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Conceptualizing the Learning of Algebraic Technique: 
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This article is divided into four parts. The first part presents some introductory remarks on the use of 
Computer Algebra System (CAS) technology in relation to the long-standing dichotomy in algebra 
between procedures and concepts. The second part explores the technical-conceptual interface in algebraic 
activity and discusses what is meant by conceptual (theoretical) understanding of algebraic technique 
– in other words, what it means to render conceptual the technical aspects of algebra. Examples to be 
touched upon include seeing through symbols, becoming aware of underlying forms, and conceptualizing 
the equivalence of the factored and expanded forms of algebraic expressions. The ways in which students 
learned to draw such conceptual aspects from their work with algebraic techniques in technology envi-
ronments is the focus of the third part of the article. Research studies that have been carried out by my 
research group1 with a range of high school algebra students have found evidence for the kinds of theoreti-
cal thinking that can be fostered by specific types of technique-oriented tasks within CAS environments. 
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The fourth part of the article then shifts to the perspective of teaching practice and discusses some of the 
issues that, according to this research, are to be taken into account by teachers when planning for the 
orchestration of such task-technique-theory activity in technological environments.

Keywords
Tasks, technology, technique, theory, algebra at secondary school level, concep-
tual learning of algebraic technique

1 My appreciation to the colleagues, post-doctoral fellows, and collaborators who have contrib-
uted to the research being presented in this article: André Boileau, Caroline Damboise, Paul 
Drijvers, José Guzmán, Fernando Hitt, Ana Isabel Sacristán, Luis Saldanha, and Denis Tanguay – as 
well as the teachers and students of the participating schools, and our project consultant, Michèle 
Artigue. I also express my gratitude to the Social Sciences and Humanities Research Council of 
Canada and the Québec Ministère des Relations Internationales who have funded this research.
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INTRODUCTION

1.1 What is Computer Algebra System (CAS) technology?
A Computer Algebra System (CAS) is a software program that facilitates sym-
bolic mathematics. The core functionality of a CAS is manipulation of math-
ematical expressions in symbolic form (Wikipedia, Sept. 5, 2007). In 1987, 
Hewlett-Packard introduced the first hand-held CAS calculator with the HP-
28 series, and it became possible, for the first time with a calculator, to ar-
range algebraic expressions, to differentiate, to do limited symbolic integration 
and Taylor series construction, and to solve algebraic equations. The Texas 
Instruments company in 1995 released the TI-92 calculator with an advanced 
CAS, based on the software Derive. This calculator, and its successors (including 
TI-89, Voyage 200, and TI-Nspire), have featured a reasonably capable and rela-
tively inexpensive hand-held Computer Algebra System with symbolic, graphi-
cal, and tabular capabilities.

1.2 CAS use in secondary school mathematics classes
Ever since the appearance of computers and calculators enabled with symbol-
manipulating capabilities, educators have considered these tools to be quite 
appropriate for student use in college-level mathematics courses, and in cal-
culus courses offered at some upper-level high schools (see, e.g., Heid, 1988; 
Shaw, Jean, & Peck, 1997; Zbiek, 2003). However, these tools have generally not 
been adopted for secondary school mathematics up until quite recently. Many 
secondary school mathematics teachers have, for several years, tended to stay 
away from CAS technology in their classrooms, preferring that their students 
first develop paper-and-pencil skills in algebra (National Council of Teachers of 
Mathematics, 1999). 

However, these attitudes are changing – based both on research find-
ings and on the leadership of interested teachers and mathematics educators, as 
well as on the greater availability of teacher resources for using this technology 
at the Grade 9, 10, and 11 levels of secondary school. The result is that student 
access to this technology is increasing in schools (Hoyles & Lagrange, 2009).

