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THE PRACTICAL USE OF THE HISTORY OF MATHEMATICS AND ITS USEFULNESS 

IN TEACHING AND LEARNING MATHEMATICS AT lllGH SCHOOL: 

THE DEVELOPMENT OF MATERIALS IN TEAClllNG CALCULUS t 

Kumiko Tsukahara 
Tokyo Metropolitan Mita High School 

1-4-46, Mita Minato-ku,Tokyo, JAPAN, 108-0073 

1. The purpose and the background of the research 
The purpose of this study is to discuss how the history of mathematics is practically used in 

teaching and learning mathematics at high school, and how effectively the practical use of 
history of mathematics works on the consciousness of high school students when learning 
mathematics. 

Although a large number of studies have been made on the role of the history of 
mathematics in mathematics education, there are only a few reports on the practical use of the 
history of mathematics in class and on teaching materials suggesting fruitful reactions from 
students. The research which inspected how much effects introducing the history of 
mathematics into the class produced on students has been superficial. On school practice, 
Furinghetti says "· · · a lot of experience has been accumulated about the uses of history in 
mathematics teaching.", and points out that "each experience is a 'microworld', that is to say 
the various experiences are quite scattered and there is no organized network of classes ·and 
teachers carrying out analogous experiments. This does not allow us to compare the different 
results and to establish some trends in the research." [ 1] There seems to be no disagreement 
on this point. I hope my empirical study will be intensively placed as a part of accumulated 
studies on using the history of mathematics in teaching and learning mathematics, especially at 
high school, after this. 

2. The role of the history of mathematics in teaching and learning mathematics and 
objectives of using the history in class 

Recently, in teaching and learning mathematics, a special emphasis tends to be put on 
memorizing mathematical knowledge and training skills. But, more emphasis should be put on 
cultivating the intelligence of students and drawing out their ability of problem solving. In 
order to practice this educational philosophy, the introduction of history of mathematics into 
everyday mathematics learning seems to work very successfully. 



Many articles have been devoted to the study on the role and benefits of the history of 
mathematics in teaching and learning mathematics. The following are a few notable examples. 
Fauvel refers to pfteen reasons that have been advanced for using history in mathematics 
education. "· · · Gives mathematics a human face. · · · Showing pupils how concepts have 
developed helps their understanding. · · · Change pupils' perceptions of mathematics. · · ·" [2] 
Grugnetti states that "a historical approach allows the student to think of mathematics as a 
continuous effort of reflection and of improvement by man, rather than as a 'building' 
composed of irrefutable and unchangeable truths." [3] Nagaoka acutely points out the 
importance of the history in a mathematical class because the history plays the most important 
role to teach students"··· what understanding is and what solving problem is···." [4] 

On these grounds and my educational philosophy, I would like to emphasize three concrete 
objectives of using the history of mathematics in class : 
(1) To help students recognize the importance of the mathematical view and mathematical 
thinking as seen in the process of mathematical development 
(2) To help students understand the structure of mathematical concepts and theories from the 
historical point of view 

, 
(3) To arouse students' academic interest - not passing one but lasting, and to lead them to have 
self-confidence in their mathematical thinking 

My next concern is to consider how to introduce the history of mathematics into everyday 
mathematics learning to make full use of the role of history and to achieve these three 
objectives. 

3. Developing teaching materials as a method of using the history of mathematics in class 
There seems to be a variety of methods of how to implement the history of mathematics in 

class. I will try to give some typical examples stated in several articles. Kazirn shows some 
methods of using the history in teaching mathematics. 11 

• • • The teacher encourages the students 
to apply both the ancient and modern methods, to understand the basic ideas, and to know the 
value of modern discoveries. The teacher gives the students an historical introduction before 
beginning a course in mathematics. · · · The teacher asks students to make a report on some 
topics in the history of mathematics.···" [5] L.Reimer and W.Reimer offer the way of 
retracing mathematicians' steps as one of the practical suggestions on how to connect 
mathematics with its history. 11 

• • • leading students to make discoveries and solve problems in 
the footsteps of the great mathematicians is perhaps the most natural and productive way of 
integrating historical elements into the mathematics classroom. Activities may be used that 
either replicate or parallel the problems faced by influential mathematicians from the past.··· 11 



[6] I agree to these methods on the point that historical materials should be effectively used in 
class. 

The problem wJpch we must consider next is which historical materials to choose and how to 
arrange them for practical use in class. As for the way, F-K Siu and M-K Siu point out that 
"not only is it impossible to teach mathematics strictly in the way it evolves, ···, but to do so 
means bad pedagogy as well.··· it is more natural to teach a subject according to how it 

evolves, as difficulties encountered by our ancestors are usually those encountered by 
beginners." [7] The important point to note is to take the pedagogical and practical value of 
teaching materials into consideration. Therefore, the history of mathematics should be properly 

, incorporated in the teaching plan. Materials effective in teaching students should be carefully 
selected. Here, the focus is put on the development of teaching materials as the method of 
using the history of mathematics practically. 

4. The principles to develop teaching materials including the history of mathematics 
For developing teaching materials from the historical point of view, the following five 

principles are essential. 
(1) To reproduce the process of solving problems as seen in the history all through one unit, 
after specifying the purpose of teaching to be achieved by using the teaching materials based 
on historical philosophy 
(2) To extract the essence effective in problem solving from the historical data : to clarify 
problems to be solved ; to emphasize the importance of the ideas and the methods used in the 
process of forming mathematical concepts, theories, and methodology ; to pose new problems 
which will arise from problem solving 
(3) To help students recognize the relationships among fundamental concepts, principles, laws, 
and mathematical thinking, and also to present the whole structure of these relationships from 
the historical point of view 
(4)To consider the thinking process of students and the relevance to what they have already 
learned 
(5) To consider the attitude of each student towards mathematics and the students' levels of 
mathematical knowledge and skill, that is, to provide them with various scenes to meet their 
own needs : the scenes of learning the requisite historical lmowledge, those of understanding 
the mathematical concepts, those of evaluating the importance of the ideas diffused in the 
history of mathematics, and those of mastering necessary mathematical skills 

In addition to developing teaching materials, the teaching method is indispensable to 
making the full use of teaching materials based on the historical point of view. It is particularly 



importan.t to assess students' various ideas, which may not necessariiy correct, in order to help 
them have self-confidence in their mathematical thinking, because the history of mathematics is 
the process in whifh people's wisdom was gradually put together by trials and errors. 

5. The development of teaching materials in teaching calculus 
I attempt to illustrate how to use the history of mathematics in teaching calculus in this 

chapter. 
I made up a course with a new design in teaching calculus ; to add some elements extracted 

from the history of mathematics to what is customarily taught in the unit of calculus at high 
school. I developed the teaching materials based on the aforementioned five principles. I also 
taught calculus according to this teaching plan and these teaching materials. 

In order to understand calculus fully, students should first learn the historical development of 
calculus based on these five original elements : the mathematical descriptions of scientific 
phenomena, the importance of the system of notation, the appearance of a function concept, the 
emphasis on the concept of infinity, and the appearance of the concept of a limit. I attempted to 
set up teaching materials including these elements of the history of calculus in the unit of 
calculus for high school students. 

This course was designed for "Mathematics II : Calculus", and the actual lessons were given 
to one 11th grade class for 32 school hours. 

My main purpose was two-fold. 
* to help students understand the relationships among fundamental concepts, mathematical 
thinking, laws of calculation, and the whole structure of them from the historical point of view. 
* to help students recognize the importance of the ideas and the methods for making a step in 
the new domains of mathematics through the pioneers' works. 

I divided the contents of teaching into four subjects: 
CD Finding instantaneous velocities through learning the works of Galileo and Newton 
@ Finding tangent lines through learning the work of Fermat 
® Finding the maximum and minimum values of functions through learning the works of 

Kepler and Fermat 
® Finding the area of the figure bordered by curves through learning the works of 

Archimedes, Cavalieri and Fermat 
Table 1 shows the curriculum for the unit of "Mathematics II : Calculus" in which the 

history of mathematics is incorporated. Teaching materials were developed on the basis of this 
curriculum. Items where the history of mathematics is emphasized are marked with an asterisk. 



Table 1. Mathematics ll : Calculus Curriculum 

Differentiation ( 19 school hours) 
Differential Cotfficients and Derivatives 
Instantaneous 1st * Uniformly accelerated motion of a freely falling body postulated by Galileo 
Velocity Velocity and distance 

2nd * Problem of instantaneous velocity posed by Galileo 
Calculation of average velocity 

3rd * The idea of a limit and instantaneous velocity by Newton 
Limits of functions 

4th The relationship between average velocity, average rate of change, 
instantaneous velocity, and differential coefficients Exercises 

Tangent Lines 5th * Problems about tangent lines posed of the basis of a historical viewpoint 
6th * Fermat's method of constructing tangent lines and differential coefficients 
7th Slope of tangent lines and differential coefficients 

Eouations of tanRent lines Exercises 
Derivatives 8th Definition of a derivative and calculation of a derivative 

9th Formula for finding the derivatives and the system of notation by Leibniz 
Differentiating functions 

10th Calculation of differential coefficients by using derivatives Exercises 
Annlications of Derivatives 
Maximum 1st Increasing and decreasing of functions, and extreme values 
and 2nd Increase-and-decrease tables of functions and graphs Exercises 
Minimum 3rd * Fermat's method of finding the extremes 
Values 4th Exercises on increase-and-decrease tables of functions and graphs 

5th Maximum and minimum values Exercises 
6th * The problem dealing with the capacity of wine barrels formulated by Kepler 

Applications 7th Application of differentiation to equations and inequalities 
(the number of solutions to the equation f (x) =O) 

8th Application of differentiation to equations and inequalities 
(proof of enequalities) 

9th Chaoter exercises on differentiation 
Inte~ration (13 school hours) 

Inte~rals 
Integrals 1st * Posing area measurement problems on the basis of a historical viewpoint 
and Area (the method of exhaustion) 

2nd * The method of solving area measurement problems 
using Cavalieri's Theorem 

3rd * Cavalieri's method of indivisibles 
4th * Calculation of S .b x· dx by Wallis 
5th * Calculation of J .b x" dx using the infinitesimal method by Fermat 
6th Definition of a definite integral as a limit of the sum of progression * Introduction by Newton of antidifferentiation as a means of calculation 
7th Primitives, Indefinite integrals, Finding indefinite integrals 
8th The fundamental theorem of calculus I by Newton 
9th The fundamental theorem of calculus II, Integrals and area 

Finding definite integrals and properties of definite integrals 
10th-12th Finding the area 
13th I Chapter exercises on integration 



Figure 1 illustrates the relationships among the four subjects : instantaneous velocities, 
tangent lines, the maximum and minimum values of functions and the area of the figure 
bordered by curves, and also shows the whole structure of them from the historical point of . t . 
view. This Figure shows that these four subjects are learned through the problem posing, the 
process of problem solving and the creation of solutions which are based on the idea of a limit 
and that of the system of notation. It also shows the connection between differentiation and 
integration, and consequently the fundamental theorem of calculus. 

Posing 
Problems 

Process of 
Problem 

What is the 
definition of 
instantaneous 
veloci ? 

Solving Introduction of 
ultimate ratio 

Solution Instantaneous 
velocity= 
Differential 
coefficient 
f' a 

Idea of a Limit 
S stem of Notation 

Figure 1. Organization of Lessons 

Can the condition of 
a double root be used 
for general curves? 

Method of constructing 
tangent lines 
Two points approach 
infinite 

Slope of tangent line = 
Differential coefficient 
f' a 

What is the 
maximum 
capacity of 
wine barrels? 

Method of finding 
the extremes 
Movement-view 
A local view 

Determine increase 
and decrease of 
function using the 
sign of the 
derivatives 

Is the method 
of exhaustions 
almighty? 

Indivisibles? 
Argorithm-izing 
of area calculation 

Definite integral = 
Limit of the sum of 

Differentiation The Fundamental Theorem ~~i..::.===-=-=--' 
of Calculus 

Figure 2 outlines one example of teaching materials from the 1st school hour to the 10th 
school hour on differential coefficients and derivatives in Table 1 : Finding the instantaneous 
velocity. This material is developed in order to help students understand the fundamental 
concept of differentials from the historical point of view. 

Figure 3 outlines one example of teaching materials from the 1st school hour to the 6th 
school hour on integration in Table 1 : Finding the area of the figure bordered by curves. This 
material is developed in order to help students recognize the value of mathematical view and 
mathematical thinking as seen in the development of calculus rather than that of the 
mathematical knowledge and skill. 



Figure 2. Example of Teaching Materials 

I Four Subiects in the Learnin~ of Calculus I 
I I I I I 

1.-I-n-st-an-tan_e_o_us_V_e...,.lo_c....,.itv--,I I Tangent Lines ! I Maximum and Minimum Values I I Area I 
II 

Problem Learnin~ Activities 
Uniformly accelerated motion of a freely falling body and instantaneous 
velocity as postulated by Galileo 
CD Let's investigate the relationship CD A work sheet is used. 

Velocity is obtained. v = 9.8 t 
Distance is obtained. S = 4.9 t2 

® The result obtained by the use 

Viewpoint of practical 
use of the history of 
mathematics 

W® 
Galileo investigated the 
principle and the axiom 
which can explain 

between time and velocity, and 
the relationship between time and 
distance derived from the results 
of the experiment on the motion 
of a freely falling body conducted of~v~~ E-- motion deductively. 
by Galileo. 

® Let's guess the relationship 
between velocity and distance. t ! s=4.9t t D 

v= 9.8t 
@[Problem posed by Galileo] @ The students become conscious 

Let's consider the following using of the problem of instantaneous 
the diagram obtained from the velocity. 
physical viewpoint. I .The summation of lines (each 

I .Does the summation of lines line expresses an instantaneous 
(each line expresses an velocity) can't express a distance 
instantaneous velocity) which is of a limited size. 
express the distance, which is It is impossible to express an 
limited as to size? instantaneous velocity with a line 

2.How should an instantaneous segment. 
velocity be defined 2. Can an instantaneous velocity be 
mathematically? expressed with an algebraic 

© Let's solve problem 1 later expression, because instantaneous 
by using integration. velocity = distance O / time O ? 

_ Now let's_solve problem 2. -------~-------------------- ---------- _ 
The idea of a limit and instantaneous velocity and differential 
coefficient developed by Newton 
@ As a means for defining an 

instantaneous velocity 
mathematically, let's use what we 
have already learned. 
Let's find an average velocity. 

@ The students find the averafe 
velocity to distance S = 4.9 t . 
The average velocity from t= 2 
tot= 2.5, from t= 2 tot= 2.1;··, 
The average velocity from t= 2 to 
t= 2+h is 

Scientific phenomena 
are described by using 
mathematics. 

( Ouantitative) 

@ 1.lt is necessary to 
check the summation 
of lines expressing an 
area of limited size. 
- Solution by definite 
integrals and indivisibles 

E-- developed by Cavalieri. 
2.It is necessary to 
define an instantaneous 
velocity mathematically. 
- The solution centers 
on the work of Newton. 

@ Newton considered 
E-- 11 average velocity = 

distance / time II to be 
a ratio . 

® [The idea of the limit developed 
by Newton] If elapsed time is 
shortened rapidly, what does it 
become? h- 0 

{4.9 (2+h) 2- 4.9 X 22
} / h (§) Newton considered 

(J) Instantaneous velocity = the 
limit of an average rate of change 
=the differential coefficient f ' (a) 
of a function y = f (x) at x = a 
That is, 
Jim {f (a+h) - f (a)}/ h = f' (a) 
h - 0 

(7) 

® An average velocity approaches IE-- the limit of D. S I D. h 
an instantaneous velocity. (h - 0) to be an 
When h - 0, instantaneous velocitv. 
{4.9 X (2+h) 2 

- 4.9 X 22
} / h 

- 19.6 
(J) The students understand the 
meaning of the differential 
coefficient and practice calculation. 

Physical ---~:::.Mathematical generalization 

!Galileo 
Newton 

Average velocity -- Average rate of change 
:.i, limit ,!, limit 

Instantaneous velocitv -- Differential coefficient 



Figure 3. Example of Teaching Materials 

.-------1Four Sub·ects in the Learnin of Calculus 

Instantaneous Velocitv Tan ent Lines Maximum and Minimum Values 
t 

Problem Learnin Activities 
Posing the problem ; Find the area of thefgure bordered by curves. 
(the 1st hour of the lessons of Integration 

CD Let's consider how we CD * The circle is divided into many 
can find the area of the numbers of triangles as shown in the 
circle of radius r. figure. The area of the circle is r X 

® What problems do you 
think there are in finding 
the area of a circle? 

@ ( i ) Let's try to find 
the area of the figure 
bordered by the parabola 
y= x2 and the line y=l. 

( ii ) Let's try to find 
the area of the figure 
bordered by the parabola 
y= x2, the x-axis, and 
the line x= 1. 

y 

0 1 :r 

one-half of the circumference. !Nvt ............ N#i\ 
...... ; 

'• ...•.•...•• ••. J.r , •. . • , .••.•.... · * The area of the circle is approximated 
one of the regular polygon inscribed in the 

circle as shown o·· 
® * It is difficult to explain wh:y the 
formula of the area of a circle is 1t r . * Is it possible to think a circular arc as a 
segment as Kepler did? * It is impossible to find the exact value 
of the area even if the number of sides of 
the polygon is increasing. The area is only 
an approximate sum. 

@ The students divided the figure into 
several triangles, rectangles, or trapezoids. 
( i ) 

( ii ) 

y Y= .t 1 

X 

© Two problems to be solved after the 2nd school hour of the lesson 
( i ) It is a good idea that you divide the figure bordered by curves into 
several figures whose area are already known and that you approximate 
the area of the figure bordered by curves to the sum of the areas of 
several figures . But how can you find the exact value of the area, not 
the approximate one? -----The problem is a matter of "limit" . 
( ii ) These methods are ad hoc ones. The method of exhaustion by 
Archimedes is a rigorous model of finding area, but not a practical one. 
Are there any good formulas to find the area easily?----- The problem is 
a matter of "formulation" . 

Viewpoint of practical 
use of the history of 
mathematics 

1 How to find the 
area of the circle had 
been investigated since 
the ancient. These two 
methods are typical ones 
as seen in the history . 
Kepler himself used the 
Irst one. 

2 The basic idea used 
in these methods is that 
the area of a circle is 
approximated by the 
sum of areas of several 
figures bordered by 
lines. But, in this case, 
times of division and 
numbers of sides of the 
polygon are essential 
problems. There exists 
the problem of "infinite" 
that had been posed 
since the ancient Greek. . 

3 Archimedes 
originated "the method 
of exhaustion". 
He found that the area 
of the region ABC in 
the figure below is 
4/3 b. ABC by this 
method. "The method of 
exhaustion" was a 
rigorous model of 
finding area from the 
ancient Greek to the 
17th century . 



6. Teaching Practice and subsequent evaluation 
In teaching, I reproduced the process of solving problems as seen in the history, and taught 

calculus from the J:iistorical point of view, according to the teaching plan outlined in Table 1 
and the developed teaching materials to one class in the 11th grade from November 1997 to 
February 1998. 

Having finished the lessons, I planned a survey for evaluating the effect of my new course. I 
asked the students to write their comments on the lessons. The comments show the students 
came to understand better about what is the real meaning of mathematical concepts. The 
students also got interested in the ideas and the methods of making a step in the new domains 
of mathematics. I also asked the students to answer the questionnaire on their consciousness of 
learning calculus and also mathematics. Here, I took the object group of students given the 
lessons including the history of mathematics ( Group A) versus the control group of those given 
the customary lessons of calculus (Group B). The result of questionnaire is as follows. 

(1) The students' consciousness of learning calculus 
Both Group A and Group B were given self-evaluation questionnaires to examine the 

effectiveness of the history of mathematics curriculum. In Evaluation 1, the students were asked 
to assess their interest in learning calculus, and their sentiments on the importance of various 
mathematical thinking in order to derive mathematical laws and formulas. The questions m 
Evaluation 2 pertain to students' confidence in their mathematical knowledge and skill in 
learning calculus. 

The students were asked to answer a three-point scale for Question A and a five- point scale 
for Question B and Question C in Evaluation 1. They were also asked to answer a five-point 
scale for Evaluation 2. The highest number on each scale represented a positive response, and 
the lowest number represented a negative response. The average response to each question by 
Group A and Group B was calculated and the significance of the difference between the 
average responses of the two groups was also calculated through the use of a t test. 

Table 2 shows the results of Evaluation 1. The average response of Group A was higher than 
that of Group B to every question. A significant difference was found between the average 
responses of Group A and Group B to every question. To give one example, the significant 
difference was 1 % between the average responses of the two groups to Question C about the 
recognition of the importance of mathematical view and mathematical thinking in the learning 
of integration. 

Table 3 shows the results of Evaluation 2. The average responses of Group A were higher 
than those of Group B to every question except for Statement 2. But there was no significant 



Table 2. Self-Evaluation for Caiculus Unit Evaluation 1 
Students' sentimental consciousness of mathematics learning 

Rating Scale of Question A 
1 : Disagree t 

Rating Scale of Question Band C 
1 : Disagree 
2 : Slightly disagree 2 : Neither agree nor disagree 

3 : Agree 3 :· Neither agree nor disagree 
4 : Not quite agree 
5 : Agree 

The content of lesson 
Question 

CD Introduction:Posing four problems including 
velocity, tangent lines, 

__ maximum and minimum value~_and_area __ _ 
A:Did you have anything you discovered in the 
__ lesson? _________________________________ _ 
B:Was the lesson interesting to you? 

® Average rate of change, velocity, limits, 
__ tangent line~- and_ differential coefficients __ _ 
A:Did you have anything you discovered in the 
__ lesson? _________________________________ _ 
B:Was the lesson interesting to you? 

C:Were you aware of the importance of 
mathematical view and mathematical thinking 
in the lesson? 

@ Derivatives, differentiating functions, and 
__ symbolization ___________________________ _ 
A:Did you have anything you discovered in the 
__ lesson? _____ ____________________________ _ 
B:Was the lesson interesting to you? 

® Increasing and decreasing functions, the 
extremes, and maximum and minimum 
values -------------------------------------------A:Did you have anything you discovered in the 

__ lesson? _________________________________ _ 
B: Was the lesson interesting to you? 

C:Were you aware of the importance of 
mathematical view and mathematical thinking 
in the lesson? 

@ Inte.g_ratio11_Area ________________________ _ 
A:Did you have anything you discovered in the 

lesson? -------------------------------------------B:Was the lesson interesting to you? 

C:Were you aware of the importance of 
mathematical view and mathematical thinking 
in the lesson? 

Comparison 

Average mark 
Standard deviation -----------------Average mark 
Standard deviation 

Average mark 
Standard deviation 

Average mark 
Standard deviation -----------------Average mark 
Standard deviation 

Average mark 
Standard deviation 

Average mark 
Standard deviation 

Average mark 
Standard deviation 

Average mark 
Standard deviation 

Average mark 
Standard deviation 

Average mark 
Standard deviation 

Average mark 
Standard deviation 

Average mark 
Standard deviation 

The history of 
mathematics 
is introduced 
(Grouo A) 
35students 

2.114 
---- 0.785 ------

3.343 
l.040 

39students 

2.436 
---- 0.744 ------

3.077 
---- 0.944 ------

3.103 
0.900 

34students 

2.533 
0.700 ----------------2.200 
0.821 

40students 

2.425 
---- 0.703 ______ _ 

3.400 
---- 0.860 ------

3.175 
1.022 

___ 4lstudents __ _ 
2.366 
0.789 ----------------3.317 

---- 1.023 ______ _ 
3.561 
0.964 

February, '98 Evaluation 

The history of 
mathematics 

is not introduced 
(Grouo B) 
37students 

Significant 
difference 

(t test) 

----------------~----------1.838 Significant 
____ 9;1~~------- tendency __ 

2.549 1% 
0.907 

38students 

2.088 Significant 
_ ___ 0.742 _______ tendency __ 

2.605 5% 
0.961 ---------------- ----------2.471 1% 
0.696 

35students 

4.000 ,.. Significant 
____ 9;n9 _______ tendency --

3.571 5% 
0.871 

4lstudents 

1.915 
---- 0.697 ______ _ 

2.585 
---- 0.962 _____ _ _ 

2.537 
0.858 

40students 

1% 

1% 

1% 

---------------- ----------1.925 5% 
0.818 ----------- ----- ----------2.900 Significant 

____ 1.136 _______ tendency __ 
2.756 1% 
1.121 



Table 3. Self-Evaluation for Calculus Unit Evaluation 2 
Confidence in mathematical knowledge and skill 

Rating Scale t 
1 : No confidence 
2 : Very little confidence 
3 : Shaky confidence 
4 : Some confidence 
5 : Full of confidence 

Question 

CD Confidence in my ability to explain 
the meaning of average rate of change 

® Confidence in my ability to explain 
the meaning of instantaneous velocity 

@ Confidence in my ability to explain 
the meaning of differential coefficients 

© Confidence in my ability to explain 
the meaning of extremes of functions 

@ Confidence in my ability to make 
increase-and-decrease into tables of functions 

@ Confidence in my ability to draw 
graphs of cubic functions 

(J) Confidence in my ability to find 
maximum and minimum values of functions 

@ Confiden~e in my ability to explain 
the reason why integration is the inverse of 
differentiation 

® Confidence in my ability to explain why 
the area S = J • bf (x) dx = F (b) - F (a) 

The history of 
Comparison mathematics 

is introduced 
(Group A) 

Average mark 3.026 
Standard deviation 1.098 

Average mark 2.744 
Standard deviation 1.055 

Average mark 2.795 
Standard deviation 1.159 

Average mark 2.889 
Standard deviation 1.100 

Average mark 4.000 
Standard deviation 0.949 

Average mark 3.800 
Standard deviation 0.872 

Average mark 3.800 
Standard deviation 1.100 

Average mark 3.342 
Standard deviation 0.953 

Average mark 3.195 
Standard deviation 0.862 

February, '98 Evaluation 

The history of Significant 
mathematics difference 

is not introduced (t test ) 
(Group B) 

2.868 no 
1.104 df=75 
2.816 no 
0.942 df=75 
2.737 no 
1.068 df=75 
2.743 no 
0.873 df=69 
3.610 significant 
0.985 tendency 

df=79 
3.512 no 
1.015 df=79 
3.439 no 
1.013 df=79 
3.000 no 
1.104 df=80 

3.122 no 
1.173 df=80 



difference between the average responses of Group A and Group B to any of the questions. 
Therefore, as for the students' confidence in their level of knowledge and skill, the effect of 

the practical use o~ the history of mathematics was not clearly demonstrated in this experiment. 
However, the remarkable result was obtained in the evaluation of the students' interest in 
calculus and their recognition of the importance of mathematical thinking. 

Both groups had 32 school hours to learn calculus. As the lessons presented to Group A 
included the elements of the history of mathematics adding to what is customarily taught in the 
unit of calculus, the time spent on mastering mathematical skills was necessarily reduced. 
Nevertheless, there was no difference in the levels of mathematical knowledge and skill they 
attained between the two groups. It is thought that the interest of the students in Group A, and 
their motivation for and concentration to the learning of calculus engendered by the learning of 
the history compensated for their loss of time and led the students to learn knowledge and skill. 
In fact, when the students had the examination on mathematical knowledge and skill, the 
average score of Group A was 64.1, while that of Group B was 64.9. Thus there was very little 
difference between the scores of the two groups. 

(2) The change of students' sentimental consciousness of mathematics learning 
I will consider how students' sentimental consciousness of mathematics learning was 

influenced by the practical use of the history of mathematics. 
Both Group A and Group B were given questionnaires before and after learning calculus to 

examine the change of students' consciousness of mathematics learning. In Prior Questionnaire 
and Posterior Questionnaire, both groups of students were asked to answer the questions about 
their sentimental consciousness of mathematics learning. Students were asked to answer a 
five-point scale. The highest number on each scale represented a positive response, and the 
lowest number represented a negative response. The average response to each question by 
Group A and Group B was calculated and the significance of the difference between the 
average responses of the two groups in each of Prior Questionnaire and Posterior Questionnaire 
was also calculated through the use of an analysis of variance. 

Table 4 shows the results of Prior Questionnaire and Posterior Questionnaire. The average 
response of Group A for every question in Posterior Questionnaire was higher than that in Prior 
Questionnaire. It can be said that a significant difference was found between the average 
response in Posterior Questionnaire and that in Prior Questionnaire for every question in Group 
A. Compared with Group B, in Prior Questionnaire no significant difference was found 
between the average responses of the two groups on any of the questions. On the other hand, in 
Posterior Questionnaire the significant difference in their average responses was 1 % or 5%. 



It can be said that the practical use of the history of ::-:2.t.~e:n~tics clearly ;a.:ised students: 

sentimental consciousness of mathematics learning : students came to feel that mathematical 
thinking is more ii,iportant than memorizing mathematical knowledge and training skill. 

Table 4. Prior Questionnaire and Posterior Questionnaire on the learning of calculus 
The change of students' sentimental consciousness of mathematics learning 

November, '97 and February, '98 Evaluation 
Rating Scale 
1 : Disagree 
2 : Slightly disagree 
3 : Neither agree nor disagree 
4 : Not quite agree 
5 : Agree 

Question Comparison 

CD Leaming mathematical Prior 
thinking is more important Posterior 
than memorizing Difference 
mathematical knowledge. Significant 

difference 
® Leaming mathematical Prior 
thinking is more important Posterior 
than memorizing the Difference 
methods of solving Significant 
problems. difference 
@ It is interesting to solve Prior 
the daily and real problems Posterior 
by using mathematics. Difference 

Significant 
difference 

@I am interested in the Prior 
lessons including the Posterior 
elements of the history of Difference 
mathematics Significant 

difference 
@I want to know how Prior 
those ideas were hit on and Posterior 
developed into the solving Difference 
methods Significant 

difference 

The history of 
mathematics 
is introduced 

(Group A 38students) 
Average Standard 

mark deviation 
3.84 0.96 
4.29 0.86 
0.45 

Significant 
tendency 

3.55 0.88 
4.05 0.94 
0.50 
5% 

2.82 1.35 
3.37 1.37 
0.55 

Significant 
tendency 

2.40 1.37 
2.95 1.41 
0.55 

Significant 
tendency 

2.84 1.25 
3.37 1.33 
0.53 

Significant 
tendency 

The history of The Significant 
mathematics difference difference 

is not introduced of average (Analysis 
(Group B 38students) mark of 
Average Standard variance) 

mark deviation 
3.79 1.00 0.05 no 
3.76 1.22 0.53 5% 
0.03 
no 

3.53 1.02 0.02 no 
3.47 1.23 0.58 5% 
0.06 
no 

2.47 1.33 0.35 no 
2.71 1.32 0.66 5% 
0.24 
no 

2.29 1.36 0.11 no 
2.13 1.38 0.82 5% 
0.16 
no 

2.55 1.16 0.29 no 
2.34 1.34 1.03 1% 
0.21 
no 



(3) A cause-effect relationship between each student's consciousness of mathematics learning 
and his score on mathematics examination 

As stated above, students' sentimental consciousness of ma1J1ematics learning was raised on 
the point that matliematical thinking is very important. In addition to this, Figure 4 shows the 
relationship between each history-group student's consciousness of mathematics learning and his 
score on mathematics examination. The horizontal axis in Figure 4 shows each student's score 
on mathematics examination before learning calculus. This score is shown in the ratio of each 
student's score to the average score of Group A (59.5point). The vertical axis shows each 
student's score on mathematics examination after learning calculus. The score is also shown in 
the ratio of each student's score to the average score of Group A ( 64 .1 point) . This axis also 
shows the average score of each student's responses to the questions about his confidence in 
mathematical knowledge and skill when learning calculus (Evaluation 2 shown in Table 3). In 
this case, this score is shown in ratio of each student's average response to that of Group A 
(3.3point) . This axis also shows the average score of each student's responses to the questions 
about his sentimental consciousness of mathematics learning (Prior Questionnaire and Posterior 
Questionnaire shown in Table 4) . 

Indicated in Figure 4, the rising Line A represents the distribution of each student's score on 
mathematics examination after learning calculus to that before learning calculus. That is, Line 
A means the positive correlation between each student's score on mathematics examination after 
learning calculus and that before learning calculus. 

The rising Line B represents the distribution of each student's response to the questions about 
his confidence in mathematical knowledge and skill in learning calculus (Evaluation 2 which 
was shown in Table 3). That is, Line B shows that the positive correlation was found between 
each student's response to the questions about his confidence in mathematical knowledge and 
skill, and mathematics examination. 

The average score of each student's responses to the questions about sentimental side in 
Table 4 was also plotted. Line C shows the average score before learning calculus. The 
distribution of the scores is in the range of Ellipse C. Line D shows the average score after 
learning calculus. The distribution of the scores is in the range of Ellipse D. Line D positions 
above Line C. This means that students' sentimental consciousness of mathematics learning was 
raised after learning calculus. This was already stated in Table 4. Moreover, Line D is parallel 
to the horizontal axis. This means that the raise of students' sentimental consciousness has 
nothing to do with their score on mathematics examination. 

Therefore, it can be said that regardless of each student's score on mathematics examination, 
his sentimental consciousness of mathematics learning was raised by learning mathematics 
through the history. 
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7. Conclusion 
The purpose of this paper was to consider the practical use of the history of mathematics and 

to show its effect ip. the teaching and learning of mathematics. 
First I considered the role of the history of mathematics and propounded my view of 

objectives of using the history in class. In order to cultivate the intelligence of students and to 
draw out their ability of problem solving, the introduction of history of mathematics into 
everyday mathematics learning seems to work very successfully. 

Secondly I argued the importance of developing teaching materials through one unit by using 
the history of mathematics in class and propounded the five principles in the development. 

Thirdly I made up a newly designed course in teaching calculus by adding some elements 
extracted from the history of mathematics to what is customarily taught in the unit of calculus 
at high school. 

Fourthly I reproduced the process of solving problems as seen in the history, and taught 
calculus from the historical point of view. 

Finally I made a survey of the evaluation of my new course and examined the effect of the 
practical use of the history. The effect of the practical use of the history of mathematics was 
not clearly demonstrated in respect to the students' confidence in their level of knowledge and 
skill in this experiment. However, the remarkable result was obtained in the evaluation of 
students' sentimental consciousness of mathematics learning. Students realized far more deeply 
that mathematical view and mathematical thinking are more important than memorizing 
mathematical knowledge and training skill in mathematics learning. Moreover, regardless of 
each student's score on mathematics examination, his sentimental consciousness of mathematics 
learning was raised by learning mathematics through the history. 
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ABSTRACT 
 

The paper outlines the background to the development of mathematics in Africa South 
of the Sahara and the constraints on the continent during  slave trade and colonialism.  
Then the problems and the task ahead in mathematical developments are discussed.  
While the necessity for the countries in the region to give priority to mathematics 
development and cope with current technology in mathematical developments are 
emphasized, the cooperation between African and developed countries is stressed. 
The success to bridge the gap in technological developments between developing and 
developed countries, can only be achieved if there is a will from developed nations to 
act. 
 

1.1       INTRODUCTION 

The significance of mathematics in development can be said to have been realized 
since  Newton’s 1  works were recognised to be important in the advance of 
knowledge.  Since then, various areas of mathematics have been developed and today, 
applications are found in different fields where mathematics is applied in a variety of 
ways.  The present advances in science and technology eg applications in the 
computer technology have been possible because of the advances and achievements in 
mathematics. 

In developed societies, the advances in mathematics (centuries ago) were quite 
significant to the economic development in these societies.  At that time, European 
scholars applied much of the mathematical knowledge from different societies eg the 
ancient Egyptian and Greek mathematics to make further advances in knowledge 
which were quite significant in the advance of science and technology.  Advances in 
mathematics also resulted into big economic commercial centres where different 
numeration systems were used.  Some commercial centres were also available in 
some parts of North Africa.  In African countries, mathematics was used in various 
ways e.g. trading, games, calendars, record keeping etc, where different numeration 
systems were also used. However, no much documentation on mathematical 
developments was done in these countries as compared for example to North African  
countries. This article is limited to African countries South of the Sahara. 
 

1.2 Mathematical Developments and Constraints 
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1.2.1 Mathematical developments on the continent 

Mathematical developments among nations of the world are related to earlier 
mathematical techniques developed in different societies centuries ago.  The 
development of a certain technique depended on its application in the daily life 
situations of a particular society.  In Africa where there are different tribes and 
cultures, there were also various mathematical developments on the continent.  A 
survey of literature shows that the mathematics applied in African countries, which 
was translated by mathematicians outside Africa into theorems or principles, used 
mathematical ideas and principles still applicable todate (Mann, 1887; Culin, 1894; 
Conant, 1896; Dundas, 1926; Raum, 1938; Hall, 1953; Gulliver, 1958; Trowell, 1960; 
Atkins, 1961; Fuja, 1962; Torrey, 1963; Mathews, 1964; Gay & Cole 1967; Ukwu, 
1967; Prussin, 1969; Williamson, 1970, Crowe, 1971, Williams, 1971; Zaslavsky, 
1973). 

In the numeration system, for example, the names of numbers were connected with 
objects being counted eg herd, flock, etc.  Also “gesture-counting “ was commonly 
used for example at market places where people speaking different languages 
gathered to exchange goods.  At the markets, the trade exchange involved things like 
beads, shells, nuts etc. and these wee arranged in sets which wee given particular 
numbers which were considered to be favourable or unfavourable to certain situations.  
The geometrical forms of African arts and crafts eg baskets, mats, pots, houses, 
fishtraps, etc often demonstrated the optimal solution to problems of construction 
(Gerdes, 1986; Millroy, 1992).  The methods of construction involve applied 
theorems or principles eg the Pythagoras theorem applied in basket weaving or the 
properties of a rectangle applied in house construction.  Such construction is related to 
the accumulated experience and wisdom about physical materials used and to the 
mathematisation2  by original craftsmen who developed the techniques (Millroy 1992 
ibid) 

As trade among people grew, different methods were designed to make the process 
easy in the trading system which also resulted in the standardisation of weights and 
measures.  Numerical and geometrical patterns were also developed to signify or 
represent certain things, incidences or record keeping.  For example each pattern in 
weaving, carving or cloth dyeing had a particular meaning; and numerical patterns 
were popular in various situations. Complex numeration systems involved a variety of 
processes leading to a particular solution of the intended problem.  African scholars in 
West Africa associated astrology and numerology with arrays of  numbers which were 
called “magic squares” 

Until the 19th century, Africa had little contact with other nations of the world.  And it 
was in the late 19th century, as the continent was divided by colonizers (in what came 
to be known as the scramble for Africa) that African mathematics was known to 
European scholars. Studies by these scholars referred to African mathematics as the 
mathematics derived from primitive cultures in the “Darkest continent”.  For example, 
the complex numeration system which was developed and used by the Yoruba 3 

                                                                                                                                            
1 Sir Isaac Newton (1642-1727) was an English mathematician and philosopher 
2 Mathematisation is used here to mean construction or application using created mathematical ideas 
acquired through experience. 
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people in Nigeria was rejected by scholars like Conant (1896) that their numeric 
system was “sufficient enough to enable savages to perform unexpected feats in 
reckoning (pg. 32).  To Conants, such a system did not require any intelligence 
though in Africa there could be some “remarkable exceptions” (pg. 33).  

The above views were shared by other scholars outside Africa and there was already a 
distinction between non-logical mental ability in the so called “lower societies” and 
logical mental ability in “civilized societies”.  Bruner (1975) makes a distinction of 
the two groups by referring to “technically less mature societies”, “culturally deprived 
societies” in Africa and “more culturally privileged whites” (pg 28 & 29).  Even 
scholars in North Africa did not credit the contribution in mathematical achievements 
done by black Africans who lived in North African countries.  Some Arab historians 
and archaeologists even refused to include their countries as part of the African 
continent (Zaslavsky, 1973 pg.25). 

The development of any mathematical technique for example in the numeration 
system in the African society (like in any other society), depended upon social and 
economic demands of the society.  By the time the continent was invaded by 
foreigners there was little need for a more advanced system like that used in Europe at 
that time.  There is evidence that mathematics in Africa developed time after time, 
according to societal demands (Gerdes, 1985; Reed & Lave,1979; Stigler & Baranes, 
1988; Zaslavsky, 1973). and further advances to cope with time were hindered or 
destroyed by slave traders and colonialists.  The destruction of some important 
archaeological sites in Africa (Zaslavsky, 1973, pg 276), is one of such 
underdevelopment factors which affected mathematics development in Africa.  The 
view that mathematics would have developed to advanced levels on the continent, is 
also supported by some empirical studies that a human being (under normal 
circumstances) can generate mathematical knowledge, develop and apply innovative 
and creative methods that take into account social and logical rules of human 
activities by reflecting conditions that exist in his/her society (Reed & Lave, 1979, 
Pettito, 1979; Lave, et al 1984; Scribner, 1985; Carraher & Carraher, 1987; Lave 
1988; Saxe,1988; Millroy, 1994).   

During colonialism on the continent, development of mathmatics was not promoted 
and instead people were trained to obtain simple mathematical skills in order to 
perform simple tasks like tax collection and other clerical jobs.  In other societies 
where there were no social disruption like in Africa, mathematical knowledge was 
more developed.  The advance in mathematics developed to what came to be known 
prestigiously as the “mathematical culture” in these societies; which went hand in 
hand with social and economic development.  In Africa, where slave trade alone is 
estimated to have killed about 100 million Africans (Zaslvsky, 1973), there was no 
such opportunity for the mathematical culture to develop.  As colonizers and slave 
traders were busy in commercial dealings, there was social disorganisation in African 
societies.  As a result, there was no chance for social and economic development in 
these countries.  Instead, misery and poverty emerged. 

 

1.2.2 Lack of technology 
                                                                                                                                            
3 The Yoruba people used a unique system based on the number twenty.  The system which needs 
abstract reasoning, involves an unusual subtractive principle still effective todate. 
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At present, African and other developing countries have limited resources for 
development, research, testing and evaluation to develop new curricula or innovations 
which sometimes require modern technology. Also there is lack of expertise and 
adequate educational facilities at different levels of learning. Due to such limitations, 
even innovation of some curricula becomes difficult to implement. The modernization 
of mathematics curricula which have involved the introduction of new computer 
programs in mathematics classrooms has not well involved most developing 
countries. Computer programs such as MATHEMATICA  and DERIVE have been 
introduced to schools at different levels of schooling in developed countries since 
early 1980s. Todate, such technology has not reached most developing nations. In 
some countries where such programs have been available e.g. at universities, they are 
underutilized because of lack of manpower and resources to accommodate such 
technology. This new type of technology has changed the means and ways of 
delivering knowledge. Some studies have indicated that such technology is able to 
deliver material at a more rapid rate than the usual procedure of paper and pencil or 
chalk and board. As time goes on, more efficient programs will be in use and most 
developing countries may not catch up with the pace. 

Sharing of information, knowledge and experience from developed countries is one of 
the ways in which assistance can be provided. Ways of assistance can appropriately 
be looked into since imported curriculum can incorporate problems, situations and 
values which could not be relevant to another country (Howson 1979, Pollak 1979, 
Carss et al 1986).   
 

1.2.3 Lack of National support 

One of the major obstacles to the development of mathematics (which also includes 
other subjects) is the little priority given to the subject.  National budgets on education  
in most  developing countries count very small amounts (on the average not more than 
10%) which are not enough for developing education systems.  Without giving 
priority to mathematics and sciences, the gap in the advance of science and 
technology between developed and developing countries will get wider and wider, 
where the latter are the most disadvantaged.  In Japan for example, teachers in 
especially mathematics are paid well, have a meaningful in-service and renewal 
education, and accorded great respect (Becker, 1992).  Students at elementary level 
are also treated with special attention in nurturing their development in mathematics 
and only better and more experienced teachers handle students at early grades 
(Becker,1992). 

The Japanese curriculum at elementary schools also puts more emphasis on the 
development of mathematical thinking along with the emphasis on algebra, geometry 
and statistics.  At secondary school level, there is more integration of various areas of 
mathematics in the curriculum.  Also in the United States, the greatest portion of the 
federal budget is spent on products whose existence depend on mathematics e.g. 
material goods manufactured by precisely designed machinery, military hardware, 
space exploration, computer software, etc.  The USA has also reviewed the 
mathematics curricula and retrained mathematics teachers in the country. One of the 
major aims is to make the curricula in the USA cope with the present technology 
(Tribune, 1993). 
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1.2.4 Globalisation trend and Effects 

The globalization process has led to the emergence of high technological systems 
which has also led to the replacing of some highly skilled jobs by computers. In such 
a trend the curricula which involve lower skills are emphasized. For example, during 
the last two decades, some evidence has shown that globalisation is discouraging the 
development of high cognitive skills as most jobs within this time have been in lower-
skilled jobs (Schgurenky, 1997). This situation has produced a number of graduates 
who do not use their skills and education attained from colleges and as a result they 
even earn the same salary as a high school graduate earned in late 1970s (Samuelson, 
1992). 

The globalisation process which is supported by multi-national corporations and 
international organisatioins such as IMF and the World bank have created their own 
educational and training systems which involve costly and equipped post-secondary 
institutions (Schgurenky, 1997). With poor economies in developing countries, few 
children will get access to these institutions. At present in Sub-Saharan Africa, there 
is a fall in intake rates and enrolment ratios in primary and secondary schools (Kaino, 
2000). On the average school life expectancy is not more than 13 years of age. 

The emergence of Virtual Universities is an example of globalisation of education 
using technology. For example, a number of virtual universities in Africa provide a 
number of undergraduate programmes. The implementation of these programmes 
require mainly the students’ interaction with the computer screen rather than the 
lecturer. Through the computer network the students are able to communicate with the 
lecturer concerning learning materials and can discuss some assignments involved. 
Students can also communicate with their colleagues concerning studies. In this 
process students are able to attend the lecture “online”. This method of delivering 
knowledge could be cost-effective as one lecturer could handle more students than a 
single lecturer with no such facilities. Such a situation is one of the cases where 
computer technology is replacing some high skilled workers and such a trend is likely 
to create more tensions in the computer industry. 

 While an increased number of personal computers would be regarded as a positive 
step in development, as it could imply more literate population in technology, some 
critics argue that, it is the few who can afford computers and cable networks. With 
globalisation process promoting privatisation initiatives and cultural commodification  
in the educational sector (McCann, 1995) and gearing the curricula which are dictated 
by demands of the marketplace, accessibility to technology by most population in 
lower  levels in developing countries will be difficult.  
 

1.3   The challenges and the Task Ahead 

In many African countries, like in other many countries in the world, specific goals or 
objectives of teaching mathematics are defined.  In many societies, cultural demands 
have contributed to the design of curricular objectives and instruction for the 
mathematics taught to suit particular intentions (Chevallard, 1992, De Lange, 
1993).The mathematics curricula that are found in official syllabuses or official 
textbooks are remarkably uniform throughout the world (Nebres, 1989; Travers & 
Westbury, 1989; Millroy, 1992). The curricula which can be referred to as the 
“intended curricula”, are distinguished from the “achieved curricula” the curricula 
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that are actually learned and mastered by students.  A general survey in most 
countries in the world, reflect the same intended mathematics objectives which 
include general attribute e.g. objectivity, problem-solving skills, ability to learn, 
development of collective spirit, appreciation of mathematics as a basis of civilisation, 
development of judgement in formulating and interpreting mathematical models, 
providing a feeling for the power of mathematics, and encouragement of good 
attitudes towards mathematics. 

The above objectives which could be regarded to be embedded into a more general 
context with social, political or pedagogical issues could be interpreted as intending to 
educate students to be responsible and intelligent citizens, to be trained toward 
professionalism at work, acquire appropriate intellectual attitudes and master 
everyday life (Quadling 1979, D’Ambroiso 1979, Christiansen et al 1986, Niss 1981, 
Blum 1991).The major concern regarding any designed curriculum in any society is 
the extent to which the curriculum would be implemented to suit society needs i.e. the 
implementation in relation to the “real world4”.  A real world problem is described to 
involve an “applied problem5” where the situation and questions defining it belong to 
some segment of the real world and allow some mathematical concepts, methods and 
results to become involved. 

The growing interrelationship between mathematics and other disciplines, which 
involves a great diversity of applications, makes the design of the appropriate or 
adequate curriculum difficult in many societies.  Also to obtain the set objectives, at 
the same time preserving traditional socio-cultural and moral values seems to be one 
of the major tasks facing educators in both developing and developing countries 
(D’Amobroiso 1979, Nebres 1989, Chevellard 1992). The balance to maintain what is 
referred to as the “culture matrix” (that is culture, values and beliefs) makes it even 
harder in designing appropriate curricula for different societies. 

The modernization of the maths curricula has been possible because of technological 
developments in developed countries. In developed countries, technological 
developments have become part of their culture because of the availability of such 
technology in their countries and the ability and availability of resources. Some few 
higher institutions in developing countries which have this technology have no ability 
and infrastructure to develop and sustain such technology. 
 

1.4    Concluding Remarks 

The development of mathematics which is basically embedded in cultural 
developments and could be socially developed in the context of the society (Lakatos, 
1976; Bishop, 1985; Gerdes, 1985; Cobb, 1986; D’Ambrosio, 1987; Fasheh, 1988; 
Stigler & Baranes, 1988; Millroy, 1994;) is also described to contain a political 
component (Kallaway, 1984; Mellin-Olsen, 1987); Gerdes, 1988; Harris, 1988;).  The 
present differences in the level of the advance of mathematics between developed and 
African countries, and developing countries in general, can be regarded to be caused 
by destructive effects of social oppression during slave trade and colonialism. 
                                                 
4 The “real world” is defined here to mean the rest of the world outside mathematics ie out of school or 
in other disciplines different from mathematics – the world around us. 
 
5An “applied problem” is defined to involve a solution process and results that are obtained and 
retranslated or interpreted in relation to the original or real situation.  
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The present differences are also strengthened by the imbalance of scientific and 
technological power between rich and poor countries where the former tends to 
dominate the latter both economically and politically. The current globalisation trend 
even complicates the situation when promotion of acquisition of knowledge in most 
unskilled jobs to satisfy the market is emphasized. The emphasis is put on a slim 
vocational trend which ignores the curricula which involves acquisition of problem-
solving skills. 

The development of mathematics in Africa can be strengthened if mathematics is 
given priority i.e. if mathematics is given enough resources for its development and 
teaching at all levels of schooling.  The emphasis on mathematics is appreciated from 
the advances realised in science and technology which are possible because of the 
advances and application of mathematics.  However, the priority in mathematics 
cannot go alone without the priority given also to education as a whole with an 
emphasis on sciences and technology. 

It is important to mention here also that the present deteriorating conditions in 
education systems in African and developing countries in general, cannot be attributed 
to the economic situations alone in these countries.  The priority in national budgets is 
not given to education systems with an emphasis in mathematics and sciences to cope 
with latest developments in these fields.  Contrary to some ideas that recent 
technology e.g. calculator and computer integrated curriculum cannot be implemented 
in developing countries (meaning that it should “wait”), the mathematics curriculum 
can be designed to include such technology without involving much expenses.  As 
technology and development cannot wait, innovation in the curriculum should also 
not wait. 

The development or innovation of the maths curriculum at all levels of schooling has 
to go hand in hand with present advances in technology.  This should involve local 
experts in these countries with an assistance from developed nations in terms of 
expertise, resources etc. The link between institutions of learning in developed and 
developing countries could bridge the gap in technological developments between 
these countries. It looks unlikely, at least at the moment, that the multinational 
corporations which control about 25% of the world economy and 80% of the world 
trade (Schgurensky, 1997) can be willing to make available the technology needed in 
educational institutions in developing countries. 
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The introduction of history of mathematics in Norwegian schools 
 

Bjørn Smestad 
Finnmark University College, Norway 

 
In this paper, I will discuss recent attempts at introducing history of mathematics in 
Norwegian schools. After giving some general comments, I will focus on the impact these 
attempts have had on Norwegian textbooks. 
 
The introduction of history of mathematics in mathematics education can be decided on 
several levels1. Of course, individual teachers (or groups of teachers) may decide to include 
history of mathematics in their teaching, if they have the necessary interest and knowledge. 
Textbook writers may introduce history of mathematics in their textbooks. This is also 
dependent on their interest and knowledge. Or (at least in Norway) the government may 
decide to include history of mathematics in the curriculum. (In Norway, “the curriculum” is 
stated in one big book, set and published by the government). (In theory, pupils could also 
demand historical information. To work, however, that would depend on the interest of both 
pupils and teachers, as well as a certain knowledge on the part of the teachers). 
 
Teachers 
Individual teachers with an interest in and knowledge of history of mathematics may include 
history of mathematics into every topic, and their ideas may inspire other teachers, creating a 
local “movement”. Without good sources of ideas and lots of time, this will be difficult, 
however. 

Norwegian teachers generally have little knowledge of history of mathematics. TIMSS 2  
shows that 54 % of teachers in the 6th grade (pupils about the age of 13) had not studied 
mathematics in college/university. Very few (4 %) had studied mathematics for more than 
half a year in college/university. Since history of mathematics has only recently been included 
in the mathematics courses in high school and teacher education, we can be quite sure that 
most teachers do not have the necessary knowledge or interest to introduce history of 
mathematics in their teaching on their own. 
 
Textbooks 
Textbook writers may include lots of history of mathematics, inspiring and motivating their 
readers and making mathematics seem more humane. 

As textbooks have to be approved by authorities before being used in Norway3, textbook 
writers tend to stay fairly close to the curriculum. Moreover, I believe that teachers (and 
parents) tend to prefer textbooks that concentrate on topics explicitly stated in the curriculum. 
Therefore, I doubt that authors of textbooks will introduce history of mathematics in their 
textbooks on their own, to any significant degree. This view seems to be supported by the fact 
that earlier textbooks had little or no history of mathematics, just like the curriculums they 
were written for. 
 

                                                 
1 For a summary of the most important reasons for including history of mathematics in mathematics education, 
see http://www.hifm.no/~matematikk/ansatte/bjorns/mattehist/reasons.htm. 
2 Third International Mathematics and Science Study. The numbers are from the Norwegian report Svein Lie, 
Marit Kjærnsli, Gard Brekke: ”Hva i all verden skjer i realfagene”, Oslo 1997. 
3 This will probably change soon; the publishers will be responsible for the quality themselves. 
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Curriculum 
This leaves the curriculum, and in 1997, the Norwegian government included history of 
mathematics in the mathematics curriculum, by including knowledge of the history of 
mathematics (and mathematics’ relation to culture) as one of the six main goals of the 
mathematics education (for ages 6-16). This was based on persuasive arguments from teacher 
educators. Was this the end of discussion, or only the end of the beginning of the discussion? 

