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UPPSALA

HPM2004 @ ESU4

PREFACE

This volume contains the texts of the contributions presented at the HPM 2004 Satellite Meeting of
ICME 10, conjointly with ESU 4 (the fourth European Summer University on History and
Epistemology in Mathematics Education). This double event was organized by the Department of
Mathematics of the University of Uppsala (Sweden), in Uppsala, in the week following ICME 10
in Copenhagen (Monday, July 12 - Saturday, July 17, 2004).

The book starts with an account of the first 25 years of HPM (by Florence Fasanelli & John
Fauvel) and on the history of ESU (by Evelyne Barbin, Nada Stehlikova & Constantinos
Tzanakis). These contributions remind us the spirit of HPM, which permeates the Summer
Universities, as well. This spirit is much more than the use of history in the teaching of
mathematics; it is the conception of mathematics as a living science, a science with a long history,
a vivid present and an as yet unforeseen future, together with the conviction that this conception of
mathematics not only should be the core of the teaching of mathematics, but also it should be the
image of mathematics spread out to the outside world. Through history we see that mathematics

e s the result of contributions from many different cultures,

e has been in constant dialogue with other sciences,

e has been a constant force of scientific, technical, artistic and social development,
and that

o the philosophy of mathematics has evolved through the centuries,

e the teaching of mathematics has developed through the ages.

The event held in Uppsala in 2004 brought together historians of mathematics (wishful to inform
about their research), mathematics teachers (eager to get insights on how the history of
mathematics may be integrated into teaching), mathematicians (willing to learn about new
possibilities to teach their discipline), mathematics educators and all those with an interest in
mathematics, its history, and its role nowadays and in the past, both as a scientific activity and as
part of education. A group of pre-service teachers, involved in the European project “Quality
class”, attended the conference as well. The participants had the opportunity to share their insights
and experiences of integrating the history of mathematics into teaching. The activities developed
around the following main themes:

e Topics in the history of mathematics and mathematics education

e The role of the history of mathematics in the teaching and learning of mathematics

e The role of the history of mathematics in teachers’ training

e The common history of mathematics, science, technology and the arts

e Mathematics and cultures

e Historical, philosophical and epistemological issues in mathematics education
The activities consisted of invited talks, panel discussions, workshops, oral communications and
posters. The contributions were refereed by members of the scientific program committee on the
basis of an extended abstract. A provisional edition of the proceedings' was distributed on the

'Furinghetti, F., Kaijser, S., Vretblad, A. (eds.), 2004, Proceedings of HPM2004 and Fourth Summer
University, Uppsala (Sweden): University of Uppsala.
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spot, to help the participants plan their participation in the activities.

After the meeting, authors were invited to review their texts on the basis of the feedback they
gained from the audience in Uppsala. The present volume contains the revised papers of the oral
communications - including those that for one reason or another did not appear in the original
edition-, texts describing the workshops, a synopsis of the panel discussions and poster
presentations. For a few contributions the authors provided only an abstract. The content of each
contribution, and the choice of language, was left to the authors’ responsibility (French and
English were the official languages). We feel that, the variety of levels of use of English in this
volume and the inevitable weakness of some texts in this respect, definitely stress the character of
internationalism of the HPM and ESU meetings, however, without prohibiting the textual
understanding of the contributions. We thank the authors, who willingly amended their papers for
this revised edition. One of us (C.T.) was asked to join the editorship as the chair of the HPM
Group appointed during this meeting in Uppsala for the period 2004-08, thus marking the
continuity of the HPM activities and reflecting the spirit of the HPM community.

Fulvia Furinghetti
Sten Kaijser
Constantinos Tzanakis

viii



THE PROGRAM SCIENTIFIC COMMITTEE
Fulvia Furinghetti (chair of the HPM Study Group for 2000-04) - Dipartimento di Matematica,
Universita di Genova, Italy
Sten Kaijser (secretary) - Department of Mathematics, University of Uppsala, Sweden
Abraham Arcavi - Weizmann Institute of Science, Rehovot, Israel
Evelyne Barbin - Centre Frangois Viéte, IREM des pays de la Loire, Université de Nantes, France
Gail FitzSimons - Faculty of Education, Monash University, Victoria, Australia
Paulus Gerdes - Ethnomathematics Research Center, Maputo, Mozambique
Wann-Sheng Horng - Department of Mathematics, National Taiwan Normal University, Taipei,
Taiwan
Victor Katz - University of the District of Columbia in Washington DC, USA
Jan van Maanen - Freudenthal Institute, University of Utrecht, The Netherlands
Sergio Nobre - Departamento de Matematica, UNESP, Rio Claro SP, Brazil
Luis Radford - Ecole des sciences de I’éducation, Université Laurentienne, Sudbury, Canada
Eleanor Robson - Oriental Institute, Oxford, UK
Gert Schubring - Institut fiir Didaktik der Mathematik, Universitét Bielefeld, Germany
Man-Keung Siu - Department of Mathematics, University of Hong Kong
Constantinos Tzanakis - Department of Education, University of Crete, Greece

THE LOCAL PROGRAM COMMITTEE
Sten Kaijser (chair) - Department of Mathematics, University of Uppsala, Sweden
Kajsa Brating - Department of Mathematics, University of Uppsala, Sweden
Gunnar Berg - Department of Mathematics, University of Uppsala, Sweden
Zsuzsanna Kristofi - Department of Mathematics, University of Uppsala, Sweden
Anders Oberg - Department of Mathematics, Chalmers University of Technology, Gothenburg,
Sweden
Johanna Pejlare - Department of Mathematics, University of Uppsala, Sweden
Johan Prytz - Department of Mathematics, University of Uppsala, Sweden
Staffan Rodhe -, Department of Mathematics, University of Uppsala,
Anders Vretblad - Department of Mathematics, University of Uppsala, Sweden



R®Y and p
<0 4y

" HPM

% $
Mg

)
N

feol

*

A909%

THE INTERNATIONAL STUDY GROUP ON THE RELATIONS BETWEEN THE
HISTORY AND PEDAGOGY OF MATHEMATICS: THE FIRST TWENTY-FIVE
YEARS, 1976-2000

Florence FASANELLI, John G. FAUVEL'

There has been interest in the question of how history of mathematics can help mathematics
teachers and learners since at least the time of David Eugene Smith and Florian Cajori, that is,
from the 1890s onwards, but a widespread international movement began to take shape only three-
quarters of a century later, in the 1970s. The intervening period is full of interest and deserves a
historical study of its own, but the present account picks up the story at the point in 1972 when
there occurred a confluence between growing interest within the mathematics education
community (seen notably in the NCTM’s celebrated 31st Yearbook of 1969, Historical topics for
the mathematics classroom) and an increased readiness of international bodies to take such
interests and concerns on board.

1972

What is now called “HPM” sprang from a Working Group organised at the second International
Congress on Mathematical Education (ICME), held in Exeter, UK, in 1972. This was only the
second such international congress, the first one having been four years earlier, in Lyons, France.
These congresses, which have been held every four years since, are organised by ICMI, the
International Commission on Mathematical Instruction. This international body was the result of a
suggestion in L 'Enseignement Mathématique in 1905 by David Eugene Smith, and was originally
established in 1908 at the International Congress of Mathematicians held in Rome, its first chair
being Felix Klein. After some interruption of activity between and during the two world wars, it
was reconstituted in 1952 as a commission of the International Mathematical Union (IMU). The
IMU itself was formed at the 1920 International Congress of Mathematicians, held in Strasbourg.
The history of these international bodies is thus closely linked with twentieth century
internationalisation of mathematical activity, in particular with the efforts of mathematicians to re-
energise international co-operation after major wars, as part of the healing and reconciliation
process and in a spirit of optimism about building a better future for everyone. At the 1972 ICME,
a Working Group (EWG 11) on ‘History and pedagogy of mathematics’ was organized by Phillip
S. Jones (University of Michigan, US) and Leo Rogers (Roechampton Institute of Higher
Education, UK), both influential figures in the nascent movement over the next few years®.

" Deceased.
? Geoffrey A. Howson (ed.), 1973, Developments in Mathematical Education Proceedings of the Second
International Congress on Mathematical Education, Cambridge: Cambridge University Press, p. 39. This
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1976

The work of this group was continued at the next ICME (ICME 3), held in Karlsruhe, Germany, in
1976 (August 16-21), with three sessions, chaired by Phillip Jones and Roland Stowasser
(Bielefeld, Germany), under the title of ‘History of mathematics as a critical tool for curriculum
design’. Phillip Jones, Henk Bos, Roland Stowasser, Barnabus Hughes, Leo Rogers, Jean Nicolson
and Graham Flegg gave talks in these sessions’. At this meeting, in the words of Leo Rogers’
report, “It was clear that participants were anxious to bring to the notice of the Congress
Organizing Committee the importance and the widespread interest in historical-pedagogical
studies in mathematics”, and a resolution was forwarded to the secretary of ICMI proposing the
setting up of a system to ensure regular sessions at future ICMEs on the relations between history
and pedagogy of mathematics. The ICMI Executive Committee welcomed these proposals and at
its subsequent meeting approved the affiliation of the new Study Group, under the title
International Study Group on Relations between History and Pedagogy of Mathematics,
cooperating with the International Commission on Mathematical Instruction. (This somewhat
unwieldy title is now generally shortened to “HPM”.) The “principal aims” of the Study Group
were given in these words*.

1. To promote international contacts and exchange information concerning:

a) Courses in History of Mathematics in Universities, Colleges and Schools.

b) The use and relevance of History of Mathematics in mathematics teaching.

c)Views on the relation between History of Mathematics and Mathematical Education at all levels.

2. To promote and stimulate interdisciplinary investigation by brining together all those interested,
particularly mathematicians, historians of mathematics, teachers, social scientists and other users of
mathematics.

3. To further a deeper understanding of the way mathematics evolves, and the forces which contribute to
this evolution.

4. To relate the teaching of mathematics and the history of mathematics teaching to the development of
mathematics in ways which assist the improvement of instruction and the development of curricula.

5. To produce materials which can be used by teachers of mathematics to provide perspectives and to
further the critical discussion of the teaching of mathematics.

6. To facilitate access to materials in the history of mathematics and related areas.

7. To promote awareness of the relevance of the history of mathematics for mathematics teaching in
mathematicians and teachers.

8. To promote awareness of the history of mathematics as a significant part of the development of cultures.
At the same Karlsruhe ICME, another permanent study group was set up, the International Group for the
Psychology of Mathematics Education (PME). This group too has flourished in the years since, holding
annual meetings in different countries and issuing a PME Newsletter twice a year as well as conference
proceedings and other scientific publications.

To complete the picture of ICMI study groups, there are two further permanent groups which have
come on stream more recently: IOWME, the International Organization of Women and
Mathematics Education, which is particularly concerned with issues relating gender and
mathematics education; and WFNMC, the World Federation of National Mathematics

includes a footnote ‘A longer account of the group’s discussions is to appear in Notae De Historia
Mathematica the Newsletter of the Commission on History of Mathematics obtainable from Professor I. O.
May, Historia, Dept. of Mathematics, The University, Toronto 181, Canada’.

*Historia Mathematica, 4 (1977), 94-95. The first report about HPM appeared in the ICMI Bulletin N. 10
March 1978, 26-27.

*Historia Mathematica, 5 (1978), 76.
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Competitions. The latter is a confederation of people interested in the creation of school
mathematics competitions and using them to develop the talents of young people. All four ICMI
Study Groups share certain features, such as being rather loosely structured as well as being very
dependent on the commitment and enthusiasm of a few already busy individuals to keep the
momentum going and ensuring the organization survives and develops. HPM has been very
fortunate in that each generation of members has managed to inspire younger folk to pick up the
baton and continue to work for the group’s survival and growth, enthusing an ever-widening circle
of teachers and others across the world.

1978

In the years after the Karlsruhe congress, the spirit of the HPM Group’s activities began to
percolate through other meetings. For instance, the International Congress of Mathematicians
(ICM) in Helsinki held two years later (15-23 August 1978) had a session on relations between
history and pedagogy of mathematics, chaired by Graham Flegg (Open University, UK). At this
meeting two roles for the HPM Study Group were identified: disseminating information on
publications and resources in the history of mathematics, and organizing lectures and seminars at
international gatherings such as ICM and ICME.?

1980

ICME 4 was held at the University of California, Berkeley over August 10-16, 1980. The HPM
contributions were planned and flagged well in advance’. At that meeting Bruce Meserve
(University of Vermont, USA) was elected co-chair of HPM, alongside Roland Stowasser, in place
of Phillip Jones. Two sessions were devoted to themes of interest to the group, “How can you use
history of mathematics in teaching mathematics in primary and secondary schools?” and “The
relevance of philosophy and history of science and mathematics for mathematical education”. Four
lectures were given in each of these sessions, all published in the conference proceedings.. Nor
were insights into the area confined to these sessions. The plenary lecture given to the Congress by
the distinguished Dutch mathematics educator Hans Freudenthal valuably included his succinct
views on the “ontogeny recapitulates phylogeny” debate which has long been a concern to those in
HPM circles:

History of mathematics has been a learning process of progressive schematising. Youngsters need
not repeat the history of mankind but they should not be expected either to start at the very point
where the preceding generation stopped. In a sense youngsters should repeat history though not the
one that actually took place but the one that would have taken place if our ancestors had known what
we are fortunate enough to know.

Hans Freudenthal, ‘Major problems of mathematics education’* Proceedings of ICME 4, p. 3.

* Historia Mathematica, 6 (1979), 204.

® Historia Mathematica, 7 (1980), 80-81. In fact the sessions recorded in the proceedings (next footnote)
do not seem to follow the plans announced in advance in Historia Mathematica.

7 Marilyn Zweng, et al. eds. (1983) Proceedings of the Fourth International Congress on Mathematical
Education, Boston: Birkhduser. On pages 396-404 are the four papers given in the session on “How can you
use history of mathematics in teaching mathematics in primary and secondary schools?”: Casey Humphreys
(Minneapolis, USA), ‘Use of the history of mathematics as a pedagogical tool,” 398-400; Leo Rogers
(London, UK), ‘The mathematics curriculum and the history of mathematics,” 400-402; Maassouma Kazim
(Cairo Egypt), ‘The use of history of mathematics in the teaching of mathematics in secondary education’,
402-403; Hans Niels Jahnke (Bielefeld, Germany), ‘The relevance of philosophy and history of science and
mathematics for mathematical education,” 444-447; Rolando Chuqui (Santiago, Chile), ‘Restricted
Platonism and the teaching of mathematics,” 449-450; David Pimm (Warwick, UK), “Why the history of
mathematics should not be rated X — the need for appropriate epistemology of mathematics for mathematics
education,” 450-452.
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HPM Newsletter, the early days

It was in 1980, too, that the UK mathematics educator Leo Rogers, who had acted as the Group’s
contact person from early in the 1970s, established a Newsletter, serving as its first editor. In the
early years, a’ North American edition’ of the Newsletter was created and edited by Bruce
Meserve (University of Vermont), of which two numbers were issued (February 1982 and October
1982) before he passed the baton to Charles Jones. By 1984 the two newsletters had in effect
amalgamated and henceforth (from what was called issue no 7) there was one HPM Newsletter,
edited until 1988 by Charles Jones, with occasional special supplements for the Americas Section®.
It was at the 1983 Michigan NCTM meeting, mentioned below, that Charles Jones (University of
Toronto, Canada, and Ball State University, USA) agreed to be the editor of the Newsletter. The
intention was that the Newsletter have a calendar of upcoming events, a guest editorial, a ‘Have
You Read?’ column and short reviews and announcement of meetings and activities. The North
American edition would be distributed around the world so that articles could be added in various
countries by other editors. Jones wrote about the creation of the first 16 issues of the Newsletter in
a valedictory at the time of his resignation in May 1988. He considered there to have been three
issues before he took over (Rogers and Meserve) and thus he began numbering them with the
October 1983 issue as ‘n. 5°°.

With issue n. 7 this Newsletter became the organ for the international group, not just North
America. By 1988 there were 2500 on mailing list with readers on every continent (except
Antarctica) and in 62 countries. The publishing and distribution were paid for by the Department
of Mathematical Science sat Ball State University. It was Jones who built up the Newsletter into an
important document for communication and hence developing strongly and creatively the work
laid out in the initial document of HPM, a tradition which was carried on by his successor Victor
Katz. The Newsletter has from the start relied on the goodwill of various college and university
institutions for its printing facilities, and an in formal distribution system to spread it as widely as
possible.

Relations with NCTM

The long-standing organization for north American mathematics teachers, the National Council of
Teachers of Mathematics (NCTM) has long had an interest in the role of history for mathematical
pedagogy. It was during Phillip Jones’ presidency of the NCTM that the celebrated 31st Yearbook
of the NCTM, Historical topics for the mathematics classroom, was proposed. Even before that
there had long been a history section in the NCTM’s journal Mathematics teacher, edited
successively by Vera Sanford (a student of David Eugene Smith), Phillip Jones and Howard Eves.

1982

With the founding of HPM, relations with NCTM continued to be positive and productive.
Beginning in1982, the Group has organized sessions at the major annual meetings of the NCTM,;
these sessions have generally been highly popular, often standing room only. That year the NCTM
Meeting was held in Toronto, where the Institute for the History and Philosophy of Science and
Technology hosted a reception and dinner, arranged by Charles Jones, for those who were
interested in the work of the study group. The HPM session, on 15 April 1982, to an audience of

8 HPM Newsletter, 16 (1988), 2.
° Charles Jones, HPM Newsletter, n. 16, May 1988, 2-3.
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80, had presentations from Linda Kolnowski, Marie Vitale, Maryjo Nichols, Dorothy Goldberg,
and Charles V Jones'’.

1983

The following year, 1983, an HPM workshop was held at the University of Michigan, Ann Arbor,
organized by Phillip Jones, just prior to the annual meeting of the NCTM, held in Detroit. At the
University of Michigan meeting, extensive use of the outstanding mathematical collection in the
Rare Book Room at the university was organized by Jones and V. Frederick Rickey (Bowling
Green State University, USA)'".

This type of well-attended meeting continued until 1997 [check date] when the meetings were
incorporated into the general program of NCTM and consequently compete - not unsuccessfully -
with a huge number of other talks and sessions. These annual meetings held in collaboration with
the NCTM have been, in effect, the annual meeting of the Americas Section of HPM, which is to
this extent an affiliated group of NCTM as well as being a semi-autonomous section of HPM (and
thus affiliated to ICMI). Discussions followed of how such works could be used in the
classroom. Participants brought copies of materials they had used in their classrooms to share,
a vital part of the work of HPM.

The Canadian connection

Toronto at that time played an important role in the development of history of mathematics as an
institutional and international endeavor, as the university from which Kenneth O. May promoted
history of mathematics in a number of ways up until his sadly early death in 1977. May’s
successors at Toronto’s Institute for History and Philosophy of Science and Technology (IHPST)
have continued to support and promote history of mathematics and its relations with pedagogy. In
1983, for example, a workshop from 25 July to 2August, billed as a summer seminar on the history
of mathematics for teachers, was held in Toronto and attracted a number of distinguished speakers.
The proceedings, edited by Ivor Grattan-Guinness, were published as History in mathematics
education, Paris: Belin (1986), 208 pp. In 1992 the same institution hosted the HPM satellite
meeting, described in more detail below, whose proceedings were to be published as Vita
Mathematica (ed R Calinger, MAA 1996, 359 pp.).

Americas Section

In 1984, a meeting was held at University High School in San Francisco under the leadership of
Jones and Meserve and hosted by Craig McGarvey (University High School). This meeting saw
the presentation of papers and the plans for the establishment of an Americas Section of ISGHPM
(North, South and Central America) as well as a 6.1 earthquake. The underlying reason for
establishing this section was to have a more active presence in the mathematics education
community than was forthcoming from the international organization. Florence Fasanelli
(Sidwell Friends School, USA) was elected to chair this section and to represent it at the ISGHPM
in Adelaide, Australia in August 1984 at ICME 5. Subsequent chairs of the section have been V.
Frederick Rickey, Charles Jones, Victor Katz, and Robert Stein.

' Historia Mathematica, 10 (1983), 92.
"'V, Frederick Rickey, ISGHPM Meets in Ann Arbor and Detroit,” HPM Newsletter, North American
Edition, May 1983, 3.
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With the work of Jones and Meserve to initiate the Americas section described above and to
begin a local newsletter which was transformed into an international newsletter by its editor
Charles Jones the development of activities in the USA began in earnest in 1983. The Section
meetings continue to be held each year as an affiliated group (since 1993) of NCTM. In 1993,
HPM Americas Section created a constitution, which was laid out in the HPM Newsletter'>.

International meetings

In 1983 three two-hour ISGHPM sessions were held at the ICM in Warsaw, Poland organized by
Roland Stowasser'”. (with Waclaw Sawasowski of the Mathematical Institute as local organizer).
The talk by Abraham Arcavi (Weizmann Institute of Science, Israel) presented materials dealing
with the history of negative numbers which had been prepared for use in courses for teachers.
They had adopted original documentation in the original languages (with some translation clues
supplied) and the development of tasks for teachers to perform. Other speakers included: Hans
Waussing, David Wheeler, and Christian Houzel,

1984

Up through this period the major activities of ISGHPM were at international congresses. In 1984,
the first Satellite meeting to be held with an ICME took place at the Sturt Campus of the
University of Adelaide under the leadership of George Booker'*. This was particularly memorable
event, for it was at this meeting that Ubiratan D’ Ambrosio outlined his thoughts on the need to
develop three separate histories of mathematics: history as taught in schools, history as developed
through the creation of mathematics, and the history of that mathematics which is used in the street
and the workplace. As a plenary speaker a few days later at ICME 5, he introduced the concept of
‘ethno mathematics’ as compared to ‘learned mathematics’ to deal with these differences'.

ICME 5 itself was held at the University of Melbourne, and contained further activities of the
study group.

Notably, a series of four meetings was held with the intention of introducing mathematics
educators to the group and its aims. During the business meeting of ISGHPM at that congress, Ubi
D’Ambrosio (University of Campinas, Brazil) and Christian Houzel (Université Paris-Nord,
France) were elected co-chairs for the next four years. Bruce Meserve suggested that the acronym
for ISGHPM be shortened to HPM. He also suggested that affiliated groups of HPM be formed,
specifically an Americas Section. This was approved at the meeting.

1986

D’ Ambrosio arranged for an HPM meeting in conjunction with ICM in Berkeley in 1986.

12 HPM Newsletter, n. 30 (Nov. 1993), 11.

'3 David Wheeler, ‘ISGHPM at Warsaw International Congress’ in ISGHPM Newsletter, n. 5 (Oct.
1983), 3.

' Florence Fasanelli, ‘International Study Group on the Relations Between History and Pedagogy of
Mathematics’ in American Perspectives on the Fifth International Congress on Mathematics Education
(ICME 5), Warren Page (ed.), 1985, MAA Notes n. 5, Washington, DC: Mathematical Association of
America, 256-260.