1.3 What does the research have to say?
CAS technology has been found to encourage the use of general mathematical 
reasoning processes and to improve student attitude, according to research re-
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ported during the five- year period from 2003 to 2008 at the annual conferences 
of the International Group for the Psychology of Mathematics Education (PME):

This research has also found that CAS can help develop students’ knowledge 
of algebraic content: their understanding of equivalence (Ball, Pierce, & Stacey, 
2003), parameters and variables (Drijvers, 2003), and literal-symbolic alge-
braic objects in general, without “leading to the atrophy of by-hand symbolic-
manipulation skills or to the slower development of these skills” (Heid, Blume, 
Hollebrands, & Piez, 2002, p. 586).

Since the mid-1990s, in France, when CAS technology started to make 
its appearance in secondary school mathematics classes, researchers (Artigue, 
Defouad, Duperier, Juge, & Lagrange, 1998) noticed that teachers were em-
phasizing the conceptual dimensions while neglecting the role of the techni-
cal work in algebra learning. However, this emphasis on conceptual work was 
producing neither a clear lightening of the technical aspects of the work nor 
a definite enhancement of students’ conceptual reflection (Lagrange, 1996). 
From their observations, the research team of Artigue and her collaborators 
came to think of techniques as a link between tasks and conceptual reflection, 
in other words, that the learning of techniques was vital to related conceptual 
thinking. The implication of these findings, as Michèle Artigue stated in her 
plenary presentation at this ICME-11 conference (Artigue, 2008), is that the 
dichotomy between techniques and concepts in algebra is a false one. It is ar-
gued not only that the two are complementary, but also that, within appropri-
ate learning environments, techniques and concepts co-emerge and mutually 
support each other’s growth.

1.4 The Task-Technique-Theory framework
Chevallard describes four components of practice by which mathematical ob-
jects are brought into play within didactic institutions: task, technique, tech-
nology, and theory. Chevallard (1999, p. 225) states that tasks are normally 
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expressed in terms of verbs, for example, “multiply the given algebraic expres-
sion.” He defines technique as “a way of accomplishing, of carrying out tasks.” 
In his theory, Chevallard separates technique from the discourse that justifies/
explains/produces it, which he refers to as technology. But he also admits that this 
type of discourse is often integrated into technique, and points out that such 
technique can be characterized in terms of theoretical progress. According to 
Chevallard, theory takes the form of abstract speculation, a distancing from the 
empirical. Thus, within the anthropological approach, discourse can be viewed 
as bridging technique and theory.

Artigue (2002a) and her research collaborators adapted Chevallard’s 
anthropological theory by collapsing technology and theory into the one term, 
theory. This gave the theoretical component a wider interpretation than is usual 
in the anthropological approach; it also reserved the use of the term technol-
ogy for digital devices. Furthermore, Artigue (2002a, p. 248) has emphasized 
that technique also has to be given a wider meaning than is usual in educational 
discourse: “A technique is a manner of solving a task and, as soon as one goes 
beyond the body of routine tasks for a given institution, each technique is a 
complex assembly of reasoning and routine work.” 

Lagrange (2002, p. 163), one of Artigue’s collaborators, has expressed 
the interrelationship of task, technique, and theory as follows:

Within this dynamic, tasks are first of all problems. Techniques become elaborat-
ed relative to tasks, then become hierarchically differentiated. Official techniques 
emerge and tasks lose their problematic character: tasks become routinized, the 
means to perfect techniques. The theoretical environment takes techniques into ac-
count – their functioning and their limits. Then the techniques themselves become 
routinized to ensure the production of results useful to mathematical activity. … 
Thus, technique has a pragmatic role that permits the production of results; but it 
also plays an epistemic role (Rabardel and Samurçay, 2001) in that it constitutes 
understanding of objects and is the source of new questions. [my translation]

Elsewhere, Lagrange (2003, p. 271) has further extended this latter idea: 
“Technique plays an epistemic role by contributing to an understanding of the 
objects that it handles, particularly during its elaboration. It also serves as an ob-
ject for a conceptual reflection when compared with other techniques and when 
discussed with regard to consistency.”
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Our research group was intrigued by the theoretical notion that al-
gebra learning at the high school level might be conceptualized in terms of a 
dynamic among Task-Technique-Theory (T-T-T) within technological environ-
ments. And so it came to be that we began a series of studies in 2002, which 
continue to this day, that explored the relations among task, technique, and 
theory in the algebra learning (and teaching) of Grades 10, 11, and 12 students 
(15-18 years of age) in CAS environments. I will be elaborating on aspects of 
this research in a short while; nevertheless, I summarize briefly here our main 
findings so as to situate my underlying theme.