My fear is this: by including history of mathematics in the curriculum, teachers and textbook 
writers have been given a command: “include history of mathematics”. What they have not 
been given is the persuasive arguments, nor good examples of use of history of mathematics. 
Their knowledge and interest have not increased. Therefore, there is a great risk that the 
“command” will be carried out instrumentally, and that there will be a feeling among teachers 
that “we have spent four lessons on roman numerals, can we go back to mathematics now?” 
 
A study of Norwegian textbooks in mathematics  
I have studied all Norwegian textbooks that have been approved by Norwegian authorities 
since the 1997 reform, to see what is included about history of mathematics (ages 6-16)4. The 
main pitfalls I have found so far are 
- errors 
- banality/jejuneness 
- incredibly narrow or wide tasks/exercises 
- a lack of a “canon” 
 

The most obvious problem is numerous errors in the treatment of history of mathematics – I 
have found 81 errors in about 237 pages5 of history of mathematics, that is one historical error 
every three pages. (I have divided these errors into different categories: errors that may 
cause/strengthen misconceptions, anachronism/ethnocentricity, more unimportant (factual) 
errors, myths and simplifications/inaccuracies). I treat the errors in more detail elsewhere. The 
point here is that they show that many textbook writers and publishers have a lack of both 
knowledge and authoritative sources in history of mathematics. 

What I call “banality/jejuneness” is the problem that some textbooks tend to treat almost only 
numeral systems. By treating roman numerals in almost every grade, and adding some other 
numeral systems in some of the grades, the goal of including history of mathematics have 
been reached. But the reasoning behind that goal has not been touched. If pupils, after 10 
years in school, believe that history of mathematics is only about different ways of writing 
numerals, we are in trouble. 

When looking at the problems pupils are presented with, another issue occurs: in many of the 
problems, pupils are supposed to perform some sort of activity concerning history of 
mathematics, but it’s difficult to see what kind of mathematical knowledge is supposed to be 
constructed. I’ll give just one example: “Use the Internet, encyclopaedias or CD-ROM to find 
out when Johann Widmann lived.” The text has already given one of the years he lived, which 
means that it is assumed that the pupils will find it interesting to find his exact dates of birth 
and death. Again, it seems that the textbook writers have too little knowledge (and time) to 
construct meaningful problems for pupils. 

                                                 
4 See my ”History of mathematics in Norwegian textbooks” (presentation by distribution at ICME9) for more 
details. 
5 The total number of textbook pages investigated is 21613. These numbers include teacher’s guides. 
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From what I have said, it may seem that I think the main problem is that maths teachers and 
textbook writers are negligent, or have too little interest in the history of mathematics. I need 
to correct that impression: I think the main problem is that maths teachers and textbook 
writers have been given fairly little support in (and motivation for) trying to achieve the goals 
in the curriculum. Historians of mathematics who are interested in education and maths 
educators with an interest in history of mathematics, have an obligation to help in the 
development of good ideas for classroom use. The lack of this support is apparent in what I 
call “a lack of a canon”. There are five or six alternative approved textbooks for each grade, 
but most of the subjects that are mentioned, are only mentioned in one or two of them. I think 
that when more work is done on history of mathematics in mathematics education, a “canon” 
of good ideas will be established. (In the same way that we see that “good ideas” in the 
presentation of for instance fractions are used in all textbooks at a certain level). 
 
Conclusion 
When trying to have history of mathematics included in the mathematics curriculum, it is 
important not to forget that textbook writers and teachers also need support from the 
communities that have knowledge and ideas. This is probably an obvious statement, but 
experiences from Norway seem to suggest that it deserves to be stated again. 

In other parts of the world, circumstances are different, but still it will be essential to keep 
both teachers, textbook writers and “the official curriculum” (if there is one) in mind when 
trying to introduce history of mathematics. Which means that having good ideas is nice, but 
publishing them (where teachers may notice them) is the key to success. 
 
PS 
The obvious next step is to try to collect ideas/pieces of history of mathematics and make 
them available to teachers (with didactical comments). I will mention some of the “good 
ideas” that I found in the textbooks: 
 
Florence Nightingale: 
One very simple example of the use of history of mathematics in maths education is the story 
of Florence Nightingale (1820-1910). Florence Nightingale’s work as a nurse in the Crimean 
war is well known, but her use of statistical methods is perhaps less known. By collecting 
statistics, and by analysis and presentation of these statistics, she managed to show that a 
large percentage of the soldiers died because of unsanitary conditions. Thereby she managed 
to gain support in the fight for reforms to reduce mortality. 

The story of Florence Nightingale helps mathematics seem more humane, and gives an 
example of a female mathematician. More importantly, it shows that mathematics can be of 
vital importance to society. Moreover, it is an example where mathematics is developed to 
meet concrete, practical purposes in society. (Cooperation with other subjects, such as history 
or social sciences, is of course also possible). 
 
Historical background for geometry: 
Another instance where history of mathematics works as a motivation for working with 
mathematics is in the account of why Egyptians developed their geometry. The need to reset 
the borders after each flooding of the Nile is easily understood by pupils, and has it’s parallel 
in modern day surveying. 
 
Roman numerals 
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Examples where history of mathematics is not only a motivation for work with mathematics, 
but actually helps understanding the mathematics, are more rare. One very prominent example 
is roman numerals. None of the books have adopted the idea of letting roman numerals be 
children’s first numeral system 6 , but their treatment nonetheless has very interesting 
consequences: getting insight into more than one numeral system may make it possible for 
children to compare and see advantages with the different systems. (Again, this of course 
takes a little insight on the part of the teacher to succeed). 
 
End note 
Please tell me if you know of good ideas, or even better: good sources for good ideas. If I 
keep working in this field, I will probably try to make a collection of such ideas available on 
the net. (My email address is bjorns@hifm.no) 

                                                 
6 As suggested in Dagmar Neuman: Räknefärdighetens rötter, Utbildningsförlaget, Stockholm 1989, part III. 
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1. INTRODUCTION 

In recent years there has been an ever-increasing agreement that the following points are 
essential in mathematics education. 

(i)  To understand the evolutionary nature of mathematical knowledge, hence, 
(ii) To appreciate that “doing mathematics” is an aspect of mathematics equally important 

to what is conventionally understood as mathematics, namely, only the results of the 
mathematical activity. 

By “understanding”, we mean the creation by the learner, of links between new 
information and his already existing conceptual framework (cf. Hiebert et al. 1992, Poincaré 
1996). In Tzanakis et al. 2000, section 2, it has been argued that history of mathematics may 
help the appreciation of the importance of these points in mathematics education. In 
particular that knowledge of the historical development of mathematics offers an 
opportunity to understand in a natural way how mathematics is created and evolves, to 
examine the conditions under which it is understood and become established knowledge and 
to clarify its relation to the experimental sciences, especially physics. Thus, we are led to 
consider the following two questions: 

Question (A) What are the procedures by which new knowledge is conceived, 
formulated and understood? 

Question (B) What are the conditions under which new knowledge is considered as valid, 
hence acceptable? 

In this paper we study them from a historical point of view. Although they are 
interrelated, they should be distinguished and studied separately. Methodologically, this 
helps to reveal the important role that certain procedures play in answering (A), but which 
play a marginal role in answering (B). This is for instance the case of experiment in 
mathematics. By not appreciating the different nature of the answers to (A) and (B), we run 
the risk to confuse conditions for the validity of new mathematical knowledge, with 
conditions under which this knowledge is conceived, formulated and understood. Perhaps 
this is one of the reasons for the strong belief (especial among teachers of mathematics) that 
a logically complete presentation of the structure of mathematical knowledge in a deductive 
way, is sufficient for its good understanding, and that handling with ease the formal aspects 
of mathematics ensures the existence of this understanding.  

In connection with question (A), we analyse in section 2 the procedures involved in doing 
mathematics (logical reasoning (deduction, induction and analogy), algorithmic procedures 
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and experimental procedures). These usually intermingled procedures may be essential 
either as discovery patterns, or as procedures of (partial, in general) justification. We 
consider this point further in section 3 in connection with question (B); we analyse the 
nature of inductive procedures, their role in the justification of mathematical statements and 
their relation to the usual deductive reasoning in mathematical proofs. Supported by 
historical examples, our analysis in sections 2, 3, clarifies the intimate connection between 
mathematics and physics (the experimental science closest to mathematics), as far as 
questions (A) and (B) are concerned and reveals those points where there is an essential 
difference between these disciplines. Some didactically relevant conclusions to be drawn 
from this analysis are summarized in section 4. 

 
2. TYPES OF PROCEDURES FOLLOWED IN DOING MATHEMATICS 

The different types of procedures followed in doing mathematics, are based on logical 
reasoning, algorithms and experiments. It will be seen that they are closely interrelated, of a 
complementary character and are equally well found in doing physics as well. Moreover, in 
practice they only rarely appear in a pure form. Usually they are mixed up. However, for 
methodological reasons we first sharply distinguish between them and then consider 
examples in which at least two different types of procedures are intermingled. 

 
2.1 Procedures based on logical reasoning 
We include here, both deductive reasoning and procedures of a more heuristic nature, 

based on induction and analogy (Polya 1954, Tzanakis & Thomaidis 2000 and references 
therein). 

 
2.1.1 Deductive reasoning: This is conventionally supposed to be the only one used in 

doing mathematics, or at least, the only one that is in principle acceptable, a particularly 
strong belief among teachers of mathematics. However, the first claim is incorrect (see 
below and section 3) and the second needs refinement. In fact, deduction is the type of 
reasoning on the basis of which complete mathematical proofs can be given, or the 
foundations of a theory are laid, so that they become presentable to and acceptable as valid 
by the mathematical community. At the same time, such deductions open the possibility of a 
logically clear presentation and organization of these results, or of a whole mathematical 
domain. It is this possibility which is often (implicitly) recalled to legitimise a deductively 
organised presentation and teaching of a subject. In this view, it is tacitly assumed that 
logical clarity is the only presupposition for a complete understanding. Evidently this is not 
true (cf. Hadamard 1954, Kneebone 1963, p.359). A typical example is provided by 
euclidean geometry. Think, for instance, of its deductive organization by Euclid, or in a 
strict form by Hilbert. Moreover, euclidean geometry has always been a basic domain for 
initiating students to deductive proof. By employing deductive reasoning it is possible, to 
check that a mathematical statement follows from given premises, to avoid logical cycles etc. 
However, this is not the main procedure by which a new proposition or concept is usually 
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conceived, or the outline of a proof is discovered for the first time1. The conception and 
construction of new mathematical knowledge involves much more complicated and less firm 
procedures. Before turning to them, we notice that evidently, deductive reasoning is 
extensively used in physics as well. 

2.1.2 Inductive reasoning: This is essentially the use of plausibility arguments of an 
inductive nature, concerning the validity of a statement. Many different types of such 
arguments exist, that may be combined for a particular statement. We present some typical 
examples. 

(a) By verifying the validity of a statement in many cases of the same nature, it is 
conjectured that the proposition is generally true. This is an inductive procedure in a strict 
sense and appears quite often both in mathematics and the experimental sciences. For the 
latter, think for instance, of statistical inferences based on empirical data, or any 
experimentally determined physical law in some given conceptual framework (experimental 
verification of any relation between physical quantities, by its very nature, presupposes the 
existence of a conceptual framework in the context of which it becomes meaningful). In 
mathematics well known historical examples are: (i) Goldbach’s conjecture (every integer is 
the some of two primes), formulated in 1742, and till now checked up to 1014. (ii) The 
4-colour problem2 finally solved by computer in 1976. (iii) The prime number theorem on 
the distribution of primes3 formulated inductively by Gauss and Legendre, but proved many 
decades later. A historically and didactically good example is Euler’s theorem on the 
relation between the number of vertices V, edges E, and faces F of a polyhedron (V+F=E+2; 
Lakatos 1976). Elementary examples are easily found to illustrate this type of reasoning at 
the school level; e.g. the determination of the relation between the number of diagonals and 
that of the edges of a convex polygon. 

(b) Sometimes long-time efforts to prove, or disprove a certain statement, were totally 
unsuccessful, or have led to proofs of special cases, or of similar results. By this evidence, it 
is claimed that it is highly probable that this statement cannot be proved, or that it is true, 
respectively. Typical examples are: (i) The efforts to deduce Euclid’s 5th postulate from the 
other axioms, from antiquity to the 18th century, have gradually persuaded mathematicians 
that this postulate cannot be proved, or disproved in this context. This was the necessary step 
towards the final conception of non-euclidean geometry (Bonola 1955). (ii) In the long 
history of attempts to prove “Fermat’s last theorem” (xn+ yn= zn has no integer solutions for 
n>2), from 1637 to 1995, there was only partial success (verification for particular classes of 
exponents, specific properties of the exponents for which the theorem might be false etc). 
However, this gave strong evidence that it was true (Edwards 1977, Singh 1997 ch.3). (iii) 
Part of the belief to the validity of Goldbach’s conjecture falls into this category (Apostol 

                                                           
1However, important propositions, or methods may result in the effort to prove a mathematical statement (e.g. 
in the form of lemmas). They subsequently acquire a mathematical value independent of the task for the 
realization of which they have been originally devised (e.g. Cantor's diagonal method in the proof that R is 
non-denumerable, with a far greater domain of applicability, or, Schwartz inequality in high school algebra).  
2 Every map on the plane, or on the sphere can be coloured by using 4 colours, so that every two adjacent 
regions have different colours (Davis & Hersh 1980, p.360ff, Stewart 1989). 
3 The number of primes less than x is asymptotically equal to x/ logx (Apostol 1976, Historical Introduction). 
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1976, p.10). Especially in number theory, inductive reasoning of type (a), however strong 
may be, it may turn out to be deceptive (for examples see Apostol 1976, pp.9-10, Singh 
1997, pp.177-179). A famous modern physical example of this type, is the so-called cosmic 
censorship hypothesis in general relativity, for the non-existence of space-time singularities 
that can be seen by observers away from them (“naked singularities”). Part of the evidence 
about its correctness comes from the many unsuccessful attempts to disprove it (Wald 1984, 
Hawking & Penrose 1996, pp.29-30).  

(c) It may happen that a statement having the character of a “working hypothesis”4 has 
been used for a long time without leading to unreasonable results (logical contradictions 
and/or incompatibility with experiment). Then, there is strong tendency to accept the truth of 
the statement. (i) A characteristic example is the axiom of choice in set theory: “From any 
collection of sets, a new set can always be formed by choosing one element from each set of 
the collection” (Zermelo’s formulation). Despite its innocent-looking appearance, it is the 
“...most discussed axiom of mathematics... second only to Euclid’s axiom of parallels” 
(Fraenkel et al. 1973, p.56). Implicitly appeared in the late 19th century, it was formulated at 
the beginning of the 20th century (Dieudonné 1978, p.456, Fraenkel et al. 1973, pp.54-58). 
Although some of its consequences may look strange5, its use not only led to no logical 
inconsistencies, but on the contrary it was essential for the proof of important mathematical 
results. Despite the objections raised against its acceptance, the majority of mathematicians 
have considered it as a basic mathematical principle when intensive efforts began to 
examine its consistency with, and independence from the other axioms of set theory. These 
efforts culminated in Gödel’s and Cohen’s results in 1938 and 1963, respectively, which 
answer in the affirmative these issues (Fraenkel et al. 1973 ch.II, §4.2). (ii) In physics, the 
molecular hypothesis had a similar character in the 19th century. It appeared as a 
theoretically reliable hypothesis already at the beginning of the 19th century. It played a 
central role in the development of chemistry and of kinetic theory for a century, before it 
was definitely confirmed in 1909 by Perrin’s experiments based on Einstein’s work (Brush 
1983). 

(d) Occasionally a certain statement is rather fruitful in its consequences. On the basis of 
their validity and/or importance, the statement is finally accepted as true, or at least as a 
fruitful working hypothesis. This is often the case in physics. Many basic physical laws are 

                                                           
4 We distinguish between a conjecture and a working hypothesis. In the context of a given investigation, a 
statement has the character of a conjecture, if one of the objectives of the investigation is the proof, or disproof 
of this statement. A working hypothesis (“ansatz” in German, the term widely used especially in physics), is a 
statement provisionally accepted as true and used in order to make progress in the investigation, till it is finally 
proved, or disproved directly, or by its consequences. Evidently, there is no absolute distinction between the 
two types of statement. Fermat’s last theorem was a conjecture in this sense. The same is true for Maxwell’s 
claim that since the speed of electromagnetic waves coincides numerically with the speed of light, the latter is 
probably such a wave. On the other hand, the axiom of choice in set theory, or the molecular hypothesis in the 
19th century (see below) played the role of working hypotheses. Finally, the cosmic censorship hypothesis, 
above, has the character of a conjecture, or of a working hypothesis, depending respectively, on whether one 
attempts to prove it, or to use it to develop general relativity further. 
5 E.g. it is equivalent both to the proposition that “for any sets A, B, the cardinality of A is either greater, or 
smaller, or equal to that of B” and to the much less reasonable well-ordering principle, (“for any set, there is an 
order relation such that any of its subsets has a first element with respect to this relation”) (Suppes 1960). 
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of this type in the context of a given physical theory, and not propositions that can be 
checked experimentally in a direct way. For example, for Newton’s law of motion, F=ma, 
there are no independent defining relations of the force F and the mass m, in order to 
measure these quantities independently and check the validity of the above relation. The 
intuitive concepts of force and mass acquire a meaning in the context of Newtonian 
mechanics, through this relation; it is important because in a great variety of situations, its 
implications are compatible with observed facts. This is the core of the inductive reasoning, 
on the basis of which a given statement acquires gradually the status of a physical law (see 
also section 3). In mathematics, similar situations do exist, though admittedly less frequently. 
The axiom of choice in (c) above, is an example. “... [F]or those accepting and using the 
axiom, the chief reason is its... indispensability for proving important theorems of analysis 
and set theory; this argument proved so strong that even scholars who in principle rejected 
existential procedures, did not refrain from using the axiom to a certain extent in their 
analytical researches” (Fraenkel et al. 1973, p.81 and §4.5). Similarly, the famous, still 
unsettled, Riemann’s hypothesis (all zero’s of Riemann’s zeta function have real part 1/2 
(Edwards 1974)) is used as a working hypothesis in number theory, on the basis of evidence 
for its validity of the type (a) and (b) (strictly speaking, the weaker, but still unaswered 
“generalized Riemann hypothesis” is used; Mollin 1996, van der Poorten 1996). 

2.1.3 Analogy arguments: These are plausibility arguments based on analogies between 
the structure of different collections of objects. Here analogy is meant in the sense of, either 
strict similarity (isomorphism) of structures or as a loose such similarity, with which objects 
of an a priori different nature are equipped. It is a basic mechanism for heuristically 
formulating conjectures, for motivating the introduction of new concepts and for 
establishing new methodological frameworks. We may distinguish the following cases: 

(a) Similarities between known properties of already existing (sets of) objects, motivate 
the introduction of new concepts, or methodological frameworks, generalizing those 
characterising the objects with which one started. 

(b) Similarities between already existing sets of objects are used, so that knowledge of 
properties of the one set may, by analogy, be inferred for the other set as well. 

(c) New concepts, ideas or methods are established, extending existing ones, guided by 
the wish that the properties of the new ones should be similar and/or should reduce to those 
already known in the special case of the original objects.  

In any of the above cases, the existing conceptual framework may remain essentially the 
same, or it may need extended revision, which in turn, could lead to its essential 
generalization and/or the emergence of new perspectives that stimulate further 
developments. 

Examples for (a): Important abstract algebraic structures, like that of a group, or vector 
space, emerged in this way. For instance, the abstract concept of vector space was defined 
by Peano already in 1888, by keeping basic properties already known in particular, 
conceptually different cases (geometric vectors, solutions of linear algebraic, or ordinary 
differential equations etc; Dorier 1990). The analogy by which the new concept emerged 
was the recognition of the existence of isomorphic structures of hitherto unrelated sets of 
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objects. 
Examples for (b): This is often a basic mechanism to formulate new conjectures out of 

propositions already known to be true. For example, from the fundamental result of linear 
algebra that any quadratic form in n dimensions can be diagonalised by a change of basis 
(“transformation to principal axes”), one may conjecture that the same is possible for 
quadratic forms in infinite dimensions, presumably under additional restrictions. This was an 
important motivation of Hilbert in his study of integral equations and led to important 
developments of what later became known as spectral theory of operators (Dieudonné 
1981). This analogy may be used at the university level to motivate both the formulation and 
key steps in the proof of the spectral theorem of self-adjoint operators (roughly speaking 
that every such operator can be diagonalised). Here, the already existing conceptual and 
methodological framework is extended, although without radical changes. Such a more 
radical extension appears in the conception and proof of the famous singularity theorems in 
general relativity (i.e. that under reasonable requirements, space-time necessarily contains 
singularities). They emerged by moving from the intuitive physical idea of a singularity as a 
point of spacetime, where geometrical and physical quantities become infinite, to a different 
one, namely, that of a limit point of a curve that does not belong to the manifold (existence 
of “incomplete” curves, see e.g. Clarke 1993). This concept was formed by analogy with the 
opposite concept of a complete curve (loosely speaking, a curve containing its limit points) 
which was quite familiar in riemannian geometry (Hicks 1971, Helgason 1962 and original 
references therein). However, in general relativity, it has a different conceptual 
interpretation that was the necessary, crucial step for the formulation of the singularity 
theorems by Penrose, Hawking and Geroch in the late 1960s. Another physical example is 
provided by the observed analogy between the classical thermodynamic laws and certain 
theorems of blackhole physics. This led Bekenstein (1972) to identify them and thus 
introduce thermodynamic concepts into black-hole theory. It was a fertile mixing of ideas 
from till then unrelated areas, which opened new perspectives and led to important 
theoretical predictions (e.g. Hawking’s radiation by black holes). 

Examples for (c):  A typical example is the generalization of the integral of functions of 
one real variable, to functions of several real variables, or of a complex variable, by 
requiring that the generalized concept has the basic properties of the one real variable 
Riemann integral (linearity, positivity for positive functions etc). Sometimes, such 
extensions, often based on obvious analogies, open remarkably fruitful new domains having 
their own potential value and methodological characteristics, that provide new tools, or 
throw new light onto old subjects. The definition of the derivative of a function of a complex 
variable, suggested in an obvious way by the analogous definition for real functions, is such 
an example. It is this concept which forms the basis of the exceptionally beautiful and 
powerful theory of analytic functions6. In the present category we also have examples in 
which the analogy employed dictates the radical revision of truths, till then considered as 
                                                           
6 E.g. the residue calculus as a powerful integration method; or, the principle of analytic continuation which 
among many other things, shows that the analytic definition of trigonometric functions on R via their Taylor 
expansion, is unique if one wants their complex extension to be analytic on the whole complex plane. This fact 
throws new light into the nature and properties of these elementary functions. 
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self-evident. Hamilton’s introduction of quaternions in 1843 is of this type. In the early 19th 
century, it was realized that the product of two complex numbers is geometrically given by 
the plane rotation and multiplication of the one number by the argument and norm of the 
other, respectively. Hamilton considered whether it is possible to generalize the concept of a 
complex number so that a similar relation exists between the sought numbers and the 
rotations and similarities in space. After long, unsuccessful efforts, he realized that the 
problem has a solution, quaternions, only if commutativity of the product of the generalized 
numbers is rejected. In this way, the above analogy led to appreciate that commutativity of 
algebraic operations is not an absolutely necessary requirement, as it was tacitly assumed. 
Consequently it greatly helped in the subsequent development of abstract algebra (Tzanakis 
1995 for details). A similar example from physics is the invention of Heisenberg’s “matrix 
mechanics” in 1925. At that time, physicists studied bounded atomic systems as multiply 
periodic classical systems subject to the so-called “quantum conditions”, by time-Fourier 
analysing all physical quantities of interest. However, although in the classical case, the 
harmonic frequencies can be indexed by one parameter, experiments showed that 
frequencies related to atomic systems depend on two indices. Using this fundamental fact, 
Heisenberg tried to develop a mechanics of atomic systems by considering atomic quantities 
as square arrays and develop a calculus on them, by analogy with the operations on classical 
Fourier series. This analogy led him to realize that the product of two quantum quantities is 
in general noncommutative. Heisenberg, knowing nothing about noncommutative algebraic 
structures, was puzzled and was about to reject his apparently absurd results. It was Born 
who realized that Heisenberg’s operational calculus was simply matrix calculus. In this way, 
the idea of noncommutative structures of physical quantities enters physics for the first time 
(Heisenberg 1949; for historical details see van der Waerden 1967, ch.12, Jammer 1966, 
§5.1). 

We summarize the analysis in this subsection by making two remarks: 
The crucial difference between induction and analogy is that the first is based on the 

examination of objects of the same nature with respect to some already given criteria, 
whereas the latter is based on the examination of objects of an a priori different nature. This 
difference has a relative character, since it is possible, by changing the given criteria, to 
transform an analogy into an inductive extension. For instance, the first conception of the 
idea of vector space, on the basis of observed similarities among different sets of objects, is 
a procedure based on analogy. However, once this concept is known, the recognition that a 
certain set has this structure, or its endowment with further properties so that it possesses 
this structure, is an inductive extension of the vector space concept to a new set of objects. 

Discovering procedures are mainly, though not exclusively, related to induction and 
analogy, whereas, the validity of knew knowledge and its a posteriori logically complete and 
economic presentation, is mainly related to deductive procedures (cf. Polya’s distinction 
between plausible and demonstrative reasoning; Polya 1954 p.vi). 

 
2.2 Algorithmic procedures 
Algorithms and the associated procedures described below, are basic constituents of both 

mathematics and the experimental sciences. We do not intend to give a general definition of 
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an algorithm, which is used here in a rather loose sense. By an algorithm we mean a 
step-by-step determined procedure (often of a recursive nature), on the basis of which a 
certain activity aiming at a specific result, is realized (see Liu 1985, cf. Penrose 1994). 
Although it may be argued that algorithms are of a deductive nature, nevertheless they have 
certain characteristics peculiar to them (see §§2.2.1-3 below, especially §2.2.2) which 
suggest a separate analysis for methodological reasons.  

Algorithmic procedures are related to corresponding modelizations7. In their pure form, 
such procedures include the following 3 stages: 

2.2.1 Formalising the modelization: Suppose that a modelization has been given. It may 
be possible to formalise it in the following sense: (i) To determine the domain of problems 
to the study of which the modelization is applicable. (ii) To formulate control criteria, on the 
basis of which it is decided whether a given problem falls into the domain of applicability of 
the modelization. In this case a model of a given problem can be constructed in its context. 

2.2.2 Applying the algorithm: This is the really formal part of the procedure, in the sense 
described at the beginning of this subsection. We remark that although this stage does not 
necessarily involve arithmetical or symbolic operations, it does involve well-defined steps, 
often of a recursive character. At this stage, the solution to the original problem arises “by 
itself”; since each step is completely determined by its previous ones, there is no need to 
think about what to do next, but only to apply correctly what the algorithm requires. In a 
certain sense, “we turn the crank and we get the result”; e.g. arithmetical operations, the 
solution of linear equations by Cramer’s rule, simple integration methods like integration by 
parts etc. It is this characteristic which gives the power to algorithmic procedures that 
distinguish them from more synthetic deductive reasoning, like that involved in proofs in 
euclidean geometry, or existential proofs in analysis, topology etc. 

2.2.3 Formalising the interpretation of the algorithmic results: Control criteria are 
determined on the basis of which it is checked whether the result obtained is consistent both 
with the original problem and with the algorithm that has been applied. 

An indicative elementary example is provided by the solution of problems modelled upon 
linear algebraic equations. The student should be able to decide whether the given problem 
can be modelled upon such equations (§2.2.1(i)) and realize that each unknown represents 
only one quantity (§2.2.1(ii)). Moreover, the result must have the correct dimensional 
characteristics and at each step of the algorithm, algebraic expressions involving sums and 
differences, or the two sides of any equality, should be dimensionally homogeneous (§2.2.3) 

That a given algorithmic procedure has, or has not the above formal character, depends 
on the mathematical maturity of the person who applies it. For example, arithmetical 
operations have this character for adults, but not for pupils at the beginning of the 
elementary school. Similarly, integration by partial fractions is a formalised procedure for an 
                                                           
7 For a problem in a given conceptual framework, connections and similarities with a particular situation in a 
different conceptual framework, may make possible the successful study of this problem in that second 
framework. That is, to establish a correspondence between elements of the original problem to appropriate 
objects in the second framework (viz. to construct a model of the original problem in the second framework), 
and to interpret the result in the original framework. In this case a successful modelisation has been achieved. 
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experienced mathematician, but presumably not for first year undergraduates, just having 
been taught the basic concepts of calculus. 

As mentioned at the beginning of this section, the purely algorithmic procedures, 
corresponding to §§2.2.1-3, are the exception rather than the rule, and are encountered 
mainly in elementary situations. Usually, both didactically and in research, we encounter 
algorithmic procedures intermingled, either with procedures based on logical reasoning (see 
below), or/and with experiments (see next subsection). Evidently, all types of reasoning 
described in §2.1, often involve algorithmic procedures, e.g. calculations of a more or less 
formalised nature, or computational checks of the consistency of the answer to a problem, 
with the nature of the problem itself. Conversely, any algorithmic procedure originally 
involves a heuristic stage aiming at producing an appropriate modelization, which possibly 
(but not necessarily) may finally lead to a formalised algorithmic procedure. During this 
stage of “clever” modelization, inductive arguments, analogies and deductions often play an 
important role. For example, realizing by analogy that a certain set of objects has a particular 
algebraic structure may solve problems related to these objects, in a strictly algorithmic way, 
by using properties of this algebraic structure. Hilbert’s metamathematical program to 
formalise mathematics, was essentially of this nature, although it was subsequently limited 
by Gödel’s theorems. Similar situations appear in physics as well. For example, at the 
beginning of 20th century, by modelling a radiating black body as a set of harmonic 
oscillators (a mathematically simple and exhaustively known mechanical system), Planck 
was able to describe radiation in a satisfactory way (in terms of Planck’s law) and 
introduced the idea of quantization (Jammer 1966 §1.2). This is a “clever” modelization 
based on the formal similarity of the mathematical equations of motion of an electric dipole 
and of a harmonic oscillator in mechanics (Sommerfeld 1964). Though it didn’t lead to a 
strictly formalised algorithmic procedure, it thereafter became a methodological dictum to 
tackle complicated problems in various areas of physics by first exploiting the understanding 
possibly gained on the basis of harmonic oscillator models. 

Such mixtures of algorithmic procedures, logical reasoning (and experiments), leads to a 
variety of possibilities, concerning the interpretation of the results obtained: 

(1) The result can be readily interpreted in the context of the modelization involved. 
(2) It is not possible to estimate the range of the validity of the result obtained, on the 

basis of the modelization used. This may be due, either to the fact that the latter is not 
complete, or because there are no criteria by which it can be checked whether a given 
problem falls in its domain. Characteristic examples are the so-called “formal” mathematical 
manipulations, used both in mathematics and especially in theoretical physics. For instance, 
when solving a differential equation by employing some iteration scheme, it is usually very 
difficult to decide whether the resulting series converges. Similar comments hold for the 
solution of eigenvalue problems by perturbation methods. These difficulties are often due to 
the fact that the nature of the objects of the model, which leads to the equations solved by 
iteration, is not completely specified (e.g. when it is not a priori known whether the 
functions involved are ordinary or generalized functions)8. A historical example is Dirac’s 

                                                           
8 Here we have an important distinction between the way by which a calculation is first done formally for 
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original quantum mechanical calculations with the aid of his delta function. Although he 
was well aware that this object can not be treated as an ordinary function, he made extensive 
use of it (Dirac 1930/1958). 

(3) The result obtained admits only interpretations incompatible with the conceptual 
framework of the algorithm, or of the objects to which the modelization refers. Except the 
trivial case in which the algorithm has been incorrectly applied, this incompatibility may 
lead, to the rejection of the modelization, to the enlarging of the aforementioned conceptual 
framework, or to an essential rupture with this framework. An elementary example of the 
first type, is the modelization of interest calculation problems, upon a linear model. The 
solution of algebraic equations (e.g. of degree 2, or 3) provides an example of the second 
type. In this case, the enlargement of the conceptual framework is expressed by the 
extension of R to C. Actually, a serious obstacle to the acceptance of complex numbers as 
legitimate mathematical objects, was due to the fact that it presupposed this enlargement. 
Similarly, Dirac’s proposed relativistic equation for the electron had solutions in direct 
disagreement with quantum theory. Instead of rejecting his equation, Dirac finally succeeded 
in interpreting the “bad” solutions as corresponding to a new kind of particles, the positrons. 
In this way he enlarged considerably the conceptual framework of quantum theory, by 
introducing the bold new idea of antimatter (Schweber 1994, §1.6, Kragh 1990). Finally, 
taking into account the pythagorean discovery that ¼2 is irrational, the geometric solution 
of x2-2=0 (or of similar equations) could not be interpreted in the existing conceptual 
framework in which number was conceived only in the restricted sense of rational number. 
This led to a deep rupture with this conception, followed by refounding Greek mathematics 
on a new, logically more secure basis (Eudoxus’ theory of proportions). 

 
2.3 Experimental procedures 
Experiments are usually considered as irrelevant in mathematics research, but as the core 

constituent of experimental sciences, like physics. Probably this is due to the fact that 
experiment plays a marginal role in providing a complete justification for new mathematical 
knowledge (see section 3). Below we argue that experiments, especially thought 
experiments, is a valuable constituent of mathematical activities, particularly for the 
conception, formulation and checking the validity of (new) mathematical statements. 
Specifically, we describe experimental procedures in their “pure” form and give examples of 
such procedures intermingled with logical reasoning and algorithms. 

Experimental procedures in their “pure” form, are composed by the following 4 stages: 

2.3.1 Determination of the set of objects to which the experimental investigation refers. 
That is, determination of the virtual domain of validity of the statement under study, as well 
as, of the specification of the good representatives, which characterise this domain and 
which, will be used in the experiment. At this stage it is often helpful to determine the 
limiting cases for which the statement under study is valid. This is often the case in 
geometrical problems. Choosing a “good” figure (what is often called a typical figure), may 
                                                                                                                                                                                   
heuristic purposes, and the way by which subsequently it can be put on a firm mathematical basis. It often 
happens that in theoretical physics only the first route is employed.  
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greatly help to avoid inappropriate paths based on wrong guesses 9 . In geometrical 
constructions by ruler and compass, or the determination of geometrical loci, the 
examination of limiting cases often facilitates a correct guess of the solution. The same 
holds in more advanced situations, both in mathematics and physics. For example, the 
method of the variation of constants to find the solution of an inhomogeneous linear 
differential equation is suggested by observing that it gives trivially the solution in the 
homogeneous case. Similarly, the correct formulation of a physical theory is often guessed 
by examining the (possibly existing) limiting cases for which the form of the sought theory 
is already known (e.g. general relativity, or quantum mechanics; Pais 1982 §§12c, d, van der 
Waerden 1967, pp.41-42, §14.4, Jammer 1966, p.192, §5.1). 

2.3.2 Choice of the instruments to be used in the experiment. The prevailing attitude in 
this choice, is what we call “engineer’s attitude” in the following sense. It is attempted to 
design an approach, which, in principle, should suggest what can be done in different, but 
similar situations, having in mind the way by which the cost (magnitude of error, temporal 
duration, difficulties inherent in the experiment etc) can be minimised. At this level, one 
tries to understand what should be done and why, to the extent that this understanding helps 
to realize one’s aims, that is, to the extent that the approach to be followed, is reproducible 
most easily and/or under the widest possible range of types of constraints. Therefore, 
different approaches are compared with respect to their cost. Elementary examples are 
provided by geometrical constructions in various circumstances, tasks and constraints (on 
the paper, or in the large, with ruler and compass only, or with additional instruments, like 
gnomon etc.). Similarly, this attitude is dominant in the choice of the most effective way to 
perform a lengthy calculation. 

Besides making the optimal choice of the instruments in the sense above, one also tries to 
appreciate the significance of other factors that cannot be easily controlled and/or are in 
principle expected to be of minor importance, but which, nevertheless influence the result of 
the experiment. E.g. errors due to the instruments themselves, inaccuracies due to the limited 
skills of the person who does the experiment etc. This stage is dominated by what we call 
“experimental physicist’s attitude”. That is, an attitude characterised, not so much by the 
desire to find the optimal solution in the sense above, but by the desire to determine all 
factors that can influence the experiment, however minor they may be, to understand why 
some of them are negligible and to find the principal relations between the significant 
factors. In this context, there is concern to determine the limits of what is observable (hence 
perceptible, in principle), and experimental or theoretical ways to overcome these limits. A 
maximal aim in this connection, is the construction of a theoretical model on the basis of 
which other experiments can be designed to test further the validity of this model. Thus, an 
“experimental physicist’s attitude” leads to a deeper analysis of a problem, whereas an 
“engineer’s attitude” leads to a wider exploration of the possibilities to solve the problem in 
varying conditions of construction. 

                                                           
9 E.g. an acute angle triangle is a bad choice in a problem in which the location of the point of intersection of 
the heights (i.e. inside, or outside the triangle) may suggest a proof in which this location enters as a tacit 
hypothesis. The student must be aware of this danger. 
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2.3.3 Performing the experiment: This is the core of the experimental procedure, in which 
one adopts what we call “artisan’s attitude”. That is, once a given procedure for making an 
experiment is given, one tries to apply it in the best possible way, not being bothered why 
this procedure works in practice; it suffices to know that it does, or does not work in the 
given conditions. However, we remark that the aforementioned attitudes, the artisan’s, the 
engineer’s and the experimental physicist’s, usually cannot be completely distinguished, but 
coexist at various stages of the experimental procedure. 

2.3.4 Application of control criteria: At this stage, the validity of the experimental 
procedure that has been followed is checked. Such criteria may be based on the limit put on 
what can be observed, by the nature of the instruments used, or by other uncontrollable 
factors (see §2.3.2 above). They can also be based on the properties of the objects to which 
the experiment refers. The use of such criteria, also appearing in algorithms and logical 
reasoning, is a didactically much neglected area, but which has always been a live 
dimension of mathematical activities. For example, we mention “diorismoi” in  ancient 
Greek geometry (Heath 1981 vol.I, p.371). These were conditions on the basis of which it 
could be decided whether a given construction, is possible, has many solutions etc. The 
importance of this concept in Greek tradition is revealed by the fact that the inventors of 
such “diorismoi” were much praised by both mathematicians of the period (e.g. Appolonius; 
Heath vol.II, p.131) and later historians (e.g. Proclus; Thomas 1939, pp.150-151; for details 
see Kourkoulos & Tzanakis 2000). 

A historical example, illustrating stages 2.3.1-4, is provided by Gauss’ unsuccessful 
attempt to determine the nature of geometry of the world, by measuring the angles of the 
triangle composed by the tops of 3 mountains (Jammer 1969). It is clear that his aim should 
have forced him to try to take into account all possible factors, since he knew from everyday 
experience that any deviations from euclidean geometry should be rather tiny. At this level 
he was acting as an experimental physicist. However, while choosing the instruments by 
which his measurements were going to be performed, he should have acted as an engineer. 
Finally, during the experiment he had to act as a good artisan. Although this is a 
hypothetical reconstruction, it is indicative of the importance of such experimental 
procedures and attitudes in various areas of (modern) mathematics, especially when 
algorithmic procedures are essential (various types of calculations, computer simulations 
and numerical experiments etc), or in the explicit construction of counterexamples to given 
statements.  

Evidently, algorithmic procedures are often applied to experimental ones; for instance, 
mathematical calculations in the elaboration of experimental data (e.g. interpolation methods 
to approximate discrete data by a continuous curve), statistical data (e.g. checking a 
hypothesis with the aid of specific statistical criteria) etc. Conversely, what is to be checked 
experimentally, is often determined by an algorithmic procedure, as in physics, for instance; 
mathematical calculations in the context of a theory, or model, lead to consequences on the 
basis of which the experiments are designed to check these consequences. In Dirac’s words: 
“How does a theorist makes an [experimental] prediction? ... The basic requirement is that 
one should have a theory in which one has a great deal of confidence” (Schweber 1994, 
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p.57). In mathematics, determination of counterexamples to a statement is obtained by 
extensive use of algorithmic procedures. For example, the statement that all real valued 
functions bounded in a given interval are (Riemann) integrable, is falsified by calculating 
partial sums of specific functions, like Dirichlet's function. 

On the other hand, experimental procedures are evidently connected to procedures based 
on logical reasoning; for example, inductive reasoning is essential to draw conclusions from 
experimental data (e.g. to formulate conjectures in number theory on the basis of their direct 
verification in many cases). Similarly, direct consideration of limiting, or special cases in 
geometric constructions, may often lead to guess the general construction, by analogy to the 
characteristics of the construction in these special cases. Conversely, whenever the 
experimental procedure has not been completely determined (§2.3.1), or the instruments to 
be used are insufficient, the use of procedures based on logical reasoning may be rather 
helpful. For instance, in the measurement of the sum of the angles of a triangle, this 
insufficiency leads to the use of logical reasoning, interconnected with associated 
experiments, that finally lead to the improvement of these instruments (Kourkoulos 1998). 
The 4-colour problem (§2.1.1) provides an advanced example. Originally formulated in 
1852, it was completely solved in 1976. During this long period, it was proved that all 
possible cases could be reduced to a much smaller, albeit very big, number of cases (what is 
called an inevitable set of reducible configurations).  Subsequently, this reduced set has 
been checked, case by case, using a powerful computer program designed for this purpose. 
Incidentally we notice that in this reduction, analogy arguments played a central role 
(Stewart 1989, Davis & Hersh 1992, ch.8). 

There are more complicated cases in which experimental procedures are mixed with both 
logical reasoning and algorithmic procedures, as for instance in the case of a “thought 
experiment”. This is “...an exploratory ideal process meant to answer a theoretical or 
meta-theoretical question in the general framework of [a] given discipline and carried out 
according to the rules specified by logic and the particularities of the discipline itself” 
(Anapolitanos 1991, p.87). It is based on “hypothetical or counterfactual state of affairs” 
(Norton 1991). It may correspond to a genuine experiment compatible with a given 
theoretical framework, but not actually performed. It may not be realizable (at a given 
moment), because of technical limitations and more generally, because of the impossibility 
to overcome the influence imposed by uncontrollable factors that in principle should not be 
relevant to the phenomenon studied (for a comprehensive study see Horowitz & Massey 
1991). In such experiments, logical reasoning and/or algorithms allow to draw secure 
consequences from given premises. Widely used, elementary experiments of this type, 
appear in the solution of geometric constructions by ruler and compass. Construction of 
mathematical counterexamples is also of this kind, e.g. functions, integrable but 
discontinuous at an infinite number of points in a bounded interval, or continuous but 
nowhere differentiable etc.10 In Physics, thought experiments have always played a central 
role (Koyré 1973, p.225, Norton 1991). Suffices only to mention the widely discussed fact 
                                                           
10 Incidentally, such examples played an important role in the emergence of the modern concept of a function, 
which is independent of geometrical intuition, or algebraic representation, Manheim 1964, §§4.2-4.5; see also 
Spivak 1967, for a similar, didactically relevant example. 



 ~ 44 ~ 

that Galileo based many of his revolutionary conclusions on such experiments (e.g. Koyré 
1973, p.224ff, Gower 1997), for instance, in connection with his incomplete formulation of 
the law of inertia (Galileo 1954). Or, the long-lasting debate on the interpretation of 
quantum theory, beginning with the Bohr-Einstein dialogue from 1927 onwards. E.g. the 
famous Einstein-Podolsky-Rosen paradox is an example of crucial importance in 
establishing this area as a domain of active research on the border of physics and philosophy 
(Wheeler & Zurek 1983, Whittaker 1996, Bohr 1949). 

 
The analysis in this section points to the following conclusions relative to question (A) of 

section 1: 
-In doing mathematics, procedures based on logical reasoning (deduction, induction and 

analogy), algorithms and experiments, are used. To varying degree, all of them are relevant 
to the discovery, conception and formulation of new mathematical ideas, methods, proofs or 
theories, as suggested by many historical and elementary didactic examples. Therefore, all 
of them are important in understanding mathematics (in the sense of section 1), and should 
form an integral part of mathematics education. At this point, history offers interesting 
possibilities, by providing examples that explain the motivations and the discovering process 
that led to new consequences and which illuminate the more general cultural atmosphere 
that may have influenced their appearance (Tzanakis et al. 2000). 

-These procedures are equally important in physics as well, the experimental science 
nearest to mathematics. This conclusion is also supported by history. Therefore, it doesn’t 
seem that an essential difference exists between these disciplines, as far as the procedures 
used in active work are concerned. This suggests that a close intertwining of mathematics 
and physics curricula and teaching at all levels, may have a beneficial influence to both 
mathematics and physics education. 

On the other hand, the question arises, of what is the essential difference between 
mathematics and physics (and the experimental sciences in general). This is closely related 
to question (B) of section 1 and is studied in the next section. Although the answer seems to 
be obvious, its analysis will provide some epistemologically and didactically interesting new 
insights. 

 
3. JUSTIFICATION PROCEDURES IN MATHEMATICS 

For any scientific discipline, question (B) of section 1 is fundamental; an answer to it 
expresses the basic aim of this discipline as a research domain (Flato 1993). It can also be 
restated as follows:  

Question (B’): “What is a true statement and how its truth can be justified so that it 
becomes acceptable?” 

(it is equivalent to question (B), provided a true statement is necessarily valid and vice 
versa. Relaxing this assumption may raise philosophical issues beyond the scope of the 
present article!) To reveal possible differences between mathematics and the experimental 
sciences, in the present section we analyse (B’) for both mathematics and physics. 

Mathematicians would tend to agree that a necessary and sufficient condition for 
accepting the truth of a mathematical statement, is its logical deduction from a set of 
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logically consistent principles. For brevity, we call this, “condition of logical consistency”. 
Physicists, on the other hand, would tend to agree that such a condition for the truth of a 
statement in physics, is its consistency with any existing empirical data. Thus, in physics the 
truth of a statement has a relative character with respect to time; new data may lead to the 
falsification of a statement, till then accepted as true. However, the analysis of these 
conditions suggests, that they are not the only sufficient ones and that it is not so clear that 
they are necessary as well. This stems from the fact that often appeal is also made on other 
criteria, like aesthetic ones, whether a given statement is fertile as a working hypothesis, or 
is very effective in solving other problems etc (Tzanakis & Kourkoulos 2000). Nevertheless, 
the aforementioned conditions are the basic ones to inform the scientific community 
whether a proposition is true, or false, and not merely a conjecture, or a clever guess. That is, 
they are indispensable for the existence of scientific discourse and play a central role in the 
organization of mathematics, or physics as scientific disciplines. 

On the other hand, as we have discussed in the previous section, there is extensive use of 
deductively justified statements in physics and of experimental procedures in mathematics in 
the formulation, check and (provisional) justification of statements. Thus we are led to ask 

Question (C): Is there any relation between the above mentioned, at first glance totally 
unrelated, conditions of validity of a statement? (logical consistency and consistency with 
empirical data) 

Below we will see that the study of this question throws some light into the nature of 
deductive proof from a new perspective, by revealing its relation to inductive reasoning. 
Evidently, this fact has didactically important consequences to which we will come back. 

In section 1 it has been argued that, in doing mathematics or physics, procedures based 
on logical reasoning, in the form of deduction, induction or analogy, are essential. The 
analysis there, suggests that analogies are mainly related to heuristic procedures and 
deduction forms the core of logical proofs on the basis of which statements are definitely 
justified. On the other hand, apart from being a heuristic mode of thinking (§2.1.2), 
induction seems to play a central role in the process of the justification and acceptance of a 
statement, as we shall see below. Let us analyse a simple example. 

Consider the following mathematical statements: 
(a) There are 25 primes less than 100; (b) there is an infinity of primes, 
and the following physical statements 
(c) The sun contains hydrogen and helium; (d) every (shining) star contains hydrogen and 

helium. 
To justify (a), we examine each natural number less than 100. To justify (c), we identify 

these chemical elements by looking for their spectral lines in the solar spectrum. Both 
statements are justified in the same way; we examine all possible cases. Their justification 
follows a posteriori and rests heavily on their common characteristic, namely, that they 
concern a finite number of cases. We call this type of justification complete (finite) 
induction. On the other hand, it is impossible to justify (b) and (d) by complete induction, 
since both the natural numbers and (practically) the number of stars in the universe are 
infinite. Therefore, they are justified differently: 

The validity of (b) is ensured on the basis of a finite sequence of propositions, each of 
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which is a logical implication of its previous ones in the sequence. That is, (b) is justified on 
the basis of what is called a logical (deductive) proof (think for instance Euclid’s elegant 
proof). This type of justification presupposes (i) the explicit determination and acceptance of 
the (logical) rules to be used, and (ii) the acceptance of the truth of the first proposition(s) in 
the sequence. Evidently, (i), (ii) applied to all possible statements formulated in the context 
of a given discipline, require (ii’) a number of initial propositions (the axioms), which it is 
agreed that they are valid.  

On the other hand, (d) is justified by analyzing the spectra of as many stars as possible, 
which are chosen in such a way, that they can be considered as good representatives of the 
widest possible variety of stars (e.g. by choosing stars belonging to all possible spectral 
types, or to different stellar populations, or stars belonging to both our galaxy and other 
galaxies etc). In this way, confidence in the validity of (d) is acquired, which is so much 
greater as the total number of stars examined is greater and as the range of species to which 
they belong is wider. Nevertheless, the possibility of its future falsification (which may lead 
to its revision and modification), still remains. This type of justification will be called 
extensive induction. 

The above analysis is typical of the way mathematical and physical statements are 
justified and stresses the significance of the following points: 

1. When a statement refers to a possibly large, but finite number of cases, finite induction 
is, or may be used. Although logical proof can also be applied and may be more convenient, 
we emphasize that in principle, this is not necessary. Moreover, each particular case may be 
justified, either deductively, by logical proof, or empirically, by experiments, or direct 
verification. At this level, there is no essential difference between mathematics and physics. 
An example of this kind is provided by the solution to the 4-colour problem (§ 2.3). Part of 
the heated debate about the validity of the proof, is due to the fact that it rests heavily on a 
highly nontrivial application of complete (finite) induction, to which mathematicians have 
not been widely used (Davis & Hersh 1992, ch.8). 

2. When a statement refers to an infinite number of cases, things are quite different. 
Since complete induction is impossible, either logical proof, or extensive induction replaces 
a justification of the statement based on it. 

 In logical proof, the (de facto unattainable) examination of the infinite number of cases 
is replaced by a finite sequence of propositions in the sense described above, in some of 
which, the infinite number of cases has been implicitly incorporated. For example, 
Euclid’s first postulate, that “[it is possible].... to draw a straight line from any point to any 
point” (Thomas 1939, pp.442-443), refers to an infinite number of cases, since there is an 
infinite number of points (strictly speaking, for points to be infinite in number, Hilbert’s 
axioms of order and connection are also needed, Hilbert 1995). Moreover, to the extent that 
the validity of the logical rules of implication and of a number of initial propositions is 
accepted, the implications of a logical proof are necessary. Extensive induction is used as a 
justification procedure in physics. Although it is used as a heuristic procedure in 
mathematics as well, it does not provide complete justifications. In contrast to logical proof, 
its implications are always open to the possibility of a future refutation. We notice at this 
point, that the logical rules themselves are (meta)statements referring to an infinite number 
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of cases (viz. propositions). However, that these rules lead to no inconsistencies, have been 
tested for a very long time, in a wide variety of different situations. That is, they have been 
tested by extensive induction. It is tacitly accepted that this is the ultimate reason for their 
acceptance in mathematics and physics11. 

3. Extensive induction has two basic characteristics, already apparent in the example 
above: First, a large number of cases have been checked. Second, these cases have been 
chosen so that they represent the widest possible classification of all cases. This 
classification is often of crucial importance to understand the nature of a statement, in 
strengthening our confidence to its truth, or even, in appreciating that indeed, it needs to be 
justified. In the early attempts to solve the 4-colour problem, such a classification was 
central in order to understand the nature of the problem and its difficulties (Stewart 1989). 
Similarly, once it was realized that the concept of a simple closed plane curve, is quite 
general, allowing for many extremely complicated curves, far from geometrical intuition, it 
became clear, that the subsequently known as Jordan’s closed-curve theorem needs a proof 
(every simple closed plane curve divides the plane in two non-intersecting connected open 
regions (one of which is bounded), having this curve as their boundary; Courant & Robbins 
1941). A physical example is the law of the energy conservation, a cornerstone of modern 
physics. Its generality emerged gradually, by testing its validity for different types of 
phenomena (mechanical, thermal, electromagnetic etc). 

The classification referred to above, may have far reaching consequences for the 
conceptual framework in which the statement is originally formulated; from its extension, or 
restriction, to its partitioning into different domains. Checking Fourier’s (incorrect) 
conjecture, that any function is equal to its trigonometric series, led to a more thorough 
examination of the concept of a function, its extension to cover pathological cases (e.g. 
Dirichlet’s function) and the conditions under which the original conjecture is valid (Boyer 
1968, pp.599-600, Manheim 1964 §3.6). On the contrary, detailed examination of the 
possibilities opened by Cantor’s definition of a set (Cantor 1955), led to contradictions (e.g. 
Russell’s paradox). As a consequence, the concept of a set, was given a more restricted 
meaning in the subsequently developed axiomatic set theory (Fraenkel et al 1973, p.210, 
Kneebone 1963, ch.11 and p.287). Finally, up to the early 19th century, it was tacitly 
assumed that the derivative of a convergent series of functions, is the sum of their 
derivatives, or that a series can be rearranged without altering its sum. Careful examination 
of special cases, made clear that these statements are wrong and helped the emergence of the 
concepts of uniform and absolute convergence, respectively (Boyer 1968, pp. 610, 442, 
488-489, Dieudonné 1978, p.251). 

