xx).

7.4.4 Teaching experiments or teaching-research

Teaching experiments where the researcher is also the teacher, and the pri-

mary purpose is to improve the teaching in particular classrooms where the

research is being conducted, have proved a valuable source of insight into

practices related to the use of mathematical challenges in the classroom. This

type of teaching-research has its roots in action research and some of the

promises and challenges of the design are discussed in Czarnocha and Prabhu

(2004).
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7.4.4.1 A North American example

Sriraman conducted several teaching experiments (Sriraman 2002, 2003a, b,
2004a, b, 2006) when he was the class teacher at a rural, mid-western high school
in the United States of America with a heterogeneous group of Year 9 students
enrolled in a beginning algebra course. The goal of these teaching experiments
was to offer mathematical challenges not provided by the regular curriculum and
to study how students abstract and generalize. In these teaching experiments
students were given a series of combinatorics problems that they were to work on
independently in their journals over an extended period of time.

In the first teaching experiment (Sriraman 2004b, Sriraman and English
2004) students worked on problems over a four-month period that included
four Steiner triple arrangement problems. The problems were framed in the
context of recreational arrangement problems such as inviting people over for
dinner, schoolchildren on a walk and prisoners chained in triplets (see Gardner
1997 for examples). A Steiner triple system is an arrangement of n objects in
triplets such that every pair of objects appears in a triplet exactly once. The
students worked on the problems independent of other students and explicit
instruction from the teacher. More than 50 per cent of the students were able to
devise strategies that required a high level of abstraction and systematization to
count all possible arrangements.

In the second teaching experiment (Sriraman 2002, 2003a, 2004a, 2004c,
Sriraman and English 2004) students worked on a series of five problems of
increasing complexity assigned every second week over a three-month period.
The problems were all based on the pigeonhole principle, which states that if m
pigeons are put intom pigeonholes, there is an empty pigeonhole if, and only if,
there is a hole with more than one pigeon (also discussed in Chapters 1 and 6 of
this volume).

The principle is believed to have first been stated by Dirichlet in 1834 under
the name Schubfachprinzip (‘‘drawer principle’’ or ‘‘shelf principle’’). Almost 50
per cent of students were able to use the pigeonhole principle intuitively, by
focusing ‘‘on understanding the structure of a given problem, in addition to
engaging in reflective abstraction’’ (Sriraman 2004c, Sriraman and English
2004, p. 184). However, all students engaged in thinking mathematically, that
is, constructing mathematical representations, reasoning, abstraction and gen-
eralization through the use of these problems.

A third teaching experiment (Sriraman 2003b, 2006) focused onDiophantine
n-tuples. Students were introduced to elementary Diophantine equations as
recreational journal problems. The problem chosen for investigation was the
classic n-tuple Diophantine problem supposedly posed by Diophantus himself
for solutions in the rationals. A Diophantine n-tuple is a set of n positive
integers such that the product of any two is one less than a square integer. It
was hoped that a very elementary version of the problem would kindle student
interest and eventually result in an attempt to tackle the as yet unsolved 5-tuple
problem in integers: does there exist a Diophantine 5-tuple?
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The author initiated this problem by simply mentioning in class the 3-tuple

problem: if one considers the integers 1, 3, and 8, then it is always the case that the

product of any two is always one less than a perfect square. Indeed 1� 3 = 2�
2�1; 1�8=3�3�1; and3�8=5�5�1.This remark led students towonder

if other such 3-tuples existed. This problem was then assigned as a recreational

journal problem. Students in the class found different 3-tuples, which led to

the following questions naturally: What is the pattern for 3-tuples? Are there

4-tuples? These questions were the catalyst for an investigation of the unsolved

5-tuple problem over the course of the school year.
In this experiment students started working on problems independently but

once they had received written feedback in their journals about their solution

they were allowed to work with others. In one lesson each week there was a time

for presenting solutions and defending strategies.
Many students were surprised at the difficulty of solving these seemingly easy

problems as they began writing algorithms and computer programs to check for

integer solutions. The progress of the problem depended completely on the

‘‘will’’ of the students. Mathematical notation was created as a class only after

every student had expressed the particular idea in their own words. It was

crucial that students initiated the process of conjecture, proof and refutation

out of their need to resolve the unimagined difficulties that arose from a

seemingly easy problem.
All students in this class willingly engaged in trying to solve one of the

unresolved conjectures of our time over a seven-month time period through

the process of conjecture, proof and refutation. The mathematics created by the

students in trying to solve the classic 5-tuple Diophantine problem clearly

indicates that students are capable of original thought that goes beyond mimi-

cry and application of procedures taught in the classroom. The students’ efforts

did not resolve the 5-tuple problem by any means but these fourteen-year-old

students persisted over an extended time period in trying to solve this challen-

ging problem.
Sriraman (2006) concluded that the use of journals to nurture the process of

conjecture-proof-refutation was invaluable to the teacher, as it was in the other

teaching experiments. It allows for constant communication between the indi-

vidual student and the teacher, and allows room for reluctant students to

express themselves. Journals also allow the teacher insight into the affective

drives of the students, as well as their capacity for originality and creativity.
Journal problems also allow for extended investigations that are student

driven and convey that mathematics is an evolving process of discovery leading

to generalities that are either proved or disproved. In Sriraman’s experience,

‘‘journal problems of varying levels of difficulty, which are characterized by an

overarching mathematical generality, is a novel and non-intrusive way of

differentiating the curriculum for all students, and not simply for the able

students’’ (2006, p. 7).
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7.4.4.2 A Russian example

The work of Olga Medvedeva in researching her own classroom is

described in Sriraman and English (2004). Her teaching approach when

using challenging problems in the classroom is based on an implementa-

tion of Davydov’s ideas (1972/1990) about different types of generalization

in instruction. The approach is illustrated using a combinatorial problem,

The Walking problem.

The walking problem: Consider the problem of walking in a 6 � 4 ‘‘rectan-

gular city’’ (see Figure 7.10). In how many possible ways can a person move

from a point A to a point X travelling only up and right along the edge of each

grid? (Medvedeva 2002, cited in Sriraman and English 2004) (This problem in

another setting is treated in Section 4.3.3.)
First, the students would be asked to work on a simpler problem such as the

finding of a path in a smaller ‘‘rectangular city’’, say 2� 3. Secondly, in order to

facilitate abstraction, several students are then asked to read aloud the direc-

tions for their path using the words ‘‘right’’ and ‘‘up’’. These paths are then

represented using the letters R and U and students write several such strings for

different paths they discover. The idea is that the teacher will help students

associate path length with string length. Thirdly, the problem of finding all

possible paths in the smaller rectangular city can be restated in a generalized

form as a combinatorial problem such as determining all possible five-letter

strings with 3 Rs and 2 Us that represent a valid path from A to X. Fourthly,

students then predict and enumerate paths for other dimensions of the ‘‘rectan-

gular city’’. Finally, students are encouraged to conjecture and test a formula

for an n � m city through specializing (i.e. using specific cases). According to

Davydov, ‘‘scientific knowledge . . . requires the cultivation of particular means

of abstracting, a particular analysis, and generalization, which permits the

internal connections of things, their essence, and particular ways of idealizing

the objects of cognition to be established’’ (1972/1990, p. 86). ‘‘The essence of a

thing is none other than the basis (included in itself) for all of the changes that

Figure 7.10: 6 � 4 ‘‘rectangular city’’

Chapter 7: Challenging Mathematics: Classroom Practices

So
cie

ty
 E

di
tio

n



occur with it in interaction with other things’’ (Rubinstein, cited by Davydov
1972/1990, p. 194).

Sriraman and English (2004) add that a further step in keeping with this
notion of establishing the essence of the task could be that students be asked to
pose problems that extend or are of a similar structure to the given problem.
Thus, what Medvedeva is suggesting for teachers who follow this type of class-
room practice with students is the use of challenging problems to foster ‘‘theo-
retical abstraction’’ in everyday mathematics classrooms (Mitchelmore and
White 2007).

7.5 Conclusion

Classroom practice issues related to teachers providing mathematical chal-
lenges in their regular classrooms are addressed in this chapter. The regular
use of challenges for all students in the everyday classroom is advocated.
Design features of challenging tasks and how these might be varied for
different levels of schooling and degrees of contextualization are addressed.
Whilst it is pointed out that the intended curricula in most countries have not
been exhausted as sources of challenges, combinatorics and number theory
are fertile topics to explore for more challenges. Technology is suggested as a
means of mediating the cognitive demand of some challenging tasks. Ques-
tions by students of themselves in analyzing a challenging task and the ques-
tioning engaged in by teachers in interacting with individuals, groups or the
whole class during problem solution are promoted as the means by which
students and teachers effectively manage the demand of mathematical chal-
lenges. It appears that the ideal of textbooks being written with the perspective
of challenging activities as the motivation rather than an add-in is still a long
way from being realized. However, we point out that challenging tasks in the
classroom do not necessarily challenge students, as this depends on a number
of factors, such as their implementation. These tasks are by no means ‘‘teacher
proof’’.