As reported in Kieran and Drijvers (2006), technique and theory emerged 
in mutual interaction. Techniques gave rise to theoretical thinking; and the other 
way around, theoretical reflections led students to develop and use techniques.

As reported in Kieran and Damboise (2007), a comparative study of a 
CAS class and non-CAS class involving the same tasks, the CAS class improved 
much more than the non-CAS class in both technique and theory, but especially 
in theory; and the sequence of lessons was one where the technical component 
was clearly in the forefront.

This brings us to the main question to be addressed in this paper: 
How does the learning of algebraic technique in a CAS environment lead to the 
emergence of students’ theoretical/conceptual growth? In other words, how is 
technique rendered conceptual? What does it mean to have a conceptual under-
standing of algebraic technique?

2. THE INTERFACE BETWEEN TECHNIQUE AND THEORY 
IN ALGEBRA

Note that, within this text, I will be using the terms conceptual and theoretical in-
terchangeably. I also wish to point out that the context of this article is related 
to the letter-symbolic aspects of algebra. There are two reasons for this. On the 
one hand, a great deal of research exists already with respect to the benefits of 
multi-representational approaches (e.g., graphical representations) in making 
algebraic objects more meaningful to students (Kieran & Yerushalmy, 2004). 
On the other hand, algebra involves more than representational activity; sym-
bolic transformational activity lies at its core. However, the amount of research 
related to the ways in which the literal-symbolic transformational activity of 
algebra can be viewed as being conceptual is limited, to say the least.
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2.1 What is meant by a conceptual understanding of algebraic technique?
I propose that a conceptual understanding of algebraic technique includes:

equations, such as a linear or quadratic form;

factored and expanded expressions;

 technical aspect) to the underlying changes in form of 
 the algebraic object and being able to explain/justify
 these changes. 

Some classic examples of conceptual understandings in algebra include: (a) the 
distinctions between variables and parameters, between identities and equa-
tions, between mathematical variables and programming variables, and so on; 
as well as (b) the knowledge of the objects to which the algebraic language 
refers (generally numbers and the operations on them) and the need to include 
certain semantic aspects of the mathematical context so as to be able to inter-
pret the objects being treated. But these classic examples deal more with objects 
than with techniques. 

2.2 Some examples of a conceptual understanding of algebraic technique

Example 1.
Seeing through symbols to the underlying forms, e.g.,

 (a) seeing x6 - 1 as ((x3)2 - 1) and as ((x2)3 - 1),
  and so being able to factor it in two ways.
 (b) seeing that x2+5x+6 and x4+7x2+10
  are both of the form ax2+bx+c.

Example 2.
Conceptualizing the equivalence of the factored and expanded forms of alge-
braic expressions, e.g., awareness that the same numerical substitution (not a 
restricted value) in each step of the transformation process of expanding will 
yield the same value: 
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  (x+1)(x+2) – factored form – 
  = x(x+2) + 1(x+2)
  = x2 + 2x + x + 2
  = x2 + 3x + 2 – expanded form – and so substituting, say 3, into 

all four expressions produces the same numerical result – in this 
case, 20 – for each expression.

Example 3. 
Coordinating the “nature” of equation solution(s) with the equivalence relation between 
the two expressions that comprise the original equation, e.g., for the following task, 

Given the three expressions: x(x2-9), (x+3)(x2-3x)-3x-3, (x2-3x)(x+3),

 (a) determine which of these three expressions are equivalent;
 (b) construct an equation using one pair of the above expressions that 

are not equivalent, and find its solution;
( c) construct an equation from another pair of the above expressions 

that are not equivalent and, by logical reasoning only, determine 
its solution.

So, for the three given expressions,

  Exp1: x(x2-9) 
  Exp2: (x+3)(x2-3x)-3x-3 
  Exp3: (x2-3x)(x+3)

 (a) Which are equivalent?
  Only Exp1 and Exp3 are equivalent.