4. Logical proof is used as a justification procedure, in physics as well. However, in a 
given theoretical framework, at least some of the initial propositions one starts with, are 
accepted as valid, not because it has been agreed so (as in mathematics), but because they 
have been tested by extensive induction. Basic physical laws are initial propositions of this 
                                                           
11Seen in the present context, the strong doubts and criticism raised by intuitionists against the use of the 
principle of the excluded middle (the basis of proof by contradiction), are partly due to the fact that, this 
principle has been checked by extensive induction for statements referring to a finite number of cases, but not 
so for statements referring to an infinite one (Weyl 1949, pp. 51-52, Fraenkel et al. 1973, §IV.3). 
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kind. In fact, things are more complicated. Extensive induction is used to examine as many 
as possible logical consequences of such a statement. Then, it is tacitly accepted that it is 
rather unlikely that such a large number of propositions, compatible with empirical data, are 
logical consequences of false premises (cf. the discussion on Newton’s law of motion in 
§2.1.2). Nevertheless, extensive induction is equally important in such a subtler analysis. 

5. The analysis in section 2, implicitly supports the view that, in mathematics, extensive 
induction is an important discovery procedure and provides evidence that a statement is 
possibly true. Although it does not offer complete justifications in mathematics, it often 
outlines them. This may be due, either to the procedure followed in the examination of 
special cases during induction, or to the nature of the results obtained by this procedure. A 
more detailed analysis (not given here), underlines several possible uses of extensive 
induction, as a means that may provide a more precise formulation of the original statement 
and/or of the nature of its logical justification, by revealing (some of) its crucial steps 
(Tzanakis & Kourkoulos 2000a, §4). This is important both epistemologically and 
didactically. It helps to see extensive induction as an intermediate justification procedure 
between complete (finite) induction and logical proof, to the extent that the latter replaces 
the de facto impossible complete (infinite) induction. Moreover, as far as the conception, 
formulation and justification of a statement are concerned, extensive induction constitutes a 
link between mathematics and physics, of potentially great didactic value. 

 
4. FINAL REMARKS   

In this paper we have studied questions (A), (B) of section 1. Though interrelated, we 
considered them separately, given that the procedure by which a statement is justified, 
neither necessarily provides a complete understanding of the nature of this statement and the 
reasons for its validity, nor is identical to the appropriate procedure by which this statement 
can be motivated, or has been actually conceived. In this way, we were led in section 2, to 
appreciate the existence of different types of heuristic discovery procedures that are 
followed in mathematical activities, usually in a mixed form; procedures based on logical 
reasoning (deduction, induction, or analogy), algorithms and experiments. Only their general 
characteristics have been given. Work should be done to analyse them in special cases and 
to determine in detail their relevance to mathematics education. Nevertheless, some 
preliminary general remarks can be made at this stage. 

The role of induction and analogy is underestimated in today’s mathematics education. 
The latter gives emphasis to the absorption of knowledge given in its final form from the 
start, and neglects the heuristic dimension of mathematical activity, so important for 
understanding new knowledge. This underestimation makes difficult the design of 
appropriate activities based on induction and analogy that could help students to develop 
corresponding skills. This is crucial for students’ development in mathematics, since both 
induction and analogy have been essential for its development. 

Experimental procedures have always been common in mathematical activities. However, 
it is usually assumed, that empirical observations and experimental investigations simply 
provide examples on the basis of which the advantages of a deductive approach become 
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more evident. This attitude overlooks that, as we have seen, experiments and empirical 
observations constitute an integral part of heuristic procedures in which induction and 
analogy prevails. They often require the use of rigorous, fertile reasoning and they form a 
privileged domain for introducing students to the way of thinking dominant in the 
experimental sciences. Actually, it is easier to realize this latter possibility in mathematical 
activities, than in the context of experimental sciences. Experiments in mathematics are 
technically simpler, more easily designed and performed, than real physical ones (e.g. 
experimentation in geometrical constructions is easier than that in mechanics, or 
electromagnetism). 

From section 2, it follows that as far as question (A) is concerned, there are no essential 
differences between mathematics and physics. Logical reasoning of all types, algorithms and 
experiments are fundamental activity patterns in both disciplines, on the basis of which new 
knowledge is conceived, formulated and understood. Such differences are related to question 
(B), as suggested in section 3. There, we have seen that a statement referring to a finite 
number of cases may be justified completely, both in mathematics and in physics, by finite 
induction (exhaustive examination of all cases). However, statements referring to an infinite 
number of cases, for which such a procedure is evidently impossible, are justified, either by 
logical (deductive) proof from some initial premises, which are accepted as valid, or by 
extensive induction.  

Extensive induction, apart from being a discovery heuristic procedure in physics, is also a 
basic procedure by which a statement acquires the status of a physical law. In mathematics, 
however, it appears either as a discovery heuristic procedure or as a preliminary stage to a 
complete logical proof. This suggests that extensive induction form an intermediate type of 
justification between finite induction and logical proof, of great potential value to 
mathematics education. By making clear that it is never possible to obtain an absolutely firm 
justification of a statement on the basis of extensive induction, the question arises whether 
such a justification is possible at all. This may act as a motivation to understand the 
necessity and the merits of logical proof. More precisely, to appreciate the fact that instead 
of trying to realize the (unattainable) task of the examination of an infinite number of cases, 
it is possible to justify a statement firmly, with the aid of a finite sequence of logical 
implications from some original premises that are accepted as true and in some of which the 
infinite number of cases is implicitly incorporated. A careful study of how this can be done 
in particular examples, may suggest possible ways by which students can be helped to 
conceive logical proof as the most “economic”and safe mutation of extensive (hence 
incomplete) induction (which appears, however, more natural to the human mind) to a 
complete (but impossible!) infinite induction. 
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Introduction 

Curricula in different countries relate to the culture, the education system, and 
social values of the countries. It may vary in knowledge, work of teachers, and work 
of students. I would like to introduce the mathematics curriculum in Taiwan briefly 
both in the content and the way the topics are presented.  

In this paper, several characteristics of the mathematics curriculum in Taiwan 
are discussed. To ensure consistency, the definition of curriculum given in the 
Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989) is 
used: an "operational plan" for instruction. This includes not only the knowledge or 
skills that students need to know, but also how students and teachers work to achieve 
their goals. Therefore, in considering the characteristics of the mathematics 
curriculum in Taiwan, both the topics included and the way the textbook and 
supplemental materials are presented should be considered.  

 
Background 

In order to understand the mathematics curriculum in Taiwan, I will briefly 
explain some of the fundamental aspects of the education system in Taiwan. First, 
there is a national curriculum for all high schools in Taiwan (Department of 
Education in Taiwan, 1983 & 1996). This nationally centralized decision-making 
curriculum syllabi is similar to that used in many countries in the world, such as 
Austria, Cyprus, Denmark etc., but different from the “not centralized” mathematics 
curricula in the United States (Beaton, etc., 1997; Mullis, etc., 1998).  

Also worthy of notice is a historical event that is related to the curriculum in 
both Taiwan, the United States and many other countries. In the 1950s, a reform in 
the school mathematics curriculum in the United States introduced "new math" to the 
secondary school. Usiskin (1985) described the "new math" as emphasizing 
discovery, rigorous logic, and mathematical structure. A few years later (1965), one 
of the new math curriculum development projects, the School Mathematics Study 
Group (SMSG), was translated, revised, and used as the high school national 
curriculum in Taiwan from 1965 to 1975. In other words, thirty years ago in Taiwan 
there was a mathematics textbook and curriculum similar to one of the textbooks used 
in the United States. However, the current mathematics curriculum in Taiwan has 
been changed twice since then (Department of Education in Taiwan, 1983, 1995). 
The mathematics curriculum in Taiwan today not only differs from "new math," it 
also is quite different from the mathematics programs in the United States today.  

In this paper, I only discuss the content of the current curriculum, the process 
of learning in Taiwan that influences the presentation of the topics, and the related 
weakness in problem solving and technology.  
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Contents Included in the Curriculum 

First, I will consider what the topics included in the mathematics curriculum 
in Taiwan are. It is reasonable to think that the mathematics content included in the 
curriculum may be different among countries. However, perhaps due to the similarity 
in the 1960's, the topics in the national mathematics curriculum in Taiwan 
(Department of Education in Taiwan, 1996) are not much different from the topics 
listed in the NCTM standards (NCTM, 1983, 1989). The high school mathematics 
curriculum in Taiwan includes topics such as algebra, geometry, trigonometry, 
probability, statistics, and calculus. They are similar to the topics in high school 
mathematics in the United States in a broad sense.  

However, two characteristics of the contents of the curriculum in Taiwan 
should be noticed. The first is that all these topics are studied in an integrated manner. 
For example, the topics in geometry are taught across four years. In the 8th and 9th 
grades, students learn properties of various shapes and two-dimensional coordinate 
geometry about lines and planes. In the 11th grade, students learn coordinate 
geometry and vector geometry in both two and three dimensions. In the same year, 
spheres and conic section curves are added as new shapes. These geometry topics are 
studied integrally with related topics, such as algebra, trigonometry, and other 
unrelated topics, such as probability and statistics.  

The second characteristic is that all high school students should take the 
required mathematics course, three to four hours per week in junior high schools and 
four to five hours in senior high schools.   All high school students in Taiwan must 
study all the above topics in grade 7 to grade11 (Department of Education in Taiwan 
1996). In addition to the three to four hours required mathematics course, students 
have a choice to choose a course of one to two hours in grade 7 to 9. In the grade 12, 
students can choose one of the two courses. These two choices contain similar topics, 
except that one of them introduces some basic concepts of calculus.  

In addition to the above characteristics of the contents in mathematics 
curriculum, it should also be noted that the national curriculum changes every ten 
years, simultaneously with all other subjects. That gives the Education Department a 
chance to reconsider the students' needs according to changes in the workplace or 
other social factors. It also gives mathematics educators a chance to reconsider new 
developments in mathematics education, psychology, and the relationships between 
mathematics curriculum and other subjects. This adjustment of curriculum every ten 
years is also important when we try to understand the mathematics curriculum in 
Taiwan. 

 
Learning from example and by doing 

In addition to the contents of mathematics, the way in which students and 
teachers work is also an important issue for understanding the curriculum of a 
country. The presentation of the textbooks and the handout materials teachers used 
give us some perspective into how students and teachers work. If we consider the 
process of learning, one characteristic of the curriculum in Taiwan is that most of the 
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above materials used in the high school mathematics classes present the topics based 
on "learning from examples and by doing."  

Three approaches 

"Learning from examples," "learning by doing," and "learning by discovery" 
are three related approaches of the process of learning. "Learning by examples" has a 
long tradition in mathematics learning. Simon and Zhu (1987) explained that a 
textbook based on "learning from examples" presents new concepts and procedures 
via worked-out examples. The examples should be clearly presented and should 
contain enough information so that diligent students can learn by themselves without 
other instruction. "Learning by doing" is actually "doing" mathematics problems. In 
this approach, students learn through solving mathematics problems.  

“Learning from examples and by doing” is synonymous with "Learning by 
discovery", since students gather information and discover mathematical patterns in 
the process of following the examples and doing new problems. However, the 
discovery in "learning by discovery", which emphasizes learning through the 
experience of gathering information and discovering patterns, may not come from 
"doing" mathematics problems. Usually "learning by discovery" does not contain 
worked-out examples in detail (Bell, 1978; Simon & Zhu, 1987; Romberg, 1992; 
Steen, 1990). 

I'll use quadratic equations as an example to explain how the 8th grade 
textbook in Taiwan presents the material (National Editing and Translating Center, 
1996). Since the topics of linear equations and factoring are taught prior to this 
chapter, the chapter begins with various examples of quadratic equations that can be 
solved by factoring. Examples are presented in detail to show the process of solving 
the equations and the roots of the equations. Then the chapter introduces examples of 
quadratic equations that cannot be factored into two linear factors with real 
coefficients. For these equations, the method of completing squares is displayed. 
After that, a quadratic equation in general form is solved as an example by finding 
square roots. This example serves as a proof of the quadratic formula. Application 
problems appear in the last section, which includes word problems and rational 
equations that can be reduced to quadratic equations. The whole chapter concentrates 
on solving quadratic equations with worked-out examples. In this textbook, many 
texts are used to explain the steps, but the presenting of this chapter did not really 
asking students to explore the patterns of quadratic equation, functions and their 
graphs in the beginning. These examples and explanations still work as worked-out 
examples.    

There is another aspect of learning in the curriculum in Taiwan. In addition to 
the examples in the textbook, students solve mathematics problems provided by 
teachers and found in problem books, in or after class. The supplemental materials 
provided by teachers varied, but under the pressure of entrance examinations (high 
school and university) many of these problems are non-routine problems. Tasks 
similar to the assessment task in Figure 1 with or without the solutions are given to 
8th grade students after they have learned graphs and quadratic equations. Most 
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students follow the examples first, and later on learn to discover the patterns, or learn 
the concepts in the process of solving problems. That works for “learning by doing.” 
Considering both the textbook and other materials , the mathematics curriculum in 
Taiwan should be classified as "learning from examples and by doing". 

In a coordinate plane, a parabola intersects the x  - axis at points A and B,  
AB = 4, and the vertex of this parabola is (0, 8).  
1. Find the coordinate of the midpoint of AB. 
2. Find the distance of the intersect points of line 2=y  and this parabola. 
3. If you move the parabola to the right, so that the vertex becomes  
( 2 , 8), what is the distance between the intersect points of line 2=y  and 
this parabola?                                     

Figure 1  

Considering both the approach of the textbook and the problem given in the 
supplementary materials, "learning from examples and by doing" happens when this 
kind of non-routine tasks is lectured in the classroom or worked through by students 
themselves.  

This approach is an important source of learning, especially for novices, 
which is different from "learning from example" just by rote. Experimental results 
suggest that high school students do achieve conceptual understanding in factoring, 
and in geometry tasks through "learning from examples and by doing" (Simon & Zhu, 
1987). When the learners actively explain the solution steps, this approach works 
better (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Renkl, 1997). The 
self-explanation of the learners helps students to learn reasoning (Rissland, 1991). 

Tasks given in the College Entrance Examination Center (CEEC) Test for 12th 
grade students show that students in Taiwan not only have to learn the routine 
problems, but also need to answer items related to conceptual knowledge. For 
example, the item in Figure 2 assesses the conceptual knowledge of the relationship 
between the quadratic function and its graph. Students may use formulas to solve this 
item, but answering all five values involves understanding of the quadratic graphs 
and equations. About 66% of the students in the 1994 College Entrance Examination 
Center mathematics test got this item correct.  

 
The graph of a function cbxaxxf ++= 2)(  is shown below. 
Which of the following values are negative? (You can choose more than 
one) 
 (A) a  (B) b  (C) c   
 (D) acb 42 −  (E) cba +−  
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x

y

(1/2, 0)(-2, 0)

 Source: CEEC test 1994 
Figure 2 

Applied Problems are needed 

Solving applied problems is among the necessary activities in mathematics 
(Romberg, 1992). It is hard to expect students to be able to use their mathematical 
knowledge on applied problems when problem solving is learned in a pure mathematics 
context (Resnick, 1991). However, most of the problems used in the textbook and 
exercises in Taiwan are pure mathematics questions or illustrative tasks. Problems 
related to the real world are rare. Students may learn the strategies of how to solve 
problems, but they still do not know how to use them in daily life. Performance data of 
examinations in Taiwan give evidence of students' difficulties in applying mathematics 
concepts to applied problems. Question 1 in Figure 3 is a pure mathematics problem 
which students learned from the textbook. A related pure mathematics problem 
(Question 2 in Figure 3), an item in the 1995 CEEC mathematics test, was correctly 
answered by about two third of students. However, in a related question in a real world 
situation (Question 3 in Figure 3), only one third of students answered correctly. The 
curriculum in Taiwan emphasizes solving problems; however, students' ability to solve 
applied problems is much lower than the ability to solve pure mathematics problems. 

1. Plane E: x + y + z = 4 and the surface of a sphere:  
(x-1)2 + (y-1)2 + (z-1)2 = 1 intersect at a circle. 
Find  the area of the circle                               . 

       Source: National textbook of Taiwan 
2. Which of the following planes intersect the sphere  
x2 + y2 + z2 -2x + 4y + z - 19=0 in a circle with the largest area? 
(A) x + y + z = 0  (B) z = -1  (C) y = 1   
(D) x = 2   (E) x = 2y  
       Source: 1995 CEEC math test 

3. Assume the earth is a sphere. Given that, at the equator the distance between 
10 degrees of longitude is 1113 kilometers, what is the distance between 10 
degrees at 20 degrees north latitude? 
(A) 1019 (B) 1027 (C) 1035 
(D) 1046 (E) 1054   Source: 1996 CEEC mathematics test 
(Table of trigonometric functions was given) 
 

Figure 3 
 
Calculators and computers in mathematics curriculum  



 ~ 57 ~ 

Another characteristic of the curriculum in Taiwan is that the high school 
mathematics curriculum in Taiwan does not mention calculators or computers in 
most of the chapters. Computing with paper and pencil (or mentally) are the major 
methods used to find the solution to problems. Calculators are recommended as a tool 
for finding answers to only a few topics, such as exponential function, trigonometry, 
etc. In addition, calculators are used more frequently as a tool in science classes, but 
are not allowed to use them during entrance examinations. Computer programming 
and software packages are taught in an independent, but required, 
course--Introduction of Computer Science--in 10th grade (Department of Education 
in Taiwan, 1983, 1996). Through these experiences in mathematics, science and 
computer courses, students use technology only as a tool to find answers. 

Since the curriculum in Taiwan is based on "learning by examples and by 
doing," problems related to real world are necessary in “learning from examples and 
by doing”. However, including applied real world problems in the mathematics 
curriculum would introduce the difficulty of complex computations and larger 
numbers of real world situations.  

It may be good to begin with examples that students can compute by hand. 
Computing by hand, which seems inconsistent with the current tendency of 
mathematics education (Usiskin, 1998), gives students a chance to work through the 
examples step by step and a chance to see the problems in detail. However, not using 
calculators or computers in most mathematics courses restricts the magnitude of the 
numbers in the questions used. It also restricts the context of the questions, since 
many real world problems have numbers that are difficult to compute by hand.  

Technology, such as calculators and computers, can be used as tools to find 
solutions to complicated questions. Using technology in high school mathematics 
curriculum is an area of increasing interest in mathematics education (NCTM, 1998). 
In addition to computing, technology can also be used to give good examples to build 
concepts and find patterns. Technology can be used, after students have learned the 
procedures, to give more examples to help students understand concepts and solve 
problems related to the real world.  
 
Conclusion 

Considering the textbooks, the supplemental materials and other influences of 
the operational plan for instruction, the mathematics curriculum in Taiwan is based on 
"learning from examples and by doing". Worked-out examples are presented clearly in 
the textbook. In addition to that, students under the pressure of college entrance 
examinations work on many problems in and out of school. This gives students a 
chance to learn by doing problems. “Learning from examples and by doing” is an old 
process of learning in Chinese tradition. We might think it is too old that should be 
give up. However, worked-out examples did give a model of how the problems were 
solved, that is an important learning source for the novices. If self-explanation can 
happened in the process, this kind of learning approach not only gives students a 
picture of procedural knowledge, but also conceptual knowledge. Helping students to 
explain the solution steps themselves will be necessary. That might help more students 
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take the advantage of this “learning from examples and by doing” process, and avoid 
the disadvantage of “learning from examples” by rote.  

Since the curriculum in Taiwan is based on "learning from examples and by 
doing," good examples are very important. However, most of the examples used in 
Taiwan's high school mathematics textbook are pure mathematics problems or 
illustrative tasks. Although students may learn problem solving through pure 
mathematics questions, they will face difficulties when they apply their mathematics 
knowledge. Examples involving real-world situation are needed to connect 
mathematics knowledge and its usage.  

Including applied problems is problematic, though, because calculators and 
computers are not used in most parts of the mathematics curriculum in Taiwan. 
Computing by hand does force students to go through the problems step by step and 
gives them a chance to learn the concepts in detail. . However, not using calculators or 
computers in the mathematics curriculum restricts the magnitude of the numbers in the 
examples and the context of the problems. Calculators or computers should be used 
after students have learned through the details of the worked-out examples, and to give 
more appropriate examples from different aspects. Including these tools in finding 
solutions and finding patterns may improve the mathematics curriculum in Taiwan 
and make "learning from examples and by doing" more effective.  

The more we know about the philosophy of learning behind a curriculum, the 
more we can take advantage of the positive aspects of curriculum and improve the 
weak parts of it. 

 
Reference:  
Beaton, A. E., Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., Kelly, D. L., & Smith, T. A., (1997). 

Mathematics Achievement in the Middle School Years: IEA'S Third International Mathematics and 
Science Study. Chestnut Hill, MA: Boston College, TIMSS Internal Study Center.  

Bell, F. H. (1978) Teaching and Learning Mathematics (In Secondary Schools). Debuque, Iowa: 
Wn.C.Brown Company Publishers. (p.241) 

Chi, M. T. H. & Lewis, M. W. & Reimann, P. & Glaser, R. (1989). Self-explanations: How students study 
and use examples in learning to solve problems. Cognitive Science 13, 145-182. 

College Entrance Examination Center (CEEC) (1994, 1995, 1996). College Entrance Examination 
Center mathematics test. Taipei, Taiwan: College Entrance Examination Center. 

Department of Education in Taiwan (1983, 1995). High school Mathematics Curriculum in Taiwan. 
Taipei, Taiwan: Department of Education in Taiwan. (In Chinese) 

Fuson, K. C., Stigler, J. W., Bartsch, K. (1988). Grade placement of addition and subtraction topics in 
Japan, China, the Soviet Union, Taiwan and the United States. Journal for Research in Mathematics 
Education 19(5): 449-456.  

Mullis, I. V. S., Martin, M. O., Beaton, A. E., Gonzalez, E. J., Kelly, D. L., & Smith, T. A., (1998). 
Mathematics and Science Achievement in the Final Year of Secondary School: IEA'S Third 
International Mathematics and Science Study. Chestnut Hill, MA: Boston College,  
TIMSS Internal Study Center.  

National Council of Teachers of Mathematics (1989). Curriculum and Evaluation Standards for School 
Mathematics. Reston, VA: NCTM 

National Editing and Translating Center. (1996). Textbooks for Junior High School Mathematics. Taipei, 
Taiwan: National translation Center. ( In Chinese) 

National Taiwan Normal University Center of Science Education (1999). Textbook for Senior High 
School Mathematics. Taipei, Taiwan: National Editing and translating Center. ( In Chinese) 



 ~ 59 ~ 

Renkl, a. (1997) Learning from worked-out Examples: a study on individual difference. In Cognitive 
Science 21(1):1-29. 

Resnick, D. P. (1991). Assessing the thinking curriculum: New tools for educational reform. In B. R. 
Grifford & M. C. O'Connor (Eds.), Changing assessments: Alternative views of aptitude 
achievement and instruction. Boston, MA: Kluwer. 

Rissland, E. L. (1991). Example-based reasoning. In J. F. Voss, S. N. Perkins & J. W. Segal (Eds.), 
Informal Reasoning in Education Hillsdale, NJ: Lawrence Erlbaum an Associates. 

Romberg, T.A. (1992). Problematic features of the school mathematics curriculum. In P. W. Jackson 
(Eds.), Handbook of Research on Curriculum.  

Simon, H. & Zhu, X. (1987). Learning mathematics from examples and by doing. In Cognition and 
Instruction 4(3): 137-166.  

Usiskin, Z. (1985). We need another revolution in secondary school mathematics.  
In C. R. Hirsh & M. J. Lweng (Eds.), The secondary school mathematics curriculum. 1985 
yearbook.. Reston, VA: NCTM. 

Usiskin, Z. (1998). Paper-and-pencil algorithms in a calculator-and-computer age. In L. J. Morrow & M. 
J. Kenny (Eds.), The Teaching and Learning of Algorithms in School Mathematics.  Reston, VA: 
National Council of Teachers of Mathematics. 



 ~ 60 ~ 

@Schoenfeld, A. (1993). Report of working group 1. In Lacampagne, C.B., Blair, 
W., & Kaput, J. (Eds, 1993). The algebra initative colloquium. v.2. (p.11-18). 
OERI, U.S. Department of Education. 
@Hiebert, J.(1986). Conceptual and Procedural Knowledge in  mathematics: an introductory 
analysis. In Hiebert, J. (Ed. 1986, p.1-23). Conceptural and procedural knowledge: the case of 
mathematics. Hillsdale, NJ. Lawarence Erlbaum Associates, Publishers. 
@Usiskin, Z. (1988). Conception of School Algebra and uses of Variable. In Coxford, A.F.(Ed). 
The idea of Algebra K-12.p.8-19. NCTM. 
@Kline, M. (1973), Why Jonny can't add: The failure of the new math. New York, St. Martin's 
Press. 
@Swafford, J. &Brown, C. (1989). Variables and relations In Lindquist, M. (Eds). Results from 
the fourth mathematics assessmetn of the national assessmetn of educational progress. Reston, 
VA: NCTM. 
@Steen, L. A. (1990). Reshaping school mathematics: A philosophy and framework of 
curriculum. 
@ Steen, L. A. (1981). Mathematics tomorrow. New York: Springer-Verlag. 
@Rachlin, S. L. (1989). The research agenda in algebra: a curriculum development perspective. 
In Wagner, S. & Kieran C. (Eds). Research Issues in the Learning and Teaching of Algebra 
NCTM Reston, Virginia. 
@Gau, Shin-Jiann, (1997) The distribution and the effects of opportunity to learn on 
mathematics achievement. Paper presented at the annual meeting of the american educational 
research association.  
@Stigler, James-W et al. (1990) Mathematical knowledge of Japanese, Chinese, and American 
elementary school children.  NCTM. 
@ Chi, M. & Leeuw,N. D. Chiu, M. H. & Lavancher, C. (1994). Eliciting self-explanations 
improves understanding. Cognitive Science. 18, 439-477. 
Renkl, A. (1997). Learning from worked-out examples: a study on individual differences. 
Cognitive science 21(1), pp.1-29 



 ~ 61 ~ 

F&B Mathematics Teaching in Vocational School:  
A Team Work with HPM perspective 

 
Yu-Yi Lin 

Kai-Ping Vocational School 
 

Abstract 
From the experiments on teaching Mathematics in F&B Vocational school, we 
conclude that facilitating students to establish a good relationship with Mathematics is 
fundamental for Mathematics teachers.  The History of Mathematics can be a bridge 
for establishing such relationship.  Students are more attracted to the stories of 
successful Mathematicians rather than dull figures.  The ancient manuscripts on 
Mathematics also arouse students’ curiosity.  Thus the interest to investigate is also 
stimulated.  Teaching materials that can link F&B and Mathematics and along with 
multi-approach measurement and testing method can make teaching more effective. 
Cooperative teaching among school teachers enables students to get different 
experiences in the field of Mathematics, and thus is an effective curriculum. 

Therefore, up to 86% of the students in our experiments reported being able to adapt 
to this teaching method and that the objective of “happy learning with 
accomplishment” can be realized. 
 
1. Preface 

Ladies & Gents, I am Ling Yu-Yi. My topic for today is “F&B Mathematics 
Teaching in Vocational School: A Team Work with HPM perspective”. I will share my 
experience at Kaiping on F&B Mathematics Teaching. In return, I hope that we can 
all share our experience together. 

Our school is characterized by our vocational education in F&B. For our F&B 
students, practice is more important than theory. After two years of research on F&B 
Math teaching, we conclude some of the important points: 

� Let students start from being not afraid of Mathematics, and then find 
Mathematics useful 

� Let students find the meaning of life through the study of Mathematics 
history, and realize that Mathematics is not just dull calculations. 

� Link Mathematics with F&B to arouse students’ learning motivation. 
 

According to our report at the end of the term, up to 86% of the students in our 
experiments are able to adapt to this teaching method. 

 
2. How can we facilitate our students to get rid of their math anxiety and find it 

useful? 

We start from culture and a fun, practical approach to design our curriculum. We 
put most of our focus on students, teachers are there to create a learning environment. 



 ~ 62 ~ 

3. Let students find the meaning of life through the study of Mathematics history 

I often give examples of successful mathematicians to let students learn from 
their successes. To learn Mathematics well is not difficult, even if you learn by 
yourself you can succeed. 

For example, Tartaglia grew up in a poor family through hardship. Academic 
education was a luxury, but he was determined to learn. He always cuddled in front of 
his father’s epitaph busy reading and writing and would sank deep in his thoughts for 
hours pondering. Tartaglia became a famous 16th century versatile mathematicians 
and physician in the end. 

Students found a lot of stories about Chinese mathematicians on the internet 
when writing their topic reports. They marveled about how great the Chinese 
mathematicians were. They also realized that they are not alone and that Mathematics 
is not foreign. Mathematics is with they in their daily lives. 

When students start their internship at the kitchen, over 80% of the Applied 
Mathematics curriculum are concepts of weights and measurement. Therefore, I 
collected ancient manuscripts that are related to F&B. I showed them to the students, 
in the hope that they could find the manuscripts meaningful in the context of F&B. 
The following are 6 examples taken from old manuscripts. 
 
Example I 

Picture below shows a Greek metrological relief.  From this, we learn that, in 
the 1500 B.C., people measure things with limbs and feet and that they think measure 
of everything is human. This is a problem-solving way of life. 
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Example II 

According to Chapter 61 of Meis’ Manuscript, ancient Chinese use “steps” as units for 
measurement. But there are different definitions on “one step” in different 
dynasties.(See below) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example III 

Picture below shows a Graeco-Roman steelyard(British Museum). It resembles our 
Chinese steelyard. 

 
 
 
 
 
 
 
 
 

Example IV 

This is Chinese abacus, corresponding to one type of Greco-Roman abacus. Each 
row represents a hexadecimal place. Beads above the bar are worth 5, beads below it 
1.(See below) 
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Example V 

This is a 1st-century Hsing-Mon-Gia measurement. According to the Chinese 
measurement history, it has a group of five utensils in various sizes. They are now in 
the Palace Museum, Taipei.(See below) 

 
 
 
 
 
 
 
 
 

Example VI 

In ancient China, every province and city has their own systems of weights and 
measurement. Therefore, things get inextricable. It was not until the Kuo-Ming 
government ruled to announce the unification of one system—the Metric 
Measurement System. All other systems are demolished there after. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One student wrote in his reflection, “After seeing the transparencies, I found that 
the wisdom of our ancient ancestors astonishing. Seeing all these math-related tools 
and instruments, we should thank and honor their clever inventions. For without them, 
we can not have the convenience of modern technology.” 
 
4. Link Mathematics with F&B to arouse students’ learning motivation 

Mr. Feng-shang Chiao has 20 years of experience in F&B business. He illustrates 
the relationship between math and F&B in perspectives of location, rent, investment, 
number of employees, salary, price, and bonus. His charisma also attracts students’ 
attention. He stresses that any preparations in F&B are related to math. Therefore, if 
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one wants to become a chef, one has to learn math well. Otherwise, one would have a 
hard time. 

This is a reflection of one student in Mr. Chiao’s class. 

“On that day, I saw a fat man standing outside the gate, I thought he was the 
cleaning man. Then, I was told that he was the chef… I have gained a lot in this class. 
I understood the relationship between Mathematics and F&B. I will always remember 
Mr. Chiao’s teaching.” 

Ms. Hsiu-lien Cheng has a very straightforward teaching style. Many new 
students in F&B are not familiar with the traditional market, names of vegetables, 
weight. They don’t know how to weigh things. She takes this opportunity in class to 
teach students how to weigh things. Students are asked to bring different kinds of 
fruits and vegetables. They were broken into groups to measure how many eggs to 
weigh 1kg…etc. Thus, students get to know the concept of weights and quantity and 
know how to use different units interchangeably. One student wrote in his report, “It’s 
very funny and joyful. Things I learned in this class can be very practical in my daily 
life. I won’t be cheated next time going to the market.” 

I like to use various activities for teaching. I asked students to make learning 
portfolios, and took pictures and film videos-tapes for students. One student said in 
his report, “Teachers design lots of activities. Using different kind of presentation to 
help us gaining knowledge. Video-taping can make lazy students paying attention in 
class.” As for assessment and evaluation, I prefer using more of a multi-approach. 
They can do a topic report to get their grades. 

We found from our questionnaire, there are 86% of students can adapt to this 
kind of teaching method and have positive feedback. 

 
5. We design our curriculum through our discussion. 

Principle Hsia first leads teachers at Kaiping to discuss guidelines on curriculum 
teaching. Then, at teaching workshops, teaching content, methods, forms of 
evaluation and how to operate cooperative teaching will be discussed. We believe that 
F&B Mathematics Teaching can help students to reach the state of “happy learning 
with accomplishment”. 

I want to thank Prof. Fou-Lai Lin. He taught us the concept of “Give our students 
Mathematics with feelings” and “Using activities for teaching can be a lot of fun.” His 
words are very impressive. There is also Prof. Wann-Shang Hung with his excellent 
knowledge of Mathematics. He guided us on how to use Mathematics in teaching with 
great patience and encouragement. I have great respect for him. I also want to give my 
thanks to Dr. Hui-Wen Hsia of Kai-Ping Vocational School for his supports. He 
provides great teaching space to let teacher have more flexibility to let students really 
learn. Many thanks to Dr. Hsiang-Jun Lin, Vice Principle of Kai-Ping Vocational 
School, for her encouragement that helped me gaining fruitful results through my 
two-year experimental teaching. 
 
6. Conclusion 
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Mathematics is part of our lives, from space shuttle to food cost. Through interesting 
activities and the history of Mathematics, students can understand how to enter this 
field without the need for calculations, and at the same time, getting good grades. 
Therefore, students gain confidence and raise their interests in learning. To look more 
closely, the importance of Mathematics teaching and learning is, besides calculations, 
to facilitate the concept of logic. This is a deeper meaning of Mathematics as a whole. 
Besides, using Math-related ancient manuscripts enables students to see weights and 
measurements in their kitchen with meanings of life. 
 
7. Reference 
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Using Mathematics Text in Classroom: the case of 
 Pythagorean Theorem   

 
Yen Fu Ming 

Yuan-Lin Junior High School 
Chang-Hua County, Taiwan 

 
The primary aim of using mathematics text in classroom should be the 

development of understanding mathematics.  We approve that mathematics 

should be regarded to be a cultural phenomenon.  In particular, we focus on the 

pattern of interaction in using mathematics text in classroom.  Moreover, the 

constructivism and cooperative learning are used in designing this teaching strategy. 

Therefore, in this article, how mathematics text is used in classroom is explored 

through contrasting of several approaches to the case of Pythagorean Theorem. 

 
1. Introduction 

What we understand mathematic is based on theory into practice.  The 
practicing structure is like a society.  According to Teppo(1997), learning 
mathematics is recognized as a social and cultural activity is given by Crawford as 
follows:  "Our schools serve as one of the places in which students are 
introduced to the meaning of culturally approved mathematical signs, symbols, 
and techniques".  Using culture metaphor to describe mathematic teaching is also 
suggested by Bishop(1991), as he puts it, “Mathematics as a Cultural 
Phenomenon”.  With this, Bishop thinks in this kind of mathematic education the 
first principle is teacher should help students develop a broad understanding of 
Mathematics as a cultural phenomenon.  Further Bishop claims: 

Breadth is the most important quality in this principle and although one would like to see 
yet more evidence of 'other cultures' mathematical ideas and values there is enough material 
available already to enable the breadth to be partially conceptualized as I hope I have 
demonstrated. 

On the other hand, referring to claim of Wood (1994), who focus on the 
pattern of interaction in mathematics teaching.  In his thought, teacher should 
provide guiding questions to focus the joint action among groups of students. 
Further Wood claim: 

Initially, this pattern (teaching activities) appears to be similar to the funnel pattern as 
its intent is to provide opportunities for learning through joint activity.  However, the pattern 
that emerges is quite different as the teacher’s intent in questioning is to focus the attention of 
the student to the critical aspect of a problem, -.to pose a question which serves to turn the 
discussion back to the student leaving him/her with the responsibility for resolving the 
situation. 

Hung (1997) claims:  
The culture and social practices through which our students develop their learning is 

crucial to the development of their critical and creative thinking process.  Unless we foster a 
school where knowledge and meaning are negotiated and discovered (not just poured into 
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students’ heads), we cannot expect radical transformations in students’ “ways of seeing” 
mathematics. 

When discussing “Ways in Which People Differ” , Lawler (1996) mention: 
An anthropologist will point to culture as a force shaping the focus and choices of the 
individual.  A Physiological psychologist would describe people in terms of their senses.  A 
social psychologist might describe people in terms of their personality characteristics.  A 
cognitive psychologist would focus on the spectrum of a person’s knowledge, its range, depth, 
and its interconnectedness. 

According to Conrad (1997), rationale for using group techniques in any 
setting is given by Davidson as follows:  “By setting up learning situation that 
foster peer interactions, the teacher meets a basic human need for affiliation and 
uses the peer group constructive force to enhance academic learning.” 

 Therefore, how to join history of mathematics to instructions of 
mathematical class is an important issue one which this talk likes to address. 
 
2. Text 
    (A). puzzle : 
How do you integrate two squares into a square by proper cutting? 

 
Figure 1. A possible Pythagoras’s proof. 

          We find puzzle playing a very important state is based on all kind of 
proofs of the Pythagorean theorem.  Above figure 1 shows a possible 
Pythagoras's proof. 
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(B). The proof of Shang Gau. 

 

 
Figure 2: The proof of Shang Gau. 

           The content of figure 2 is as follows:  

              Zhou Gong (about 1100 B.C.), his family name is Chi and first name 
is Dun.  He is also a young brother of king Wo.  Shang Gau is an 
officer of Zhou dynasty.  There were a dialog with Zhou Gong and 
Shang Gau, the meaning are listed below. 

               Zhou Gong asked Shang Gau:  I heard that you master calculating 
techniques.  May I ask you how ancient Fu Xi constructed degrees of 
heaven ball?  In conditions, there weren't ladder to climb to sky and 
there was no way that he could use ruler to measure it on the ground.  
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In addition, what is source of this number? 

               Shang Gau answered:  The calculating technique arises from circle 
and square.  The circle is produced from square.  The square is 
produced from rectangle ("used by carpenter").  The rectangle is 
produced from "9×9=81”.  That is a product table.  We cut the 
rectangle from diagonal in two.  The length ("gou") of rectangle is 3 
and the wide ("gu") of rectangle is 4.  So, diagonal of rectangle is 5. 
Using this diagonal as a side generates a square.  Put together the half 
rectangle cut to every side of square.  It constructs a bigger square.  
Four the half rectangles added equal to two rectangle.  Cut off two 
rectangles from the bigger square.  The area of remainder is 25 (square 
units).  The method is called “accumulating rectangle”.  That is 
putting rectangle together.  

 
         (C). The proof of Euclid (365-300 B.C.). 

 
    Figure 3. Greek edition: Elements & entire text of Pythagorean theorem  
 

               In history of mathematics, Horng (2000) claim: the demonstration of 
Euclid (Proposition 47, Volume 1, Elements; Figure 3.) is one of 
legitimate approach to this proposition.  The demonstration is listed as 



 ~ 71 ~ 

below (Figure 4.): 

 

Figure 4. The proof of Euclid (In Chinese) 
 

         (D). The proof of Zhao Shuang ( 3 century, A.D.).  

 
Figure 5. The proof of Zhao Shuang 
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The content of figure 5 is as follows: 

                 Putting together two congruence right angle triangles (the triangles 
is colored with red. Its area is called “red solid”) constructs a rectangle. 
Four rectangles construct a big square whose middle remains an 
empty square (it is colored with yellow.  Its area is called “middle 
yellow solid” or “difference solid”).  That is construction of chord 
figure.  

                  Zhao Shuang said: 

                 “According to chord figure, gou product ku equal two times as 
large as “red solid”.  It doubles as four times of “red solid”.  The 
difference between gou and ku product itself equal “middle yellow 
solid”.  Adding the difference solid equal the chord solid.” 

              That is:  2ab + (b-a)2 = c2    . It is simplified as 

                    a2  + b2 =  c2                      

              How wonderful proof it is!  Although the side of right triangle of 
chord figure is 3̊ 4̊ 5, the proof can’t lost its generality.  In addition, 
the “red solid” and “yellow solid” colored is not necessary.  It plays a 
symbolic function, actually. 

 
          (E). The proof of Pythagoras (6 century, B.C.). 

              There are many guesses about the proof that may be proposed by 
Pythagoras.  In general, the dissection proof may be regard as 
follows. 

 
Figure 6. The proof of Pythagoras 

 

               Area of Left of figure 6. = Area of Right figure 6. 

a2  + b2 + 2ab = 4 × 
2
1 ab+ c2    

a2  + b2 =  c2 

 

           There is another opinion as follows. 
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        Figure 7. (Include Figure a. Figure b. Figure c.) A possible Pythagoras’s 

proof 
 

       The content of figure 7 is as follows: 

          Four right angle triangles construct a square.  There is a small square 
in the middle (figure a.).  Moving two triangles becomes figure b.  With 
reference to figure b, you can imagine that there is a stick put next to side 
of the small square (figure c.).  Then, the left of figure is a square with 
side b and the right figure is a square with side a. 

           So,    a2  + b2 =  c2 
               

      (F). The proof of Bhaskara II (India, 1114 – about 1185.). 

         Bhaskara II stated Pythagorean theorem in his famous book “Bijaganita” 
(science of calculating element.).  Two sides of right angle of triangle is 
called “bhuja”(base) and “ koti”(height).  The text is as follows: 

 
Figure 8. The proof of Bhaskara II 

The content of the text (Figure 8) is that two times product of base and 
height add square of their difference equal square of them.  It is difficult 
to understand the meaning.  The annotation of Ganesa (16 Century.) later 
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explain as follows:   

 
Figure 9   The proof of Bhaskara II, as was explained by Ganesa. 

 
      2ab + ( b-a)2 = c2 

     a2  + b2 =  c2 

 
(G). The relation between Egypt rope stretchers and pyramid. 

      The historian of mathematics Moritz Benedikt Cantor (1829- 1920) 
guessed that ancient Egyptian has known using relations of 3:4:5 to make a 
right angle.  According to two evidences, the one is Cyperus papyrus that 
contains a lot of squares with 3:4:5 sides.  The sum of front two squares 
area equals the back square.  For instance, Cyperus papyrus (usually, Der 
Berliner Papyrus 6619 called) that is stored in Berlin now was discovered 
at Kahun of the Nile river delta.  There is a problem included in papyrus 
that takes a square with area 100 into two squares apart and the side of one 
square equal 3/4 side of another square.  The answer is that side of three 
squares is 6˚8˚10.  Another Cyperus papyrus that is stored in London 

now included similar problem.  The side of three squares is 12˚16˚20. 

 
Figure 10. rope stretcher (harpedonaptae) in Egypt 
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    Another evidence is described as follows.  It prompts the geometry 
into prosperity in Egypt by measuring of land.  These measuring workers 
own a special name rope stretcher (harpedonaptae: figure 10) called.  The 
meaning of rope stretcher was geometric specialist of the period.  They 
had many chances to deal with problem of making right angle.  From the 
point of view of pyramid structure, the error of base right angles is only 
12”.  If it hasn’t suitable method making right angles, it can’t reach the 
high accuracy.  So, the historian of mathematics Moritz Benedikt Cantor 
(1829- 1920) guessed that rope stretchers take rope into 12 sections apart 
can construct a right angle triangle with sides 3˚4˚5.  

 
(H). Babylonian experience. 

 
Figure 11. a Babylonian tablet labeled YBC7289 (about 1700, B.C.) 

 

      According to the source materials available, Babylonian had an 
outstanding achievement at the Pythagorean theorem and Pythagorean 
numbers.  It is a real object evidence, the shape of a Babylonian tablet 
labeled YBC7289 (about 1700, B.C. Figure 11) is like a round cake, there 
was a square carved on it, it had drawn diagonals with a sequence of 
numbers written, the numbers is 1:24˚51˚10 (sexagesimal).  It is 

transferred into decimal become 1.41424196澽澽澽.  That is just the diagonal 
length of a unit square calculating from Pythagorean theorem. Labeled 
number 30 at left top mean one side of square is 30. So, the length of 
diagonal should be 30 2 .  That is as follows: 

       ˡ30ˢ×ˡ1ƞ24Ə51Ə10ˢ=ˡ42Ə25Ə35ˢ 

   It is just a sequence of numbers written on the bottom of right of figure 11. 
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3. Teaching activity 

      The constructivism and cooperative learning are used in designing this 
teaching strategy.  In this teaching activity, there were 38 students in the 
class and were divided into 8 small groups, each group consisted of 4-5 
students.  We spent 5 hours to undertake this teaching activity in a week. 

 
  Activity (1). 

      Question: How do you integrate two squares into a square by proper 
cutting? 

      Every student in group have to prepare graph paper˚white paper˚

cardboard˚scissors˚glues˚ruler˚compasses˚fine rope.  

      (A). Each group of students participate this inquiry activity using graph 
paper for this problem.  The teacher played a role that accepted 
asking question and helped student's negotiation to solve this problem 
without providing answer. 

      (B). Each group presented their result and responded question asked by 
other groups.  The teacher made some comments on these 
discussions and he also gave praise to the students.  In addition, the 
teacher provided supplement information of history of mathematics 
and explains it. 

      (C). Each group of students participate this inquiry activity using white 
paper for this problem.  The teacher played a role that accepted 
asking question and helped student's negotiation to solve this problem 
without providing answer. 

      (D). Each group presented their result and responded question asked by 
other groups.  The teacher made some comments on these 
discussions and he also gave praise to the students.  In addition, the 
teacher provided supplement information of history of mathematics 
and explains it. 

 
 Activity (2). 

          The teacher introduced history of mathematics concerned with 
Pythagorean theorem.  

      (A). The proof of Shang Gau . 

      (B). The proof of Euclid (365-300 B.C.). 

      (C). The proof of Zhao Shuang (3 century, A.D.). 

      (D). The proof of Pythagoras (6 century, B.C.). 

      (E). The proof of Bhaskara II (India, 1114 – about 1185.). 

      (F). The relation between Egypt rope stretchers and pyramid. 

      (G). Babylonian experience . 
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 Activity (3). 

      Each group presented the proof of Pythagorean theorem which differ from 
(A) to (G) in activity (2). 

              Each group gathered and integrated information (books or www) 
concerned with “Shang Gau” theory during extracurricular activities.  In 
addition, each group makes overhead projection film with subject to 
present.  

      (A). Each group presented their result and responded question asked by 
other groups.  The teacher made some comments on these 
discussions and he also gave praise to the students.  In addition, the 
teacher provided supplement information of history of mathematics 
and explains it. 

    4. Evaluation  

      (1). Evaluation toward students. 

          (A). Based on the report of each group on Pythagorean theorem, students' 
overhead projection film presented and puzzle cardboard finished by 
group.  

          (B). Evaluation during activities.  

              (a). Evaluation based on students' conducting activity (1), such as how 
students cut two small square cardboard, how students put 
cardboard into large square.   

              (b). Evaluation based on students’ conducting activity (3), such as 
how students presented the content of Pythagorean theorem, how 
students prompt other groups into a discussion circumstance.  

      (2). Evaluation toward teacher and students. 

          Questionnaire: ( see appendix I)  

          Result of questionnaire:  Almost every student felt that the arrangement 
of teaching activities benefit and changed them to learning mathematic and 
their viewpoint toward mathematics.   

     5. Suggestion 
       (1). In general, it is difficult that student can automatically link relations 

between mathematical content and history of mathematics.  So, the 
teacher can apply cooperative learning model to help students linking the 
relations and prompt students thinking content of history of mathematics 
concerned.  

       (2). The material of history of mathematics consistently is regarded as method 
of conveying nature of mathematics.  That is a reason it can make 
students understanding process of generating knowledge of mathematics. 

       (3). The teacher arranges mathematical inquiry activity that student 
participates and prompt student feel himself is like a mathematician.  It is 
the most effective strategy to prompt student think highly of mathematical 
inquiry.  In addition, student will have learned mathematical thinking and 
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development of mathematical process technique by participating activity 
of mathematical inquiry.    

      (4). The teacher has to understand content of history of mathematics 
embedded in curriculum.  In addition, history of mathematics should be 
included in teaching belief.  If we regard it is important, it will be 
possible to reproduce culture of mathematics in classroom. 
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    7. Appendixes 
      I. Questionnaire:  History of mathematics is put into the mathematical 

teaching in the classroom.  

       (1). How do you think of mathematics before attending the class? 
 

       (2). What do you think of this mathematical teaching and learning?  

 

       (3). Some units were provided to you as follows:  

       (A). The proof of Shang Gau. 

       (B). The proof of Euclid (365-300 B.C.). 

       (C). The proof of Zhao Shuang (3 century, A.D.). 

       (D). The proof of Pythagoras (6 century, B.C.). 

       (E). The proof of Bhaskara II (India, 1114 – about 1185.). 

       (F). The relation between Egypt rope stretchers and pyramid. 

       (G). Babylonian to this theory. 
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         (a). Which units do you have the most impression?  

 

         (b). Which method of proof do you appreciate? Why? 

 

       (4). In learning “Phthagorean theorem” unit, we had provided some cultural 
background information related to develop this theory. What do you 
think of these background information in helping your mathematical 
learning? 

           (A). very helpful  (B). a little help (C). no help 

      

      (5). Do you have any change on your view of mathematics after you have 
experienced this learning activity? 

         Yes, the change is: 

         No, because: 

 

      (6). Do you feel that this kind of mathematical teaching can help your 
mathematical learning? 

         Yes, the change is: 

         No, because: 

 

      (7). Do you feel that this kind of learning mathematics can help you transfer to 
your other subjects (ex. Physic, Chemical, History, Cultural.) learning? 

         Yes, the change is: 

         No, because: 
 
       II. The photographs of teaching activity     

 
Photo 1. How do you integrate two squares into a square by proper cutting?  

(Material: Using graph paper) (Thinking and exercising) 
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Photo 2. How do you integrate two squares into a square by proper cutting?  

(Material: Using white paper) (Thinking and exercising) 

 
Photo 3. How do you integrate two squares into a square by proper cutting?  

(Material: Using white paper) (Finished) 

 
Photo 4. How do you integrate two squares into a square by proper cutting?  

(Material: Using cardboard) (Initial situation) 
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Photo 5. How do you integrate two squares into a square by proper cutting?  

(Material: Using cardboard) (Finished situation) 

 
Photo 6. The teacher introduced history of mathematics concerned with Pythagorean 

theorem. 

 
Photo 7. The teacher introduced history of mathematics concerned with Pythagorean 

theorem. 
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Photo 8. Each group presented the proof of Pythagorean theorem which differ from 

(A) to (G) in activity (2). 

 
Photo 9. Each group presented the proof of Pythagorean theorem which differ 

from (A) to (G) in activity (2). 

 
Photo 10.  Each group presented the proof of Pythagorean theorem which differ 

from (A) to (G) in activity (2). 
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INTRODUCTION   
The concepts of ratio and proportion and in a broader sense arithmetic and 

geometry have been involved with cultural questions since the early period of their 
development. These questions comprise differences between natural and non-natural 
numbers, between the nature of ratio, number, magnitude and proportion as well as the 
way of operating with such quantities, the interpretation and the mystical uses of them, 
the relationship between theoretical music and the development of theory of ratio and 
proportions in the ancient Greece, the role of zero, the extension to the infinite 
numbers and the representation of numbers by cardinals that allowed new kind of 
calculations, including the use of algebra.  

This article intends to concentrate mainly on the interrelationship between 
theoretical music and theory of ratio/proportions, emphasizing that such links 
contributed significantly to the determination of different traditions in the treatment of 
these mathematical concepts, traditions which provided ontological differences in the 
comprehension of ratio and proportions that could in turn improve the assimilation of 
these concepts through teaching and learning. By bringing out the reflection of 
similarities between these two sciences in the early modern period through the 
comparison with those which were established originally in Antiquity, it also aims to 
emphasize possible interpretations of ratio and proportions as well as to grant more 
attention in the context of mathematics education to the conceptions and theories 
underlying ratio and proportion which are evidenced in the reproduction, directly or 
analogically, of discoveries involving mathematics/music.  

This raises questions concerning the mathematical theories underlying the 
manipulation of ratios from Antiquity until the late Middle Ages and Renaissance. The 
latter period is of some significance, since it is in this period that music ceased being 
solely a matter of arithmetic that dealt only with ratios of integer numbers and of a 
discrete nature and assumed a continuous nature associated with geometry - a change 
that played a central role in the astonishingly rapid development of music in this 
period, which is in general characterized by a great preoccupation with quantification 
and measurement, as well as with different kinds of temperaments besides the 
Pythagorean. The reflection of such changes also contributes to transformations in the 
underlying theories of ratio and proportions in a time whose claim for the emergence 
of an arithmetical theory of ratio and proportion was increasing rapidly.     

This presentation intends to offer some possibilities for exploring the 
relationship between mathematics and music with the aforementioned considerations 
in the construction of the meaning of ratio and proportion and will do so by recovering 
the different theories underlying such concepts and by giving to the musical analogy 
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that is operative in this dynamics more extensive consideration than it has heretofore 
received. 

  The educational approach the interdisciplinary studies on the relationships 
between mathematics and music were in part the outcome of teaching classes on „The 
Fundamentals of Mathematics and Acoustics Applied to Music“ in the Music School 
of USP - Universidade de São Paulo -, as well as in interdisciplinary workshops on 
mathematics/music offered by, among others, the Instituto de Matemática and by the 
Estação Ciência —center for dissemination of science— of USP. In emphasizing 
common schemes between mathematics and music, the workshops were designed for 
teachers of elementary and high-school, students of USP, children and teenagers.  

 
HISTORICAL AND DIDACTIC CONSIDERATIONS 

Questions concerning the role of Greek music in the development of pure 
mathematics were already posed in the beginning of the 20th century by P. Tannery 
(Tannery, 1915). Szabo also raised similar questions in his attempt to show that pre-
Eudoxian theory of proportions developed initially as an inheritance from Pythagorean 
theory of music. His conjecture is strongly based on an astute analysis of the Greek 
technical terms involved in both theories, such as diastema, oroi, analogon and logos 
and their employment in an experiment mentioned by Gaudentius in which Pythagoras 
stretched a string across a ruler - the so-called canon or monochord - dividing this 
instrument in twelve parts (Szabo, 1978).  

In such an experiment, Pythagoras would have at first plucked the whole string 
and consecutively half, three fourths and two thirds of it, obtaining respectively music 
intervals of octave, fourth and fifth - the three most important consonances in ancient 
Greek music - produced thus by ratios (12:6), (12:9) and (12:8). Questions concerning 
the credibility of such a story in Pythagorean context, as well as the existence of the 
monochord at this time and even whether the simple aforementioned ratios underlying 
musical consonances were actually uncovered through such an apparatus will be not 
considered in the present article.  