In the final section, it is suggested that design-based research, Japanese
lesson study and teaching experiments conducted by teacher researchers in
their own classrooms are potentially fruitful research designs for the study of
classroom practice issues related to the use of challenging tasks in the mathe-
matics classroom. A number of case studies using these research designs are
included showing how these research designs proved fruitful in practice:
investigating such issues as the type of teacher interventions to be used when
students are blocked in their progress so as not to remove the challenge, and
how topics outside the normal curriculum can be used to promote student
abstraction and generalization through challenges worked mainly
independently.
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Laborde, C., Pérez, A. (eds.) Proceedings of the 8th International Congress on Mathe-
matical Education: Selected Lectures, Seville, pp. 413–426. SAEM Thales, Seville, Spain
(1998)

Sriraman, B.: Generalisation processes in combinatorial problem-solving situations. In:Mew-
born, D.S., Szrajn, P., White, D.Y., Wiegel, H.G., Bryant, R.L, Nooney, K. (eds.)
Proceedings of 24th annual meeting of the North American chapter of the International
group for the Psychology of Mathematics Education, Athens, Georgia, 3, pp. 1411–1414.
ERIC/CSMEE Publications, Columbus, OH (2002)

Sriraman, B.: Mathematical giftedness, problem solving, and the ability to formulate general-
isations. Journal of Secondary Gifted Education 14, 3, pp. 151–165 (2003a)

Sriraman, B.: Can mathematical discovery fill the existential void? The use of conjecture,
proof and refutation in a high school classroom. Mathematics in School 32, 2, pp. 2–6
(2003b)

Sriraman, B.: Discovering a mental principle: The case of Matt. Mathematics in School 33, 2,
pp. 25–31 (2004a)

Sriraman, B.: Discovering Steiner Triple Systems through problem solving. Mathematics
Teacher 97, 5, pp. 320–326 (2004b)

Sriraman, B.: Reflective abstraction, uniframes and the formulation of generalizations. The
Journal of Mathematical Behavior 23, 2, pp. 205–222 (2004c)

Sriraman, B.: The challenge of discovering mathematical structures: Some research based
pedagogical recommendations for the secondary classroom. Submitted paper, ICMI
Study 16 (2006)

Sriraman, B., English, L.D.: Combinatorial mathematics: Research into practice. Mathe-
matics Teacher 98, 3, pp. 182–191 (2004)

Sriraman, B., Strzelecki, P.: Playing with powers. International Journal for Technology in
Mathematics Education 11, 1, pp. 29–34 (2004)

Stein, M. K., Grover, B. W., Henningsen, M.: Building student capacity for mathematical
thinking and reasoning: An analysis of mathematical tasks used in reform classrooms.
American Educational Research Journal 33, 2, pp. 455–488 (1996)

Stephens, M., Isoda, M.: Introduction to the English translation. In: Isoda, M., Stephens, M.,
Ohara, Y., Miyakawa, T. (eds.) Japanese lesson study inmathematics: Its impact, diversity
and potential for educational improvement, pp. xv–xxiv. World Scientific, Singapore
(2007)

Stillman, G.: The role of challenge in engaging lower secondary students in investigating real
world tasks. Submitted paper, ICMI Study 16 (2006)

Stillman, G., Brown, J.: Challenges in formulating an extended modelling task at Year 9. In:
Reeves, H.,Milton, K., Spencer, T. (eds.)Mathematics: Essential for learning, essential for

Chapter 7: Challenging Mathematics: Classroom Practices

So
cie

ty
 E

di
tio

n



life. Proceedings of the twenty-first biennial conference of the Australian Association of
Mathematics Teachers (AAMT), pp. 224–231. AAMT, Adelaide, Australia (2007)

Stillman, G., Galbraith, P.: Towards constructing a measure of the complexity of application
tasks. In: Lamon, S.J., Parker, W.A., Houston, K. (eds.) Mathematical modelling: A way
of life, pp. 179–188. Horwood, Chichester, UK (2003)

Stillman, G., Brown, J., Galbraith, P.: Identifying challenges within transition phases of
mathematical modelling activity at Year 9. Paper presented at the Thirteenth Interna-
tional Conference on The Teaching of Mathematical Modeling and Applications, Bloo-
mington, IN (2007) site.educ.indiana.edu/Papers/tabid/5320/Default.aspx. Accessed 10
January 2008

Stillman, G., Edwards, I., Brown, J.: Mediating the cognitive demand of lessons in real-world
settings. In: Tadich, B., Tobias, S., Brew, C., Beatty, B., Sullivan P. (eds.) Towards
excellence in mathematics, pp. 489–500. Mathematical Association of Victoria, Mel-
bourne (2004)

Stinner, A., Williams, H.: History and philosophy of science in the science curriculum. In:
Fraser, B.J., Tobin, K.G. (eds.) The international handbook of science education. Kluwer,
London (1998)

Stone, C. A.: What is missing in the metaphor of scaffolding? In: Forman, E., Minick, N.,
Stone, C. (eds.) Contexts for learning: Sociocultural dynamics in children’s development,
pp. 169–183. Oxford University Press, New York (1993)

Sullivan, P., Clarke, D.: Communication in the classroom: The importance of good question-
ing. Deakin University Press, Geelong, Australia (1991)

Takahashi, A.: Characteristics of Japanese mathematics lessons. APEC Symposium: Inno-
vative Teaching in mathematics through lesson study. Tokyo, Japan (2006)

Tall, D.: A theory of mathematical growth through embodiment, symbolism and proof.
Annales de Didactique et de Sciences Cognitives 11, pp. 195–215 (2006)

Tejima, K.: Open-ended approach and improvement of classroom teaching. In: Mathematics
education in Japan, pp. 29–32. Japan Society of Mathematical Education, Tokyo (2000)
(Original work published 1997)

Vinner, S.: Mathematics education—Procedures, rituals and man’s search for meaning.
Abstract. Proceedings of the 10th International Congress on Mathematical Education:
Plenary and Regular Lectures, pp. 120–121. International Commission on Mathematics
Instruction, Copenhagen, Denmark (2000)

Vinner, S., Dreyfus, T.: Images and definitions for the concept of function. Journal for
Research in Mathematics Education 20, 4, pp. 356–366 (1989)

Vygotsky, L.S.: Mind in society: The development of higher psychological processes (Cole, M.,
John-Steiner, V., Scribner, S., Souberman, E. trans.). Harvard University Press, Cambridge,
MA (1978)

Watson, A.: Red herrings: Post 14 ‘best’ mathematics teaching and curricula. British Journal
of Educational Studies 52, 4, pp. 359–376 (2004)

Williams, G.: Associations between student pursuit of novel mathematical ideas and resi-
lience. In: Bragg, L., Campbell, C., Herbert, G., Mousley, J. (eds.) Mathematics educa-
tion research: Innovation, networking, opportunity 2, pp. 752–759. MERGA, Mel-
bourne, Australia (2003a)

Williams, G.: Student inclination to work with unfamiliar challenging problems: The role of
resilience. In: Clarke, B., Bishop, A., Cameron, R., Forgasz, H., Seah, W.T. (eds.) Making
Mathematicians, pp. 374–385. Mathematical Association of Victoria, Brunswick, Victoria
(2003b)

Williams, G.: Impetus to explore: Approaching operational deficiency optimistically. In:
Novotna, J., Moraova, H., Kratka, M., Stehlikova, N. (eds.) Proceedings of the 30th
conference of the International Group for the Psychology of Mathematics Education 5,
pp. 393–400. PME, Prague, Czech Republic (2006)

Challenging Mathematics In and Beyond the Classroom

So
cie

ty
 E

di
tio

n



Wood, D., Bruner, J., Ross, G.: The role of tutoring in problem solving. Journal of Child
Psychology and Psychiatry 17, pp. 89–100 (1976)

Woodward, J., Brown, C.: Meeting the curricular needs of academically low-achieving
students in middle grade mathematics. The Journal of Special Education 40, 3,
pp. 151–159 (2006)

Chapter 7: Challenging Mathematics: Classroom Practices

So
cie

ty
 E

di
tio

n



Chapter 8

Curriculum and Assessment that Provide

Challenge in Mathematics

Maria Falk de Losada, Ban-Har Yeap, Gunnar Gjone,

and Mohammad Hossein Pourkazemi

In this chapter, we use selected case studies of assessment that provide challenge

in mathematics to frame a discussion of assessment issues in relation to the

provision of mathematical challenge. In the first part of the chapter, case studies

from Singapore, Norway, Brazil and Iran are presented. In the second part, the

relationship between the conception of the role of assessment, the features of

assessment tasks and the provision of challenge, as well as how this relationship

may affect issues of curriculum and may vary under different conditions, are

discussed. Possible research questions in this area are included in the final part

of the chapter.

8.1 Introduction

The influence of assessment on any facet of mathematics teaching and learning

is difficult to ignore. In particular, it bears on the implemented curriculum. In

many countries, the need to provide challenges for all students, rather than just

the most able, is evidenced by the shift in focus from skills and procedures to

problem solving. However, such changes will not be effective unless they are

accompanied by assessment systems consistent with their goals. In addition,

there have been calls to identify those students who are capable of meeting

mathematical challenges. Thus, in several countries, curriculum revisions have

been accompanied by new assessment practices, some on a national scale and

others in the form of small-scale pilot projects.
This chapter documents four cases of assessment practices and discusses if

and how providing challenges is related to variables associated with mathe-

matics assessment tasks for students in different grades and of different levels of

achievement and ability.
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We first describe how the studies documented in this chapter were selected.
The bulk of the chapter is devoted to describing these studies. There follows a
discussion on the relationship between the features and practices of assessment
tasks and how these tasks encourage or discourage challenge. Does this rela-
tionship change under different conditions? Finally, we identify salient knowl-
edge gaps in this area of study and suggest a potentially productive research
agenda to fill these gaps.

8.2 The case studies

Assessment practices in Singapore, Norway, Brazil and Iran are given as case
studies of practices at the primary, lower secondary and secondary levels
respectively. Singapore and Norway implemented their practice for the whole
school population, while Brazil targeted a selected group of students. Brazil’s
case is interesting in that, while its system is not part of the education system, it
has a significant impact on all schools. The discussion on Iran is on a number of
upper secondary assessments, not the whole school population, but the cases
discussed cover a broad part of the population.

8.2.1 The case of Singapore: primary school level

8.2.1.1 Background and curriculum

Singapore has possessed a problem-solving curriculum since 1992 (Ministry of
Education Singapore 1990). In 1997, the Ministry of Education made a call for
the teaching of thinking skills in key subjects including mathematics. The
initiative Thinking Schools, Learning Nation encouraged the explicit teaching
of thinking skills and heuristics (Goh 1997). The mathematics curriculum was
revised in 2001 to align it better with this initiative (Ministry of Education
Singapore 2000).

In 2003, the Ministry of Education introduced another initiative to build
upon the Thinking Schools, Learning Nation initiative. Schools were asked to
help pupils develop good thinking habits or habits of mind under the initiative
Innovation and Enterprise (Tharman 2003). In 2004, the Prime Minister of
Singapore made a call for teachers to teach less in order to allow pupils to
learn more (Lee 2004). This call underlines fundamental changes that are
required to help pupils acquire a set of competencies that are valuable in a
knowledge-based economy. Teachers are encouraged to focus on fundamental
concepts and use the available time to motivate pupils in the learning process
and to require them to figure things out.

More than a decade after the implementation of the problem-solving curricu-
lum, schools have been encouraged to develop strategies to help every pupil learn
competencies that are important for the 21st century. Alternative strategies are
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encouraged in order for pupils who have not done well in schools to also acquire
the ability to solve problems. The education system placed an emphasis on every
pupil having an opportunity to engage in some challenging situations.

In the latest revised curriculum (Ministry of Education Singapore 2007),
pupils are encouraged to use calculators in the last two years of primary school
mathematics. This signals a further de-emphasis on computational skills and an
increased attention to solving a wider range of problems. Pupils now have the
opportunity to engage in more challenging tasks.