 (b) An equation using a pair of non-equivalent expressions from the 
three given expressions? And its solution? 

  One could use Exp1 and Exp2 in the equation: Exp1 = Exp2.
  Its solution (with CAS or with paper and pencil): x = -1.

 (c) An equation from another pair of non-equivalent expressions from the 
above three expressions? And its solution (by logical reasoning only)?
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  This time, one uses Exp3 and Exp2 in the equation: Exp3 = 
Exp2.

  One deduces that the solution has to be the same as in (b): 
(x = -1). (A conceptual/theoretical understanding involving 
substitution of equivalent expressions and transitivity leads to 
this deduction.)

2.3 The importance of fostering a conceptual 
understanding of algebraic technique
Having just seen some examples of what is intended by the phrase, a conceptual 
understanding of algebraic technique, I now argue, briefly, for the importance 
of this aim for algebra instruction. 

National and international mathematics assessments during the 1980s 
and 1990s reported that secondary school students, in order to cover their 
lack of understanding, resorted to memorizing rules and procedures and that 
students eventually came to believe that this activity represented the essence of 
algebra (e.g., Brown, Carpenter, Kouba, Lindquist, Silver, & Swafford, 1988).

Although some of the recent reform movements have attempted to 
make algebra more meaningful for students – at least during the earlier years 
of high school – by infusing “real-world” problem-solving activities and mul-
tiple representations of these problems into algebra curricula, these same cur-
ricula have tended to maintain the traditional dichotomy of procedures and 
concepts when dealing with the transformational activity of algebra in the later 
years of high school. When students are then faced with the literal-symbolic 
transformational activity of algebra, it is presented, by and large, as a primarily 
concept-free domain. 

Although Skemp (1976) described “relational understanding” as 
knowing both the rules and why they work, there has never been much move-
ment in the direction of describing what this might mean for algebra.

The point I wish to make is that this dichotomy between procedures 
and concepts in algebra is both unnecessary and unproductive for students, and 
in fact can lead to depriving them of the conceptual insights that can make their 
work with procedures meaningful. But before looking at how techniques can 
be approached so that the conceptual component might co-emerge along with 
the technical, we need first to consider the issue of tasks.



115

2.4 The role of tasks in the T-T-T triad
At a recent PME Research Forum on “The Significance of Task Design in 
Mathematics Education”, Ainley and Pratt (2005) – the organizers of the 
Forum – argued that, “We see task design as a crucial element of the learning 
environment … [and contend that] the nature of the task influences the ac-
tivity of students.” Hoyles (2002) has emphasized that a focus on the design 
of task situations is at the heart of the “transformative potential of [techno-
logical] tools in activities” and that, with this focus, “knowledge and epis-
temology are brought back to center stage” (p. 284). Lagrange (1999) has 
suggested that task situations ought to be created in such a way as to “bring 
about a better comprehension of mathematical content” (p. 63) via the pro-
gressive acquisition of techniques in the achievement of a solution to the 
task. Guin and Trouche (1999) have added that tasks should aim at fostering 
experimental work (investigation and anticipation). 

More specifically, Drijvers (2003) has pointed out that more atten-
tion needs to be paid to the role of paper-and-pencil work throughout CAS 
task activity. For Hitt and Kieran (2009), a main consideration in task design 
is the nature of the theorizing that is to be elicited by the specific tasks and 
techniques of a teaching sequence. Artigue (2002b) has suggested that CAS 
tasks can capitalize on “the surprise effect that can occur when one obtains 
results that do not conform to expectations and that can destabilize errone-
ous conceptions, as well as on the multiplicity of results that can be obtained 
in a short space of time when exploring and trying to understand a certain 
phenomenon” (p. 344, my translation).

Zehavi and Mann (2003) have described how the tasks they devel-
oped had the potential to intertwine student work, CAS performance, and 
student reflection. Ball and Stacey (2003) have argued that students’ writ-
ten task records ought to focus principally on the reasoning that has been 
evoked.