!> George Booker, ‘Topic Area: Relationship Between the History and Pedagogy of Mathematics’ in
Marjorie Carss (ed.), 1986, Proceedings of the Fifth International Congress on Mathematical Education,
Boston, Birkhauser, 256-260.
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1988

A meeting of the HPM Americas Section was held from June 30 to July 4 1988 in Sdo Paulo,
Brazil, in connection with the Second Latin-American Congress on the History of Science and
Technology.

From July 20 to 22, 1988, the second HPM satellite meeting was held at Pallazo Medici-
Riccardi in Florence, Italy, under the leadership of Florence Fasanelli (now of the National
Science Foundation, USA). This began the custom of holding the quadrennial HPM satellite
meeting in a nearby but different country, shortly before or after the main ICME meeting, to
encourage those who could not also attend ICME to be able to participate in HPM and to provide a
fuller set of HPM activities than is possible during the very crowded ICME timetable. Holding the
meeting in Florence made it possible to tour historical sites connected to mathematical history
including a tour of the history of science museum, the Palazzo de Storia della Scienze. Speakers at
the meeting included Catherine Perrineau (France), John Fossa (Brazil), Ubiratan D’ Ambrosio
(Brazil), David Wheeler (Canada), James Tattersall (USA), Michael Serfati, Jacques Borowczyk
(France), Benedito Castrucci (Brazil), Israel Kleiner (Canada), Maryvonne Hallez (France), V
Frederick Rickey (USA), and Robert Hayes (Australia), who shared his experiences of history of
mathematics as a source of encouragement in learning mathematics for non-traditional students, in
particular adults returning to learning.

ICME 6 was held in Budapest, Hungary, from July 27 to August 3 1988. The HPM sessions,
arranged by Ubiratan D’Ambrosio, focused on two main themes, Non-euclidean geometries and
their adoption in the school systems and The evolution of algorithms for use in schools, as well as
having a panel on History of mathematics in the teaching of mathematics. The symposium on non-
euclidean geometries had three speakers, Nikos Kastanis (Greece), Massouma Kazim (Qatar), and
Tibor Wessely (Romania). That on algorithms had one main speaker, Lawrence Shirley (Nigeria),
although a lengthy and well-received intervention by George Ghevarghese Joseph (UK) was the
first opportunity many HPM members had to hear of the work which Joseph was to publish three
years later as The crest of the peacock. The panel on history and teaching, chaired by Ubiratan
D’Ambrosio, had four members: Evelyne Barbin (France), Helena Pycior (USA), Arpad Szabo
(Hungary) and Hans Wiissing (DDR). In a fourth session, short papers were given by Laszlo6 Filep
(Hungary), Ryusuke Nagaoka (Japan), Zofia Golab-Meyer (Poland), Rudolph Bkouche (France),
Robert Hayes (Australia) and Circe Silva da Silva (Brazil). As the array of countries indicates, this
was perhaps the most international of all HPM gatherings up to then.

At this meeting Florence Fasanelli was elected chair, for the next four years, and the previous
system of co-chairs was dropped. Victor Katz (University of the District of Columbia, USA) was
invited to become editor of the Newsletter following its successful development under Charles
Jones who had resigned after 12 excellent editions. It was determined that the Advisory Board
members for HPM would continue to comprise previous chairs and a number of others who would
be co-opted by the Chair to share in decisions and generally help to promote the concerns of the
Study Group around the world.

After the Budapest ICME, several members of the HPM community went on to a meeting in
Kristians and, Norway, organised by Otto Bekken (Agder College, Norway) and Bengt Johansson
(Goteborg University, Sweden). While not strictly an HPM meeting in its formal conception, this
meeting of historians, mathematicians and mathematics educators from twelve countries spanning
four continents was fine testimony to the growing international interest in relations between
history and pedagogy of mathematics. A collection of twenty-three influential papers arising from
this conference was subsequently published by the Mathematical Association of America, under
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the title Learn from the masters!, a tribute to the memory of Norway’s greatest mathematician,
Niels Henrik Abel, who lived near Kristiansand and whose spirit watched over the proceedings.

1990

From 26-28 June 1990 an HPM conference was held in Campinas, Brazil at the Center of Logic,
Epistemology and History of Science at the State University of Campinas, Brazil, on ‘Using
History in the Teaching of Mathematics.’

HPM sponsored sessions at the 1990 ICM in Kyoto were arranged by Ubiratan D’ Ambrosio.
By this time HPM was well enough known to merit a footnote in Marcia Ascher’s classic
Ethnomathematics, published in June 1991 (the final words of the book, indeed), saying “Their
activities and newsletter are important resources”.

1992

1992, the year of the next ICME, saw the holding of the third HPM satellite meeting at the
University of Toronto, Canada. This was organized by Florence Fasanelli and the local hosts were
Craig Fraser (University of Toronto) and Israel Kleiner (York University). At this meeting John
Fauvel (Open University, UK) was elected Chair for the forthcoming quadrennium, and Victor
Katz was asked to continue as Editor of the Newsletter. Ronald Calinger (Catholic University,
USA) was invited to prepare a refereed volume of the papers initially prepared for this meeting
and for the subsequent ICME in Quebec, to be published by the Mathematical Association of
America in the MAA Notes series'®.

At ICME 7 held in Québec, the four HPM sessions were organised by a team consisting of
Florence Fasanelli (chair), Evelyne Barbin, Israel Kleiner and V. Frederick Rickey: there were
three themes for the history of mathematics and pedagogical problems; the history of mathematics
as a cultural approach to solving problems; and historical problems in the classroom. Talks were
given in these sessions by Otto Bekken (Norway) and John Fauvel (UK), (discussant Evelyne
Barbin (France)); Jan van Maanen (Netherlands) and Michéle Grégoire (France), (discussant Hans
Niels Jahnke (Germany)); George Booker (Australia) and Man-Keung Siu (Hong Kong)
(discussant Frank Swetz (USA)); V Frederick Rickey (USA)and Maggy Schneider (Belgium)”.

The 1992 ICME, held in Francophone Canada, had of course a particularly French tone,
intellectually and linguistically (and, not least, gastronomically); and the French Inter-IREM group
(see below) led by Evelyne Barbin presented a valuable report entitled Histoires de problemes
histoire des mathématiques This collection of fifteen histories of different problems (such as prime
numbers, the parallel postulate, the brachistochrone problem, &c) written by some thirty French
teachers and designed for other teachers as a means of introducing a historical perspective into
their teaching, was subsequently published in French and then in English translation.

At the meeting of the General Assembly of ICMI at the Quebec meeting it was announced that
the proposal for an ‘ICMI Study’ in the history and pedagogy of mathematics was under

' Ronald Calinger, (ed.), 1996, Vita Mathematica, Historical Research and Integration with Teaching.
Washington, DC: Mathematical Association of America, MAA Notes n. 40. This referred volume contains
papers developed from talks given in Toronto and Québec and an additional ten papers written to expand the
usefulness of the volume. The volume is dedicated to Philip S. Jones, Scholar-teacher, Historian of
Mathematics, Colleague.

'7'V. Fredrick Rickey, ‘An Historical Perspective on Learning, Teaching, and Using Mathematics,” in
Proceedings of the 7" International Congress on Mathematical Education, (1994), Claude Gaulin et al. eds.
Sainte Foy: Les Presses de I’Université Laval. 299-303. This is a fine and thorough report on all the papers
given in Québec.
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consideration and would probably be funded. The story of the development of this study is taken
up later.

1994

A meeting of HPM, arranged by Ubiratan D’ Ambrosio, was held in Blumenau, Brazil, in 1994 as a
satellite of the Second Iberoamerican Conference on Mathematics Education'®.

1995

A meeting of HPM arranged by George Booker was held in Cairns, Australia, in July 1995". This
conference focused on ethnomathematics and the Australasian region, the history and diversity of
that subject and fortunately included native people from New Zealand and Australia. Among the
memorable talks of the conference was the report by Alan Bishop on the work of his late student
on numeration structures in Papua New Guinea.

1996

HPM held its usual meetings at ICME 8 in Seville, Spain. Talks from these sessions, together with
others from the subsequent HPM satellite meeting in Braga, (twenty-six papers in all), were
published by the Mathematical Association of America in 2000, edited by Victor Katz*®. At this
meeting, too, Jan van Maanen of the University of Groningen, Netherlands, was elected as Chair
of HPM (note the title was officially shortened in the acronym) for the next four yearSZI.

At the General Assembly of ICMI held at the Universidad de Sevilla, the Secretary announced
that the Study hinted at in Quebec four years earlier was to come about; namely, that ICMI would
mount a study in1997 on ‘The Role of the History of Mathematics in the Teaching and Learning of
Mathematics’. Shortly afterwards the HPM chair and his predecessor, Jan van Maanen and John
Fauvel, were invited by ICMI to chair the Study (whose progress is described in more detail later).

For the first time the HPM satellite meeting was held after the congress and in conjunction with
another conference, the ‘European Summer University’. Organized by Eduardo Veloso through
the Portuguese mathematics teachers association, the Associagdo de Professores de Matematica,
the meeting was held on24-30 July in Braga, Portugal. It had a very high attendance of more than
550, some half or so from Portugal itself as well as very many from Brazil, and many interesting
papers were published in the two volume set of proceedings. The official languages were English,
Portuguese, and Spanish (although in the event there were not many Spanish delegates)®.

1997

Over the autumn of 1996 the co-chairs of the ICMI Study invited a number of distinguished
scholars in the field (listed later) to form an International Programme Committee for the Study.
The following year a planning meeting of the IPC was held in Nantes, France, taking advantage of
an already-planned French conference on HPM issues, the 7th Université d’été interdisciplinaire
sur [’histoire des mathématiques.(This biennial series of meetings for French teachers should not

'8 Sergio Nobre (ed.), Proceedings of the Meeting of the International Study Group on Relations
Between History and Pedagogy of Mathematics HPM-Blumenau/Brazil 25-27 July, 2™ edition. UNESP.

' British Society for the History of Mathematics Newsletter, n. 30 20-21

2 Victor Katz (ed.), 2000, Using history to teach mathematics: An international perspective,
Washington, DC: Mathematical Association of America, MAA Notes.

2 Mogens Niss (ed.), Bulletin of the International Commission on Mathematical Instruction, n. 41,
December 1996, 6-7.

2 Eduardo Veloso et al. (eds.), 1996, Histéria e Educa¢do Matemdtica. proceedings/actes/actas 24-30
Julho 1996, Braga, Portugal, Braga/Lisbon
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be confused with the triennial European Summer University series, discussed later.) Following the
IPC meeting a discussion document was widely circulated through publication in many venues and
everyone was encouraged to respond to the issues already determined as important. From the
responses 72 individuals were invited to a meeting the following April in southern France, to
participate in the official study and make plans to complete a book for presentation in August 2000
at ICME 9.

1998

The study conference for the ICMI Study was held from April 20-25 1998 in Luminy, near
Marseilles.(This conference is described more fully below.)A meeting of HPM was held in
Caracas, Venezuela, in 1998. In 1998, an entire day of talks at the time of the Joint Meetings was
organized by Victor Katz and Karen Michalowicz (Langley School, USA) in honor of Ubiratan
d’Ambrosio’s 65th birthday. Speakers included Dirk Struik who was then 104. This meeting was
held jointly with the International Study Group on Ethnomathematics.

2000

HPM held its usual meetings during ICME 9 in Makuhari (near Tokyo), Japan. At this meeting,
Fulvia Furinghetti of the University of Genova, Italy, was elected Chair of HPM for the next four
years, and Peter Ransom (UK) was invited to take on the role of Newsletter editor. The HPM
satellite meeting was held after the congress in Taipei, Taiwan, from August 9 to 14, at the
National Taiwan Normal University, organized by Wann-Sheng Horng, under the title ‘History in
mathematics education: challenges for a new millennium’. While attendance was not so high as in
Braga four years before, largely for reasons of the high travel costs anticipated by many otherwise-
interested European and American members of HPM, the level of enthusiasm was just as high,
with participation from nineteen countries and all continents, and there was a tremendously warm
welcome for foreign delegates from Taiwanese students and teachers. The five plenary lectures,
given by Marjolein Kool (The Netherlands), Park Seong-Rae (Korea), Christopher Cullen (UK),
Karine Chemla (France) and Masami Isoda (Japan), provided a range of background studies
against which various themes of the conference could be played out in symposia, workshops,
round tables and panels. As in Braga, the two-volume proceedings was issued in advance, edited
by Wann-Sheng Horng and Fou-Lai Lin, providing an invaluable aid for delegates to study—
before, during or afterwards—papers whose verbal delivery might be in an unfamiliar language.

The contribution made by Taiwanese teachers and students to the conference marked an
important consolidation of a trend already noticeable in Braga, in the strength of the home team.
The Taiwanese school-teachers at the conference were already informed and enthusiastic about
HPM issues, having been trained at the Normal University in Taipei, and the students were
currently studying there, often for master’s degrees, under the guidance of Wann-Sheng Horng and
his colleagues. So there was already a strong base for fruitful interaction with the visiting teachers,
historians and educators, and a sense that the activities and approaches stimulated by the HPM
meeting could and would continue afterwards. Thus the efforts put in beforehand over several
years, by the conference organizers, in their role as teachers at the Normal University, ensured that
the HPM meeting was part of the ongoing development of HPM studies in Taiwan as well as
benefiting HPM activities world-wide.

In developing HPM activities further in the region, the hope was expressed for holding a series
of regular future conferences, somewhat after the fashion of the European Summer University (see
next section) which could bring together students and teachers from many East Asian countries,
notably Japan, Taiwan and Hong Kong.
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European Summer University

In 1993, the first of what turned out to be an on-going series of ‘European Summer University’
was held. This first meeting was organized by the Institutes of Research in Mathematics Education
(IREM - see below) and took place in Montpellier, France, from 19 to 23 July. The Summer
University (or Université d’Eté Européenne sur histoire et épisteemologie dans 1’education
mathématique) is intended for teachers of mathematics from schools, colleges, and universities,
and those engaged in research into the history or didactics of mathematics, as well as teachers of
philosophy, history and physical sciences™.

The second ESU was held at Braga, Portugal, in July 1996, concurrently with (indeed
indistinguishable from) the HPM satellite meeting after ICME 8, as noted above.

The third European Summer University was held in Belgium in July 1999, across the two sites
of Louvain-la-Neuve and Leuven. The former is a new university town, south of Brussels, set up
to house the French-speaking students who broke away from the ancient Dutch-speaking
university of Leuven in the1950s, hence there were political reasons, given the extraordinarily
complex nature of Belgian educational politics, for a split-site meeting. But in any case both
universities were excellent and most welcoming locations for a summer university. The meeting
was organized by Patricia Radelet de Graves, Dirk Janssens and Michel Roelens, and the
anticipated volume of proceedings has been published with P. Radelet as editor, Third
European summer university in history and epistemology in mathematics education.

France: IREM

The most consistent enthusiasm and activity over many years for the educational benefits of
history of mathematics is to be found in France. This high profile is due to a remarkable
organisation, or set of organisations, the IREM system, set up in the early 1970s. IREM stands for
Institut de Recherche sur I’Ensignement des Mathématiques (Institute for research on mathematics
education). There are twenty-five such institutes in France, each attached to a university, roughly
one IREM for each Académie (the territorial administrative division of the French Ministry of
Education). An important feature of an IREM is that it consists largely of practicing teachers,
seconded from their school for a year or so to work on specific courses and projects. Thus there is
less danger of losing touch with the chalk-face, such as occur in mathematics education research in
other countries.

IREMs soon developed a reputation for moving beyond the teacher re-training and in-service
provision, as well as initial training, which was their original brief, and of moving into making
valuable contributions to pedagogical innovation, critical study of syllabuses and textbooks,
classroom uses of new technology, and a vigorous questioning of conventional practices. Inter-
IREM commissions on various topics of common concern were set up, one of the most successful
of which is the Inter-IREM Commission on history and epistemology of mathematics. It is this
Inter-IREM Commission, under the co-ordination and leadership of Evelyne Barbin (Le Mans
IREM), which has generated some of the most exciting and consistently energetic ventures into
bringing history and mathematical pedagogy together, in a series of conferences as well as books.
The general pattern of the books is of a series of chapters, each written by a different IREM
member, describing use of history of mathematics in the classroom, or providing original sources

» Dédé de Haan, European Summer University in Montpelier in HPM Newsletter, n. 30 (November
1993), 3-6.

XX



for classroom use, or more recently providing a coherent account of the historical development of
some classroom topic in a way that is highly suitable for teachers to use to aid their students’
learning. These books are generally in French, naturally, although their quality is such that several
have been translated into English wherever a translator and publisher could be found.

UK: HIMED

In September 1988, Ivor Grattan-Guinness organised on behalf of the British Society for the
History of Mathematics a three-day meeting in Leicester on The use of history in mathematics
teaching and pedagogy. This proved so successful and aroused such interest that it was decided to
have more such meetings.

In 1990 the first such meeting was held, again at the University of Leicester, under the title of
History in mathematics education. This and all subsequent meetings have had the overall label of
“HIMED”. The1990 Leicester HIMED was organised by John Fauvel, Neil Bibby and Steve Russ
on behalf of the British Society for the History of Mathematics, and annual meetings have
subsequently been held in other British cities. The general pattern is that these meetings have been
held in the spring, generally near Easter (during the school holidays so that school teachers are
able to come), with one day and three-day residential meetings in alternate years (even-numbered
years have been those in which a residential HIMED has been held). These meetings are designed
to bring together researchers and teachers at all levels of education to explore issues around the
educational use of history of mathematics®, and the residential meetings are particularly fruitful as
that makes it worth while for international visitors to attend.

Changes in the funding of the UK school system have, though, made it increasingly hard for
teachers to find funding support from their employers for attendance at any conferences that have
not an immediate utilitarian pay-off, in terms of the league tables which governments now use to
quantify, order and reward the performance of teachers in UK schools. The idea of teachers
coming to a meeting for intellectual refreshment, inspiration, sustenance and interest, to improve
morale and sustain them in continuing to grow into better teachers, is already far in the distant past
and no longer makes sense in today’s neo-That cherished political climate in the UK. This must
put the long-term survival of the HIMED meetings in doubt. USA: The Institute

USA: The Institute in the History of Mathematics and its use in Teaching
(IHMT)

As a direct result of the activities of HPM, a number of senior US figures in the movement—
Florence Fasanelli, Victor Katz, and Frederick Rickey, along with Ron Calinger and (from South
America) Ubiratan D’ Ambrosio—designed an Institute in the History of Mathematics and Its Use
in Teaching which was funded by the National Science Foundation over six years. In the first
tranche of activity, 75 mathematicians and mathematics educators from all across the US came to
Washington DC to spend three weeks over two summers reading original texts, surveying the
history of mathematics, ethnomathematics, and historiography, preparing presentations for peer
review, and discussing concepts and context with renowned historians. They had the opportunity
to visit museums and rare book collections with commentary by librarians. An especially
important aspect of the Institute, unique among such ventures, was the opportunity provided by the

> HPM Newsletter, n. 30, November 1993, 10.
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Mathematical Association of America (MAA) for students of the Institute to attend the major
MAA annual meeting (held in January, jointly with the American Mathematical Society) and
section meetings and give presentations on how they have used history in their teaching. A large
number of students availed themselves of this opportunity, giving often very impressive talks
about how their teaching had changed, and in what respect, since attending the Institute the
previous summer. In addition, it is remarkable to record that almost all participants have published
refereed papers as a direct result of the work they have done subsequent to the Institute, along the
principles in research, reading original texts, writing and speaking that they learned there. The
effect on their teaching has been truly remarkable. Three of the participants have created ongoing
meetings on the history and pedagogy of mathematics in their regions: California, New York (the
Pohle Lectures organized by two IHMT alumni and the Euler Society organized by another), and
in Ohio a program of reading original texts.

A further outcome is that under the leadership of Victor Katz and Karen Dee Michalowicz,
teams of high-school teachers, totaling 22 individuals and participants who had completed the two-
years of study have created modules for using history of mathematics in the classroom. These
modules have been developmentally tested in classrooms across the US and are available through
the MAA.

USA: Joint meetings

For several years now, the most prominent showcase of HPM-related activity in the USA has been
at the annual gathering of mathematicians from the two main associations, the Mathematical
Association of America and the American Mathematical Society. The MAA/AMS Joint Meeting
takes place in January each year, generally in a large southern city whose weather can be relied
upon at that time of year. In 1972 there was a day-long set of sessions on the history of
mathematics. From several perspectives this was the beginning of a wellspring of interest in the
history of mathematics. Just as interest in mathematics education has become a large part of the
Joint Meetings, both the history of mathematics and the history of mathematics and its use in
teaching have built larger and larger audiences. By 1980 the number of talks had increased to
stretch over two days and by 2001 to four full days plus a fifth day before the Joint Meetings
began. Each year from 1996-2000 there were at least 15-18 papers on the use of history in teaching
mathematics. In 2004 these talks were given by speakers from at least ten countries. The
international thrust and the ideas of HPM are clearly affecting the mathematics community.

Portugal and Brazil

The HPM Newsletter began to be distributed in Portugal in 1990 and the number of teachers
receiving it grew steadily. In 1993 a working group on History and the Teaching of Mathematics
(GTHEM) was launched by the Portuguese Association of Teachers with the aim of exchanging
experiences on using history in the mathematics classroom and to help teachers to integrate the
history of mathematics in their teaching. Other groups also formed: in both Lisbon and in northern
Portugal teachers organized themselves for a two-year program studying the 17 units of the British
Open University source book by John Fauvel and Jeremy Gray; while in Coimbra in 1993 the
Primeiro Encontro Luso-Brasileiro de Historia da Matematica was organized. The series continued
with the 2 o EL-BHM in Aquas de Sdo Paulo, SP, Brazil, in 1997, the 3 o EL-BHM in 2004, again
in Coimbra, and the 4 o EL-BHM planned to take place in Natal, RN, Brazil, in October 2004.
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The other major Portuguese-speaking country which has shown considerable interest in
developing HPM themes and issues over the years is Brazil, largely due to the influence of
Ubiratan D’Ambrosio of the University of Sdo Paulo, who has inspired a generation of
mathematics educators and historians in Brazil (and elsewhere). National and international
conferences in various Brazilian centers (most recently a meeting in Lorena, Brazil on 26-27 July
1998, in connection with the 5th Latin-American Congress of History of Science and Technology)
testify to the enthusiasm in Brazil for relating mathematical history to its teaching. The strong state
of history of mathematics per se in Brazil is clearly an important factor behind the HPM activity
there.