8.2.1.2 National examination for primary schools

In Singapore, there are national examinations for students in Grades 6, 10 and
12. In this case study, we focus on the national mathematics examination for
Grade 6 students. The items released from the primary school national exam-
ination (called the Primary School Leaving Examination or PSLE) over a
period of five years (2000 to 2004) were analyzed to identify items that assess
competencies beyond procedural knowledge.

The PSLE Mathematics is a two-and-a-quarter hour paper-and-pencil test
that comprises forty-eight items including thirty-three constructed-response
items. In thirteen of these items, students are required to communicate their
solution methods. These thirteen items make up 50 per cent of the total score.
For a small percentage of pupils who have not done well academically, an
alternate examination called PSLE Foundation Mathematics is offered.

8.2.1.3 Test items

Items released from the PSLE Mathematics corresponding to the years 2000 to
2004were selected for analysis. A total of 196 of the 250 itemswere released. About
80 per cent of all the items were released each year. The examination is in English,
the language of instruction, although not necessarily the language used at home.

The released items were classified as procedural items or challenging items.
Procedural items assess knowledge, basic skills, routine procedures and the
solving of familiar word problems. Challenging items require competencies
that are beyond routine procedures.

Here we give some examples of items classified as procedural items. The first
item assesses knowledge. The second one assesses basic computation skills. The
third one assesses a routine procedure to find area. Although the last item
involves several steps in the solution, this type of word problem is familiar to
the pupils. Such word problems are typically solved in a linear manner by
identifying suitable operations and carrying out those operations.

Procedural Item 1
What is the value of the digit 4 in 854 013?

(1) 4000 (2) 400 (3) 40 (4) 4
(SEAB 2005, p.1)
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Procedural Item 2
Find the value of 3

4 
 6.
(SEAB 2005, p.11)

Procedural Item 3
A piece of wire is bent to form the right-angled triangle shown below. Find the

area of the triangle.

(SEAB 2005, p.24)

Procedural Item 4
Lynn joins Tang Fitness Club. She pays a membership fee of $45. She also pays

$5.50 each time she books a badminton court. She books the court 30 times.

How much does she pay the club altogether?
(SEAB 2005, p.24)

We now present some examples of items classified as challenging items. The

first item requires pupils to select the appropriate computation to perform. An

inappropriate computation includes dividing the volume of the block by the

volume of a 3-cm cube. In the second item, pupils are unable to succeed by only

applying the necessary computation skills, even if they possess them.

Challenging Item 1
A toymaker has a rectangular block of wood 30 cm by 14 cm by 10 cm. He

wants to cut as many 3 cm cubes as possible. How many such cubes can he cut?

(SEAB 2005, p.25)

Challenging Item 2
Peter, James and Ruth had some stamps. James and Ruth together had 3 times

as many stamps as Peter. The ratio of the number of stamps James had to the
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number of stamps Ruth had was 3:7. Peter andRuth had 310 stamps altogether.
How many stamps did Peter have?

(SEAB 2005, p.46)

Among the 196 released items, about a quarter of them were classified as
challenging. With such a significant proportion of the items considered to be
challenging, it is not difficult to understand why the culture of challenge devel-
ops in a typical mathematics classroom.

In a study involving 38 pupils solving a collection of these problems, it was
found that the ability to perform basic computations and follow procedures
were not sufficient for pupils to be successful in problem solving (Yeap 2005a).
‘‘Big math ideas’’ were used together with basic computations and procedures in
cases where pupils solved the problems successfully. The four ‘‘big math ideas’’
used by pupils in the study to solve challenging problems are classified as
number sense, visualization, patterning and modeling.

8.2.1.4 Discussion

A significant proportion of the items in the national examination were challen-
ging. In other words, all pupils are provided with opportunities and are
expected to be able to handle challenge.

The national examination for pupils who are considered to be academically
weaker also contained a small number of such challenging tasks. Here we give
an example of a challenging item from the Foundation Mathematics examina-
tion. The inclusion of challenging items in the examination of the weakest pupils
in the system clearly suggests that every pupil is expected to have some oppor-
tunity to engage in challenging tasks in mathematics.

Foundation Mathematics Challenging Item 1
Yong gave away a total of 42marbles to Paul andRashid. Rashid received twice
as many marbles as Paul. How many marbles did Rashid receive?

(SEAB 2007, p.13)

Foundation Mathematics Challenging Item 2
The prices of two sizes of candles at a shop are shown below.

Small candles $2 each
Large candles $3 each
Alice bought an equal number of small candles and large candles. She spent

$60 altogether. How many candles did she buy altogether?
(SEAB 2007, p.13)

Foundation Mathematics Challenging Item 3
Meili gave 1/8 of her salary to her mother and another 1/8 of her salary to her
father. She kept the remaining $1680.

(a) What fraction of her salary did she keep?
(b) How much money did she give her mother?

(SEAB 2007, p.15)
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This leads to the question of how average students, and even weaker ones,
can be helped to handle challenging situations without losing their confidence
and interest in the subject. In a study on the mathematics textbooks used in
primary schools in Singapore, it was found that pictorial approaches were
common in two of the most popular textbook series used (Yeap 2005b). The
emphasis on the use of pictorial heuristics seems to have provided many pupils
with a platform to handle challenging problems.

A study conducted on a typical primary six class in Singapore focused on the
heuristics used by the pupils to solve challenging problems. In the next few
paragraphs, heuristics used by pupils in the study that have the potential to help
many pupils, not just the mathematically inclined ones, to solve challenging
mathematics problems are described.

Race Problem
Tom and Gary ran in a race. When Gary had completed the run in 20 minutes,
Tom had only run 5/8 of the distance. Tom’s average speed for the race was 75
m/min less than Gary’s.

(a) Find the distance of the race.
(b) What was Tom’s speed in meters per minute?

Indra solved the Race problem by drawing a simple sketch shown in Figure 8.1.
Using the basic idea of speed, Indra knew that every minute, the gap between
Gary and Tom increases by 75 m. Thus, after 20 minutes, the gap between Gary
and Tom is 1500 m, which is 3/8 of the distance of the race. The subsequent
computations that Indra did to answer the first question were 1500 7 3 = 500
and 500� 8 = 4000. The computations were simple because a diagram was used.
A similarly simple computation was done to answer the second question.

Marbles Problem
At first Sara had 4/7 of the number of marbles Jack had. When Sara received 36

marbles from Jack, both had the same number of marbles.

(a) How many more marbles did Jack have than Sara at first?
(b) How many marbles were there altogether?

(SEAB 2005, p.17)

Janice solved the Marbles problem by using a method that is known as the

‘‘model method’’ in the Singapore textbooks. She used rectangles to represent

unknown amounts. Her initial diagram is shown in Figure 8.2.

Figure 8.1: Indra’s solution
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Subsequently, Janice modified her diagram as shown in Figure 8.3 and did

the computation 367 3 = 12 and 6� 12 = 72 to answer the first question and

22 � 12 = 264 to answer the second question. She did not have to do cumber-

some computations involving fractions because she used the diagram.
These pictorial approaches used by the pupils are the common ones found in

the textbooks (Yeap 2005b).
In this line of thought, the role of graphic representation in empowering

school children to confront more challenging activities of problem solving is

important. For almost two decades competitions such as the ‘‘Future Olym-

pian’’ competition for primary schools in Colombia has generated visual

representations of concepts, methods, problems and solutions, as shown, for

example, in Figure 8.4, which enable young primary students to think about

and successfully solve problems generally associated with more advanced

strategies and representations such as those of algebra.

8.2.2 The case of Norway: lower secondary education

8.2.2.1 Background and curriculum

The present system of lower secondary education in Norway was introduced in

1997. Basic schooling includes a ten-year block of compulsory education, the

last three grades of which make up lower secondary education. Whereas the

class teacher is most common in primary school, the subject teacher is more

dominant in lower secondary school. The basic school is not streamed, and this

is the situation for all subjects.
In primary school there is no formal grading, and it is very rare for a student

to repeat a year, since there is more emphasis on the social functioning of the

group. Until 2004 there was no national testing in the first 7 years. National

tests were introduced in grades 4, 7 and 10 and the first year of upper secondary

in 2004 and 2005. There was no national testing in 2006. Starting in 2007 there

are national tests at the beginning of years 5 and 8.

Figure 8.2: Janice’s solution

Figure 8.3: Janice’s solution
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In lower secondary school formal grading is introduced. A 6-point scale is
used. It should be noted that all grades are passing grades. At the end of the
tenth grade there are also national exams; there are written national exams in
the subjects English, mathematics and Norwegian, and possibly oral exams in
these as well as other subjects.

Figure 8.4: A Colombian cartoon representation
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Traditionally Norway has been a very homogeneous society. Education
since the mid-20th century has been dominated by social democratic ideas, as
well as Christian (Lutheran) ideas. As a consequence it is felt that compulsory
education should give the same opportunity to all. Important choices for the
students will come at a later age; no important choice has to be made until the
students have completed basic compulsory school. Selection for the different
streams of upper secondary education has been based on grades from lower
secondary. It should also be noted that every student has the right to three years
of upper secondary education. This right, however, the student will lose after
some years.

Many teachers feel that the impact of exams and testing should be kept to
a minimum, at least during the years of compulsory education, and in fact, in
the mid-1970s there was even a government-appointed committee that suggested
there should be no formal grades in the then newly introduced 9-year compulsory
school. However, this was not to become official policy because of strong
opposition.

Another basic principle is that the selection of students should be handled by
the lower school level. Hence there are leaving exams, but no entrance exams in
‘‘mainstream’’ education. The type of upper secondary education available to a
student is based on performance in lower secondary, and the type of tertiary
education is based on performance in upper secondary school. Hence the
leaving exams have high stakes for the students.

8.2.2.2 Traditional examination for lower secondary schools

Norway introduced lower secondary schooling as part of compulsory education
with the reforms of the mid-1970s. Before this reform lower secondary educa-
tion consisted of different types of schools, that is, different kinds of vocational
schools. The traditional exams in the more academic schools were written
exams; oral exams were not usually given to students at this stage.

Written exams in the Norwegian tradition were national exams, and quite
extensive—five- or six-hour exams that covered a large part of the curriculum
were the rule. Before the reform the student’s grade on an exam determined the
final grade in the subject. There were also course grades given by the teachers.
With the reforms of the mid-1970s different ideas were introduced. The grade
given for a course should be a combination of the course grade given by a
teacher and the grade given on the exam. Moreover, oral exams became more
common. The underlying philosophy was that the grade should reflect different
parts of the pupils’ competence. Moreover, any test—written or oral—should
focus on what the students’ know, not on what they do not know. There is no
tradition of multiple-choice problems.