I am more concerned now with historical and epistemological consequences of 
the establishment of the relationship between simple ratios and musical consonances - 
and more generally ratios of whole numbers and pure musical intervals  - in the 
cultural context mentioned above, as well as the different ways of exploring such an 
interrelationship and the aforementioned consequences in the context of mathematical 
learning.  

  Pythagoras' discovery, by means of the monochord experiment,  that ratios of 
small integers underlie the basic consonant musical intervals casts light on a large 
number of discussions about musical theory that have ratios as their main characteristic. 
Ratios in turn were originally seen as a generalization of musical intervals whose 
nature was clearly distinct from numbers or magnitudes.  In this context, ratios were 
entities very different from numbers, although they are capable of being manipulated 
by means of structurally similar operators. In the period between Antiquity and the 
Renaissance, there occurs a significant change in the use of ratio, in which  
conceptions of operations strongly tied to contiguous musical intervals are eventually 
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replaced by theories that admit the composition of general ratios with an essentially 
arithmetic character, for example, the idea that a ratio is equal to a number.  

Szabo's theory is strengthened even more by the close examination of 
terminological and structural similarities between Euclid's theory of ratio and 
proportion presented in The elements and theory of music. Some indicators of such 
structural similarities are early found in the context of issues such as Euclid's 
restriction on the operation of composition with ratios  - VXJNHLPHQRQ - implied in 
definitions 9 and 10, Book V as well as in proposition 23, Book VI. Such operations 
consisted of compounding ratios of the type a:b with b:c to produce a:c, called ratio 
duplicata double the original one, which then allows the repetition of this process with 
c:d, resulting in the ratio triplicata a:d and so on, that is:  

 
(a:b).(b:c) (c:d) .... 

 

  Having strong musical affinities, this operation required that the second term of 
a ratio should equal the first term of the next ratio. Mathematically speaking, there is 
no reason to define this operation in such a way and we would not so define it unless 
we first observed its significance from a musical viewpoint, which understands what is 
otherwise a purely mathematical phenomenon as the adjoining of contiguous intervals. 
For instance, (2:3).(3:4) :: (1:2) is structurally equivalent to the musical combination of 
the interval of a fifth with that of a fourth in order to generate a octave. Precisely this 
example is mentioned in a fragment attributed to Philolaus by Diels/Kranz (Diels, H.; 
Kranz, W.; 1996, p.409, 44, B6.10ff), whose translation is:    
 
 'The octave comprises a fourth and a fifth. The fifth is a whole tone bigger than 
the fourth. Then there is a fourth from the  'hypate' to the the 'mese'  and there is a 
fifth from the 'mese' to the 'nete'. There is a fourth from the 'nete' to the trite and there 
is a fifth from the 'trite' to the 'hypate'.  
 

 Now, Pythagoras' Experiment seems to inform us of two things. The first and 
more general point it makes is that mathematical ratios underlie musical intervals.  
But it also tells us more specifically that the compounding ratios underlie the 
composition of musical intervals, and even that, due to such a link, composition of 
ratios in a Euclidean fashion gets handled in the manner described in the preceding 
paragraph. This way of handling ratios has unmistakable reflections in music theory of 
late Middle Ages and Renaissance, for instance, in the manual techniques of the 
division of the string in the monochord, in which ratios are discrete entities that exhibit 
a nature still distinct from that of numbers and similar reflections can be found in 
musical contexts in general. 

A comparison with the way in which Euclid manages ratio, proportion, number 
and magnitude demonstrates that these concepts have different natures as 
mathematical categories for the Greek mathematician. There are further elements of a 
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terminological and epistemological nature that disclose similarities between 
mathematical and musical thinking at that time.  

   Apart from the operation with the compound ratios mentioned above, such 
similarities come to light for instance when Euclid discusses the equality of numbers 
and magnitudes and "never" refers to ratios as being equal, but says that they are "in 
the same ratio" or that one ratio "is as" another one (Grattan-Guinness, 1996) in a 
proposition concerning proportions.  

   This practice reveals important structural resemblances with music in 
mathematical discourse. Together with terminologically similar features stemming 
from the same period, such practice also determines a tradition in the treatment of ratio 
and proportion in mathematics that is in evidence, alongside other quite different 
traditions, up to 17th century (Sylla, 1984), with varying degrees of emphasis in 
different epochs and/or fields, as I will describe later. During the 17th century, this 
first tradition is gradually abandoned and a slow transformation occurs in which ratios 
in propositions concerning proportions (A : B :: C : D) are treated more and more as 
equations between quotients (A ÷ B = C ÷ D) (Grosholz, 1987). In this second 
tradition, a ratio is not 'as' another but is literally 'equal' to another ratio. 

  Here there arises a significant question concerning Euclid's avoidance of the 
term 'equal' when speaking of ratios. It is quite probable that, for cultural reasons, the 
Greek mathematician, along with his contemporaries and predecessors, conceived of 
the theory of ratio as a generalization of music in as much as the proprieties of strings 
and comparisons between pitches, as well as calculations related to such magnitudes 
through ratio and proportion, were a relevant part of mathematics from the 
Pythagoreans until Euclid. The considerations mentioned above corroborate that 
compounding in Euclid's sense must definitely not be put in the same category as 
multiplication although the former presents structural similarities with the latter.  

Both differences and similarities between compounding and multiplication 
concerned with musical and arithmetical fields respectively can be better felt and 
grasped with the help of an enriched reconstruction in learning/teaching context of the 
monochord's experiment. Music - a field originally strongly associated with ratios - 
becomes a useful tool in the interweaving of meanings in the dynamics of 
teaching/learning. By helping to overcome the known difficulties in teaching fractions 
by converting them to ratios, such reconstruction also provides connections between 
two fields which are undeservedly not often regarded together in educational contexts 
even though they can encourage students with promising tendencies in music to get 
interested in mathematics and vice-versa. Such crossing capacity not only stimulates 
the relationship between both areas and the related skills but also demands 
mathematics skills in musical contexts and musical skills in mathematical contexts 
through an arrangement involving elementary concepts which is quite simple. 

Once the students discovered by means of the monochord the ratios 1:2, 2:3 
and 3:4 underlying the basic Greek consonances octave, fifth and fourth, respectively, 
one can set problems like: 
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-  Let L be the length which produce a determined pitch in the monochord. What is 
the length necessary to produce a pitch obtained raising the original one by an octave 
and a fifth, following by the lowering of two fourths? Listen to the resulting pitch in 
the monochord  and compare that with the pitch obtained on the piano. Comment.  
- Let do be the pitch corresponding to the length L. Which is the pitch provided by the 
length 32L/27? Indicate in terms of superposition of fourths, fifths and octaves, the 
successive steps to reach that result. In raising a fourth from the given pitch, what are 
the pitch and length obtained? Listen to resulting pitch in the monochord comparing it 
with the pitch obtained on the piano.  
 

Such problems, presented in a workshop with children between 11 and 14 years 
old in Estação Ciência, for instance, demanded simultaneously musical and 
mathematical aptitudes and/or at least could awaken curiosity of students who were at 
first interested exclusively in either mathematics or music. Depending on where each 
student's greatest potential lies, students solve these kind of problems either by finding 
the interval and checking the compounding ratios which provide it or by finding the 
combination of ratios that when compounded provide the requested interval, and 
checking the interval. Such problems provide one opportunity not only to experience, 
even unconsciously, on compounding of ratios but also to simulate operations with 
ratios in Greek and medieval music context, inasmuch as the students have  as basic 
operational elements the perfect consonances, that is, the discrete ratios 1:2, 2:3 and 
3:4, which in this context have any categorical relation with numbers in principle, but 
are merely instruments for comparison. The problem becomes even more interesting 
insofar as one can restrict accordingly the available tools for the solutions: compass, 
non-metric ruler, metric ruler, instruments - which provide different meanings to ratio 
and proportion. In this sense, this experiment proves useful for illustrating the meaning 
of ratio as a medium for comparison.  

In Euclid, the idea of equality of ratios is not as natural as that of numbers or 
magnitudes. Such a way of establishing relations between ratios gains greater meaning 
when we consider that, for instance, do - sol and la - mi are the same intervals - in this 
case, a fifth - but they are not equal, inasmuch as the latter is a sixth above the former, 
or even that do-sol 'is as' la-mi. The identity is normally a philosophically difficult 
concept to be worked out in learning/teaching dynamics. Such difficulty can be eased 
by stressing the distinction between identity and proportionality in 
mathematical/musical contexts in which such difference are clearer when visible and 
'audible'.   

The problems and the device mentioned above encourage also the perception of 
the difference between identity and proportionality insofar as the students can hear the 
intervals provided by proportional ratios like 9:12 and 12:16  - both are fourths, that 
is, the same intervals, but they are not equal - which are proportional but definitely not 
equal. This elucidates by the use of mathematics and music the differences and 
similarities between both concepts which also contribute to the better understanding of 
the identifications of ratio and fraction and of proportion and equality. It opens 
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several possibilities for exploration of such concepts in both contexts. For instance, 
they can find the forth proportional and deduce what is the associated pitch or 
reciprocally, given an interval, they can figure out the note which will produce the 
same interval given a determinate lower pitch: both situations deal with proportional 
magnitudes in mathematical and musical contexts simultaneously. The students must 
not necessarily be aware of the epistemological procedure underlying such dynamics 
but what is actually important is to experience such a situation so that one establishes a 
reference with which one can bridge and anchor the comprehension of future situations 
involving these concepts, as well as detach concepts associated with fixed areas and 
interweave them in a more general context.   

The aforementioned arrangement in teaching/learning as well as the long 
history of ratio and proportions show that, within the rich semantic field associated 
with these concepts, ratio was a natural vehicle for human beings to use in comparing 
different contexts through proportions, that is, analogies. In this sense, the proposition 
that 3:2 corresponds to a fifth, as well as that one that the aforementioned intervals of 
fourths are proportional mean that these two concepts pertaining to mathematical 
and/or musical fields are capable of being compared to one another by means of  the 
ratio of numbers and the interval between notes through proportions. In this sense, it is 
possible to experience that the geometrical/musical proposition A:B::C:D is 
semantically distinct from yet structurally to with the arithmetical proposition A÷B = 
C÷D, as well as that the corresponding cases in which ratios are not proportional and 
fractions are not equal.  

Reciprocally, by means of the device of the monochord, ratio and proportions 
are viewed as instruments for evaluating the degree of similarities between different 
contexts. Such a device can also help the comprehension of the categorical distinction 
between ratio and proportion—sometimes misunderstood—inasmuch as ratio is 
clearly viewed as a definition involving two magnitudes of the same kind whereas 
proportion functions in all the aforementioned situations either as a logical proposition 
to which one may attribute a valuation or as a tool to make a proposition true. The 
differences between these two mathematical entities are less ambiguous when 
understood in this way than in purely arithmetical contexts. In this way, over the 
course of many interpretations and theoretical constructions from Antiquity to the 
early modern period, ratio has served as a tool of comparison and particularly, a 
common thread between diverse contexts, an invariant with respect to proportion.  

This last interpretation means that ratio can be associated with an invariant, 
that is, with something that remains the same while other things change around it. 
Music is a particularly good tool for this purpose, as it can be used to overcome some 
typical problems in the learning of ratios and proportions.  

With regard to terminology, Euclid uses duplicata and triplicata in definitions 
9 and 10 respectively of Book V of The Elements to express in the first case the square 
and in the second the cube. He generalizes it in definition 17 - proportions ex equale.   
This terminology also reveals similarities with the idea of compounding musical 
intervals, since the increase in musical pitch occurs in logarithmic fashion, in this case, 
the duplicate⁄triplicate of a musical interval corresponds to raising the corresponding 
ratio to the 2nd and 3rd powers respectively.  
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  Thus, the procedure of compounding a ratio a:b with b:c to produce a ratio 
duplicata a:c is structurally similar to that of compounding the intervals, for instance, 
do# - fa# with fa# - si to produce do# - si, thus creating a duplicate interval. The 
correspondence proceeds in an analogical way for the triplicata and proportion ex 
equale, if we repeat the process three times and n times respectively.  

  It is worth mentioning the influence of such nomenclature on the Algorismus 
proportionum, of the noteworthy mathematician Nicole Oresme (XIVth century) -- 
dedicated to the musician Philippe de Vitry -- and the first known systematic attempt 
to present rules of operation for multiplication of ratios involving integer and 
fractional exponents. It is also relevant to note that he used the expressions additio and 
differentia to express what we call today multiplication and division of ratios 
respectively. 

The terminological imprecision concerning the frequent association of addition 
and subtraction with multiplication and division, respectively which appear in several 
treatises of theoretical music and mathematics in Antiquity and Middle Ages can also 
be experienced by means of the monochord mentioned above in conjunction—
depending on the musical knowledge of the student—with a keyboard. Such device 
can encourage students to pose questions not only concerning the meaning of each of 
these operations but also which provide a fertile ground for working out the usefulness 
and meaning of logarithm.  

It is worth remarking that the appearance of the 'logarithm' in the 16th century 
also allowed a mathematical understanding of 'equal temperament'. Both concepts 
were in a way already anticipated by Aristoxenus (IVth century BC), who, in his 
discussion of the ear as the sole judge of correct pitch, describes scales with half tones, 
fourth tones etc, as well as an integer tone occupying 12 equal parts - notions which 
find no epistemological resonance with the mathematics of his time. 

 Interestingly, the terminology used by Euclid is reflected also in Napier, who 
employs the word logarithm - logos , ariqmos  - (Tannery, 1915, p.71), which could 
mean the number of times a ratio is 'added', or equivalently the number of times an 
interval is subjoined. 

Furthermore, concerning the terminological question, in his discussion of 
ratios in his De proportionibus velocitatum in motibus, Bradwardine (Crosby, 1955) 
says:  

  
Si fuerit proportio maioris inaequalitatis primi ad secundum ut secundi ad 

tertium, erit proportio primi ad tertium praecise “dupla” ad proportionem primi as 
secundum et secundi as tertium.  

 

This quotation is precisely definition 9 Book V of The Elements. Further 
evidence of the continuing popularity of Euclid in the treatment of ratios surfaces in 
Oresme's treatment of compound ratios as the resulting of a continuous series of 
terms. When he uses expressions like addere and subtrahere to refer to the 
compounding operation and its inverse, respectively.  
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He also employs 'part' and 'parts' to refer to ratios with fractional exponents in 
relation to the corresponding unitary one. This is exactly the terminology used by 
Euclid (meros e merh) in definition 20 book VII of The Elements in an arithmetical 
context expanded to a logarithmic one. This is a mathematical technique which did 
not exist in Aristoxenus's time yet is crucial to the comprehension of the musical 
temperament as it is conceived by him.  
 Boethius is also a case in point. Although he does not do so explicitly, 
Boethius nevertheless seems to treat ratios in the classical Greek manner, using 
expressions and terms like componere, coniungere, adglomere, procreare, creare, 
exorior etc to express the idea of assembling  as well as differentia to express the 
operation which is the opposite  of compounding. For example, Boethius 
compounds a sesquialter with a double to obtain a triple ratio, i.e. , a fifth 
compounded with an octave, which generates a compounded fifth .  

 Accordingly, the 'difference' between sesquialter and a sesquitertia is an 
epogdous, i.e., the fifth minus a fourth is a tone. According to Boethius, Ex duplici 
igitur et sesquialtero triplex ratio proportionis exoritur (Friedlein, De institutione 
arithmetica libri duo, II, 3, 1867, p.85) and Unde notum est, quod inter diatessaron et 
diapente consonantiarum tonus differentia est, sicut inter sesquitertiam et 
sesqualteram proportionem sola est epogdous differentia (Friedlein, De institutione 
arithmetica libri duo, II, 54, 1867, p.172).  

The beginning of the detachment of the concept of ratio from music seems to 
have originated in the transversal theorem of Menelaus , or with Theon (Grosholz, 
1987) and was transmitted in the Middle Ages by Jordanus Nemorarius, Campanus 
and Roger Bacon (Sylla, 1984). For instance, we can find evidence of new theories for 
ratios  in  Pappus' definition of a curve which involved compound ratios in a general 
sense. Without the constraint imposed by Euclid, such a definition reveals significant 
modifications and evolution of the concept of ratio.  

  Pappus generalizes the definition of conic sections and other curves given by 
Apollonius (Heath, 1931, p.453-454), and offers the following proposition, known as 
the Problem of Pappus : given an even number of lines ri, i: 1, 2, 3, ...., 2n, construct 
lines containing the point P, in such a way that each of these lines intercepts any of the 
original lines in points Ci belonging to ri and satisfying the following relation 
involving compound ratios:  

 
(PC1:PC2).(PC3:PC4).(PC5:PC6)....... (PC2n-1:PC2n) = const. 

 

In this problem, there is no requirement that the second term of a ratio must 
occur again in the first term of the following ratio, as in Euclid, and thus the operation  
with ratios begins to look similar to multiplication, in a manner that is not merely 
structural.  

  Pappus extended the technique of operation with ratios, since Apollonius 
defined conic sections and other curves through similar procedures using only four and 
six lines, respectively  (Heath, 1931, p.453). Such a procedure was capable of being 
treated geometrically, by specifying that the ratio of the product of two or three 
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segments is constant and by seeing such products as the area of a rectangle and the 
volume of a cuboid, respectively.  

  Pappus justified this requirement of extending the definition of composition of 
ratios by stating the impossibility of a geometrical interpretation in a fashion 
analogous to Apollonius' procedure with a greater number of lines.   

  By generalizing the relationship between the components involved in 
operations with ratios, the Greek mathematicians extended the spectrum of Greek 
geometrical techniques, and thus approximated semantically -- and not merely in 
similarity of structure - the operation of arithmetical multiplication, as well as that of 
converting ratios into rational numbers.  

  Such changes substitute numbers for lines making possible their multiplication 
and division. A similar transition in the use of ratios - one that is closely related to the 
focus of this exposition - was to develop later, in medieval European (Grattan-
Guinness, 1997, p.84).   

  At this point, one could identify at least two traditions in the Greek treatment 
of ratios⁄proportions that persisted up to the late Middle Ages and the Renaissance and 
were evident even in XVIIth century. One of these traditions,  which was associated 
with theoretical mathematics, music, and physics, goes back as early as Euclid. This is 
the tradition which appears, for instance in Bradwardine's De proportionibus 
velocitatum in motibus, in Nicole Oresme's De proportionibus proportionum, as well 
as in the first edition of Newton's Principia, and which admits, among other things, 
operations with ratios subject to the constraints imposed by Euclid. The second 
tradition is related to practical calculations, and appeared almost always in the Middle 
Ages in close or remote connection with astronomy (Sylla, 1984). 

As rational numbers acquired greater relevance and operations with ratios 
acquired arithmetical meaning, the changes mentioned above brought in parallel the 
growth of the interaction between arithmetic and both algebra and geometry which 
required an arithmetic theory for ratios. Such crises gained a more systematic 
character with Nicole Oresme in his De proportionibus proportionum, written in the 
1300's, which translates Euclid's commensurable and incommensurable geometric 
magnitudes as rational and irrational ratios, conceiving of them as numbers. We could 
say reciprocally that irrational numbers - or ancient incommensurable magnitudes - 
were arising in musical contexts, when in former times, the sound produced by such 
ratios was not considered music.   

 Proposing a more comprehensive view concerning proportionality, Oresme 
applied this interpretation of ratio in different areas of mechanics and entrenched 
further the proposal that any number could be represented by a length.  

 It is important to stress that, despite the aforementioned changes, Euclid's 
theories of ratio were still popular in the late Middle Ages and influential enough to 
ensure that indefiniteness between the two theories persisted even up to the time of a 
work like the first edition of the Principia of Newton in 1687 (Sylla, 1984), where the 
Euclidean theory of ratio is mixed with a new arithmetical version systematized by 
Oresme (Grattan-Guinness, 1997, p.162).  



 ~ 92 ~ 

 It is thus relevant to ask how the theories underlying these concepts inherited 
from music not only those ideas and procedures which evince such a striking 
similarity with musical ideas and procedures, but also terminological points of 
similarity with music, and to inquire more generally into the origin of those analogies 
that came to exist between the two sciences of mathematics and music.  

This richness of meanings and its associated fields gave rise to a variety of 
theories in mathematics/music for handling ratios—theories that have in fact as yet not 
received the attention they deserve in the dynamic of learning/teaching and that might 
be helpful in catalyzing a more comprehensive understanding of such a concept  and 
might also contribute to a more mature appreciation of the identification of ratio with 
fractions and numbers, as well as of their operations.  
 

CONCLUSIONS 
  This article tried to point out different theories of ratio and proportion and their 
association with music emphasizing some pedagogical possibilities involving such 
concepts and historical contextualization. The aforementioned pedagogical 
considerations provides transferences between mathematics and music in order to 
(re)construct the meanings of ratio and proportions through analogical thought, which 
supplies conditions for feeling knowledge. With a basis on the monochord, the 
examples mentioned above reproduce discoveries and the construction of meanings in 
mathematics/music creating circumstances that favor experiences of similarities 
between analogous concepts. The idea of such activities is to experience in historical 
context essential structures behind the meanings involved, focusing on the concepts of 
ratio and proportion.  

  As we have seen before, throughout the history of mathematics and theoretical 
music, ratio and proportions assumed different meanings with discrete or continuous 
natures in regard to geometry, music and/or arithmetic. Among such meanings, ratio 
can be seen as a tool of comparison by means of proportions, a musical interval, a 
fraction, a number, an invariant with respect to proportion, a common thread between 
distinct contexts with regard to proportions whereas proportion can be seen as a vehicle 
to compare ratios, an equality, a relation, a function etc. The aforementioned device not 
only provides a fertile ground for the understanding of the subtle differences and 
structural similarities underlying the diversity of interpretations associated with ratio 
and proportions but also contribute to constructing a broad way  their associated 
meanings.  

  In establishing the relationship between ratios and intervals, as well as between 
compounding ratios and superposition of contiguous intervals one gives a new 
meaning to such concepts making use of different skills, which enlarge their range in 
educational contexts. We may use musical intervals in the construction of the concept 
of ratio, fraction and proportion now heard as well as differentiate proportion of 
identity with quite simple arrangements, which not only make the idea clearer by 
means of circumstances involving elementary concepts but also demand the 
simultaneous use of mathematical and musical skills simultaneously.   

  Using not only the areas mentioned, but also discovering common schemes and 
archetypes, is an efficient way of constructing for concepts that belong to any 
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competence of intelligence. An analogy or metaphor used in a sensible and discerning 
way may re-configure a student‘s thought in a problematic situation of learning, 
enabling a better understanding of matters that escape immediate intuition, or that seem 
too abstract to him/her, such as be the many interpretations associated with ratio and 
proportions throughout history.  
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This presentation comes of an experience that is born inside the Didactic Laboratory of 
Mathematics and Philosophy, which operates in Bergamo (Italy). 

The Laboratory involves teachers of Mathematics and History of Philosophy and has the aim 
to improve the didactics of this two subjects by using historical thinking as common 
opportunity of dialogue.  

Among the different potentialities of this way to proceed (some of them were analysed in a 
text presented to the Conference of Luminy, France (1998)), history is practiced as a 
hermeneutic event. Through a methodologically correct reading we try to bring to light the 
reserves of meaning the event keeps. Then we transform them into an opportunity of 
theoretical thinking, in the aim of translating them in didactic practice. 

In this experience it was possible  
1. to recover simple mathematical properties hidden in archaic and now neglected 

procedures; 
2. to highlight the different point of view from which students got in touch with some 

concepts; so we are led to enrich our teaching.  

Our notes are the result of an inquiry about the concept of  antiphairesis. 

The antiphairesis is the archaic method of comparing two homogeneous quantities: it is a 
repeated removing method and consists in subtracting the smaller of two quantities from the 
larger one: after each removing, in place of the larger quantity the excess is left while the 
smaller one stays unchanged. 

The process continues until the excess that is obtained by removing is equal to unchanged 
quantity.1 

Of the antiphairesis  only the procedure of calculation that is named Euclidean algorithm is 
survived in the common usage and it is used for finding the maximum common divisor 
between two numbers. Nevertheless this limitation makes it banal; on the contrary, bringing it 
back to originary method of comparison of two quantities it reveals its wealth of meanings. 

1. Historical aspects 

1.1 The slave of Menon  
The reflections of Toth on the platonic text of the slave of Menon [Toth] were the starting 
point of our work; some salient points are here summarized. 

Toth singles out in the Platonic text three level of reading:  
                                                 
1 The process of  mutual subtraction is named by the term antiphairesis in the Euclid’s  “Elements” ,  while in 
Aristotle’s work it is named antanairesis. 
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o at the first level the problem of constructing the square of double area; 
o at the second level the impossibility of determining the exact length of the diagonal of 

the square, notwithstanding each quantity has the property of “magnitude”. 
”Pythagoreans found that the antanairesis of the diagonal d and the side s of a square 
[…] brings to a segment that is arbitrarily small but always finite and it never 
disappears.” [Toth] 

o The third level is centred on the translating in an arithmetic language the procedure of 
researching the length of the segment that constitutes the geometrical object at issue. 

The first steps of the infinite, geometric process of comparing the diagonal and the side of a 
square, are shown in the following figures. 
 

The first steps of the antiphairesis of the diagonal 
 
 
 
 
                                                                                                                         d2=2s1 
      d1=2so-do                                                                       d1 
 
 
                    s1 
                               2so 
 
                         do                    do 
 
 
 
        
                                 do                                                                                         
                              so               s1 = do - so                                               so                  s1 = do - 
so   
 
                                                                                                                          
                                                                            
 
 
         d1                 
                                    d1                                                                                             s3  
 
                              d2=2d1-s1                   
 
                                      s2=d1-s1                               
        
 
 
 
 
  
                           so                         s1                                                      so                         s1    
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The method consists in indefinitely iterating the construction of squares that have as side the 
difference between the diagonal and the side of the preceding step (s i = d i-1 – s i-1) and as 
diagonal the difference between the side in the preceding step and the side in the present step 
(d i = s i-1 – s I). 

The following table summarizes it. 
 
 
 

so do do > so 
so s1 = do-so so > s1 

d1 = so-s1 = 2so-do s1 d1 > s1 
s2 = d1-s1 s1 s1 > s2 

s2 d2 = s1-s2 = 2s1-d1 d2 > s2 
s2 s3 = d2-s2 s2 > s3 

d3 = s2-s3 = 2s2-d2 s3 d3 > s3 
s4 = d3-s3 s3 s3 > s4 

s4 d4 = s3-s4 = 3s3-d3 d4 > s4 
s4 s5 = d4-s4 s4 > s5 
... … ... 

s i = d i-1 – s i-1 s i-1 s i-1 > s i 
s i d i = s i-1 – s i d i > s i 

 
 

Achieved results are of geometrical type; “the antiphairesis has produced geometrical 
approximation of the telos2.” [Toth] 

The problem of obtaining “effable” 3  expressions of the telos demands to translate this 
geometrical process in an arithmetic language. The solution found by Pythagoreans consists 
in a succession of diagonal logoi. 
 

(1; 1) (2; 3) (5; 7) (12; 17). 
 
This succession is today reconstructed by means of the following formulae  
 

D2 - 2L2 = 0                      D2 = 2L2. 
 
Derived ratios approximate downwards and upwards �2  
 

1/1    7/5   ..  <    �2     <  .. 17/12     3/2. 
 
“The perfect translating of the geometric language into arithmetic one, that is offered by the 
elegant theorem of the Pythagoreans, rightly struck Theon, Iamblichus and Proclus. The 
theorem doesn’t limit itself to be elegant […]; the Pythagoreans discovered the isomorphism 
between the closed world of the dyads and the autonomous universe of geometric figures of 
antanairetic squares.” [Toth] 
 
                                                 
2 Telos, the ultimate aim of the procedure, the impossible common unity between diagonal and side 
3 Expressible, utterable, in ancient Greek retos, logos 
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2. Theoretical aspects 

2.1 The pattern of the antiphairesis 
The possibility of associating the process of antiphairesis with a pattern that shows the 
structure of  the specific comparison, rose our curiosity. If we observe the previous table, we 
immediately draw that the succession of  operations of comparing can be represented by 
means of two strands of C and S, where C means that the quantity stays constant and S signals 
that in this point a subtraction happened and then the excess between the two quantity stays 
here. 
 

so do do > so pattern of the antiphairesis 
so s1 = do-so so > s1 C S 

d1 = so-s1 = 2so-do s1 d1 > s1 S C 
s2 = d1-s1 s1 s1 > s2 S C 

s2 d2 = s1-s2 = 2s1-d1 d2 > s2 C S 
s2 s3 = d2-s2 s2 > s3 C S 

d3 = s2-s3 = 2s2-d2 s3 d3 > s3 S C 
s4 = d3-s3 s3 s3 > s4 S C 

s4 d4 = s3-s4 = 3s3-d3 d4 > s4 C S 
s4 s5 = d4-s4 s4 > s5 C S 
... s5 ... S C 

 

An analogous pattern can be associated  to the comparison of each pair of homogeneous 
quantities and characterizes its internal relation, apart from equivalences. It constitutes the 
translation of the  Pythagorean dyads into a symbolic language. 

The pattern allows to determine, in an elementary way, a pair of successions of numbers from 
which, in case of finite dyads, the logos is obtained, that is a pair of numbers that 
characterizes the relation between considered quantities. 

Differently from geometrical comparison, that can be undertaken only in few cases, the 
pattern of antiphairesis is easily handled. So it became the principal tool that guided our 
reflection and allowed to propose didactic applications. 
 

2.2 The logos 
“For the Pythagoreans the logos is a finite dyad, an ordered pair of natural numbers […], and 
vice versa all that is ratio between two things  […] is a logos; i.e. it can and must find its 
verbal expression in a finite expression, in form of an ordered pair of numbers.” [Toth] 

Concrete activities of comparing homogeneous quantities, of constructing corresponding 
patterns in case of finite dyads, of determining the successions of dyads and of deriving 
corresponding logoi, make evident that the logos is not an ordered pair in actual mathematical 
meaning; it is sufficient in fact exchange the place of two quantities for changing the order of 
pair. So it is necessary to make attention to used terms for avoiding improper, though 
spontaneous, extrapolations of modern meanings. In particular the use of expression “ratio 
between two things” in specifying the content of the word logos could charge this word of 
meanings that came out later, following the conceptualisation of rational numbers, but that the 
originary confront of two quantities doesn’t possessed. It seems more suitable instead to 
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associate with the term logos the expression “relation between two things” and avoid the use 
of the term ratio. 

The duality of meanings of the term ratio can constitute, in didactics, a cause of 
misunderstanding of the students, probably in opposite direction: students ascribe to the term 
ratio the meaning of relation and aren’t able to ascribe it the meanings acquired in the modern 
mathematical definition. To make fully explicit the meaning of this term becomes an element 
of enrichment of didactics.  

These considerations about the term logos can contribute to a partially different reading both 
of the meaning of this term in its use near the Pythagoreans and of the relations between the 
concept of fraction and the one of logos in the Pythagorean school and, later on, in the ambit 
of Platonic Academy. 

In fact, on the one hand the term logos approaches certain Eraclito’s interpretations, because it 
constitutes the unity of opposed elements; on the other hand it doesn’t possess the dignity of 
the unity of the arché, which for the Pythagoreans is due only to the Unity, neither the one of 
number derived from the arché. It is possible that the term logos preserves the originary 
verbal value of movement to pose in relation: Pythagorean logos should be the process of 
relating.  

So, while in regard to fractions the Pythagoreans felt the necessity of refusing the status of 
numbers because this should undermine the fundamental axiom of the indivisibility of the 
Unity, with respect to the logoi, as ordered pairs of numbers that express the putting in 
relation two quantities, there is no need of identification with single numbers. Therefore the 
logoi remained excluded from the debate about indivisibility. If this debate, according to 
Toth, was central in Platonic Academy, we can understand because the wing that took side in 
favour of the indivisibility of the Unity, replaced the fractions with logoi. In this way, in 
Euclid’s Elements the logoi, and then the ana-logoi, acquired a central role, while both the 
concepts of fraction and measure were “abolished” [Dhombres]. “Euclid doesn’t divide 
integers to produce rational numbers. Seldom he uses a half, the third part, and only once he 
uses a fifth, but it means one of two equal parts, etc. and not integer fraction.” [Grattan-
Guinness] 

So the additive method of comparing and the following principle of homogeneity designed 
the ambit in which Greek and West science will move. 

The definitive breaking of the principle of homogeneity happened only with Descartes. 

“In the new Cartesian definition of the product between two magnitudes by means of the 
introduction of the unitary segment, […] the product is no more equivalent to construction of 
a rectangle but to determination of the forth proportional between two segment and  the unity:  
1:a = b:ab. Through this very simple rule, the algebraic representation  frees itself from 
principles as these of homogeneity.” [Brigaglia] 
 

2.3 Some properties 
The instrument of the antiphairesis, when concretely applied, can disclose further hidden 
meanings. In particular it makes evident the additive structure of numbers and supplies  a 
particular language for these. 

In comparing the diagonal and the side of a square, we saw that it is possible to represent the 
succession of the actions by means of the pattern of the antiphairesis. This pattern, that can be 
obtained in comparing any pairs of homogeneous quantities, translates in a symbolic language 
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the succession of the actions of the antiphairesis and, in case of a finite comparison, shows the 
way in which the maximum unity that is common to two quantities in combined to recreate 
the same quantities. If we assemble comparisons in classes of equivalence and choose as 
representative of each class the comparison with an given quantity, considered as unity, then 
it is possible to associate with each class an unique pattern of antiphairesis. On the other hand, 
the representative of each class is a number, understood in the meaning that is more effective, 
i. e. as “general mathematical way to express quantitative relations between magnitudes”. 
[Davydov] 

So there is a correspondence, that easily can be shown bijective, between the set of real 
numbers and the patterns that are generated in comparison with unity. In this way the patterns, 
with its strands, constitute a language for numbers: a language that reveals the genetic 
structure of the numbers; an archaic, additive language that allows to pick up some, now 
enough hidden, properties of numbers. 

Here we list some of them: 
o Each rational number can be represented by means of a finite pattern. In particular also 

numbers that in the decimal  system have an infinite periodic representation, are 
associated to a finite pattern of  two strands.  

o The pattern of the inverse of a number is obtained by changing the place of the 
strands. 

o Some of the irrational numbers, which are represented by infinite strands, can possess 
characteristic structures 

o The above reported pattern of comparison between diagonal and side of a 
square shows as �2 possesses a periodic pattern, shaped by alternating two S 
and two C. 

o Immediately we can verify that periodic pattern shaped  by alternating one S 
and one C corresponds to aurea section; in fact its dyad coincides with the 
succession of Fibonacci 

 
1   1 
1 S C  
 C S 2 
3 S C  
 C S 5 
8 S C  
 C S 13 
.. .. ..  

 
 

3. Teaching activities 
The observations made until now supply more didactic indications. They suggest 
complementary activities in the conceptualisation of rational numbers. They supply some new 
elements for enriching the traditional presentation of Tales theorem. They call for a more 
accurate didactic reflection about the problem of incommensurability of diagonal, in 
cooperation with the teacher of history of philosophy. In the following we’ll expose the 
activity with rational numbers only. 
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3.1 Activities for the introduction of rational numbers  
Why can be useful to recover this archaic way of thinking of comparison of quantities? 

Both the didactic literature and the class experience indicate that learning of the concept of 
rational number is one of the greatest drawback for the students.  

To get over, partially, this difficulty we can try to recover a link, an interchange between 
intuition and formal thinking, “to keep open the sources of intuition during the process of 
learning.” [Freudenthal] 

Our hypothesis is that to use of the method of antiphairesis allows  
to widen the typologies of meaningful activities and, consequently, of the involved 
mental processes,  
to coordinate in a more effective way different semantic registers  
and to favour the getting over the “disarticulation between informal approach of the 
students and the formal one of the school” [Simon] that often is observed. 

The aim of this activity that involves the antiphairesis is not to teach concepts, it is rather to 
experience processes, “in sense of placing new and involving experiences at disposal of the 
students” [Boero]. 
 

3.2 Theoretic framing 
“The base concept that underlies then domain of real numbers is the quantity […] 

Lebesgue (1936) e Kolmogorov (1960) believe that the concept of number rises in the contest 
of measuring a continuous quantity […] 

What gives  meaning to the notion of quantity is the comparison between elements […] 

Kagan maintains that a quantity is completely determined, in mathematics, when a set of 
elements and the criteria of comparison are indicated.” [Davydov] 

The comparison is usually traced back to the application of the relation “equal to”, major to” 
or “minor to”. We hypothesize that the introduction of  activities of the antiphairesis 
constitutes an opportunity for enriching the criteria of comparison and the notion of quantity; 
so “the acts that constitutes” the activity of comparison are widened and the corresponding 
“structure of acts” is differently organized. 

Since the situations that interest the concept of quantity are the foundation of the ones concern 
“multiplication, division, fractions, ratio, proportion, linear function”, we can maintain that 
the activities about antiphairesis are related with the development of multiplicative conceptual 
field. [Vergnaud] 

The multiplicative conceptual field is not a natural level of development but strongly depends 
on education and didactics; this makes to conjecture that the activity of antiphairesis could 
have a substantial incidence if placed at the time of reorganizing cognitive structures that 
follows the adolescent crisis. At this time a new level of knowing is being constructed and it 
will be the basis of the following construction of the structure of concepts.  
 

3.3 The structure of activity 
This activity was carried on along this year, with our colleague Alice Rovaris,  in two classes 
of a Social Lyceum, an experimental high school that is now rising in Italy in the place of the 
old “Magistrale” Institute. The students were fourteen years old. The middle level of 
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preparation, as drawn from presentation of preceding Middle school is not high; near half of  
the students was presented with valuation “Sufficient”, the least one. The activity filled 
twenty hours in the months of January and February.  
 
3.3.1 The fractioning  
Students compare third parts of two different quantities of water.  

Nearly all of them accept without doubts that 1/3 z 1/3. 
This strengthened the suspicion that the founding the concept of rational number upon the 
fractioning only is very inadequate, especially for less gifted students. 
 
3.3.2 Comparison between quantities: the antiphairesis 
o The pattern of the antiphairesis was first introduced in comparing integer numbers; in 

particular, students easily learnt to rebuild the two numbers starting from the pattern and 
the common unit. 

o Then they applied the learned procedures to compare two quantities and to reconstruct 
them. In the following they became able to characterize the comparison with a pair of 
numbers; this pair was named logos. 
Water, strips of paper, weights, velocities were the concrete compared quantities.  

o Attention was posed to reading the logoi: “We are comparing two homogeneous 
quantities; logos denotes how many times common unity must taken in order to obtain 
each of them”. 

o The question if all comparisons always ended with common unit was posed in a class 
discussion. 

 
3.3.3 Equivalent Logoi  
o The notion of proportionality was introduced by applying the same pattern to different 

unities: a pair of homogeneous quantities is proportional to another pair of homogeneous 
quantities when the pattern of the antiphairesis is the same. 

o The comparison between weights allowed to outline its equivalence with a pair of lengths: 
the pair of weights is proportional to the pairs of lengths. 

 
3.3.4 The fractioning 
o Going to fractioning allowed to put in evidence how the meaning of whole and the one of 

part aren’t interchangeable; so the corresponding pairs are ordered pairs; and differently 
from “numerator”, “denominator” can’t be equalized to zero. 

o The way of reading fractions, “n from m equal parts”, was compared in a discussion with 
the one of logoi. 

 
3.3.5 The measure of a quantity 
Starting from the relation between two quantities, the way to ratio was pursued: 

o the fundamental step was the choice of a quantity as unity;  

o this prevented the exchange of place between the quantity. So obtained pair of number 
will be ordered. 
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o The obtained pairs of numbers were translated in form of mixed numbers. Mixed numbers 
made more easy the representation on a line. They sometimes helped the comparison of 
ratios too. 

o The reading of ratios was now compared with preceding readings. 
”The quantity A is two times and one third the quantity B” 
”The quantity A measures 2 1/3 in respect to the quantity B”. 

 
3.3.6 Decimal Numbers 
Introducing decimal submultiples of meter was justified with the experiment of exactly 
measuring a length with a non graduated meter. The length of this operation made welcome 
the “new” standard subdivision. 
 

4. Conclusions 
The assessment activities that was made in the interested classes of Social Lyceum gave 
satisfactory results if compared with the ones of preceding years. In particular the abilities of 
students in representing rational numbers on a line, in comparing them, in adding  them are 
improved. 

The open question is to control the effects during the time and upon successive learning. 

This experience, even if it is in the first phase of experimentation, have received a favourable 
welcome from colleagues of other schools to which the colleague Rovaris present it during  
the course of preparation to teaching.  

I thank also Luis Radford for useful suggestions and Paolo Longoni for stimulating 
discussions. 
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A teaching report of “ Using ancient mathematical text in classroom”: Pascal’s triangle 
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Abstract 

 In high school mathematics curriculum of Taiwan, the text book which discuss with 
permutation and combination usually includes “ Pascal’s triangle”. But it just discuss relationship 
of Pascal’s triangle and binomial coefficient. And, although it mentions the Chinese 
mathematicians Jia Xian and Yang Hui, but only refers to dates of appearance. From Pascal’s 
Treatise on the Arithmetical Triangle(1654), we can discover the three different aspects underlying 
this triangle: the figurate numbers, the theory of combination and the expansion of binomial 
expression. This Treatise also has an enlightening role to play on teaching. It inspires teacher how 
to expose and connect the different aspects of this mathematical object, namely the triangle. When 
begin with the teaching of this subject, I try to design an activity. My strategy is to use Pascal’s 
triangle to connect the concept of arithmetical progression, combination, binomial theorem and 
solving polynomial equations simultaneously. In my teaching activity, students were organized to 
several groups, and requested to investigate and report by teamwork. This paper includes materials 
of ancient mathematical texts and the feedback of students after this activity. It also includes my 
suggestion about such teaching activity. 
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−

11
1 ˛ḍ媑：˥ ∐䔏ⷛ㖖⍈ᷰ妹⽉ƏㇸῸ僤⤇䛛㎌

⯒⇡ᷧẂṳ柬ⰼ敲⻶Ə俳⽾∗ᷴ⯸㖠ᾦ˛˦㎌ᷲὭƏ媙㜓昫ṭᷧ⼜㤱弄✏ˣ婚姊Ṅ䫇䭾㲼ˤ

㛟Ḕ䙫˥⏋㲼ᷪḿ㖠⛽ Ə˦ḍ媑㗵㤱弄昫娢：˥ 㹷⇡ˣ憲捽ˤ䭾㛟Ə岯㆙䔏㭋堺˛˦[檿Ḕ㕟

⭟媙㜓䬓⛂ⅱƏpp.32-34]怀ᷧ⯶㮜Ə⍚㘖媙㜓㛰旃ⷛ㖖⍈ᷰ妹⽉䙫惏Ụ˛楽ℯƏ⏖Ọ䛲⇡媙

㜓ḍᷴ⼞媦˥ⷛ㖖⍈ᷰ妹⽉˦㜓庒㈧嗱␒䙫㕟⭟䴷㦲Ə媙㜓怀壈ⷳ㜂ㇸῸ⏑㘖⯮˥ⷛ㖖⍈ᷰ

妹⽉˦䕝ㇷᷧῲ㉥⇡ṳ柬ⰼ敲⻶ᾩ㕟䙫ⷌ⅞˛⏍⣽Ə媙㜓㎷∗㤱弄˚岯㆙ƏἭ㘖ḍ㱹㛰媑㗵

怀⅐ῲ㕟⭟⮝䔏˥⏋㲼ᷪḿ㖠⛽˦Ὥ⁁ầ溣Ƣ怀ṳ滅Ə惤㘖ㇸ恟㒮怀ᷧ▕K䙫Ḣ奨俪憶Əㇸ

ペ奨孺⭟䔆⯴˥ⷛ㖖⍈ᷰ妹⽉˦怀ῲ㕟⭟䟻䩝⯴屈Ə㛰怙ᷧ㭌䙫䞔姊Ə⯮㕟⭟⏫妹⺍䙫ペ㲼

怊㎌嵞Ὥƞ⏳㘩ƏṆⷳ㜂喰吾怀ῲ▕K䙫䟻䩝Ə孺⭟䔆⯴˥ⷛ㖖⍈ᷰ妹⽉˦䙫ㆰ䔏Əᷴ䮈㘖

Ḕ⛲ㇽ奦㖠䙫Ə㛰㛛㷘ᷧⱋ䙫䞔姊Ə俳ᷴⅴᾞ昷㖣˥ ṳ柬⻶ⰼ敲ᾩ㕟 怀˦㨊ᷧῲ▕ᷧ䙫妧⿜  ̨

 

ᵊƱ㑅㗪 

 ˥ⷛ㖖⍈ᷰ妹⽉˦✏㕟⭟䟌嬿ᷱƏ㛰ᷰⱋヶ侐：⛽⽉㕟Ƌfigurate numbersƌ̊ 䴫⏯㕟
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Ƌcombinatorial numbersƌ̊ ṳ柬ᾩ㕟Ƌbinomial numbersƌ̨ [Edwards, 1987]怀ᷰⱋⅎ⮠Ə⏖Ọ

✏ᷴ⏳䙫▕KḔṹ䛟④ㆰƏỌ㜆总∗㛛⻊㳂˚㛛㷘∢䙫䞔姊˛ 

圖形數 

䕉㯶⭟㴥婴䂡：㈧㛰䙫㝘奦惤␒㛰㕟䙫ㇷ⇭Ə㕟㘖⽉ㇷ⭮⮀䙫奨䴇˛ẽῸ态⸟Ọ㲀䱹ㇽ

⍜䟚姊媑㕟ƏẽῸỌ㈧㍹⇾Ḳ⽉䊧⌧⇭㕟䂡娘⤁䨕桅Əᷲ⇾䙫ᷧ䨕墒䨘䂡ᷰ妹⽉㕟Ƌtriangle 

numbersƌ： 

 
 

勌⯮ᷰ妹⽉㕟䙫ṳ䶔⺍䩡敺㓛ℬƏ⍚ㇷ Theon ⑳ Nicomachus ㈧䨘䙫ᷰ䶔⺍䙫妹拷⽉㕟

Ƌpyramidal numbersƌ： 

ㇸῸ⏖Ọ妧⯆⽾⇡Ə妹拷⽉㕟 

1, 4, 10, 20, 35, 56, 84,…... 

㘖䔘ᷰ妹⽉㕟 

1, 3, 6, 10, 15, 21, 28,…… 

㈧㦲ㇷƏ俳ᷰ妹⽉㕟⎯㘖䔘㕛㕟 

1, 2, 3, 4, 5, 6, 7,…… 

㈧㦲ㇷƏ俳㕛㕟⎯㘖䔘 

1, 1, 1, 1, 1, 1, 1,…… 

㈧㦲ㇷ˛勌⯮怀Ẃ⯒ㇷ⥩⏚塏ƏⅴἷỌᷰ妹⽉㕟⎱妹拷⽉㕟䙫⽉ㇷ䉠『Ƌὲ⥩：ᷰ妹⽉㕟

3=1+2, 6=1+2+3=3+3, 10=1+2+3+4=6+4, 妹拷⽉㕟 10=4+6, …ƌƏ⯮⏖Ọ⽾∗ㇸῸ✏˥ⷛ㖖⍈

ᷰ妹⽉˦Ḕ⸟䛲∗䙫䴷㞃：[Edwards, 1987, pp.2-5] 

,...3 ,2 ,1  ,...4 ,3 ,2  ;1  , 1
00

1
1

1 =====+= −
− klffffff l

k
l

k
l

k
l

k  

Ƌ塏ᷧƌ 
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=
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l

i

i
k

l
k ff

1
1  

 ⅝⯍ƏㇸῸⅴẻ䴗妧⯆ᷧᷲᷰ妹⽉㕟 1, 3, 6, 10, 15, 21, 28,……Ə⏖Ọ䙣䏥怀ῲ㕟⇾⅝⯍

㘖ᷧῲṳ晵䬰ⷕ㕟⇾Ə俳妹拷⽉㕟 1, 4, 10, 20, 35, 56, 84,…...⍚㘖ᷧῲᷰ晵䬰ⷕ㕟⇾˛奦K

⌨ᷧ凚⌨᷽ᷰ䳧䙫Ḕ⛲㕟⭟⮝ῸƏ✏怀㨊䙫檿晵䬰ⷕ䴁㕟㰩⑳┶栳ᷱƋ➂䨴┶栳ƌƏ⎽⽾ṭ

弄䄳䙫ㇷⰘ˛⭲K㕟⭟⮝✏➂䨴㋂ⷕ㖠杉䙫䟻䩝ƏỌ㜘᷽㝗ˣ⛂K䍰搸ˤḔ㈧⎽⽾䙫ㇷⰘ䂡

㛧憴奨˛㜘᷽㝗䙫䟻䩝ㇷ㞃⇭∌姿廰✏ˣ⛂K䍰搸ˤ䙫˥匔匰⽉㮜 Ƌ˦⅘ 7 ῲ┶栳ƌ̊˥⥩₶

㋂㕟 Ƌ˦5 ῲ┶栳ƌ̊˥㞃➂䕱営 Ƌ˦20 ῲ┶栳ƌḔ˛ 

 ✏㜘᷽㝗䙫娘⤁㰩⑳┶栳ḔƏ⏖㭟䳴⇡ᷧẂ㛰吾憴奨ヶ侐䙫⅓⻶： 

匔匰➂： )1(
!2

1...4321 +=+++++ nnn  

ᷰ妹➂Ƌㇽ䨘吤ᷧ堳➂ƌ： )2)(1(
!3

1)1(
2
1...10631 ++=++++++ nnnnn  

㑹㘆⽉➂Ƌㇽ䨘ᷰ妹吤ᷧ⽉➂ƌ： 

)3)(2)(1(
!4

1)2)(1(
!3

1...201041 +++=+++++++ nnnnnnn  

ᷰ妹㑹㘆⽉➂Ƌㇽ䨘㑹㘆㛛吤ᷧ⽉➂ƌ： 

)4)(3)(2)(1(
!5

1)3)(2)(1(
!4

1...351551 ++++=++++++++ nnnnnnnnn  

✏ᷱ志䙫ᷧḙ⅓⻶ḔƏ∴杉ᷧῲ⅓⻶䙫䴷㞃Ə≂⥤㘖⽳ᷧῲ⅓⻶䙫ᷧ刓柬˛⾅➂䨴ᷱ䙫ヶ侐

Ὥ嬂ƏṆⰘ㘖㉱∴⻶㈧塏䤡䙫➂䨴䭾∗䬓 n ⱋ㭉䙫㈧㛰⏫ⱋƏ˥ 吤䂡ᷧⱋ Ə˦ὃ䂡⽳⻶㈧塏䤡

➂䨴䙫䬓 n ⱋ˛怀Ṇ㘖㜘᷽㝗㉱⽳⻶䨘䂡∴⻶䙫吤ᷧ⽉➂䙫⎆⛇ [̨㜵℣Ə1983Əpp.181-185] 

 怀ῲ惏Ụ䙫ⅎ⮠ƏṆ㘖˥ⷛ㖖⍈ᷰ妹⽉˦䙫ᷧ惏ỤƏἭ㘖Ə⍢ᷴⱓ㖣˥ṳ柬⻶⮁䏭˦怀

ῲ▕K˛㕟⭟㕀⸒⏖Ọ✏㕀㍯䴁㕟㰩⑳㘩Ə⯮怀ῲ惏Ụ䕝ㇷ㘖⭟䔆䙫媙⽳壃ℬ㕀㜷Ə喰吾⯮

㭞⏙㕮㜓䙫坴⅌ㇽ▕䍏䟻䩝Ə⭟䔆ᷴ⏑⏖Ọ⊇⼞䬰ⷕ䴁㕟䙫妧⿜Əḍ᷻⭟侹⾅怀ῲ妹⺍Ὥ䛲

㈧嫩䙫˥ⷛ㖖⍈ᷰ妹⽉ Ə˦俳怀ῲ惏Ụ䙫ⅎ⮠Ə⎯⏖Ọ⑳˥ⷛ㖖⍈ᷰ妹⽉˦䙫䬓ṳⱋヶ侐：

䴫⏯㕟䴷⏯✏ᷧ嵞˛ 

組合數 

 ✏檿Ḕ㕟⭟䬓⛂ⅱ䙫ˡ1-2 䴫⏯ˢḔ⮁侐Ἴ嫩䴫⏯： 

從 n個不同的物件中，每次取m個不同的物件為一組 nm d( )，同一組內的物件若不計較

其前後順序，就叫做 n中取m的組合。其中每一組，稱為一種組合，所有的組合的總數

稱為組合數，以符號 n
mC 表示。 

⛇䂡✏∴ᷧ䮧ḔƏ媙㜓ⷙ䵺Ẳ䴠怵㍹⇾䙫妧⿜凮㍹⇾㕟䙫䭾㲼Ə✏怀ᷧ䮧ḔƏⰘ⯮㍹⇾两㕟

⇭姊ㇷ⅐ῲ㭌橆Ὥ㰩： 
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(1) 先自 n中選取m個出來（就是組合數 n
mC ）。 

(2) 在把取出的m個物件，任意去排。 

⛇䂡怀㨊䙫⇭姊⊼ὃƏⰘ⏖Ọ⽾∗ 

)(  
)!(!