As is suggested by all of the above studies – research that has involved 
mathematical activity within technology environments – there is an undeniable 
importance accorded to the design of tasks, tasks whose goal is to promote con-
ceptual reflection and development, even in technique-oriented work! Absent 
are task sequences whose main purpose is for students simply to provide an-
swers to procedural questions.
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2.5 To sum up
Because of the (a) recent advances in the development of theoretical frameworks, 
such as that of Task-Technique-Theory, (b) increasing use of technology in 
schools, for example, CAS at the secondary school level, and (c) attention being 
paid to the role that the nature of the task/situation plays in students’ mathemati-
cal learning, we are well poised to make headway in reflecting upon the ways 
in which technique can be viewed from a conceptual angle in the teaching and 
learning of algebra and, in fact, how technology can enhance the conceptualizing 
of technique.

3. HOW 10TH GRADE STUDENTS IN OUR PROJECT DREW 
CONCEPTUAL ASPECTS FROM THEIR WORK WITH ALGEBRAIC 
TECHNIQUES IN A CAS ENVIRONMENT

Two preliminary remarks are in order, the first concerning the tasks, the second 
concerning the technologies. With respect to the tasks: The tasks went beyond 
merely asking technique-oriented questions; the tasks also called upon general 
mathematical processes that included observing/focusing, predicting, reflect-
ing, verifying, explaining, conjecturing, justifying. With respect to the tech-
nologies: Both CAS and paper-and-pencil were used, often with requests to 
coordinate the two; in general, the CAS provided the data upon which students 
formulated conjectures and arrived at provisional conclusions.

3.2 Conceptualizing that emerged while learning new techniques 
with the aid of CAS technology
The examples in this section are drawn from Kieran and Drijvers (2006) and 
Hitt and Kieran (2009). The two-lesson task-sequence was related to factoring 
(adapted from Mounier & Aldon, 1996). It involved the family of expressions, 
xn – 1. The aim of the task sequence was to arrive at a general form of factoriza-
tion for xn - 1 (for integer values of n *2) and then to relate this to the complete 
factorization of particular cases for integer values of n from 2 to 13. Proving 
one of these cases was part of the sequence, but is not included in this article 
(for details on the proving component and its unfolding in class, see Kieran & 
Guzmán, 2010).

One of the initial tasks of the sequence involved the following ques-
tions, which have been compressed for this article into Figure 1.
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Figure 1. Some of the initial task questions of the xn - 1 sequence.

 

After students had worked on these questions, either in groups or individu-
ally, the teacher opened up a whole-class discussion and asked students to state 
their responses to one particular question (Question #4 of Figure 1). Different 
students noticed different things in the pattern of expressions. The teacher’s aim 
in having the whole-class discussion was to encourage students to learn from 
what some of their peers had noticed. Figures 2 and 3 provide some samples of 
their responses to the given question. (As an aside: the issue of what students 
notice when doing exploratory mathematical work with technology is one that 
has received little research attention.)

The particular student whose work is shown in Figure 2 focused on 
the     

À�

(x <1)  in the factored form and on the exponent in the expanded form.

Figure 2. For this question, this student focused on the (x-1) and the exponents.
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The student whose work is displayed in Figure 3 helped others to “refine 
their noticing” when she described during the whole-class discussion what 
she had focused on. She noticed more than did some other students and was 
also able to express herself with a certain clarity – even if she misused ter-
minology. Linguistic imprecisions such as this one, where equation was used 
for factor, were a common occurrence among the students in the classes we 
observed. 

Figure 3. This student helped others in the class to “refine their noticing”.