During the 1980s and up to the reforms of 1997, there was experimentation
with different exam formats. One reason for this was the introduction of
calculators in lower secondary education. These were introduced by the revised
curriculum in 1987.
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8.2.2.3 The written exams

There have been different developments concerning the exam format. With the
introduction of technology the exam was divided in two parts, one without and
one with the use of technology. The students would receive the whole test at the
beginning, and then get a calculator when they handed in the first part. This
system is no longer in effect—the calculator is now allowed on the whole test.

However, the test has been divided into three parts having different foci. One
part is what we might call ‘‘basic skills’’, one is ‘‘problem-solving’’ and one is
more of a ‘‘project’’ task.

In recent years, the practice has been introduced whereby students are given
‘‘general’’ information to be used in the solution of a problem. They will then
have to find the relevant information themselves. An example from the Grade
10 examination given in the spring of 2006 follows.

Example: Norwegian Metrology Service

Controlling weights and measures has been important historically for many
centuries. Regulations for weights and measures were included in Magnus Laga-
bøter’s Law forNorway in 1276. It specified that any trader should use controlled
instruments for measuring. Cheats should be punished. Today, the Norwegian
Metrology Service is the enforcement agency. The following three examples
indicate the importance that measuring instruments have for our economy.

� On average, a household buys electricity for NOK 20000 per year. The
measuring instrument used to calculate the amount of consumption has
not been subject to quality control by the authorities. For example, a 5 per
cent error will represent a significant amount during a year.

� On average we pay NOK 15000 for gas for our car each year. Then it is good
to know that the gas pumps are required to be accurate within 0.5 per cent.
This is a requirement to which the metrology service pays close attention.

� A household on average buys fruit, green vegetables and meat which are
weighed directly in the store for about NOK 5000 per year. This is done by
weightswith an accuracy of 0.2 per cent (a requirement of themetrology service).

TASK

Look at page 6 in the booklet about the Norwegian Metrology Service. Choose
data from one of the three examples and construct a text for a mathematical
problem. In the task, you can in addition use your own figures.

Solve the problem that you have constructed.

The student is challenged to assimilate the information, decide what is
mathematically significant and select the ingredients for a proper mathematical
problem for which a correct solution must be constructed.

Another factor which should be mentioned is that there is a certain system
for arranging written exams. Due mainly to the cost of having three written
exams for all students, a student presents for only one of the exams, in English,

Challenging Mathematics In and Beyond the Classroom

So
cie

ty
 E

di
tio

n



mathematics or Norwegian. The students are given notice of which one of these
subjects they will be examined in only two weeks prior to the examination and
the choice itself is made in a national draw.

Another line of development is the introduction of what we might call
‘‘preparation time’’. Two days before the exam, information on possible topics
covered by the project part of the exam is given to the students. This develop-
ment must be seen as a step to make the whole exam more comprehensive.

8.2.2.4 The oral exams

The traditional oral exams were the responsibility of the school, or a group of
schools in a region. This is now being changed; the school authorities on a
national level are beginning to require that the exams follow some standard.
They are also publishing sample tasks for teachers. However, the examination is
still the responsibility of the teacher. The school authorities provide guidelines.

As for the written exam, the students for the oral exam are selected through a
national draw. Unlike the written exams where a whole class (group) is drawn,
the draw for the oral exam is for individual students.

The teachers are given information about the subject for the examination one
week in advance. They are not supposed to give any information on the subject
to the students at this time. The teacher selects a topic and prepares for the
examination that she will be conducting. The students are then given two days
notice (exclusive of holidays) of the subject as well as the topic. It is expected
that the students make a presentation at the beginning of the examination, after
which the teachers will ask questions. There is an external grader present during
the examination who has the opportunity to ask the student questions as well.
Each student is examined for 20 minutes.

A sample topic as given by the school authorities is presented below. It is up
to the teacher to decide how detailed her instructions to the students will be.

Example: Building a house

You have a property of 800 m2 and want to build a house there. The house
should cover the area 100 m2.

What might the property look like, and where on the property would you
locate the house? (Use the scale 1:250.)

You will buy materials for the house, and therefore will need to know how
the house will look from all sides.

Make a sketch of all sides of the house with doors and windows. (Remember
to include measures.)

You will construct the interior of the house.What type of rooms do youwant
and how will they be placed in the house?

Draw a plan of the house in a suitable scale; include the doors and the
windows.

To get an overview of the materials used and price, make a list of what you
need (windows, doors, outside paneling, inside paneling, roof, insulation, etc.).
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How much do you need of each type? Make a list of necessary materials and
prices with and without tax. Use a spreadsheet.

8.2.2.5 Course grade and final grade

The student also receives a course grade from his teacher. This grade could be
based on tests (oral or written) during the year. The final grade for the course is
a combination of grades for the different components. The final grade might be
only the course grade if the student is not drawn to have any exam in mathe-
matics at the end of compulsory education. The student could perhaps have a
written exam in one subject and an oral in another.

8.2.2.6 Discussion

The examination system in lower secondary education in Norway is now
changing with the introduction of the new curriculum. What is seen are plans
for a more comprehensive system of assessment with several components such
as national testing, diagnostic tests and examinations.

However, the basic principles mentioned are still in effect, that is, no formal
grades for the first 7 years, all grades are passing grades. There are changes in the
test construction as well: multiple-choice questions are slowly making their way
into the various forms of testing. Another issue is the effect of having technology
available for the exams. Since more and more computers are going into schools,
beginning in lower secondary, new forms of testing are being developed.

8.2.3 The case of Brazil: upper primary and lower secondary levels

8.2.3.1 Curriculum and background

No member of the writing team is Brazilian, but Brazil is a country of interest
for this Study. The material of this section is obtained from personal contact
and the Brazilian site portal.mec.gov.br/seb/.

National Curricular Guidelines in Mathematics in Brazil
In the national curricular guidelines for secondary schools in Brazil it is stated
that the guidelines have their roots in a ‘‘wide discussion with the technical
teams of the state systems of education, with professors and students from the
public school network and with representatives of the academic community.
The goal of the materials produced is that of contributing to a permanent
dialogue between teachers and schools concerning teaching practice. The qual-
ity of schools is essential to the inclusiveness and the democratization of
opportunities in Brazil; it is the task of all to confront the challenge of offering
quality basic education that will enable the student to be included in the
development of the country and in his/her consolidation as a citizen.’’ (portal.
mec.gov.br/seb/arquivos/pdf/book_volume_02_internet.pdf)
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The school system is divided into nine years of basic schooling and three
years of middle schooling, corresponding to secondary or high school
education.

Mathematical thinking
What are the general goals of the school system? The understanding of the
logical structure of mathematics by secondary students must be broadened and
deepened. The resources of mathematical thinking should be emphasized:
imagination, intuition, inductive reasoning and logical-deductive reasoning.
Students should distinguish between mathematical and empirical validation,
and progressively become adept with the deductive method.

The guidelines also state that it is pertinent to make a special recommenda-
tion in the implementation of public policies that give priority to the continual
training of mathematics teachers working in secondary school in order to build
up autonomy in their teaching and professional decisions.

Content
Secondary school mathematics is divided into four large categories: numbers
and operations, functions, geometry and analysis of data and probability.
A description is given of the content related to each of these areas.

It is furthermore stated that sometimes, intentionally, topics not treated fully
in elementary and basic schooling are taken up once again in secondary school.
It is the moment to consolidate certain topics of elementary school mathematics
that require explanations whose comprehension needs more maturity than that
possessed by basic school students.

Technology is seen as beneficial. In developing the curriculum of secondary
school, both teachers and schools are encouraged to work toward the integra-
tion of knowledge, especially interdisciplinary work, which requires coopera-
tion and is a challenge for teachers.

An extract stressing problem solving
The following extract shows clearly the importance given to the development of
students’ problem-solving abilities in the secondary curriculum.

The greater part of the content of mathematics in secondary school is devoted to
mathematical models of a continuous nature, the real numbers and geometric spaces.
The study of the geometry of functions of a real variable fits in this context, reflecting
the fundamental role of the calculus in science.
However, in the course of the twentieth century, new technological necessities pertain-
ing to the introduction of computers, which rely upon discrete mathematics, have
forwarded much development in this field and incited important development of
discrete mathematical models. In this process a significant development of the area of
combinatorics and the mathematics of finite sets has taken place. In secondary school,
the term ‘‘combinatorics’’ is usually restricted to the study of problems of counting, but
this is only one of its aspects. Other types of problems could be the subject of study in
school. For example, those related to finite sets with statements that are easily under-
stood but not necessarily easy to solve, such as the Konigsberg bridge problem.
Problems of this type can be used to develop a series of important abilities: modeling a
problem using the structure of a graph, identification of situations that do not have a
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solution, convergence toward the discovery of a general condition for the existence of a
solution. Many other examples of combinatorial problems can be treated in a way
similar to the Königsberg bridge problem; examples such as determining the shortest
path in a transportation network or determining an efficient trajectory for collecting
garbage in a city are given in the guidelines. (portal.mec.gov.br/seb/arquivos/pdf/
book_volume_02_internet.pdf )

8.2.3.2 The Brazilian Mathematics Olympiad for public schools

In Brazil the Olimpiada Brasilera de Matematicas para la Escuela Publica
engages students, not in the form of a required examination but using incentives
to have all students in grades 5 through 8 of the public schools take part in an
Olympiad. Each school is encouraged to register all its students in the event and
will be responsible for their participation.

The objectives of the Olympiad are to:

� stimulate and promote the study of mathematics in the public schools;
� identify young people with talent and give them incentives to go into scien-

tific and technological studies;
� give incentives for the in-service training of teachers in the public schools

contributing to their professional development;
� contribute to the integration of the public schools with the public universi-

ties, institutes of research and scientific societies;
� promote social inclusion through promoting the dissemination of

knowledge.

The incentives for participation cover four levels of interest. First, the
students can win a medal and the right to attend a special enrichment course
offered by the organizers of the Brazilian Mathematics Olympiads.

Secondly, the teachers—according to the distinction obtained by their stu-
dents—may win as a prize the right to attend an in-service course. This might
enable them to create better challenging environments or give them the oppor-
tunity to work on challenging problems for their students.