Africa: AMUCHMA

Another organisation with keen interest in HPM matters is AMUCHMA, the African
Mathematical Union’s Commission on the History of Mathematics in Africa. This body was set up
in 1986, at the second Pan-African Congress of Mathematicians, held in Jos, Nigeria; a Newsletter
was produced the following year, and has appeared regularly since, in Arabic, English and French.
The Chair of AMUCHMA from its inception has been the influential mathematics educator Paulus
Gerdes (Mozambique), and the Secretary Ahmed Djebbar (Algeria) - thus, symbolically,
encompassing all Africa in between. While, strictly, AMUCHMA is concerned with history of
mathematics in Africa, many of those concerned have educational interests and the research results
have proved of great interest to African mathematics teachers. Among the most fruitful and widely
used research in this area has been that of Paulus Gerdes on the mathematics of sand drawings in
sub-equatorial Africa.

A related interest group is the International Study Group on Ethnomathematics, whose board
members are mostly from the USA. This group also has a newsletter (the ISGEm Newsletter)
distributed in the same way as the HPM Newsletter, through a number of people in countries
across the world who photocopy and distribute the Newsletter in their region.

The ICMI Study

Since the mid 1980s HPM’s parent body, the International Commission on Mathematics
Instruction, has engaged in promoting a series of studies on essential topics and key issues in
mathematics education, to provide an up-to-date presentation and analysis of the state of the art in
that area. By the early 1990s a consensus was growing that one of these studies should be devoted
to the relations between history and pedagogy of mathematics. Once ICMI Council agreed to this
Study, which was announced at the Seville ICME in 1996, the current and immediate past Chair of
HPM, Jan van Maanen and John Fauvel, were approached to chair the Study. ICMI’s support for
and promotion of this Study can thus be seen as recognition of how the HPM Study Group had
encouraged and reflected a climate of greater international interest in the value of history of
mathematics for mathematics educators, teachers and learners. Concerns throughout the
international mathematics education community had begun to focus on such issues as the many
different ways in which history of mathematics might be useful, on scientific studies of its
effectiveness as a classroom resource, and on the political process of spreading awareness of these
benefits through curriculum objectives and design. It was judged that an ICMI Study would be a
good way of bringing discussions of these issues together and broadcasting the results, with
benefits, it is to be hoped, to mathematics instruction world-wide.
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ICMI Studies typically fall into three parts: a widely distributed Discussion Document to
identify the key issues and themes of the study; a Study Conference where the issues are discussed
in greater depth; and a Study Volume bringing together the work of the Study so as to make a
permanent contribution to the field.

The Discussion Document was drawn up by the two people invited by ICMI to co-chair the
Study, John Fauvel (Open University, UK; HPM chair 1992-1996) and Jan van Maanen
(University of Groningen, Netherlands; HPM chair 1996-2000), with the assistance of the
leading scholars who formed the International Programme Committee: Abraham Arcavi (Israel),
Evelyne Barbin (France), Jean-Luc Dorier (France), Florence Fasanelli (US, HPM Chair 1998-
1992), Alejandro Garciadiego (Mexico), Ewa Lakoma (Poland), Mogens Niss (Denmark) and
Man-Keung Siu (Hong Kong). The Discussion Document was widely published, and was
translated into several other languages including French, Greek and Italian. From the responses
and from other contacts, some eighty scholars were invited to a Study Conference in the spring of
1998, an invitation which in the event between sixty and seventy were able to accept.

The Study Conference took place in the south of France, at the splendid country retreat of the
French Mathematical Society, CIRM Luminy (near Marseille), from 20 to 25 April 1998. Local
organization was in the hands of Jean-Luc Dorier (University of Grenoble). The scholars attending
were from a variety of backgrounds: mathematics educators, teachers, mathematicians, historians
of mathematics, educational administrators and others. This rich mix of skills and experiences
enabled many fruitful dialogues and contributions to the developing study.

The means by which the Study was advanced, through the mechanism of the Conference, is
worth description and comment. Most participants in the Conference had submitted papers, either
freshly written or recent position papers, for the others to read and discuss, and several studies
were made available by scholars not able to attend the meeting. These, together with whatever
personal qualities and experiences each participant was bringing to the Conference, formed the
basis for the work. Apart from a number of plenary and special sessions, the bulk of the
Conference’s work was done through eleven working groups, corresponding, in the event, to the
eleven chapters of the Study Volume. Each participant belonged to two groups, one meeting in the
mornings and one in the afternoons. Each group was led by a convener, responsible for
coordinating the group’s activities and playing a major part in the editorial activity leading to the
eventual chapters of the book. Each group’s work continued for several months after the
Conference, with almost everyone participating fully in writing, critical reading, bibliographical
and other editorial activities.

This way of group working for a sustained period towards the production of a book chapter was
a fresh experience to many participants, since the pattern of individual responsibility for separate
papers is a more common feature of such meetings and book productions. In this instance the
participants proved remarkably adept at using the new structures to come up with valuable
contributions to the development of the field, all the more valuable for their being the results of
consensual discussions and hard-written contributions, which were then edited and designed into
the Study Book.

In the end the Study Book was a 437 page volume, with some 62 contributors, working
together in eleven teams as just described. It was launched at ICME 9, in Japan, with the title
History in Mathematics Education: the ICMI Study.

2000-2004
How has HPM grown? Not as fast as the WorldWideWeb, a name invented in October 1990, but
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because of www we now have our own backbone, the HPM Newsletter, easily available. Fulvia
Furinghetti launched a splendid program during her tenure as Chair of HPM creating a website, a
logo, and with Peter Ransom a first class newsletter. The Italian Society of History of Mathematics
has been formed and has its own website as does the Americas Section of HPM. Further, the goals
and objectives of HPM have infiltrated many meetings as Coralie Daniel points out so well in her
article describing her journeys in 2002%. Reviving the Newsletter so carefully nurtured by Victor
Katz who had built up a “strong distribution network, which serves a local focus for HPM
26 was vital to the organization. The group works rather informally with
the “main binding element” being the Newsletter. Tts role is crucial and when there was a

activities and promotion

vacancy it was sorely felt.

THE FIRST TWENTY-FIVE YEARS, 1976-2000: DATES, EVENTS, NAMES

Chairs of HPM

1976-1980 Phillip S. Jones (University of Michigan, USA) (co-chair)
Roland Stowasser (University of Bielefeld, FRG) (co-chair)
1980-1984 Bruce Meserve (University of Vermont, USA) (co-chair)
Roland Stowasser (University of Bielefeld, FRG) (co-chair)
1984-1988 Ubiratan D’ Ambrosio (University of Campinas, Brasil) (co-chair)
Christian Houzel (University of Paris-Nord, France) (co-chair)
1988-1992 Florence Fasanelli (NSF, USA)
1992-1996 John Fauvel (Open University, UK)
1996-2000 Jan van Maanen (University of Groningen, Netherlands)
2000-2004 Fulvia Furinghetti (University of Genova, Italy)

Editors of HPM Newsletter

1980 Leo Rogers, Roechampton Institute, UK (issue 1)

1982 Bruce Meserve, University of Vermont, USA (Americas Section Newsletter) (issues 2-3)
1983-1988 Charles Jones, Ball State University, USA (issues 4-16)

1988-1995 Victor Katz, University of the District of Columbia, USA (issues 17-38)

1996-1998 Gerard Buskes, University of Mississippi, USA (issues 39-44)

2000-2004 Peter Ransom, The Mountbatten School and Language College, UK (issues 46°5-56)

Chairs of HPM Americas Section

1983 Florence Fasanelli
1988 V. Frederick Rickey
1994 Charles Jones

1996 Victor Katz

2000 Robert Stein

> HPM Newsleter, n. 52, March 2003, 2-4.

%6 John Fauvel, Report on HPM Activities 1992-1996.

7 [CMI Bulletin n. 47, December 1999.

28 As noted in HPM Newsletter, n. 46 there is no Newsletter, n. 45.
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HPM Advisory Boards

The Advisory Board for a quadrennium consists of the Chair, former chairs, the Newsletter Editor,
the Americas Section Chair (all these are listed above) together with the following members:

1984-1988 Otto Bekken (Norway), George Booker (Australia), Sergei Demidov (USSR),
Paulus Gerdes (Mozambique), Maassouma Kazim (Egypt), Bruce Meserve, David Pimm
(UK), Roland Stowasser (West Germany), David Wheeler (Canada), Lee Peng Yee
(Singapore)

1988-1992 Evelyne Barbin (France), Ahmed Djebbar (Algeria), John Fauvel (UK), Paulus
Gerdes (Mozambique), Robert Hayes (Australia), Nikos Kastanis (Greece), Ryosuke
Nagaoka (Japan), David Wheeler (Canada), Hans Wussing (GDR)

1992-1996 George Booker (Australia), Jacques Borowczyk (France), Lucia Grugnetti
(Italy), Hans Niels Jahnke (Germany), Maasouma Kazim (Egypt), Israel Kleiner (Canada),
Osamu Kota (Japan), Jan van Maanen (Netherlands), Mohini Mohamed (Malaysia)
1996-2000 George Booker (Australia), Jacques Borowczyk (France), Gail FitzSimons
(Australia), Lucia Grugnetti (Italy), Abdulcarimo Israel (Mozambique), Hans Niels Jahnke
(Germany), Maasouma Kazim (Egypt), Israel Kleiner (Canada), Osamu Kota (Japan),
Mohini Mohamed (Malaysia), Eduardo Veloso (Portugal), Greisy Winicki-Landman (Israel)

HPM Satellite Meetings

Since 1984 HPM meetings have been held every four years, as satellites of that year’s ICME. The
tradition has grown up of trying to arrange the meeting in a different but nearby country to that in
which ICME is held.

1984 Adelaide, Australia (ICME 5: Melbourne, Australia); chief organizer George Booker
1988 Firenze, Italy (ICME 6: Budapest, Hungary); chief organizer Florence Fasanelli

1992 Toronto, Canada (ICME 7: Quebec, Québec); chief organizers Florence Fasanelli and
Craig Fraser

1996 Braga, Portugal (ICME 8: Seville, Spain); chief organizers Eduardo Veloso and Maria
Fernanda Estrada

2000 Taipei, Taiwan (ICME 9: Tokyo, Japan); chief organizer Wann-Sheng Horng

Other international HPM meetings

As part of the agenda for HPM from 1988-1992 members were urged to plan yearly international
meetings more often. Several countries, notably France and England as noted earlier have had
meetings directly connected to the goals and objectives of HPM.

1993 Montpellier, France, 19-23 July, organized by Evelyne Barbin, Francoise Lalande,
Yves Nouaze on behalf of IREM

1994 Blumenau, Brazil, organized by Ubiratan D’ Ambrosio

1995 Cairns, Australia, organized by George Booker

1998 Caracas, Venezuela

1999 Louvain-la-Neuve/Leuven,Belgium, 12-17 July 1999, organized by Dirk Janssens,
Patricia Radelet, Michel Roelens.
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International congresses to which HPM has made a contribution

The relations of the study group with ICME 2 (1972, Exeter) and ICME 3 (1976, Karlsruhe) have
been described in the text

1976 ICM Helsinki

1980 ICME 4, Berkeley, California
1983 ICM Warsaw, Poland

1984 ICME 5, Melbourne, Australia
1986 ICM Berkeley, California
1988 ICME 6, Budapest, Hungary
1990 ICM Kyoto, Japan

1992 ICM 7, Quebec, Québec
1994 ICM Geneva, Switzerland
1996 ICME 8, Seville, Spain

1998 ICM Berlin, Germany

2000 ICME 9, Tokyo, Japan

Books arising from HPM meetings

(or from meetings with a high proportion of HPM contributors).

Swetz, F., Fauvel, J., Bekken, O., Johansson, B., Katz, V. (eds.), 1995, Learn from the Masters!
Washington: Mathematical Association of America.
In 1988, Otto Bekken and Bengt Johansson organized a meeting at Agder College,
Kristiansand, Norway following ICME. Papers were presented on how participants used
history of mathematics in their teaching. This volume collects many of these useful
papers.
Calinger, R. (ed.), 1996, Vita Mathematica: Historical research and integration with teaching,
MAA Notes n. 40, Washington, DC: Mathematical Association of America.
This valuable book contains articles developed by the authors based on their talks given at
the HPM Meeting in Toronto, Canada in 1992 and ICME in Québec, interspersed with
solicited papers by well known historians of mathematics. Many often quoted articles. The
volume is dedicated to Phillip Jones (26 February 1912 — 27 June 2002) remembering the
fruitful work he did in creating the America’s Section of HPM.
Lagarto, M.J., Viera, A., Veloso, E. (eds.), 1996, Proceedings of Second European Summer
University and Satellite meeting of ICME-8, Braga, Portugal: Portuguese Association of the
Teachers of Mathematics & Department of Mathematics, University of Minho.
This volume also contains papers presented at the quadrennial meeting of HPM which was
held jointly with the summer university in Braga, Portugal.
Katz, V. (ed.), 2000, Using history to teach mathematics: an international perspective,
Washington, DC: Mathematical Association of America.
This book contains articles developed from talks at ICME 8 (1996) in Seville as well as the
HPM meeting which followed.
Fauvel, J., van Maanen, J. (eds.), 2000, History in Mathematics Education - The ICMI Study,
Dordrecht-Boston-London: Kluwer.
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This study, six years in the making is a powerful resource for making the argument that
history of mathematics in vital for many students and their teachers to gain a fuller
understanding of what they learn and teach.
Horng, W.-S., Lin, F.-L. (eds), 2000, Proceedings of the HPM 2000 Conference History in
Mathematics Education. Challenges for a New Millennium. A Satellite Meeting of ICME-9. Taipei:
National Taiwan University.

Acknowledgement: John Fauvel (21 July 1947 — 12 May 2001) worked on this 25-year history
with me as | prepared it as a gift for the HPM meeting in Taiwan. His spirit is present in every
sentence. When he joined HPM in 1988, he lifted it to a benchmark never expected, and he

brought color and joy to every meeting he attended.
Florence Fasanelli
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ESU

EUROPEAN SUMMER UNIVERSITIES ON THE HISTORY AND
EPISTEMOLOGY IN MATHEMATICS EDUCATION

Evelyne BARBIN, France,
Nada STEHLIKOVA, Czech Republic
Constantinos TZANAKIS, Greece

Brief history and statistics of the ESU

The initiative of organizing a Summer University (SU) on the History and Epistemology in
Mathematics Education belongs to the French Mathematics Education community IREM in the
early 1980’s. It was the French IREMs (Institut de Recherche sur [’Enseignement des
Mathématiques) that organized the first interdisciplinary SU on the History of Mathematics in
1984 in Le Mans, France. It was followed by other SU in France (1986 in Toulouse, 1988 in La
Rochelle, and 1990 in Lille). The next one was organized in 1993 on a European scale, and was
called the 1% European Summer University (ESU) on the History and Epistemology in
Mathematics Education, (a name coined since then), but many participants in it and in the

subsequent ESU came outside Europe.
The previous ESU took place in July,
- 1993, Monpellier, France
- 1996, Braga, Portugal (conjointly with the HPM Satellite meeting of ICME 8)

- 1999, Louvain-la-Neuve & Leuven, Belgium

- 2004, Uppsala, Sweden (conjointly with the HPM Satellite meeting of ICME 10)
- 2007, Prague, Czech Republic

ESU

Duration

No of participants

Number of talks,
workshops etc

1> Montpellier

19-23/7/1993,

254 from 29 countries

SPL, 2PN, 48WS,

morning session

France 5 working days (17 European) 37T
2™ Braga, Portugal 24-30/7/1996, 548 from 33 countries | 1PL, 28IL, 4PN,
5 working days + a (14 European) 33WS, 71T

d .
3" Louvain-la-Neuve

15-21/7/1999,

159 from 22 countries

6PL, 2PN, 37WS,

half morning sessions

/Leuven, Belgium 6 working days (16 European) 35T
4™ Uppsala, Sweden | 12-17/7/2004, 120 from 33 countries | 6PL, 2PN, 9WS,
4 working days + two | (17 European) 59T

5™ Prague, Czech
Republic

19-24/7/2007,
4 working days + two
morning sessions

6PL, 2PN, 49WS,
50T%

PL=Plenary lecture
PN= Panel discussion
WS=Workshop

T= Talk/ oral presentation
IL=Introductory Lecture

¥ For ESU 5, these figures have not been finalized yet.
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Remarks:

(a) In the 2™ ESU there was only one plenary lecture, but many introductory lectures, which
run in parallel and which were addressed to schoolteachers, providing an introduction to the topics
elaborated in the workshops.

(b) The 2™ and 4™ ESU have been organized conjointly with the HPM Satellite Meeting of the
corresponding ICME (ICME 8 and ICME 10, respectively)

(¢) In most ESU, more than half of the participants were local people: Portuguese in the 2™
ESU (310); French in the 1 ESU (134). In the 3™ ESU about 40% were Belgians (64). Thus, in
general, there was a strong participation from local people, mainly primary and secondary
schoolteachers.

(d) In general, a key element of the program was the great number of workshops, which gave
the opportunity to presenters to explain their ideas, teaching practice, share their experience with
participants and distribute relevant material. The workshops were of variable duration usually,
from 1 to 3 hours.

(e) Non-local participants came from many countries, either European, or from other
continents, although with a few exceptions, only a small number from each country (usually less
than 5, or 6).

Themes of the ESU

The activities and the program of each ESU were structured around some main themes, which
were the following:

1 ESU Montpellier, France, 19-23/7/1993

-The historical construction of mathematical knowledge

-Introducing a historical perspective into the teaching of mathematics
-The relationship between mathematics education and culture
-Epistemology and its relationship to didactics and pedagogy

-History of mathematics in initial teacher training and in-service courses
-Mediterranean mathematics

-Ethnomathematics

2" ESU Braga, Portugal, 24-30/7/1996
Main themes:

-Mathematical cultures all over the world

-Mathematics as a science

-Mathematics, arts and techniques

Special topics:

-History of mathematics education

-Epistemological obstacles

-Views on Mathematics

-Mathematics for all

-Mathematical proof in history

3" ESU Louvain-la-Neuve /Leuven, Belgium, 15-21/7/1999
There were not any main themes specified a priori. However, themes proposed in due course
included

-Mathematical journals in Europe and their use in education

-The historical construction of mathematical knowledge

-The relation between mathematics and science in history; its in education
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-Relations between mathematics and music up to Euler’s era; their use in education

-History of mathematics education

-Mathematicians in the Low Countries

-About the 19™ century geometry: the Belgian theorems; what may be the insights for the
education?

4™ ESU Uppsala, Sweden, 12-17/7/2004
Main themes:
-The history of mathematics
-Integrating the history of mathematics into the teaching of mathematics
-The role of the history of mathematics in teacher’s training
-The common history of mathematics, science and technology
-Mathematics and different cultures
-The philosophy of mathematics

5" ESU Prague, Czech Republic, 19-24/7/2007
Main themes:

-History and Epistemology as tools for an interdisciplinary approach in the teaching and
learning of Mathematics and the Sciences

-Introducing a historical dimension in the teaching and learning of Mathematics

-History and Epistemology in Mathematics teachers’ education

-Cultures and Mathematics

-History of Mathematics Education in Europe

-Mathematics in Central Europe

Proceedings

An important aspect of the ESU has been the publication of its Proceedings. In the 2nd and 4th
ESU the Proceedings became available in advance and were distributed to the participants on the
spot. The Proceedings of 4th ESU have been published in a revised edition in 2006 (this volume).

1 ESU: Actes de la premiére Université d’Eté Européenne sur ['Histoire et Epistémologie
dans I’Education Mathématique, F. Lalande, F. Jaboeuf, Y. Nouazé (eds.), Montpellier, France:
IREM de Montpellier, Université Montpellier 11, 1995 (598 pages in one volume).

2™ ESU: Proceedings of the 2nd European Summer University on the History and
Epistemology in Mathematics Education and the ICME 8 Satellite Meeting of HPM, M.J. Lagarto,
A. Viera, E. Veloso (eds.), Braga, Portugal: Portuguese Association of the Teachers of
Mathematics & Department of Mathematics, University of Minho, 1996 (813 pages in two
volumes).

3" ESU: Proceedings of the 3 European Summer University on the History and Epistemology
in Mathematics Education, P. Radelet-de-Grave, C. Brichard (eds.), Leuven and Louvain-la-
Neuve, Belgium: Université Catholique de Louvain, 2001 (944 pages in two volumes).

4™ ESU: Proceedings of the HPM 2004: History and Pedagogy of Mathematics ICME 10
Satellite Meeting and 4" European Summer University on the History and Epistemology in
Mathematics Education, F. Furinghetti, S. Kaijser, A. Vretblad (eds.), Uppsala, Sweden: Uppsala
University, 2004 (482 pages in one volume). Revised edition: F. Furinghetti, S. Kaijser, C.
Tzanakis (eds.), Proceedings HPM 2004 & ESU 4, Iraklion, Greece: University of Crete, 2006
(678 pages in one volume), ISBN 960-88712-8-X.
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Plenary Lecture

FOUND AND LOST AND FOUND AGAIN

Victor KATZ
University of the District of Columbia Mathematics Department
4200 Connecticut Ave. N.W., Washington, DC 20008, USA

vkatz@udc.edu

ABSTRACT

The history of mathematics is full of numerous missed opportunities. Namely, there are many
times where a significant new mathematical discovery was made, but for whatever reason,
it was not communicated in a timely manner to the mathematical community of the time.
Thus, the idea disappeared from the mathematical landscape, only to be rediscovered totally
independently some time later, where that time could be years or even centuries. On the
other hand, it may be that“rediscovered totally independently” is incorrect. Is it possible
that these ideas survived “underground,” so to speak, and were then excavated by someone
later rather than discovered anew? We will look into this matter in the context of a number
of significant discoveries. We will find that in most cases, the record is not at all clear, and
that it is possible that future research will uncover a method of transmission that today is
unknown. Indications of the research necessary will be given, as will the relationship of some
of these discoveries to the teaching of mathematics.

1 Introduction

The history of mathematics is full of numerous missed opportunities. Namely, there
are many times where a significant new mathematical discovery was made, but for
whatever reason, it was not communicated in a timely manner to the mathematical
community of the time. Thus, the idea disappeared from the mathematical landscape,
only to be rediscovered totally independently some time later, where that time could
be years or even centuries. On the other hand, it may be that “rediscovered totally
independently” is incorrect. Is it possible that these ideas survived “underground,” so
to speak, and were then excavated by someone later rather than discovered anew? We
will look into this matter in the context of a number of significant discoveries. We will
find that in most cases, the record is not at all clear, and that it is possible that future
research will uncover a method of transmission that today is unknown. Indications of
the research necessary will be given, as will the relationship of some of these discoveries
to the teaching of mathematics.
Among these mathematical discoveries are the following:

1. The solution of quadratic equations

2. The derivations of the basic combinatorial formulas

Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006



3. The calculus of the trigonometric functions
4. The calculus of polynomial functions: derivatives and integrals

5. Modern algebraic notation and its use in writing out basic formulas

We will discuss each of these discoveries in turn.

