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Gert Schubring, Bielefeld University (Germany), gert.schubring@uni-bielefeld.de

ABSTRACT

Despite all the intense and international efforts of research into the teaching-learning processes of 
mathematics, Euclid’s famous dictum is still valid according to which there is no royal way to mathe-
matics. A growing number of approaches has as its focus the nature of mathematics and investigates 
whether, by taking into account this nature, the teaching-learning processes might be improved. A 
common pattern of these approaches can be called to be a “genetic” one, i.e., to establish a relation 
between the historical evolution of mathematics and the learning of mathematics.

The paper ten discusses how interactions between epistemology and history of mathemat-
ics can contribute to better qualify teachers to cope with the conceptual problems inherent to the 
nature of mathematics. An outlook to the importance of semiotics within the history of mathematics 
is given for reflection within mathematics education.
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INTRODUCTION

The integration of historical elements is a longstanding issue in mathemat-
ics education. The ICMI Study of 2000, History in Mathematics Education, 
represents its most elaborate state of the art (Fauvel&Maanen 2000). Yet, the 
mainstream of approaches and proposals for the use of mathematics history in 
teaching mathematics takes history of mathematics as a ready-made collection 
of facts, easily transposable to the aims of teaching.

In fact, the main justification usually given for the direct use resides 
in practical methods of classroom teaching: historical elements are claimed 
to increase the motivation of the pupils, by showing them that the seemingly 
abstract mathematical system is a living system, that it was developed by hu-
man beings and that it is related to the cultural history of mankind - or of a 
particular nation. Even if not explicitly reflected, the underlying epistemologi-
cal assumption about the nature of mathematics is that of a continuistic growth.

I should like to refer here to a still not sufficiently known but seminal 
paper by Antonio Miguel of 1997 where besides the positive effects the prob-
lematic issues of the use of history in classrooms are reflected (Miguel 1997). 
He was only followed by Man-Keung Siu in 2004 with his 16 thought-provoc-
ative arguments for not using history in classrooms (Siu 2004).

Actually, all the approaches concerning a use of history are based on 
certain epistemological views about the nature of mathematics, but in general 
they remain implicit, and use underlying assumptions. And in order to make 
the approaches productive, these views should not only be made explicit, but 
also be reflected within the frames of theoretical discussions in historiography 
and sociology of science as well as in mathematics education.

What I am interested in, is, whether there exists - beyond the merely ac-
cidental contribution of the motivational function - a productive function of the 
history of mathematics for the actual mathematical practice and for research in 
the learning process. If one wants to tackle such a question one has to challenge 
a view of mathematics which is deeply grounded in the common-day philoso-
phy of many mathematicians: I do mean the view of an essentially cumulative 
nature of the development and growth of mathematical knowledge. According 
to this common-day philosophy (or epistemology), modern mathematics con-
tains already all fruitful achievements of earlier periods, in an abridged and 
rationalized manner - so that one could say that contemporaneous mathematics 
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presents in a condensed form the “logic” of history. Consequently, there would 
be no inherent reason for analyzing the processes of development of mathemati-
cal concepts. Likewise, no intrinsic moment would exist for a use of history in 
teaching – other than to constitute an exhibition of remarkable facts and dates. 
There would be left just one dimension for historical research: the dimension of 
factual data like those of priority - who invented first Lemma X, who invented 
first theorem Y? - and those on ordering and connection of the propositions and 
of regional/geographical distribution of mathematical knowledge. I confess that 
such a restricted view or epistemology is too unsatisfactory for me.

Gladly enough, there are recent conceptual developments in historiog-
raphy of mathematics and in didactics of mathematics, which allow to question 
the traditional cumulative view and which allow new insights in the relations 
between history, teaching and learning. The common feature in these develop-
ments resides in new approaches to consider the subjectivity in the development 
of knowledge - as regards the learning person as well as the researching person.

THE GENETIC PRINCIPLE: KEY APPROACHES

Let us begin to look at some prominent genetic approaches and how they con-
ceptualized the role of mathematics history.

In fact, it was an outstanding mathematician and a mathematician who 
probably was the one who did the utmost for a productive relation between 
mathematics and mathematics education and who decisively promoted the ge-
netic principle: this person was Felix Klein, at the turn from the 19th to the 20th 
centuries. Klein was deeply convinced of the pedagogical superiority of the genet-
ic principle – yet he never gave concrete suggestions for practising it. Nevertheless, 
from his assertions, one can deduce some of the intended characteristic features.

Firstly, he expressed, in 1907, the conviction that this didactical prin-
ciple had won the dominance within mathematics education:

“While a systematic manner of exposing mathematics instruction dominated 
earlier on, which overemphasized the formal aspects of knowledge, this did 
change more and more over the last years. Today, in German schools, this 
methodology is overcome. You can remark this victory of the genetic meth-
odology, in the most impressive way, by the establishment of the already 
mentioned propedeutic geometry teaching” (Klein 1907, 24; my transl.).
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A first concrete hint is, hence, that Klein understood a “genetic ordering of the 
teaching subjects” as opposed to the traditional “systematic” teaching. A next 
hint is that he recommended the so called biogenetic law as the basis for estab-
lishing a good syllabus:

 “This basic law should apply mathematics instruction, too, like any instruc-
tion, at least in general: teaching should, by tieing to the natural disposition 
of the youth, lead them slowly to higher things and eventually even to ab-
stract formulations, by following that same path on which the entire mankind 
struggled to climb from its naïve primitive state upwards to more developed 
insight. […] A decisive obstacle for a dissemination of such a natural and truly 
scientific teaching methodology seems to be the lack of historical knowledge, 
which becomes so often evident” (Klein 1911, 590 f.; my transl.).