Thirdly, schools are awarded prizes, such as laptop computers and mathe-
matics books for their libraries, according to the number of students who
receive medals in the Olympiad from that school.

Finally, a town can win government funding for sports facilities and tro-
phies, according to the achievements of its schools in the Olympiad.

There are two rounds of the Olympiad. In the first, the problems are enga-
ging and set in a multiple-choice or short-answer format. Students have one
hour to solve 10 problems. Examples are given below.

Level 1, Grades 5 and 6
Problem #8 Daniela wants to enclose the property shown in the diagram. In the
diagram all pairs of consecutive sides are perpendicular and the lengths of some
of the sides are shown in meters. How many meters of fencing will Daniela have
to buy?
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(A) 140 (B) 280 (C) 320 (D) 1800 (E) 4800

Problem #10 A team earns 3 points for each win, 1 point for each draw, and no
points for a loss. Up to now, each team has played 20 games. If one of the teams
won 8 of their games and lost 8, howmany points does that team have right now?

(A) 23 (B) 25 (C) 26 (D) 27 (E) 28

Level 2, Grades 7 and 8
Problem # 6 This is the same as problem number 10 of Level 1. This illustrates
that many problems will be of interest and challenge students of different grade
levels, and in fact this is common in many competitions.

Problem #7 Twenty people decide to rent a boat for $200.00 for an outing. This
amount is to be divided equally among all of them. On the day of the outing,
some of the people decide not to go. On account of this, each person who does
go on the outing has to pay $15.00more. Howmany people decided not to go on
the outing?

(A) 10 (B) 11 (C) 12 (D) 13 (E) 14

Level 3, Grades 9 and 10
Problem # 2 A rectangular sheet of paper of length 10 cm and width 24 cm is
folded in half to make a double sheet of length 10 cm and width 12 cm. Then the
folded sheet was cut down the middle parallel to the fold making three rectan-
gular pieces. What is the area of the largest of these three pieces?

(A) 30 cm2 (B) 60 cm2 (C) 120 cm2 (D) 180 cm2 (E) 240 cm2

Problem #10 In Brazil the Celsius scale is used for measuring temperature while
in some other countries the Fahrenheit scale is used. To convert temperatures
from the Fahrenheit scale to the Celsius scale, 32 is subtracted from the
temperature in Fahrenheit degrees and the result is multiplied by 5/9. Which
of the following graphs represents the relation between the measure of the same
temperature in Fahrenheit degrees (indicated by 8F) and in Celsius degrees
(indicated by 8C)?
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Under these conditions of voluntary participation schools are nevertheless

encouraged to register all of their students, coupled with important incentives. In

the first version of the Olympiad held in 2005, there were about 12 million students

in the first round. Indeed, the coverage resembled that of a required national exam.
A second round is set for the top 5 per cent of the students from each school.

It consists of problems for which a full written solution was required. The

papers of the 600,000 students taking part in this round of the Olympiad are

graded by professors of the public universities of Brazil.
Examples of the problems are shown below.

Level 1, Grades 5 and 6
Problem #3 (of six problems) Emilia wants to fill a box with wooden cubes with

edge length 5 cm. As shown in the figure the box has the shape of a rectangular

block and some cubes have already been placed inside.

(A) How many cubes has Emilia already put in the box?
(B) Calculate the length, width and height of the box.
(C) How many cubes are required in order to fill the box if Emilia continues to

place them around those shown in the figure?
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Level 2, Grades 7 and 8
Problem #3 (of six) Jeremy’s pick-up can hold loads of up to 2000 kg. He accepts
a job of transporting 150 sacks of sugar that weigh 60 kg each and 100 sacks of
flour that weigh 25 kg each.

(A) Will Jeremy be able to do the job in five trips? Why?
(B) Describe a way he can do the job in six trips.

Level 3, Grades 9 and 10
Problem #3 (of six) In a certain city there are only two different fleets of taxis,
DonaLeopoldina andDonPedro II. DonaLeopoldina charges a fixed base fare of
$3.00 plus $0.50 for each kilometer travelled andDon Pedro II charges a fixed base
fare of $1.00 plus $0.75 for each kilometer travelled. Three friends, Bento, Sofı́a
and Helena work in that city and always take a taxi when returning home from
work. To pay less, Helena always takes taxis belonging to Dona Leopoldina’s fleet
and for the same reason, Bento always takes taxis from Don Pedro II’s fleet. Sofı́a
takes taxis from both fleets because she pays the same price for either one.

(A) How much does Sofı́a pay to take a taxi home from work?
(B) Which of the three friends travels the shortest distance between work and

home?

8.2.3.3 Discussion

This can be seen as an interesting alternative to compulsory national testing,
and one in which more ambitious objectives with respect to exposing a great
many school children—and their teachers—to challenging mathematical tasks
can be realized. Notice that the high stakes of outcomes regarding future
educational opportunities, such as streaming or university entrance, are absent
from this experience. However, incentives strictly pertinent to further opportu-
nities to confront more challenging mathematical learning seem to put the
emphasis exactly where it should be. The fact that teachers and schools are
encouraged to have all students take part reflects both the belief that some
challenging mathematical situations can be handled by all students, and the fact
learned from experience that more routine mathematical learning does not
always enable a teacher to gauge the mathematical potential of each student.
It is a creative testing design that deserves attention and it has great possibilities
for adaptation in many countries.

8.2.4 The case of Iran: upper secondary education and beyond

8.2.4.1 Curriculum and background

The last half century has witnessed three phases in the educational program of
Iran. In the first period (1956–1973), apart from pre-school education, there
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were six years each of primary and secondary school. Each level concluded with
uniform national final examinations. However, to accommodate newer topics
such as set theory, modern algebra, linear algebra and solid analytic geometry,
the Ministry of Education revised the secondary curriculum in 1973 and chan-
ged the regime to five years of primary school, three years of ‘‘guidance school’’
(middle school) and four years of high school, concluding with a national final
examination to qualify for diplomas.

The teachers were not familiar with the new topics and at first the syllabus of
the mathematics-physics branch was limited in scope. This was ameliorated
during the next few years by omitting some parts of the books and providing
teacher professional development. After 1993, the authorities decided to change
the curriculum. They reduced the high school period from four years to three
years and, more importantly, they changed the yearly system of education to the
unit system with each educational year split into two terms. At the end of the
three-year period, some students are admitted to a pre-university program of
two semesters. Mathematics is now taught in a series of four ‘‘books’’ followed
by simple calculus. Differential and integral calculus, previously studied in a
freshman course at university, is now studied.

8.2.4.2 The range of assessment in upper secondary level

Assessment of mathematics is given special importance in Iran. There are five
important levels of assessment of mathematics for students in the upper sec-
ondary level and beyond, each of which provides opportunities for students to
deal with challenging mathematics:

1. National University Entrance Examination;
2. High School Students Mathematics Olympiad;
3. Special School entrance assessment;
4. Iranian Mathematical Society Mathematics Competition for University

Students;
5. International Scientific Olympiad on Mathematics for University Students.

These assessment experiences have implications for the teaching of mathe-
matics to high school and university students, as well as for the teachers and
lecturers, and created challenges for students to learn mathematics. In Pourka-
ziemi (2006), teaching challenges in mathematics is explained. In the following
section we look briefly at these assessment processes and the challenges that are
created for non-mathematics majors.

8.2.4.3 The national university entrance examination

Passing this examination, in which mathematics is the most important part, is
necessary for university admission. It tests students on the work of the last four
years of school, a syllabus that includes geometry, algebra, trigonometry,
analytic geometry, differential and integral calculus, discrete mathematics and
statistics.
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Despite extensive preparation by teachers using previous examinations, only

about 25,000 of 400,000 participants are successful. There are 55 multiple-

choice questions based on the material in the school books to be answered in

85 minutes. They are partitioned into three groups according to difficulty.
The first group can be answered by almost all the students who have

prepared for the examination. The second harder group can be answered by

fewer students. Only creative and careful students can answer the third group of

questions. These questions are new to the students and difficult, particularly in

the time available, and success with them can make a huge difference in the

result of the examination.
Asking creative questions allows for the identification of gifted students who

can solve unfamiliar questions efficiently and fast. Once a new type of question

is used, it becomes part of the stock of questions prepared by future candidates

who try to find the shortest solution. These questions become a challenge for

both student and teacher to attempt them. The National University Entrance

Examination has been used since 1964 (www.sanjesh.org). Here are two ques-

tions from the first group:

Problem 8.2.4.1 The equation mx2 + 5x + m2 � 6=0 is given; find the

parameterm in which this equation would has two real roots with inverse value.
(1) �3 (2) �2 (3) 2 (4) 3

Problem 8.2.4.2 If a, b and c were the roots of equation 2x3� x2� 5x � 2 = 0,

what is the value of a2 + b2 + c2 + 3/4 abc?
(1) 5 (2) 6 (3) 7 (4) 8

Students in high school have two years of Euclidian Geometry. The teaching

of geometry is very important, especially because it familiarizes students with

inferential reasoning. On the other hand, it enables students to observe and

perceive the relationship between pure and applied mathematics through utiliz-

ing the coordinates. Some examples of questions in geometry are given below.

Students are expected to answer each question within one minute.

Problem 8.2.4.3 In this figure three squares with same length (1 cm) are shown.

What fraction of the length of BM is the length of AM?

(1) 1/3 (2) 1/4 (3) 2/9 (4) 1/5

Problem 8.2.4.4 In the figure, the pointD of tangency between BC and the circle

ranges between the two fixed points E and F. What happens to the circumfer-

ence and the area of the triangle ABC?
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(1) The circumference changes; the area changes.
(2) The circumference changes; the area is fixed.
(3) The circumference is fixed; the area changes.
(4) The circumference is fixed; the area is fixed.

Problem 8.2.4.5 Two sides of a rectangle lie along the coordinate axes; the

fourth vertex lies on the curve y = (x�2)2, with x lying in [0, 2]. What is the

maximum area of this rectangle?

(1) 11/9 (2) 32/27 (3) 10/9 (4) 28/27

Finally, we have two questions from the third group.

Problem 8.2.4.6 Two numbers are chosen randomly in the interval (0, 2). What

is the probability that their quotient is less than 1/3?
(1) 1/9 (2) 1/6 (3) 1/4 (4) 1/3

Solution: The sample space is
S= {(x, y)| 0 < x < 2 and 0 < y < 2}.
The given outcome is
A= {(x, y)| x/y < 1/3 or y/x < 1/3}={(x, y )| y > 3x or y < 1/3}.
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The sample space S and outcome A (shaded area) are shown in the figure.