 

The class then moved on to a general form of factorization for xn-1 based on 
the above prior examples: xn - 1 = (x-1)(xn-1+xn-2 + … x+1) (see Sacristán 
& Kieran, 2006, for student work related to this component of the task se-
quence). After arriving at this general form, the students worked on the 
Factorization Task where they were confronted with the completely factored 
forms produced by the CAS and where they were requested to reconcile their 
paper-and-pencil (p/p) factorizations with those produced by the CAS. One 
of the ways in which students attempted to reconcile their expected factoriza-
tion of, for example, x4-1 with the CAS factorization is suggested by the work 
displayed in Figure 4. Here the student multiplied the 2nd and 3rd CAS factors 
to yield the same second factor that she had obtained with paper and pencil. 
Other students reconciled their p/p and CAS productions either by factoring 
more completely their 2nd p/p factor or by asking the CAS to multiply its 2nd 
and 3rd factors so as to see whether that produced the same polynomial as 
their 2nd p/p factor.



119

Figure 4. Reconciling paper-and-pencil and CAS factorizations for x4-1.

 

After completing the Factorization Task for n = 2 to 6 in xn - 1, students 
were presented with the Conjecture Task: “Conjecture, in general, for what 
numbers n will the factorization of xn-1: (i) contain exactly two factors? (ii) 
contain more than two factors? (iii) include (x+1) as a factor? Explain.” The 
following pair of students, Chris and Peter, incorrectly conjectured that, for 
all odd ns, the complete factorization of xn-1 would contain exactly two fac-
tors (see Figure 5). The last line of the transcript extract indicates the moment 
of surprise when their initial conjecture proved false (this extract is drawn 
from Hitt & Kieran, 2009).

Figure 5. The role played by the CAS in disproving t
he initial false conjecture.
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The two students then began to wonder: If it is not the case that all odd ns pro-
duce exactly two factors when xn-1 is completely factored, then which ns will 
produce only two factors? The CAS allowed them to test a variety of values for 
n, including the extreme case of n = 99, which led to a first revision of their 
initial conjecture (see Figure 6).

Figure 6. A first revision of their odd-number conjecture: Exclude multiples of 3.

 
But they had not quite finished with their conjecturing, and testing of conjectures, 
with the CAS. In addition to eliminating multiples of 3 as possible values for n, they 
soon were able to eliminate multiples of 5 and 7 as well. Then one of them suggest-
ed trying x60 - 1 because, as he said, “I think it has to do with how many numbers 
can go into it.” This led to the “eureka” moment: that n had to be a prime number 
in order for the complete factorization of xn-1 to contain exactly two factors. 

From these samples drawn from Chris and Peter’s activity, we have 
had a glimpse at the role that CAS technology, within a thought-provoking task 
sequence, can play in supporting algebraic conjecture-making and conjecture-
refining – allowing these two students to focus their trials on certain multiples 
of the exponent, to try out extreme cases, … in short, to arrive at a new con-
ceptualization of the factors for expressions from this family of polynomials – 
all this within an activity related to technical work on factoring. 

3.2 Further evidence for the emergence of theoretical/conceptual ideas 
arising from work with CAS techniques 
The second set of examples to be presented is pulled from a comparison study 
that we carried out with two classes of weak Grade 10 algebra students (Kieran 
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& Damboise, 2007). Some of the characteristics of the task and test design were 
as follows: 

 and expanding.

 one class was to use p/p only, the other class was to use 
 CAS or a combination of CAS and p/p (see Figures 7 and 8 
 for an example of the parallel task-sets for each class). 

 theory-oriented.

technical and others theoretical.

Note that, in both task-sets of Figures 7 and 8, the technical is the focus of 
the first question; the theoretical is the focus of the second question with its 
four subparts. Note as well that, in the CAS version of Question 1, students are 
asked to enter onto their worksheet the output produced by the CAS, while in 
the non-CAS version they are to record their paper-and-pencil factorizations 
and expansions. (N.B.: The “dissected” form of the first column was one with 
which both classes were quite familiar by the time that they encountered this 
Activity.)

Figure 7. One of the task-sets for the CAS class.

 

Activity 3 (CAS): Trinomials with positive coefficients and a = 1 (  

� 

ax2 + bx +c ) 
1. Use the calculator in completing the table below. 