Klein mentioned here a factual restriction regarding a general application of this 
teaching method, which he had characterized as being simultaneously natural 
and truly scientific: the lack of sufficient historical knowledge – apparently he 
meant the teachers of mathematics. Another hint how Klein conceived of the 
genetic curriculum is that he postulated mathematics instruction should begin 
with the continuous, i.e. with geometry, like mathematics itself he claimed, and 
only after that proceed to the discontinuous, i.e. to the number concept and to 
algebra (Klein 1899, 136).

It is highly revealing that the genetic principle became prominent again in 
almost the same wording in the 1960s, as a reaction against the so-called modern 
mathematics, against a one-sided orientation of school mathematics at the structure 
of mathematical science. It was in the famous memorandum of 65 mathematicians 
from Canada and the USA – among them Birkhoff, Courant, Kline, Polya, André 
Weil, and Wittenberg, published in 1962, which argued for the genetic principle:

“in order to explain an idea (one should) refer to its genesis and retrace the 
historical formation of the idea. This may suggest a general principle: The best 
way to guide the mental development of the individual is to let him retrace 
the mental development of the race – retrace its great lines, of course, and 
not the thousand errors of detail. […] On the whole, we may expect greater 
success by following suggestions from the genetic principle than from the 
purely formal approach to mathematics” (Memorandum 1962).
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As you will note, both in Felix Klein’s view as in that of these North-American 
mathematicians, the biogenetic law featured prominently. I will discuss this 
issue soon. But first let me discuss some works, which have been esteemed as 
realizations of the genetic principle sensu Felix Klein.

Alexis-Claude Clairaut (1713-1765) was an important French mathe-
matician and physicist. He wrote tow textbooks, one on geometry in 1741 and 
the other one on algebra in 1746. They have often been claimed to be realiza-
tions of the genetic principle. This characterization is misleading, however: it is 
better to attest them a problem-oriented or heuristic approach (see Schubring 
1983a, Glaeser 1983, Schubring 2003, 54ff.).

The geometry textbook intends to develop geometry step by step, al-
ways motivated by practical questions like measuring quantities in fields, in 
the landscape, in farming, and generally in land surveying. At a first glance, the 
geometry textbook realizes Felix Klein’s demands to develop the geometrical 
notions – beginning from natural, “primitive” questions.

A closer analysis shows, however, that Clairaut did not succeed in a 
“natural” evolution of the conceptual field, according to an unfolding of “origi-
nal” problems and of their consequences. Rather, he imposes what should be the 
next, seemingly practical question to be solved. Moreover, Clairaut’s approach 
does not realize the claim to lead from simple notions to abstract knowledge. 
Rather, he refrains from all abstraction and theorization. And his claim to follow 
the historical evolution of geometry is not realized, neither: Clairaut postulates, 
in fact, how it might have been, how the “inventors” did proceed – his historical-
genetic claim can hence at best be appreciated as a “rational reconstruction” – in 
the sense of Lakatos.

The lack of abstraction was consciously intended: The book was pro-
duced for a mundane public, not for use in schools and systematic teaching. 
Actually, it was written for a marquise who desired to be instructed in some 
leisure mathematics. This explains Clairaut’s main methodological concern: ne 
pas rebuter les commençants – not to scare off the beginners. For the algebra 
textbook, the problem-oriented approach was even more difficult to realize.
In the famous Encyclopédie by Diderot and d’Alembert, in the key entry about 
textbooks, Clairaut’s textbooks were sharply criticized for omitting essential 
proofs and hence for lack of rigor. Moreover, they were criticized for providing 
nothing but a sample of propositions instead of a methodically constructed 
architecture (d’Alembert 1755, 497 r).
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A much more elaborated and theoretically reflected conception has 
been presented by Otto Toeplitz (1881-1940) - a German mathematician 
whose main book is translated at least into English and who was quite active for 
improving the teaching of mathematics in schools and in universities between 
the two world wars. Toeplitz pleaded for using history as a pivotal didactical 
means - he called this the “genetic methodology” and introduced the distinc-
tion between a “direct” genetic methodology and an “indirect” genetic one.

In a key paper of 1927, Toeplitz proposed to return to the “roots” of 
the concepts and to present them thus as living beings. As Toeplitz said, one 
could pursue two different ways to realize this goal in the teaching practice:

“One can either present the discoveries to the students with all its dramatic cir-
cumstances and let thus grow for them the questions, concepts and facts - I 
would call this the direct genetic methodology - or one can learn oneself from 
such an historical analysis what is the real meaning, the true essence of each 
concept, and one can draw conclusions from such an analysis for the teaching of 
this concept which are no longer tied to the historical development - I am calling 
this second approach the indirect genetic methodology” (Toeplitz 1927, 92f.).

While the direct genetic methodology corresponds to the already discussed di-
rect use of history in teaching, the second, indirect approach is interesting since 
it takes into consideration the role of the teacher and understands the teacher as 
actively reflecting the historical processes and as transmitting their essence by 
his teaching. Toeplitz’s indirect approach looks not so much on knowledge, but 
on meta-knowledge and his main focus is on how to provide teacher-students 
in their training with such a meta-knowledge about mathematics.

Toeplitz has used this methodology in his own courses at the univer-
sity, in particular on the infinitesimal calculus. This course has been published 
as a book: “The development of the infinitesimal calculus, exposed according 
to the genetic methodology” (Toeplitz 1972/1963). Unfortunately, despite its 
promising approach, this book cannot really serve as a model for the pro-
posed methodological use of history, since Toeplitz’s program to reveal the de-
cisive turning points and ruptures in the historical processes is hardly realized: 
Toeplitz discerned mainly three fundamental concepts, which determined, 
by their development, the emergence of the infinitesimal calculus. For two of 
them, the “infinite process” and the number concept, Toeplitz tries to show 
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that the ancient Greeks did already achieve all essential steps and that later 
developments were but an unfolding and a change of exterior form of these 
first achievements. For instance, in the famous dispute between Dedekind and 
Lipschitz, whether Dedekind’s concept of real numbers was new or identical 
with the notions of the Greek Eudoxos, Toeplitz took the part of Lipschitz in 
claiming that Eudoxos already operated with the concept of real numbers while 
Dedekind had insisted that the notion of completeness was missing entirely in 
Greek mathematics and could not be derived, not even implicitly from geo-
metrical ideas. Toeplitz admitted for the function concept only that it emerged 
as a new concept in modern times, but even here he tried to show that Ptolemy 
was already aware in Hellenist time of this concept (see Schubring 1978).