The desired probability is the ratio of the area of A to the area of the
square:
(2/3 + 2/3)/4 = 1/3.

Problem 8.2.4.7 In triangle ABC, the two vertices B and C are fixed with
BC = 6 cm, while A moves in such a way that angle A is equal to 608. The
bisector of angle A meets the circumcircle of ABC again in D.

What is the length of the segment BD?
(1) 61/2 (2) 31/2 (3) 2 (3)1/2 (4) 4

First Approach: Students are challenged to come to grips with why all angle
bisectors have a point in common; why is this so? The clue comes from the
constancy of the angleA, which students should recognize as lying on an arc of a
circle.

From here it is then a matter of realizing that the bisector of angle A must

then always pass through the midpoint of the minor arc BC. This allows the

student to construct the appropriate diagram.
Once this is done, getting the length of BD is standard. For example, the

student might recognize that the radius of the circle from B and the segment BD

are two sides of an equilateral triangle. Or else, they might realize that it is now

enough to look at a particular position of A, in particular, when AD is a

diameter. In either case, we are led to the answer (3) as correct.
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Second Approach: As vertex Amoves on the circumcircle, B and D are fixed,

thus length of BD is invariant. When A reaches the perpendicular bisector of

BC, the triangle ABC becomes equilateral, and then AD=2R, and angles

DAB=308, BDA=608 and ABD=908, therefore BD=1/2 and AD=R.
From Pythagoras’ theorem in triangle ABD, R=2(3) 1/2. Thus answer (3) is

correct.

8.2.4.4 High school students mathematical Olympiad

A high school students mathematical Olympiad has operated in Iran since

1984. This is a three-round competition open to year 9 students with an average

above 17 out of 20. Publications and special classes in many schools help

candidates prepare. The first round is multiple-choice with four options for

each question. Out of 16000 candidates in 2007, 800 were invited to participate

in the second round. Finally, 40 students competed in the final round

(with essay-style questions) for bronze, silver and gold medals. The winners of

the gold medals will make up the Iranian IMO team, which has earned many

gold medals in the international competition. The winners of the third stage

examination also have preferred entrance to Iranian universities (olympiad.

sanjesh.org/).

8.2.4.5 Assessment of the gifted high school students to enter special schools

After the 1979 revolution in Iran, special schools were established for gifted

students at intermediate and high school levels. Every year there are entrance

exams for each one of these schools. Each one is a multiple-choice test with four

options and its most important subject is mathematics.
Less than one per cent of Iranian high school students study in these special

schools for gifted students. The great desire of students to be accepted in these

special schools has led to the previous year’s questions of the entrance exam to

these schools being discussed in the math classes of other schools.
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8.2.4.6 University students mathematics competition

Since 1974, every year there is a math competition among the university math
students in the areas of integral and differential calculus, analysis, and applied
mathematics. The organizer of this competition is the Mathematical Society of
Iran and the questions are in written form (www.ims.ir).

8.2.4.7 University Students International Scientific Olympiad in Mathematics

The University Students International Scientific Olympiad in Mathematics is a
two-stage assessment that has been organized every year since 1996. In the first
stage a five-member team is selected by each university. These teams compete
with each other in the areas of integral and differential calculus, algebra, linear
algebra and analysis.

There are around 150 participants from which 30 persons are selected. In the
next round, there is an international competition with the participants from
other countries like Armenia, Ukraine, Germany, Russia, China, Azerbaijan,
Oman, Bahrain, Indonesia and Kirgizstan. The exam is in written form and it
has encouraged many students to study mathematics.

8.3 Assessment and learning, assessment and challenge, assessment

and curriculum

In this section the relationship between the conception of the role of assessment,
the features of assessment tasks and the provision of challenge, as well as how
this relationship may affect issues of curriculum and may vary under different
conditions, are discussed.

8.3.1 The role of assessment: assessment and learning

Assessment must be viewed as part of the learning process, not as separate from
it. The lessons learned about objectivity from natural science apply as well to
social science; the measurement itself is an essential part of the situation
measured. As part of a more challenging mathematics curriculum, assessment
must challenge what students know and can do in new ways that allow them the
possibility to learn more—and to do new things with what they have learned—
while being assessed, not simply to show what they have already learned and
practiced. An important aspect of assessment might be that it induces the
student to review a body of mathematics, in the expectation that it will become
more coherent and lead to a firmer understanding.

Addressing the role of assessment in a learning culture, Shepard (2000, p. 4)
speaks about classroom assessment in the following terms. ‘‘This article is about
classroom assessment—not the kind of assessment used to give grades or satisfy

Chapter 8: Curriculum and Assessment that Provide Challenge in Mathematics

So
cie

ty
 E

di
tio

n



the accountability demands of an external authority, but rather the kind of assess-
ment that can be used as part of instruction to support and enhance learning.’’

Shepard’s starting point is the contrast that she draws between ‘‘social
efficiency curricula, behaviorist learning theories and ‘scientific measurement’ ’’
and a ‘‘social constructivist conceptual framework that blends key ideas from
cognitive, constructivist, and socio-cultural theories.’’ She elaborates on the
ways assessment practices should be consistent with and support social-con-
structivist pedagogy.

Shepard goes on to detail the use of assessment in the process of learning,
stating that improving the content of assessment is important (a mathematician
would say necessary) but not sufficient to ensure that assessment will be used to
enhance learning and be part of the learning process.

8.3.2 The role of assessment: assessment and challenge

The Norwegian case study sets itself apart from many widely accepted concepts
of assessment and standardized assessment practices, in a way that is similar to
most out-of-school challenges. Almost hidden in the discussion of the case
study presented we find the following phrase, ‘‘Moreover, any test—written
or oral—should focus on what the students know, not what they do not know.’’

A slight variation that assessment should focus on what students can do and
not on what they cannot do, leads us to consider that the inclusion of more
challenging mathematics in the curriculum should imply a change in the very
concept of assessment.

The previous two paragraphs have a nice ring to them, but it is not clear how
much content they have. One would hope that any decent assessment will focus
on what students can do. The point of assessment is to make a judgment as to
what students are capable of, presumably with a view to further action. Is an
assessment item valid without the ability to discriminate? And if it discrimi-
nates, are not some students bound to perform better than others? In particular,
might it not turn up what students cannot do? What sort of ‘‘change in the very
concept of assessment’’ is envisaged here?

On this point as well Shepard has some interesting contributions to make.
She states that ‘‘there is a close relationship between truly understanding a
concept and being able to transfer knowledge and use it in new situations. In
contrast to memorization—and in contrast to the behaviorist assumption that
each application must be taught as a separate learning objective—true under-
standing is flexible, connected and generalizable. Not surprisingly research
studies demonstrate that learning is more likely to transfer if students have
the opportunity to practice with a variety of applications while learning (Brans-
ford 1979, p. 11).

‘‘To support generalization and ensure transfer, that is, to support robust
understandings, good teaching constantly asks about old understandings in
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new ways, calls for new applications, and draws new connections’’ (Shepard
1997, p. 27). ‘‘And good assessment does the same. We should not, for example,
agree to a contract with our students, which says that the only fair test is one
with familiar and well-rehearsed problems.’’ (Shepard 2000, p. 11).

Chappuis and Stiggins (2002) echo these ideas in the following terms:
‘‘Assessment for learning occurs during the teaching and learning process rather
than after it and has as its primary focus the ongoing improvement of learning
for all students. Teachers who assess for learning use day-to-day classroom
assessment activities to involve students directly and deeply in their own learn-
ing, increasing their confidence and motivation to learn by emphasizing pro-
gress and achievement rather than failure and defeat.’’

Considerations such as these are meant for a broad audience, frequently
going under the name of formative assessment. However their pertinence for
our discussion about the introduction of more challenging mathematics into the
curriculum, not as some sort of decorative ‘‘enrichment’’ but as a fundamental
and integral component, and about mirroring that core role with the introduc-
tion of challenging assessment activities as well, is patent.

For example, Stiggins (2002) speaks about looking for high quality responses
to an open-ended math problem, supports student self-assessment and accom-
panies his remarks with a novel assessment scheme.

As an aside, it is indeed true that in many marking schemes used in challen-
ging problem-solving competitions this same element is present. Even on multi-
ple-choice type competitions it is common that points be given for what a
student has accomplished, marks are given for correct answers and for pro-
blems left unanswered (a sign the student self-assesses that he does not know),
and nothing is subtracted for incorrect ones.

Major challenges of mathematics education are thus related to developing
and linking different competencies in solving problems through relating the
underlying conceptual and procedural knowledge. This seems to get at the
essence of the present chapter. Whatever we do in the classroom is governed
by what we regard as effective learning of mathematics. If this involves resour-
cefulness and making connections, ability and confidence to tackle all sorts of
problems, then this provides an incentive to incorporate something that will
achieve this in our examinations and classroom practice.

In sum, emphasizing and analyzing, eliciting and bringing to the fore what
students can do, rather than focusing on what they might not be able to do, is
the vantage point which makes possible the incorporation of challenging and
worthwhile assessment into the learning process.

8.3.3 The role of assessment: assessment and curriculum

The case of Singapore shows that challenging mathematics can be a significant
part of testing in a standard nationwide setting. Such inclusion broadcasts an
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important message to teachers, to parents, to students and to the society as a
whole. Furthermore, the crux of the ‘‘challenge’’ facing contemporary mathe-
matics education itself is clearly delineated in the Singapore case. Even test
items for struggling students required some level of challenge. This shows that
the education system placed an emphasis on every pupil having an opportunity
to engage in some challenging situations.

There is a call worldwide for more challenging curricula, and the Singapore
and Norway experiences address the implications for testing and assessment
practices.

Among many others, Oakes andWells (1998) have focused on this point, and
several years later the Harvard Education Letter of 2005 continues to find it
necessary to underline not just the desirability, but the necessity of greater
challenges within the curriculum for all students.

Although general acceptance of this fact may be lagging, with the apparent
reason of accountability testing by external authorities, commitment to more
challenging curricula for all students is clear in undergraduate mathematics; a
recent international conference took ample notice of the need for challenges,
and indeed in the literature many of the references to formative assessment
speak to the undergraduate level. It is necessary that some control of the
situation shift from a lecturer who delivers a body of results to the students
who under the guidance of their professor wrestle with significant mathematics.
In the words of Paul Halmos, ‘‘the hardest part of teaching by challenging is to
keep your mouth shut.’’