! nm
mnm

nC n
m d

−
=  

怀㨊䙫⮁侐㖠⻶Ə㛰⅝柭⹶ᷱ䙫ᾦ∐『ƏἭ㘖Ə⍢Ṇ孺ạ忞ジ：怀㨊䙫⅓⻶䭾㲼Ə∗⹼⑳˥ 恟

⎽˦㛰ầ溣旃ᾩƢ⥩㞃奨孺⭟䔆䜆㭊⯴䴫⏯㕟⻡㦲ヶ侐Ə∮㛰曧奨⏍⾑巖⽸˛ 

 奦K᷽ᷰ䳧䙫 Porphyry䂡ṭ奨Ẳ䴠ẅ憳⣒⤁⾞䙫˥䮫䕮(Categories) Ə˦ẽ⾬柯䟌怺✏ṻ

䨕ẅ憳⣒⤁⾞䙫˥媅ㄲ (voices) ：˦˥ 䨕 (genus)˦̊˥ⱓƋspeciesƌ˦ ˚˥ proprium˦̊˥ⷕ∌

Ƌdifferentiaƌ˦˚˥ ⁝䄝Ƌaccidentsƌ˦ ḔƏ㛰⹥䨕ᷴ⏳䙫愴⯴㖠㲼˛ẽ䙫㖠㲼㘖：Ọ䬓 1 䨕㝘

奦䂡㨀㹽Ə㛰 4 䨕㝘奦⑳⭪愴⯴ƞⅴ䛲䬓 2 䨕㝘奦Ə≐ᷲ⅝ẽ 3 䨕㝘奦⑳⭪愴⯴ƞ⥩㭋Ə5

䨕ᷴ⏳㝘奦Ḕ⎽ 2 䨕䙫㖠㲼㕟䂡 4+3+2+1=10 䨕㖠㲼˛Pappus ⯮怀䨕㖠㲼㎏⻊Ə⾅ n䨕ᷴ⏳

䙫㝘奦ḔƏ⎽ 2 䨕䙫㖠㲼㕟䂡 nCnnnn 22
)1(123...)2()1( =

−
=++++−+− ˛ 

 ⏳㨊䙫ペ㲼Ṇ⇡䏥✏Ḕ䭾⮝㱑叱䙫ˣ恅Ⅳ㕟䏭ˤḔ˛㱑叱Ƌ1768-1831ƌ⬾⭄⬗Ə噆塈

漲Ə䂡ṥ◰㘩㜆吾⏴䙫㕟⭟⮝˛x 恅Ⅳ㕟䏭ˤ⇾✏ˣ塈漲䭾⭟ˤ䬓⛂⍞䙫⽳⌱⍞Ə✏⅝ḔƏ

㱑叱媽志ṭ䴫⏯䙫ᷧẂ『峑凮⅓⻶䔘ὭƏẽ䙫䴫⏯㕟ヶ䂡： 

設如有物各種。自一物各立一數起，至諸物合併共為一數止，其間遞以二物相兼為一數，

交錯以辯得若干數，三物相兼為一數，交錯以辯得若干數，四物五物以至多物若不皆然，

此為遞兼之數也。 

娔㛰 nῲᷴ⏳䙫䉐ờƏĄ凑ᷧ䉐⏫䪲ᷧ㕟ą⍚㮶㬈⎽ 1 ῲ䉐ờƏĄ嫟䉐⏯὜⅘䂡ᷧ㕟ą⍚ᷧ

㬈⎽ nῲƏ⥩㭋桅㎏˛㱑叱㈧嫩˥恅ⅣḲ㕟˦⍚䂡䏥ằㇸῸ䆆ば䙫䴫⏯㕟 

n
n

nnn CCCC  ... , , , 321 ˛俳㱑叱⯮¦
=

n

p

n
pC

1

䨘䂡˥恅Ⅳ两㕟 Ə˦䛟⯴㖣˥恅Ⅳ两㕟 Ə˦ẽ⯮ n
pC 䨘䂡˥恅

Ⅳ⇭㕟 ：˦ 

以所設物數即為各立一數之數。減一數為三角堆之根，乃以根數求得平三角堆為二物相

兼之數。又減一數求得立三角堆為三物相兼之數。又減一數求得三乘三角堆為四物相兼

之數。如是根數遞減，乘數遞加，求得相兼諸數。……此遞兼之分數也。 

怀壈䙫ᷰ妹⟭⍚䂡ᷱ志㜘᷽㝗➂䨴㋂ⷕ䙫匔匰➂Ƌ⹚ᷰ妹⟭ƌ̊ ᷰ妹➂Ƌ䪲ᷰ妹⟭ƌ̊ ᷰ妹吤

ᷧ⽉➂Ƌᷰḿᷰ妹➂ƌ……䬰䬰˛ẽ㈧⽾䙫䴫⏯㕟⅓⻶Ą⥩㘖㠠㕟恅㸂Əḿ㕟恅⊇Ə㰩⽾䛟

Ⅳ嫟㕟ą⑳㜘᷽㝗✏➂䨴㋂ⷕḔ㈧⽾䙫⅓⻶㘖ᷧ㨊䙫： 

nnpnpn
p

C n
p )1()2)(1(

!
1

−+−+−= �  
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Ṇ⑳䏥ằ㈧䆆ば䙫
)!(!

!
pnp

nC n
p −
= 㘖ᷧ㨊䙫˛ 

 㱑叱䙫⅓⻶㎏⯵怵䧲Ə⑳ᷱ志㈧㎷䙫 Porphyry凮 Pappus 䙫ペ㲼㘖ᷧ㨊䙫： 

以一物為主而兼他物得若干數。至以又一物為主而兼他物及不復兼先為主之物，故所得

必少一數。由此遞少遂成三角堆形。 

㱑叱Ọ˥⌨㕟恅Ⅳ⇭㕟⛽姊˦䂡ὲ媑㗵Ə⾅ 10 ῲ䉐ờḔƏ⎽ 2 䉐⽾㖠㲼㕟Ƌ 10
2C ƌ䂡

9+8+7+…+3+2+1ƏỌ⛽⽉姊媑Ə⍚䂡ᷧ⹚ᷰ妹⟭˛俳 10 䉐Ḕ⎽ 3 䉐䙫㖠㲼㕟Ƌ 10
3C ƌガ⽉

䛟⏳Ə⏑㘖ℯỌ 2 䉐䂡ḢƏ⯮⹚ᷰ妹⟭Ḕ䙫㮶ᷧ堳㓛ⰼㇷᷧ⹚ᷰ妹⟭Ə㛧⽳㕛檻ㇷ䂡ᷧ䪲ᷰ

妹⟭Ƌ⥩⛽ƌ̨ ✏˥ ⌨㕟恅Ⅳ⇭㕟⛽姊 Ḕ˦Ə㱑叱恫㎷∗䴫⏯㕟䙫『峑：˥ ᷧ䉐⏫䪲ᷧ㕟⽾⌨˛

Ṅ䉐䛟Ⅳ㕟⏳Ƌ 10
9

10
1 CC = ƌ˦˚˥ ṳ䉐䛟Ⅳ⽾㕟⛂⌨ṻ˛⅒䉐䛟Ⅳ㕟⏳ Ƌ̨ 10

8
10
2 CC = ƌ˦ 䬰䬰˛ 

 

 㱑叱✏ˣ恅Ⅳ㕟䏭ˤḔƏ䂡ㇸῸ␯䏥ṭ䴫⏯䙫⏍ᷧ䨕ペ㲼Ə⍚㘖˥恟⎽˦䙫㥩⿜˛⾅怀

㨊䙫恟⎽妧⿜Ə䴫⏯㕟⯮␯䏥⏍ᷧ䨕ᷴ⏳䙫梏屳˛ὲ⥩⾅ n ῲ䉐ờḔ⎽ k ῲ㘩Ə⏖Ọ⛡⮁㞷

ᷧῲ䉠㭱䙫䉐ờƋὲ⥩䬓 1 ῲƌƏ✏恟⎽ k ῲ㘩Ə㛰⋬␒怀䉠㭱䙫ᷧῲ凮ᷴ⋬␒⅐䨕ガ㲨˛

⋬␒䙫婘Ə∮⾅≐ᷲ䙫 n-1 ῲḔƏ⎽ k-1 ῲƞ⥩㞃ᷴ⋬␒䙫婘Ə∮⾅≐ᷲ䙫 n-1 䙫Ḕ⎽ k ῲ˛

怀⍚㘖ㇸῸ㈧䆆ば䙫 11
1

−−
− += n

k
n
k

n
k CCC ƋṆ㘖ᷱ志㈧㎷⎱䙫 l

k
l

k
l

k fff 1
1

−
− += Ə⅝Ḕ

1+−= rn
r

n
r fC ƌ̨ 怀㨊䙫ペ㲼喰吾˥ⷛ㖖⍈ᷰ妹⽉˦⯮䴫⏯㕟凮⛽⽉㕟Ƌ檿晵䬰ⷕ䴁㕟ƌ䴷⏯

✏ᷧ嵞˛1 

                                                 
1 ⷛ㖖⍈✏ẽ䙫ˣ媽䭾堺ᷰ妹ˤ䙫㛟ḔƏ⍚㘖喰怀ῲ妧⿜凮⻶⬷Ə⯮䭾堺ᷰ妹Ḕ䙫㮶ᷧ㠣㕟⬾Ə凮䴫⏯㕟䴷⏯

✏ᷧ嵞˛ㇸ✏⽳杉䙫䫇䮧㛪ⅴ⊇Ọ媽志˛ 
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䴫⏯䙫㥩⿜凮䭾㲼Ə✏檿Ḕ㕟⭟ḔƏ凑㛰⅝憴奨『Ə媙㜓暽䄝㎷ᾂṭㇸῸ⾅㍹⇾∗䴫⏯

䙫〄俪巖⽸ƏἭ㘖Ə㱑叱䙫˥恅Ⅳ㕟䏭˦ᷴṆ㘖⏍ᷧ䨕〄俪㖠⻶˛Ⰻ⅝䕝怀㨊䙫〄俪㨈⻶⎯

⑳ⷙ䵺⭟怵Ƌ䬰ⷕ䴁㕟ƌ䙫ƏỌ⎱⍚⯮⭟侹䙫Ƌṳ柬⻶⮁䏭ƌƏ喰吾˥ⷛ㖖⍈ᷰ妹⽉˦㕛⏯

✏ᷧ嵞㘩Ə怀㨊䙫⭟侹㖠⻶ᷴ㘖⸝㛰㛛㷘ⱋ䙫ヶ侐▵Ƣ㎌ᷲὭƏ䴗䛲˥ⷛ㖖⍈ᷰ妹⽉˦Ḕ䙫

㮶ᷧῲ㕟⬾Ə˥ ⷛ㖖⍈ᷰ妹⽉˦⯮␯䏥⇡⏍ᷧⱋヶ侐：ṳ柬⻶⮁䏭˛ 

二項式定理 

 ✏檿Ḕ㕟⭟䬓⛂ⅱˡ1-3 ṳ柬⻶⮁䏭ˢḔƏ∐䔏䴫⏯䙫妧⿜Ὥ嬰㗵ṳ柬⻶⮁䏭： 
nn

n
nn

n
rrnn

r
nnnnn yCxyCyxCyxCxCyxyxyxyx ++++++=+++=+ −

−
−− 1

1
1

10)())(()( ���  

䄝⽳媑： 

如果將本節開始時所列之二項展開式中 x， y省略，只列出係數，就可得到二項係數的

巴斯卡三角形： 

這個三角形的邊緣都是 1，而內部的數都是它的左上方和右上方二數的和，此即
n
k

n
k

n
k CCC =+ −−
−

11
1 的具體表示法。利用巴斯卡三角形，我們能夠直接寫出一些二項展開

式，而得到不少便利。 

怀㨊䙫媑㲼ƏỌ⎱媙㜓Ḕ䙫ὲ⬷Ə⯮ṳ柬⻶⮁䏭凮˥ⷛ㖖⍈ᷰ妹

⽉˦䙫ㆰ䔏ᾞ昷✏ⰼ敲凮姯䭾ᾩ㕟ᷱ˛俳媙㜓㎷ṭ㤱弄˚岯㆙Ə

⍢ᷴ㎷ẽῸ∐䔏˥ⷛ㖖⍈ᷰ妹⽉˦✏敲㖠㲼ᷱ䙫岉䍢Ə⍢Ṇ⏑㘖

冁㷡䙫˥⾐凯Ḕ取㯸㖶㕮⋽˦䙫⏊噆佞ṭ˛ 

 㤱弄✏ˣ婚姊Ṅ䫇䭾㲼 Ƌʕ1261 ⹛ƌḔƏ昫ṭᷧ⼜˥敲㖠ὃ

㲼㜓㹷⛽ Ə˦ḍ媑㗵：˥ 㹷⇡ˣ憲捽ˤ䭾㛟Ə岯㆙䔏㭋堺˛˦岯㆙

∐䔏ẽ✏敲⹚㖠˚敲䪲㖠Ḕ⻼⅌䙫㖗㖠㲼—暏ḿ暏⊇䙫˥⢅ḿ˦

㲼Ə䵍⇡ṭ㰩ṳ柬⻶ⰼ敲⻶Ḕ䙫⏫柬ᾩ㕟䙫㖠㲼Ə㛰ṭ˥敲㖠ὃ
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㲼㜓㹷⛽ Ə˦敲檿㬈㖠Ⱈᷴㇷ┶栳ṭ˛Ọ㰩敲⅔㬈㖠㛪䔏∗䙫 6 㬈㖠ⰼ敲⻶䙫ᾩ㕟䂡ὲƏ楽

ℯ⇾⇡ṻⱋƏ㮶ᷧⱋ惤㘖 1(I)Ə⅝㬈ĄỌ晬䭾ᷧƏ凑ᷲ⢅⅌∴ἴ凚楽ἴ俳㭉ą(II)̨ Ą⾐Ọ晬

䭾⥩∴⌮⢅Ə恅㸂ᷧἴ㰩Ḳą(III~VI)ƏⰘ㘖䔘ᷲ俳ᷱ㮶ἵᷧἴ俳㭉˛㛧⽳䴷㞃ⅴ⊇ᷱ晬Ƌ1ƌ

⑳䨴Ƌ1ƌƏ≂⥤㘖 6 㬈㖠䙫ⰼ敲ᾩ㕟：1˚6˚15˚20˚15˚6˚1˛⥩ᷲ塏： 

 

 (I)   (II)   (III)     (IV)    (V)    (VI) 

ᷱ⺰ 1 1+5=6 㭉     

ṳ⺰ 1 1+4=5 5=10=15 㭉    

ᷰ⺰ 1 1+3=4 4+6=10 10+10=20 㭉   

⛂⺰ 1 1+2=3 3+3=6 6+4=10 10+5=15 㭉  

ᷲ⺰ 1 1+1=2 2+1=3 3+1=4 4+1=5 5+1=6 㭉 

晬 1 1 1 1 1 1 

怀㨊䙫暏ḿ暏⊇䙫㖠㲼Ə媑㗵ṭ˥ⷛ㖖⍈ᷰ妹⽉˦Ḕ㮶ᷧ㕟䙫䔘Ὥ˛✏˥敲㖠ὃ㲼㜓㹷⛽˦

ḔƏ⇾㛰⹥堳˥⏊娊 ：˦ 

左袤乃積數。右袤乃隅算。中藏者皆廉。以廉乘商方。命實而除之。 

∴ᷰ⏌✏媑㗵怀ῲ䭾堺ᷰ妹⏫ἴ何䙫⏴䨘ƞ⽳⅐⏌⍚㘖∐䔏⅝Ὥ敲㖠䙫㖠㲼˛Ọ敲ᷰ㬈㖠㠠

䂡ὲƏ∐䔏ᷰ㬈㖠䙫ⰼ敲⻶ bbbaaaba ])3(3[)( 233 +++=+ Ὥ㉥⇡㞷ᷧ㕟䙫ᷰ㬈㖠㠠˛⥩㰩
3 N 㘩Ə勌䌃㸓⅝䂡ᷧṳἴ㕟Ə⍚ 3)( baN += Əℯ䌃㸓⇡⌨ἴ㕟⬾ aƏⅴ∐䔏暏ḿ暏⊇䙫㖠

㲼Ə⯮ N 㸂⎢ 3a ⽳Əⅴ䌃㸓ῲἴ㕟⬾bƏ⏳㨊∐䔏暏ḿ暏⊇䙫㖠㲼Ə㸂⎢ bbbaa ])3(3[ 2 ++ Ə

㈧⽾ ba + ⍚䂡敲㖠⽳㈧⽾˛岯㆙䙫㖠㲼⥩ᷲ塏： 

┭ a a a a a+b a+b 

⯍ N N-a2澽 a=N-a3 N-a3 N-a3 N-a3 N-a3-[3a2+3ab+b2]b=N-(a+b)3 

㖠 0 0+a澽 a=a2 a2+2a澽 a=3a2 3a2 3a2 3a2+(3a+b)b=3a2+3ab+b2 

⺰ 0 0+1澽 a=a a+1澽 a=2a 2a+1澽 a= 3a 3a+1澽 b=3a+b 

晬 1 1 1 1 1 1 

✏Ḕ⛲⏋䭾ḔƏ暽䄝䟌怺˥ⷛ㖖⍈ᷰ妹⽉˦怀ῲ䭾堺ᷰ妹䙫䔏嘼ƏἭ㘖Ə䄈媽㘖㜘᷽㝗

䙫➂䨴㋂ⷕƏ恫㘖岯㆙˚㤱弄䙫敲㖠㲼Ə惤Ṇ€昷㖣▕ᷧ䔏㲼Ə䄈㲼⯮怀ῲ䭾堺ᷰ妹䕝ㇷᷧ

ῲ䳻㕟⭟䙫䉐KƋobjectƌὭ䟻䩝˛ 

 ˥ⷛ㖖⍈ᷰ妹⽉˦Ḕ䙫㕟⬾Əᷴ㘖⏑⸝㛰ṳ柬⻶⮁䏭ⰼ敲ᾩ㕟䙫ヶ侐俳ⷙ˛⥩㞃⏑ᾞ昷

✏怀ᷧ惏ỤƏⰘ⥩⏳⏑㳏ヶ∗劘⛹Ḕ䙫ᷧ劘ᷧ䟚Ə俳⿤䕌䙫劘⛹㕛檻䙫⣖妧凮併湾˛䬓ᷧῲ
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⯮˥ⷛ㖖⍈ᷰ妹⽉˦䕝ㇷᷧῲ䟻䩝⯍檻Əḍ⯮⅝ᷰⱋヶ侐㕛⏯✏ᷧ檻䙫ƏⰘ㘖ⷛ㖖⍈ƋB. 

PascalƌƏ㈧ỌƏㇸῸ㈴Ọẽ䙫⏴⬾Ὥ⑤⏴˛ 

巴斯卡的《論算術三角(A Treatise on the Arithmetical triangle)》 

 ⷛ㖖⍈䙫ˣ媽䭾堺ᷰ妹ˤ⤎䳫⭳ㇷ㖣 1654 ⹛˛䕝㘩⛇䂡ẽㇷ⊆✗姊㱡ṭ峔⍁Ḕ峔憸⇭

愴䙫┶栳ƋPromble of PointsƌƏ∡㾧ṭẽ⯴䴫⏯䙫凯嶊˛x 媽䭾堺ᷰ妹ˤ怀ᷧ㜓㛟Ḕ⇭ㇷ⅐

ῲ惏ỤƏ䬓ᷧῲ惏Ụ⋬␒ṭ䭾堺ᷰ妹

䙫⮁侐⑳ 19 䙫㎏媽ƏỌ⎱ᷧῲ┶

栳˛✏怀ῲ惏ỤḔƏⷛ㖖⍈䵍⇡ṭ䭾

堺ᷰ妹䙫『峑ƏỌ⎱ㇸῸ㈧䆆ば䙫娘

⤁䴫⏯⅓⻶̨ 䬓ṳῲ惏Ụ䂡䭾堺ᷰ妹

䙫ㆰ䔏Ə⋬␒ṭ⛂ῲ䫇䮧： 

Ƌ1ƌ✏⛽⽉㕟䏭媽ᷱ䙫ㆰ䔏 

Ƌ2ƌ✏䴫⏯䏭媽ᷱ䙫ㆰ䔏 

Ƌ3ƌ✏㩆㛪怱㈙Ƌ game of 

chanceƌḔ峔憸⇭愴┶栳

ᷱ䙫ㆰ䔏˛ 

Ƌ4ƌ✏ṳ柬ⰼ敲⻶ᷱ䙫ㆰ䔏 

✏䬓ᷧ惏ỤḔƏⷛ㖖⍈Ọ䴫⏯奶

∮Ḕ䙫⊇㲼⅓⻶ l
k

l
k

l
k fff += −1 Ə2⮁侐㈧嫩䙫䭾堺ᷰ妹˛䄝⽳✏ 19 ῲ㎏媽ḔƏ䵍⇡ṭ⾅䭾堺

ᷰ妹Ḕ⏖Ọ䛲⇡䙫『峑⅓⻶Əḍ⊇Ọ嬰㗵˛䮧拫⥩ᷲ： 

㉦妔 2：✏㮶ᷧ䭾堺ᷰ妹ḔƏ㮶ᷧ㠣䬰㖣⭪∴ᷧ⹚堳堳ḔƏ䔘⅝㈧✏䙫❩䛛堳∗䬓ᷧ❩

䛛堳䙫㈧㛰㕟⬾⑳˛⍚ ¦
=

−=
l

i

i
k

l
k ff

1
1 ˛ 

㉦妔 5：✏㮶ῲ䭾堺ᷰ妹ḔƏ㮶ᷧ㠣惤凮⭪䛟⎴䙫㠣䛟䬰˛⍚ 1
1
+

−= k
l

l
k ff Ƌㇽ㘖ㇸῸ䆆ば

䙫 n
rn

n
r CC −= ƌ̨  

㉦妔 8：✏ỢἼ䭾堺ᷰ妹ḔƏ㮶ᷧ⹼ᷱ㕟⬾Ḳ⑳㦲ㇷᷧ⇾⹥Ἴ䴁㕟Ə怀ᷧ⹥Ἴ䴁㕟⾅ 1

敲⦲Ə柭⹶凮⹼䙫㋮㨀ᷧ凛˛⍚ n
n

r

n
rC 2

0
=¦

=

˛ 

㉦妔 12：✏Ợヶ䭾堺ᷰ妹ḔƏ⏳⹼ᷱ䙫⅐ῲ㮾愗䙫㠣⬷Əᷱ杉䙫㠣凮ᷲ杉䙫㠣䙫㮻䬰

㖣⾅ᷱ杉㠣∗㭋⹼䙫柩㠣䙫㠣㕟Ə凮⾅ᷲ杉䙫㠣∗⹼䫖䙫㠣㕟䙫㮻˛悊⅐ῲ㠣⬷惤⋬␒

                                                 
2 Ọᷲ㈧䔏䙫䬍噆 l, k ⍚Ƌ塏ᷧƌḲ l 凮 kƏṆⰘ㘖䭾堺ᷰ妹ḔƏ堳䂡 lƏ⇾䂡 k˛ 
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✏⅝Ḕ˛⍚ 1
1
+
−= l

k
l

k lfkf Ƌ⍚㘖 n
r

n
r CrnrC 1)1( −�+−= ƌ̨ 3 

␍朊：䵍⮁ l凮 1+k Ə㰩 l
kf ˛ 

ⷛ 㖖 ⍈ ✏ 姊 怀 ᷧ ῲ ┶ 栳 䙫 㘩   Ə 憴 壮 䙫 ㆰ 䔏 ㎏ 媽 12 Ə 䵍 ⇡ ṭ

1)2)(1(
)1()2)(1(

�

�

−−
−+++

=
kkk

kllllf l
k Ə⍚㘖ㇸῸ䏥ằ䆆ば䙫

r
rnnnnC n

r
�

�

321
)1()2)(1(

��
+−−−

= 䙫⅓⻶  ̨

 ⷛ㖖⍈✏䬓ṳ惏Ụ䙫䬓ᷧ䮧ḔƏ⏳㨊⯮⛽⽉㕟⑤⏴䂡ᷰ妹⽉㕟Ƌtriangulairesƌ̊ 妹拷⽉

㕟Ƌpyramidauxƌ̊ triangulo-triangulaires 䬰䬰Ə⅝ẽ⍚⥩∴杉㈧志䙫Ə⯮⛽⽉㕟凮䭾堺ᷰ妹

⁁ᷧ怊䴷˛✏䬓ṳ䮧䴫⏯㕟䙫䏭媽ḔƏℯỌ䰈▕䙫ὲ⬷Ƌn=3, r=1ƌ媑㗵 n
r

n
r

n
r CCC 1

1
1 +
+
+ += 䙫

ᷧ刓『˛䄝⽳∐䔏怀ῲ⻼䏭媑㗵䴫⏯㕟凮䭾堺ᷰ妹Ḕ䙫㕟⬾䙫旃ᾩ 
n
r

rn
r Cf =+− 1  

✏䬓⛂䮧ㆰ䔏∗ṳ柬ⰼ敲⻶䙫惏ỤƏⷛ㖖⍈ℯỌ䰈▕䙫ὲ⬷媑㗵㰩⑳ṳ柬⻶⑳ⷕṳ柬⻶䙫㬈

㕟：4 

如果求一項為 A，另一項為 1 的二項式的冪，如四次冪，即 A+1 的四次方，則看算術

三角的第五底，及指標為 4+1 的底。這一底上的格字是 1, 4, 6, 4, 1，第一個數 1 是 A4

的係數；第二個數 4 是 A 的低一次的冪即 A3的係數；底的下一個數 6 是再低一次的冪

的係數，即 A2的係數；下一個數 4 是 A 的更低一次的冪，A 的係數；底的最後一個數

1 為常數。這樣我們得到： 14641 234 ++++ AAAA 即是二項式 A+1 的四次（平方的平

方）冪。…… 

ⷛ㖖⍈✏䵍⇡ὲ⬷Ḳ⽳媑： 

我不想給出所有的證明了，一方面有些人（如埃里岡（Hérigone））已研究過這些問題，

另外，這些證明也過於簡單（the matter is self-evident.）。5 

 㕛ῲὭ嬂Əⷛ㖖⍈䙫x 媽䭾堺ᷰ妹 㘖ʕ⯴䭾堺ᷰ妹⑳⅝ㆰ䔏䙫ᷧ䨕㷬㥁䙫Ə䰈㗵䙫晚志˛

ẽḍ᷻⻡㦲ṭᷧῲ⽯㷬㥁䙫媽志䴷㦲Əℯ⮁侐˚⻡䪲䭾堺ᷰ妹䙫『峑Ə䄝⽳ㆰ䔏✏⏫䨕ᷴ⏳

䙫柿⟆Ə⯮˥䭾堺ᷰ妹˦怀ῲ㕟⭟䉐KƋobjectƌƏ⁁ᷧῲ䴷㦲『䙫㕛⏯Ə俳ᷴⅴ⏑㘖ṳ柬⻶

ⰼ敲ᾩ㕟䙫ᷧῲㆰ䔏ⷌ⅞˛ⷛ㖖⍈䵍ㇸῸᷧῲ杅⸟⥤䙫䤡䮫Ə⍚㘖⥩Ἴ⯮ᷧῲḢ栳⽯㷬㥁˚

⭳㕛䙫㕛⏯✏ᷧ嵞˛ 

三、實地教學 
                                                 
3 ✏嬰㗵㎏媽 12 㘩Əⷛ㖖⍈Ọ㕟⭟㭟䳴㲼Ὥ嬰㗵˛ẽℯ：㎷∴ῲ⅐娔‮ 

  ⻼䏭 1：✏䬓ṳ⹼ᷱ㭋⮁䏭桖䄝ㇷ䪲˛ 

  ⻼䏭 2：⥩✏㞷ᷧ⹼ᷱ㛰㭋㮻ὲƏ∮✏ᷲᷧ⹼ᷱᷧ⮁Ṇ㛰㭋㮻ὲ˛ 
4 ⷛ㖖⍈䔏˥ⷕṳ柬⻶Ƌapotomeƌ˦ 塏䤡⅐柬ⷕ䙫ṳ柬⻶˛奲ˣ㕟⭟䎴⯝ Əʕp. 439Ə㜵⮝⭶孖˛ 
5 ㇸ㈧⻼䙫孖㕮Ὥ凑ˣ㕟⭟䎴⯝ˤḔ㜵⮝⭶㈧孖˛Ἥ㘖⾅勘㕮⎆㕮䛲ὭƏ⅝⯍ⷛ㖖⍈䙫⎆ヶㆰ婙㘖䭾堺ᷰ妹怀

ῲ⽉⻶ḔƏ⍚暘␒ṭṳ柬⻶⮁䏭䙫嬰㗵Ə⭪㘖ᷴ嬰凑㗵Ƌself-evidentƌ䙫˛ 
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
...................

 ✏怀ῲ▕KḔƏ⛇䂡奨孺⭟䔆⯴˥ⷛ㖖⍈ᷰ妹⽉˦⏫ⱋ杉䙫ヶ侐惤僤㛰㈧䞔姊Əㇸ㈧㎈

䔏䙫㖠㲼䂡⇭䴫⠘␱˛孺⭟䔆懄⯴㞷ῲ㕟⭟⮝䙫䏭媽ㇽ㖠㲼ḔƏ㛰ὦ䔏˥ⷛ㖖⍈ᷰ妹⽉˦䙫

惏Ụ⁁⠘␱˛✏⠘␱Ḳ∴Ə⯮⏫㕟⭟⮝䙫㛟Ḕ㛰㎷⎱˥ⷛ㖖⍈ᷰ妹⽉˦⛽⽉䙫惏ỤƏ⽘⍗䵍

⭟䔆⎪俪Əḍ奨㰩⭟䔆✏⠘␱㘩壤ὃ㉼⽘䈮Ə⅝ẽ䴫⠘␱㘩僤㎷┶Əḍ✏⠘␱⭳⽳⯮ⅎ⮠㕛

䏭ㇷ㛟杉⠘␱˛⭟䔆✏⠘␱㘩㛰Ẃⅎ⮠ᷴ㗵䙤ㇽ曧奨壃ℬḲ嘼ƏỌ㎷┶栳䙫㖠⻶Ə䔘㈧㛰⭟

䔆〄俪⛅䬻˛㈧㛰⭟䔆⠘␱⭳⽳ƏⅴⰘ曧奨壃ℬㇽ䵘㕛䙫惏Ụ媑㗵˛ 

四、評量 

⛇䂡ㇸ䙫䛕䙫㘖孺⭟䔆⯴˥ⷛ㖖⍈ᷰ妹⽉˦㛰ᷧ㕛檻『䙫䞔姊Ə㈧Ọㇸ㈧娔姯䙫⛅椲┶

⍞ḔƏ⋬␒ṭ⭟䔆✏⇭䴫⠘␱⭳⽳⯴˥ⷛ㖖⍈ᷰ妹⽉˦䙫『峑凮ㆰ䔏䙫䞔姊˛⏳㘩Ə䂡ṭ奨

㮻廪怀㨊䙫⭟侹ㇷ㔯Əㇸ⏍⣽媲⅝ẽ俨⸒⹒⿀Ə✏㱹㛰栴⣽壃ℬ岮㖀䙫䏔䴁ḔƏ⯍㖤䬓ᷧῲ

┶栳䙫┶⍞媦㟌ƏỌὃ䂡㮻廪⎪俪Ḳ䔏˛ 

␍∵ 
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Multiculturalism in history: voices in 19th century 
 mathematics education east and west  

John Fauvel 
The Open University, Milton Keynes MK6 3DA, UK 

 

Concern about the prevalence of ‘Eurocentrism’ in the way western teachers think about the 
history of mathematics is not a modern phenomenon.  The long and complex relations between 
Europe and the East over several centuries have thrown up as many European voices 
dedicated to absorbing and praising the great heritage of the East as oriental voices looking 
to Europe for fresh inspiration.  Notable among such voices was that of Mary Everest Boole, 
whose ideas on the value and fertility of inter-cultural influences were typical of a group of 
forward thinking Europeans at the end of the nineteenth century.  She was particularly 
concerned, for family and ideological reasons, with relations between Europe and India.  
Perhaps there is still a valuable message for mathematics educators at the dawn of a new 
millennium. In particular, we may learn from history that teachers can be encouraged to see 
the positive strengths of welcoming and promoting multicultural influences upon 
mathematical ideas, rather than accommodating or fearing them. 

 

n the last few years, mathematics teachers in Europe have become much more alert to 
the importance of gaining a global perspective on the development of mathematics.  
This is due in part to the publication of influential books such as George Joseph’s 
classic text The crest of the peacock, and partly to the fact that their classes contain a 
greater range of children from different parts of the world and different cultural 
backgrounds than ever before.  The thoughtful teacher has spent some time in 

consequence thinking through whether the old style of mathematics teaching, which 
assumed a greater cultural homogeneity, is still applicable or whether new awarenesses 
and insights need to be brought into play in order to help every student achieve their 
mathematical potential.  

 The history of interaction between Europe and the East is a very long one, and our 
actions and choices today are informed by that long history, as well as our assumptions 
and beliefs about what that history was.  One of the important roles of history (as the 
practice of historians) is to make explicit and bring back to memory the unwitting 
assumptions that might otherwise be made about how the past has influenced us.  It is 
often underestimated nowadays, for example, how very complicated and multi-layered 
past relations between Europe and the East have been.  Some Europeans in the past have 
deeply respected Eastern contributions to mathematics (to speak only of the subject under 
consideration here) and done their best to promote greater understanding of Eastern 
thought, just as some Easterners have welcomed and promoted European inputs to the 
development of mathematics, science and technology in their countries. It is timely to 
recall such endeavours now, when mathematics teachers are seeking ways to respect and 
inspire their pupils across a wide range of cultural backgrounds.  

I 
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 I take as my case study for this purpose some episodes in the history of 
mathematics education in nineteenth century India (thus the present discussion is about 
relations between Europe and the Indian subcontinent, not what in Europe is called the 
“Far East”).  Here the development of colonialism forms a backdrop to the discovery by 
Europeans of the Indian mathematical tradition, and in turn its characterization as 
something for regenerating and forming a part of discourse and pedagogy within India.   

 

y story begins in 1784.  That year a learned society called The Asiatic Society 
of Bengal was founded by Sir William Jones, newly arrived in India to be a 
high court judge in Calcutta.  (Sir William Jones (1746-1794) was the son of 
Newton’s friend William Jones (1675-1749), remembered as the man who 
instigated the present mathematical use of ‘ʌ¶ in ������  )or the ne[t ten \ears 

Jones pioneered various aspects of Sanskrit studies.  Sanskrit, the ancient literary 
language of India, had been known to Jesuit missionaries for at least a couple of centuries, 
but it was in the late C18 that its similarities with Latin and Greek became apparent and 
thus the existence could be postulated of a common root-language from which both 
Indian and European languages were descended.  Jones worked energetically in the cause 
of understanding the Indian heritage better—he knew thirteen languages thoroughly and a 
further twenty-eight “fairly well”—and died exhausted at the age of 47, in 1794.  The 
torch of Sanskrit studies was thereupon picked up by a younger colleague, Henry Thomas 
Colebrooke (1765-1837), an equally energetic and thorough student of Sanskrit, who 
published in 1817 translations into English of four great mathematical texts of mediaeval 
India, the Ganita and Cuttaca of Brahmagupta (C7) and the Lilavati and Bija-ganita of 
Bhaskara (C12; also referred to as Bhaskaracharya or Bhaskara II).  These printed 
translations revealed not only to western readers but also more widely to Indians 
themselves (those who were interested) the enormous riches of the Indian mathematical 
heritage.  Bhaskara’s Bija-ganita, in particular, showed the strength of the Indian 
algebraic tradition.  In Colebrooke’s view, for example, it was from Indian sources that 
al-Khwarizmi derived his algebra, and thus the edifice of European algebra had its roots 
in the Hindu tradition. 

 At the same time as Indians could thus become aware of their ancient 
mathematical heritage, through Colebrooke’s work, a much bigger political controversy 
was raging throughout the governing circles and learned classes of India.  The first third 
of the nineteenth century, indeed, was taken up with discussion, mainly among the 
English administrative classes, over what language India should speak.  Should there be a 
wide provision of native colleges to support a commonwealth of states or regions each 
with its own language—or should there be one native language, and Sanskrit be 
resurrected for the purpose—or should English be the language of all India?  What was 
best for India?  After a long and impassioned debate the last option won through, and 
since 1833 English has been the official language of India. 

 This as one might expect brought a reaction, and the context of the next part of 
my story is the movement for vernacular education, among those educated Indians who 
saw a terrible trap in the widespread use of English for teaching.   
 

M 
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esudas Ramchundra (1821-1880) was a teacher at Delhi College, an enthusiast 
for western science, mathematics and ideas of progress which he believed would 
bring great benefits to India, provided they were taught in native languages so 
that the people would come to own the ideas, making their own contributions to 
scientific progress, and not be foreigners in their own land.  A keen member of 
the Vernacular Translation Society of Delhi, centred on Delhi College, 

Ramchandra put much effort into translating western scientific books into Urdu, and 
writing accounts in Urdu of western science and technology in popular articles in books 
and journals.  In November 1850, for example he wrote an article in the journal he edited 
‘Hal Shahanshah-al-Hukmah aur Fauzola Sir Isaac Newton ka’ (‘On Sir Isaac Newton, 
king among scientists and scholars’).  

 Ramchundra wrote two books in English, both mathematics texts, and it is the 
first of these which is of particular interest to my story.  In A treatise on problems of 
maxima and minima, solved by algebra (Calcutta 1850), he sought to show how a topic 
by now generally treated through the calculus could be handled through the traditional 
Indian algebra as formulated in Bhaskaracharya’s Bija-ganita, algebra being seen as a 
particular strength of the Indian mathematical tradition.  

 This book was not well received in India, for reasons that are understandable 
when one looks at it.  Part of the problem was that his writing this book in English 
seemed paradoxical to those working alongside Ramchundra in the cause of vernacular 
education.  He was far from explicit about the ideology underlying his project, and the 
book shares the style of other mathematics texts of the period in just getting on with the 
matter in hand, with minimal explanation or attempt to draw the reader in sympathetically.  
In addition, the project might be thought a little quixotic in dealing in a calculus-free 
mode with only a very small aspect of what calculus is for.   This is not to say that it 
could not have been the beginning of a fuller and richer project for a renewal of Indian 
mathematics, drawing upon the best of Hindu and European traditions, but the political 
context was unfavourable for that.  Delhi, where Ramchundra worked, was the epicentre 
of the 1857 “Indian Mutiny” and his life was considerably disrupted over that period.  
Afterwards he became head master of the Delhi District School, from 1858 until his 
retirement from that post in 1866 because of ill health (he was still only 45 years old).  
Although Ramchundra continued with his work for vernacular education and social 
reform, and indeed wrote another mathematics text in English, A specimen of a new 
method of the differential calculus called the method of constant ratio (Calcutta 1863), 
the Hinduization of western mathematics remained an unfulfilled dream.  

 Meanwhile, however, there was much interest in his work in England.  What 
happened was that the chairman of the Education Commission in Calcutta, Drinkwater 
Bethune, sent a copy of the book to the leading English mathematics educator Augustus 
De Morgan, professor of mathematics in University College London.  De Morgan was 
very impressed and ensured that the book was published in England, in 1859 (the year in 
which Darwin’s Origin of species was published), with a long preface giving a far fuller 
account of the ideology and purpose of the project than Ranchundra had given in the 
Calcutta edition.  De Morgan’s interest arose from several grounds: he himself had been 
born in India, and retained a great sympathy for the country; he was by far the most 
historically sensitive of English mathematicians of his generation, and understood clearly 
what Ramchundra was trying to achieve, and he too had worked in developing algebraic 

Y 
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understanding in mathematics.  So the book which had not really worked for Indian 
pedagogy in the way its author intended took on a new life in England. 

 There, Ramchundra’s book and project attracted the further attention of those 
interested in Indian thought and affairs.  The final chapter of my story is how the book 
was seen, in its Indian and pedagogic context, by a mathematical educator at the end of 
the C19.   

 

e have now covered the context, over the course of a century, which makes it 
possible for us to unpack an initially rather baffling passage from a letter 
written almost 100 years ago, in 1901.  This passage seems to me to 
illuminate something of what we are trying to do in mathematics education 
today, and so is worth trying to tease out.  What we have been doing so far is 
trying to understand the background for this passage to make sense.  Here is 

the text. 

Tell learned Hindus that Boole’s notation was invented by De Morgan and himself for the purpose of 
expressing psychological truth; that it is an extension and development of that international shorthand in 
which Moses and Odin and the Brahmans of old talk across time and space to such men as Leibnitz and 
Newton, Boulanger, Gratry and De Morgan, over the heads of politicians and plutocrats, of pedagogues 
and priests.  If Hindus will study the notation of Boole’s calculus, so as to know how to express themselves 
in it freely, they may then help Europeans to found something like a truly human civilisation, a truly 
intelligent education.  I end as I began.  Tell Hindus to read De Morgan’s Preface to Ram Chundra.  Tell 
them that it is the voice of Mount Everest calling to India to awake and arise, and recover the treasures of 
its past.                              [Mary Boole, ‘Indian thought and Western science’, CW iii, 967] 

On the face of it this strange passage sounds of a piece with other late nineteenth 
century prophetic-philosophical writings such as Nietzsche’s Also sprach Zarathustra, 
and indeed the style is very characteristic of its period.  But there is also an interesting 
and perceptive pedagogical mind at work here. 

The writer of this passage was called Mary Everest Boole; her married life was 
spent in Ireland, in Cork, where her husband George Boole was professor of mathematics 
up to his untimely death at the age of 49 in 1864.   She was younger than him and lived 
on for a further 52 years, dying in 1916 at the age of 84.  Mary Everest Boole: that’s a 
key part of our story.  Her uncle, Sir George Everest (1790-1866), was the surveyor-
general of India after whom Mount Everest is named, a heritage about which Mary 
herself felt somewhat ambivalent.  Earlier in the letter I’m exploring, she wrote 

. . . whatever one’s opinion may be of the taste displayed by the English in altering the ancient name of the 
great mountain, there can be no doubt that the choice of my uncle’s name in connection with this queer 
kind of vandalism was meant as a full recognition of the services rendered by him to engineering science.  

[Mary Boole, ‘Indian thought and Western science’, CW iii, 948, emphasis added] 

She held her uncle in very high regard while fully aware and disapproving of the tokens 
of imperial might (I cite this passage to illustrate Mary Boole’s state of mind and her 
Indian sympathies rather than discuss the history of Mount Everest before Everest).  
Indeed, what Boole tells us of her uncle gives us good insight into some bit of the English 
interaction with India, in not dissimilar terms, really, to Kipling’s Kim a century later. 

W 
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My uncle, George Everest, was sent to India in 1806 at the age of sixteen.  . . . the boy went out ignorant, 
unspoiled and fresh.  He made the acquaintance of a learned Brahman who taught him—not the details of 
his own ritual, as European missionaries do, but—the essential factor in all true religion, the secret of how 
man may hold communion with the Infinite Unknown.                     

 [Mary Boole, ‘Indian thought and Western science’, CW iii, 953-4] 

 Going back to the passage from Mary Boole’s letter which began this section, we 
may see her strong sense that benefits between East and West flow both ways.  She sees 
India as the repository of ancient truths, both intrinsic and in terms of method, from 
which Europe would benefit (in particular, she greatly disapproves of the intolerant, 
absolutist, proselytizing aspect of western Christianity), and she sees a strand in western 
mathematical psychology which enables everyone to build upon those ancient truths, so 
as “to found something like a truly human civilisation, a truly intelligent education”.  
Mary Boole spent much of her widowhood reminding people that her late husband 
George Boole’s great book was not a technical, mechanical treatise but An investigation 
of the laws of thought. She saw mathematics, rightly understood, as fundamental in 
building civilisation and the role of the mathematics teacher therefore as one of the most 
sacred of trusts.  (It is a pity that our present politicians are not keener students of Mary 
Boole.)  Her great sympathy with Indians and Indian thought led her possibly to idealise 
what she understood of it, and possibly to push Ramchundra’s programme rather further 
than he himself would have expected. 

Ram Chundra could do without the calculus what Europeans at that time did only by the aid of the calculus, 
because the calculus was a mechanical invention intended for the purpose of bringing within the reach of 
the deadened European mind certain things which the Hindu mind saw spontaneously.     

 [Mary Boole, ‘Indian thought and Western science’, CW iii, 960-61] 

Nevertheless the nobility and optimism of her conception remains an admirable and 
heart-warming one, and usefully reminds us that relations between east and west have 
always been more subtle and nuanced than popular caricatures of imperial tyranny would 
allow. 

 The overall historical pattern which these incidents illustrate is one where a 
distant past of important cultural values interacts with present concerns, and history is 
explicitly used, as well as implicitly drawn upon, to locate present activities within a long 
cultural heritage.  Further examples of this process are with us today.  In primary and 
middle schools in the UK, for example, some teachers make use of calculational methods 
called “Vedic maths”.  For some students these methods are valuable, equipping them 
with skills and facilities which the normal methods have not enabled them to understand 
or remember: quite a lot of mental arithmetic is required, which supports skills too often 
lost in an electronic calculator culture.  The context in which these Vedic methods are 
presented is as an ancient knowledge, drawn out from cryptic utterances in the great early 
Sanscrit texts called the Vedas, written down early in the first millennium BC but 
enshrining a long tradition of oral wisdom before that.  Some doubts have been expressed 
about the actual historicity of the methods, which could also be thought of as imaginative 
early C20 mathematical pedagogy (C20 AD, that is to say) loosely underpinned by 
ancient aphorisms such as “all from nine and the last from ten”, or “by one more than the 
one before”.  The point here, however, is not about the history of these methods but about 
the rhetoric used in encouraging students to learn them.  The sense of rediscovering an 
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ancient wisdom, participating in a learning process of calculational techniques that date 
back several thousand years, seems to be a very potent and effective one whether the 
claims are historically true or not. 
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Abstract 

 
It is well-known that the formula for computing the volume of sphere is given by 

3

3
4 rrV S= , where r denotes the radius of the sphere. In Ancient Greece, Achimedes 

used the Principle of Mechanics (Theory of the Lever) to discover such a formula. On 
the contrary, Zu Chongzhi and his son Zu Xuan used Zu Xuan’s Principle (also known 
as Cavalieri’s Principle) to obtain it in Ancient China. These approaches reflected 
very well the ways of reasoning in the course of discovery of this formula in two 
different cultures. 

 In this paper, we shall trace the historical background of these two approaches 
and compare their similarities and differences. In addition, we shall discuss our 
reflections from the educational perspectives and illustrate how to motivate a group of 
teacher trainees to relate these two approaches to the evolution of calculus ideas. We 
hope our discussion would be found useful to other educators in the same research 
areas. 

 
1. Introduction 

It is well-known that the formula for computing the volume of sphere is given by 

3

3
4 rrV S= , where r denotes the radius of the sphere. In Ancient Greece, Archimedes 

used the Principle of Mechanics (Theory of the Lever) to discover such a formula. On 
the contrary, Zu Chongzhi and his son Zu Xuan used Zu Xuan Principle (also known 
as Cavalieri Principle) to obtain it in Ancient China. These approaches reflected very 
well the ways of reasoning in the course of discovery in two different cultures. 

 In this paper, we shall trace the historical background of these two approaches 
and compare their similarities and differences. In addition, we shall discuss our 
reflections from the educational perspectives and illustrate how to motivate a group of 
teacher trainees to relate these two approaches to the evolution of calculus ideas.  
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2. Historical background of Archimedes’ approach 

Archimedes (287-212 B.C.) is often regarded as the greatest ancient 
mathematician and his work in deriving the formula of sphere is based on the 
Principle of Lever and the Method of Indivisible (also known as the Method of 
Exhaustion1).  This approach had been a mystery in the history of mathematics until 
the Danish scholar J.L. Heiberg discovered a 1899 report about a palimpsest, with 
originally mathematical contents in the library of the monastery of the Holy Sepulchre 
in Jerusalem. A palimpsest is a parchment that has been written on more than once, 
with the previous text imperfectly erased. A few lines of erased text quoted in the 
report convinced Heiberg that the underlying text was written by Archimedes. He 
succeeded in deciphering most of the underlying manuscript, which contains versions 
of previously known works by Archimedes, and the almost complete text of the lost 
Archimedes’ famous book called The Method.  

In the preface to The Method consists of a letter to Archimedes’ friend 
Erastothenes of Cyrene, he explained how to discover the volume of sphere by using 
the Principle of Lever and the Method of Indivisible. Here is an English translated 
extract from the letter: 

 
“I thought fit to write out for you and explain in detail in the same 

book the peculiarity of a certain method, by which it will be possible for 
you to get a start to enable you to investigate some of the problems in 
mathematics by means of mechanics……..by means of this method, I am 
able to discover other theorem in addition.” 

 
 Let us see how Archimedes tackled the problem of deriving the volume of sphere. 
In Figure 1, ABCD is a circle with centre O and radius r, X is an arbitrary point on the 
diameter AC. Other straight lines are drawn as shown, so that EC=CF=AC=2r. PQ is 
a line perpendicular AC through X on AC. Let AX=TX=x and YX=y. Then we have 
 

                                                 
1 Eudoxus (408-355 B.C.) was supposed to be the first one to formulate an integration procedure, now 
known as the method of exhaustion, which provided a logical justification for all the limiting processes 
used in Greek mathematics. 
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AY2 = x2 + y2=2rx. 

 
Figure 1 

 
CA is then extended to W as shown, so that WA=AC=2r. The entire figure is rotated 
about WAC to generate a sphere, a cone and a cylinder. An arbitrary line PQ sweeps 
out a plane which intersects the cylinder in a circle(S) of radius 2r, the cone in a 
circle(C1) of radius x and the sphere(C2) of radius y. By using the above equation, we 
have 

S ofarea 
C and C circles of areas of sum 21 =

r
x

r
rx

r
yx

2)4(
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22

==
+

S
S
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WAC is treated as a lever pivoted at A. We can imagine that the weights of 

circular discs are directly proportional to their areas. The circles C1 and C2 suspended 
from W would be balanced the circle S suspended from X on the level with pivot at A. 
This condition satisfied for all points between A and C. All circles C1 and C2 moving 
from right to left side can be reassembled to form the cone and the sphere, and is now 
suspended from W. They will balance the cylinder in its original position. Since the 
center of gravity of the cylinder is at O, and also by using the principle of 
conservation of moment, we have 
 

(Volume of sphere + Volume of cone)u2r = (Volume of cylinder)ur. 
 

The volumes of the cone and cylinder are known and given by )2()2(
3
1 2 rrS  and 
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)2)(2( 2 rrS  respectively. After putting these results into the above equation, we 

obtain that the volume of the sphere, 3

3
4 rrV S= . 

 
3. Historical background of Zu Chongzhi and Zu Xuan’s approach 

 The calculation of the volume of the sphere has a long history in China, which 
we discuss below. 

 When the ancient mathematician Liu Hui (about 3 A.D.) commented Jiuzhang  

Suanshu2 (Ṅ䫇䭾堺), he discovered a flawed result concerning the diameter d of a 

sphere with a known volume V.  The result was 3
9

16Vd = . Taking for granted 

Jiuzhang Suanshu uses 3=S , a disc circumscribed by a square occupies 
4
3 of the 

area of the square. When one extends, respectively from the disc to the right cylinder 
with height the diameter of the disc, and from the square to the cube with the same 

side, the ratio is also 
4
3 .  Assuming that the author of the formula in the Jiuzhang 

Suanshu wrongly believed that the sphere inscribed in the cylinder also had volume 

4
3  that of the cylinder. Liu Hui then explained that  

3

16
9

16
9

4
3 dVVV cubecylindersphere === . 

 Continuing his exposition, Liu Hui then explained that the formula for 
computing the volume of sphere would be exact if we considered a double vault 
(called mouhe fanggai3) (Figure 2) instead of a cylinder, which means the correct 
formula for computing the volume of sphere should be: 

vaultsphere VV
4
S

= . 

  

                                                 
2 It is also translated as the Book of Nine Chapters in English. 
3 It is written as 䉆⏯㖠咲 in chinese. 
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Figure 2 
 

However, he went no further. Two centuries later, Zu Chongzhi (429-500 A.D.) 
and his son Zu Xuan finally managed to obtain the desired result by showing that 

3

3
2

3
2 dVV cubevault == and hence 3

3
4

63
2

4
rVVV cubecubesphere

SSS
==u= .  

 The important result cubevault VV
3
2

= is due to the following principle: 

 (Zu Xuan’s Principle)4 “If two solids which are both contained between two 
parallel planes are such that the sections cut from each at all levels have the same 
surface area, then the volumes of these solids are equal.”5 

Figure 3 
 Figure 3(a), (b), (c) illustrate one-eighth of the double vault, one-eighth of the 
circumscribed cube of side r, and a right pyramid with a square base6 of length r 
respectively. Applying Zu Xuan’s Principle, a horizontal plane at the height h cutting 
the above figures generate three cross-sectional areas as shown in the shaded regions. 
One can easily show that the shaded regions in Figures 3(b)(c) are equal and hence  

                                                 
4 It is known as the Cavalieri’s Principle in western culture, in the memoir of the Italian mathematician 
Cavalieri (1598-1647). 
5 The original Chinese version, stated by Zu Xian, is: “⤒䕱㢲ㇷ䪲䨴Ə䷊↑⋉㗉⏳Ə∮䨴ᷴ⮠䕗˛” 
6 It is called yangma (晤榓) in Jiuzhang suanshu. 
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3333

3
2

3
1

8
1 rrrVrV pyramidvault =−=−=  

    cubevault VrV
3
2)2(

3
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4. Comparison of these innovative approaches 

 A priori the Archimedean proof is based on the Principle of Lever, together with 
the Principle of Indivisible. In fact, a more careful study of the existing part of the 
Method also reveals that most of the proofs contained in this famous book are based 
on principles of this type.  

On the contrary, Liu Hui and Zu Xuan's approach are based on two brilliant ideas, 
namely (a) the recourse to a particular solid called double vault and (b) the use of the 
Zu Xuan’s Principle. 

 There is no doubt that the style of the Chinese proof differs very much from that 
of the Greek ones, but the fact that both of them use the principle of indivisible is 
obvious. 
 
5. Reflections from the educational perspectives 

 Although the rudimentary ideas of calculus can be dated back to the ancient 
Greek and China, the rigorous development of this important branch of mathematics 
is undoubtedly attributed more to the West than the East. The aforementioned 
approaches in deriving the formula of the sphere are indeed very good examples to 
illustrate the mathematical thinking styles in the East and West and their impact on the 
evolution of calculus. In fact, no mathematician studied either the vault problem or Zu 
Xuan's principle until the end of 19th century in China itself. On the contrary, the 
problem of the double vault appeared in the west during the Renaissance. For instance, 
Pietro dei Frnceschi (1420-1492) gave a correct proof of the formula for computing 
the volume of the vault at the end of his book entitled De corporibus regularibus, 

 From the educational point of view, one of the objectives for introducing history 
of mathematics to students is to allow them to realize that the evolution of a 
mathematics branch in history is often the result of a continuous refinement and 
rectification process of rudimentary ideas in mathematics. By introducing the above 
approaches in computing the volume of sphere to our students, we expect them to be 
able to relate the mathematics thinking style in two different cultures to the evolution 
of calculus. To this end, a set of guiding questions had been designed and used by the 
authors in a course called “Development of Mathematical Ideas” offered in the Hong 
Kong Institute of Education for group discussion purposes. 
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 Here are some of the key questions used in our classes: 
   

Q1. What are the characteristics of the thinking styles of the ancient Chinese 

mathematics as reflected from the contents of Suanjing Shi Shu (䭾䵺⌨㛟)7?  