We can see therefore that Toeplitz remained attached to the traditional 
view of a continuous, cumulative development in the history of mathemat-
ics so that his own notion of an indirect approach could not become fruitful. 
His underlying conception seems, too, to be effected by that notion, which is 
commonly called the “biogenetic law”: Toeplitz claimed that the development 
of mathematical concepts uses in general to follow “the easy ascent from the 
more simple to the more complex” and that this historical ascent might be used 
didactically (Toeplitz 1927, 95).

The example of Toeplitz’s conception therefore again shows that the main 
problem for a revealing use of history resides in an adequate conception of his-
torical development. While most of the other scientific disciplines are discussing 
- since Thomas Kuhn’s famous book on scientific revolutions - revolutions in their 
field and ruptures in the conceptual development, mathematics seems to close its 
mind to realize an analogous epistemological change. The traditional epistemol-
ogy stressing the uniform, continuous and cumulative character of this “queen 
of the sciences” is, apparently, too strong. A telling example for this exceptional 
position of mathematics has been formulated by the French philosopher Gaston 
Bachelard who has convincingly analyzed epistemological ruptures in the exact 
sciences, but who has consciously excepted mathematics from these analyses:

“The history of mathematics is a miracle of regularity. There are periods of 
standstill, but it knows no periods of errors” (Bachelard 1975, 25; my transl.).

Actually, the notion of error will provide a key to challenge this epistemologi-
cal view.
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RELATION BETWEEN RESEARCH AND TEACHING

In order to tackle this question let me present you some of the mentioned 
new approaches in historiography of mathematics. Their main feature is con-
stituted by studying the interrelationship between the system of production of 
new mathematical knowledge and the systems encompassing and supporting 
mathematics. These new types of historical research, which have evolved over 
the last decades, focus in particular on one specifically related social sub-system: 
on the education system, since the dissemination of mathematical knowledge 
is essentially bound to the education system and since teaching positions were 
for a long period the only relevant professional careers for mathematicians. The 
analysis of the relationship between mathematics seen as a social system and its 
surrounding systems has progressed much beyond the fruitless dichotomy of 
internal versus external determination of mathematical ideas and has particu-
larly contributed to better understanding the circumstances of mathematical 
production.

A primordial element in these analyses is given by a re-evaluation of 
the relation between teaching and research. The traditional view of this relation 
has been that the scientific part exclusively plays the active, productive role and 
that the didactical side always is the passively receiving partner, which transposes 
the received into the instruction system (a view, still perpetuated by Chevallard’s 
concept of transposition didactique). The relation between scientific knowledge 
and school knowledge was therefore understood as operating only in one direc-
tion. This one-directional view has been denounced in 1978 by Willem Kuyk 
– the author of “Complementarity in mathematics” (1977) - by comparing it 
with the relation between stalactites and stalagmites (Kuyk 1978, 5):

“Mathematics is not a stalactite hanging over a stalagmite”, thus deny-
ing the view that mathematics education grows but by receiving some drops 
from above, from the supreme instance. The instructional system cannot be un-
derstood in the simplistic way of a stalagmite, which receives some drops from 
the stalactite while it is growing. My intention is to show that the re-evaluation 
of the relation between research and teaching allows at arriving at another un-
derstanding of historical development.

An important publication on this way has been the article by Judith 
Grabiner of 1974: “Is mathematical truth time dependent?” At the same time, 
Hans Wußing had remarked that the new system of teaching higher mathemat-
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ics, emerging in France since the end of the 18th century, contributed decisively 
to establishing new standards of rigor, to promote research on the foundations 
of mathematics and to falsify propositions, which had been thought to be true 
(Wußing 1974, XVIII).

My own research on the development of mathematics in Prussia (a 
leading state in Northern Germany) in the 19th century done in the early 
1980s, has shown that the profession of mathematics teachers at secondary 
schools constituted the social basis which enabled the establishment of mathe-
matics as an autonomous discipline within the university system. Moreover, the 
type of interest of these teachers in mathematics decisively moulded the pro-
duction of pure mathematics for which Prussian and later German mathematics 
has become so well known: Actually, the interest of these teachers - themselves 
regarded as “scholars” - in rigor and in a consequent architecture of mathemat-
ics yielded important achievements in foundational questions and in clarifying 
basic notions (see Schubring 1983b, 158 ff.).

Resuming these briefly outlined researches and results on the history 
of mathematics in its context, one can say:

development of mathematical research. The dimension of 
instruction and teaching has therefore to be considered for an 
adequate notion of historical understanding of mathematics 

 (see Schubring 2001);

of mathematics are largely due to epistemological changes, which 
are connected to changes in the systems related to the system of 
scientific activities;

means and categories which are usefully applicable to analyze also 
processes of scientific development.

The last two propositions aim at including the subjectivity of the student and 
of the scientist into the theoretical framework. In order to explain and to apply 
these propositions I want to discuss two aspects on which much didactical re-
search has been done over the last decades in order to study the subjective ele-
ment in the learning process. These two aspects are the errors and the obstacles.
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Errors
The investigation of pupils’ errors in the learning process constitutes a major field 
of didactical research since several decades – actually, as one of the main features 
of the emergence of mathematics education as a scientific discipline. Didactics of 
mathematics has increasingly established more refined experimental instruments 
to analyze pupils’ errors and discusses theoretical models for interpreting errors.