Given trinomial (in “dissected” 
for m )  

Factored form using FACTOR  Expanded form using EXPAN D  

(a)   

� 

x2 + (3+ 4)x + 3�4    

(b)   

� 

x2 + (3+5)x + 3�5   

(c)   

� 

x2 + (4 + 6)x + 4� 6    

(d)   

� 

x2 + (3+5)x + 3�3    

(e)   

� 

x2 + (3+ 4)x + 3�6    

2(a) Why did the calculator not factor the trinomial expressions of 1(d) and 1(e) above? 
2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is factorable? 
2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if it is factorable? Explain 
and give an example. 
2(d) How would you describe the relation between the factored form and the expanded form of the above trinomials in 
1(a) – 1(c)?  
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Figure 8. The parallel task-set 
for the non-CAS class.

 

 

Activity 3 (non-CAS): Trinomials with positive coefficients and a = 1 (

� 

ax 2 + bx + c ) 
1. Complete the table below by following the example at the beginning of the table. 

Given trinomial (in 
“dissected” form)  

Factored form Expanded form 

Example: 
     

� 

x 2 + (3+ 4)x + 3� 4  

� 

x 2 + (3+ 4)x + 3� 4  
= 

� 

x 2 + 3x + 4x + 3� 4  
= 

� 

x(x + 3)+ 4(x + 3) 
= 

� 

(x + 3)(x + 4)

� 

 

 

� 

x 2 + 7x +12  

(a) 

� 

x 2 + (5+ 6)x + 5�6    
(b) 

� 

x 2 + (3+ 5)x + 3�5    
(c) 

� 

x 2 + (4 + 6)x + 4 �6    
(d) 

� 

x 2 + (3+ 5)x + 3� 3   
(e) 

� 

x 2 + (3+ 4)x + 3�6    
2(a) Why could you not factor the trinomial expressions in 1(d) and 1(e) above? 
2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is 
factorable? 
2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if 
it is factorable? Explain and give an example. 
2(d) How would you describe the relation between the factored form and the expanded form 
of the above trinomials in 1(a) – 1(c)? 

In this study, the technology was found to play several roles in the CAS class:

and form; 

 paper-and-pencil responses; 

the algebraic activity.

Of all the roles that the CAS played in this study, the fact that CAS generated 
exact answers that could be scrutinized for structure and form was found to be 
crucial to the success of these weak algebra students. It proved to be the main 
mechanism underlying the evolution in the CAS students’ algebraic thinking. 
Ironically, the importance of this role was first made apparent to us by the voic-
ing of frustration on the part of one of the students in the non-CAS class. This 
student from the non-CAS class, when faced with Questions 2(c) and 2(d) of 
the task shown in Figure 8, remarked:
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“How can we describe the relation between the factored form and the expanded form of these 
trinomials? – we don’t even know if our paper-and-pencil factorizations and expansions from 
Question 1 are right.”

Students in the non-CAS class were at a loss to answer these explanation-orient-
ed questions. They stated emphatically that they were not sure of their paper-
and-pencil answers to Question 1, and could hardly use these as a basis for 
answering, say, Question 2d. In contrast, the students in the CAS class had at 
their disposal a set of factored and expanded expressions that had been gener-
ated by the calculator. They thus had confidence in these responses and could 
begin to examine them for elements related to structure and form.

This study analyzed the improvements of two classes of weak algebra 
students in both technique (being able to do) and theory (i.e., being able to explain 
why and to note some structural aspects), in the context of tasks that invited 
technical and theoretical development. At the outset, both the CAS class and the 
non-CAS class scored at the same levels in a pretest that included technical and 
theoretical components. However, the CAS class improved more than the non-
CAS class on both components, but especially on the theoretical component.

We see this finding as being of some interest. Being able to generate 
exact answers with the CAS allowed students to examine their CAS work and to 
see patterns among answers that they were sure were correct. This kind of as-
surance, which led the CAS students to theorize, was found to be lacking in the 
uniquely paper-and-pencil environment where students made few theoretical 
observations. The theoretical observations made by CAS students worked hand-
in-hand with improving their technical ability. In other words, their technique had 
become theorized, which in turn led to further improvement in technique.

4. THE ROLE OF THE TEACHER

Are good tasks and CAS technology all that are needed to render technique con-
ceptual, that is, to develop a conceptual understanding of algebraic technique? 
It would seem not!