2 The solution of quadratic equations

We begin with the algebra of quadratic equations. It is well-known that the Babylonians
discovered, sometime around 2000 BCE, a method for finding the length and width of
a rectangle given the area and semi-circumference. In modern terms, their method
amounts to solving a quadratic equation by “completing the square.” For example,
consider the problem =z +y = 6 1/2, zy = 7 1/2 from tablet YBC 4663. The scribe
first halves 6 1/2 to get 3 1/4. Next he squares 3 1/4, getting 10 9/16. From this is
subtracted 7 1/2, leaving 3 1/16, and then the square root is extracted to get 1 3/4. The
length is thus 3 1/4 4+ 1 3/4 = 5, while the width is given as 31/4—-13/4=11/2. A
close reading of the wording of the tablets seems to indicate that the scribe had in mind
a geometric procedure, where for the sake of generality the sides have been labeled in
accordance with the generic system x4y = b, zy = ¢. The scribe began by halving the
sum b and then constructing the square on it. Since b/2 = x—(z—y)/2 = y+(z—y)/2,
the square on b/2 exceeds the original rectangle of area ¢ by the square on (z — y)/2,

that is
() =m (55
=x .
2 Y 2

The figure then shows that if one adds the side of this square, namely /(b/2)? — ¢, to
b/2 one finds the length z, while if one subtracts it from b/2, one gets the width y. The
algorithm is therefore expressible in the form

R L S SN
) 2 =3 2

Numerous Babylonian tablets are filled with problems of this and related types,
all solved by algorithms based on a “cut and paste” geometry evidently developed by
surveyors. We should note, however, that diagrams are not found on the tablets, only
procedures. It is only through a careful consideration of the words on the tablets that
specialists have determined the geometric basis of the procedures.

Greek mathematics, in contrast to that of the Babylonians, is based on proof from
explicitly stated axioms. Nevertheless, in Book II of the Elements, Euclid states several
propositions which clearly form the basis for the solution of quadratic equations. For
example, we can consider
Proposition I11-5. If a straight line is cut into equal and unequal segments, the rectangle
contained by the unequal segments of the whole together with the square on the straight
line between the points of section is equal to the square on the half.

If we label AD as x, DB as y, and AC' = CB as b/2, we can translate this result into
the standard Babylonian system z+y = b, zy = c. In this case, the figure is drawn in the




manuscript. It is, however, essentially the same as the assumed Babylonian figure. Now
in the Flements Euclid did not use this figure for solving quadratic equations. In fact, it
could be argued that he does not do any such solving. However, centuries later, Islamic
mathematicians quoted exactly this proposition (as well as others in Book II) to provide
a justification for their essentially Babylonian method for solving equations of this type
as well as the analogous single quadratic equation bz — 22 = ¢ or 22 + ¢ = bx. And
Euclid himself, in his Data, comes very close to “solving an equation” in his proposition
85, among others:

Proposition 85. If two straight lines contain a given area in a given angle, and the sum
of the straight lines is given, each of them will also be given.

Although this proposition is slightly more general than the Babylonian problem, in
that it allows the two straight lines to meet at any angle instead of insisting on a right
angle, the medieval manuscripts of the Data all used right angles in their diagrams.
Euclid proves this proposition by quoting an earlier one:

Proposition 58. If a given parallelogrammic area deficient by a parallelogrammic figure
given in form be applied to a given straight line, the breadths of the defect have been
given.

Again, if we assume, as did most of the manuscripts, that the given area was a
rectangle, and the area was deficient by a square. this proposition is essentially based
on Euclid’s II-5, with a diagram similar to the one there as well as to the assumed
Babylonian problem.

There has long been a debate over whether the geometric algebra in Euclid stems
from a deliberate transformation of the Babylonian quasi-algebraic results into formal
geometry. As pointed out above, there is a strong similarity of the geometric proce-
dures to the algebraic ones, at least in the special cases discussed. But was there any
opportunity for direct cultural contact between Babylonian mathematical scribes and
Greek mathematicians? It used to be argued that this was virtually impossible, because
there was no record of Babylonian mathematics at all during the sixth to the fourth
centuries BCE, when this contact would have had to take place, and because those in
the aristocracy to which the Greek mathematicians belonged would be disdainful of the
activities of the scribes, who in Old Babylonian times were not themselves part of the
elite. However, recent discoveries have indicated that mathematical activity did con-
tinue in the mid-first millennium BCE. Furthermore, by this time, the Mesopotamian
languages were often being written in ink on papyrus using a new alphabet. Cuneiform
writing on clay tablets was then restricted to important documents which needed to
be preserved, and those who could perform this service were now members of the elite,
experts in traditional wisdom who were central to the functioning of the state. Besides,
from the sixth century on, Mesopotamia was a province of the Persian empire, with
whom the Greeks did maintain contact. Of course, just because such contact was pos-
sible, does not mean it happened. And many scholars still believe that the Greek work
was entirely independent of the Babylonian.



3 The derivation of the basic combinatorial formu-
las

Although the basic formulas for calculating permutations and combinations were ap-
parently known in India in the first millennium, no derivations of these formulas have
come down to us in the Indian literature. They have come down, however, in literature
from the Islamic world beginning in the thirteenth century and in the Hebrew speak-
ing world around the same time. For example, Ahmad al-Ab’dari ibn Mun’im (early
thirteenth century), who lived in Marrakech, gave a derivation of the combinatorial rule

Cpr=Cfl+Cf +Ct -+ o}

in the context of solving a problem of how many different bundles of colors can be made
from ten different colors of silk.

A few years later, Abu-1-’Abbas Ahmad al-Marrakushi ibn al-Banna (1256-1321)
derived the multiplicative rule for these entries in Pascal’s triangle, by showing that for
any positive integers n, k (n > k),

cr = L}ljl)cﬁl.
(Of course, he did not use this modern notation, but only described the method and
results in words.)

In 1321, the same results were published on the opposite side of the Mediterranean,

by Levi ben Gerson of Orange (1288-1344). Although Levi was certainly familiar with
some Islamic work in mathematics, there is no direct evidence that he was familiar
with ibn al-Banna’s material. And his derivations were slightly different. More impor-
tantly, perhaps, Levi essentially used the technique of mathematical induction to prove
his results. That is, he stated the inductive step, the procedure of getting from one
level to the next, then showed that the result was true for an initial value, and then
concluded that the result was true in general. For example, to calculate the number of
permutations P}’ of a set of k elements in a set of n elements, he proved the following
result:
If a certain number of elements is given and the number of permutations of order a
number different from and less than the given number of elements is a third number,
then the number of permutations of order one more in this given set of elements is equal
to the number which is the product of the third number and the difference between the
first and the second numbers.

Modern symbolism replaces Levi’s convoluted wording with a brief phrase: P}, =
(n— j)P]”. And given this inductive step, Levi could quote the following: “It has thus
been proved that the permutations of a given order in a given number of elements are
equal to that number formed by multiplying together the number of integers in their
natural sequence equal to the given order and ending with the number of elements
in the set.” After showing the relationship between the number of permutations of k
elements in n and the number of combinations of k elements in n, he could quote the
basic multiplicative formula for C}' already derived by ibn al-Banna.

Yet even though Levi had worked out the basics of combinatorics, the subject seems
to disappear from European thought for over two hundred years, with a couple of



exceptions. In Oresme’s Treatise on the Configuration of Qualities and Motions (mid
14th century), the author mentions the number of different ways he can form composite
difform difformities from six simple kinds: These can be found ”either of one kind, or
two, or three, or four, or five, or six, [and] it follows by arithmetical rules that from
each simple kind some combination or composition can be formed.” Oresme then uses
"arithmetical rules” to determine that there are fifteen ways of taking two at a time,
twenty ways of taking three at a time, fifteen ways of taking four at a time and five
(1) ways of taking five at a time. We note that he makes an error in the last answer,
but, unfortunately, he does not indicate what the ”arithmetical rules” are. This leads
us to believe that they were well known at the time and that he was not just writing
out all possibilities and counting them. There are several instances in this and other
works in which he indicates the actual calculation of the number of ways two objects
can be chosen out of m —i.e. m(m — 1)/2 — but there does not appear to be anywhere
in his writings an explicit calculation of choosing more than 2 objects. Now given that
some of Levi’s work was known in Paris (including a small mathematical work he was
commissioned to write), it is possible, but of course not certain, that Oresme could have
known of Levi’s combinatorial work.

In the sixteenth century, there are indications of knowledge of the combinatorial
rules in the work of Cardano and other Italian mathematicians. But it was only in the
1630s that we see a more detailed discussion of the combinatorial formulas in the work
of Marin Mersenne, the Minimite friar who was the “secretary” of Europe’s republic
of letters. In two works on music theory published in 1636, Mersenne not only laid
out the arithmetical triangle in the same form Pascal was to use some years later, but
also described how the entries were calculated, first by the standard addition process
and then by a multiplicative method. We should note that Mersenne’s descriptions are
all in terms of forming tunes out of certain notes or words out of certain letters. But
his basic methods remind one of Levi’s methods. It is interesting to speculate whether
Mersenne or one of his sources could have known about Levi’s work. There was, for
example, a complete manuscript of Levi’s book in a Paris library, and Mersenne as well
as other priests certainly could read Hebrew. But we simply cannot tell whether in
fact Levi’s book was read. So for the moment, we have no choice but to assume that
Mersenne (or his sources) rediscovered the material independently.

4 The calculus of the trigonometric functions

Trigonometry, as a subject dealing with the solution of plane and spherical triangles in
order to record and predict the motion of the heavenly bodies, first appeared in Greek
mathematics around the beginning of our era. Ptolemy’s Almagest contains the first
extant treatment of the subject, but we know both that it began somewhat earlier and
that it was transmitted to India and later to Islam, before returning to Europe. Both the
Indians and the Islamic mathematicians improved the trigonometric methods. In India,
curiously, mathematicians developed algebraic formulas for approximating sine values
as well as interpolation methods. But during the first half of the second millennium,
the necessity grew in India for more accurate sine tables. This necessity came out of
navigation, for the sailors in the Indian Ocean needed to be able to determine precisely
their latitude and longitude. Since observation of the pole star was difficult in the



tropics, one had to determine latitude by observation of the solar altitude at noon, u.
A standard formula for determining the latitude ¢ was sind = sin ¢ sin p, where § is
the sun’s declination (known from tables or calculations). Determination of longitude
was somewhat more difficult, but this could also be accomplished using trigonometry
if one knew the distance on the earth’s surface of one degree along a great circle. In
any case, the more accurate the sine values, the more accurately one could determine
one’s location. Thus, mathematicians in south India, in what is now the state of
Kerala, developed power series for the sine, cosine, and arctangent, beginning late in
the fourteenth century. These series appear in written form in the Tantrasamgraha-
vyakhya of about 1530, a commentary on a work by Nilakantha (late fifteenth century).
Derivations appear in the Yuktibhasa, whose author credits these series to Madhava
(1349-1425).

The Indian derivations of these results begin with the obvious approximations to the
cosine and sine for small arcs and then use a “pull yourself up by your own bootstraps”
approach to improve the approximation step by step. The derivations all make use of
the notion of sine differences, an idea already used much earlier. Thus, it was clear not
only that the Indians understood the basic idea of the differential of the sine and cosine
functions, but that they could handle what amounts to the passage to the limit of what
we would call Taylor polynomials for these functions.

Now power series for the sine and cosine first show up in Europe in the work of
Newton in the 1660s. There is certainly no available documentation showing that
Newton or anyone else in Europe was aware of these Indian developments prior to that
date. However, there is some circumstantial evidence. First of all, Europeans, just like
the Indians, needed precise trigonometric values for navigation. Secondly, the texts in
which these power series were described were easily available in south India. Third,
the Jesuits, in their quests to proselytize in Asia, established a center in south India in
the late sixteenth century. In general, wherever the Jesuits went, they learned the local
languages, collected and translated local texts, and then set up educational institutions
to train disciples. But the question remains as to whether, in fact, the Jesuits did find
these particular texts and bring them back in some form to Europe. In the period from
1630 to 1680 some of the basic ideas present in these Indian texts began to appear in
European works. But in the case of Newton, we can trace his thoughts through his
notebooks and therefore have no reason to believe he was aware of Indian material. For
many of the other European mathematicians, we have little documentary evidence of
how they discovered and elaborated on their ideas. So at the moment, we can only
speculate as to whether Indian trigonometric series were transmitted in some form to
Europe by the early seventeenth century.

5 The calculus of polynomial functions: derivatives
and integrals

The two basic ideas of the calculus are determining extrema and determining areas
and volumes. Examples of both of these were treated in Islamic mathematics. For
example, Sharaf al-Din al-Tust (d. 1213), a mathematician born in Tus, Persia, dealt
with maxima in his treatment of the solution of cubic equations. We look at one
example, his analysis of 2° +d = bx?. Sharaf began by putting the equation in the form



22(b — ) = d. He then noted that the question of whether the equation has a solution
depends on whether the “function” f(z) = x2(b — ) reaches the value d or not. He
therefore carefully proved that the value xzy = %b provides the maximum value for f(z),
that is, for any z between 0 and b, 2*(b—z) < (%)*(%) = 4”3 . He did not say, however,
why he chose this particular value for xy, but it has been suggested that he found this
maximum by considering the conditions on z under which f(z) — f(y) > 0 for both
y < x and y > z, that is, in essence calculating a zero of the “derivative” of f(z).
However he derived it, he did give a perfectly correct geometric proof that this value is
in fact the maximum. He could then analyze the solutions Given that = % provides the

maximum, Sharaf noted that if the max1mum V(Llue %= is less than the given d, there

can be no solutions to the equation. If cquals d, thcrc is only one solution, z = 2—b

Flnally 1f W 4y greater than d, there are two solutions, x; and o, where 0 < 1 < 23”

and 2 < 7: 2 < b. Of course, giving these conditions still did not enable Sharaf to solve
the equatlon That he did by a numerical method.

Integrals were calculated by various Islamic mathematicians, mostly continuing on
the work of Archimedes. However, ibn al-Haytham (965-1039) made what could have
been a breakthrough in his calculation that the volume of the solid formed by rotating
the parabola 2 = ky? around the line z = kb? (which is perpendicular to the axis of the
parabola) is 8/15 of the volume of the circumscribing cylinder of radius kb? and height
b. His formal argument was a typical exhaustion argument. But the essence of ibn
al-Haytham’s argument involved “slicing” the cylinder into n disks, each of thickness
h= %, the intersection of each with the paraboloid providing an approximation to the
volume of a slice of the paraboloid. The ith disk in the paraboloid has radius kb*—k(ih)?
and therefore has volume 7h(kh?n? — ki’h?)? = wk%h®(n® — i2)%. The total volume of
the paraboloid is therefore approximated by

kh? Z n? — %)% = 7k’ Z(n n2i% 4 i),

i=1

But ibn al-Haytham already knew formulas for the sums of integral squares and integral
fourth powers. In fact, he had developed a method for calculating sums of any integral
powers, one level at a time. Using these formulas, he could calculate the sum in this case
and show that the volume of the paraboloid is bounded between 8/15 of the cylinder
less its top slice and 8/15 of the entire cylinder. Since the top slice can be made as
small as desired by taking n sufficiently large, it follows that the paraboloid is exactly
8/15 of the cylinder as asserted.

It is just a short step from ibn al-Haytham’s calculation of sums of integral fourth
powers and its application to the volume of this paraboloid to a general calculation
of sums of integral powers and the application of that formula to finding the integral
of z*. Tbn al-Haytham never took that step. The only manuscript that we know of
containing ibn al-Haytham’s work on the volume of a paraboloid of revolution was
acquired by the library of the India Office in England in the nineteenth century. Thus,
although results similar to ibn al-Haytham’s on the sum of integral powers began to
appear in Europe in the seventeenth century, we have no way of knowing whether
anyone in Europe was aware, either directly or indirectly, of that particular treatise of
the Egyptian mathematician.



6 Modern algebraic notation and the writing out of
formulas

The examples so far considered all deal with possible transmission from one civiliza-
tion to another. But even in Europe, there have been numerous occasions where an
idea was discovered by one mathematician but was not brought into the mathematical
mainstream until being rediscovered by another. One example in which we know more
than we did a few years ago is that of the development of modern algebraic notation.
Certainly it was Viete who created the idea that constants in an equation, as well as the
unknowns, could be represented by letters. Thus, he was the first to write down what
we could consider “formulas” for solving quadratic and cubic equations. Yet Viete’s
formulas are very clumsy since he did not use good symbolism to represent powers or
basic operations.

We therefore turn to the work of Thomas Harriot (1560-1621). Harriot published
nothing on mathematics during his lifetime, but he did much work on algebra. His
mathematical papers were collected by his executors after his death; some were pub-
lished as the Artis analyticae praxis in 1631, but these were to some extent mixed
up and certainly did not fully reflect his accomplishments. It is only in recent years
that thorough inspections of his manuscripts have led to the realization that he could
have had an enormous effect on mathematical notation, at least, if he had himself pub-
lished his material. Harriot was well-acquainted with Viete’s work. The connection was
through Nathaniel Torporley (1564-1632), who became Viete’s amanuensis (scribe) in
the 1590s. From 1597, Harriot had a lifelong patron in Sir Henry Percy, the ninth earl
of Northumberland, and Torporley was often part of the earl’s household. Harriot and
Torporley also corresponded when they were separated by the English channel. And
Torporley was one of the mathematical executors of Harriot’s estate after 1621.

What we want to look at here is how Harriot changed Viete’s notation, although
certainly keeping his mathematical ideas. Here is one example: Viete: To add Z
quadratum/G to A plano/B; the sum will be (G in A Planum + B in Z quadrat)/B
in G. Harriot wrote this same expression as follows:

ac dd  acg+ bdd
4+ —= "

b g bg

Note that A plane is replaced by ac and z quadratum by zz, which, for some reason,
appears in the Praxis as dd. This example shows Harriot’s enormous improvements in
notation and clarity. Viete’s use of planes in an attempt to keep homogeneity meant
that he ended up with a clumsy mixture of symbolism and words. By replacing A
plane with the dimensionally equivalent ac, Harriot dispensed with Viete’s words and
originated a notation that can still be easily read today.

More interestingly, let us look at Harriott’s derivation of the cubic formula, a formula
which Viete certainly knew but could only express with difficulty. Harriott wrote: The
equation to be solved:

2cce = —3bba + aaa

Canon for finding roots is gqq + rrr = —3qra + aaa, where a = ¢+ r. From this, by
a familiar route, Harriott derived the result

a= \3/ cce + V' eceeee — bbbbbb + \3/ ccc — v/ cceece — bbbbbb




The only thing lacking from our present algebraic symbolism is the use of exponents.
And we know these first appeared consistently in the work of Descartes.

Late in the seventeenth century, John Wallis argued forcefully that Descartes plagia-
rized the work of Harriott. Most readers of Wallis’s diatribe discounted this as English
prejudice, because few at the time actually knew the extent of Harriott’s work. Today,
given that extent, there seems to be stronger possibility that Wallis is correct. Among
other improvements, Harriott replaced the word for multiplication with juxtaposition,
and used modern symbols for the operations, while retaining Viete’s use of vowels for
unknowns and consonants for knowns. It seems reasonable to believe that Descartes
then took two further steps - using letters near the end of the alphabet for unknowns
and near the beginning for knowns, and using exponential notation for powers of a
given quantity. But was Descartes actually acquainted with Harriott’s work while he
was writing his Geometry? That is a question which as yet cannot be answered.

7 Conclusion

The above are only a few of the numerous examples of possibly lost opportunity that
could be presented. More will be discussed if time permits. The question is most of
these cases remains. Was there transmission of the ideas over channels of which we
know nothing, or were these ideas simply rediscovered from scratch. Unlike artifacts,
which frequently show up in unexpected places and provide solid evidence that there
was movement between civilizations, the transmission of ideas is much harder to track.
Documents still extant from ancient times are few and far between, because of the
fragility of the media used. And, of course, there are no “documents” on oral trans-
mission. So what we are often left with is informed speculation. We can compare the
description of the same idea at various times and places to try to determine how close
these are, particularly in the details. We can search for records of travel between places
and see whether transmission would have even been possible. We can hunt for letters
or other suggestions that someone read something that was only available in a possible
obscure location. But ultimately, without actual documentation, we can only look to
our intuition. Is transmission in a particular situation more likely than independent
rediscovery?
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ABSTRACT

In the 18th century there are several Swedish scientists, who still are remembered as some of
the most important of the century: Carl von Linné, Anders Celsius, Torbern Bergman, Carl
Wilhelm Schecle. Not so well-known nowadays is Samucl Klingensticrna, though he is the one
who introduced infinitesimal calculus to Swedish scholars and was precursor to the other in
their international fame.

1 Introduction

To travel was a good way to get informed. Newton did not. As an inventor he was by
himself a source of information. Leibniz visited France, England and Italy during his
apprenticeship. Then he stayed at home in Hannover spreading his thoughts by letters
and journal articles. Most of their followers travelled. The mathematical centers of
Europe at the end of the 1720s were London, Paris, Basel and St Petersburg. The most
prominent mathematicians to meet in these cities were Johann Bernoulli, Bernhard
Fontenelle, Leonhard Euler, Abraham de Moivre and several English mathematicians
as Edmond Halley, James Stirling and John Machin. Among the travellers we can
notice the Swedish mathematician Samucl Klingensticrna. He met most of the above
mentioned. He travelled for about three years and was in Basel, Paris and London
and became a well-known member of the mathematical community. He developed
beautiful solutions to many problems which were discussed by mathematicians all over
Europe. After his return to Uppsala in 1730 his fame outside Sweden faded away. That
certainly depended on his unwillingness to publish his results and that he never again
went abroad.

2 The first years

Samuel Klingenstierna was born outside Linképing in 1698. In 1708 he lost his father
on a battleficld in Saxony during the Nordic War. He survived the plague in 1710
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and was scven years later registered student at Uppsala University. As many other
well known mathematicians he began to study jurisprudence. Ile preferred not to at-
tend the lectures and studied most of the time on his own. His biographer® tells that
while reading Pufendorft’s De Jura Nature et Gentium he found the word 'quantitate’
hard to understand. To get an explanation he was recommended by a friend to study
mathematics especially Euclid’s Elements. During two months of eager studies Klin-
gensticrna became enthusiastic to have found a science of complete truths. He wanted
to learn more. Euclid taught how to divide a line and an angle into two equal parts.
But why, Klingensticrna thought, did he not show how to divide an angle into three or
four equal parts? There was no use to look for help at the university. Both the two
prolessors of mathematics in Uppsala died in 1718. The curriculum ol mathematics at
the university was still not influenced by the new theories from abroad. Arithmetic and
Euclidean gecometry were still the only pure mathematical parts of Swedish education.