As major results of these researches I need here to mention only briefly: 
errors are not merely expressions of an individual’s “defects”, of missing atten-
tion, or the consequence of missing knowledge or due to an accidental specific 
situation. Errors can therefore not be simply remedied by increasing discipline, 
attention and diligence of the pupils.

Empirical research has shown that errors are rather causally deter-
mined and often of a systematic nature. Errors can be analyzed and described 
as resulting from patterns and notions, which can be internally consistent but 
which do not coincide with the notions and operations as intended by the 
teacher. A first consequence of these researches has been to identify as causes 
of the errors either difficulties of the pupils in grasping the new information in 
teaching or problems in the interaction of the variables influencing mathemat-
ics instruction (teacher, curriculum, pupil, context of the school). But even in 
this research, errors of students were understood as indicators for individual 
difficulties (Radatz 1979). Further research has, however, increasingly ques-
tioned that these specific patterns are signs for merely individual difficulties.

A radical research program developed in this field is that of social interac-
tionism, initiated and developed by the Bielefeld group: Bauersfeld, Krummheuer, 
and Voigt, since the 1980s:1 in this program the status of errors is challenged. The 
basis for this program is the philosophy of constructivism as developed in particu-
lar by Glasersfeld: There exists no objective meaning of notions and concepts. Each 
individual constructs his own meanings given his experience and background. It 
is only by the social interaction between the individuals that communication takes 
place and that the individual constructions can gain a certain convergence. It is by 
the process of social interaction, that a specific construction becomes acknowl-
edged as common knowledge, as “objective” (Bauersfeld 1983).

1 Paul Cobb, in his speech at ICME 11, after having received the ICMI Freudenthal 
medal, remembered the formative significance of his cooperation with this group.
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Mathematics teaching is particularly suited for studying the processes 
of establishing a common knowledge shared by the participants of the com-
munication in a class since there is no direct exterior reality, which would allow 
testing the validity of the individual constructions. The teaching process can be 
described as a negotiation between teacher and students and where the teacher 
tries to establish working procedures, which may be more or less stable. The 
original Bielefeld group has used particular experimental instrumentations like 
video-recording of the teacher-student interactions and developed methods for 
transcribing the interactions in order to make them analyzable and reproduc-
ible to other researchers. This research program has yielded very remarkable 
results and shown that what is usually seen, by the teacher, as errors are in fact 
misunderstandings: the students use to “see” other notions in the material pre-
sented by the teacher than the teacher had in mind.

For instance, in the teaching materials used for introducing the no-
tions of the first natural numbers several objects from the real world are shown. 
The student should “abstract” from the real world features and just retain the 
cardinal number. The analysis of the interaction process shows, however, that 
the students direct their attention to other elements in the pictures and effect 
therefore other “abstractions”. It takes a long time until the students can divine 
what the teacher wants to hear and that conventions become routinized upon 
signals given by the teacher. This learning “success” can be a merely superficial 
one and the working procedure can break down when the teacher uses a dif-
ferent symbolization (see Voigt 1985).

This concept of social interactionism need not remain restricted to 
school teaching and didactics. It can equally well be applied to research in 
mathematics and therefore to history, too. How does it happen that a new theo-
ry is adopted in mathematics, that a concept is regarded as rigorous or rejected 
as not rigorous, that a proposition is regarded as false? This is neither by the 
decision of an individual nor by the universal insight of an eternal truth, rather 
we find, here too, negotiating processes in the mathematical community, in-
teractions in this social community, which determine about acknowledgement 
or refutation. Before I discuss consequences of this view for the growth of 
mathematical knowledge, there is to mention yet another dimension relevant 
for history in the didactical research on students’ errors.

In fact, in the didactical research on errors one does not locate all 
problems in the modes of interaction and in the communication process, but 
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one also emphasizes possible causes in the mathematical content of the com-
munication: One analyzes the teaching material or the exposition of the teacher 
if they might not be correct from the mathematical point of view or if they 
contain missing links which could have caused that a student did not grasp a 
mathematical notion and its operations. This is surely a legitimate approach in 
didactics of mathematics but it is not a sufficient one: In almost all didactical 
theories, the mathematical knowledge is taken as objective or absolute precon-
dition for learning which will not be questioned. This starting point of didac-
tics is, however, insofar not sufficient, as there exists no a priori evidence that 
the mathematical knowledge used for teaching really is complete, organized 
consequently and coherently and without missing links. Didactical research 
should be aware of inherent problems in mathematics itself: unsolved or even 
undetected problems in the logic or in the epistemology of mathematics, am-
biguous or even misleading notations. The teacher who has been initiated to 
the language of mathematics and its peculiar operating procedures will not be 
able to remark such inconsistencies, but the student as naive, as non-initiated, 
might be hindered by such problems inherent to mathematics - what the teach-
er marks as error can be an indication for deficiencies within the mathematical 
knowledge.

It is particularly this dimension of unsolved internal or epistemo-
logical problems in mathematics by which the teaching process can effect an 
impetus for progress in mathematics or can even effect ruptures within the 
established system of mathematics.

Since school mathematics represents to a greater degree the condensed 
essence of the historical development than the actual research knowledge we 
did arrive at a first productive use of mathematics history for didactical re-
search, namely by supplying the means for analyzing those conceptual, nota-
tional or epistemological problems of mathematics which are due to certain 
stages of the historical development and which effect errors or misunderstand-
ings by the side of the students.