Q2. What are the characteristics of the thinking styles of the ancient Greek 

mathematics as reflected from the classic The Elements (⹥Ἴ⎆㜓)? 

Q3. How do the thinking styles in East and West affect their approaches in deriving 
the formula of the volume of sphere? 

Q4. What is the common principle involved in these two different approaches 
relating to the concept of limit in calculus? 

Q5. Can you explain why the rigorous development of calculus is attributed more to 
the West than the East in history? 
 
 We presented the above questions to the students and asked them to collect 
relevant reading materials, summarize their discussions and report their findings in 
class in the following week. Here are the summary of their reports: 
 

A1. The characteristics of the thinking styles of the ancient Chinese mathematics are: 
(a) passage from the particular to the general; (b) reasoning by comparison;(c) use of 
analogy; (d) use of empirical and heuristic methods; and (e) recourse to diagrams or 
actual concrete objects in proofs of most commentaries of the Suanjing Shi Shu.   

A2. The characteristics of the thinking styles of the ancient Greek mathematics are: (a) 
axiomatic approach; (b) logical reasoning; (c) emphasis on formal rather than 
pedagogic consistency; (d) abstract thinking and (e) abandoning visual elements 
although figurative references were retained. 

A3. Although Archimedes, Liu Hui, Zu Chongzhi and Zu Xuan used the method of 
indivisible (or the method of exhaustion) in most of their mathematical discoveries, 

                                                 
7 It is also translated as the Ten Computational Canons in English. It refers to the ten classics in Chinese 
mathematics, namely ˣ⑏檧䭾䵺 (ʕZhoubi Suanjing), ˣṄ䫇䭾堺 (ʕJiuzhang Suanshu), ˣ㵞ⳝ䭾䵺 (ʕHaidao 

Suanjing), x ⭒⬷䭾䵺 (ʕSunzi Suanjing), x ⣶ 晤䭾䵺 (ʕXiahou Yang Suanjing), x ⼜悘⻡䭾䵺 (ʕZhang Qiujian 

Suanjing), ˣṻ㛠䭾䵺ˤ(Wucao Suanjing), ˣṻ䵺䭾䵺ˤ(Wujing Suanjing),ˣ㕟堺姿恡ˤ(Shushu Jiyi),ˣ弖

⏋䭾䵺ˤ(Jigu Suanjing). 
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Archimedes obtained the formula of the volume of sphere8 through a sequence of 
logical deductions under the influence of Euclid’s Elements, which differs 
significantly from the Chinese approach9. The latter recourses more to inspiration and 
intuitive thinking, in combination of construction of concrete objects called double 
vault.  

A4. The common principle involved in the two approaches is undoubtedly the 
principle of indivisible, which is a rudimentary idea of limit 

A5. Tracing the history of mathematics, one can realize that calculus finally became a 
separate branch of mathematics in the 17th century largely due to the efforts of many 
great mathematicians, such as Eudoxus, Archimedes, Kelpar, Cavelier, Fermat, 
Barlow, Newton and Leibnitz, etc. Unfortunately, Liu Hui and Zu Xuan’s work on 
using the method of indivisible hadn’t been continued until the end of 19th century in 
China. Hence, it is not surprising that the rigorous development of calculus is 
attributed more to the West than the East in history. 
  

6. Conclusions 

The ancient mathematicians provided not only the subject matter for us to pass 
on to our students but also a way of motivating students to study mathematics. 
Actively engaging teacher trainees in studying the history of mathematics enhances 
the learning experience for them. To increase students’ academic results in 
mathematics seems not to be our aim of introducing history to them. What we hope to 
increase is their appreciation of mathematics as a discipline worth studying and their 
understanding that the evolution of a mathematics branch in history is often the result 
of a continuous refinement and rectification process of rudimentary ideas in 
mathematics. The introduction of the East and West’s approaches in derving the 
formula of the sphere is simply a means to achieve such a goal. We hope our  
discussion in this paper would be found useful to other educators in the same research 
areas. 
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Multiculturalism has been one focus in science education within culturally 
pluralistic societies. In 1991 the National Science Teachers Association announced a 
position statement on Multicultural Education which stated that science education 
should help students from diverse cultures learn science while developing career skills 
in engineering and technology. By 1993 the NSTA assigned “Science for All 
Cultures” as the theme for its annual convention and conducted several international 
conventions to promote cross-cultural awareness. However, in Taiwan, there are not 
enough culturally oriented discussions or activity designs in science teaching, which 
involves the members of the community in the science classes in schools.  

The population in Taiwan currently numbers over 21,000,000. There are nine 
main indigenous tribes in Taiwan including Atayal, Bunun, Paiwan, Pancah, Puyumar, 
Rukai, Saisiat, Tao and Tsou. The term “aboriginal” has been used until the year of 
1994 when the ROC Constitution was revised to use the term “indigenous people”. 
Different tribes of the indigenous people have different languages and different 
customs although the population of the nine tribes constitutes 2% of the population in 
Taiwan. The population of Atayal is about one hundred thousand, 25% of the total 
indigenous population. Atayal is the second largest indigenous tribes in Taiwan in 
terms of the number of population. However, compared with other tribes, Atayal 
distributes across the largest area from the north part and east part to the middle part 
of the island of Taiwan (Mou & Wang, 1996).  

There has been a significant gap in the achievement in science and mathematics 
between the children of indigenous tribes and of mainstream community. The gap is 

becoming wider over the years (Li & Jian, 1992；Tsai & Lin, 1992). The situation is 
mostly simply explained that the indigenous students are deficit in the reasoning and 
learning abstract concepts. The stereotype exists in the society of Taiwan for decades 
so that people tend to believe that indigenous students cannot learn science and 
mathematics. Under the social values to date, much work on policy in education for 
indigenous people has focused on the general educational policies, school system, 
native language teaching, vocational education, but not on science education. The 
Ministry of Education proposed Outline for Development and Improvement of 
Indigenous Education Five-year Plan. In the Plan, the goal of indigenous education is 
“adapting the indigenous people to the modern life and maintaining the traditional 
aboriginal culture.” One of the strategies for achieving the goal is “enhancing the 
curriculum and instruction for indigenous students.” The strategy, like most of the 
others of the past, still emphasizes vocational education and hand crafting training. 
However, in the highly science-and-technology-oriented society of Taiwan, in the goal 
of adapting the indigenous peoples to the modern life, science education is very 
important. Science education is needed in the education of the indigenous people in 
order for them to have good life in the society of Taiwan. The indigenous peoples in 
Taiwan need the science education of their own meaning (Fu, 1999a). The indigenous 
students now are in need of a solid science curriculum, science learning materials, and 
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science learning activities particularly designed for their way of learning.  
  
WORLD VIEW AND SCIENCE EDUCATION FOR ATAYAL 

World view is one of the most important issues in science education in 
multicultural science education in the world today. World view is an influential factor 
for science learning. Neglecting the differences of sex, race, and culture, school’s 
science course design and science teaching typically suppose that all the learners hold 
the same world view like those held in the community of scientists (Cobern, 1998, 
1989b; Proper, Wideen & Ivany, 1988). Many researchers’ studies indicated that 
world view exerts influences on science learning, science process skills, scientific 
concepts, science interest, and even the development of science attitude (Allen, 1995; 
Cobern, 1989a; Cobern, 1990; Cobern, 1991; Cobern, 1993; Mohapatra, 1991; Dart, 
1972; Zwick & Miller, 1996).  

There is only one science curriculum currently in effect for all junior high 
schools in Taiwan. The world view inherent in the science curriculum is in conflicts 
with the indigenous students’ world view (Fu, 1999a). In the traditional life of the 
Atayal world, it is very possible to find out fair examples of those scientific concepts 
presented in the physical science textbook used in schools (Fu, 1999b). If it is the case, 
the indigenous students will not be isolated from science so far. The indigenous 
culture will also enrich the science education for students of different cultural 
backgrounds. The development of science education will be more pluralistic. On the 
other hand, the indigenous cultures will help all students, not only indigenous students, 
see science from different approaches. The indigenous cultures enrich students’ 
experiences in science learning (Fu, 1999a). 

The research presented in this paper is a pilot study on a one-year science class 
for Atayal junior high students in two classrooms. The science class provides a series 
of worldview-oriented physical science learning activities at junior high level. Two 
hours weekly are allocated for the science class in each classroom. The science class 
is part of a larger ongoing three-year research project in Atayal science learning 
funded by National Science Council of the ROC government. In the science class, the 
set of activities is expected to provide the Atayal junior students with the access to the 
physical science learning from their own world view.  
 
WOLF: THEORETICAL FRAMEWORK OF THE SCIENCE CLASS 

Fu (1999a) proposed a world-view oriented learning framework (WOLF) for 
the indigenous students’ science learning in Taiwan through Kearney’s theory and 
illustrated WOLF by adapting the diagram of Kearney’s World-view model (figure1 
and 2).  

        
Figure 1. The Worldview Model               Figure 2. WOLF (Fu, 1999a) 
       (Kearney, 1984, p.120) 
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Kearney’s (1984) world-view model shows the interaction between an 
individual’s world view, physical environment, the cultural systems and common 
behaviors in the individual’s society. The interaction is dialectic and ongoing. 
Through the interaction, systematically an individual’s perceptions of the environment 
are organized into the individual’s world view. In a society, certain so-called tradition 
(cultural systems and behaviors) has been existing for many generations. The tradition 
exerts influence on the way that an individual perceives the physical environment. 
The nature of the physical environment also partly decides how an individual 
perceives the environment. However, once a set of world view is organized, the world 
view an individual holds will determine how the individual will make the 
environment different. Once the environment is changed, the change will influence 
how the individual perceives the environment. The whole dynamics of Kearney’s 
world-view model is in equilibrium. Only outside influences will destroy the 
equilibrium more or less over time. In the case, a new set of perceptions will be 
organized as soon as the dynamics is in a new equilibrium and a new set of world 
view is formed.  

World view is the essential function of thought. World view establishes an 
individual’s personal meaning. The personal meaning has an external dimension and 
an internal dimension. The external dimension and the internal dimension influence 
each other. In terms of learning, Kearney (1984) pointed out that at the completion of 
the act of learning, an individual owns more information and new images. The new 
information and new images come from the interaction between the internal 
dimension and the external dimension of the individual’s personal meaning. Finally 
the new information and new images form the individual’s new world view and new 
behaviors. Therefore, learning is not extending information. Learning is a process of 
transforming world view through constructing personal meaning.  

Based on Kearney’s worldview model, WOLF assumes that an individual’s 
world view determines how the individual perceives the phenomena or concepts 
encountered in the process of science learning. Science learning is not extending 
information of science. Instead, science learning is a process of transforming world 
view. The whole dynamics of WOLF is supposed to be in equilibrium. Different 
world views held by different individuals from different cultures make different 
science learning environments. Once the science learning environment is different, it 
will influence how the individual perceives the phenomena or concepts. The scientific 
activities and experiments presented in the context of the individual’s social, cultural 
and geographical environment from outside sources of change that alter the 
equilibrium gradually. Finally, a new set of perceptions is expected to be organized 
when the dynamics is in a new equilibrium and a new set of world view is formed. 
Within the framework of WOLF, science-learning activities start with contents related 
to the students’ familiar world, in the learners’ social and cultural context and 
geographical environment. It is necessary to encourage the learners to express how 
they and their tribes perceive the phenomena or concepts in the process of science 
learning.    
 
RESEARCH QUESTIONS 
1. What are the process and contents of the learning activities in the science class for 

Atayal junior high students developed within WOLF?  

2. In the science class, what is the change of attitude towards the relation between 
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Atayal World and Science World? 
 

METHOD 
Field Trips to the Atayal Tribal Areas and Museum 

Field trips to the Atayal tribal areas have been in process before designing 
learning activities. The works of field trips include visiting the Sheng Ye Museum of 
Formosan Aborigines interviewing the Atayal elders, attending Atayal traditional 
rituals, visiting the geographical environment and natural environment, and 
interviewing students and teachers.   
 
Literature Review on Atayal Cultures and Social Structure 

The resources of literature review include Atayal folklore, Atayal popular 
legends, Atayal folk songs, nursery rhyme, Atayal traditional rituals, and relevant 
research papers or reports, in which there are full of materials about Atayal 
perceptions of the world.  
 
Sampling the Sites and Students of the Science Class  

Two Atayal junior high schools joined the project. One is located in an Atayal 
tribal area in Miaoli County. The other is located in an Atayal tribal area in Hsinchu 
County. In total, there are about 46 or 47 eighth graders. It is important to have two 
schools for the project to keep enough sample students because the number of 
students is always unstable. Usually the schools in the indigenous areas are small with 
less than 30 students of the same grade. 
 
Exploring the Atayal Worldview Presuppositions 

A questionnaire (Appendix 1) for exploring the Atayal world view was 
developed by modifying Ogunniyi (1995) and his colleagues’ questionnaire for 
worldview presuppositions. The structure of the questionnaire is the same as 
Ogunniyi and his colleagues’. In order to make the questionnaire easier for the Atayal 
students; the materials of the story contents are drawn from the legends or stories I 
learned in the field trips. A panel of nine judges including Atayal elders, 
schoolteachers and principals, two school students and a science educator also revised 
the questionnaire. Students’ responses to the eight stories were classified into four 
categories of worldview presuppositions: magic and mysticism (questions 4, 7, 9, 15, 
21, 32, and 39); metaphysics, parapsychology, and pseudoscience (11, 12, 16, 22, 24, 
27, 28,29, and 36); spiritism (1, 3, 13, 18, 19, 20, 30, 33, and 38); and rationalism and 
science (2, 6, 8, 14, 17, 23, 25, 26, 31, 34,37, and 40). 
 
Exploring the Atayal Perceptions of the Concepts in Science Textbook in 
Cultural and Social Context and Natural Environment 

A questionnaire (Appendix 2) for exploring the Atayal perceptions of the 
concepts in science textbook in cultural and social context and natural environment 
were used. A panel of Atayal elders, schoolteachers, school principal, scientist, and 
science educator revised all the questions. The related scientific concepts of the 
questions are drawn from the junior high physical science textbook. The story 
materials of the questions are drawn from legends or stories learned in the field trips.  

 
Developing the Learning Activities for the Science Class 

The study uses the first volume and the second volume of physical science 
textbooks as the subject matters. The textbooks are officially distributed to junior high 
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schools for the first time in the school year of 1998. The sample students include two 
groups of eighth-grade Atayal junior high students. One group is from Hsinchu 
County and the other group is from Miaoli. Each group consists of 30 students.  
There are 38 learning activities developed under WOLF, but due to time limitation, 25 
of the activities were actually put into practice in the classroom.  

The topics and contents of the learning activities were chosen based on the 
materials collected in field trips to the Atayal tribal areas and museum, and literature 
review. The contents of science concepts are decided according to the physical science 
textbooks. The process of the activities is developed and modified within the 
framework of WOLF over the year.  
 
The Instructors of the Science Class 

The instructor of the science class is the researcher of the research project. 
The instructor has 10 years of experience in secondary school science teaching and 
3.5 years of experience in college teaching. Through practical teaching, the research 
expected to see how the process and contents of the science curriculum work in an 
indigenous classroom. In addition, caution is taken not to divert students’ attentions 
from the process and contents of the science class to the instructor’s personality. 

 
Assessing the Change of Attitude towards the relation between Atayal World 
and Science World 
A final questionnaire (Appendix 3) was designed to assess the change of attitude 
towards the relation between Atayal world and science world.  
 
RESULTS  
The Traditional Atayal World View 

The word “Atayal” means “the human” or “a really brave person” in the 
Atayal language. The Atayal believe that their ancestors were first born in primeval 
times from a rock named Pinsebukan in Nantao. It is said among the Atayals that their 
ancestors originally resided in the Mountain Babau (means ear). Babau means “ear” 
in Atayal language. The shape of the Mountain Babau looks like an ear. Traditionally 
the Atayals believe that their first ancestors resided in the Mountain Babau.  

The Atayals believe that the universe is consisted of two parts, the human part and the 
Utux part. The Rainbow Bridge is the only channel between the two parts. Only Utux 
has the power to manipulate the interaction between self, others, relationship, 
classification and causality in the world-view of Atayal cultures. Those who, 
including the human and animals, behave well will enter the world of Utux and 
become part of Utux when they die. Respect should exist between humans and 
between humans and animals under the regulation of Gaga, the commands of Utux. 
Utux will punish any infringement of Gaga directly or indirectly. 

The sense of time in the traditional Atayal world view is following the natural 
phenomena rhythmically such as the movement of the sun, the shape of the moon, the 
growing of plants and other natural phenomena. Time is based on what happens in 
nature. In Atayal language, time keeping originates from the movement of the sun. 
For example, “one o’clock” in Atayal is “wudo wagi’ (one sun time). Old Atayal 
ancestors found that the location of a stem shadow change with the movement of the 
sun. In traditional Atayal world view, time is present orientation (Suen, 1996). For 
those things of the past, traditionally Atayal people tend to set temporal frame of 
reference with places, events or someone's stories instead of the units of clock time. 
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The future and the past in the sense of Atayal world view are not really a real thing.  
Perception of space is dependent on environmental setting. Environmental setting 
shapes the ways of dealing direction. (Kearney, 1984). Traditionally Atayal classifies 
space as two parts: the space of the human and the space of Utux. Being different 
from the spatial orientation used in science, Atayal takes the movement of the sun as 
directional cues. In Atayal language for dealing direction, there are only two 
directions “bwan wagi”(where the sun rises) and “byaqan wagi” (where the sun set).  

 
The Atayal Perceptions of the Science Concepts in Cultural and Social Context 
and Natural Environmental Setting 

According to the questionnaire (Appendix 2), the Atayal students’ world 
view of time tended to be more present oriented. They are more concerned with here 
and now. The future and the past have less reality to them. Perception of the image of 
time is linear. To the Atayal students, time seems to be “walking or turning” instead of 
“running”. According to the way the Atayal students describe their living environment, 
they are aware of the detail of concrete things existing in the space instead of 
abstracting the space, the whole image of the space. However, the view of time in 
their physical science textbook emphasizes clock time. The view of space in their 
physical science textbook emphasizes coordinates, axis of abscissae, axis of ordinate 
and quadrant.  

To the Atayal students, the central part of the relationship and classification 
between “self” and “other” is that the interaction between person and person is equal 
to the interaction between human and nature. They see nature and human as the same 
being. Utux and the human are of different beings. Utux has the key power to 
manipulate all the interactions. Utux can make everything good or bad happen to 
anyone, including the human, animals and plants. Utux controls the causality of all 
events. When asked if they believe that all the matters in nature are consisted of atoms, 
75% of the respondents answered that the ancestors left all the matters. Meanwhile, 
25% of the respondents thought that all the matters have been there since the 
beginning of the world. The researcher once asked the Atayal students in the science 
class if they believe in Utux. All the students raised their hands and asked the 
researcher to believe in Utux. I even noticed that some of the students raised two 
hands. 

In ancient times, the Atayal elders put one end of a hollow bamboo stem in the 
grass and nestle a child’s ear on the other end. The child heard a kind of horrible 
sound coming up from the bamboo stem. The Atayal elders warned their children that 
Utux was after those who did not behave well. When asked if they have the kind of 
experience and how they explain the story. Some of the Atayal students explain with 
concepts such as “resonance”. Meanwhile, some answers are as follows: 

There is Utux roaring in it.  
We can hear beautiful sound and the stories about ancestors’ lives in the world. 

As for pointing at rainbow, 44% of the students believed that it would bring bad luck. 
Some of them even gave examples to prove it. The other respondents did not believe 
it for the following reasons: 

I did point at the rainbow but nothing happened. 
The rainbow does not transfer electricity to us. 

 

Asked about why the Atayal elders used the cone-shaped bamboo shell to amplify 
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voice in the mountains, 25% of the students mentioned explanations. More students 
emphasized: “the cone shape helps the sound jump,” “the shell is hard,” “because the 
sound come from a narrow end to a wider end,” and “because the shell wrap the 
sound inside the shell, the sound cannot run away.” 

In ancient times, there was a way to make a fire in mountains when needed. 
The Atayals used a piece of thick glass in the sun to make something under the glass 
burn up. Noon is the best time to do the job. When asked why the thick glass can be 
used to make fire, most of the students answered that the sun heated up the glass for a 
while and concentrated a lot of energy on the glass. Only two of the students pointed 
out that it acts like a magnifying glass. 

The Atayal students’ views of the natural phenomena are different from those 
views presented in the physical science textbook, although they were already taught 
the relevant concepts. Facing natural phenomena, their world view still determines 
their way of thinking.    
 
The Atayal Students’ Worldview Presuppositions 

The questionnaire for exploring the Atayal world view was distributed to the 
students in the science class in the beginning of the class. Students’ responses to the 
eight stories are presented in Table 1 in terms of agreement, disagreement, and no 
opinion. Table 1 shows that the Atayal students’ worldview presuppositions are full 
of multiplicity. Significantly, more Atayal students agree with the statements relating 
to rationalism and science, magic and mysticism, and metaphysics, parspsychology, 
and pseudoscience than those relating to spiritism. The case is not completely in 
accord with Atayal traditional belief in Utux.  
 
Table 1. The Atayal Students’ Worldview Presuppositions 

Worldview presupposition Agreement Disagreement No opinion 
magic and mysticism 
 

37.56% 36.36% 26.07% 

metaphysics, parapsychology, and 
pseudoscience 

36.67% 37.06% 26.26% 

Spiritism 
 

30.00% 45.38% 24.63% 

rationalism and science 
 

41.67% 36.13% 22.20% 

 
The Process of the Learning Activities in the Science Class 
Sharing World View  The learning activities of the science class started with an 
Atayal elder’s story telling. The contents of the story telling were related with the 
topic of the learning activity for that day. The Atayal elder told the story in his or her 
own way. Some elders liked to do very formal and serious story telling. Some elders 
demonstrated how to make or use the things mentioned in their story telling. 
Sometimes the elders took students outside the classroom to see the natural 
phenomena in campus. Students had enough time and freedom to talk with the elder 
during the story telling. The ambiance was like they were chattering at home. On 
average, the elder’s story telling time was about half of the class time for each unit.  
 
Expressing Personal World View  After Atayal elder’s story telling, students were 
required to fill the first part of a worksheet. There are some questions about how they 



 ~ 137 ~ 

feel about what they have learned from the elder’s story telling. Students can discuss 
with the elder or other students about the questions in the worksheet.  
 
Exploring the World  The instructor (the researcher) gave students questions and 
asked them to explain the phenomena they experienced or learned in the elder’s story 
telling time. The questions were mostly included in the worksheet to let students write 
down their ideas. The instructor was very careful not to dominate the discussion. 
Instead, the instructor provided an experiment to facilitate students’ discussion. 
Students had enough time to operate the experiment and test their own explanation. 
The instructor explained the experimental procedure. Students did the experiment by 
following the procedure. In addition, they might do the experiment after talking to the 
instructor about their alternative ideas.  
 
Shaping a New Way of Exploring the World  After the experiment activity, what 
they observed in the experiment might conflict with what they initially thought. They 
found a new way of exploring those things or phenomena existing in their cultural and 
social settings they had taken for sure.  
 
Relating the Atayal World with Science World  The instructor then started to 
introduce the relevant science concepts. The events, natural phenomena, or things 
learned in story telling were used as examples for explaining the science concepts. In 
addition, the instructor asked some questions about the science concepts to see what 
students learned in the activity. 
 
The Topic and Contents of the Learning Activities in the Science Class 

1. The Atayal World: The natural environment of Atayal tribe in Hsinchu and Miaoli, 
Mountain Babau, Atayal space of living, Atayal beliefs and views of the world and 
the universe, and Atayal life style in the environment 

2. Time of the Sun: Feeling time, Atayal traditional time keepers, natural time 
keepers, time keepers of different cultures, and time keepers in modern times. 

3. Measuring Length: Atayal traditional measurement of length, measurement of 
length in different cultures, the secrets of my measurement, and measurement in 
science 

4. Atayal Fish Trap: Atyal traditional regulations and taboo about fishing, the 
traditional regulations and taboo about fishing in other tribes, the structures of 
different Atayal fish traps, making an Atayal fish trap, and the theoretical ground 
of Atayal fish trap 

5. Planting the Treasure Bamboo (Phyllostachys makinoi Hayata): Atayal life and 
bamboo, setting up a treasure bamboo field on the table, the density of my 
bamboo field, and the good of treasure bamboo 

6. Weights: The meaning of weighing in Atayal culture, Atayal traditional weights 
and weighing instrument, Atayal traditional balance, making a balance, and 
weighing machine in science 

7. Atayal Verlugu: The structure of Atayal verlugu, the operation of Atayal verlugu, 
separating bran from millet with verlugu, and meeting inertia with verlugu 

8. Water and Durin Luma (Bamboo Hose): Water and Atayal life, structure of 
bamboo hose, bringing water home using bamboo hose, and keeping water clean 
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with plant ash 

9. Raga (Lamp for Hunting): The structure of lamp for hunting, the properties of 
acetylene (C2H2), the reaction of calcium dicarbide (CaC2) and water, and the 
other uses of dicarbide.  

10. Animal Traps: The structure of different traps, making animals traps, and the 
theories of lever and elasticity related to traps.  

11. Beautiful Atayal Dyes: Red dye from sunu (a kind of plant in Atayal language), 
red dye in acid and alkaline, and ramie 

12. Atatal Warrier’s Bow and Arrow: Different types of arrows for hunting different 
animals, the structure of different types of arrow, the theories of elasticity related 
to bow and Hooke’s Law. 

13. Atayal Dagualang (Hunting Shed): Heat, measurement of temperature, 
transmission of heat, and heat radiation 

14. Flying Squirrel: Meeting flying squirrel, flying and gliding, flying squirrel’s eyes 
and light, light reflection, and light refraction 

15. Hazilin Fire: Reaction rate , dry distillation of bamboo, pine wood, and hinoki   

16. Sinwahan (Pickled Fish): Observing Varicorhinus barbatulus, how to make 
pickled fish 

17. Bamboo Rifle: Elasticity of bamboo, Hook’s law 

18. Luvu Luma (Jaw Harp): Making luvu luma, how to make luvu luma sing, the 
vibration of copper slice and the properties of sound wave, the size of the copper 
slice and the musical scale of luvu luma,  

19. Atayal Xylophone: Making Atayal Xylophone, the size of wood and the musical 
scale of the xylophone 

20. Alin Dagain (Megaphone): Looking for alin dagain, how far the sound can go 
through alin dagain, can size of alin dagain make different reflection of sound 
waves 

21. Echo in Mountain Malaban: Playing with echo, observing the effect of echo, the 
properties of sound wave, reflection of sound   

22. Budin (Hunting Knife) and Hollow Trunk:  

23. Snake and Rat Repellent: The uses of snake and rat repellent, the structure of 
snake and rat repellent function  

24. Baling (Atayal Salt): Looking for Baling, where the salt comes from 

25. Boiling Water in Mountain Malaban: The legend of Malaban, the atmospheric 
pressure and boiling point 

 
Towards the Relation between Atayal World and Science World   

At the end of the one-year science class, the participant students were required 
to fill a questionnaire (Appendix 3) on their attitudes toward the relation between 
Atayal culture and science. In total, 46 of the 50 students handed in the questionnaire. 
The data are presented in table 2, 3, 4, and 5. The responses are compared with what 
the students said to the teacher when we just started the science class. “Does our 
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Atayal culture have anything to do with physical science? I do not believe it!” 
However, after the 1-year science class, more than 76% of the students believe that 
there is a relation between Atayal culture/daily life and science. Students’ responses 
on other questions confirm that the science class did have influence on their attitude 
towards the relation. The data also reveals that after the science class, more students 
have the confidence that an Atayal can become a scientist.  

When asked what they think is the most impressive thing in the class, 
students’ answers are concluded as follows: 

“the explosion”, “The professor was upset because I used dropper to spray 
water on someone”, “water clock”, “Atayal fish trap”, “Atayal story telling”, “do 
experiments,” “the Atayal dyes”, “flying squirrels”, “animal trap”,  

 As for the science they have learned in the class, students’ answers are as 
following: 

“A lot of science” (most of the students mentioned) 
“Atayal dyes change colors in acid and alkaline.” 
“Time” 
“Flying squirrel, animal trap, Raga (Lamp for Hunting), the properties of 
acetylene (C2H2), and many others” 
“The concepts related to those taught in our physical science textbook” 
“Temperature, time, velocity, force 
“Understand why Atayal Dagualang (Hunting Shed) is good for rest” 
“How to draw the graph of the relation between temperature and time” 
“Measurement of length” 
“Many interesting physical science” 
“Atayal water clock” 
“Pendulum and time keeping” 

When asked about what they like very much in the science class, students’ 
answers indicate that the Atayal traditional story telling and doing experiments are the 
most popular items. About 50% of the students are interested in learning science. The 
data in Table 5 confirm that students’ positive responses to the science class are not 
because of a lunar halo effect conducted by the personal factors of the instructor. The 
assistant was responsible for the administration and management of the whole 
research project. The assistant was not involved in the science class. There was no 
interaction between students and the assistant in the class. In other words, the 
activities and contents of the science class interest students in science learning.  
 
Table 2. About the relation between Atayal culture/daily life and science 
Question  Yes No Other 
 Pre Post Pre Post Pre Post 
Relation between Atayal culture 
and science? 

34% 87% 65% 9% 0 4% 

Relation between Atayal daily life 
and science? 

48% 76% 54% 22% 0 2% 

Can an Atayal become a scientist? 65% 83% 26% 15% 9% 2% 
 
Table 3. About the influence of the class on the attitude towards the relation 

Question Yes No Other  
Help you see the relation between 
Atayal culture and science? 

 Yes (72%) 
& 

6 % 2% 
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Influential (46%) 
Help you see the relation between 
Atayal daily life and science? 

 Yes (72%) 
& 
Influential (37%) 

4 % 2% 

 
Table 4. About the students’ attitude towards the class 
Question Very much Like OK Dislike Dislike 

Very much 
Other 

Like the class? 61% 24% 13% 0 0 2% 
 

Question Very much Wish OK No Other 
Expect to have the class 
again 

65% 22% 13% 0 0 

 
Table 5. What do you like very much in the science class? 

The Atayal traditional story telling 65% 
Doing experiments 74% 
Being together with the teacher 46% 
Being together with the assistant 61% 
Talking to the teacher 48% 
Talking to the assistant 59% 
Learning science knowledge 50% 
Others 0 

 
CONCLUSION  

Effective science education requires that teachers know the learners’ culture, 
social setting, and ways of learning. This is true for the indigenous population in 
Taiwan as well. In this study, it was found that it is possible to develop a set of 
worldview oriented science learning activities for the indigenous students within the 
framework of WOLF. Through a set of worldview oriented learning activities, the 
science class plays a significant role of bringing the students from Atayal world to 
science world.  

As Kearney emphasized, although it is apparent to see how physical 
environment exerts influences on cultures, cultures of a society potentially make the 
society go beyond the limit of physical environment to create a new living 
environment. I do not expect the science class to make a social change in the Atayal 
tribe. Based on indigenous worldview, this will propose educational strategies and 
reforms in science education intended to promote adaptation to modern life without 
disrupting traditional aboriginal culture.  

I do not expect that the science class can help the Atayal students compete 
with other students in science test scores. However, I do believe that the Atayal 
youngsters should have the chance to see a science world in their own cultural and 
social context. The chance may become a chance for them to go beyond the limit of 
physical environment and create a new living world, new science world maybe. 
Furthermore, in the trends of multicultural science education, the set of activities is 
also expected to provide an alternative way of learning science for those students who 
do not belong to the indigenous tribes. 
I can never express enough appreciation to the Atayal elders, Mr. and Mrs. Pao Chin Lin, Mr. 
K. S. Fan , Priest Hsin Fu Shei and Mr. Wu Lei Ke. More than telling me about Atayal, they 
lead me to see a different world and learn a new meaning of science education. Also, thanks 
to National Science Council of the ROC for funding support of the research. 
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ABSTRACT 
 
As the title implies, this presentation is concerned with ideas for transforming cultural variations in 
mathematics into an integrated whole, rather than continuing to simply hobble them together in a 
makeshift way.  History allows us to see why individual mathematical ideas stand as they do, and 
where non-mathematical activities have provided incentives in developing mathematical skills.  
Recognition of these factors in classroom approaches can make knowledge and skills more likely to be 
retained and used again in the future, rather than practised as formula and forgotten. Such recognition 
also has good potential for allowing an appreciation of multicultural components within mathematics to 
enter the classroom.  The presentation will be offered as a workshop with the primary goal of 
illustrating the fact that, world-wide, the history of changes over time most frequently shows patterns 
of mathematical procedures being developed in response to the needs of ordinary people.  The ideas 
that will be explored in this presentation are based on Chapter 2, in John Fauvel and Jan van Maanen 
(eds), 2000, History in Mathematics Education: the ICMI Study. 
 
 
DEVELOPING IDEAS AND SKILLS FOR THINKING MATHEMATICALLY 
At first glance it seems as if there are several contradictions implicit in the title 
Antipodean Fibonacci Originals, but the contradictions lessen if we tease out what the 
phrase could be describing.  It implies global interactions and new creativity based on 
old ideas, so that traditional mathematics and cultural variations can be transformed 
into an integrated whole.  Many thoughts, conversations, books, media items, and 
practical experiences go into the construction and consolidation of an idea for 
classroom use.  Often individual items that have contributed to this development stand 
out in one’s mind.  To allow random and individual items to surface in classrooms is a 
way of allowing new methods to enter into the study of a topic, and so four such items 
that came to my mind, when I set out to write up this workshop paper, are shared here. 

Examples of random thoughts.  Experiments in Tenerife.  The first item was my 
memory of a group of presentations given at the HEM conference in Braga, Portugal, 
in 1996.  A group of people from the Seminario Orotava de Historia de la Ciencia 
gave papers and workshops on the ways in which they had used an integrated, 
interdisciplinary approach in Tenerife, Canary Islands.  The approach did not assume 
that all students would be interested in the mathematics content of the series of 
lessons.  One of the ‘exhibits of the proof’ of the value of the approach of the 
experiment was brought to Braga.  The ‘exhibit’ was a student who had not initially 
been interested in the mathematics of the interdisciplinary project on exploration and 
discovery, but had liked the instruments that been developed during that period in 
history and had set about making replicas of some of them.  In doing so, he found it 
was easier to make accurate models if he worked out the mathematics required.  
Gradually he had become as interested in the mathematics as he was in the models. 

Ceilings in Granada.  The second item was a discussion concerned with the virtues of 
recording knowledge in written language, be it verbal or symbolic.  One person 
suggested that anything worth saying could be written in language and that ultimately 
this was the superior method of communication.  I believe, on the other hand, that the 
more ultimate test of value, in the fullest aesthetic and functional senses, is that of the 
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capacity to ‘do’, to create and to appreciate the three dimensional representations of 
an idea or concept.  If one asks mathematicians whether or not they could reproduce 
the mathematics of the ceilings in the Alhambra in Granada, Spain, in the symbolic 
language of mathematics, the answer is that it would be very difficult.  And yet the 
ceilings are there in the Alhambra, both achieved and able to be appreciated, in spite 
of the lack of ease with which they could be described two-dimensionally.  All round 
the world there are similar expositions, from times present and past, of the way in 
which ‘doing’ has both given proof and enabled appreciation. 

Baskets in Samoa.  The third item was a conversation with a New Zealand-born 
student of Samoan descent who had just pulled me back from the pathway of an 
approaching car as I had absent-mindedly stepped from a pavement.  He asked me 
whatever I was thinking about that had made me so careless.  I said that, actually, I 
was thinking about the ways in which some people of European descent living in 
Europe seemed to me to have a number of quite different perspectives on the relative 
importance and value of various culturally-embedded mathematical methods of 
identifying and patterning, than did some people of European descent living in 
Europe’s antipodes.  As a reward for openness, I was treated to the most fascinating 
account of the way his mother (born and brought-up in Samoa) had learnt from 
childhood how to mentally calculate, and then create, weaving patterns for baskets 
that took into account both the weight of the product that was to be carried in the 
basket and the distance it was to be transported. 

Sewing in New Zealand.   The fourth item was an idea for making examples of 
something that would illustrate some of the characteristics of the various groupings on 
the antipodean model of aptitudes described below.  While the idea started out to 
provide material for a workshop presentation focused on ways of accelerating the 
massification of an awareness of the usefulness of thinking mathematically, it ended 
up being an Antipodean-created but Fibonacci-inspired example of working from 
applications towards the mathematics needed, rather than working from mathematical 
issues towards examples.  It combined skills of the now, ideas of the past, and a good 
deal of mathematical thinking and practicing; and it will be the beginning point of the 
workshop for which this paper provides background. 

Thinking in Mathematical Frameworks.  An emphasis on write-able mathematics 
has influenced curricula worldwide during the twentieth century and allowed the view 
to grow, at least in the popular mind, that written computational skills are more 
properly mathematics than reasoning and aesthetics can be.  There is no doubt of the 
value of computational processes and their written exposition, but too strong an 
emphasis on this may diminish the levels of interaction that students can have with 
the subject.  Mathematics also includes a sense of the geometrical and dynamical, the 
aesthetics of space and relationships, and the logical skills of reasoning and proving.  
A renewed focus on these aspects of mathematics will assist in identifying different 
possibilities in terms of the packaging of mathematical instruction, of increasing an 
awareness of differences in aptitudes among people, of finding ways to integrate 
mathematical thinking into other parts of the curriculum, and of learning to value 
equally the different methods of thinking mathematically that have evolved in 
different cultures at various times (Daniel, 1999). 
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DIFFERENCES IN APTITUDES 
In research undertaken in the early 1990s among a sample of gifted students already 
identified through a common selection process, we discovered – rather to our 
surprise – that their approaches in mathematics were quite different.  The debate 
about nurture or nature has moved to a new area focused on finding ways to recognise 
the interconnectedness of the two, so that instinct and learning are not separated when 
describing how the human mind, and the person, develops (Marler, 1991; Edelman, 
1994; Gelman, 1993), thus the surprise was not so much in response to the idea that 
people could be so different, but to the evidence that even within a group who had so 
much in common, people could be so different. 

Research on differences.  Research findings on aptitudes help identify ways to 
encourage wide variations of presentation styles in classrooms.  For forty or more 
years, individual researchers have been reporting observed differences in how people 
do mathematics.  For example, Krutetskii (1976) identified three basic types of 
thinking in mathematics; Osborn (1983) identified fundamental differences in the 
natures of individuals’ mathematical abilities, and noted that teachers will reflect 
these differences as much as students; Hermelin and O’Connor (1985) noted that 
“while non-spatial verbal reasoning is related to verbal IQ, the ability to deal with 
verbally presented spatial problems is not solely so determined”; Sternberg (1986) 
liken the characteristics of mental organisation he found in different people to the 
principal elements of legislating, executing, and evaluating found in government; 
Bishop (1989) observed that some geometrical competencies, such as visual ability, 
have “a highly individual and personal nature”; and Gross (1993) found specific 
differences in aptitude and preferences in gifted children.  Since the mid-1990s, 
readily accessible literature on innate abilities and aptitudes has become common, for 
example Dehaene (1997), and so has eased our speaking about intuition and the way it 
affects what we offer educationally. 

An antipodean model.  When we pursued the question of differences in the sample 
mentioned above, we found evidence that students can be placed on a sliding scale 
between any two points, especially if the points are visualised as having a circular 
relationship rather than a linear one, and are marked on the circumference of such a 
circular diagram as Spatial, Rationalising, and Pictorial abilities (Daniel, 1995; Holton 
and Daniel, 1996; Daniel, 1999).  The principal characteristics of these aptitude 
groupings  are summarised here. 

Spatial abilities.  Students grouped as having high spatial abilities noticed detail, but 
gave succinct and logical answers as well, and could visualise in their heads.  They 
had enthusiasm for noticing relationships between shapes and patterns and ideas.  
They were likely to make models which pleased the aesthetic and mathematical 
senses rather than the practical.  They were direct in expressing their opinions, and 
adept at drawing conclusions from the information supplied and then working 
backwards to discuss steps that had led to those conclusions and implications that 
followed from them.  There was a high oral component in the best expression of their 
work and they were not always the quickest, or the most motivated, to record their 
work in written form; but they could explain a great variety of proofs, and could 
switch easily from one approach to another to suit the particular problem.  They were 
good at grammar and computer programming, and were prolific readers in a wide 
range of topics.  They did not find individual competitiveness, for its own sake, a 
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foolproof motivation for work, and they seldom stood out in terms of performing 
skills such things as athletics, drama, music. 

Rationalising abilities.  The students who could be placed within the rationalising 
abilities grouping philosophised less than those in the spatial abilities grouping and 
had more difficulty visualising, especially three- dimensionally, or claimed not to do 
it at all.  In mathematics, they liked to have opportunities to try new types of problems 
and to be able to obtain some originality in their solution, but they also liked to have 
practical reasons for the work.  They made models of things that would work and be 
useful, and had skills in performance in such things as music.  They had better recall 
of people and episodes than of places.  They were described by their peers and some 
teachers as extremely able and fast in their calculations, less likely than others to 
worry about the elegance of proofs, more likely to look for the answer than to be 
preoccupied with the method, and more likely to use algebraic solution paths from 
choice.  They were described by teachers as not having been the most unusual of the 
mathematicians that that teacher had taught, in that they were often content with an 
algorithmic approach to mathematics. 

Pictorial abilities.  The students who were grouped as having Spatial or Rationalising 
abilities were frequently described as having been noticeably good at mathematics as 
early as their first two or three years at school, and some were described by their 
families as having exhibited quite complex or advanced mathematical skills as pre-
schoolers.  This was not so with students grouped as Pictorial.  This group could often 
name an event that had triggered their interest in maths.  They were the only ones 
among those who described themselves as visualisers, who described first an 
overview rather than a description of detail.  Like those in the rationalising abilities 
grouping, they excelled in the performing arts and were more interested in things that 
had an application than simply in something that was aesthetically pleasing.  They 
said that they not think in their heads without external stimuli, but they could learn 
easily by rote.  When solving problems they tended to build the next step on the visual 
image of the last step taken, and to think from a pictorial image rather than from a 
mentally constructed one.  They performed well in competitive situations. 
 
The unlikelihood of overcoming intuitive aptitudes and preferences.  There is 
little indication that students learn to bury their aptitudes in favour of the approaches 
or skills of another grouping, even when teachers have encouraged this.  
Understanding differences in aptitude has implications for realising why work that is 
easy work for one student is difficult for another, and for making assumptions that 
one method of testing achievement will provide a satisfactory benchmark for judging 
ability.  It also as implications for strengthening the confidence of teachers, as well as 
of students, by encouraging them to identify their own aptitudes so that they feel more 
personal freedom to carry out investigations without being sure of the answer, and to 
own which aspects of mathematical thought they themselves feel comfortable with.  
However one describes differences, it is helpful to recognise that they exist and will 
affect the way individuals relate to branches of an area of knowledge, both 
aesthetically and functionally.  Our own speculations on difference were based first 
on a sample of students with Caucasian ancestry.  If such a range of difference can be 
seen in this group, then the need to identify differences on a world-wide basis 
becomes more imperative, not less.  Rather than thinking that all students (and 
teachers) will be able to grasp the concepts and learn (and teach) the skills of all of the 
branches of mathematics if they try hard enough, it is more practical to sort out what 
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students really need to know in terms of their particular aptitudes, abilities, and 
employment expectations, than to assume that being taught multitudes of 
mathematical strategies from many branches of mathematics will be satisfying. 
 

LINKING POTENTIAL AND PRACTICE 
In attempting to discover the links between students’ potential and practice in 
mathematical thinking, a number of considerations are commonly overlooked in 
mathematics classrooms, and examples of some of these are recorded here. 

Senses of elegance, proportion, and beauty.  There are many variations, and little 
agreement in some cases, about correctness in terms of elegance, proportion, and 
beauty.  Those with spatial abilities have an intuitive feeling for developing solutions 
that are elegant, whereas those with rationalising abilities are much more concerned 
simply with whether or not the solution performs the function required at the time.  
However they are expressed, basic mathematical concepts are important in many 
aspects of our lives besides the computational.  We should not under-estimate the 
ways in which mathematical awareness influences our perception and enjoyment of 
the world around us.  When we look at sunflowers, or pyramids, or seashells, or 
ceilings in the Alhambra in Granada, or carvings in a Maori Meeting House, or fractal 
patterns in snowflakes, or patterns on a jacket, or shelves in a kitchen, we do not have 
to be able to do the mathematics of the patterns, on paper, to appreciate what we see.  
But if we know that they are mathematical patterns, we will make more effort to see 
what they are, and be more courageous in attempting to describe them in whatever 
terms we have at our disposal.  Similarly, the development of an understanding of 
logical thinking and of the way in which the progressive deployment of reasons for 
coming to a conclusion increases our skills in thinking, writing and conversing on any 
topic and makes us less susceptible to simplistic or single-idea ideologies.  
Traditionally we have required mathematical proof to be represented symbolically, 
but many students would gain a greater sense of achievement (which might in turn 
lead to greater effort) if we accepted a variety of methods of proof.  Shin (1994) 
pointed out that, “In making inferences in ordinary life, human beings make use of 
information conveyed in many different forms, not just symbolic form” (p 188). 

Memory and methods.  There is little substantial understanding of the way in which 
the brain encodes, stores, and utilises memory or even of which parts of the brain are 
involved in this (Carter, 1998).  But case study research has shown a number of 
interesting variations in the ways people empower memory.  The need to write things 
down in order to remember them is high among the pictorial abilities grouping, but 
others report that they write things down so that they can release the memory from the 
need to remember.  Patterning is endorsed, for some, by oral repetition and they do 
not despise ideas of rote learning and memorising.  Memory is one of the chief 
components in the thinking, reasoning, appreciating, lateral thinking, understanding, 
learning, applying processes. 

Concepts of right and wrong.  Our increasing awareness of non-European 
mathematics gives another incentive to re-think what it is that we wish to teach in 
mathematics, and to see how different cultural approaches can be mixed profitably in 
a way that links north and south, 'old' knowledge and ‘new’.  Multicultural studies 
such as those of Gerdes (1999), have reminded us that mathematics is to do with the 
visual, the kinetic, and the rational, with design, development and pattern-building, as 
well as with computational methods; and that people worldwide have developed and 
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used methods and patterns which met their practical and aesthetic needs.  These visual, 
kinetic and rational aspects of mathematics will in fact play a large part in the 
mathematical thinking that most of our school students will need during the greater 
part of their lives.  For example, carpenters will indeed need skills in measurement, 
but their tasks will be much better done if they also look at the relationships between 
one shape and another, and adjust these in endless ways until the most appropriate 
interconnection, rather than the most obvious, emerges.  The power to observe and 
ponder is a part of the process of developing the ability not just to make measures but 
also to think in ways that have been influenced by the reasoning, kinetic and visual 
aspects of mathematical thinking.  Approaches such as those offered by Nelson, 
Joseph, and Williams (1993) encourage surprises in classrooms rather than set 
systems in place.  The less probable a method is and the more uncertain the outcomes 
are, the more we are surprised; and the more we are surprised, the more we get and 
retain information and knowledge. 

Creativity.  The scope offered when we move away from classroom practices which 
honour traditional European-based views of mathematics to practices which honour 
both the recognition of differences in people and the truly global perspective of 
mathematics, enables a greater opportunity to foster creativity and imagination, both 
of which are of greater value than knowledge.  Opportunities to be creative are also 
more likely to absorb students.  Gardner (1993) offered a number of very useful and 
thought-provoking ideas on developing creativity and imagination when he quoted 
Freud’s impressions of “the parallels between the child at play, the adult daydreamer, 
and the creative artist” (p 24), Amabile’s assertion that “creative solutions to 
problems occur more often when individuals engage in an activity for its sheer 
pleasure than when they do so for possible external rewards” (p25), and Gruber’s 
conclusions that creative individuals “engage in a wide and broadly interconnected 
network of enterprises; exhibit a sense of purpose or will that permeates their entire 
network ...; and display a close and continuing affective tie to the elements, problems, 
or phenomena that are being studied” (p 23). 
The purpose of education.  de Bono (1992) said, “my favourite model for a thinker 
is that of the carpenter.  Carpenters do things.  Carpenters make things.”  He goes on 
to describe the way in which frequent use of only a few basic operations, tools, 
structures, attitudes, principles and habits lead the carpenter to be able to make both 
simple and very complicated objects (pp 65-68).  With de Bono’s belief in mind – that 
learning to think is the important thing in education – it is easier to see ways to accept 
that different students will make different connections with the subject according to 
their abilities and aptitudes.  A minority of students will use mathematics 
mathematically once they have left formal education.  The majority will still be 
advantaged from gaining some understanding of the concepts of mathematics and of 
thinking mathematically.  At present, some educational language commonly used 
could lead one to think that education is about teaching and learning.  But education is 
not about teaching and learning.  It is about such things as “noticing, experimenting, 
learning, thinking, applying, understanding, teaching, appreciating, knowing, 
using ...” (Daniel, 1999).  And the goal of mathematical education is to create people 
who use all of their senses and abilities to notice, understand, appreciate, teach, know, 
use, think, experiment, learn, and apply mathematical thinking. 
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Why study values in mathematics teaching:  
contextualising the VAMP project i? 

 
A. J. Bishop, Monash University, P. Clarkson, Australian Catholic University, 

G. FitzSimons & W.T. Seah, Monash University 
 
1. Teachers’ decisions and values 
Imagine that you are a Grade 4 mathematics teacher. It is the first day back after the Christmas 
holiday, and you are talking with your class before getting down to work. You ask if anyone had 
any 'mathematical' presents. One boy says that he had been given a mathematical game from his 
uncle's country. He says it is very interesting, it has many variations, and he asks if he can show the 
class how it is played. 

What would you do? Would you let him show the class and see what develops? Would you say 
something like: "Well that would be nice, but we don't have time now to do it, maybe later" or 
maybe: "Excellent, show me after the class, and I'll decide then if we can play it."  

Are mathematical games a part of your teaching ideas? Would this game fit within your curriculum? 
Does that matter? In any case, you would probably make your choice in the way that you normally 
do, and not think much more about it. But the fact remains that you must make a choice, and that 
choice depends on your values. 

Here is another example. This happened to me many years ago, and I remember it well. You are 
studying fractions with a lively class of 12 year old students, and you ask them to suggest a fraction 
that lies between one half and three-quarters. One particularly eager student offers the answer "two- 

thirds". When you ask how she knows that it lies between the other two fractions, she answers: 
"Well you can see that on the top the numbers go 1,2,3 and on the bottom they go 2,3,4. On the top, 
the 2 is between the 1 and the 3, and on the bottom, the 3 lies between the 2 and the 4, so therefore 
two thirds must be between the other two fractions!" 

It is certainly an interesting answer but what would your decision be? Would you say: "No, that's 
not the right reason." Or: "Yes, very interesting but I don't think that'll work for any two fractions." 
Or: "That’s a nice explanation. Let's see whether it will be true for any two fractions." 

Finally, consider this situation: As the teacher of a grade 6 class, you ask your students to think of a 
mathematical problem that can be linked with a photograph of a woman selling produce at a rural 
market. Miguel, a student volunteering a response, suggests this is a trick! He states, "There is no 
mathematics problem here. The woman has never been to school and she does not know any 

mathematics." 

How would you react to Miguel? And what would you do if all the class agreed with Miguel? Or 
suppose only the boys in the class agreed with him, what would you do? Whatever your decisions, 
what you do is dependent on your values, and through the choices you make you are also shaping 
the values of your students. 

All teachers must make decisions in situations like these, and the decisions reveal the teachers’ 
values. Unfortunately we know very little about values in mathematics teaching, except that they 
are present. That is the main reason why we began a research project on this topic.  
2. Mathematics, Culture, and Values 
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Human beings everywhere and throughout time have used mathematics (Bishop,1988). The 
mathematics typically can be observed as behaviours illustrating the following six 'universal' 
activities (i.e. every cultural group does them): counting, measuring, locating, designing, explaining, 
and playing. These behaviors are reflective of the culture of the people demonstrating them and are 
inexorably influenced by what that cultural group values. 

Sadly, little is known or has been written about the values which mathematics teachers think they 
are imparting, or how successful they are in imparting them. In our research, the Values in 
Mathematics Project, (http://www.education.monash.edu.au/projects/vamp) several colleagues and 

myself are examining teachers' awareness of what values they teach in their mathematics 
classrooms, how this takes place, and perhaps most importantly, what values are students learning 
from their mathematics teachers. 

We now understand that all teachers teach values but that most values teaching and learning in 
mathematics classes happens implicitly. A number of teachers who believe that mathematics 
learning has value for their students, may have never considered the particular values they are 
imparting. The values taught, whether explicitly or more likely implicitly, seem to depend heavily 
on one's personal set of values as a person and as a teacher.  

One thing is clear, teaching values isn't like teaching fractions. There are no right answers for one 
thing. You may be an expert on fractions, but it is not possible to be an expert on values. However 
understanding more about values is in our view the key to generating more possibilities for 
improving mathematics teaching.  

Current developmental policies in many national programs are focused on improving the 
achievement outcomes of students, and although their statements of intent often mention the 
encouragement of ‘desirable’ values, the curriculum prescriptions which follow have little to say 
about their development. For example, the Goals of the Australian school mathematics curriculum 
have been described as follows (Australian Education Council, 1991): 
 

As a result of learning mathematics in school all students should: 
x realise that mathematics is relevant to them personally and to their community; 
x gain pleasure from mathematics and appreciate its fascination and power; 
x realise that mathematics is an activity requiring the observation, representation and 

application of patterns; 
x acquire the mathematical knowledge, ways of thinking and confidence to use 

mathematics to: 
- conduct everyday affairs such as monetary exchanges, planning and 

organising events, and measuring; 
- make individual and collaborative decisions at the personal, civic and 

vocational levels; 
- engage in the mathematical study needed for further education and 

employment; 
x develop skills in presenting and interpreting mathematical arguments; 
x possess sufficient command of mathematical expressions, representations and 

technology to: 
- interpret information (e.g. from a court case, or a media report) in which 

mathematics is used; 
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- continue to learn mathematics independently and collaboratively; 
- communicate mathematically to a range of audiences; and 

x appreciate: 
- that mathematics is a dynamic field with its roots in many cultures; and 
- its relationship to social and technological change. 