But there was one mathematically well-informed person in Sweden at that time,
Anders Gabricl Duhre, who had even written a book Algebra, which described theories
by Wallis and Newton. It also presented a theory about infinitely small parts inspired
by Nicuwentijt’s Analysis Infinitorum. Duhre was not an academic. He was teaching
army officers mathematics and mechanics. Klingenstierna went to sce him. He lived
just outside Uppsala. Duhre told Klingensticrna to read Charles Reyneau’s Analyse
Demontrée, a book with more than 1000 pages, containing both differential and integral
calculus.

The story now tells that Klingenstierna went into his chamber neglecting his friends
and just studied Reyneau’s book. When he returned to social life, one of his friends
asked him if he now wanted to be Duhre’s pupil. Klingensticrna answered that he did
not need that because now he knew more than Duhre.

During the next years, while working for the Civil State in Stockholm, Klingenstierna
studied most of the modern mathematical literature, such as books and articles by
Newton, Leibniz, Huygens, "Hospital, the Bernoullis and Varignon. He also studied
the old masters as Archimedes, Apollonius and Pappus.

He returned to Uppsala in 1724 to go on studying at the university. In 1725 he
started to tcach mathematics, not at the university (he had no exam), but at a school
that Duhre had started. For the first time infinitesimal calculus was taught in Sweden.
But in this position Klingensticrna himself could not learn more, he had to go abroad
to meet the masters.

3 A travel of apprenticeship

3.1 In Marburg and Basel

In 1727 he succeeded to get grants from the university for his journey. At the end of the
year he went to Marburg to attend Christian Wolff’s lectures on logic and mechanics.
Wolff was a philosopher and scientist who had interpreted Leibniz’ theories. One of his
famous works, which Klingenstierna had studied, is Elementa Matheseos which contains

!Marten Stromer held the commemorative speech for him in 1768. Much of the biographical data
is from that speech. Strémer was a close friend to Klingenstierna and also became professor of math-
ematics in Uppsala



the infinitesimal calculus. Supported by Wolff, Klingensticrna was clected Professor of
mathematics at Uppsala University in August 1728. In order to get that position he
wrote a thesis where he commented and even augmented Newton’s theory about third
degree curves.?

Being a professor he got a salary and was cven allowed to continue his journcy?.
Next stop was Basel where he stayed for six months as a disciple of Johann Bernoulli.
Klingensticrna also made friends with Johann’s nephew Nicholaus Bernoulli. In a letter,
October 26, 1728, to Johann Jakob Scheuchzer, a Swiss naturalist, Johann Bernoulli
says

Just now Mr v. Klingenstierna, professor of mathematics in Uppsala, is here for
studies with me. He has come here from very far away just to enhance my weak
knowledge. To tell the truth he already understands the most sublime geometry,
so I do not know if the rumour has given a false impression about me, which has
made him come here from his country in the very north.

In Basel he learnt more about how to use the infinitesimal calculus in solving geometrical
and physical problems. He also got in contact with the ‘new’ theory of calculus of
variations developed by Johann and his brother Jakob. There are manuscripts from
this period where Klingenstierna solves the brachystochrone problem with the extra
condition that the motion of the body took place in a resistant medium®. Euler had
a solution to the same problem a few yecars later in 1734%.  Johann Bernoulli also
mentioned Klingensticrna concerning the problem to find the shortest curve between to
given points on a surface, i.c. to find the geodetic lines®. Probably Klingenstierna had
got the problem as an exercise from his advisor and then together with him found the
solution.

The acceptance of infinitesimal calculus among mathematicians gave rise to new
kinds of problems, especially in mechanics and pure mathematics. Several of them
were presented in letters which then were spread to others as copies. In that way
both problems and proposed solutions reached the scientific centers of Europe, as St
Petersburg, Padua, Basel, Geneva, Paris and London. It is also possible that some
of them were sent to Uppsala by Klingensticrna, but no letters arc left to verify that.
Problems were also posed in the scientific journals. In one of these both Klingeunstierna
and Johann Bernoulli were very much engaged. In Acta Eruditorum of 1728 you will
find the following problem given anonymously:

?Newton presented his theory in De enumeratione linearum tertii ordinis which is an appendix to
his Optics (1704). In 1717 James Stirling also wrote a thesis about Newton’s work Lineee tertit ordinis
Neutoniane, but their are enough differences between Klingenstierna’s and Stirling’s works to say that
Klingenstierna had written his thesis independently.

3Anders Celsius (1701-1744) substituted for Klingenstierna in Uppsala, but he did not get any
salary and was not even allowed to give lectures at the university. Celsius got his income by teaching
at Duhre’s school.

4Jakob Hermann, Jakob Bernoullis disciple, proposed the augmented brachystochrone problem in
1727.

5In the manuscript E-12 (Enestrom’s index) De linea celerrimi descensus in medio quocunque res-
istente presented for the St Petersburg Academy in February 1734.

In a footnote in Johann Bernoulli’s Opera Omnia (1742) tome IV, p. 108. Bernoulli’s text is
similar to a manuscript found in Basel written by Klingenstierna.



A Problem proposed for Geometricians.

If a body falls in vacuum (i.e. without resistance) along any given curve it will
always return to the original level. T am now looking for the geometric construction
of the curves or the curve, that the body describes when the arc of curve along
which the body falls in a medium [sic. liquid], has got the same length as the arc of
curve along which the body is moving upwards. The movement and the equality
are independent of the starting point of the fall. T assume that the medium is
perfect with a resistance which is proportional to the square of the velocity of the
body.”

There is an enclosed diagram that makes the problem casier to understand.

The problem asks for the curve ADB and a curve BEC with the condition that the
arcs DB and BE have got cqual lengths wherever the starting point D is situated on
the curve ADB.

Five of Klingensticrna’s manuscripts deal with this problem, all of them are in
Uppsala®. In the first of them Klingenstierna mentions that Johann Bernoulli’s son
Danicl is the author of the problem. In the second Klingenstierna has simplified the
problem so that the downward fall is given as vertical. It is interesting to obscrve that
in some places of the manuscript there is another hand which has corrected Klingen-
stierna’s writing. It has been verified that the other person is Klingenstierna’s advisor
Johan Bernoulli. So this manuscript really shows the details of a learning situation
between the apprentice and his teacher. In one of Johann Bernoulli’s manuscripts® in
Bascl with similar text Johann Bernoulli has written:

This writing is derived from Klingenstierna’s words. But look in my paper B for
10

a more general and more intelligible solution.
In a letter to the Scotch mathematician James Stirling dated April, 1, 1733, Nich-
olaus Bernoulli doubted that Klingenstierna had found the general solution (with a
non-vertical descending curve). Anyway one of Klingenstierna’s manuscripts gives the
general solution. It has many similarities with the mentioned manuscript B by Johann
Bernoulli, the manuscript which then was printed in Opera Omnia*!. In the general
solution both parts of the curve arc derived from the model presented for the ascending

"The translation is a little adjusted to a better understanding. The original is on p. 523 in Acta
Eruditorum (1728).

8They arc classificd with the signum R.4.1-5 in Mallet’s cataloguc on Klingensticrna’s manuscripts.

9L T a 124, fol. 341 at the University Library in Basel.

10The original text is: “Hoc scriptum verbis Klingenstiernij est conceptum. Sed solutionem gener-
aliorem magisque claram vide in schediasmate mea B.”

"1 Tome IV pp. 378-382.



curve in the simplified case. So it was a good idea by Johann Bernoulli to present a
simpler problem to Klingenstierna before he had to struggle with the real problem. It
is worth mentioning that the solutions ended with a differential cquation out of which
it was possible to construct the curve, as Danicel Bernoulli demanded. In Klingensti-
crna’s manuscripts we could just find a construction of the simplified curve, so perhaps
Nicholaus Bernoulli was right in his doubts.

Klingensticrna also studied scries during his period of apprenticeship in Basel. A
manuscript dated December 1728 deals with “De Summatione Serierum Recurrentium”
(About the sum of recursive series'?). The manuscript begins with a simple lemma
which presents the series expansion of ff:z which he calls “fractio binomia”. By con-
tinuous division he gets the geometrical series

ax™ ) . .
= az™ + aaz™! + aaaz™? + addz™? + &te.

1—ax

The rest of the manuscript deals with ; ﬁ;ix”i{’;‘i;ﬁﬁﬁw, i.c. the “fractio multino-
mia’. Klingensticrna shows how to find the scries expansion even in this case. He
factorizes the denominator in expressions as (1 —pz), (1 —qx), (1—rz) och (1—sz) and
manages to break up the ‘fractio multinomia’ into partial fractions with these factors as
denominators. With help of the binomial theorem (which he calls “Theorema Newtoni”)

he finds the demanded expansion.

Nicholaus Bernoulli called the content of this manuscript “a brilliant method to solve
the problem with the recursive series”.'® He also mentions that his cousin Danicl had
presented a similar method at the St Petersburg Academy.

3.2 In Paris

Klingensticrna left Bascl for Paris at the end of March 1729. His aim was certainly
to meet members of the Royal French Academy of Science as Fontenelle', Cassini and
Maupertuis.

In the commemorative speech Stromer tells a story that Klingenstierna convinced
Fontenelle about the impossibility to determine the structure of an infinitesimal. His
convincing cxample was a rhombus, whose sides were bisccted. By connecting the
midpoints he got a rectangle. By connecting the midpoints of the rectangle’s sides he
got, a rhombus again. Proceeding in bisecting the sides he alternatively got a rectangle
and a rhombus. His question was: Is the infinitesimal a rectangle or a rhombus?

The story might of course be true, but there is no other evidence to confirm it. It is
casy to doubt when we know that Fontenelle just met Klingenstierna once!s.

During his first month in Paris Klingensticrna spent a lot of time with another trav-
clling apprentice Gabricl Cramer'®, who a few years carlier had visited the Bernoullis in

2The theory of recursive series was developed by Abraham de Moivre who also gave it its name.

B“methode ingenieuse de resourdre le Probleme des suites recurrentes” is written in a letter from
Nicholaus B. to Gabriel Cramer March, 23, 1729.

“Bernhard Fontenelle (1657-1757), the secretary of the Academy since 1697.

SFontenelle told Johannu Bernoulli in a letter 28 June 1729.

8Gabriel Cramer (1704-1752). In the beginning of May Cramer left Paris for Geneva, where he had
been appointed Professor of Mathematics.



Bascl and had just arrived from London. The topics of their discussions covered many
fields, e.g. geometry, integral calculus and infinite series.

3.3 In London

Klingenstierna went to London at the end of June 1729. In a letter to Cramer he had
Jjust (16th of June) complained about his boring life in Paris. A letter of recommend-
ation for Klingensticrna written by Cramer to Stirling certainly helped the Swedish
Professor to have a more comfortable and pleasant stay in London. It is mentioned in
the commemorative speech that he met Stirling, Abraham de Moivre, the blind Pro-
fessor in Cambridge Nicholas Saunderson and Edmond Halley. Two great works on
infinite serics were just about to be printed when Klingenstierna arrived, de Moivre’s
Miscallenea Analytica de Seriebus et Quadraturis and Stirling’s Methodus Differentialis:
sive Tractatus de Summatione et Interpolatione Serierum Infinitarum. As onc of fow
foreigners we find Klingenstierna’s name in the enclosed list of subscribers of de Moivre’s
book.

Probably the theory of infinite series was Klingensticrna’s main interest during his
stay in London. Klingensticrna is generally ascribed the discovery of the series!?

m 3 1 A arc 1 ) 1

1 arctan 0 arctan 515 arctan 939
recorded in a manuseript dated "Londini d. 7. Aprilis 1730'8. This is not quite correct.
The Scotch mathematician and Professor in Glasgow Robert Simson was the first in-
ventor of that series'®. Hidden in an undated manuscript Klingenstierna derives another
formula for 7:

T 1 1 1 1
— = 8arctan — — 4 arctan —— — arctan —— — arctan
4 10 515 240 57361

This scries converges as fast as the other one and it would be more realistic to name
that series "Klingenstierna’s formula”. There is certain evidence that this manuscript
also was written in London.

In 1730 he became a member of the Royal Society and in the year after he had an
article published in Philosophical Transactions. There he showed a way to break up a
fraction of polynomials into partial fractions; a similar problem that we have seen that
Klingensticrna was working with in Bascl.

4 Epilogue

In late 1730 Klingenstierna returned to Uppsala. As a Professor with very good repu-
tation he was now able to teach the results of the scientific revolution which T.eibniz’

"Klingenstierna did not have the arctan concept, but described the formula as the sum of three
infinite series.

8¢.g. Tan Tweddle has mentioned it in John Machin and Robert Simson on Inverse-tangent series
for ™ p. 10.

¥9Tn a letter to the Scerctary of the Royal Socicty James Jurin dated February 1, 1723, Simson
enclosed a paper about series for m. One of the series he derived was "Klingenstierna’s formula”.



and Newton’s creations of infinitesimal calculus had started. His apprenticeship was
over and he now gathered other apprentices around him.

He became the first Swedish Professor of Physics in 1750, became tutor to the Swedish
Crown Prince Gustaf (later King Gustaf III) and died in Stockholm 1765. He left a
huge pile of manuscripts, more than 2000 papers, which one of his favorite students
Fredric Mallet catalogued. The idea was to publish Klingensticrna’s Opera Omnia, but
lack of funding made it impossible to finish the project.
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ABSTRACT

Thomas Harriot (1560-1621) may be best known as the navigator and scientist for Sir Walter Ralegh’s
1585-1586 expedition to the Virginia Colony, but he also was the leading English mathematician of his day.
Harriot made important discoveries in a wide range of mathematical sciences, including algebra, geometry,
navigation, astronomy, and optics. He published only one work during his lifetime, 4 Briefe and True
Report of the New Found Land of Virginia (1588), but, at his death, left thousands of manuscript pages of
mathematics. Harriot’s mathematical work is remarkable both in its content - he obtained many results
generally credited to later mathematicians - and in its highly visual and symbolic presentation. We examine
Harriot’s results on figurate numbers, finite differences, and interpolation in his unpublished treatise, De
Numeris Triangularibus et inde De Progressionibus Arithmeticis. We also examine some of Harriot’s work
on algebra (polynomial equations and their roots), Pythagorean triples, and combinatorics, focusing on his
very clear and visual presentation of his work and offering, when available, his contemporaries’ reactions to
his style of presentation. We invite reaction from the audience as to the effectiveness of such presentation in
communicating mathematics for us and for our students today.

During April of 2003, I had the opportunity to examine the mathematical manuscripts of Thomas
Harriot (1560-1621) in the British Library." Subsequently, I have studied copies of the Harriot
manuscripts at the University of Delaware Library, which houses the papers of Harriot’s
biographer, John W. Shirley (1983). Whenever I study the manuscripts, I am struck by their highly
visual quality - by just how much mathematical meaning Harriot is able to convey with well-
chosen symbols, cleverly arranged tables, and carefully laid out pages, rather than lengthy
explanations in words. His non-verbal presentation style was unusual in his time and remains so in
ours. The content of Harriot’s mathematical work also is striking in that he obtained many
important results generally credited to later mathematicians. Before we examine Harriot’s very
clear and visual presentation of his work on figurate numbers, finite differences, interpolation,
algebra (polynomial equations and their roots), Pythagorean triples, and combinatorics, we review
his eventful life.

Harriot’s 1577 Oxford matriculation records show that he probably was born in 1560 in Oxford
or at least in Oxfordshire.”> After he graduated from Oxford in 1580, Harriot moved to London,
where Sir Walter Ralegh employed him to research and teach navigation. Ralegh sent Harriot on a
voyage to Virginia during 1585-1586, and, upon his return to England, Harriot published 4 Briefe
and True Report of the Newfound Land of Virginia (1588), which was to be his only publication
during his lifetime. Harriot studied the flora and fauna of Virginia - North Carolina, actually - and
also the customs and language of the people there.

By 1593, Harriot had found a second patron in Henry Percy, the Ninth Earl of Northumberland,
known as the “Wizard Earl” for his interest in science. During the 1590s, Harriot continued to
work for both of his patrons, Ralegh and Northumberland, on navigation, ballistics, optics,
chemistry, and alchemy, and, by the turn of the century, geometry and algebra. In optics, he

! British Library Additional Manuscripts 6782-6789, in 14 volumes. The remainder of the Harriot
manuscripts, Petworth Manuscripts 240-241, are at Petworth House, West Sussex, England.

? (Shirley, 1983, p. 40), or (Stedall, 2002, p. 88). The biographical information provided here is from
these two sources.

Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006
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discovered the sine law of refraction, now known as Snell’s Law, before Willebrord Snell (1591-
1626). For his work in navigation, Harriot obtained the formula for the area of a spherical triangle.
He made advances in all of the fields in which he worked,’ except perhaps for alchemy.

In 1603, the year Queen Elizabeth I died and James I assumed the throne, things started to go
very badly for Harriot’s patrons. Ralegh was sent to the Tower of London, convicted of treason,
and sentenced to death, although he wasn’t executed for another 15 years. Then, in 1605,
Northumberland and Harriot were sent to the Tower after the Gunpowder Plot (Northumberland’s
cousin, Thomas Percy, had been involved). Harriot was released almost immediately, but
Northumberland was to serve another 16 years. Although both of Harriot’s patrons were in prison,
they continued to support Harriot, and he kept working on the mathematical and scientific topics
listed above and also making astronomical observations. He observed what later would become
known as Halley’s comet in 1607, the satellites of Jupiter at about the same time as Galileo in
1610, and sunspots from 1611 to 1613. By 1618, when Ralegh was executed, Harriot himself was
in very poor health. He was suffering from cancer of the nose, probably brought on by the
smoking habit he had picked up in Virginia.

Three days before he died in 1621, Harriot prepared a will,* in which he put his friend,
Nathaniel Torporley (1564-1632), in charge of sorting through his mathematical papers and
publishing the good stuff. Torporley started this task right away, but he never finished it; he ended
up publishing none of Harriot’s work. Walter Warner (1557-1643), who was to assist Torporley,
did publish some of Harriot’s algebra in the Artis Analyticae Praxis in 1631, but Torporley wasn’t
happy with Warner’s work and neither are some modern scholars. Just last year, Jacqueline Stedall
published Harriot’s theory of polynomial equations, as it appears in Harriot’s surviving
manuscripts, as The Greate Invention of Algebra: Thomas Harriot’s Treatise on Equations
(Stedall, 2003).

The history of the Harriot manuscripts is a story in itself.’ There currently are over 4000
manuscript folios in the British Library and almost 900 of them at Petworth House, which was
Northumberland’s country home. The manuscripts were thought to be lost, then were discovered
under the stable accounts at Petworth House in 1784, then not studied again until the 1830s, then
not again until the 1880s. In the meantime, in 1810, most of the manuscript sheets were transferred
to the British Museum, but the split was not made carefully: one finds some papers on
Pythagorean triples, for instance, at Petworth House and others at the British Library. The
manuscripts contain much scratchwork; many studies of other people’s work, most notably
Francois Viete (1540-1603); astronomical observations, including drawings; long tables of sines
and logarithmic tangents; and a few more polished pieces, such as the lengthy treatise on
polynomial equations. The most polished piece of all may be the short treatise on figurate numbers
and finite differences titled De Numeris Triangularibus et inde De Progressionibus Arithmeticis.

In De Numeris Triangularibus (c. 1618),° Harriot presented for the first time formulas for the
figurate numbers, for finite differences, and for interpolated values based on finite differences.
Some of these results are shown in Figures 1, 2, and 3, respectively. Figure 1 shows page 1 of the

* The Newton scholar, D. T. Whiteside, has written that Harriot had a “profound grasp and creative
understanding of the whole field of the exact sciences of his day. [...] Harriot in fact possessed a depth and
variety of technical expertise which gives him good title to have been England’s - Britain’s - greatest
mathematical scientist before Newton.” See (Whiteside, 1975, p. 61).

4 Harriot’s will is reproduced in (Tanner, 1967, pp. 244-247).

* The brief history of the manuscripts given here is from (Shirley, 1983).

¢ British Library Additional MS 6782, folios 107-146v.
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37-page treatise.” The figurate numbers were well known in Europe by Harriot’s time, with Stifel,
Scheubel, Tartaglia, and Cardano having published tables of figurate numbers (or binomial
coefficients), accompanied, of course, by wordy explanations.® Harriot’s innovation was to write a
symbolic formula for the nth figurate number in each column. His notation is easy to decipher: for
instance, his formula for the fourth column - his pyramidal number formula - is
n(n +1)(n + 2)
1-2-3

1 1 1 1 1 1 1

1E2& 3& 4% 5 & 6% 7

1535 6&10% 15 & 21 &= 28

144Z10 %20 & 35 & 56 & 84 &c

| &5 &5 &35 & 70 &126 =210

1 &6% 01 % 56 & 126 =252 &= 462

1 E7% 8% 84 Zf=23g§) = 462 = 924

c

| 1 12 123 1234 12345
1 12 123 1234 12345
. 2 23 234 2345 23456
1 12 123 1234 12345
: 3 34 345 3456 34567
1 12 123 1234 12345
L4 s 456 4567 45678 &e
1 12 123 1234 12345
| H 56 567 5678 56789
1 12 123 1234 12345
| 6 67 678 6789 6789 , 10
1 12 123 1234 12345
. 7 8 789 789 ,10 789,10 ,11
1 12 123 1234 12345
&c
1 n n n n n
1 n+l n+l n+l1 n+1
12 n+2 n+2  n+2 &e
123 n+3 n+3
1234 nt+4
12345

Figure 1. Figurate numbers from Harriot’s “De Numeris Triangularibus”

"BL Add. MS 6782, f. 108.

8 (Edwards, 1987, pp. 5-7, 43-44, 53-54). Edwards reproduces and discusses tables from Michael Stifel,
Deutsche Arithmetic, 1545, on pp. 5-6; Johannes Scheubel, De Numeris, 1545, pp. 7, 53-54; Niccoldo
Tartaglia, General Trattato, 1556, p. 53; and Gerolamo Cardano, Opus Novum, 1570, pp. 43-44.
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On page 5 of the treatise (Figure 2),” after giving two examples of (constant fifth) difference
tables, Harriot wrote formulas for the entries of such a table in terms of the constant difference, a,
and the first entries in each column, a through g. He recognized the coefficients he was getting as
the figurate numbers, enabling him to write a general formula for the nth row entry of each column
of the difference table. The vertical bar indicates multiplication here, so that the third-column

formula, for instance, reads
!n -1 !n
c+nb+ a.