Obstacles
We can deepen the discussion of the use of history for teaching by the means of 
didactical categories if we regard the specific contributions by French didacti-
cians. The emphasis on the knowledge itself - what one can call the epistemic 
dimension -, which is largely missing in German and North-American didacti-
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cal research on errors, constitutes in French research one of the main issues. 
One uses in France a category for didactics of mathematics, which has origi-
nally been established for studies in history of science. I mean the category of 
obstacles épistémologiques, of epistemological obstacles, put forward in 1936 by the 
already mentioned French philosopher Gaston Bachelard. It gained particular 
influence after a re-edition of his works in 1975. Bachelard’s conceptions have 
been transposed by Guy Brousseau to didactics of mathematics, who has devel-
oped a didactical theory of obstacles. Its main aim is to overcome to attribute 
errors only to subjective causes in the students. Brousseau discerns in particular 
the following types:

difficulties or bareers which originate from the conception or 
structure of the curriculum, from the particular teaching concept, 
from didactical concepts,

Brousseau, these obstacles to learning are rooted in the nature of 
mathematical knowledge and can therefore not be avoided. They 
are constitutive for the respective knowledge, they become visible 
in some stage of the historical development and can be identified 
by historical analysis.

According to Brousseau’s theory, where a model of stages is applied, there are in-
herent contradictions within the types of knowledge tied to the lower stages: the 
knowledge shows itself effective as long as applied within these restricted areas, 
but reveals to be an obstacle when it becomes applied to situations of a higher 
stage. Some knowledge can therefore, due to inherent reasons, function as an 
obstacle against progress on the next stage (Brousseau 1997, 84).

One can therefore understand his theory as a “transposition” of Bachelardian 
ideas to didactics. Both theories on whom Brousseau relies, by Bachelard and by 
Piaget, imply a teleological vision: the certainty to be able to achieve the most 
“mature”, the most elevated level of science, of human thinking.

A number of studies has been carried through on the basis of this re-
search program, for instance on the difficulties of students with the limit con-
cept in calculus, with the notion of infinite, and on students’ notions of basic 
geometric concepts. A particularly profound study of the limit concept, both 
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for the historical and for the didactical side is the collective work published in 
2005 by a group of Italian researchers: Oltre ogni limite – Beyond any limit.

The quality of such research relies to an important part on the reli-
ability of the historical analysis: otherwise, the empirical findings on students’ 
difficulties are interpreted according to prejudices or to a common-day un-
derstanding about the nature of breaks, ruptures and problems in the histori-
cal development. The demand for detailed and qualified historical research is 
the more imperative as historiography of mathematics traditionally tended to 
restrict itself to the ideas of the “great men”, the “heroes” - an emphasis by 
which the real difficulties experienced by the larger contemporaneous math-
ematical community can hardly be taken into account.

We arrive thus at a second, “indirect”, use of history for didactical re-
search: In order to fill the enormous gaps of knowledge about the mathematical 
thinking and practice in the larger group of mathematical practitioners, it con-
stitutes a challenging task for the historiography of mathematics to study debates 
and controversies about the status and nature of relevant mathematical concepts.

This second use is not thought of in the way of deriving recipes for 
teaching, but as elements for the didactical research on epistemological ob-
stacles and to enrich the meta-knowledge of teacher students and of teachers.

Starting from such a conception, I have done extensive research on the 
history of negative numbers. The results were significant contributions for his-
tory and for didactics, namely on the role of errors for mathematicians and for 
the teaching process and, likewise, on the notion of epistemological obstacles 
in history and in teaching (see Schubring 2005a; 2005 b; 2007).

The function of history in this French conception
Understanding Brousseau’s theory is facilitated by comparing its two versions, 
of 1976 and of 1983, which is easy, since many of his publications were trans-
lated in the volume Theory of Didactical Situations (1997). He uses to empha-
size that obstacles are unavoidable, but also that one should not reinforce them 
explicitly:

Obstacles of really epistemological origin are those from which one 
neither can nor should escape, because of their formative rôle in the knowledge 
being sought. (Brousseau 1997, 87).

In 1983, after his controversy with Georges Glaeser about the mean-
ing of the term “obstacle” and basing himself now on the study by Duroux – 
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the first concrete investigation in French didactique to identify epistemological 
obstacles, this time regarding the notion of absolute value – Brousseau relied 
much more on history of mathematics and attributed it a decisive function:

But it can prove itself to be fruitful for teaching insofar as:

mathematics;

are studied with precision in such a way that a precise didactical 
project can be proposed to teachers,

(Brousseau 1997, p. 93-94)

This strengthened function of history reveals, however, a weakness of the con-
ception: history has to serve as source for errors committed by mathematicians. 
Thus, history has no productive function; it serves as an element of a recipe for 
research:

From the outset, therefore, researchers should

a. find recurrent errors, and show that they are grouped around conceptions;
b. find obstacles in the history of mathematics;
c. compare historical obstacles with obstacles to learning and establish their 

epistemological character. (Brousseau 1997, p. 99)

Here, one finds no active role for history. This seems to be related to the fact that 
Brousseau did no integrate a key element of Bachelard’s conception: the notion 
of a rupture between empirical knowledge and scientific knowledge, which 
is of enormous importance expressly for didactical research. Furthermore, in 
the 1983 conception, there is not the supposed symmetry between the side of 
history and the side of the learner: Since obstacles were declared to be insur-
mountable - “incontournables” and “insurmontables” (Brousseau 1989, quot-
ed in Brousseau 1998, 154) -, while students’ errors should be surmountable, 
there is a drastic asymmetry. And scientific progress would be impossible when 
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obstacles could not be overcome. Glaeser’s understanding of obstacles as “dif-
ficulties”, hence without a normative character, lent itself better for historical 
investigations.

The general weakness of the conception of epistemological obstacle 
resides in the problem that the history of mathematics is regarded as a fixed 
collection no longer open to questions and research. Traditional historiography, 
onto which this didactical conception would base itself, is not adapted for an-
swering to these new questions, for a use in didactics and learning: they did not 
look for the “normal” mathematicians who would better reveal the obstacles 
sought for than the traditional heroes.

Actually, it had never been investigated whether one of the normative 
pillars of the concept of epistemological obstacles is really justified, namely 
whether an historical obstacle necessarily shows up as a learning obstacle. I have 
therefore undertaken a case study to test this issue: it concerned the multiplica-
tion of quantities, which proved to constitute over various centuries a genuine 
conceptual obstacle in arithmetic and which characteristically no longer con-
stitutes an obstacle in learning – essentially due to an epistemological switch 
which had happened in the meantime: quantities no longer constituting the 
conceptual fundament of mathematics (Schubring 2005 b).