 
It is clear from these statements, which are typical of educational goal statements, even if in this 
case they are more progressive than usual, firstly that valuing has entered into their choice. 
Secondly they all contain implications for values teaching and for cultivating what we might term 
'mathematically informed valuing'.  

Also there is now a great variety of proposals from research, and ideas for improving mathematics 
teaching being generated internationally. In particular in the areas of information technology (see 
Noss and Hoyles, 1996), ethnomathematics (see Barton, 1996, Gerdes, 1995) and critical 
mathematics education (see Skovsmose, 1994), the role of mathematics teachers is being critically 
examined. What is of special interest about these kinds of developments however is that there is a 
strong concern both to question, and also to try to change, the values currently being taught.  
 
3. Socio-Cultural Values in Mathematics Teaching 
We believe that it is essential to consider cultural values in mathematics within the whole socio-
cultural framework of education and schooling. Culture has been defined as an organised system of 
values which are transmitted to its members both formally and informally, (McConatha & 

Schnell, 1995, p. 81). Mathematics education as cultural induction has been well researched over 
the last twenty years (Bishop, 1988), and it is clear from this research that values are an integral 
part of any mathematics teaching. 

Values exist throughout all levels of human relationships. At the individual level, learners have 
their own preferences and abilities, that predispose them to value certain activities more than others. 
In the classroom there are values inherent in the negotiation of meanings between teacher and 
students, and between the students themselves. At the institutional level we enter the political world 
of any organisation in which issues, both deep and superficial, engage everyone in value arguments 
about priorities in determining local curricula, schedules, teaching approaches, etc. The larger 
political scene is at the societal level, where the powerful institutions of any society with their own 
values determine national and state priorities in terms of the mathematics curriculum and teacher 
preparation requirements. Finally, at the cultural level, the very sources of knowledge, beliefs, and 
language, influence our values in mathematics education. Further, different cultures will influence 
values in different ways. Cultures don't share all the same values. 

A socio-cultural perspective on values is crucial to understanding their role in mathematics 
education because valuing is done by people. The symbols, practices, and products of mathematical 
activity don't have any values in or of themselves. It is people, and the institutions of which 

they are a part, who place value on them. The research and writing on socio-cultural aspects of 
mathematics education (e.g. Davis and Hersh, 1981 and 1986; Joseph, 1991; Wilson, 1986) make  
this abundantly clear. 
 
4. Mathematical values  
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After examining the research literature in preparation for the empirical part of the Values in 
Mathematics Project, our initial analyses reveal that there are two main kinds of values which 
teachers seek to convey: the general and the mathematical. For example, when a teacher 
admonishes a student for cheating in an examination, the values of 'honesty' and 'good behavior' 
derive from the general socialising demands of society. In this case, the values are not especially 
concerned with, or particularly fostered by, the teaching of mathematics. However when we think 
about the three incidents previously described, we very soon get into mathematical values. In 
Bishop (1988, 1991), I argued that the values associated with what can be called Western 
mathematics could be described as follows: 

Rationalism - The main value that people think about with mathematics I call rationalism. It 
involves ideas such as logical, and hypothetical, reasoning, and if you value this idea, then for 
example in the second incident above with the fractions you would want the class to explore the 
generality of the student's conjecture. 

Objectism - Mathematics involves ideas such as symbolising, and concretising, and I refer to this 
value as 'objectism'. Mathematicians throughout its history have created symbols and other forms 
of representation, and have then treated those symbols as the source for the next level of abstraction. 
Encouraging your students to search for different ways to symbolise and represent ideas, and then 
to compare their symbols for conciseness and efficiency, is a good way to encourage this value. 

Control - The value of 'control' is another one of which most people are very conscious. It involves 
aspects such as having rules, being able to predict, and being able to apply the ideas to situations in 
the environment. It is one of the main reasons that people like mathematics. It has right answers 
that can always be checked. The woman selling in the street market in the third incident above will 
value the control she can exert over her profit and the quantities of her goods. 

Progress - The complementary value to 'control' is one that I call 'progress'. Because mathematics 
can feel like such secure knowledge, mathematicians feel able to explore and progress ideas. This 
value is involved in ideas such as abstracting and generalising, which is how mathematics grows. 
Questions like: "Can you make up another problem that uses the same information but is more 
complicated?" or "Can you suggest a generalisation that is true for all those examples?" are good 
tasks for encouraging that value. 

Openness - I call another familiar value 'openness' because mathematicians believe in the public 
verification of their ideas by proofs and demonstrations. Asking students to explain their ideas to 
the whole class is good practice for developing the openness value. 

Mystery - 'Mystery' is the final value I will describe. Anyone who has ever explored a mathematical 
problem or investigated a puzzle, knows how mystifying, wonderful, and surprising mathematics 
can be. For example, I still think it is surprising that the ratio of circumference to diameter is 
always the same for any sized circle (Pi is the ratio). And mathematics is full of these mysteries! 
Did you know for example that if you take any Pythagorean triple like 3,4,5 or 5,12 13 and 
multiply the 3 numbers together, the result is always a multiple of 60! Isn't that surprising? And 
why should it be 60? (90 might in some way seem to be a more 'logical' answer!) 

It seems from the research literature that over the last centuries these six values have been fostered 
by mathematicians working in the Western culture, and it is these values that teachers are probably 
also promoting when they teach mathematics. Of course they may promote some more than others, 
so perhaps teacher in-service activities could help teachers develop ways to promote all of them. 
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Then they would be encouraging their students to be thoroughly mathematical, in a Western 
cultural sense.  

However, we have also recognised that culture is a strong determinant of mathematical values, and 
research shows us that not all cultures share the same basic values. So it is likely that mathematics 
teachers working in different cultures will impart different sets of values to their students, even if 
they are teaching to the same basic mathematics curriculum. This is one reason why we are very 
interested in this collaborative research project with our Taiwan colleagues.  
 
4. The VAMP research project 
In 1999 the ARC began funding our three year research project which had the following goals: 

1. To investigate and document mathematics teachers’ understanding of their own intended 
and implemented values. 

2. To investigate the extent to which mathematics teachers can gain control over their own 
values teaching. 

3.To increase the possibilities for more effective mathematics teaching through values 
education of teachers, and of teachers in training. 

As we have said above, there is little knowledge about how aware teachers are of their own value 
positions, about how these affect their teaching, and about how their teaching thereby develops 
certain values in their students. Initial teacher education and in-service professional development 
need this kind of research basis in order to help change the situation. But doing this research is far 
from easy, for all kinds of reasons (see Clarkson, Bishop, FitzSimons and Seah,  2000, this volume). 
We believe that the key to making development of values teaching possible is to investigate 
teachers’ understanding of their own values. For Goal 1 we intend to study both teachers’ intentions, 
and their actual teaching behaviours. Values teaching happens both implicitly and explicitly and 
there is not necessarily a one-to-one correspondence between what is intended and what occurs.  
To begin this research we ran a series of inservice workshops with teachers which enabled us to 
gain some initial insights into the kinds of values teachers were considering. As a result of these 
workshops, we have developed a detailed questionnaire which we are giving to about 30 volunteer 
mathematics teachers in Victoria. Preliminary results from this questionnaire will be presented in 
another paper at this conference, by FitzSimons, Seah, Bishop and Clarkson (2000, this volume). 
The questionnaire will also be used to identify the teachers who would be willing to participate 
further in the research and whose views about values are sufficiently, and interestingly, different. 

As we say in Goal 2 above, we wish to have a direct effect on the teachers in the project, and in an 
overt way. This project is not just a study of teachers’ existing values, it is concerned with change, 
and with the way in which awareness and understanding of their own values teaching enable 
teachers to further develop their own teaching. 

The first approach for this intervention phase of the project will be to work with approximately 20 
selected volunteer teachers, to clarify via initial interviews their ‘intended values’, and through 
classroom observation and post-observation interviews, the ways in which they implement these in 
the classroom. Through this process, teachers will be encouraged to identify the role that they want 
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values teaching to play in their classrooms, and to identify in which areas they are achieving what 
they want, and in which areas they desire change.  

Bearing in mind the possible relationship between beliefs and values, we will then build on the 
insights so far gained to focus on whether teachers can change a ‘held belief’ into an ‘implemented 
value’ observable in their classroom. This is a crucial phase from a theoretical perspective. 
Following a number of group discussions with the 20 teachers, a joint plan will be devised to 
attempt to implement certain specified values different from those normally emphasised by the 
teachers. The principle aim of the group discussion sessions is for the teachers to be able to support 
each other during what could be a challenging experimental period.  

The joint plan will be implemented over a similar three-week observational period to that used in 
the first approach. The researchers’ tasks will be to observe and document the extent to which the 
implementation takes place. Following the observations and teacher interviews, further group 
discussions will be held. The teachers will be asked to keep journals with weekly entries and these 
journals will be particularly important documents for analysis and discussion during this phase. 

It is our contention that improving and making values teaching more explicit in mathematics 
classrooms will make mathematics learning more effective. Hence the third goal above. We 
anticipate that we will be generating in-service activities for teachers, based around the following 
kinds of topics. The interest and concern is not with the particular choices the teachers might make 
but with the values underlying their decisions’ 

 
Planning your curriculum for the year: 
Should I emphasise breadth or depth in the topics? What out-of-school visits should I include? How 
should my math curriculum link with those in science, language, art, etc.? What big ideas should I 
focus on this year? What curriculum choices should I offer my students? 
 
Choosing textbooks/electronic teaching aids 
What do I expect from a good textbook? What extra materials should I prepare? How much 
calculator use would be desirable for my Grade 4 class? How should I tap into the math resources 
on the Internet? (Textbooks can also be considered to be carriers and shapers of values. They are in 
effect 'text teachers' and are certainly written by people interested in developing certain values.) 
 
Planning lessons 
How much choice of activities should I give my students? How much routine practice is important 
for them? How much group work do I want to build in? How detailed should my planning be? 
 
Planning and setting assessment tasks, mark schemes 
How many multi-digit multiplication problems are sufficient? Should I allow calculator use? 
Should students mark their own assignments? 
 
Setting homework 
Is my homework always 'after the lesson' type rather than 'before the lesson'? Should I encourage 
parents to help as much as possible? Should I let my students cooperate with their homework 
assignments? 
 
Grouping students in class 
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Should I encourage friendship groupings by letting my students work with their friends? Should I 
mix the non-English speakers with the first language English speakers? 

Through activities based around questions such as these, it is our hope that we shall be able to make 
mathematics teachers not only more aware of the different values that they are teaching, but also 
that they will be more in control of their own values teaching. By this means we intend teachers to 
develop a greater range of teaching techniques, and to be able to offer a more rounded 
mathematical education to all their students. 

Note 
 
The 'Values and Mathematics Project' (VAMP) is a three-year (1999-2001) Australia Research 
Council funded project jointly conducted by Monash University and the Australian Catholic 
University.  
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Methodology Challenges and Constraints 
in the 

VAMP Project1 
 

Philip Clarkson 
Australian Catholic University 

Alan Bishop, Gail FitzSimons, Wee Tiong Seah 
Monash University 

 
Values are taught in every lesson. However in mathematics classes this 
seems to be implicit rather than explicit. This paper outlines 
methodological difficulties encountered in researching the values teachers 
teach. One crucial area that has emerged is finding a common language 
with which meaningful dialogue can occur. We also reflect on some 
methodological questions which we have had to ask again as we have 
thought about the ‘parallel’ project in Taiwan. 

 

Values in mathematics education are the deep affective qualities which education aims to 
foster through the school subject of mathematics (Bishop, Clarkson, FitzSimons & Seah, 
elsewhere in these proceedings). They are a crucial component of the classrooms affective 
environment. Although values teaching and learning inevitably happen in all mathematics 
classrooms, the teaching of values appears to be mostly implicit. Thus it is likely that 
teachers have only a limited understanding of what values are being taught and encouraged. 
Values are rarely considered in any discussion about mathematics teaching. A casual 
question to teachers about the values they are teaching in mathematics lessons often 
produces an answer to the effect that they do not believe they are teaching values. With 
this scenario of teachers not fully understanding what they do in the act of teaching, it is an 
interesting situation to attempt to observe, measure, or even discuss such implicit aspects 
of their action. Hence the challenge in this project was not only to decide what were key 
questions to ask, but to develop an appropriate mix of investigative strategies that would 
help us gain some insight into this area of teaching. This paper reflects on the strategies we 
have been using, while the third paper in this symposium (FitzSimons, Seah, Bishop & 
Clarkson, elsewhere in these proceedings) reports on preliminary data. 

 
How do you research values? 

The methodology we have used is rather traditional in some aspects. Essentially we have 
opted for an interlocking approach at two levels - micro and macro. At the micro level the 
approach is to work with individual teachers using a cycle of preliminary interview, a 
classroom observation, and a post-observation debriefing interview. This cycle is repeated 
with the same teacher two or three times. The classroom observations are video taped, and 
the interviews audio taped. We plan to analyze the audio tapes but not the video tapes. The 
video tapes will be used solely to capture episodes from the classroom to stimulate 
discussion with the teacher during the debriefing interview.  

Using this strategy we are looking to see whether teachers can articulate their own 
intended values, and whether they can implement these in their classroom. Hence in the 
                                                 
1 The ‘Values and Mathematics Project’ is supported by a Australian Research Council Large Grant. 

Web site found at [http://www.education.monash.adu.au/projects/vamp/] 
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preliminary interview we will be asking teachers to nominate values that they suspect will 
arise during the lesson we will be observing. In other words the teacher will have the 
opportunity to plan for the teaching of particular values. During the observation lesson we 
will be looking specifically for these values nominated by the teacher. We are not 
nominating particular values and asking teachers to teach those. Nor are we choosing a 
methodology that has us observing lessons in a rather random way, hoping to observe 
values that happen to be taught. We are keen to make the process open for the teachers and 
to see whether they actually teach the values which they have nominated. We believe this 
approach is rather novel in education research. It not only asks teachers to reflect on their 
teaching behaviour and to say what values they are teaching; it also asks for authentication 
of the teacher’s analysis by seeking to observe the stated behaviour in a classroom 
situation devised by the teacher. 

In the observation lesson we will be taking particular interest in the critical decision points 
during the teaching. These critical decision points are times in the flow of the lesson when 
the teacher needs to make a decision that will influence the direction the lesson takes. It 
seems to us that it is in those decision times that the influence of values that the teacher is 
teaching may be most clearly evident. Clearly at these decision points, values are not the 
only influence. School policy, the physical situation within which the lesson takes place 
and so forth will also play at times a more dominant role than the values that the teacher 
may be teaching (Bishop, FitzSimons, Seah & Clarkson, 1999). Nevertheless, the 
implementations of values will also play a role in the decision making. 

In the post observation interview the video tapes will become the central prompting device 
for both the researcher and the teacher. We hope that the teacher will be able to remember 
points in the lesson at which they thought they were teaching the identified values. They 
will be able to use the video tape to help prompt their memory and elaborate on these 
episodes for the researcher. As well the researcher will also have noted points at which 
values teaching seemed to be occurring, and the use of the tape will help the teacher recall 
these episodes. The aim of the debriefing interview is for the teacher and researcher to 
come to a shared agreement on some particular examples of when and how values teaching 
occurred in a particular lesson. 

Later we plan to use a similar methodology to pursue another aim of the investigation. The 
major change to the methodology will occur in the preliminary interview. We will no 
longer be asking teachers to nominate values that they normally teach, and from this broad 
set specify some which they suspect will be given particular emphasis in the coming 
observation lesson. Rather we will be asking teacher to implement some value(s) in the 
observation lesson that they do not normally teach, but on reflection they think they should 
be teaching. This change of emphasis will give further insight into how much control 
teachers may have over their teaching of values. 

In piloting these techniques, and gathering some support from interested teachers, we have 
run a series of professional development sessions that incorporate some video clips of a 
teacher working with a grade 7 class. The video is stopped at what seemed to be critical 
decision points. The participants in the sessions were asked to nominate the options that 
the teacher had at these points. Subsequent discussions developed on influences that could 
have impinged on the various options available, including possible values. As well as the 
video, we presented a number of written episodes which were used to provoke teachers’ 
thinking regarding the options they might have in classroom situations, and the underlying 
constraints that might be present. In particular, each discussion was finally directed to 
trying to decide what influence teachers’ values might have. Both these approaches 
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worked well giving us confidence in the use of videos to stimulate recall of critical 
decision points, and the use of written scenarios in preliminary talks with teachers. 

It has been instructive to reflect on the discussions we have had with six groups of teachers 
that indicate other issues for consideration. Perhaps the crucial finding from an analysis of 
our field notes taken during these sessions is the lack of an appropriate and shared 
vocabulary to discuss the types of values in which we are interested; that is values based in 
mathematics and mathematics education. The language involved in this investigation, and 
indeed in the transmission of values implicitly or explicitly in the classroom, is crucial. 
Indeed, this project essentially revolves around finding ways to make values linguistically 
explicit. This of itself will not lead to explicit values teaching. Rather, it will lead to a 
shared understanding between teachers and researchers. Because of the nature of language, 
a cultural artefact itself, one of course can never be sure that certain words do capture a 
shared meaning, or value in this case. If a shared understanding is accomplished, then we 
may be in a position to move to a further project that will involve examining the 
transmission of values from teachers to students. Both teachers and ourselves have 
struggled to find appropriate language so that these ideas - which are still being formed, 
reformed and refined - can be communicated in a positive manner.  

As a research team we have always been conscious of this problem. In the research 
literature there have been many attempts at linking teachers’ beliefs to their teaching of 
mathematics McLeod, 1992; Southwell, 1995; Thompson, 1992; Tirta Gondoseputro, 
1999). However the results of this research are equivocal (Bishop, 1999). Although some 
studies purport to find clear linkages, others do not. As Neuman (1997) suggests, 
subsequent actions need not necessarily correspond with stated intentions. A number of 
studies on beliefs were in the nature of self-reports, but there appears to have been few 
attempts to follow up these self-reports to see whether the teachers actually act upon their 
beliefs. For a variety of reasons we do not always act on our beliefs in certain situations. 
We wondered whether this explained some of the confusion in the literature. Hence one of 
the meanings we bring to ‘values’ in this study is the notion that ‘values are beliefs in 
action’. That is, the values that teachers are teaching in the mathematics classroom are not 
only beliefs the teacher holds, but their behaviour in the classroom actually point to these 
beliefs. These are what we call ‘values’. 

But this in itself is too simplistic, even if it gives us a touchstone to work from. In our own 
discussions, and in the professional development sessions we have conducted, various 
notions are clearly embedded in this notion of ‘value’. We summarize some of these in 
Table 1. 

In a very real sense, this problem of language was inescapable. As noted above, a central 
feature of this project is to explore together the linguistic framework that we as researchers 
and teachers will use to try and share our understanding of the values that they teach in 
their mathematical classrooms. Thus it was decided that a set lexicon to be made available 
to teachers involved in the project was neither possible nor practicable. 
 
 
 
 
 
Table 1: Aspects of meaning either used in or arising from discussion with teachers 
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General meanings of 'value' Mathematical values 
(after Bishop, 1988) 

Mathematics  
educational values 

7R�value:�
x� to command 
x� to praise 
x� to heed 
x� to regard 
A value is: 
x� a standard 
x� a thing regarded to have worth 
x� a principle by which we 
live/act 
x� a standard by which we judge 
what is important 
x� something we aim for 
x� qualities to which we conform 

Openness 
Mystery 
Rationalism 
Objectivism 
Control 
Progress 

Clarity 
Flexibility 
Consistency 
Open mindedness 
Persistence 
Accuracy  
Efficient working 
Systematic working 
Enjoyment  
Effective organization 
Creativity 
Conjecturing 

 
 

 ‘Conflicting values’ was another issue that has arisen in our discussions with teachers. 
When contemplating the different situations it became clear that teachers are in difficult 
situations at times. For example, a teacher wishing students to develop an investigative 
stance to a project, and the students themselves, may wish to achieve closure at different 
points. In resolving this issue it may be that the teacher will need to draw on another set of 
more deep-seated values to resolve the conflict. On the other hand, the situation may be 
resolved from other sources, for example the submission dates set by an external 
examining body over which the teacher has no control. 

As well as the micro investigation with individual teachers, we have developed a macro 
approach consisting of a survey that also gathers teachers’ ideas on the values they teach. 
The survey has clusters of items built around the themes of teachers’ understanding of 
values - specifically, (a) values teaching in the mathematics classroom, (b) institutional and 
socio-cultural influences, (c) mathematical values, and (d) mathematics educational 
values - as well as teacher control over these values. 

The issue of language also arose when piloting the survey form. For the items using a 
forced response format, a certain amount of rewording had to be undertaken to clarify the 
ideas we wished to interrogate. However the two major results from the piloting of the 
survey involved other issues. The teachers’ responses showed that they are without doubt 
interested in the ideas of values, and their teaching of them; they recognize the importance 
of these notions and the need to investigate them. However associated comments indicate 
that these are new ideas for the teachers who clearly have not hitherto recognized that their 
teaching of mathematics does involve teaching values.  

Lastly, a common theme we have detected running through responses from piloting the 
survey form and during the professional development sessions has been the presence of a 
certain amount of apprehension from the teachers. The subject of ‘values’ seems to 
immediately provoke in many teacher notions of judgement and finding fault. This may be 
a comment on our society, but it is an aspect of this project that needs to be taken very 
seriously. This in part is a language issue, but also means that we need to be scrupulous in 
respecting the teachers’ personal value systems. We have become even more conscious of 
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the role a teacher’s personal value system may play when reflecting on a parallel project in 
Taiwan. 

 
Taiwan research 

It was always planned and hoped that parallel projects would evolve overseas; it was 
expected that different cultures might well have an important influence on how and what 
values are taught in mathematics classrooms, and how one should try to investigate them. 
Colleagues in Taiwan, led by Professor Fou-Lai Lin, have developed one such project (Lin 
& Chin, 1998) arising from our initial contact in 1996 and from continuing 
communications, meetings and sharing of papers since then (for example, Chin & Lin, 
1999a; Chin & Lin, 1999b; Leu, 1999; Wu & Lin, 1999). In various papers in this volume, 
the Taiwanese group has outlined what their aims have become, and the methodology that 
they have employed to try to answer their questions. We have found many aspects of their 
project fruitful to think about. However, we wish to highlight one particular aspect of their 
project that has made us reflect more deeply on our own methods. This aspect concerns the 
relationship between the members of the research group and the teachers with which they 
were working. 

It seemed that for our Taiwanese colleagues, two teachers in particular responded in 
different ways because of the background of two of the researchers. One experienced male 
teacher responded in a more open manner to an interviewer who was more prepared to 
listen, to learn and to be able to share meanings (Chin & Lin, 1999a; 1999b). This may be 
a reflection of a Confucian trait in which a more experienced master plays "an active role 
in directing conversation while the researcher acted as a listener" and learner (Chin & Lin, 
1999b, p.317). In a second instance, a woman teacher who had been approached to 
participate in the project was at first reluctant to do so. She changed her mind after visiting 
one of the researchers in his office and noticing various artefacts that indicated the 
researcher was probably a practitioner of Buddhism (Leu, 1999). In subsequent interviews 
it was noticed how she responded differently to this researcher in comparison to the other 
researchers. As the interviews developed, it became clear that this teacher’s overall life 
value system was based on Buddhism and was playing a prominent role in her teaching. 
She believed that one of the crucial aims of her teaching derived directly from these beliefs 
(Leu, 1999). It was easy for her to make direct links between this system of values she held, 
and her teaching actions in the classroom. She also felt more at ease discussing such 
aspects of her teaching with the researcher who also practices Buddhism. One suspects that 
they used in part a shared language derived from Buddhism in describing why and how she 
was dealing with values. 

In the ‘classical’ western situation that some researchers have aimed for, there is supposed 
to be a notion of ‘sameness’ operating from one interview situation to the next. This means 
that with appropriate protocols devised and followed, the results from all interviews can be 
combined because there is an assurance that the situations from which they were derived 
do not greatly influence the results differentially. In these instances from Taiwan, the 
interview situations turned out to be clearly different, and the differences did influence the 
responses of the teachers. It seems highly inappropriate to dismiss the results of these 
interviews because of the situations described, and indeed our Taiwanese colleagues do not 
dismiss these data. However to recognize these differing aspects of the situations, and to 
include them as part of the data reporting, seems to be essential. In these two cases it is 
clear that the intended curriculum was influenced in different ways to conform to some 
degree to each of the teacher’s personal value set. These teachers held their personal 
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beliefs so highly that they pervaded their acts of teaching and their self-perceptions as 
teachers.  

Our Taiwanese colleagues seem to have used the fact that some of the teachers responded 
differently with particular researchers. They have recognized the special type of 
interactions that grew up and exploited them to gain a deeper insight into the consistency 
over time of the values that these teachers portrayed in their classrooms.  

 
Reflections on the Taiwanese approach 

In the Australian situation, we had intended to pair researchers and teacher participants on 
a basis of time convenience. However the Taiwanese experience has prompted us to think 
again. If there is a ‘relationship’ of some kind between the teacher and one of our 
researchers, then perhaps we should consider exploiting this. It so happens that some of the 
researchers and teachers have indeed known each other for a long time. Because of this, it 
may be that a teacher will feel more at ease discussing values with a friend, than someone 
they have only recently met.  It was noted earlier in this paper that we have already found 
that for some teachers the word ‘values’ contains the notion of right and wrong, and of 
judgement, coming no doubt from the common usage of the word ‘value’ in our society. 
This emphasis on ‘judging’ may lessen if the teacher and researcher know each other and a 
certain trust between them is already present.  

However in following this line, there is a cost as our Taiwanese colleagues have pointed 
out. We noted in an earlier section of this paper the difficulties already encountered 
concerning the lack of a shared vocabulary between researchers and teachers. This is likely 
to diminish if the researcher and teacher know each other. However, another difficulty may 
take its place. Because there is a shared vocabulary, the teacher and researcher may not 
feel the need to explore to the same depth their understanding of a classroom episode, as 
other pairs of teachers and researchers in the project might need to. This is because the pair 
that know each other may feel that the other will understand fully ‘what they are getting at’. 
We need to guard against this. As well, reflection on past, shared experiences will need to 
be interrogated carefully since it again is so easy to assume the other will fully understand 
linkages made between such experiences and a classroom episode.  

This approach emphasizes one aspect of this project that we have been conscious of from 
the beginning. We have always seen the importance of giving the teachers who become 
part of this project a clear voice. Hence in discussing the observed values in their 
classrooms during the interviews after the observations, we will be aiming for a consensual 
view of what happened. We recognise that their perspectives are as important as those of 
the observer. At one stage of planning this project, we had hopes of recruiting at least two 
teachers from each school that wished to participate. We thought in this manner the 
increased amount of discussion to make sense of what was happening in the classrooms 
would not only enhanced our joint understanding, but the teachers would also feel more 
empowered within the project. We also thought that it would be good to invite all the 
teachers participating in the project to one or more focus group sessions to compare and 
contrast their experiences. So far logistical considerations have prevented both of these 
aspects of the project being implemented. 

In considering the Taiwanese project, it has emphasized again for us how both projects are 
no longer in the traditional, empirical, objective mould of research. We as the researchers 
are quite clearly part of the classroom situation, and hence can no longer conceive of 
ourselves as observers looking in from outside. We are also not studying the teacher as an 
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object, or their teaching as an act quite divorced from broader cultural, social, and political 
milieu, in which it occurs. Indeed in many ways we would be under utilising a wonderful 
resource if we tried to do so. Most of the teachers we are working with are well informed 
concerning research methods, and to some extent the education research literatures. Some 
have directed research projects themselves. Hence not to ask them to ‘fully participate’ 
would be silly. We will need to show in the way we report on this project, this different 
stance to how we are conceiving of educational research. 

 
Conclusions 

In this paper attention has been drawn to the importance of methodology in researching 
values. Some approaches, which give insights into these ideas, have been offered. 
However difficulties still remain such as the development of a shared language. The 
influence of culture has also been highlighted, both at the societal and personal level. It 
may be better not to try and wash away such effects with methodological approaches, but 
recognize them as legitimate and look within them to gain greater insight into how values 
are taught.   
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Introduction 

One of the underpinning beliefs of researchers in the Values and Mathematics Project 
(VAMP) is that making explicit the teaching of values will contribute positively to the 
mathematics education of the student. There is a burgeoning literature in adult 
mathematics education (see FitzSimons, & Godden, in press) which suggests that many 
people leave school holding negative beliefs and attitudes about the discipline of 
mathematics, the field of mathematics education, and their own sense of identity and 
agency with respect to learning and using mathematics. The long years of experience in 
classrooms are an important factor in this identity formation, together with influences 
from significant others and the mass media, for example. Thus, each mathematics lesson 
may be viewed (in the microcosm) as mathematics education history in the making, 
creating and recreating identities of people who interact with others, now and in the future.  

As noted in Bishop, Clarkson, FitzSimons, and Seah (elsewhere in these proceedings), 
the VAMP project has conducted inservice workshops for primary (elementary) and 
secondary school teachers to inform and recruit participants. We have also advertised 
through the local mathematics teachers’ association and the Catholic school system for 
interested people to complete a detailed questionnaire requiring about 30 minutes of their 
time. Challenges and difficulties found in the practical workings of this Project are 
discussed in Clarkson, Bishop, FitzSimons, and Seah (elsewhere in these proceedings). In 
this paper we will outline some of the findings from the Project so far, based on fieldnotes 
from the inservice workshops and analysis of questionnaires. Several themes are pursued, 
including teacher understanding/ opinions of: (a) values teaching in mathematics 
education, (b) institutional or socio-cultural influences, and (c) mathematical and 
mathematics educational values; in addition, we are interested in the extent to which 
teachers exercise control over values portrayal. 

Values Teaching in Mathematics Education 

One of the foremost questions to be addressed is whether teachers actually see a place 
for values teaching in mathematics education. By expressing an interest in being involved 
in this project, respondents have tacitly indicated support for the concept. However, while 
there was agreement or strong agreement by many with the statement: “There is a place in 
mathematics teaching for the teaching of values,” a number of responses made us 
question whether this statement was interpreted descriptively or normatively – these 
interpretations will be clarified in subsequent interviews. 

                                                 
1 1 The ‘Values and Mathematics Project’ is supported by a Australian Research Council Large Grant. 

The Project's homepage can be found at [http://www.education.monash.adu.au/projects/vamp/] 
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Another area of interest was the relationship in values teaching between mathematical 
and personal, social or moral values in the relative emphasis placed upon these two 
categories by teachers. Once again there were a diversity of responses with some teachers 
placing personal values ahead of mathematical values, others vice versa, and still others 
advocating a blend. Within the first category, there were distinctions made between 
individual and social goals: 

 
Personal growth shouldn’t be at the expense of social/moral responsibility. 
 
There must be a balance between social justice and individual growth. 
 

To the respondent making the last comment, attempts to achieve this balance have 
been the source of tensions in the society with regards to interpersonal relationships. He 
represented this situation with a sketch which is reproduced in Figure 1: 

 
Figure 1 
Tensions in interpersonal relationships resulting from a balanced development of social justice and 
individual growth. 

 
 
 
 
 
 
 
 
There was generally strong support for using current social issues (e.g., gambling) to 

promote discussion of values in mathematics, but not at the expense of causing 
disharmony within the community. Most advocated working in co-operation with parents 
through explanation and discussion where sensitive issues are concerned, in order to 
promote open and honest discussion with students. However there was a warning from 
one experienced teacher: 

 
While there is a place for a serious discussion of social issues formally and as they 
arise, it seems pointless to introduce vexatious debate when it is not necessary. 
 
While teachers were concerned that the teaching of mathematics should attempt to 

meet the immediate personal learning needs (including learning to think for themselves) 
and future aspirations of their students, some were willing to critique the institutions of 
mathematics and mathematics education in the classroom. They suggested, for example, 
that there could be discussion of the personal and social empowerment aspects of 
mathematics. There could be discussion of the value of mathematics throughout history 
and across cultures, emphasising its creativity. There could be discussion to transform the 
social expectations arising from the compulsory nature of mathematics education into 
personal satisfaction for their students, at the same time helping students to critique these 
social expectations. Further to this the suggestion was made to encourage children to 
question importance of all subjects, list their responses on board and have a class 
discussion. That is, to treat students’ questions, mathematical and meta-mathematical, 
with respect. 

INDIVIDUALS (Democracy)
 

SOCIETY 

Social 
justice 

Valuing & appreciating each other Critical questioning of authority 
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Institutional and Socio-Cultural Influences 

As has become apparent, the teaching of values in mathematics cannot be considered 
in isolation; it must be situated within broader contexts. These were discussed analytically 
under five broad headings in Bishop, Clarkson, FitzSimons, and Seah (1999): (a) socio-
historic knowledge, (b) socio-cultural practice, (c) the community of practice in the 
classroom, (d) the microgenetic development of the student, and (e) the ontogenetic 
development of students and teachers. Clearly there are expectations of each other on the 
part of teachers and students (e.g., Brousseau, 1997), as well as from the school, the 
family, the local community, and society at large including government, business and 
industry. Between teachers and students there are questions of mutual respect 
(behavioural and intellectual), and behavioural norms unique to each classroom if not the 
entire school. The ability of any teacher to conduct whole-class discussion, small-group 
work, problem solving activities, investigations, and so forth is constrained explicitly or 
implicitly by the ecology of the classroom situated within a range of influences such as 
those listed here. Other pragmatic constraints faced by teachers are the time available 
within what are often termed ‘overcrowded curricula’ linked to the pervasive influence of 
external tests or examinations, and even the structure of the timetable itself. 

The results from questions aimed at influences on the portrayal of values in 
mathematics teaching were as follows. The teacher’s personal value framework rated 
consistently highly, sometimes in concert with religious/spiritual values but sometimes 
these were diametrically opposed with the latter ranked last or near last. Although it was 
generally agreed that curricular resources (e.g. curriculum guides, textbooks, etc.) 
portrayed values, there was an equivocal response to the degree of influence exerted by 
the kind(s) of pupils in the particular class, the school ethos and culture, and the particular 
topic being taught. That is, some teachers claimed to portray values consistently across 
classes, topics, or both whereas others stressed the need to respond to different students’ 
needs. An example of the dilemmas in making generalizations here is given by the 
following comment:  

 
The kind of students I have in my classes does not change the values I portray . I 
consider it important to provide a realistic consistent modelling of my own values, 
especially to the low socio economic students I teach who express cynicism 
concerning and often feel betrayed by teacher “masks.”  
 

Here are the words of a teacher who expressed a concern for a particular group of 
students, yet who maintained a consistency of values portrayal. This is another area where 
follow-up interviews may help us to gain a deeper understanding of values teaching in 
mathematics. 
 
Teachers' views on mathematical and mathematics educational values 

As is discussed above, the teacher respondents felt that there is a place for values 
teaching in mathematics lessons. Regarding the subject of school mathematics and its 
teaching, most of them also thought that it was important to portray these two aspects as 
value-laden. These values would pertain to mathematics content and mathematics 
pedagogy, or to use Bishop's (1996) terms, these are the mathematical and mathematics 
educational values respectively. It is an aim of the Values And Mathematics Project to 
specifically investigate these values which are unique to the mathematics classroom, as 
distinct from the general educational values such as obedience and graciousness. At the 
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same time, there is an acknowledgement too that there are overlaps between and amongst 
these categories, such as the value of creativity. 

One of the questionnaire items attempted to find out the relative importance teachers 
placed on mathematical values. Among the questionnaire returns, it was noted that these 
teachers of mathematics generally preferred to portray mathematical values associated 
with logical thinking and creativity. In contrast, the value related to the role of 
mathematics as a gate-keeper to societal upward mobility was the least preferred for 
nearly all of the teacher respondents. This is in spite of the requirement in Australia that a 
pass in at least one mathematics subject be attained as a criteria for tertiary entry 
applications. At this stage, one possibility to account for this is that at the primary level, 
the aims and foci of mathematics teaching are more broadly defined. Another possibility 
is socio-cultural in nature; unlike many Asian cultures, a good career with a comfortable 
remuneration does not necessarily require a tertiary academic qualification. Other 
personal skills are often equally valued in the society as well. 

When a student asks for reasons why mathematics is taught and studied in school, the 
teacher's response often reveals --- and contributes to an inculcation of --- values related 
to the subject of mathematics. Amongst the responses received, there was a majority 
which emphasised the complementary values of control and progress (Bishop, 1988):  

 
Mathematics is part of our everyday experiences and sophisticated mathematics helps 
people to explain their environment and and [sic] aspects associated with living such 
as trends 
 
Mathematics is an area we need to cope with [in] our everyday life. We need it to 
exist as a whole person who can manage life 
 
Understanding mathematics and having mathematical skills is personally and socially 
empowering. 
 
As for mathematics educational values, the responses indicated a strong preference for 

values associated with problem-solving and investigations. These values embody non-
standard ways of doing mathematics. They emphasise process/understanding over 
product/result, a statement which nearly all the teacher respondents agree to. These 
teaching methods, together with the next highly-ranked value associated with small-group 
work, were also reflected in the resounding endorsement of teacher encouragement for 
student alternative solutions and/or justifications. At the other extreme, testing is a 
teaching style which most respondents ranked last amongst different ways of teaching 
mathematics. 

 
Teacher control over values portrayal 

While the above provide the Values And Mathematics Project with a first glimpse 
into teacher awareness of values teaching in mathematics education, institutional and 
socio-cultural influences underpinning such values teaching, and the nature of 
mathematics content and pedagogical values held by primary school teachers of 
mathematics in Australia, the Project is also interested in investigating the relationship of 
these self-professed values with values which are actually portrayed in the mathematics 
class. This concern arose from documented inconsistencies between teacher beliefs and 
subsequent actions (Sosniak, Ethington, & Varelas, 1991; Thompson, 1992; Tirta 
Gondoseputro, 1999). It is envisaged that a better understanding of this relationship 
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arising from the different sources and analyses of data collection later on in this Project 
will provide us with clues to exploring the possibility of explicit teacher control over the 
representation of selected values in class. 

While a rich description of this relationship between belief and practice may be 
obtained from the next phase of the Project, that is, lesson observations and personal 
interviews with the teacher participants, the questionnaire items were also designed to 
reveal aspects of any such correspondence as observation and discussion points. This was 
initially planned for by eliciting teacher conscious reflection (e.g., through ranking 
preferred and portrayed values). 

A section of the questionnaire consisted of items with contextualized classroom 
situations. It asked for teachers' open-ended feedback regarding (a) their response to each 
situation, (b) the contextual factors guiding their respective responses, and (c) the 
underlying values underpinning their actions. The items in this section were intended to 
complement cross-item instrument reliability checks. However, while responses to 
context-free items in the other sections demonstrate reliability of these items, for some 
respondents such consistencies broke down between these items and items in the 
contextualized section. 

In other words, inconsistencies between respondent self-professed values and values 
underlying responsive actions to hypothetical classroom situations (Bishop & Whitfield, 
1972) or critical incidents (Tripp, 1993) provided another (unintended) source of 
checking for teacher control over their values portrayal in the primary mathematics 
classroom. A distinction between this source and the purposeful inclusion of teacher 
reflection items is that the former tapped into teacher subconscious preference for 
selected values given hypothetical contexts. In fact, one or more of the contexts might 
have even been experienced personally by some of the respondents before, in which case 
their responses to these incidents might actually reflect their recollections of their own 
reactions to the respective situations! 

The teachers' indication has been that the kinds of values being represented were 
influenced predominantly by their own personal value framework. Then, it may be 
expected that with such personal involvement, preferred values were translated into 
portrayed ones in the classroom. In the case of mathematical values (Table 1), this 
expectation held true for the highest-ranked value corresponding to logical thinking, that 
is, rationalism (Bishop, 1988), as well as to the two lowest-ranked values which 
corresponded to mathematics improving one's career prospects, and to beauty. The value 
of creativity, in particular, appeared to be under-emphasised despite strong teacher 
intentions. 

 
Table 1 
Comparison of descriptors associated with preferred and portrayed mathematical values 
 

Preferred Portrayed 
1. Logical thinking (1.3) 1. Logical thinking (1.6) 
2. Creativity (2.2) 2. Systematic working (2.3) 
3. Systematic working (2.5) 3. Puzzling (2.7) 
4. Puzzling (2.8) 4. Creativity (2.8) 
5. Beauty (3.9) 5. Beauty (4.6) 
6. Improving career prospects (5.8) 6. Improving career prospects (5.8) 
Note. Average rankings are denoted in brackets. 
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As for values related to teacher pedagogical practices, the initial analysis of 
questionnaire data showed that values related to problem-solving, investigations and 
small-group work were both highly preferred and portrayed in the classroom, although 
the relative emphases amongst these three activities were different in practice (Table 2). 
Testing/assessment was also least preferred and least emphasised amongst the list of 
teaching activities. As much as teachers might not subscribe to direct instructions in the 
classroom, the reality and practical constraints appeared to make it a more-commonly 
used teaching style than desired. Nevertheless, and perhaps of the nature of primary 
mathematics curriculum, teachers were still able to engage in pedagogical activities which 
promote cooperative and other social skills, creative thinking and non-standard solutions 
as represented by the top three activities in Table 2. 

 
Table 2 
Comparison of activities associated with preferred and portrayed mathematics educational values 
 

Preferred Portrayed 
1. Problem-solving (1.5) 1. Small-group work (2.3) 
2. Investigations (2.4) 2. Problem-solving (2.5)  
3. Small-group work (2.6)     Investigations (2.5) 
4. Self-paced learning (4.2) 4. Direct instruction (3.3) 
5. Direct instruction(4.5) 5. Self-paced learning (4.5) 
    Team teaching (4.5) 6. Team teaching (5.0) 
7. Testing (5.9) 7. Testing (5.1) 
Note. Average rankings are denoted in brackets. 

 

At this preliminary stage of analysis, there is no evidence of interaction between the 
extent to which preferred and portrayed values match and the factors influencing value 
portrayal for any individual teacher. It will be certainly worthwhile to investigate the 
strength of this relationship once more questionnaires are returned and a more detailed 
analysis of the data are carried out. 

What are some of the perceived inconsistencies between teacher professed values and 
values underlying teacher responses to hypothetical classroom incidents? For one 
respondent who placed the least emphasis on portraying mathematics achievement as 
improving career prospects, her action in response to the context given in Figure 2 below 
would be informed by 

 
an overriding value … [which is] that my students need to understand and enjoy 
mathematics if they are to achieve the positions in society to which they aspire 
 

The teacher's use of the term 'overriding' will be picked up again at the end of this paper. 
 
Figure 2 
Contextualized item C1 
 
It is the first lesson with your class in the new school year. One pupil raises his/her hand and asks you why 
pupils have to study mathematics in school. 
 

In a similar case, another teacher respondent claimed that the values she subscribed to 
and subsequently portrayed in practice were all related to the nature of school 
mathematics itself, such as rationalism, creativity, mystery and aesthetics. In fact, she 
ranked all these values equally high, and the only value she singled out for a lower 
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emphasis was that of mathematics achievement improving students' career prospects. This 
teacher's response to the situation outlined in Figure 2 was to 

 
be honest and say the system requires it, their parents and future employers expect 
it …. [guided by the value that mathematical skills are both] personally and socially 
empowering. 
 

In other words, there was also an emphasis on the utilitarian value of school mathematics, 
despite her earlier response otherwise. 

 
Figure 3 
Contextualized item C4 
 
As part of classroom activity, you plan to make use of some 'Tattslotto' information you have collected. 
Your co-ordinator warns you against doing this because of the sensitivity to gambling of the school parents. 
Note. 'Tattslotto' is one of the publicly televised games of chance popular in Australia. 
 

The contextualized situation in Figure 3 was included in the questionnaire. All except 
one teacher expressed ways of conducting the planned discussion, most with suggestions 
of accommodating the parents' concerns. This one teacher had in the previous sections of 
the questionnaire ranked her personal value framework as constituting the prime 
influencing factor for the kinds of values she portrayed in her class. She had also agreed 
emphatically that there is a place in mathematics teaching for the teaching of values. Yet, 
this teacher's response to the parents' concerns would be to 

 
change the type of activity while maintaining the same teaching goal. ….[After all,] 
there is more than one way to present any material. 
 

Has the personal value framework which was supposedly so influential to this teacher 
been overtaken by her concern for parents' opinions, even though she saw the 
opportunities here 
 

for a serious discussion of social issues? 
 
At the time of responding to the questionnaire, this teacher has already accumulated 32 
years of service in the education sector, several of which involved leadership roles within 
educational administration agencies. Yet, implicit in these comments was that for her, the 
teaching goal for the 'Tattslotto' activity appeared to be related to some mathematical 
topic, such as probability and statistics, rather than also values related to the 
demystification of social activities in which mathematics plays a critical role, and for 
which participants should be able to make informed judgements. 

Another discrepancy between stated values and contextualized values arose from the 
relative importance teachers placed on values related to the subject and values related to 
students' personal growth and social development. A teacher respondent who made a 
clear distinction between these two categories of values had emphasised the former. 
However, when asked for his responses to three hypothetical students who preferred to 
work individually rather than in a group, his response was to reject students' suggestions, 
as he felt 

 
there is [sic] values and ideas that are important in group work. 
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To him, these values were related to learning to work together and to accepting peers' 
ideas. These guiding values are clearly related to student personal and social development, 
rather than to values related to mathematics which he ranked highly. 

 
Conclusion 

This paper outlines some of the preliminary findings from our interactions with 
teachers with regard to values teaching in mathematics education. One striking 
observation has been that in the context of mathematics education, teachers are generally 
left in need of a common language with which values may be discussed. Without this 
common language, it will remain elusive for teachers to become more aware of, and to 
review, their own values as portrayed in the mathematics classroom. There are certainly 
implications here for a contribution towards greater mathematics excellence from the 
affective, if not the cognitive, perspective of education. 

The use of the term 'overriding value' by one teacher respondent brought into question 
the ranking of values in terms of personal importance. Another teacher hinted at this too 
when he commented that the ranking items 

 
are very difficult questions to answer, especially by putting numbers in boxes. 
 
Values as deeply internalised affective constructs may well exist together within each 

of us without necessarily being in a hierarchical relationship. The context in any given 
critical incident then leads us to view the particular situation with our internal and 
invisible pair of value lenses, and here clearly the notion of competing values may be of 
relevance. 

Our project itself cannot claim to be outside of the sphere of influence on teachers, as 
the words of this response to the questionnaire reflect: 

 
I have never thought of mathematics as promoting values before and concepts of 
beauty and future careers relating to maths are hard to include in my thinking when I 
work with young children. 
 

Clearly, we still have a long way to go. We hope this preliminary presentation will 
stimulate further reflection and help us to arrive at an initial conception of values in 
mathematics education held by teachers in Australia. 
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Abstract 

     Ms. Pai and Ms. Wang have been mathematics teachers in a junior high school 
in the central part of Taiwan for many years. Several years ago, they went back to the 
university and learned constructivism and constructivist teaching. They were 
successful in carrying out constructivist teaching in their mathematics classrooms. As 
time went on, however, Pai’s and Wang’s teaching began to return to their traditional 
teaching. Why did this happen? Suppose it is because they value something in their 
traditional teaching rather than their constructivist teaching. This study was designed 
to reveal Pai’s and Wang’s values in their teaching. We took the teachers interviews, 
observed their teaching in class, made discussions with them after class, and 
encouraged them to change their teaching. The findings show that although Pai and 
Wang value differently above the surface, they tend to have a few core value in 
common: score-ism in education, specialism in mathematics education, and 
absolutism in mathematics. Influenced by Chinese culture, score-ism is a part of 
Taiwanese culture in education. The score-ism constantly drew Pai’s and Wang’s 
teaching from constuctivist teaching to traditional teaching.  
 
Keywords: mathematics education, values, teacher education. 
 
1. Introduction  

Alan Bishop (1999) gives an assumption: the more teachers understand about 
their own value positions the better teachers they will be. In my experience most 
Taiwanese teachers do not give concern to the value issue in their mathematics 
teaching. In Taiwan, most teachers focus on two things: teaching on schedule and 
raising scores.   

I have been teaching in-service teachers constructivist teaching in a 40-Credit 
Class, a teacher education program for secondary mathematics and science teachers, 
for seven years at National Changhua University of Education in the central part of 
Taiwan. I have seen many teachers in the program change their teaching from 
traditional teaching to constructivist teaching. Many of them were excited and 
enjoyed the new way of teaching. Recently, I revisited their school and I found out 
that they tend to go back to their traditional teaching. Why did this happen? It seems 
that there is something important to the teachers in their traditional teaching rather in 
their constructivist teaching. According to Alan Bishop’s assumption, we need to 
understand what the teachers value in their teaching too. This three-year study was 
designed to reveal teachers’ values in their teaching, especially for those teachers who 
prefer traditional teaching to constructivist teaching.   
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2. What do we mean by traditional teaching and constructivist teaching? 

In this study, traditional teaching means the teacher teaches mathematics by 
telling. In traditional teaching, teachers view mathematics as subject matters, and they 
believe that it’s the teachers’ obligation to pass the knowledge of mathematics, 
especially those in textbooks and reference books for tests, on to the students. In 
contrast, constructivist teaching means the teacher teaches mathematics based on 
constructivism (Ernest, 1991). According to constructivism, mathematics as human 
social construct, a cultural product (Bishop, 1988), a human activity (Freudenthal, 
1991). The learning of mathematics has been seen as an active process, a process of 
learning through reinvention, an art of ‘un’teaching (de Lange, 1996). Constructivism 
is also a theory of learning. The essential core of constructivism is that learners 
actively construct their own knowledge and meaning from their experiences (Steffe & 
Gale, 1995). Therefore, teaching mathematics is a art of guiding students to construct 
their own knowledge of mathematics by doing mathematics, such as solving problem 
and discourse (NCTM, 1989, 1991).   

In this study, several criteria were used to judge a teacher’s teaching as to 
whether it is consctructivist teaching or traditional teaching: 

1. Arrangement: students are working in small groups vs. students sitting in 
rows. 

2. Activities: student-centered vs. teacher-centered. 
3. Focus: process vs. product. 
4. Objectives: understanding vs. recall.  
5. Content: activity vs. formal  
6. Way: students’ ways vs. teacher’s ways to solve problems. 

 
3. Target teachers: Ms. Pai and Ms. Wang  

Based on the criteria above, two teachers, Pai and Wang (both are aliases), have 
been selected as the subjects of this study. Pai and Wang have been teaching 
mathematics in junior high school for 16 years. Their mathematics teaching, like most 
teachers, was traditional lecturing and lots of practice and exercise for testing. Seven 
years ago, they enrolled in a Summer 40-Credits Class on the campus of National 
Changhua University of Education. The 40-Credit Class is an in-service program 
which its purpose is to introduce secondary teachers of science and mathematics to 
constructivist theory and its implication for teaching. The program comprises of 20 
courses to be completed in four consecutive summers. The teachers need to take 5 
courses in each summer. A course on constructivist teaching is one of the 5 courses 
provided at the first summers for the teachers.   

 After the first summer, their teaching have dramatically changed. They started 
using problem-centered, small group, and sharing. They encouraged students to 
solving problems and presented their thoughts and solutions. Soon, they were 
successful in carrying out the problem-centered instruction, and were confident in the 
method of the problem-centered teaching.   

Three years ago, they graduated from the 40-Credit program. Their teaching 
tended to go back to their traditional teaching. In Pai’s classroom, although students 
sit in small groups, the activities they took was not solving problems by their own 
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methods or strategies, but by imitating teacher’s methods and skills by practicing in 
small groups. In Wang’s class, it was even worse, the small group arrangement 
disappeared. Students sit in rows and for most of the time students just listen to Ms. 
Wang speakes. Both of the teachers have much experiences in traditional teaching and 
constructivist teaching, and both of them tend to go back to traditional teaching.   
  
4. Values in Mathematics Education 

The values on which a school community is based are expressed through the 
school’s purposes (implicit or explicit), so with the individual subjects in its 
curriculum.  

    The goals of the Taiwanese junior high school mathematics curriculum have 
been described as follows (Taiwanese Minister of Education, 1994):  
1. Raising students’ interest of learning by guiding students to recognize the function 

of mathematics in life. 
2. Raising mathematics literacy by giving students guidance to gain the basic 

knowledge and skills on number, measure, and shape.  
3. Foster students’ habits and abilities of solving problems by using methods of 

mathematics. 
4. Inspire students’ abilities of thinking, reasoning, and creativity. 
5. Foster students’ attitudes of active learning and the ability of appreciating 

mathematics.  
 

However, all schools have their own sets of values. Pai and Wang say that their 
school’s purpose is “to send good students to good schools” In order to fullfil this 
purpose, a teacher should teach the content and skills of how to get high scores in 
tests or examinations.  
 
4. How to reveal the values in Pai’s and Wang’s mathematics teaching?   

What is value? In The American Heritage Dictionary, the definition of value is: 
* worth in usefulness or important to the possessor; utility or merit.  
* a principle or standard, or quality considered worthwhile or desirable. 
 

Value refers to an idea or concept about the worth of something. Value is an 
abstract concept and is difficult to define what it is. Raths, Harmin, and Simon (1987) 
stated seven criteria for something to be called a value: 1. choosing freely, 2. choosing 
from alternatives, 3. choosing after thoughtful consideration of the consequences of 
each alternative, 4. prizing and cherishing, 5. affirming, 6. acting upon choices, 7. 
repeating. They define the processes 1-7 collectively as valuing, and the results of this 
valuing process as values. They emphasize that unless something satisfies all seven 
criteria, it is not called a value, but something more like a belief or an attitude or 
something other than a value.  

    A well-known anthropologist, Clyde Klukhohn, defined value as 
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 “a conception, explicit or implicit, distinctive of an individual or characteristic of a 
group, of the desirable which influences the selection from available modes, means, 
and ends of action. …..It should be emphasized here, however, that affective 
(“desirable”), cognitive (“conception”), and conative (“selection”) elements are all 
essential to this notion of value” (Klukhohn, 1965, p.395).  

According to Klukhohn’s definition, values involve three domains, cognitive, 
affective, and conative (or thinking, feeling, and willing). Recently, Bishop’s research 
team gives a simple definition of values as “values are beliefs in action.” Values are 
beliefs, but beliefs are not values unless they become action.  