1-2
A A A A
A g g A
O c 6 9 c
O
a b 3 7 13 10 15 1 2 3 b .
5 10 23 26 7 8
207 8 8 B 46| aa B8 g B3
2 15 41 38 24 3
5 9 24 33 74 87 82 8 44 38 14 3
11 57 161 164 82 17
3 92 131 292 328 164 137 33
223 301
& 515 629 &
A
A S
A d
A c JHd
O b d+c
a ctb fH2d+c
bta d+2c+b
a ct+2b+a f3d+3c+b &c
b+2a d+3c+3b+a
a c+3b+3a ftad+6a +4b+a
b+3a d+4c+6b+4a
c+4b+6a f+5d+10c+10b+5a
d+5¢+10b+10a
J+6d+15¢+20d+15a
a
n|a
=
1
n—1
nlb n a
c+ +
1 12
n-2
n—1 n—1
a’+n 42 b+” 4 &c
1 12 123
n-3
n-2 n-2
n—1 n—-1 n-1
nfi n c n n
[+ + + +
1| 12 | 123 | 1234 |

Figure 2. Finite differences from Harriot’s “De Numeris Triangularibus”

° BL Add. MS 6782, f. 112. I have omitted Harriot’s g-column formulas due to lack of space.
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Harriot repeated this work for difference tables based on every second, third, and nth entry of a
larger table, and, on page 26 of the treatise (Figure 3),' arrived at formulas for interpolated values
(d-column values with constant third differences). He then generalized these formulas to the
“Magisterium” formula at the bottom of the folio. Notice that Harriot did not use exponents,
writing nnn instead of n°, for instance. Notice also that the second, third, and fourth terms in the
“Magisterium” formula all are divided by 6x°. Harriot gave analogous interpolation formulas for
constant first, second, third, fourth, fifth, “&c” (et cetera) differences on page 33 of his treatise.

Pro Magisterio d.

[N
>
)
LY

O
>
>
>

D

+6nnC—(3nn -3n)B+(2m -3n+1)4

6 nnn

D

+12nnC—(6nn—l2n)B+(4nn—12n+8)A

6 nnn

D

+18 nm C —(9nn — 27 n)B+(6nn —27n+ 27) A4
6 nnn

D

Magisterium |D +6nnNC

-(Bnn N-3n NN) B

+ (2nn N - 3n NN + NNN) A
6nnn

Figure 3. An interpolation formula from Harriot’s “De Numeris Triangularibus”

Although we haven’t space to describe completely Harriot’s development of his interpolation
formulas, we can see from the folios presented here that he used both numerical examples and
algebra to derive these formulas. His reliance on tables, symbolic notation, and the arrangement of
his work on the page in order to communicate his mathematical ideas also is apparent. Harriot’s
interpolation formulas are equivalent to those known today as the Gregory-Newton forward-
difference formulas, to be developed by James Gregory (1638-1675) about 50 years later'' and by
Isaac Newton (1642-1727) about 55 years later,'? most likely independently of one another and of

' BL Add. MS 6782, f. 133.

! Gregory described his method to John Collins in a letter dated November 23, 1670. See (Turnbull,
1939, p. 118-137), or (Turnbull, 1959, v. 1, pp. 45-49). Collins’ copy of portions of this letter appears in
(Rigaud, 1841, v. 2, pp. 203-21).

2 Newton’s formula is given as Lemma V of Book III of his Principia Mathematica (1687); see, for
instance, Newton, 499-500. However, it appeared in Newton’s manuscripts in 1675-1676, according to
(Whiteside 1967-1981, v. 4, pp. 7-8, see also pp. 3-8 and 14-69).
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Harriot.

Besides his anticipation of Gregory and Newton, what is most remarkable about “De Numeris
Triangularibus” is Harriot’s almost entirely tabular and symbolic presentation of his derivation and
results. By comparison, in his Arithmetica Logarithmica, published in 1624, Henry Briggs (1561-
1631) used quite sophisticated finite difference interpolation methods to construct logarithm
tables, but he explained his procedures primarily in words. He did not give formulas, but rather
examples incorporated into text.

Harriot’s mathematical friends, Sir William Lower (1570-1615) and Sir Thomas Aylesbury
(1580-1657), and Aylesbury’s (and Warner’s) mathematical friend, Sir Charles Cavendish (1591-
1654), may have found Harriot’s highly visual and symbolic presentation of his results on
interpolation to be more beautiful than accessible. After seeing what apparently was a small
section of an early version of Harriot’s treatise, Lower wrote to Harriot in 161 1," “The touch that
you give of your doctrine of differences of differences or triangular numbers enamours me of
them, wherein to understand somethinge, I will one day bee a beggar unto you.” Cavendish
relayed the following request to John Pell (1611-1685) in 1651."

Sr Th Alesburie remembers him to you & desires to knowe if you would be pleased to show the

use of Mr Hariots doctrine of triangular numbers which if you will doe he will send you the

originall. I confesse I was so farre in love with it that I coppied it out though I doute I

understand it not all, much less the many uses which I assure myself you will finde of it.
Aylesbury and Cavendish seemed confident that Pell could understand and apply Harriot’s work.
Indeed, Pell and Walter Warner had constructed tables of antilogarithms using finite difference
methods before Warner’s death in 1643 (Stedall, 2002, p. 133). We discuss the reaction of
Torporley, the friend Harriot put in charge of his mathematical papers, to Harriot’s work on
interpolation at the end of this paper.

Regarding Harriot’s achievements in algebra, Jacqueline Stedall has argued that Harriot’s
algebraic notation was the first truly modern notation and that this helped make possible his
“handling of equations at a purely symbolic level” and his understanding of the structure of
polynomials in terms of their roots (Stedall 2002, 123-124). One could make similar claims for
Harriot’s interpolation formulas. He was the first to give these formulas using symbolic notation
and his formulas are very modern-looking. Gregory’s and Newton’s interpolation formulas
actually are much less modern-looking than Harriot’s. Harriot certainly relied on symbolism to
understand and communicate his ideas more than had any mathematician previously, and he had a
deeper understanding of constant difference interpolation methods and applications than other
mathematicians of his time, except possibly Briggs.

Harriot presented his theory of polynomial equations in highly symbolic form and also relied
very much on the arrangement of his work on the page to convey his mathematical meaning. As
Stedall has pointed out, Harriot’s notation certainly was a great improvement over that of his
primary algebraic influence, Viete. She noted, for instance, that where Viete wrote,

A pla

7 there should be added Zsquared

Ifto s
G

3 BL Add MS 6789, f. 429; see also (Halliwell, 1841, p. 39).

4 BL Add MS 4278 (Pell papers, first series,) f. 321; quoted in Lohne 1966, 203. Cavendish’s copy of
De Numeris Triangularibus is in British Library Harley MS 6083, ff. 403-455.

'3 (Stedall, 2003, p. 8, pp. 10-11). Stedall translated Viéte’s Latin and modernized Harriot’s “equals”
sign.
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the sum will be

G times A plane+ B times Z squared . ac zz _acg+bzz
- , Harriot wrote — +—=———
B times G b g bg

4 shows a typical case of a quadratic equation from the section of Harriot’s algebra treatise titled,

. Figure

On the Generation of Canonical Equations, as reconstructed (and translated from Latin) by
Stedall.'® Here, both the symbolic notation and the page layout help convey the mathematics
clearly to the reader.

On the generation of canonical equations

Let a o0 b inthe multiplication b-a| or a-b
c+ta atc

therefore: b-a | @ bc-ca
c+a +ba-aa 1= 00

a+tc + ca - bc IT 00

therefore: bc o - ba
+ca + aa

and we will have: ax— b

and a is not equal to ¢ nor anything other than b.

If a == b we will have:  bc =T - bb
+ bc + bb and it is so.

If @ = c¢ we will have: bc == - be
+cc+ce

2bc I 2cc
therefore b I c, against the proposition.

Therefore a == b and not c.

Nor will we have a — d other than b.

If it were, we would have: bc - bd
+cd + dd

and: bc +bd I cd + dd

and: ¢c+d| I c+d
b d

therefore b =T d, against the supposition, for d is supposed other than b.

If b =T ¢ the first degree term is removed, and we will have:
bb =T aa

and: aoc b

Figure 4. A “canonical equation” from Harriot’s algebra treatise

1 (Stedall, 2003, pp. 127), except that I have restored Harriot’s “equals” sign. A photo of the folio itself,
BL Add. MS 6783, f. 183, appears on p. 15. In manuscript, the work shown in Figure 4 is arranged in two
columns and there is additional work on the page.
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The algebraic ideas, and especially the notation, of Harriot’s Artis Analyticae Praxis, published
in 1631, had an influence on the more talented mathematicians of the mid-seventeenth century,
including John Wallis.!” Wallis expressed his high regard for Harriot’s algebra in his Treatise of
Algebra (1685), devoting almost a quarter of the text to Harriot’s work. It was Wallis’s
Arithmetica Infinitorum (1655) and, more generally, the algebraization of geometry, that the
philosopher Thomas Hobbes was criticizing when he wrote in the introduction to his Six Lessons
to the Professors of the Mathematicks (1656),"* “Symboles serve only to make men go faster
about, as greater Winde to a Winde-mill.” Apparently, Hobbes was not praising the efficiency of
symbolic notation, as he explained (in Lesson Five) that'’

[Slymboles though they shorten the writing, yet they do not make the reader understand it
sooner than if it were written in words. For the conception of the lines and figures (without
which a man learneth nothing) must proceed from words either spoken or thought upon. So that
there is a double labour of the mind, one to reduce your symbols to words, which are also
symbols, another to attend to the ideas which they signifie.

Mathematicians generally embraced the new symbolic notation, although some readers of their
texts had trouble with it. William Oughtred (1573-1660), who wrote a very popular algebra text,’
which went through several editions and from which the likes of John Wallis, Robert Boyle, John
Locke, and Isaac Newton learned algebra (Stedall, 2000a, p. 41, pp. 43-44), had to defend his use
of symbolic notation against readers who complained that it was too difficult to comprehend. In
the preface to the 1647 edition of his text, its first English edition, titled The Key of the
Mathematicks New Forged and Filed, Oughtred defended symbolic notation as follows.!

Which Treatise being not written in the usuall sytheticall manner, nor with verbous
expressions, but in the inventive way of Analitice, and with symboles or notes of things instead
of words, seemed unto many very hard; though indeed it was but their owne diffidence, being
scared by the newnesse of the delivery; and not any difficulty in the thing it selfe. For this
specious and symbolicall manner, neither racketh the memory with multiplicity of words, nor
chargeth the phantasie with comparing and laying things together; but plainly presenteth to the
eye the whole course and processe of every operation and argumentation.

Harriot’s work on Pythagorean triples, as described in a paper by the Harriot scholar, Rosalind
Cecilia Tanner,” extended the incomplete work of Michael Stifel (1487-1567) in his Arithmetica
Integra (1544) to include all primitive Pythagorean triples. Despite his facility with symbolic
formulas in his work on interpolation and algebra described above, Harriot’s approach here was
highly numeric and relied very much on the physical arrangement of a sequence of tables of
Pythagorean triples on the page: see Figure 5.7

17 (Stedall, 2003, p. 29).

' Quoted in (Stedall, 2002, p. 169).

' Quoted in (Stedall, 2002, p. 169).

2 Clavis Mathematicae, London, 1631.

! Qughtred 1647, no page numbers; quoted also in (Stedall, 2000a, p. 39).

22 Harriot’s work is in BL Add. MS 6782, ff. 84-89, and Petworth MS 241/5, ff. 1-7. Although Tanner
discussed Harriot’s work on Pythagorean triples in detail in her paper, “Nathaniel Torporley’s ‘Congestor
analyticus’ and Thomas Harriot’s ‘De triangulis laterum rationalium’ (1977), it seems to remain little
known.

Z BL Add. MS 6782, f. 85; from (Tanner 1977, pp. 410-411).
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ordo

)

10 1 2)
4
3 4 5 4 3 5 3)
8 4 12
5 12 13 8 15 17 15 8 17 4)
12 4 20 6 12
7 24 25 12 35 37 21 20 29 20 21 29
16 4 28 6 16 24
9 40 41 16 63 65 27 36 45 28 45 53
20 4 36 6 20 32
11 60 61 20 99 101 33 56 65 36 77 85
24 4 44 6 24 40
13 84 85 24 143 145 39 80 89 44 117 125
28 52 6 28 48
15 112 113 197 45 108 117 52 165 173
32 60 6 32 56
17 144 145 257 51 140 149 229
36 36
19 180 181 185
40 40
21 220 225
5)
45 28 53 6)
10 20
55 48 73 48 55 73 7)
10 24 12 36
65 72 97 60 91 109 91 60 109
10 28 12 44 14 28
75 100 125 72 135 153 137
10 32 52 32
85 132 157 205 169
36 60 36
193 265 205
40
245
. Et sic de caeteris in infinitum. .
Hic sunt omnes primi sed hic omnes non sunt primi.
Nota
Primae Differentiae ordinis
primi. 2. 4. st Dupla
secunc 4. 12 tripla
terti. 6. 12 Dupla
quarti. 8. 24 tripla
quinti. 10 20 Dupla
sexti. 12 36 tripla
septim 14 28 Dupla
octavi. 16 48 tripla

&c in infinitum

Figure 5. Thomas Harriot’s tables of Pythagorean triples

Stifel had given the sequences attributed to Pythagoras and to Plato; namely,
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11,22,32,4i’5i,... and 11,22,31_5,42, 25
3757 9 11 8 12716 20 24

Here, 3 3/7, for instance, yields the triple (7, 24, 25). Stifel claimed that these sequences included
all Pythagorean triples (or “diametrical numbers”),”* but Euclid and Diophantus knew better, as
did Harriot. Harriot began with these two sequences as his first and second orders of Pythagorean
triples.”® In each order, let us (with Tanner) call the triple above the line the “starter” and the first
triple below the line the “first triple”. Note that Harriot interchanged the first two entries of the
first triple to obtain the starter for the next order. For example, the first triple (8, 15, 17) of the
second order becomes the starter (15, 8, 17) of the third order. Notice also that the tables are
stepped so that these triples appear side by side. Within each order, to obtain the next triple,
Harriot used a rule based on finite differences, described in the table at the bottom of Figure 5. The
first entries of the triples of the nth order have a constant first difference of 2n; that is, to obtain
the subsequent first entry, add 2n. The first differences between second and third entries are not
constant, but the second and third entries have a constant second difference of 4 or 8, depending
on whether » is odd or even, respectively. Note, however, that Harriot did not use the symbol n,
nor any other symbol, in his table. Folios 85-89 contain tables giving orders 1-22 with entries up
to hypotenuse 1105.

Harriot knew at least one general formula for Pythagorean triples and discussed it elsewhere in
the manuscripts.”® However, he did not ever seem to link his symbolic and tabular approaches
(Tanner, 1977, p. 415). He did assert (see Figure 5) that his list contained all the primitive (prime)
Pythagorean triples but that not every triple in his list was primitive. Tanner (1977, pp. 415-417)
provided a proof that Harriot’s tables, if extended indefinitely, would include all primitive
Pythagorean triples.

Harriot’s work on combinatorics seems to have been intended primarily for use in enumerating
cases in his derivation of forwards-backwards interpolation formulas and in his solutions of
polynomial equations. Yet Harriot arranged the work beautifully and - one would like to believe -
must have been interested in the mathematics for its own sake. He explored combinations,
permutations (he called them “transpositions”), and permutations with repetition, among other
topics,”’ using carefully organized and displayed lists and tables. When he described a general
formula, he often did it in words rather than symbols. However, this work was less well developed
than, say, his work on figurate numbers and binomial coefficients. I suspect a final version of any
of it would look like Figure 1; that is, it would consist of tables followed by general symbolic
formulas.

Little is known about the influence both during Harriot’s lifetime and after his death of De
Numeris Triangularibus and of his work on Pythagorean triples and on combinatorics. (Somewhat
more is known about his algebra, thanks largely to Stedall’s work). In particular, little is known
about his mathematical colleagues’ reactions to his style of presentation. As described above,
Harriot’s will put his friend, Nathaniel Torporley, in charge of editing and publishing his
mathematical work, to be assisted by Walter Warner and three other friends, yet Torporley was not
able to publish any of Harriot’s work. Surviving manuscripts at Lambeth Palace Library show that
Torporley did begin to write up some of Harriot’s work, including his work on algebra,

2 (Tanner, 1977, p. 398). By “diametrical number” Stifel meant a product mn of integers such that m” +
n” is a square.

z (Tanner, 1977, p. 407); see Figure 5.

%6 (Tanner, 1977, pp. 413-415). See especially BL Add. MS 6785, ff. 201-206.

7 See especially BL Add. MS 6782, ff. 33-41, titled, “Of Combinations.”
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Pythagorean triples, and combinatorics, but not his work on figurate numbers and interpolation
formulas.”® However, the Macclesfield Collection, newly available to scholars at the Cambridge
University Library, contains a 164-page manuscript by Torporley dated 1627 and titled Of
Differences. This manuscript, which we viewed in May of 2003 and will view again in June of
2004, was long believed to be the original of one of the manuscripts held at Lambeth, but it is not;
rather, it consists of two parts, the first of which is a 98-page treatise on finite differences and their
use in constructing sine and logarithm tables.

In Torporley’s write-up of Harriot’s work on Pythagorean triples, he transcribed Harriot’s work
without retaining his careful layout of the tables of triples (Tanner 1977, pp. 421-422) and then
followed his transcription with a lengthy and not quite accurate explanation of and commentary on
it. Torporley, in attempting to prepare Harriot’s work for presentation to the mathematical
community, seems to have believed it required some explanation - in fact, quite a lot of
explanation. If the very wordy manuscript, Of Differences, does indeed contain Torporley’s
attempt to elucidate Harriot’s work in “De Numeris Triangularibus™ or even his related work in
various sections of the manuscripts titled “Ad Calculum Sinuum,” then it would provide another
example of Torporley, Harriot’s closest and most trusted mathematical friend, believing that
Harriot’s almost entirely non-verbal presentation of his work required much verbal explanation.

Rosalind Cecilia Tanner has conjectured that Harriot’s lack of written text may have hindered
his friends’ progress in publishing his work (Tanner 1967, p. 288). Although she referred to the
“speaking character of [Harriot’s] careful non-verbal layout” of Pythagorean triples (Tanner 1977,
p. 418), she then went on to describe Torporley’s troubles in interpreting it (Tanner 1977, pp. 418-
427). As to why Harriot himself never published, it has been speculated that he didn’t need to do
so because his patrons supported him regardless, that his patrons didn’t want him to, that he never
felt that any given project was quite finished, and/or that he kept procrastinating until he became
too ill to prepare his work for publication. I wonder if Harriot feared (or knew) that a publisher
would require him to explain his work in words and if he, having worked so hard to obviate the
need for verbal explanation, was unwilling to do so.

I invite reaction from the audience on any aspect of this paper, but especially on the
effectiveness of Harriot’s style of presentation in communicating mathematics for us and for our
students today.
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ABSTRACT

Fra Luca Pacioli (1445 — 1514?) was an important person in the history of human knowledge. He influenced
mathematics, accounting, architecture, graphic arts and printing. His second major work is De Divina
Proportione (“On the Divine Proportion”) and its central subject is the golden ratio. The main purpose of
this paper is to describe briefly the contents of the original text of De Divina Proportione and to provide
some historical foundations on its contents. This work has been translated into Portuguese with
commentaries to my Phd thesis.

1 Introduction

The golden ratio has always been a subject of speculation and investigation along the history of
mathematics. The first known manuscript that its main theme is golden ratio is called De Divina
Proportione (The Divine Proportion), written by the Franciscan friar Luca Pacioli (1445 — 15147?).
Pacioli is an important person in the history of science and art. He influenced Mathematics,
particularly in algebraic and geometrical field, Accounting through the Double-entry
Bookkeeping, Architecture, Graphic Arts and Printing, Painting etc. Despite his more famous
work Summa di Arithmetica, Geometria, Proportioni et Proportionalita, his favorite work is De
Divina Proportione. The friar classified this work like “opera a tutti glingegni, perspicaci e curiosi
necessaria”’ (necessary work to every ingenious, perspicacious and curious person) and its contents
as “secret science”. The book was enriched by Leonardo Da Vinci’s illustrations. This work has
been translated into Portuguese with commentaries to my PhD Thesis.

2 The author: Fra Luca Pacioli

The Italian friar Luca Pacioli was born in Borgo San Sepolcro, in 1445. The artist Piero della
Francesca was one of his fellows countrymen friend and master. Federico di Montefeltro, duke of
Urbino, and his son Guidobaldo were his friends.

Pacioli’s progress in mathematics and other sciences was notable. When he was 19 he taught
Antonio Rompiasi’s sons. Antonio Rompiasi was a rich venetian businessman. During his stay in
Venice he achieved a lot of knowledge on commerce and had some lessons from Domenico
Bragadino.

In 1470, Pacioli wrote a treatise on Algebra dedicated to Rompiasi’s three sons. In this period
he went to Rome where he was a host at Leon Battista Alberti’s house. There is a possibility that
he became a friar of the Order of Friars Minor by the influence of his friend Alberti.

By the year of 1475 he wrote an Arithmetical Treatise. He taught in several places as the
University of Perugia, Zara', Sapienza in Rome, Naples, Padua, Milan and other places.

! Today Zadar, Croatia. In this period of time this city was Venetian territory.
Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006
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In Zara, Pacioli wrote an algebra treatise. In 1494 he published the Summa di Arithmetica,
Geometria, Proportione et Proportionalitd, which brought to the world the double-entry
bookkeeping and recognized him with the title of “Father of Accounting”.

He was one of the members of Ludovico Sforza court, duke of Milan. There he met Leonardo
Da Vinci, who became his friend. Leonardo used to ask Pacioli about mathematics. In December
1498 Pacioli finished his work De Divina Proportione, with about sixty illustrations made by
Leonardo Da Vinci.

When Ludovico was deposed by the French in September 1499, Pacioli and Leonardo went to
Firenze. In 1500, Pacioli was invited to teach geometry at Pisa University. At this time Pisa
University was established in Florence because of the rebellion of 1494.

Luca Pacioli made the first Elements of Euclids Italian translation based on the Latin
translation of Campanus. In 1509 he published De Divina Proportione, in the office of Paganino
de’ Paganini in Venice.

After this period he was elected as the monastery superior of his hometown. He probably died
after August 30" 1514, because his work was not continued after this date.

We can find his influence in the works of Leonardo Da Vinci, Albrecht Diirer, Girolano
Cardano, Nicolo Tartaglia, Rafael Bombelli, Pedro Nunes and others.

Figure 1. Portrait of Fra Luca Pacioli with a pupil — Museo e Gallerie di Capodimonte, Naples

3 The work: De Divina Proportione

The first codex of De Divina Proportione finished in December 1498 was dedicated to Duke
Ludovico Sforza and soon after another manuscript was done and dedicated to Galeazzo da
Sanseverino, the duke’s general. The first manuscript is in the Bibliotheque Publique et
Universitaire and the second manuscript is in the Biblioteca Ambrosiana di Milano.
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Pacioli was protected by his friend Pier Soderini, an authority from Firenze to whom he
probably offered his third codex of his work (unfortunately lost).