Perusing the abstracts from the Second International Conference on the
Teaching of Mathematics (at the undergraduate level) held in Hersonissos,
Crete, in 2002, we found an interesting spread of references to challenge in the
undergraduate mathematics curriculum.

Georgieva (Pacific University) speaks about a course in which a solution
manual for problems given as homework was distributed, but that in fact there
had been no blind copying, stating that ‘‘we attribute this fact to making clear
early in the semester that the tests are extensive both in content and level
of intellectual challenge. We observe a big jump in the students’ motivation.’’
(p. 142)

Guineo & Martı́nez from Uruguay propose projects to their students based
on the motivation given by real-life challenges (p. 153).

Iqbal &Tahir speak of their objectives in a course dealing with algorithms (p.
182), among them to ‘‘equip students with the necessary tools and techniques,
and above all the confidence, required in solving non-textbook problems.’’ This
objective is ‘‘essentially a creative effort containing all the ingredients of a
thriller: adventure, excitement, challenge and suspense.’’

Po-Hung Liu, speaking on developing views on mathematical thinking,
describes challenges given to students when asking them to discover inadequa-
cies in concepts of the calculus found in historical texts and contexts (p. 236).

Nolan, studying pre-service teachers’ conceptions when faced with challen-
ging mathematics, states clearly (p. 281) that: ‘‘Factors other than ability
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influence students’ approaches to challenges’’ and cites factors such as their
persistence (or withdrawal) and their use of cognitive skills.

8.3.4 Competitions and curriculum

Out-of-school activities, such as competitions on all levels, can be seen as model-
ing for teachers the sorts of challenging, intriguing and entertaining mathematics
that are central to a deep and broad understanding of the subject, as well as to
giving opportunities to develop and enhance students’ mathematical thinking.

Liu (2004) describes this possibility as follows: ‘‘Teachers can benefit from
mathematics competitions because they are a fertile ground for hunting down
good problems as classroom examples or homework assignments.’’

Competitions such as the Hunter Primary Competition state among their
aims such things as to ‘‘encourage the broad and in-depth coverage’’ of the
mathematics curriculum (Bishop 2002).

Speaking about the UK Primary Mathematics Challenge Peter Bailey (2005)
offers this view: ‘‘It is not the intention to set problems on secondary topics, but
rather to set problems on primary topics that can lead to discovery and further
work at this level.’’

Rounding out this ideawith the aims of theMathematics Challenge forYoung
Australians, Dowsey and Henry (2000, p. 39) give a prominent place to ‘‘provid-
ing teachers with some excellent problems as resources for their own classrooms.’’

8.4 Knowledge gaps and future research questions in this domain

In this section we look at some possible research questions for challenging
mathematics in the classroom. In some cases we consider extensions of research
already being carried out in the general curriculum.

It seems clear that research into assessment practices in the classroom invol-
ving mathematical challenges is scanty. Therefore, the questions to be
addressed are abundant.

8.4.1 Examining opposing views of assessment and their
relationship to challenging mathematics

Research must shed further light on the opposing views of assessment that can
be found in the mathematics education community.

For example, compare Shepard’s remarks, ‘‘If we wish to pursue seriously
the use of assessment for learning, . . ., it is important to recognize the pervasive
negative effects of accountability tests and the extent to which externally
imposed testing programs prevent and drive out thoughtful classroom
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practices’’ (Shepard 2000, p. 9), with a more traditional view of assessment
(NCTM 2000): ‘‘Assessment should support the learning of important mathe-
matics and furnish useful information to both teachers and students.’’

This second stance is usually interpreted to mean that assessment should
‘‘rank’’ students, for this is the meaning most commonly given to the phrase
‘‘furnish useful information to both teachers and students’’. This ranking
involves setting a standard—which may be high—and then seeing how each
student compares to the standard, which traditionally means by how much he
or she falls short of the standard.

It is not possible to properly analyze these views without going into the issue
of the purpose of the assessment and the pertinence of the standard to it. Where
an assessment is made, for example, in order to decide on admission to college
or university, we need to study how judgments based on the assessment are in
fact borne out by the future progress of the student. Are the criteria authentic
enough that no students are spuriously held back or admitted into a situation
that they cannot handle? If the assessment is made for certification, for exam-
ple, of graduation from secondary school, can we improve the mechanisms to
ensure that the students indeed have the specified competencies?

How can studies involving the introduction of challenges into the mathema-
tical experience of every student shed light on the relative benefits of each of
these views?

8.4.2 What is the role of challenging mathematics in the relationship
between assessment and learning?

In their review of research on formative assessment Black and Wiliam (1998)
state that ‘‘One of the outstanding features of studies in assessment in recent
years has been the shift in the focus of attention, towards greater interest in
interactions between assessment and classroom learning and away from con-
centration on the properties of restricted forms of test which are only weakly
linked to the learning experiences of students.’’

As related by Black and Wiliam (1998), ‘‘Ames (1992) started from the
evidence that ‘mastery’ (i.e. task-related) goals can secure and review the salient
features of learning environments that can help secure these advantages. She
concludes that evaluation of students should focus on individual improvement
and mastery, but before this the tasks proposed should help students to estab-
lish their own self-referenced goals by offering a meaningful, interesting and
reasonably demanding challenge.’’ Some key words in their on-going analysis
are self-evaluation and self-directed learning.

Furthermore, when examining links to learning theories, Black and Wiliam
(1998) tell us: ‘‘The arguments given by Zessoules and Gardner (1991) show
how any assessment changes of the types described above [relating to the ideas
of Ames and similar ideas] might be expected to enhance learning if they help
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students to develop reflective habits of mind. They further argue that such
development should be an essential component in programs for the implemen-
tation of authentic assessment in classroom practice. Assessment is to be seen as
a moment of learning and students have to be active in their own
assessment. . ..’’

What kinds of reflective habits are elicited by challenging mathematics in the
classroom and in classroom assessment?

In particular, can the use of challenging mathematics in assessment better
help the student pull together the threads of mathematics previously encoun-
tered to obtain a more coherent view of a mathematical area and a better sense
of their growing mathematical power?

What kinds of student activity are triggered by challenging mathematics and
challenging assessment tasks?

Furthermore, Black and Wiliam (1998) relate that: ‘‘In their detailed quali-
tative study of the classroom characteristics of two outstanding high school
science teachers, Garnett and Tobin (1989) concluded that the key to their
success was the way they were able to monitor for understanding. A common
feature was the diversity of classroom activities with an emphasis on frequent
questioning in which 60 per cent of the questions were asked by the students.’’

One research question might focus on precisely the kinds of mathematics
that elicit deep questioning by the students. Elwood and Klenowski (2002) have
this to say: ‘‘Research suggests that to improve learning and indeed teaching,
educational assessment must be formative in both function and purpose and
must put the student in the centre of the assessment process.’’

How can this be done in relation to challenging mathematics?

8.4.3 What is the nature of good classroom assessment?

Cochairman of this Study Peter Taylor expressed the following position at the
Study Conference, worthy of exploring: ‘‘A good assessment is one which has a
balance with some questions requiringmathematical reasoning which tests their
[students’] ability to progress and research unknown areas.’’

This quotation puts the spotlight on the idea that assessment is not a
termination, but a stage in the mathematical development of the student. This
pulls together some of the ideas raised in earlier sections about deeper under-
standing and the ability to move on to a more advanced stage.

8.4.4 What are the differences in focus for challenging mathematics
in the light of assessment to determine ability and assessment
to determine achievement?

Ecclestone (2002) makes the distinction between behaviorist–based assessment as
extrinsic, focused on rewards and short-term goals, and humanist-constructivist
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based assessment as intrinsic, focused on higher levels of creativity. Shemakes the
further contrast that constructivists look at performance and achievement as well
as effort while behaviorists consider ability as fundamental. In her view, forma-
tive assessment is linked with critical reflection and engagement.

Implanted in the classroom is a model of assessment that is sometimes
friendly when it comes to designing difficult tasks, but is inimical to challenge.
How can the difference for the student between difficult and challenging mathe-
matics be delineated by assessment practices? How has challenge been included
in tests designed to measure achievement? What are the effects as measured by
these tests? What are the implications for challenging mathematics of the
difference between achievement tests in the sense expressed by Ecclestone and
achievement tests as defined in the dictionary of psychology?

Achievement test: A collection of tests that measure the student’s profi-
ciency and accumulated knowledge of specific subject areas. An achievement
test is a standardized test that is designed to measure an individual’s level of
knowledge in a particular area. Unlike an aptitude test which measures a
person’s ability to learn something, an achievement test focuses specifically
on how much a person knows about a specific topic or area such as math,
geography, or science.

8.4.5 What are the pedagogical differences and effects attained by
enrichment and challenge?

Another possible research question is: What is the difference between enrich-
ment and challenge? What does each mean with regard to the aims of the
curriculum, the belief in the promise or capacity of each individual student?
This is a question which invites further exploration, however we believe that
enrichment is a process which does not necessarily include challenge.
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Concluding Remarks

Many educational developments have led to the situation that engendered this
ICMI Study. The typical classroom regime is evolving towards a less author-
itarian more child-centred approach, with increasing attention to the present
benefits conferred on the pupil by schooling. Teachers are encouraged to look
beyond the acquisition of skills to ensure that their charges gain understanding
and appreciation of mathematical topics in the syllabus. Further, there has been
enormous growth not only in mathematical contests of many types but of clubs,
exhibitions, participatory fairs and events; these have generated a wealth of
examples of mathematical problems, investigations and projects.

Further, access to resources and ease of communication made possible by
technology provides an environment in which it becomes realistic and desirable
to introduce challenge into the mathematical edusphere.

In this Study Volume we present the culmination of many years’ work by
many notable practitioners from a variety of educational and mathematical
backgrounds, work that explored the growing opportunity for teachers to
provide challenges for their students. A freer ideological atmosphere along
with the wealth of resources available through courses, conferences and the
Internet have allowed many educators to be innovative both within and without
the classroom.

The authors of this Study feel that the scope and value of challenge is not
adequately understood. Compared with other fields of educational study, the
amount of research and literature directly dealing with challenge is sparse.

The authors also hope that the reader will conclude that challenges can not
only take various forms in and beyond the classroom but are equally applicable
to students of all standards. Indeed the authors are convinced of the value of
challenging students and lay people in various ways. Considerable research is
needed to test this belief as well as to find the best ways to achieve the goals of
making mathematics intelligible, enjoyable and enriching to those who must or
will encounter it.