Critique of the biogenetic law
In almost all the genetic approaches, which I have presented to you so far, almost 
inevitably the so-called biogenetic law showed up – either implicitly or explicitly. 
This is true since Felix Klein’s first pleas. Even in Brousseau’s conception it shows 
up implicitly. He uses to relate to “spontaneous” reactions of students, i.e. to an-
swers before teaching the respective concept (Brousseau 1997, 93). According to 
him, these spontaneous answers reveal epistemological obstacles and correspond 
at the same time to the naïve hypotheses of the first scientists. This implies not 
only the implicit acceptation of the biogenetic law, but negates at the same time 
the profound social and cultural changes, which effect that children of today start 
at decisively different conditions than earlier generations.

The recapitulation hypothesis originated from a transfer of biologism 
to cognitive development. It was in particular Haeckel’s famous law for bio-
logical development of the. species which was grafted to psychology. The graft 
from biology on psychology and education was effected, among others, by the 
philosopher Herbert Spencer
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“the education of the child must accord, both in mode and arrangement, 
with the education of mankind, considered historically. In other words, the 
genesis of knowledge in the individual must follow the same course as the 
genesis of knowledge in the race.” (quoted from Branford 1908, 326).

This grafted biogenetical principle, or principle of parallelism, had become 
a largely shared topic in education by the end of the 19th and the early 20th 
centuries and, remarkably enough, in particular in mathematics education. In 
fact, it would seem that mathematics was, and still is, the only school discipline 
where this principle has become so prominent. I cannot remember anybody 
to have claimed it being applicable, say, to physics or to chemistry. Strangely 
enough, the biogenetic law, no longer prominent in the first half of the 20th 
century, made a more or less explicit return to mathematics education in its 
second half, and in particular in approaches for using mathematics history in 
teaching (see Schubring 2004).

An instructive and concise introduction to the entire problematic of par-
allelism and of the biogenetic law is the excellent paper of 2002 by Luis Radford 
and Fulvia Furinghetti. They elaborate not only Piaget’s and Garcia’s deficits in 
conceiving of cultural and social impacts on cognitive formation, but they also 
present L. Vygotski’s alternative approach as that of one of the few psychologists 
to have profoundly investigated socio-cultural influences on cognitive processes. 
As they put it, “the merging of the natural and the socio-cultural lines of develop-
ment in the intellectual development of the child definitely precludes any reca-
pitulation” (Radford/Furinghetti 2002, pp. 634 – 642; here: 637).

The major flaw in all the approaches based on parallelism is that they 
presuppose history of mathematics as a definitely established corpus of knowl-
edge, which is beyond controversy. This is, however, far from being true. The 
historiography of mathematics has hitherto concentrated on the “peaks”, on 
the “heroes” of mathematics, and it has practiced a resultatist view, searching 
for forerunners of the results of present mathematics, and thus ever and again 
reproducing the continuist view of development we always find in how didacti-
cians assess the history of mathematics.

For uses in education, another type of historiography and of research 
has to be attained, however, a view which unravels the contributions of sci-
entific communities at large, identifying and assessing conceptual ruptures, 
and in this way documenting conceptual developments in different relations 
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of subsystems to their encompassing systems (cf. Schubring 2002). This will 
make it possible to better establish the social and cultural contexts and their 
impact on scientific development – an approach hitherto only postulated, but 
never really elaborated.

Resuming our discussion of the conceptions of epistemological obsta-
cles and of the biogenetic law (or parallelism) we have to state that both are not 
adapted for a productive use of the history of mathematics. Both are normative 
approaches and do thus hamper experimental research in both domains, in 
history and in mathematics education – they are prejudicial for open-ended 
research.

Furthermore, al the discussed genetic approaches and these last two 
in particular presuppose a universally homogeneous conceptual development 
over time. However, there does not exist a “Gesamt-Intellektueller”, an all-
comprising intellectual. Conceptual developments occur within determinate 
and specific groups, the so-called scientific communities which have as pri-
mary references for their conceptual frames the values and norms of their 
particular cultural environment, their directly surrounding systems – which 
one may shortly call “context”. Therefore, there does likewise not exist an 
absolute simultaneousness or parallelism of conceptual developments in dif-
ferent cultures.

Errors in mathematics
I can now come back to my proposed approach to start form the subjectivity 
of the person and its group: I spoke already of this approach for the learner, 
within the conception of social constructivism. I should now turn to the other 
side, which is relevant here, to the scientist – and now not limited by a priori 
assumptions about a Naiveté of early scientists etc., but based on a productive 
role of interaction between research and learning. In such a sense, one is able to 
investigate more freely possible errors of scientists, and in particular of math-
ematicians.

In present day convictions it seems to be unthinkable to acknowledge 
the possibility of serious errors in the history of mathematics, as exemplified 
by Bachelard’s exclusion of errors in mathematics. Earlier generations seem to 
have had less problems with such a possibility. A telling example is provided by 
Martin Gebhardt, the author of the first ICMI Study on the role of mathematics 
history for mathematics instruction in 1912. He assured:
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“With the proof by history that error and controversy play their role and are 
important in mathematics, too, the abysm, which separates it from other sci-
ences, in particular also from the natural sciences, will disappear to a consid-
erable degree” (Gebhardt 1912, 83).