The original codices were based on the first part of his complete work printed in 1509.
Leonardo da Vinci was the illustrator of the De Divina Proportione based on the works of Pacioli
himself.

[...] the small book called Divine Proportion. And with great enthusiasm that I included in
schemes made by the hands of our Leonardo da Vinci, to be more instructive to the reader eyes.
(1509 p A ii recto).

The text can be divided in three main parts besides the Pacioli’s Roman alphabet.

The first part of the manuscript deals with the gold ratio, that is, the Divine Proportion as called
by Pacioli and from which its title is originated. It describes a summary of the propositions of the
Elements of Euclid related to the golden ratio, a study of properties of regular polyhedra and semi-
regular polyhedra descriptions. In the first chapters the author takes the fundamental and universal
importance of mathematics and give details about the court of Milan atmosphere and some work
comprehension requirements. Seventy-one chapters are the total of his written work. Pacioli
suggests the Elements of Euclid as “essential guide” to the reader.

The second part of the work is an architecture treatise based in Vitruvius who considered the
human body proportions as rules to build constructions and its components. This part of the work
was inspired by sculptures and architectures Pacioli’s students who wanted to aknowledge on
geometry and arithmetics in order to apply in their work. Twenty chapters are the total of the
second part work.

The third part work is an Italian translation of Libellus de quinque corporibus Regularibus
from Piero della Francesca originally written in Latin. It deals with some problems and some cases
related to polygons, the regular polyhedra and other polyhedra. There are 138 problems divided in
three minor treatises.

In the end of the work we find the polyhedra illustrations, and other illustrations that refers to
architecture and the “alphabeto dignissimo antico” presented by Pacioli. The alphabet is an effort
to rule the source of letters constructions which Italians and foreigners found out when they
studied ancient monuments. Pacioli didn’t copy the only alphabet known of Damianus Moyllus,
published in 1480 and even could not copy the manuscript of Felice Feliciano from Verona,
finished in 1482. The friar was one the first who made the comparison and proportions with
human body and use the rule and the compass to teach students inscriptions reconstructions.

The book was written in Italian and has quotations in Latin. The main purpose of the work is to
be easilly understood, didactic and objective. Its theoretical sources were the important Elements
of Euclid, Plato’s Timaeus, the works of Vitruvius, the neo-platonic scholars from Firenze ideas
and others works from Middle Ages, Classic World and contemporary Humanism, moreover these
sources are not exactly mentioned.

4 The divine title

The main belief of Pacioli’s work is that the golden ratio was a divine manifestation. He wrote that
among similarities between God and the Divine Proportion he found that four of them justified his
statements:
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1 — This proportions (ratio) is unique according to every theological and philosophical school;
this unit is God epithet itself.

2 — The corresponding with the Holy Trinity. As in divinis there is the same substance between
three persons, that is, Father, Son and Holy Spirit, in the same way the same proportion (ratio) of
this kind can be found between three terms.

3 — As God can’t be defined and can’t be understood by word this kind of proportion can’t be
determined by intelligible number and can’t represented by rational number.

4 — As God can’t change and is everything in everywhere and He is in all places this proportion
is also invariable in every quantity.

Pacioli is a follower of the platonic idea which each element from Nature corresponds to a
regular polyhedra: fire/tetrahedron: earth/hexahedron: air/octahedron: water/ icosahedron and
Quintessence/dodecahedron. As the dodecahedron can’t be formed without the golden ratio, he
makes the comparison of the ratio necessity to form this kind of polyhedron and the necessity of
God to create and shape Universe.

ppozttone

lin i
cm:t zcunoﬂ m&ﬂgﬁ%%

fam m:dwfo 01 1 bilofopbiaz
]}:o criua 12 ictura Bculpne
rchitectura: (D ufica:e
ﬂln'zmatbemanr.c fuar
uiffimas: fotrile: ¢ ad~
mirabile toctrina
confequira: e'oe
lecraraffi:cova
rie queftione
‘oefecrenfi
ma fcien~
tia.

M. Antonio Capclh er udiriff. recenfentes
A. Pagamns rﬁamﬂn: Charadteri
1mis accuratifsi
m: imprimebar,

Figure 2. The first page of Pacioli’s Divina Proportione (1509)

5 The Divine Proportion “effects”

Pacioli dealt with some Divine Proportion properties and named them “effecti”. Such effects are
described and studied from Chapter VII to XXIII. The author says that there are infinite effects,
however, elected thirteen, “in honor of the group of the twelve and his leader, our Holy Redeemer
Jesus Christ”. In fact, the friar considers the first propositions in Elements of Euclid in book XIII,
changing the geometrical proofs by numerical examples. To each effect a special name is given:
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first, essential, singular, ineffable, admirable, unnameable, reciprocal of precedent, inestimable,
excelse, supreme, excellent, worthy.

6 Final considerations

We can say that Fra Luca Pacioli had great reputation among his contemporary fellows. He had
lots of prestigious friends. He taught and spent some time in several places as Perugia, Venice,
Padua, Milan, Firenze and Rome. In fact, Pacioli was considered a great professor and speaker.
His fame reached a high level among academic and intellectual people of that time and was always
recognized as teacher of mathematics. Therefore, he had his portrait painted by Piero della
Francesca.

The friar always praised his protectors and friends at the same level as he criticizec people who
didn’t believe on his conceptions which he thought to be of great importance to everyone.

Because of his beliefs and style Pacioli had to present a set of ideas and made an exposition of
all “misterium” that was the background of his work.

Besides his knowledge on mathematics he had a mystic conception work and makes quotations
on famous philosophers and authors from Classical World to the Fathers of the Patristic age and
wrote biographies through his own and personal remembrances.

His beliefs agreed with the Renaissance atmosphere. His book contents gave a “feeling” to
“Sacred Geometry” which made artists very attracted upon its subject and led Master Luca to be
called a Priest of Mathematics. Albrecht Diirer, for example, was one of these artists who wanted
dominate the “secret science”.

it is evident that the great professor and studious mathematician could not be happy enough
writing a simple manual of practical use (Portoghesi, 1957)

as much as one read it, better results he will achieve. (Pacioli, 1946, p. 54)
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ABSTRACT

In the 19™ century, only one learned school existed in Iceland, where the population was 47,000 in 1801 and
72,000 in 1880. Considering the circumstances, the Learned School enjoyed excellent mathematics teaching
in the period 1822-1862, when the school was served by Bjérn Gunnlaugsson, a gold medallist in
mathematics from the University of Copenhagen.

In the 1860s, discussions about teaching modern languages intensified in Denmark and other Nordic
countries. In 1871, Denmark’s learned schools were divided into two streams, specializing in languages and
history on one side and mathematics and natural sciences on the other side. Regulations were prepared for
the sole Icelandic learned school in 1876, suggesting that the Icelandic school would continue as a one-
stream school, while Hebrew would be ecliminated and Greek reduced to make room for the modern
languages, French and English. German and Danish had previously been taught during the first four years.
Mathematics would continue throughout the school as previously.

Immediately after the proposals for the new regulation were introduced, the governor of Iceland sent them
to the Minister of Iceland in Copenhagen along with a long letter, containing his own proposals, suggesting
a clear language-history stream in the Icelandic school, as it would overload the pupils to study Latin and
mathematics at the same time. He proposed that mathematics be reduced.

The Minister for Iceland forwarded the original proposals to King Christian IX, suggesting that Danish and
exegetics replaced mathematics in the last two years of the school. This became the conclusion of the matter
and the mathematics-science stream was first established in 1919.

Over the next couple of years the teachers of the school tried to influence this decision, while it seems that
the headmaster, who was a philologist, had lobbied his way through the official system with his emphasis on
languages. Letters from the governor, the minister and the teachers are preserved at the National Archives in
Iceland. They reveal interesting arguments for and against mathematics education, all of which harmonise in
one way or another with the Mogens Niss’s analysis of fundamental reasons for mathematics education from
historical and contemporary perspectives, published in the International Handbook of Mathematics
Education (1996).

1 Introduction

Iceland remained a rural society well into the 20™ century. It was settled from mainland
Scandinavia in the 9" century, and from late 14™ century it was a tributary of Denmark. The 18"
century saw the dawn of modern times. Regulations issued in the 1740s were the basis for a unique
educational system whereby homes were responsible for the education of children, under the
supervision of parish priests. Until after the middle of the 19" century there was only one
educational institution in the country, the Learned School. The population of Iceland numbered
47,000 in 1801 and 72,000 in 1880.

The aim of this study is to examine the arguments given in the 19" century for and against the
teaching of mathematics in that sole learned school in Iceland. The history of mathematics
education will be analysed in the light of the following statement by Mogens Niss:

Analyses of mathematics education from historical and contemporary perspectives show that in
essence there are just a few types of fundamental reasons for mathematics education. They
include the following:

» contributing to the technological and socio-economic development of society at large, either
as such or in competition with other societies/countries;

Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006
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* contributing to society’s political, ideological and cultural maintainance and development,
again either as such or in competition with other societies/countries;

* providing individuals with prerequisites which may help them to cope with life in various
spheres in which they live: education or occupation; private life; social life; life as a citizen.
(Niss, 1996, p. 13).

2 Earlier circumstances

Regulations for the learned-school level were introduced in 1743, on the required knowledge in
the four basic skills in arithmetic. With the advent of the Enlightenment movement, the first
mathematics textbooks in Iceland were published. However, no teacher was available to teach
mathematics. While the University of Copenhagen introduced minimum requirements in
mathematical knowledge in 1818, Icelandic students alone were exempt from these requirements
until after 1822.

From 1822 to 1862 the Learned School, first located at Bessastadir and later in Reykjavik, was
fortunate enough to have as mathematics teacher Bjorn Gunnlaugsson (1788-1876), a
mathematician who had earned two gold medals for mathematics at the University in Copenhagen.
As students were few, the six-year programme had to be taught in only two groups: novices and
veterans. The students studied arithmetic, algebra, geometry, stereometry, and trigonometry.

At his inauguration at the Learned School in 1822 Bjérn Gunnlaugsson said:

In order to be able to live, and live comfortably, we have to utilize the resources which God has
in nature prepared for us; in order to use the resources of nature we have to know its evolution;
in order to know its evolution we, or least some of us, have to research it, in order to research it
we have to calculate it, often with mathesi applicata; to calculate with mathesi applicata we
have to know mathesin puram and that thoroughly; and in order to know it properly we have to
investigate all its tricks to the degree that we possibly can; and if not all of us have the
opportunity and leisure time for that, then we have to send out some scouts who do that for us.
Every nation should therefore have its mathematicos to send them out into nature to research its
mysteries and who then point out to the nation where it should search to find the resources
which are hidden in it. (Gunnlaugsson, 1993, p. 57).

Bjorn was influenced by the Enlightenment and was well acquainted with the laws of physics and
their dependence on mathematics. Most other Icelanders may not have seen this connection in their
country at that time.

Bjorn’s address indicates that he considered it the goal of his teaching that the nation would be
able to harness nature’s resources, in addition to the official reason given for teaching
mathematics, which was to ensure the admittance of Icelandic students to the University of
Copenhagen. One can therefore identify, in early 19™-century Iceland, two of the fundamental
reasons for mathematics education, stated by Mogens Niss, i.e. to provide the students with
prerequisites for further studies, and to contribute to the technological development of society.

3 Debates about the new regulations

Intense debates about the teaching of modern languages in learned schools arose in Denmark and
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other European countries during the 1860s. In 1871 the Danish parliament passed legislation on
the division of Danish learned schools into two streams: a language/history stream, and a
mathematics/natural sciences stream. Following the granting of Iceland’s own constitution in
1874, a committee, the School Affairs Board, was appointed in Iceland in 1875 to prepare
regulations for the Icelandic school. Among the board members was Jon bPorkelsson, headmaster
of the Reykjavik Learned School. In October 5 1876, the board presented a proposal whereby new
modern languages were implemented: French and English as compulsory subjects — French for six
years and English for four years — and German as an elective in the last two years. German and
Danish had prior to this been the only compulsory modern languages, both taught for the first four
years. Hebrew was to be eliminated, Greek and exegetics were to be reduced, while Latin would
be slightly reduced. Mathematics was to be taught for six years as before (Alitsskjal nefndarinnar i
skolamalinu, 1877, 19-47). As the school was so small, it should have only one stream, a mixture
of the two streams offered in Denmark.

When the regulations were published on July 12 1877, the following main amendments had
been made to them: Danish and exegetics were to be taught in all grades, while mathematics was
to be completed in the fourth year (Stjornartidindi, 1877). Several documents from the archives of
the governor and the Ministry for Iceland, preserved in the National Archives of Iceland, reveal
the lobbyism going on in 1876-77.

The new governor, Hilmar Finsen, a Dane of Icelandic origin, sent the School Affairs Board’s
proposal to Nellemann, the Minister for Iceland in Copenhagen, along with 17 pages of his own
comments, in which he expressed his concern about the workload of students having to study
mathematics and Latin at the same time. He put forward his own proposal, that mathematics would
terminate after four years, after which German would become a compulsory subject for the last
two years. The Learned School would then resemble the Danish language stream. No mention was
made of Danish in his letter. In his letter he stated that:

[...] the language-historic teaching must be considered as the one, for the present situation,
which is the best suited to prepare the school’s pupils for the professional education they later
plan to acquire, and which they ... usually will attempt to gain by seeking qualifications for
professional examinations, either at one of the present higher education institutes, that is the
Theological Seminary or the Medical School or, in the case of the law or philology, at the
University in Copenhagen.

It is an extremely rare exception if a student from the present school will seek further education
at the University in the subjects for which instruction in mathematics and natural sciences must
be considered as the best preparation, and in this country we do not have learning institutions
where such instruction can be acquired (Islenska stjornardeildin, VI, p. 6).

Minister Nellemann forwarded the proposals to King Christian IX, together with a letter in which
he expressed his view that it was necessary to increase instruction in Danish at the Icelandic
Learned School, since that language was of the greatest importance to Icelandic officials as a
business language. Furthermore, exegetics should be taught through all classes, and German as a
compulsory subject in the last two classes. This would not overload the pupils, as mathematics
could be reduced (Skjalasafn landshofdingja, Lh] 1877, N nr. 621). Regulations announcing the
decision that mathematics would not be taught during the final two years, and that German and
Danish would become compulsory subjects in its place, were published on July 12 1877.
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4 Repercussions

It seems odd for the governor of Iceland to write such a long letter about details of Icelandic
school affairs. Certainly, school affairs had great weight in the finances of the country, but
finances were not the concern here. It seems reasonable to infer that some of the members of the
School Affairs Board were discontented with its proposal, and had found an alternative route, via
the governor, to express their ideas. Discussions soon after at two sessions of parliament, in 1877
and 1879, and two letters from 1882, could point to that conclusion.

The teacher of German at the Learned School, Halldor Kr. Fridriksson, was a member of
parliament. During the parliamentary session in the summer of 1877, he submitted two questions
to the governor: Firstly, why the teachers and management of the school had not been given an
opportunity to present their opinions about the new school regulations before they were adopted,
and secondly, how the regulations should be implemented that autumn. In his introduction, Halldor
voiced the criticism that German had been transferred to the uppermost grade, that English and
French started at the same time in the first grade and, moreover, that much of what had previously
been taught in mathematics was now to be omitted. One could say that not everyone was expected
to become a mathematician, but by this act general education was reduced. Mathematics had a
great role, as it was a form of instruction in thinking for mankind. Halldér stated that there was no
institution in France, England or Germany at the same level which did not teach at least as much
mathematics as had been taught in the Learned School up to this time. One of the members of the
School Affairs Board, also a member of parliament, said that, as in Iceland there was one more
foreign language to cope with than in Denmark, i.e. Danish, one language had to be dropped, and
German had been chosen (Alpingistidindi 1877, pp. 636—643). In 1879 parliament resolved that
the governor should set up a board of all the teachers and two others to revise the 1877 regulations
and propose amendments to it. The matter was brought up by Halldor Kr. Fridriksson
(Alpingistidindi 1879, p. 408, p. 499).

In 1882, the teachers wrote a letter to the authorities, requesting that German replace French as
the first of the three new modern languages, and that mathematics be restored to its previous status
as a six-year subject. Their reasoning was that mathematics education was insufficient in itself,
without trigonometry and stereometry. They drew attention to the fact that trigonometry supported
physics and astronomy, and that these topics “finalized and perfected” mathematics education.
This would achieve the necessary preparation for those wanting to continue the study of
mathematics at a higher institution. Secondly, the topics in question were, in their opinion,

2 6,

important for the country’s “technical life”, and
[...] we think that there is the more reason to teach them in the Learned School, as they are not

taught in any other school in this country at this time, so our countrymen thus do not have any
choice to acquire knowledge in them except by self-instruction.

The letter was signed, with reservations, by Headmaster Jon Porkelsson and another language
teacher, while yet another language teacher, the mathematics teacher, the natural science teacher
and others signed the letter unconditionally. The headmaster, who had been a member of the
School Affairs Board and thus put forward the original proposal, expressed in a separate letter that
he supported the exchange of German and French, while the present amount of mathematics would
suffice for all but those who were not heading for the Polytechnic College [in Copenhagen]. He
claimed that hardly more than one Icelander attended that school per decade, and those few would
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have to seek private instruction in mathematics. The hours for more mathematics would inevitably
have to be gained at the cost of the languages, and he, for his part, put the greatest emphasis on
them (islenska stjornardeildin S VI, 5. Isl. Journal 15, nr. 680).

Headmaster Jon Porkelsson was thus, after all, not interested in re-introducing mathematics.
One suspects him of having been in a minority on the School Affairs Board, and therefore having
lobbied his way through the governor.

5 The reasoning

It is noteworthy that all the main reasons mentioned by Niss, concerning mathematics education,
were drawn into the debate. Halldér Kr. Fridriksson’s reasoning concerns mathematics’ great role
as instruction in thinking for mankind. This reason can be classified as contributing to society’s
cultural maintenance, although it may also be thought of as providing individuals with
prerequisites to cope with life in an educated way.

The reasoning of the teachers also concerns the fundamental reasons, i.e. that mathematics
education

+ contributes to society’s cultural maintenance, as they considered the mathematics education

then offered by the school to be insufficient in itself without trigonometry and stereometry, and

felt that these topics would “finalize and perfect” mathematics education in the school;

* provides individuals with prerequisites for further studies, for everyone who wanted to

continue mathematics study at a higher institution;

+ contributes to the technological development of society, in that it was important for the
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country’s “technical life”.

By mentioning the importance for “technical life,” the teachers reiterated Bjorn Gunnlaugsson’s
reasoning about the importance of mathematics education for utilizing nature’s resources, 60 years
earlier. The process of utilizing nature’s resources for “technical life” had not yet begun in Iceland.
Neither the governor nor the Minister for Iceland in Copenhagen seems to have thought of that
reason for mathematics education, while they were exerting their influence on Iceland’s school
affairs. Icelandic society at that time was without any infrastructure, and most buildings were not
made of durable material. While authorities were beginning to realize that technical knowledge
was needed, there was no universal consensus that the origin of such knowledge should be the
Learned School.

The governor’s reasoning concerned the society of that time. His reasons were that the pupils of
the Reykjavik Learned School were seeking qualifications for professional examinations in
theology, medicine, law or philology, and anything else would be an extremely rare exception. In
1877 learned persons of other kinds, such as engineers, could not expect any official post in
Iceland. However, educational government requires a little foresight. Sixteen years later, in 1893,
the office of National Engineer for Iceland was established.

6 Consequences

As the opinions of the teachers were unanimous only on the issue of languages, the consequences
were that the regulations were amended, making German the primary foreign modern language,
while mathematics was still limited to four years. Its status and respect diminished, as illustrated
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by the fact that examination problems were not printed in school reports until after 1910. Pupils
were mainly occupied with practical arithmetic. Higher mathematical knowledge disappeared from
the country for over four decades, until 1919, when a mathematics / natural science stream was
established at the Reykjavik School. The absence of higher mathematics education coincided with
a period when the society was throwing off the shackles of the Middle Ages and building up an
infrastructure, primarily under the supervision of foreign technical experts.

In 1911 the University of Iceland was established by uniting the theological, juridical and
medical schools and adding a faculty of Icelandic studies. Teaching of mathematics within an
engineering department first commenced during World War II.
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ABSTRACT

Multiplicative thinking is the key to the development of mathematical ideas in the secondary school and in
tertiary study. Research suggests that many students are not gaining these ideas in the middle years of
schooling and are consequently avoiding or failing more advanced mathematics courses. An understanding
of why and how the concept of multiplication emerged in mathematics may well be one way of providing a
full background to multiplicative thinking for teacher and student alike. In particular, examining the
historical paths that were followed in moving from procedures to produce accurate results along with the
forces that led to extended notions of number may assist students and their teachers to gain a deeper
understanding of the full meanings for multiplication that will be required.

1 Introduction

Multiplicative thinking and the fraction and ratio ideas that grow out of it are the key to the
development of mathematical ideas in the secondary school and in tertiary study. Yet research
suggests that many students are not gaining these ideas in the middle years of schooling and are
consequently avoiding or failing the more advanced mathematics courses in the latter years of high
school and that inadequate conceptual and content knowledge in middle year teachers may be a
contributing factor (Anghileri, 1999; Booker, 2003; Kierin, 1995; Mulligan 2002). An
understanding of why and how the very concept of multiplication has emerged in mathematics
may well be one way of providing a full background to multiplicative thinking for teacher and
student alike. Yet, as Cajori noted around 100 years ago,

That, in the historical development, multiplication and division should have been considered
primarily in connection with integers, is very natural. The same course must be adopted in
teaching the young. First come the easy but restricted meanings of multiplication and division,
applicable to whole numbers. In due time the successful teacher causes students to see the
necessity of modifying and broadening the meanings assigned to the terms. A similar plan has

to be followed in algebra with exponents.
(Cajori, 1917, p. 183)

The history of the development of multiplication has taken two paths. On the one hand, a focus on
the procedures needed to reliably and accurately obtain answers that involve whole number
multiplication, largely in response to the needs of everyday commerce and work. A second, and
for many a secondary, need has been to extend the initial concept from one based on repeated
addition and the notion of an increasing amount, to one that will encompass multiplication with
fractions, negative numbers, matrices and a range of algebraic processes. Multiplicative thinking
among students needs to similarly move beyond the procedural, no matter how meaningful, to a
focus on the conceptual as a basis for further mathematics.

One of the difficulties for students is that addition and subtraction conceptual understanding are
largely tied in to the initial ideas and processes. There is little need to radically extend the initial
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conceptions of joining and difference. Once concepts for fractions, rates or negative numbers are
established, the additive thinking required is a straightforward extension of that used with whole
numbers, although aspects of multiplication and division may be necessary to allow these
processes to be completed. The ready extension of additive thinking to further mathematics may
inhibit students’ understanding of any need to extend their initial ideas of multiplication to build a
broader multiplicative thinking.