Another deciding factor is the nature of the teacher’s orchestration of 
classroom activity that gives rise to the conceptualizing of technique in tech-
nology environments. It is the teacher who is pivotal in encouraging the stu-
dents to struggle with the task, who asks them key questions at appropriate 
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times, who helps them to see the overarching themes within the tasks, who 
makes the instrumental genesis converge to a common set of techniques and 
insights, and who leads the classroom discussions that provoke this conver-
gence through discourse. However, not all of the teachers in our research study 
proved to be equally successful in orchestrating the co-emergence of technique 
and theory within their students.

Currently our research group is analyzing teaching practice with the 
aim of identifying some of the key characteristics of teachers’ orchestrations of 
classroom activity with CAS technology that relate to drawing out the conceptual 
aspects of technical work in algebra. Some of the characteristics we have begun 
to identify include the following: (a) importance accorded to the mathematical 
aspects of the task – both technical and conceptual; (b) emphasis on the math-
ematical-technological similarities/differences; (c) interest in inquiring into the 
students’ thinking regarding the mathematics of the task at hand, by asking for 
their conjectures, their observations, their elaborations, and their justifications; 
and (d) awareness of the many possible roles that the technology can play. These 
possible roles encompass, for example, creating surprising results, generating re-
sults for the purpose of exploration, verifying other results or conjectures, and 
serving as a computational assistant. However, teachers also need to be able to 
capitalize on these roles in such a way as to encourage student learning.

Other characteristics of teachers’ orchestrations of classroom activity 
with CAS technology that we have been observing include having a repertoire 
of tasks that engage a variety of learning approaches and evoke different pro-
cesses, such as, provoking cognitive conflict and seeking to resolve the conflict; 
looking for patterns; generalizing; activating general mathematical processes, 
such as observing, comparing, extrapolating, conjecturing, and predicting; 
and having considered, before the lesson begins, possible student responses 
and how to encourage further evolution of their thinking within the ensuing 
lesson. Promising teacher orchestrations also consider the ways in which to 
incorporate additional artifacts (e.g., worksheets, paper and pencil, the black-
board (or the equivalent), electronic projection devices, etc.) and the roles they 
might play, namely guiding the work of pupils and structuring their explo-
rations (worksheets), focusing their attention (blackboard), and leading to a 
convergence of ideas (blackboard).

In sum, effective teaching practice with CAS would appear to embody 
planning that takes into account at the very least the following:
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1. Starting with a key mathematical idea.
2. Thinking about both the technical and theoretical aspects of the key idea.
3. Trying out, when planning the task, some technical examples on the CAS 

to see how best to take advantage of the technology (does it produce any 
surprises that could be integrated into an interesting sequence?)

4. Deciding what role the technological artifact should play in the task (gener-
ate examples, create surprises, serve as calculation assistant, …)

5. Deciding on the epistemological processes to be engaged by the task (pat-
tern matching and generalization, conjecturing, seeking connections be-
tween representations, resolving cognitive conflict, predicting, …)

6. Reflecting on how to draw out effectively within class discussions the 
mathematical-technological links.

Last, but not least, our research observations so far suggest that the one aspect 
of teacher’s practice in CAS environments that seems to be most crucial to 
students’ becoming aware of the conceptual aspects of their technical work in 
algebra is the following: Orchestrating classroom discussion in such a way as 
to draw out students’ thinking regarding the mathematics of the task at hand, 
by asking for their conjectures, their observations, their elaborations, and their 
justifications. When such orchestration is accompanied by tasks that (a) go be-
yond merely asking technique-oriented questions and which (b) call upon 
mathematical processes that include: observing/focusing, predicting, reflect-
ing, verifying, explaining, conjecturing, justifying, and which (c) require at 
times that students coordinate CAS techniques with paper-and-pencil tech-
niques, as well as (d) seek consistency between surprising CAS outputs and 
existing theoretical notions, then algebraic techniques will have a greater likeli-
hood of being rendered conceptual.
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