This project depends on the generous collaboration of mathematicians and
educationists. The task of the former is to suggest suitable material, ensure its
integrity and to provide the professional edge inmonitoring its propagation and
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use. The task of the latter is to deal with psychological and cognitive issues, to
suggest and analyze regimes that will allow teachers and expositors to deploy
challenges and assess their effectiveness.

Our hope is that this Study Volume highlights the main issues and inspires
the ongoing research that this topic deserves.

June 2008 Edward J. Barbeau
Peter J. Taylor

Concluding Remarks
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Maths à Modeler, 192, 193, 197, 198
Media, 75, 82
Memorization, 207
Mentoring, 77
Metropolitan Museum of Art, New York,

199, 200
Microsoft problem, 29
Monoid (Germany), 81
Montessori school, 85
Monty Hall (Car-and-goats) problem, 27
Moscow Mathematical Olympiad, 44
Multimedia mathematical lessons, 105
Multiple intelligences, 101
Multiple Intelligences Theory (Gardner), 245

N

National Assessment of Educational
Progress (NAEP), 229

National Center for Educational Statistics
(NCES), 219

National competitions
Brazil, 296
Iran, 302

National Council of Teachers of
Mathematics (NCTM), 208, 312

Nice University, 121
Non-traditional challenges, 49
Northern Kentucky University, 212
Norwegian Metrology Service, 294
NRICH, 115, 126–127
Number producer, 146
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Numeracy Development Projects
(NDP), 234

Numerical Working Spaces (NWS), 109,
110, 111, 112

O

Olymon, 79
Olympiad for public schools (Brazil), 60
Ontario Math Olympics, 62
Open box problem, 255, 256, 257–258
Open-ended problems, 173
Open questions, 264
Open University (UK), 147
Optimization, 14, 34, 195
Oral examinations, 295
Organizational issues, 172
Orsay, 187
Ottawa University, 83

P

Papua New Guinea, 156, 157, 159
Parabola (Australia), 65
Paradoxes, 30, 161, 163, 165
Pascal’s triangle, 140, 141, 142–143, 144
Pedagogical Content Knowledge (PCK),

206, 216, 218, 228, 230, 265
Pedagogical obstacles, 109
Pedagogy, 19, 45, 105, 205, 221, 223, 226
Philadelphia Community College, 153
Pictorial heuristics, 290
Pigeonhole principle, 33, 215, 273
Polyhedra and Geodesic Structures, 189, 190
Popularization, 85, 92, 93
Prescriptive Knowledge, 218
Primary School Leaving Examination

(PSLE) (Singapore), 287
Problems

algebra, 15, 17, 33, 39, 43, 161
arithmetic, 13, 43, 161, 208–209, 259
cases, 35
combinatorics, 19, 33, 39, 137, 138, 140
contradiction, 35
discrete optimization, 34
geometry, 20, 33, 39, 43, 107, 151,

177, 189
graph theory, 34
integer, 16
invariance, 37
inverse thinking, 37
logic, 30, 156
patterns, 150, 215

probability, 23, 31, 153, 155, 297
statistics, 155

Problem solving, 297
Problem-solving curriculum, 286
Professional development See Teacher

preparation and development
Programme for International Student

Assessment (PISA), 32
Project M3: Mentoring Mathematical

Minds, 228, 260
Psychological factors, 8, 46, 113, 136, 137,

172, 234, 246
Publications, 65, 90, 93, 99
PUBLIREM, 122
Puzzles, 2

Q

Questacon (Canberra), 70
Quincy Senior High School (USA), 173, 189

R

Rallye mathématique de la Sarthe, 184
Rallye mathématique de Paris, 173, 183, 184
Rallye Mathématique Transalpin, 231
Real-world tasks, 246, 253, 268
Research, 30, 66, 67
Research agenda, 219
Research-like activities, 56, 66, 69
Research Science Institute (RSI) (USA), 67
Research Situations for the Classroom

(RSC), 192, 193, 197, 198
Resilience, 247, 248
RITEMATHS, 254, 265, 267
Rotating table, 30
Rutgers University (USA), 80, 139

S

SalsaJ, 186
Sand pouring, 173, 185
Scaffolding, 98, 247, 254, 256, 259, 263,

265, 268
Schema, 134, 135, 136, 137, 138, 145, 166
Schubfachprinzip. See Pigeonhole principle
Scientific instruments (Italy), 74
Second International Conference on the

Teaching of Mathematics, 310
Semiotic mediation, 179, 180
Shot on goal task, 254
ShowMath, 98
Six circles problem, 209–210
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Socially emergent cognition, 146
Socrates Program, 66
Software, 40, 100, 102, 104, 107, 186, 229
Steiner triple system, 273
Straightedge and compasses, 107, 200, 201
Student characteristics, 46
Student experts, 265
Student heuristic, 145, 261, 290
Student inquiry, 228
Student knowledge and beliefs, 264, 272
Student understanding, 244
Subject-Matter Content Knowledge (SCK),

217, 218, 265
Sudoku, 2, 27
Symmetry, 16, 18, 21, 199

T

Talent levels (Usiskin), 45
Task complexity, 268
Task design, 253, 259
Task sequences, 6, 21, 25, 27, 151, 216, 228
Taxicab problem, 140, 143
Teacher Action Education (China), 231, 232
Teacher as collaborator, 120
Teacher–innovator model (4–I Model),

230–231
Teacher knowledge and beliefs, 217

Beliefs, 218
Formal Knowledge, 218
Intuitive Knowledge, 218

Teacher motivation, 219
Teacher preparation and development, 8,

226, 272
Teacher role, 221, 222, 223
Teacher as researcher(s), 198, 234, 272
Teachers as models, 226, 228
Teachers’ Systematic Knowledge, 218
Teaching styles, 244
Technological environment, 112
Technology, 7, 97, 259, 268
Technology advantages, 107
Technology issues, 99
Tennessee Value-Added Assessment

System, 208
Tennis ball problem, 243, 270
Textbooks, 15, 47, 114, 263, 290, 291
Thinking Schools, Learning Nation

(Singapore), 286
Three cards problem, 154
Tiling, 73
Tools

digital, 102, 103, 104, 105

Tournament of Towns, International
Mathematics, 32, 34, 37, 38, 62, 78, 93

Trends in International Mathematics and
Science Study (TIMSS), 32,
225, 229

Triangle of odd numbers, 209, 212

U

UK Mathematics Trust, 32
UK Primary Mathematics

Challenge, 311
UM+ (Bulgaria), 78, 79
Union of Bulgarian Mathematicians

(UBM), 68
University, 55, 83, 90, 116, 173, 177, 183, 186,

189, 307
University of Ballarat, 254
University of Canberra, 60, 85
University Gießen, 72
University of Göttingen, 75
University of Halle, 75
University of Hamburg, 84
University of Jena, 81
University of Kaiserslautern, 84
University of Leipzig, 81
University of Mainz, 81
University of Melbourne, 254
University of Modena and Reggio Emilia, 70
University of Oxford (UK), 146
University of Technology, Lae

(PNG), 156
University of Ulm, 85
University of Waterloo, 32, 59, 78, 87
Utrecht University, 63

V

Vestfold (Norway), 147
Videotaping, 233
Vidyaranya High School (India), 181
Vilnius University, 80
Virtual Math Team (VMT), 127
Vorstellung, 207, 208, 212

W

Walking problem, 275 See taxicab problem
Web Interactive Mathematics Server

(WIMS), 121
Web sites, 82, 105
World Compendium of Mathematics

Competitions, 60
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World Federation of National Mathematics
Competitions (WFNMC), 56, 63

Wunderkammern, 70

W

Yekan (Iran), 65

Z

Zero Dropout Plan
(Argentina), 150

Zone of Proximal Development (ZPD)
(Vygotsky), 98, 148, 165, 172,
220, 262
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NEW ICMI STUDY SERIES

1. M. Niss (ed.), Cases of Assessment in Mathematics
Education. An ICMI Study. 1992 (The 6th ICMI Study) 0-7923-2089-1 HB

2. M.Niss (ed.), Investigations into Assessment in Mathematics
Education. An ICMI Study. 1992 (The 6th ICMI Study) 0-7923-2095-6 HB

3. G. Hanna (ed.), Towards Gender Equity in Mathematics

Education. An ICMI Study. 1996 (The 7th ICMI Study)

0-7923-3921-5 HB

0-7923-3922-3 PB
4. A. Sierpinska and J. Kilpatrick (eds.), Mathematics Education

as a Research Domain: A Search for Identity. An ICMI Study.

1998 (The 8th ICMI Study)

0-7923-4599-1 HB

0-7923-4600-9 PB
5. C. Mammana and V. Villani (eds.), Perspectives on the

Teaching of Geometry for the 21st Century. An ICMI Study.

1998 (The 9th ICMI Study)

0-7923-4990-3 HB

0-7923-4991-1 PB
6. J. Fauvel and J. van Maanen (eds.), History in Mathematics

Education. The ICMI Study. 2000 (The 10th ICMI Study)
0-7923-6399-X HB
1-4020-0942-9 PB

7. D. Holton (ed.), The Teaching and Learning ofMathematics at

University Level. An ICMI Study. 2001 (The 11th ICMI Study)

0-7923-7191-7 HB

1-4020-0072-3 PB
8. K. Stacey, H. Chick and M. Kendal (eds.) The Future of the

Teaching andLearning ofAlgebra: The 12th ICMI Study. 2004 1-4020-8130-8 HB

9. F.K.S. Leung, K.-D. Graf and F.J. Lopez-Real (eds.)
Mathematics Education in Different Cultural Traditions- A
Comparative Study of East Asia and the West: The 13th ICMI

Study. 2006

0-387-29722-7 HB

10. W. Blum, P. L. Galbraith, H.-W. Henn, and M. Niss (eds.),
Modelling and Applications in Mathematics Education:
The 14th ICMI Study. 2007

0-387-29820-7 HB

11. R. Even and D. Loewenberg Ball (eds.) The Professional
Education and Development of Teachers of Mathematics:
The 15th ICMI Study. 2009

978-0-387-09600-1 HB

12. E. J. Barbeau and P. J. Taylor (eds.) Challenging
Mathematics In and Beyond the Classroom: The 16th ICMI
Study. 2009

978-0-387-09602-5 HB

Informationon the ICMIStudyprogramandon the resultingpublications, includingStudies
1 to 5, can be obtained at www.mathunion.org/ICMI/ or by contacting the ICMI Secretary-
General, whose email address is available on the ICMI website.
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