A further difficulty is the conceptual obstacle inherent in extending multiplication to situations
where all of the properties acquired with whole number are no longer maintained. For example,
multiplying by a fraction is often confused with division (Greer, 1985, p. 71) while accepting that
the product of multiplication with fractions may be less than the numbers that are multiplied has
caused difficulties with mature mathematicians as well as novice students. For instance, Pacioli, an
Italian mathematician of the fifteenth century was ‘greatly embarrassed by the use of the term
‘multiplication’ in the case of fractions, where the product is less than the multiplicand” (Cajori,
1917, pp. 182-183). For a long time, not only were negative numbers held to be ‘fictitious’ or
‘absurd’, multiplying them seemed to be devoid of any meaning let alone producing a positive
result. Further difficulties occurred with the initial notion of 1/j1 which arose in the general
solution of algebraic equations: surely \/:1. w/rl would be x/:l rather than x/rl? (Cajori, 1917, p.
236) This impasse was really only surmounted when a new mathematical symbol, i, devoid of the
negative sign was introduced.

2 The development of procedures for multiplication
The manner in which procedures for multiplication were developed and expressed depended on the
number system that was used. Not all societies developed a mathematical view that moved beyond
addition or at most a method based on doubling. For instance, the ancient Egyptians:

nn' |
nnn [
wnn
1 nn
(Kala) m nnnno Ml
||nnG) 245 Wnnnnn i

m s

This shows the procedure for multiplying 12 x 12. At each step, the number is doubled, then those
lines that represent 4 twelves and 8 twelves are added to give 12 twelves. (Bunt et al., 1976, p. 9)

With other systems based on symbols for each multiple of ten, such as the Ancient Greeks or
Romans, an abacus was used to carry out the successive additions.

Many of the computational methods subsequently adopted into modern thought had their
origins in the thinking of the ancient Hindu methods, following the adoption of their concept of
zero and Base 10 system of numeration. These Indian mathematicians wrote on sand tables,
usually working from the largest to smallest place, adjusting the partial products as they went.
While it might look as if little recording was being shown, when their methods were transferred
to the parchment and paper of European arithmeticians, a technique of crossing out digits as
changes were made, or writing the numbers again above and below the original numbers that
were multiplied shows how their thinking progressed:
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A cancellation method called the Hindu plan by the Araos still used by Hindus in the 19th Century
(Smith, 1922, p. 118 — note that Smith’s example is incorrectly ‘crossed out’)

Because zero was initially seen simply as a ‘plac holder’ corresponding to an empty space on the
abacus that had been used for addition, many of these first algorithms avoided using a zero to
indicate that there were no one, tens and so on, and used a layout of the recording to assist in

placing the digits accurately.

56789
227156 74
iTo3e7/3
ii3s 7178 2"
Ss0789 i
Sum TOOT1716 26

Treviso Arithmetic — Chessboard method (Swetz, 1987, p. 206) The multiplier is written along a
sloped line to ensure the indexing of the partial products
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Treviso Arithmetic — Gelosia multiplication (Chabert, 1999, p. 26)

In time, an ability to show all steps and see the sense of the calculations led to more efficiently
recorded algorithms, usually worked from the smallest place to the largest place so that any need
for renaming could be carried out in the practitioner’s head:

8 29 8 2 9
2 4 2 4
3 3 1 LI 3 3 1 6
1 6 5 8 1 6 5 8
" 1 9 8 9 6 1 9 896

Treviso Arithmetic — Scachieri multiplication (Swetz, 1987, p. 205) similar to that in use today

These algorithms also showed the need to have readily available multiplication combinations for
numbers to 5, 10 or higher depending on the procedure used. At first these were written tables of
the form used by the early Babylonians where all combinations that might be needed could be
readily found. In time, as an understanding of the process developed, students of arithmetic were
exhorted to memorise those facts that were needed. While some of these tables used the familiar
square array still in use in primary schools today, others were abbreviated to show the pairs of
facts only once, perhaps an early recognition of the commutative nature of multiplication, but as
likely an uncritical assumption that two numbers would give the same product:
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Widman Arithmetic, 1489 (Smith, 1925, p. 127) Cirvelo Arithmetic, 1513 (Swetz, 1987, p. 200)
Square and triangular arrangements of multiplication tables

Keeping track of the steps in these more abstract algorithms led to a focus on the cross
multiplication that was involved, following the methods evolved by the Hindu mathematicians.
9 8 7 6 T
2> (PN
o o 7 8 3 !
773 28 1369
Pacioli Arithmetic 1494 (Cajori, 1928, p. 26; 1917, p. 146)

When printing brought about a standardisation and economy of recording, the emphasis on cross
multiplication gave rise to the symbol x as a means of alerting the practitioner to the process that
was involved. From then on, the algorithm that we use today essentially was established and,
unfortunately, then came to be seen as a procedure to be mastered to allow ready and accurate
computation. Instruction concentrated on ways to follow the given steps rather than relate this to
any underlying meaning for multiplication itself, laying the seeds of discontent and disbelief when
new numbers and algebraic processes evolved to require products that did not intuitively fit with

the techniques acquired by rote.

3 The development of the multiplication concept

While mathematics only worked with whole numbers, the dominant view of multiplication was as

repeated addition

To understand this [multiplication] it is necessary to know that to multiply one number by itself
or by another is to find from two given numbers a third which contains one of these numbers as

many times as there are units in the other
Treviso Arithmetic (Swetz, 1987, p. 197)

This conception of multiplication also meant that there was no need for any model to make sense
of the operation; any procedure for calculating was simply viewed as a more efficient means of
obtaining an answer. However, just as the number line was necessary to allow the negative
numbers to acquire meaning and acceptance as numbers as real as the whole numbers, models for
multiplication in terms of arrays or area was essential to allow the concept to distinguish itself
from the underlying addition. This was particularly apparent in the manner in which early Arab
algebraists showed the solution of quadratic equations by means of diagrams to represent the

products involved.
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Two distinct methods were used to solve problems such as ‘“What must be the square, which,
increased by ten of its own roots, amounts to thirty-nine?” (Katz, 1993, p. 230). In modern
algebraic notation, this asked for a solution to x> + 10x = 39 and the general case x> + px = q can
be shown:

Completing the square (Cajori, 1917, p. 440-441)

In this way, situations modelled by multiplication came to move from repeated addition to equal
groups and then to equal measures (Greer, 1985, p. 64). In this way, common fraction
multiplication could be explained by reference to a square, ‘if < and 1 are the sides of a square,
then 1 represents the area of the square itself” (Pacioli, cited in Cajori, 1917, p. 182).

Later writers provided an explanation based on rates and a part-whole interpretation, for
example, Tonstall discusses the subject with unusual clarity:

He takes 2 x 2 = . "If you ask the reason why this happens thus, it is this, that if the

numerators alone are multiplied together the integers appear to be multiplied together, and thus

the numerator would be increased too much. Thus, in the example given, when 2 is multiplied

into 3, the result is 6, which, if nothing more were done, would seem to be a whole number;
however, since it is not the integer 2 that must be multiplied by 3, but 2 of the integer 1 that

must be multiplied by 2 of it, the denominators of the parts are in like manner multiplied

together; so that, finally, by the division which takes place through multiplication of the
denominators (for by so much as the denominator increases, by so much are the parts
diminished), the increase of the numerator is corrected by as much as it had been augmented
more than was right, and by this means it is reduced to its proper value."

Tunstall, cited in Cajori, 1917, p. 182

In turn, when a concise recording of decimal fractions emerged, this part-whole model gave rise
to a view of multiplication as a change factor. The stage was set for the extension of
multiplication to new situations and numbers by following patterns in a manner consistent with
earlier notions:

4x3= 12 As the number Bx4="12 As the number
3x3=9 multiplying decreases B3x3=79 multiplied decreases by
2x3= 6 by 1, the product 3x2="6 1, the product
1x3=3 decreases by 3. Thus Bx1=73 increases by 3. Thus
0x3=0 1 x 3 must be '3 3x0=0 3 x "1 must be '3
1x3=73 3x71=3

46



4 Conclusion

As multiplication is extended from repeated addition to cope with products of measures, common
fractions and decimal fractions, then give rise to ratios, students need to be led to focus on the
conceptual models that provide meaning to the underlying concepts. An examination of the
historical paths that were followed in moving from procedures to produce accurate results along
with the forces that extended notions of number appears to be a powerful way of providing insight
to both students and their teachers in the middle school when this transition is begun. As Avital
(1995) reminds us, ‘the history of mathematics can supply a structure of understanding relating
reasons with results’. Understanding how extensions of mathematical concepts must maintain
invariance of properties allows multiplication to be seen as more than just another form of
computation and become a way of thinking to deal with more complex mathematics.
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ABSTRACT

In this paper we consider the Swedish mathematician E.G Bjorling’s contribution to uniform
convergence in connection with Cauchy’s theorem on the continuity of an infinite series. We
will also give a complete translation from Swedish into English of Bjorling’s 1846 proof of the
theorem. Furthermore, we will discuss the distinction between history and heritage (Grattan-
Guinness, 2004) in connection to the interpretation of Bjorling’s convergence condition.

1 Introduction

In this paper we consider E.G. Bjorling’s version of the Cauchy sum theorem. Cauchy
first formulated the theorem in 1821, but five years later Abel came up with counterex-
amples. In 1846 Bjorling formulated his own version of the theorem in Latin, which he
also translated into Swedish in 1853.

We will give a complete translation from Swedish into English of Bjorling’s 1846
proof. Some authors on this subject do not give Bjérling credit for actually proving the
allegedly false 1821 theorem of Cauchy. They claim that Bjorling’s proof suffers from
lack of precision and also contains a crucial mistake. In this paper we will discuss this
‘lack of precision’ in view of Bjorling’s own distinction between ‘convergence for every
value of 2’ and ‘convergence for every given value of z’.

Finally, we will discuss Bjorling’s theory of convergence in view of Grattan-Guinness’
(2004) distinction between history and heritage. We think that to do Bjorling justice
one has to make a deeper investigation of the concepts used by the 19th century math-
ematicians.

A more detailed investigation of Bjorling’s, as well as Cauchy’s, version of the sum
theorem can be found in Brating (2004).

2 Bjorling’s 1846 theorem and his proof
Here we give a complete translation of Bjorling’s 1846 theorem, which was translated

in the 1853 version by Bjorling from Latin into Swedish. We have translated the 1853
Swedish version into English.

Theorem 1. If a series of real-valued terms
fl(x)7 f2(1‘)7 f-’j('r)a s
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is convergent for every real value of x from xg up to and including X, and in addition
its particular terms are continuous functions of x between the given limits; then the sum

Siw) + falz) + fa(z) + ... (1)
necessarily has to be a continuous function of x between the given limits.

Proof. Since the series (1) is convergent for every value of z from x up to and including
X, the sum

for1(x) 4+ frso(x) + fors(z) + ete.

must, no matter what value is assigned to z, except that it does not exceed the given
limits, for a certain and every larger n, be numerically smaller than a given number,
arbitrarily small, ¥. The size of this n differs of course for different values of x, in
general; but quite certain is that for a particular value of (or several values of) x
corresponds a finite maximum of n. Let £ be such a value of x.

Then, not only is the sum f,11(§) 4 fa42(§)+ etc., or shorter R, numerically < %,
but also — whatever values of x, bounded between zy and X, £ and £ may be — the two
sums

fn+1 (E) + fn+2(£) + e }
fn+1(£,) + fn+2(£/) + ...

are each numerically < %, and hence the difference between them clearly becomes
numerically < w.

This was to begin with. — Now to the point!

To be convinced of the truth of the theorem, evidently one must prove that
whatever values of z, bounded by zy and X, z and z + o may denote — one can always
for a certain «, or every smaller, make the difference

S(z+a) — S(z)

numerically smaller than any given number 2w, however small. (S(z) denotes the sum
in question for x = z.) — Here is the proof!
Since both of the series of

fl(z)7f2(z)7f5(z)7 etc.
fl(z + Oz)., fQ(Z + (1)7 fS(Z + o‘)? ete.
are convergent, the series
[z + @) = f1(2), f2(z + @) — f2(2), f3(z 4+ a) — f3(2), etc. (2)

is convergent as well, and

S(z+a)=5(2) = [filz + ) = L) + [falz + @) = ()] + ...+ [[az + @) = fu(2)] + 7,
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where
Tn = [far1(2 + @) = fu1(2)] + [fara(z + @) = fura2(2)] + ete.

Now, let n be a large number, so that for this (and every larger) number, the above
mentioned sum R, is numerically < §. (Hence, this n is a function of ¢ and w, but
independent of a.) Then 1, is also numerically < w, as was mentioned in the beginning.
— Whatever value is assigned to « (such a value that was mentioned above) certainly
(at least) one of the terms

fl(Z + (1) - fl(z)>f2(z +(l) - fZ(Z)va(Z + CY) - f3(z)7 B 7fn(z +O‘) - f'n,(z)

must numerically be the largest. If this is denoted

fn(z+ @) = fn(2),

where m is an integer, which may be a function of «, but not larger than n; then with
all certainty S(z + a) — S(z) — r,, is numerically not greater than the numerical value
of n[fn(z +a) = fu(z)]-

And, since f,,(z) was continuous between xo and X (and n independent of «); then
it is obvious that « can be assigned such a small numerical value, that the numerical
value of n[f,(z + @) — fm(2)] becomes < w.

The rest is obvious. U

Domar (1987), Garding (1998) and Grattan-Guinness (1986) all claim that Bjorling’s
proof suffers from lack of precision and also contains a crucial mistake. They all seem to
criticize Bjorling for not observing that n(x) does not have to be finite in the following
argument (excerpt from the beginning of Bjorling’s proof):

...for a certain and every larger n, be numerically smaller than a given
number, arbitrarily small, 5. The size of this n differs of course for different
values of x, in general; but quite certain is that for a particular value of (or
several values of ) x corresponds a finite mazimum of n.

This is at least Garding’s (1998) interpretation. Domar (1987) says that this is at
least the case if we (like Pringsheim did in 1897) interpret Bjorling as assuming pointwise
convergence only. But Domar claims that Bjorling at least does not explain why n(x)
should be bounded. Grattan-Guinness (1986) writes that ‘he seemed to assume that n
was finite, and did not consider the possibility that it might be infinite...’

In order to make justice of Bjorling’s proof (in the sense: how did he reason) one
would need to take Bjorling’s distinction seriously, between convergence ‘for every value
of " and ‘for every given value of z’. This distinction will be discussed in Section
3 below. But one would also need to discuss what Bjorling (and others) mean by
‘convergence for every z-value’ in the middle of the 19th century. This will be discussed
in Section 4.

3 Bjorling’s distinction

In the 1846 paper, Bjorling makes an important distinction between
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e ‘for every value of 2’ and

e ‘for every given value of x’.

In a footnote of the same paper, Bjorling tries to describe the difference between these
two notions. He begins by considering the series

1 1
sinz + 3 sin 2z + 3 sin3z + ... (3)

which is similar to Abel’s counterexample to Cauchy’s 1821 theorem.

However, Bjorling claims that his theorem is not affected by such objections and
states that (3) is indeed convergent for every given value of x within the limits 0 and
2w, but this does by no means imply that it is convergent “for every value of x from
one limit up to the other”. On the contrary, Bjorling stresses that the series (3) does
not satisfy the conditions in his theorem.

We think that Bjorling tried to express a generality condition using ‘convergence
for every value of 2’. We base this on Bjorling’s distinction between ‘for every value
of x” and ‘for every given value of x’, where the former notion obviously seems to be a
stronger criteria for convergence. In fact, ‘convergence for every value of 2’ could be an
attempt to express what in modern terminology could be described as

sup (3 fulw) = > fiulw)| = 0 (4)
k=1 k=1

when n — oo. However, the problem for Bjorling was perhaps to express the functional
relationship between the variables n and z. As Grattan-Guinness (2000) points out, at
the 19th century there was a problem to distinguish ‘for all x there is a y such that...’
from ‘there is a y such that for all z...”. According to this, the problem for Bjorling
could be to express that ‘for each n, we assign an x such that...”. During the first half of
the 19th century the Aristotelian logic was still very much unchallenged, and before the
modern function concept was introduced there was at least no notation for expressing
the relevant relationship between n and = to make a clear generality condition to express
uniform convergence.

‘We see the same problem repeated in Cauchy’s 1853 paper, since he expressed gener-
ality using the word ‘always’ (toujours). Cauchy exemplified what ‘always convergent’
could mean when he showed that Abel’s counterexample (3) was excluded from his
1853 hypotheses. He used x = 1/n and Bjorling was probably influenced by this since
he also (1853) wrote = 1 — 5~ in another example to show that his notion ‘for ev-
ery value of x’ from 1846 was equivalent to Cauchy’s ‘always convergent’. However,
it is unclear what 1/n meant to Cauchy and Bjorling. Giusti (1984) claims that 1/n
should be interpreted as an ordinary sequence. Meanwhile, Laugwitz (1980) argues that
this expression should be seen as an infinitesimal quantity generated by the sequence
1/n. Another interpretation could be that the 19th century mathematicians made a
distinction between two kinds of real numbers: constant and variable numbers.

4 History and heritage

Grattan-Guinness (2004) makes a distinction between history and heritage. Many
mathematicians make their historical descriptions in terms of heritage, i.e. by try-
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ing to answering the question how did we get there? Grattan-Guinness claims that old
results are modernized in order to show their current place; but the historical context is
ignored and thereby often distorted. In Grattan-Guinness (2004), a typical example of
using heritage is to describe the original meaning of Pythagoras’ theorem with algebraic
symbols. Meanwhile, the term history is explained by answering the question ‘What
did actually happen?’. Grattan-Guinness points out that each approach is perfectly
legitimate, but they are often confused.

In connection to Bjorling and the Cauchy sum theorem some authors (see Section 2)
have interpreted Bjorling’s convergence condition with the modern distinction between
pointwise and uniform convergence. This is a typical description of Bjorling’s theory in
terms of heritage. However, we think that such an interpretation of Bjorling would be
unfair. Instead, a good future research project would be to investigate the 19th century
distinction between constant and variable numbers, i.e. by using the history approach.
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ABSTRACT

Until the 13" century the Church had considered every type of deferred repayment for money lent as usury.
On the contrary, Leonardo da Pisa, the most important Latin mathematician of the 13™ century (and his
followers) apparently considers personal loans as a common practise in all social classes. Is there therefore a
gap between such a widespread practise and the ecclesial vetoes of the time? Or is it rather the emerging of
anew theological thought that promotes a change of attitude towards the usury?

Starting from a survey on the historical development of the meaning of usury, we will present some of
the most significant problems of Leonardo from a mathematical point of view, paying attention to his
language and to links with the Muslim world. The foundations of financial Mathematics: interest, yield,
reimbursement of a loan will result from travels of a merchant/ money lender, who rehabilitates the
character of the usurer/greedy for gain.

1 Introduction

Leonardo da Pisa, or Leonardo Fibonacci, lived at the turn of the 12" and 13" century, a period
characterized by the renaissance of the Latin Western World thanks to a revolution that involved
all society in terms of socio-political, cultural and religious changes.

It is from the scientific conquests of the 12™ century that we have to depart to measure the
importance of the figure of Leonardo in the scientific panorama of the time. But his incredible
success among his contemporaries can be explained not only in terms of mathematical genius and
teaching and communicating abilities but also thanks to his contribution to the commercial
revolution of the western world in the 12" and 13" centuries. His Liber Abbaci' contains about 4
chapters out of 15 (8™ to 11™) concerning several commercial matters, like purchase and sale of
goods, exchange of spices of different values, alloying of monies, comparison between weights
and measures of different countries, methods of barter, business partnership, simple and compound
interest etc.

In Liber Abbaci, Leonardo deals with the problems concerning loans with interest, mainly in
Chapter 12, Section Vi De viagiis. This chapter, named De solutionibus multarum questionibus,
quas erraticas appellamus deals with many problems concerning different subjects, some of
recreational character. It is interesting to notice that Leonardo’s work openly deals with the
problems of usury, in spite of the fact that it was traditionally banned by the Church. This
discrepancy induced us to investigate the historical context of Leonardo’s time in relation to usury.

Until the 13™ century the Church had considered every type of deferred repayment for money
lent as usury. This also included mortgage loans®. On the contrary, Leonardo apparently
considered personal loans as a common practise in all social classes (the interest rates he describes
are usually low) and in Liber Abbaci he makes a clear distinction between these rates and the
revenue coming from financial operations. Is there therefore a gap between such a widespread

' Cfr. Boncompagni B, Scritti di Leonardo Pisano, 1 vol., Ed. B. Boncompagni, 2vols., Rome 1957-
1862.

% In this case the usurer lent money on an immovable property and practically became its owner for the
time of the loan perceiving its benefits.

Proc. HPM 2004 - ESU 4 (Uppsala), Rev. edition, F. Furinghetti, S. Kaijser, C. Tzanakis (eds.), 2006
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practise and the ecclesial vetoes of the time? Or better, has the Church had a change of attitude
towards usury? We will try to find an answer to both questions.

Afterwards, we will analyse these kinds of problems from a mathematical point of view and we
shall try to highlight some aspects of Leonardo’s mathematical notations. If possible, we will also
take into consideration the links between Leonardo’s mathematical procedures and the ones used
in the Muslim world.

2 Usury in the Christian context

Usury® prohibition is the prohibition of all sorts of speculation, which admit the increased
restitution of a money loan. It is both a sin and a canonical crime. This accepted meaning of usury,
i.e. the collection of a money interest on money, is valid in the Christian context. In the Jewish
community® the term usury is also applied to different cases of loans of goods repaid by goods
with an increased restitution.

The Romans, on the other hand, had no objections to charging interest on loans. Compound
interest was forbidden. During the late Republic and the Empire the permitted interest rate was
about of 12%. The Christians emperors carried on the past policies on charging interest.
Constantine, explicitly, affirmed the validity of agreements that involved interest payments.

In the Christian East, Justinian reduced the maximum rates for business loan from 12 to 6%
and 4% per year for the illustres and those still higher in the rank. For those in charge of
commercial establishment and for the bankers, the maximum rate was 8% per year. In the case of
maritime loans, Justinian set a maximum of 12% per year. Compound interest was always
forbidden. In the following centuries until the 12" century, we witness a series of different
positions as regards the prohibition of interest. In the 12® century such prohibition is applied to the
clergy differently from the corresponding views of the Christian West. The situation outlined
above did not alter over the period from the early thirteenth century to the ultimate fall of
Byzantium in 1453. The first general restriction that the Church placed on interest rate was an
action by the Council of Nicea (325) that forbade clerics to charge interest loans. Patristic8 writers
extended this ban to include t