And by errors he meant, as he emphasized, not those which can happen to each 
mathematician, but those which are characteristic for an entire epoch – like the 
conviction of convergence of the series 1-1+1-1+1- … having as limit ½, de-
fended by Grandi, Leibniz, and Euler, among others. And in 1904, E. Maillet, a 
French mathematician had called to collect remarkable errors of mathematicians, 
as an instance of self-reflection. The resulting collection was published in 1935 
by Maurice Lecat, a specialist in variational calculus. It is not well known, neither 
in historiography nor in mathematics education. The collection documents about 
500 errors, attributed to 330 mathematicians – among them many minor figures, 
but also famous mathematicians. Lecat stated that there was only one famous 
mathematician who never committed an error: Evariste Galois. Thus, Lecat dedi-
cated to him an honorary page, i.e. an empty page (Lecat 1935, 39).

Given this dimension and extension of committing errors in math-
ematical research, on the one hand, and the acceptance of “errors” as good 
mathematics over extended periods, I am now able to formulate my main hy-
pothesis/research guideline/proposition:

It is a consequence of the program of social constructivism resp. so-
cial interactionism that so-called students’ errors can no longer be called “er-
rors” if they follow a definite strategy, jointly shared by that entire social group. 
Analogously, this applies to communities of scientists, too, and in particular 
to mathematicians. Regarding chemistry, I should like to recall the phlogiston 
theory, which was accepted by chemists over centuries (see Kuhn 1962).

This specific claim of such a constructivism has to face the objection: 
where remains the objectivity of mathematics, which has always been main-
tained to be the major characteristic of this science?

In fact, the consequence of my conception is that there exists no objectiv-
ity, at least no overall objectivity. Not only in learning, meanings of concepts are sub-
ject to negotiation processes, so that differences in meanings established by various 
groups will disappear as result of interactions when these groups get into commu-
nication and achieve shared meanings, but also in science a common understanding 
will at first be restricted to social communities, which are tied together by certain 
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conditions to form a basic unit of communication, say by sharing a common cul-
ture and language. Let me call this basic unit a scientific community of first order. 
In general, one can assume that they will share, too, the epistemological view of 
their subject. While there might co-exist different epistemological and conceptual 
views of mathematics in separated mathematical communities, there should begin 
processes of interaction at the moment when such separated communities come 
in contact with each other. Consequently, either the values and conceptions remain 
mutually alien so that – if there are no other pressures for establishing shared con-
ceptions – the communities will continue to be separated, or a negotiating about 
the differences will begin with the effect of certain compromises or dominations.

This hypothesis about a relative objectivity as result of negotiation pro-
cesses between originally separated mathematical communities can be tested by 
investigating – not a “clash” of cultures – but the effect when two cultures with 
different conceptions of knowledge are colliding.

A first such test is presented by the transmission of number signs 
and of decimal fractions from India to the Arab civilization, studied by Mahdi 
Abdeljaouad. As is well known our so-called Arab number signs are in reality 
Indian signs, as well as the establishment of zero and of the decadal number sys-
tem. The Arabs used, like the Greeks, the Phoenician manner of designing num-
bers by letters of the alphabet. And for fractions, they either used Babylonian 
sexagesimal fractions or Egyptian unit fractions. In the main period of Islamic 
culture, from the 8th to the tenth centuries, the Indian numbers and the deci-
mal fractions had not found acceptance. Al-Uqlidisi who had tried to introduce 
them, by a significant textbook in 952, had no success and his book was forgot-
ten, until a re-edition by Saidan in 1966. The resistance against the Indian way 
of mathematics is clearly documented by a polemic appreciation uttered by Al-
Biruni in the 11th century, in his introduction to the book “History of India”:

“The Indians to not dispose of philosophers like the Greeks who have ex-
posed their subjects in their texts entirely scientifically. They have produced 
almost no book, which is not a downright collection of rubbish and where 
get mixed all varieties of popular beliefs. The spirit of authority dominates in 
them. As far as I am concerned, I can assure that their books of arithmetic and 
mathematics are comparable with nothing else than stone cairns containing 
some fragments of ceramics or with pearls hidden in the dung/manure of 
camels.” (quoted from Abdeljaouad 1978, 14; my transl.)
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I have published a more recent example of mutually exclusive visions of mathe-
matics last year: the case of Edmund Külp, the teacher of Georg Cantor who in 
his youth was educated according to the values of French mathematics – and 
that meant of physico-mathématique: a vision of applied and applicable mathe-
matics. Becoming transferred to Germany, Külp had to suffer a purely formal, 
inapplicable mathematics – the mathematics of permutations and transposi-
tions of the German combinatorial school. Due to the incompatible meanings 
of that French and that German mathematics, Külp failed with his project to 
pursue an academic career at a German university and had to serve for decades 
in primary teacher education to make his living – until he managed to become 
a teacher at a trade school where some French mathematics was admissible 
(Schubring 2007).

Role of semiotics: the development of signs
A particularly illuminating quotation by Destutt de Tracy, a French philosopher, 
of 1801 underlines the productive role of teaching for research, for obtaining 
new knowledge, which I am emphasizing in my approach to the use of history 
of mathematics. This quotation presents an evaluation of the historically first 
experience to disseminate scientific knowledge, to elementarize science and 
making it accessible to a general public. Reflecting the ambitious projects of 
the French Revolution to produce such truly elementary textbooks, Destutt de 
Tracy resumed:

“When one is about to expose a scientific fact, one often remarks that it ne-
cessitates to undertake before new observations, and – better investigated – it 
presents itself by a quite different point of view. At other occasions, it proves 
that it is the principles of science itself, which need to be revised, or one has 
to fill numerous gaps to connect them mutually. Briefly, the matter is not to 
disseminate the truth, rather one has to detect it” (vol. 1, p. 4 f., of his Projet 
d’Éléments d’Idéologie; quoted from Schubring 1982, 114 (my translation).

A particularly important dimension of the challenge to research by teaching as 
explained by Destutt de Tracy is presented by the representation of mathemati-
cal objects, by the sign function of concepts where essential elements use to 
be hidden and where it is in particular the effort to teach them which effects 
an explication of implicit and hidden assumptions and conceptual moments.
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The last part of the lecture will be devoted to briefly expose the role 
of semiotics for such a new approach to the relation between history and di-
dactics. In fact, there is a forerunner for the present approaches to introduce 
semiotics into mathematics education: It is Karl Menger (1902-1985), the im-
portant philosopher of the Vienna circle, logician, mathematician and econo-
mist. He had to flee the Nazis and emigrated to the United States. Since the late 
1940s, Menger has published several papers and even a seminal book, which 
give excellent descriptions and analyses of inconsistencies in mathematics and 
notational ambiguities, most of them remain even today to be solved and pupils 
and students are left with the obstacles to get through the misleading paths.

His publications are not only well instructed in history, in semiotics, 
and in teaching, but they are written with such a deep humour that it is a real 
pleasure to read his profound analyses.

It is highly remarkable that a review of his seminal book refounding 
the teaching of the calculus emphasizes the same points as Destutt de Tracy:

“It becomes clear after reading the book that the invention of the new nota-
tion was an essential step toward the clarification of the basic ideas and their 
applications and is thus amply justified” (Review of: Karl Menger, Calculus, 
A Modern Approach, by H. E. Bray, in: American Mathematical Monthly, vol. 61, Sept. 
1954, 483-492, on p. 483).

A key starting point for Menger are notational ambiguities in mathematics, 
which use to be ever again transmitted to the next generation as time hon-
oured and therefore not questionable. A particularly striking example are the 
twelve different meanings of the seemingly so innocent letters x and y. In fact, 
the meanings range from numerical variables, over indicators for the identity 
function, indeterminates, specific fluents, function variables, to “dummies” 
(Menger 1956a).

Menger has sharply criticized the negation of notational and concep-
tual problems arising from the weight of unchallenged history. Summarizing 
the mainstream thinking of mathematicians at least of his time, he lets them say:

“Since for the past two hundred years and to this day, all mathematicians and 
scientists have achieved complete mastery of mathematics with its time hon-
ored procedures and in its traditional presentation, and since furthermore, 
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the difficulties here discussed do not disturb any accomplished mathemati-
cian in the least, youngsters who cannot cope with them must be mathemati-
cally utterly incompetent. To revise procedures or symbols for their sake is 
not worth anyone’s while since their study of mathematics cannot, under any 
circumstances, be profitable either to those mathematical morons themselves 
or to anyone else” (Menger 1956b, 584).

In a perfectly satirical manner, Menger has denounced the sticking to historical 
traditions in his series of papers on Gulliver, in particular in the first one enti-
tled: “Gulliver in the land without one, two, three”.

His starting point is the juxtaposition – historically to be often found – 
of the first numbers being treated as quantities (or “named numbers”) and the 
greater ones as numbers. And he ridicules a didactical retrogression by which 
all numbers are treated as quantities or named numbers. Here, the mainstream 
mathematicians defending this anti-didactic transformation are called the 
IMMORTALS, abbreviation of: The Island’s Major Mathematicians of Real Talent 
and Learning (Menger 1959).

This invented example of retrogression, of a use of history where one 
needs to get liberated from historical dust, serves as an introduction for what 
is a key element in Menger’s theories: the establishment of an algebra of func-
tions. For this, he first criticizes a notational ambiguity, which causes many 
learning problems: the often missing distinction between a function and a 
value of this function - both being usually designated by f(x) (or cumbersome 
formulations like: “the function which is expressed by f(x)”). Rather, one has 
to designate a function by its name; one is thus able to distinguish the function 
from its value at a certain point.

More generally, however, his conclusion is that one does not need vari-
ables in calculus, that they constitute but dummies, and that one has rather to 
reflect on naming functions to be able to operate with functions. In this sense, 
he calls variables “dummies” and shows that these are elements of historical 
tradition, from which teaching has to be liberated.

On the other hand, he develops his algebra of functions by the in-
troduction of a notational innovation: the basic element of this algebra is the 
identity, the neutral element. He calls it the function I, namely:

À�

I : xA x, I2 : xA x 2
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And this otherwise neglected neutral element enables him to introduce an op-
erational calculus with functions. Therefore, this new approach of semiotics 
implies a double role of history of mathematics for teaching: on the one hand, 
it reveals outdated mathematical practices, which need to be deleted to improve 
the teaching-learning process. On the other hand, it reveals forgotten or mar-
ginalized conceptions which had been established in some mathematical com-
munity in an earlier period and which need to be valourised and updated for 
present day teaching purposes. In fact, Menger’s operational calculus is a direct 
continuation of the Derivation Calculus established by Arbogast in the wake of 
the French Revolution – exactly as a realization of the méthode analytique of the 
Enlightenment, which should contribute to disseminating the scientific knowl-
edge. It is not by accident that in these analytic approaches the role of symbols 
is decisive for clarifying the meaning of the concepts and for enhancing their 
teaching and learning.

In fact, Menger’s algebra of functions confirms again the systematic re-
lation between processes of algebraization and reflection on the use of symbols. 
Semiotics promises fruitful impacts on the use of history for teaching!

Menger’s ideas have had some impact and influence in the great 
Curriculum-Projects in the USA, during the 1960s, in particular within CSMP, 
but with their end they remain rather neglected. His legacy constitutes treas-
ures, which still remain to be excavated and brought to light and to use!

CONCLUSION

Although conceptually attractive, approaches to use history of mathematics for 
mathematics teaching show theoretical shortcomings as well as problematics in 
the experimental designs. As a major reason, continuistic visions of mathemati-
cal development proved to be underlying so that history of mathematics was 
not able to exert a productive function. The most promising conception, the 
indirect genetic method of Toeplitz, suffered in his realization from his peculiar 
teleological view of development: all the essence being already contained as a 
germ in Greek mathematics. But the kernel of his vision, to unravel the concep-
tual depth and meaning from turning points in the history, provides a precious 
approach at least for teacher training. Yet, historiography of mathematics still 
has to broaden its research areas to comply with such a vision. Semiotics pro-
vides promising contributions.
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