A value is “an enduring belief that a specific mode of conduct or end state of 
existence is personally or socially preferable to an opposite or converse mode of 
conduct or end state of existence” (Rokeach, 1973, p.5).   

Fishbein gives a mathematical formula, to express the interrelationship between 
attitude, belief, and value. The formula is (Mueller, 1986, p.98): 

 
        A o  =6Ba,  where A o = attitude toward an object, 
                         6 = the sum                         
                         B = strength of belief 
                          a = evaluative aspect of B 
 

Fraenkel say “Values cannot be seen directly; they must be inferred from value 
indicators -- what people say and do. Both the actions and statements of people offer 
clues about their values.” (Fraenkel, 1977, p.16)  

Based on the above definitions of values, we developed three steps to identified 
teacher’s values in their mathematics teaching.  

Step 1. Investigating what they say. (important, worth, ought to be, purpose, 
good, bad) 

Step 2. Checking what they say with what they do. 
Step 3. Testing what they do prefer. 
  

5. Pai’s and Wang’s values in their mathematics teaching 
      
5.1 Pai’s values  
 
Education          Happiness                        freedom    respect        
                
          understanding   a sense of accomplishment            suitable 
  
Mathematics          rule and relation 
 
Math Edu.       Formalist view  over  Activist view of mathematics learning  
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                  Relational   over  instrumental understanding  
                  Specialism  over  accessibility of mathematics learning 
                  Decontext   over   in context 
 
5.2 Wang’s values  
 
Education          score 
 
           Authority   self-confident      order   obefience 
                    
Mathematics     rule and form 
Math Edu.   entering high school  over  useful tool  
               Formalist view  over  Activist view of mathematics learning  
                  Instrumental  over  relational understanding  
                  Specialism  over  accessibility of mathematics learning 
                  Decontext   over   in context 
                                                     
7. Taiwanese Score-ism 

    Score-ism describes the goal of teaching as getting high score for test. Score 
becomes a criterion for the teacher to select teaching materials and teaching models or 
strategies. Score becomes a criterion for people to judge a student or a teacher is good 
or bad. A good student means he or she can take high scores in any tests. A good 
teacher means someone who can teach students to get high scores. Anything that can 
raise scores is good. In Taiwan, the ability and skill for getting high scores is crucial 
for a student. 

  The Taiwanese are obsessed with higher education, and admission to a 
university is determined by life-or death exams. To pass these exams, a whole 
industry of private cram schools has emerged. Many students have to spend all their 
evenings, weekends and holidays attending these schools.  

  After testing the teachers’ preferences, we found that score-ism was a core 
value of Pai and Wang for teaching mathematics. 
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Abstract 
 

This study aims to explore the pedagogical values presented in the mathematics 
teaching of a teacher as well as the change of her pedagogical value in mathematics 
teaching. We modified the valuing theory of Raths, Harmin, and Simon to define the 
existing values. Meanwhile, we observed a teacher having been teaching mathematics 
in an elementary school for nine years in her classroom and interviewed her in order 
to study her pedagogical values in mathematics teaching. Next, taking cognitive 
dissonance as our theory base in the evolutionary way, we tried gradually to change 
the teacher’s value by watching and commenting on the mathematics teaching 
videotapes. 

In addition to describing the teacher’s pedagogical value in mathematics 
teaching, we aimed to explore how to change the teacher’s value, how the teacher 
responded to our trying, and her own trying to change. 
 
I. Introduction 

Mathematics has been playing an important role in school curriculum. In all 
kinds of entrance examinations, mathematics is a very important subject.  It is 
regarded as the mother of science and is the basic knowledge of any advanced 
science. Meanwhile, it is useful in our daily life. Though mathematics is so important 
and useful, most people who ever learned mathematics felt it was difficult to learn and 
afraid to learn it. (Cockcroft, 1982; Buxton, 1981; Tan, 1992) 

Feeling mathematics is difficult to learn and feeling afraid to learn are thoughts 
or values that come along with mathematics teaching in school. However, these are 
not what we are willing to see. Because of the lack of researches in teaching and 
learning of values in mathematics education (Bishop, 1991), we spent one and a half 
year exploring how to identify the values presented in the mathematics teaching of an 
elementary teacher in the first research. In the second research it took us another year 
and half to explore another elementary teacher’s pedagogical values in mathematics 
teaching and how we could change one of the pedagogical values. The first research 
has been published (Leu, 1999, 2000). Since these two researches are closely related 
to each other, this paper will give a brief description of the first research and will 
discuss the second research in detail. 
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�.A mathematics pedagogical values system derived from Buddhism 
How to explore the values presented in the mathematics teaching of an 

elementary teacher? When the research embarks, what values are must be defined 
first. This study adopted the valuing theory of Raths, Harmin and Simon (1978) and 
defined value as any belief, attitude or other similar kinds that meets the three criteria: 
choosing, prizing, and acting. What meets the criterion of choosing is the belief or 
attitude chosen out of free will, among different options or after thorough 
consideration. What meets the criterion of prizing is the belief or attitude that will be 
cherished, proud of or willingly make public. The belief or attitude that meets the 
criterion of acting is the one being acted out repeatedly. 

The research (Leu, 2000) was based on a case study. The methodology was 
classroom observations and interviews. Classroom observations were ways to find out 
the repeated behaviors and crucial events in the mathematics teaching. Interviews are 
designed to explore the causes of those repeated behaviors and events. Then we came 
out with some possible assumptions of value (i.e. value indicator). Through the 
interviews, we tried to examine if those value indicators met the criterion of choosing 
and prizing. The research subject was a female teacher, Chen, who have been teaching 
in an elementary school for 21 years. 

The results of the research (Leu, 2000) are as follows: 

1. When applying the valuing theory of Raths et al. (1978) to define the existing 
values, some modifications were necessary in the following three aspects. 
(1) cognition vs. acting 

Acting was the last component of the valuing theory. Therefore, in the process 
of valuing, options for choosing and prizing were those in cognitive domains. But 
when exploring how to define existing values, what for choosing and praising was not 
only the cognitive domain but also the actions to execute the values. 

In the process of valuing, Raths et al. mentioned that an individual should make 
a choice only after thorough consideration of all possible options. Therefore, 
cognitive factor plays a crucial role in this. In this study, it was found that in addition 
to cognition the ability of executing the chosen option could also influence individual 
on making choices. 
(2) neutral value vs. mainstream value 

In the process of valuing, Raths et al. hoped teachers should keep a neutral 
attitude in order to let students make their own choices. Are values neutral? This study 
found mainstream values of the society or of mathematics education would effect 
teacher’s choosing or praising. 

For example, according to classroom observation, the researchers found Ms. 
Chen emphasized individual learning rather than group discussion in her mathematics 
teaching. However, Ms. Chen herself denied such a description. Such denial might 
result from the fact that group discussion is stressed greatly in current elementary 
school mathematics teaching in Taiwan. 
(3) influence by difference between eastern and western cultures and religious beliefs 

on prizing 

In the valuing theory of Raths et al., prizing included the willingness to express 
one’s own choice in public. In examining this, the difference between eastern and 
western cultures and religious beliefs might need to be taken into consideration. 
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Western people tend to express oneself more willingly in public. However, Chinese 
people tend to take care of their own business only. Also in the Buddhism, it is said 
that revision of one’s behaviors depends on individual comprehension. Consequently, 
Chinese people are not so accustomed to express themselves in public. 

Take the choice, “Education is to reinstate students’ original enlightenment”,  
as an example, Ms. Chen wouldn’t express her prizing of this choice to those who 
might not want to share, even if this was the choice she prized most. 
 
2. The value system presented in the mathematics teaching of the teacher 

When exploring values, according to how well the research sample prized the 
values, the more precious the values are the more crucial they will be for the teacher. 
Ms. Chen professed that to be a good human being was the way to achieve 
Buddhahood and she thought live cultivation was more important than general 
education. Therefore, we concluded Ms. Chen’s value system in mathematics teaching 
as figure 1. 

 
 

 
 
 
 
 
                                Education is to  
                              reinstate students’ 
                              original 
                            enlightenment 
 
 
 
 

 
 
 

Figure 1: A Representation of Ms. Chen’s Values System in Mathematics Teaching 
 

III. A mathematics pedagogical value oriented toward the 
acquirement of knowledge 
The reasons we did another case study for the pedagogical values in 

mathematics teaching are: 1. To start a new case study so as to make sure the 
properness and feasibility of the interviews developed in the first research.  2. To 
think of and probe how to create an environment to change the teacher’s pedagogical 
values. 

As a result, we select a female fifth-grade teacher in an elementary school of 
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Dah-Ann district in Taipei. The teacher, Lin, has been teaching for nine years. We 
thought a teacher with around ten years of teaching experience should be adapted to 
teaching and classroom management. It might be the time to start thinking how to 
influence students more positively. In the first interview, we found Ms. Lin was 
indeed trying to make some changes. This attitude matched our trying to explore the 
change of values. Thus, we determined Ms. Lin to be our research sample. 

The research methodology of this study was interviews in depth and classroom 
observation. The principles of the interviews came from the results and findings of the 
previous study (Leu, 2000). 

Since feasibility to change the pedagogical values is also focused and explored 
in this paper, we described only one of Ms. Lin’s pedagogical values in mathematics 
teaching. And this value was the one we tried to change. 

Based on the experience from the previous study, we firstly tried to find out the 
repeated behaviors (acting) in her teaching. Then we had interviews to realize the 
causes of the repeated behaviors in order to come up with some value indicators. 
Finally, we examined if these indicators met the criteria of choosing and prizing. 

To present and analyze the case more easily, we used coding. “I” represented 
interviewers; “T” represented research sample Ms. Lin; “Sw”, “Ss” represented 
the whole class or part of the class; “Sn” represented specific individual, and 
“(May 24, 1999)” represented the date of classroom observations or interviews; 
“C.O.” and “Int.” represented the data came from classroom observation or 
interviews respectively. The following record of classroom observation and 
interviews were marked with quotation marks. 

 
1. Acting 

Before Ms. Lin’s every mathematics lesson, she would always “force students 
to preview the lessons. … To preview means going over the lesson in the 
mathematics textbook in advance. (May 24, 1999, Int.)” 

Why were previews necessary? “There were two purposes. The first one was 
that previews helped students get a better comprehension of my lecture. The other 
purpose was that previews enable the better students to explain the lesson to the 
class. (May 24, 1999, Int.)” As for the first purpose, Ms. Lin would ask students to 
present how it said, in the textbook, to solve the questions. For example, “I believe 
you all know how to figure out the diameter of a circle through operation. …  
First you have to show what the textbook teaches you. Then I’ll know you really 
did the preview (May 24,1999, Int.)” As for the second purpose, Ms. Lin would 
say “if a student could explain well what was learned in the preview, I will invite 
he or she to explain to the whole class and tell the student, ‘just pretend you were 
the teacher and imitate the way the teacher teaches.’ Then the student would 
pretend to be a teacher and imitate, saying ‘would you please read over this, and 
now what’s the point?’… . (May 24, 1999, Int.)” 

These interviews were pretty consistent with what we observed in the 
mathematics classroom. In Ms. Lin’s mathematics class, she would ask students to 
read a question. Then she would explain the question on her own and ask testing 
questions (Ainley, 1988). Through Ms. Lin’s asking the testing questions and 
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students’ answering, they had the question solved, just like case 1. If any student 
was asked to explain to class, Ms. Lin would do the explanation again and she 
often felt that “it is quite easy to explain because most students already got some 
idea from the student’s explanation, and the student who explained to the class had 
very clear concept and wouldn’t have problems with questions of the same kind. 
(May 24, 1999, Int)” According the above interviews, we know Ms. Lin’s 
mathematics teaching aimed to teach students how to solve questions in the 
textbook or similar questions. 

 
Case 1      

T: Please look at page 93, …  It says in the textbook there is a circle 

whose diameter is 5cm, …  Is it said so in the textbook, a circle 

with 5cm diameter? 
Sw: Yes. 
T: Good. Since it says so, please compute its circumference. It is in the 

textbook that how to get the circumference of a circle. It is even 
printed out in blue. Do you see where the blue print is? Is it here? 
Look at the blackboard. (The teacher was pointing at what was on 

the board: circumference = diameter ×ʟ )  Is it here on the board? 

Sw: Yes. 

T: How much isʟ ? 3.14.  In other words, how many times of 

diameter is the circumference?  You know how to get the 
circumference of a circle now. So, how do you solve this question? 
It tells you the diameter of the circle. How many times of diameter 
is the circumference? 

Sw: 3.14. 
T: Is it just to make 3.14 times of the diameter? So the solution of this 

question is 5 ×3.14=15.7 (June 8, 1999. C.O.) 

    

Ainley (1988) pointed out that if the testing questions of a teacher were too 
many, students would misunderstand that the teacher only asked questions this 
way. This might hinder the progress of discussion activities or hinder the teaching 
of problem solving. Students gradually thought the teacher must know the answers 
to the questions and therefore wouldn’t think independently and wouldn’t give 
answers that might be wrong. 

In addition to teaching with testing questions, what Ms. Lin would do when 
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students got wrong answer? Case 2 would illustrate. 
 
Case 2  
T: Group 1,in your solution, how many times of the diameter is the 

circumference? 
S1: 3.13333. 
 : 
 : 
S5: 3. 25. 
T: 3.25. Wow, there is a big difference…anyway, how about your 

answer, Group 6? 
S6: 3.16. 

T: 3.16. O.K. … You know circumference is bigger than diameter. How 

much bigger? 
Ss: Three times bigger. 
T: Three times? Integer times? Now please turn your textbook to page 

91. It tells you here the relation between circumference and 

diameter,… (June 8, 1999, O.C.) 

     

Ms. Lin’s comment on case 2: “The answer of one group was 3.25. There 
might be something wrong with the operation or with the ruler. So I just skipped 
the operation part and mentioned the answers gotten by correct operation. That’s 
because the answers of examples in textbook were 3.14 after rounding off. …
(July 13, 1999, Int.)” 

Ms. Lin tried to lead students to get the ratio of circumference to diameter of 
a circle by measuring the circumference and diameter with rulers and other 
measuring tools. According to case 2 and interview data, we could see Ms. Lin 
ignored students’ inappropriate reaction as well as the process and result of the 
operation. Instead, she came up with the ratio directly from the numbers in 
textbook. 

Why Ms. Lin overlooked students’ mistakes? She said “When I find any 
mistakes or misconceptions in correcting students’ assignments, I don’t want to 
show them to the class. In my Chinese lesson, whenever I reminded students of 
not repeating some mistakes and put the mistakes on the blackboard, more 
students would make exact the same mistakes. (July 13, 1999, Int.)”  Ms. Lin 
referred to her experience in teaching Chinese when teaching mathematics. She 
disregarded the difference among subjects. 

Other than the above mathematics teaching behaviors, Ms. Lin always asked 
students to study the Chinese classics in the beginning of a mathematics class. 
What she wanted was “that students can get clear minds and sober heads to stuff 
my lecturing. (Jan. 11, 2000, Int.)” Before every mathematics lesson ended, Ms. 
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Lin would ask students to “review what you’ve learned today (June 8, 1999, Int.)” 
The purpose to review was “to reinforce the memory in best time because the 
teacher just taught and the impression is still there. (June 22, 1999, Int.)” 
Moreover, the tools for Ms. Lin’s assessment were “tests with the same or similar 
questions in textbook or practice book. I rarely use other test sheet published by 
bookstores or compose any test with different questions in this semester (Jan. 11, 
2000, Int.)”. 

According to the previews, studying classics, testing questions and ignorance 
of student’s misconceptions, inviting students to explain to the class, and reviews 
involved in Ms. Lin’s mathematics teaching, we brought up a value indicator. That 
is the purpose of teaching mathematics is to make students know the mathematics 
knowledge in textbook.  

 
2. Choosing 

Next, we interviewed Ms. Lin to examine if the value indicator met the 
criterion of choosing. 

 
Case 3 
I : There are two approaches to teach mathematics. The first one is 

asking students to preview the lesson. Students’ thinking is 
influenced by textbook. The other approach is letting students solve 
problems in class. The solutions to the problems might vary. What 
do you think are the advantages and disadvantages of each 
approach? 

T : To preview first and then follow the textbook may be more fast in 

pacing and more efficient in learning. … If there’s no preview, 

students’ misconceptions can occur more easily. There are chances 
for students to know what concepts are incorrect. This is the 
advantage of the second approach. Nevertheless, The lesson might 
be delayed. Sometimes it’s just too much lagged behind. Some 
students might even be misled by the misconceptions and have a 
strong impression of those misconceptions. (July 13, 1999, Int.) 

 
Case 4 
I: What are the advantages and disadvantages of your lecturing and 

student’s discussion in groups? 
T: When I lecture, students are less attentive. In group discussion, the 

group leader will inform me if anyone doesn’t pay attention. I could 
ask those absent-minded students to pay attention. This is the 
advantage of group discussion. But it takes almost two times of 
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time. (Jan. 13, 2000, Int.) 

From the case 3 and 4, we know that Ms. Lin ever thought about benefits and 
drawbacks of previews, lecturing, solving problems on students’ own, and group 
discussion. Considering the factors of time and misleading of mistakes, she chose 
to teach by asking students to preview and lecturing. 
 
3. Prizing 

We can tell Ms. Lin’s prizing of this value indicator from the following 
interviews. First, after watching other teacher’s mathematics teaching videotapes, 
Ms. Lin commented on the teaching approach as that “just like the approach I take, 
the teacher let student explain to the class as well and I probably will continue 
doing this. (March 10, 2000, Int.)”  Furthermore, Ms. Lin still thought previews 
and reviews were essential because “studying three times is better than two times; 
studying two times is better than once. (June 22, 2000, Int.)” Both these two 
interviews showed Ms. Lin thought it very important for students to learn the 
knowledge on mathematics textbook. 

According to the three criteria, acting, choosing and prizing, we identify that 
teaching mathematics is to make students know the mathematics knowledge in 
textbook is a mathematics pedagogical value of Ms. Lin.  

 
IV. Value change 
1. Theories about value change  

Ms. Lin taught mathematics in the way of lecturing to achieve the purpose 
that students learn the mathematics knowledge in textbook well. However, in 
Taiwan, the mathematics teaching in elementary schools has stressed group 
discussion and expressing ideas in recent years. So that students can communicate, 
discuss and criticize in mathematics languages. Further, they can get the correct 
method of thinking and debating. Ms. Lin’s value was apparently different from 
the mainstream value of elementary mathematics education in Taiwan. Still she 
wanted to improve her own teaching by participation in this project. Thus, we 
designed some activities to help her change her mathematics pedagogical value. 

There were two possible approaches to make the change. The first one was 
through revolution. In Leu’s study (Leu, 2000), Ms. Chen started to contact 
Buddhism because of the incident of her daughter. This turned her concept of 
teaching students into cultivating good human beings. Since the principles of 
mathematics curriculum reform of elementary schools didn’t conflict with 
Buddhism doctrines, Ms. Chen was willing to change the purposes of her 
mathematics teaching and assessment. Such a change was an example of 
revolution. The other possible approach was evolution. Through evolution, the 
research sample could undergo a transformation gradually and moderately. The 
researchers might not be able to create a shocking event upon the research sample. 
In research ethics, it was not appropriate to create a shocking event to change the 
research sample’s value. Besides, Ms. Lin once mentioned, “I am conservative so 
that I prefer to proceed things step by step. (Jan. 13, 2000, Int.)” A personality like 
this didn’t allow Ms. Lin to make a big change all of a sudden in her teaching. 
Thus, the approach of evolution was applied to change Ms. Lin’s mathematics 
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pedagogical value. This way to change was more like the way of teachers’ 
professional growth. 

What strategies of evolution approach can be adopted to change Ms. Lin’s 
mathematics pedagogical value? This study used the theory of Raths et al. (1978) 
to define values. Therefore, it was once considered to adopt their values  
clarification theory to change Ms. Lin’s value. One of the researchers, Prof. Wu, 
was doing clinical teaching in Ms. Lin’s school. Wu could have many 
opportunities to talk with Ms. Lin in the way of values clarification. Prof. Wu 
could meet with Ms. Lin once a week and discuss about mathematics teaching. 
Through the discussion, Prof. Wu could observe how Ms. Lin’s changed. However, 
values clarification was for forming values. This was different from what we 
wanted to change values. In addition, Raths et al. thought teachers should keep 
their values neutral in order to let students develop their own values by critical 
thinking and evaluation. Such an idea was different from that we hoped Ms. Lin 
could change her value in the direction of our guiding. Furthermore, to change 
values in the way of values clarification might take much more time to see the 
difference. Because of the aforesaid reasons, we discarded the way of values 
clarification.  

The cognitive dissonance theory of Festinger in 1957 pointed out that people 
have the tendency to keep consistency between their two thoughts or between their 
thought and behavior (Aronson, Wilson, Akert, 1994). If there is a conflict 
between two thoughts or a conflict between their thought and behavior, people 
would feel uncomfortable; this is cognitive dissonance. For example, ‘the behavior 
of smoking’ and ‘the thought that smoking may leads to cancer’ would cause 
cognitive dissonance. People would make efforts to reduce the condition of 
cognitive dissonance. They might quit smoking or tell themselves that someone 
who has smoked for decades and still lives a very long life. 

When a behavior inconsistent with his or her belief has been done and the no 
sufficient external justification can be found for the behavior, a person can only try 
to find out internal justification to diminish the gap. The person may modify his or 
her belief and tell himself or herself that this behavior is actually pretty nice and 
so and so. On the other hand, overjustification effect implies if a big reward or a 
harsh punishment is used to reinforce or inhibit a behavior, the behavior usually 
disappears at the moment while the reward or punishment withdrew. That’s 
because the reward and punishment offer very good external justification. On the 
contrary, if the persuader rewards or punishes the person scarcely or try to 
convince the person affectionately then the person does the behavior inconsistent 
with his or her belief out of politeness, the person must find some self-justification 
because the scarce reward and punishment can’t justify his behavior. In the 
literature of Aronson et al. (1994), it pointed out that long-term change of behavior 
often results from self-justification. When the person doing the behavior thinks he 
or she changed his or her behavior completely on his or her own, the change of 
attitude is more likely to take place. 
 
2. Introspection and reflection as a strategy for enhancing value change 

In thinking how to change Ms. Lin’s value, we tried to make Ms. Lin have 
some changes, which were inconsistent with her values, in mathematics teaching 
under slight pressure. For example, Ms. Lin could try to ask students to discuss the 
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questions and get the answers. Some incorrect solutions might occur. At that 
moment, Ms. Lin had to discuss those incorrect solutions with the whole class. 
This was contradicted with Ms. Lin’s idea. When the discussion had been taken 
place, Ms. Lin couldn’t just say it’s because of the researchers’ request. Then 
self-justification could come about. In other words, our assumption is that it is 
easier to change the actions that carry out the value than to change the value itself, 
so we tried to change Ms. Lin’s value by changing her mathematics teaching 
behaviors.  

How to give the slight pressure? We had considered different possible 
strategies, such as questioning Ms. Lin to her face, lecturing, and watching 
mathematics teaching videotapes. There existed inconsistency between Ms. Lin’s 
teaching method and the teaching principles which emphasized by mathematics 
curriculum reform; the inconsistency would then, of course, lead to different 
mathematics pedagogical values. The strategy of questioning could be that the 
researchers question Ms. Lin some about these inconsistency or problems. After 
that, the researchers could try to persuade Ms. Lin into agreeing with them with 
strong theory and research findings.  However, there were two drawbacks to this 
strategy. First, Ms. Lin would think that she was forced to change her teaching 
behavior by the researchers’ strong recommendations. Second, Ms. Lin had a 
strong personality. When we questioned her to her face, she would think that her 
mathematics teaching was not good and feel embarrassed. Therefore, she might 
refuse to be our research subject any more. Because of these two reasons, we 
decide not to adopt this strategy. 

The second possible choice was lecturing, in which Ms. Lin was requested to 
lecture her mathematics pedagogical values to students in Teachers College. We 
expected she could express her own values in a way that met the current 
mathematics teaching rationale. This would let her notice the difference between 
her values and the mainstream values; therefore, a chance for her to make the 
necessary self-justification was created. However, the contents of the lecture was 
chosen by Ms. Lin, thus we couldn’t guarantee she would change in the direction 
we expected. The method was then given up. 

The final possible strategy was to watch mathematics teaching videotapes. 
We could chose videotapes that reflected certain pedagogical values for Ms. Lin to 
watch. After she watched the tapes, we asked her to speak up her comments on the 
teaching in the videotapes. We encouraged her to bring up any drawbacks and 
obstacles that she observed from the videotapes. The strategy was to make her feel 
that she could decide whether to change or not on her own will. 

We hoped that Ms. Lin would change her pedagogical value from “how to 
have students learn all the mathematics knowledge” to “how to make students 
learn a method of thinking and debating.” Hence, we decided to adopt the strategy 
of watching mathematics teaching videotapes in which group discussion, debating, 
and the way in which a teacher handled students’ mistakes could be seen. 
 
V. The retrospection on watching videotapes of two experts’ 

mathematics teaching  

1. The response after watching videotape of mathematics teaching for 
second-graders. 
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We picked, for Ms. Lin, a videotape in which a second-grade teacher, Lee, 
led students to discuss whether “23” and “32” are the same or not. In this 
videotape, the teacher rarely intervened in student’s discussion, even if apparently 
students made some mistakes. These mistakes were clarified and revised through 
the great amount of discussion and debates. 

(The following four paragraphs came from the interview on March 10, 2000 
immediately after videotape watching) 

After watching the videotape, Ms. Lin stated, “She lets students be the center 
of the class. The biggest benefits was that the students would involve in a more 
detailed discussion … I was too eager in showing the students all the required 
concepts when I was leading the class.” We were very glad that Ms. Lin agreed to 
the student-centered method, “letting students discuss in detail.” Only does she 
have this kind of agreement, there is the possibility that she can change her 
teaching method. 

Although, Ms. Lin pointed out the difference between the two mathematics 
teaching methods, she also dressed, “What the teacher did in the videotape was 
very similar to what I did in my class. We both invite students explain the lesson 
to the whole class. I probably will continue doing this.” However, we found Ms. 
Lin just let her student repeat the problem solving procedure described in the 
mathematics textbook. However, the students in Ms. Lee’s class were sharing their 
own problem solving procedure and interacting with the whole class. Thus, we 
thought the teaching methods of Ms. Lin and Ms. Lee were very different in 
nature. To clarify the differences, we asked Ms. Lin to compare the differences. 
Ms. Lin responded, “The main difference was that Ms. Lee seemed to leave more 
space for students to discuss. As for me, I probably tend to neglect the 
misconceptions of students. Consequently, the demonstrated students were 
influenced by me. Sometimes, it would lead to an impression that there must be a 
correct concept but there cannot be any other possible options.” Ms. Lin’s 
response also let us justify the correctness of the fact stated in the previous 
classroom observations i.e., Ms. Lin would ignore the misconceptions of the 
students. 

What are the drawbacks and obstacles of Ms. Lee’s teaching? Ms. Lin 
thought that “they depend on the teacher’s style of leading classes, students’ 
personalities, and the family backgrounds of students.” In the meantime, 
“higher-grades students were unlikely to express their opinions, since they were 
afraid to be laughed at; on the other hand, lower-grades students inclined more to 
express their own concepts, even though they were incorrect.” Besides, “the 
courses for higher-grades students had more contents. I believe it will have good 
effects on the higher-grades students to have one or lessons classes devised in this 
method from time to time. If there should be some disadvantage in this method, it 
must be the control of time only.” 

After Ms. Lin compared the differences between Ms. Lee’s teaching methods 
and hers as well as those between the merits and drawbacks of the characteristics 
of Ms. Lee’s teaching method, Ms. Lin indicated, “I was struggling inside my 
mind while I were watching the videotape. I felt I was confined by the course 
schedule. Hence, I wasn’t able to investigate the reasons why students had such 
misconceptions. Students could only received a message directly from me that 
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they were wrong but they could not possibly realize where they went wrong. I 
think I need to make some adjustments in my teaching.” 

(The following two paragraphs came from the interview on March 24, 2000) 

Two weeks after Ms. Lin watched the videotape, she claimed in an interview, 
“I have been adjusting my mathematics teaching for the past few days. … I think I 
am less patient than Ms. Lee. She was more patient to wait for students to figure 
out the answer by themselves.”  We were very delighted to hear what Ms. Lin 
said about her efforts to modify her mathematics teaching. Nevertheless, Ms. Lin 
regarded the students’ discussions as those “could strengthen students’ confidence 
and enhance students’ inter-personal relationship after other classmates notice 
their courage to express opinions when given chances.”  She had not yet noticed 
the relationship between students’ discussions, self-expressing, and learning the 
method of thinking and debating. 

The motivation of Ms. Lin to try to modify her teaching came from not only 
the videotape but also the interaction with her own child. For example, her 
5-year-old child would keep watching TV after the stipulated time for TV was up. 
She would “turn off the TV, and threaten her child with a rod.” Her husband would 
handle the situation in different way. He would ask the child to turn off the TV on 
his own in five minutes and the child could do anything the child wanted. Ms. Lin 
discovered that her child would turn off the TV in five minutes as her husband 
asked. “I realized that sometimes, in fact, it can be not so urgent to push students. I 
make some adjustments to lead the class.” said Ms. Lin.  It was so great to hear 
that Ms. Lin applied her experience of interaction with her child to the 
mathematics teaching. When students did not perform as well as she expects, she 
would give them more time to think. In addition, we think that the application of 
her interaction with her child could result from her reflection of the videotape she 
watched. 

 

2. The response after watching videotape of mathematics teaching for six-graders 

Since Ms. Lin claimed group discussions and debating instructions were not 
suitable for higher-grades students, we showed her another videotape in which a 
sixth–grade, mathematics teacher, Ms. Hsu, uses the group discussions and 
debating method in her teaching. The topic in the videotape was the question, 

“How many kilograms does 
4
11  liters of mercury weigh when 15/16 liters of 

mercury weigh 
4
312  kilogram?”  

(The following description came from the interview on March 31, 2000.) 

Her introspection after watching this videotape was, “feeling that the spirits 
of the two videotapes are basically the same; through the process of discussions, 
students clarify their mathematics concepts, … this can not be done in a short 
time. Students must start to do so from their lower-grades. Then they can have the 
courage and skills of expressions while higher-grades.”  

In that videotape, a student solved the problem the same way demonstrated in 
the blackboard by the other student. He admitted that he didn’t know why the 
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problem should be done this way and asked why. Ms. Lin’s point of view to this 
event was, “I was moved by the child’s reaction. It was because I think this child’s 
family education must has influenced him. … He must have been in an 
environment where discussions are very common so he can be so courageous. 
Otherwise, he would be just like other students. It seems to me that they seldom 
keep asking questions to get a complete understanding.” Ms. Lin was really 
touched, which showed that she had great agreement to this teaching method and 
increased our confidence in Ms. Lin’s willingness to change her mathematics 
teaching. 

Although Ms. Lin had agreement toward the group discussions, yet, has she 
considered what mental preparation a teacher should have to encourage students to 
do such discussion? She believed that, “first of all, she has to control the time 
precisely. Secondly, she had to be patient to wait for students to discuss. Finally, 
she must have room for the misconceptions of students and could not just tell them 
the correct ones.” What was her biggest challenge then, if she would use the group 
discussion in class? She said, “‘the eagerness to give students the right concepts’ 
should be overthrown. Most important of all, I should change my own personality 
to be less impatient. I believe, it would be the most difficult part.” 

In such discussions, students must be courageous to speak up. Then, what did 
Ms. Lin think why students were afraid to speak up on the platform? She said, 
“They are afraid of being scolded by teachers or laughed at by classmates when 
they are wrong. This is the most terrible situation for higher-grades students. … I 
have been thinking about this issue because I found out that there were some 
students in my class who were really scared. They were scared by my harsh look 
and voice when I tried eagerly to explain the correct concepts to them. My look 
and voice implied they were terribly dumb. They might just shrink back. … I have 

been thinking if I have any room to tolerate my son’s mistakes. … ” Again, she 
showed the correlation between child-parent interaction and her mathematics 
teaching. It was really good that she started to think about “tolerance of children’s 
mistakes.” She actually admitted “to tolerate the students’ wrongs was my biggest 
task.” 

Three weeks after Ms. Lin watched the videotape with the group discussion 
of six-graders, we had a second interview with her. In her first interview, she 
disclosed that she did some changes. So we asked her to explain those changes in 
detail. She said then, “I think there are two changes. One is the change of 
assessment. I won’t put too much emphasis on the paper- and- pencil tests. The 
other is that disciplines are less important as ever before. I used to keep students in 
complete silence in class. I will give them more chances to discuss in class, hoping 
that I do not do the instructions all the time. … Since this class has three more 
units to go in the semester, I suppose I could use this new mathematics teaching 
method on one of the three units. I’ll give it a shot at least for one-hour lesson. I 
guess it is worthy of doing so… ”(Apr. 21, 2000, Int.) 

Since Ms. Lin was going to make some changes in one of her lessons, we 
asked Ms. Lin let us do the classroom observation in the lesson. About a month 
later, we observed how she would use her new mathematics teaching method on 
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“Introductions to the concept of probability.” 
 
VI. Mathematics teaching change 

We looked into Ms. Lin’s efforts to change her mathematics teaching in two 
aspects. One was to compare the differences of her teaching before and after 
watching the videotapes. The other one was to see her own comments on her 
mathematics teaching. 
 

1. Comparison of the differences in mathematics teaching 

In terms of quality and quantity, we compared two lessons of mathematics 
teaching on March 10, 2000 and May 17,2000.  

In quality, we explored teaching method and the handling of students’ 
mistakes. 

In the teaching method, students’ seats were arranged in six rows on March 
10, 2000.  On May 17, the students were seated with their group. Though the seat 
arrangements were different, it had almost nothing to do with the design of 
activities. In the lesson on May 17, Ms. Lin let students individually toss coins and 
record the times of tails or heads every ten times until 100 times totally. After this 
activity, the class would be dismissed in less than five minutes. Then Ms. Lin 
intended to ask students to roll the dice by groups. However, there was no time at 
all after Ms. Lin explained how to proceed the activity. Thus, the method of group 
discussion hardly took place in the lesson on May 17, 2000. 

 

In the handling of students’ mistakes, we would review some teaching cases 
first and then did the comparison. 

 
    A teaching case on March 10, 2000  

T: …Raise your hand if you did this question wrong. (Lots of students raised  
  their hands.) All right, put your hands down. Is it very difficult? Or did  
  you just do the division wrong?         A 
  There is another possibility. It seems   (amount)  1/8  1/2  

      that the question can be done more       B   1/2   2   5 
      easily by division. What if you do 
      it by multiplication?            

(note: The question was asking if A  
was in proportion to B in the 
above table?) 

    S: The same. 
T: The same? But it seems to me the operation is more complicated. The 

question itself isn’t too difficult. I have noticed three of you did 

wrong computation. O. K. then, let’s move on to next question. …

(length) 

(This  table was demonstrated on 

the blackboard ) 

4
11
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 A teaching case on May 17, 2000 

One student wrote down respectively the results of his coin tossing 
in which he tossed the coin for 100 times. The results showed in the 
following table indicated the number of tails and heads.      

no. of             no. of 
S2: Ms. Lin, he missed one number on      heads  ratio  tails  ratio  
   the table (He was pointing to the    10  7     7/10   3   3/10   
   times of heads out of 90 tosses).     20  6    13/20   4  11/20 
T: What was missed? Ah, since the tails  30  4    17/30   6  17/30 
  showed 49 times, therefore, the heads  40  6    23/40   4  21/40 
  should show 41 times. Well, 41 is not  50  4    27/50   6  27/50 
  correct, 38 plus 7 is equal to 45, but   60  5    32/60   5  32/60  
  how could the tails show 49 times?    70  5    37/70   5  37/70  
  There must be mistakes somewhere;   80  1    38/80   9  46/80 
  how could you get the number “50” ?  90  7     /90    3  49/90 
S1: It was copied wrongly.           100  5   50/100    5  50/100 
 :                                          
 : 
S2: He went wrong from the very early stage of addition. 
T : Look for where he did wrong. Where? 
S2: The third row. 
T: The third row (pointing to the tails of 30 tosses). 
S2: 17/30. 
T: Yeah, right, why is there a problem on the third row? Let’s discuss it 

a little bit. Who can tell us why? S10, would you like to try? 
 

From the two scenes described above, we can clearly see that in the 
mathematics teaching on March 10, 2000, Ms. Lin assumed the errors were due to 
the wrong computation. Even though there were lots of students had the wrong 
answers, she did not go over the problem again to discuss why students got their 
answers wrong. She continued with next problem instead. In her mathematics 
teaching on May 17, 2000, Ms. Lin let students try to figure out where the 
computation went wrong and correct the errors. This was the first time, we saw her 
do so. She used to show students the errors and explain the correct solutions when 
they make mistakes. She seemed to change in handling students’ wrong solutions. 

 

In quantity, we timed the activities and dialogues in the two lessons and 
summarized in table 1 for comparison. 

Table 1: Comparison of research sample’s mathematics teaching before and after the 
videotapes watching. 

(This table was demonstrated on the blackboard ) 
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Items compared Proportion 
(March 10, 2000) 

Probability 
(May 17, 2000) 

Explanation to the whole class ��ƍ��Ǝ 19ƍ51Ǝ 
Dialogue with individual student 8ƍ4�Ǝ 4ƍ55Ǝ 
Dialogue with all students 9ƍ�7Ǝ �ƍ50Ǝ 
Exercise, activities or experiments  Ƌexerciseƌ9ƍ48Ǝ Ƌexperimentƌ11ƍ�0Ǝ 

In table 1, we could see that Ms Lin spent half the lesson raising “testing 
questions” as her teaching method on the topic of proportion. On the topic of 
probability, she spent half the class lecturing the concepts of probability including 
more than seven minutes on how to do and record the coin experiment. There were no 
dialogues between students in those two lessons. Therefore, it was hard for us to tell if 
Ms. Lin had changed her teaching method from quantity analysis in table 1. 

This also showed us that in the very beginning of teaching method change, it 
was not easy to notice the change using a quantity analysis chart.  

 

2. Introspection after trying to change mathematics teaching.  

(The following description came from the interview on May 17, 2000.) 

After the classroom observation, we wanted to know how Ms. Lin thought about 
it. First, we concerned what the major difference was. She said, “I tried not to tell the 
answers directly.” Ms. Lin thought she didn’t give the answer directly, but she spent 
half the class explaining most concepts and the content of the lesson. We could see 
from this that although Ms. Lin intended to change her mathematics teaching, it was 
not that easy to put into practice. 

What were the differences of this lesson from the lessons of previous years? Ms. 
Lin told us that “the table of coin data that we did on the blackboard in class this time 
was for students to do at home in the past four years. … For the students of past four 
years, I would correct their errors in the table directly. I didn’t allow students to take 
time correcting their own errors.” 

Facing a change, there might be expectation and anxiety. What expectation and 
what anxiety did Ms. Lin have about this change? She said, “Let me begin with the 
anxiety. I fear that students don’t learn what I want them to learn. I might need to drop 
them hints over and over. … Another concern is that the activities will waste the time 
for some exercises which students need to take time practicing repeatedly. I am still 
worried that students might not do well in paper-and-pencil tests because of the waste 
of time. … As for my expectation, I hope students can remove their fear of 
mathematics. Perhaps they can realize what mathematics is and find out mathematics 
isn’t that difficult as they thought. … I expect they can use their brain to solve the 
problem, if there’s any, on their own.” Though we asked Ms. Lin about her 
expectation first and then about her anxiety, she let us know about her anxiety first. 
This might showed the change in mathematics teaching did give her much pressure. 

How satisfied was Ms. Lin with her mathematics teaching this time? She said, “I 
am rather satisfied. Students were mainly leading the class this time and I talked very 
little. They seldom had had an experience like this in the past.” 
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What were those Ms. Lin most satisfied with the students about? “Some students 
found the sum of heads and tails must be the same as the denominator in the table. 
They figured this out themselves.” “They tried to find where the mistake was.” 
“Students were more attentive and serious. They used to be listless. Today they really 
concentrated on the activity. Some low-achievement students tried hard to scratch the 
answer.” “What pleased me most was that one student whose mathematics was very 
bad finished the activity and spoke out his answer bravely though his answer went 
quite far different from the reference ratio. His ratio was thirty something to sixty 
something, while the reference ratio was fifty-to-fifty. Other students learned to 
respect his answer and the student was encouraged. This is what I didn’t expected and 
it really makes me happy for the students’ behaviors.” 

What were those Ms. Lin didn’t expected from the students? “… I didn’t 
anticipate I would spend so much time doing the activity. I had wanted to cut the 
activity. But students were working so hard in this class. If I just cut the activity in the 
middle and they couldn’t get the answer by their own, students must feel frustrated. 
So I waited and waited until students had got their answers.” 

Although the activity of tossing coins took more time than Ms. Lin planned, she 
was still satisfied with the lesson. The satisfaction of the change in mathematics 
teaching will surely prompt her to change more willingly. 
 
VII. The reflection of researchers 

As mentioned earlier, we did this case study for two reasons. Now we want to 
reflect on these two reasons. In concern of the first reason, the properness and 
feasibility of the interviews developed in the previous research were ascertained. As 
for the second reason, we had three reflections. 

First, in research methodology, we adopt the cognitive dissonance theory in 
regard of Ms. Lin’s personality. The teacher in the case study watched the 
mathematics teaching videotapes and commented on the teaching in the tapes. This 
was appropriate because of the fact that Ms. Lin had quite often cancelled 
appointments with us from the first day when we tried to change her pedagogical 
value. Those appointments were arranged for us to observe her mathematics teaching, 
watch the videotapes or interview her on Fridays. According to the research on 
counseling, the cancel of appointments reflects the resistance of the client (Corey, 
1996). We tried to change Ms. Lin’s pedagogical value in a gradual and moderate 
way, but she still had the resistance. If we use more strong ways to change her 
pedagogical value, like questioning her to her face, or even the aggressive way of 
revolution, there might be more effects that are negative. 

Secondly, in the trying to change the mathematics teaching, Ms. Lin chose 
purposely the concept of probability as the material for her to experiment changing. 
Before the class, she had “prepared proceeding of the lesson as well as what to say in 
the lesson.”  She also told us, “During the class, I reminded myself of not giving 
answers directly and accidentally.” After the class, she was satisfied with the 
instructional performance. However, we found Ms. Lin had made a great deal of 
efforts, but there were no big changes. The fact indicates that it isn’t easy to change 
even only a one-hour mathematics teaching of a teacher. The teacher needs to improve 
the teaching skills, knowledge, and personality. Ms. Lin stressed that the method was 
applicable only in some units. Therefore, if we want to change Ms. Lin’s mathematics 
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teaching in her every lesson, we still have a long way to go. 

Finally, in the change of action that carries out the value and in the change of 
value, Ms. Lin had tried to change her teaching in mathematics. She tried to let 
students learn by operating the experiment by group and let students discuss the 
mistakes. Nevertheless, all these changes are the changes in the action carrying out 
the value. Ms. Lin regarded the method of students’ group discussion and expression 
as the way to improve students’ confidence and interpersonal relationship, instead of 
the way to inspire students to think and debate. Apparently, Ms. Lin still didn’t realize 
what pedagogical value of hers we tried to change. In this study, our assumption is 
that it is easier to change the actions that carry out the value than to change the value 
itself. We tried to change Ms. Lin’s pedagogical value in mathematics teaching by 
changing her teaching behavior. According the results of our research, we found Ms. 
Lin’s performance was identical to our assumption. 
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Ptolemy’s theorem and chord table 
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Abstract 

Claudius PtolemyƋabout 85-165ƌis a famous astronomer in ancient Greece. He left 

behind him a masterpiece ： Almagest, 13 volumns’ astronomer Ƌ including 

trigonometryƌ. The book covered a well-known theorem called Ptolemy’s Theorem 
by people of the later times. 
 
 
 
 
 
 
 
In order to measure the positions and the orbits of the heavenly body, Ptolemy need to 
make a chord table so that he can handle the huge and complicated calculations of 
qualities. The table shows the length of the chord for a certain degree of arc in a given 
circle. During his process of making the table, he need to estimate： 
 
 
 
 
 
 
 
 
 

In order to deal with the problem of “crd( ED r ) and crd(
2
D )” effectively, Ptolemy 

Theorem was created under this circumstances. Ptolemy applied it the result of the 

above repeatedly, and he made out a chord table with every (
2
1 )° division from 0° ~ 

180°. And he tried to solve some problems on spherical trigonometry using this table. 

In the inscribed circle of a quadrilateral, the products 
 of thediagonals is equal to the sum of the products of 
 two pairs ofthe approsite sides. 

ie： DABCCDABBDAC �+�=�  

If crdD  and crd E  are known, 

How to calculate crd( ED r ) and crd(
2
D )˛ 

Where crdD  be the length of the chord 
For a given arc D . 

A

B C

D
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Abstract 
One of the educational tendencies is to apply technological aids to 
mathematics teaching field. Among the researches, how to combine 
mathematics history and new technology is particularly worth the 
discussion. With the historical drawing tools of conic sections, this article 
will illustrate that integrating dynamic geometry software and 
mathematics history, unlike the traditional emphasis on calculation of 
algebraic equations, allows students to learn more about the geometrical 
representation of conic sections. Meanwhile, this also shows that 
technological teaching aids and mathematics history can complement each 
other. 
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x Ə∮⅝⎪㕟㖠䧲䂡 Tcosax = Ə Tsinby = 怵̨⎢Ə

㕀⸒✏嬂㍯㭋惏Ụ㘩Ə䂡ṭ孺⭟䔆䛟Ὲ怀㨊㘖⯴䙫Ə⸟奨㰩⭟䔆⯮ Tcosax = Ə

Tsinby = Ị⅌ 12

2

2

2

=+
b
y

a
x Ə㪉樾㘖␍㻦嶚婙㖠䧲⻶Ə⭟䔆⏑奨姿⽾ᷰ妹〭䬰⻶

1sincos 22 =+ TT Əᾦ⏖廼㗺✗䙣䏥⎪㕟㖠䧲㘖⯴䙫˛ᷴ怵Ṇ⸟⸟㛰⭟䔆㎷⇡䕸

┶：䂡ầ溣ᷴ㘖 Tsinax = Ə Tcosby = ƢỊ⅌ 12

2

2

2

=+
b
y

a
x

Ṇ㘖⯴䙫┱Ƅ恫㛰䂡ầ

溣ペ⽾∗ Tcosax = Ə Tsinby = Ƣ⏍⣽㠠㓁ὃ俬䙫䵺樾Ə⭟䔆⸟媋Ọ䂡T㘖㩉⛺
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ᷱ⊼滅 P⎱㩉⛺Ḕ⾪Ḳ怊䷁㮜凮敞廟䙫⤥妹˛ 

㬙嬰㗵㞷ᷧ⛽⽉*䢡⯍䂡⏯ḵ㞷㢄ờ䙫滅Ḳ庳巈ƋlocusƌƏ曧奨㻦嶚： 

1. ⭳₀『：Ợ⎽⏯ḵ㞷㢄ờ䙫ᷧ滅 PƏ嬰㗵⭪吤✏*ᷱƞ 

2. 䳻䲠『：✏*ᷱỢ⎽ᷧ滅 PcƏ嬰㗵⭪⏯ḵ㞷㢄ờ˛ 

桖䄝⥩⭟䔆㈧姧Ə )cos,sin( TT baP ⏯ḵ 12

2

2

2

=+
b
y

a
x Ḳ㢄ờƏἭ䳻䲠『⑉Ƣ

姊㱡怀ῲ┶栳㛰娘⤁㖠㲼Ə⅝ḔḲᷧ㘖㎈⎽㩉⛺䂡⛺⯴䛛⽸䬰㮻ὲ⢺丕俳Ὥ䙫㥩

⿜˛ 

 

⛽ 6 

䔘怀ῲ⛽ᾦ⏖䙣䏥䂡ầ溣㩉⛺⎪㕟⻶䂡 Tcosax = Ə Tsinby = 俳杅

Tsinax = Ə Tcosby = ˛䳻䲠『䙫┶栳ᾦ姊㱡ṭƏṆ姊㱡ṭ⤥妹T䙫┶栳Ə恫柭

怺惏Ụ姊㱡ṭ˥䂡ầ溣ペ⽾∗ Tcosax = Ə Tsinby = Ƣ˦怀ῲ┶栳˛ 

 

㛰ṭ⎪㕟䙫㥩⿜Ḳ⽳Ə孺ㇸῸ⛅∗ van Maanen 䙫┶栳ᷱ˛ 

䬓ᷧῲ┶栳䔘㖣媙㜓ᷱ㛰桅ἣ䙫⛽⽉Ə⛇㭋⭟䔆惤䟌怺怀㨊䕒⇡䙫⛽⽉䂡ᷧ

㩉⛺ƏἭ⥩㞃怙ᷧ㭌忤┶䏭䔘㘩Ə㛪㛰娘⤁⭟䔆媑ᷴ⇡ῲ㈧Ọ䄝˛㠠㓁ὃ俬䙫䵺

樾ƏḢ奨㘖⭟䔆䄈㲼⯮㭋⯍暂壄何䙫ᷧẂƋ⅞₶ƌ䉠『Ƌ⥩：乐敞⛡⮁Ə憿⬷ἴ

何⛡⮁䬰ƌ凮㩉⛺䙫Ƌ㊤屈ƌ⮁侐 aFPPF 2=c+ 怊䴷Ə㕀⸒✏嬂㍯㭋嘼㘩ㆰ䉠

∌⼞媦˛㭋⣽䔘㖣㭋壄何㈧曧奨䙫ⷌ⅞曝ờ杅⸟䙫䰈▕Ə⛇㭋Ə䕝⭟䔆⊼㈲⯍暂

㒴ὃḲ⽳Əᾄ㓁ὃ俬㕀⭟⯍⋀䵺樾Ə㔯㞃㛪㮻㕀⸒⏊栔嬂㍯㛰䔏⽾⤁˛ 

⥩㞃⯮ van Maanen 䙫栳䴫弰⋽䂡㕀⭟㴢⊼Əὃ俬⻡字䬓ṳῲ┶栳䙫昫⛽㏂

ㇷ⛽ 7Əḍ᷻䵍ṯ⭟䔆Ὸℬ⇭䙫㘩敺ペ₶˚䌃㸓ḍ姵媽䕝怀ῲ壄何怲ὃ㘩Ə何㖣

E嘼䙫䕒䬭㈧䕒⇡Ὥ䙫⛽⽉䂡ἼƢ 

✏Ḕ⛲⏋㛟ˣ屈㕟ᷧ⎆ˤ⍞ᷪḔ㎷∗： 

⇈㩉⛺凮⯶⽸⹚堳㩒㈑Ḳ⅝⏫䷁䙭凮ⅎ⮠⹚

⛺Ḳ态⼍䛟ㆰ⎯凮⤎⽸⹚堳䛛㈑Ḳ⅝⏫䷁䙭

凮⣽⇮⹚⛺Ḳ态⼍䛟ㆰ⅝㩒㈑䷁⻼敞凚⣽⇮
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⛽ 7 

暽䄝怀ῲ┶栳㮻⎆┶栳㛛曊ᷧẂƏἭṆ㛛㛰ヶ侐˛Ḵ䛲Ḳᷲἣḵ㱹㛰ỢἼ㢄

ờƋ⭟䔆㗺㉱㳏ヶ⊂㔥✏壄何䙫塏屈ḔƏ俳⿤䕌暘営✏⅝Ḕ䙫㢄ờƌƏⰋ⅝⏑㛰

ᷧῲ权ㄲ䙫⛽⽉↞↗↗✗庡✏悊ℹ˛⾪术⽘₶僤⊂廪὚䙫⭟䔆ƏṆ娘僤✏⾪Ḕ䔉

䔆ᷧῲ⊼ㄲ䙫⛽⽉Ὥ㨈㓓俳⽾∗䬻㠯ƏἭᷧ刓䙫⭟䔆Ə⏖僤Ⱈ㱹㛰徍㲼孺怀ῲ权

ㄲ䙫⛽⽉˥㴢˦嵞ὭṭƏ㭋㘩㕀⸒⏖Ọℯ㎷ᾂ⊼ㄲ⹥Ἴ廆檻俳ᷴ䵍ṯỢἼ㎷䤡Ə

⥩㭋ᷧὭƏ⭟䔆ᾦᷴⅴ曧奨₶㕟⭟⮝ᷧ㨊Ə俨䷛✗✏⾪术䔉䔆㊤屈⋽䙫好妡⛽

₶ƏἭẴ䄝曧⯮⯍暂壄何弰孖ㇷ⹥Ἴ媅姧Ə俳⽳忶怵廆檻䙫廻⊐ᾦ⏖怙堳妧⯆˚

䌃㸓Ọ㎉䩝⛽⽉敺䙫旃ᾩ˛⥩㞃⭟䔆恫㘖䄈㲼ペ⇡䬻㠯Ə㕀⸒⏖Ọ㎷ᾂṲℯ娔姯

⥤䙫㩻㠯Ə㭋㘩⭟䔆Ⱈ⏖Ọ✏曢免ᷱ⥩⏳㒴ὃ⯍暂壄何ᷧ刓Ə⽯⿒✗ᾦ⏖䛲⇡䬻

㠯˛ 

 

 

⛽ 8 

⥩⛽ 8Ə忶怵㒴ὃ⯍樾Ə⭟䔆⏖Ọ廼㗺✗䙣䏥敞廟䂡 )2(2 ba + Ə䟔廟䂡 b2 Ə⊇ᷱ

Ḕ⾪ )0,0(A Ə⭟䔆ㆰ婙⏖⯒⇡㩉⛺㖠䧲⻶ 1
)2( 2

2

2

2

=+
+ b

y
ba

x
˛ 

怙堳䬓ᷰῲ┶栳Ḳ∴Əℯ⇭㝷ᷧᷲ婙壄何：⛇䂡 DBAB = ᷻D凮 A䙭✏KL

ᷱƏ㈧Ọ BDA' 䂡䬰兗ᷰ妹⽉Ə⥩㭋怵 Bὃᷧ䛛䷁凮KL❩䛛Ə∮婙䛛䷁⾬⹚⇭

AD ˛㭋⣽Ə⛇䂡 ED凮 x 廟⤥妹䂡T Ə T=�=� DABBDA Ə㔬 B 滅⺎㨀䂡

)sin,cos( TT aa ƏD滅䂡 )0,cos2( Ta Ə E滅䂡 )sin,coscos2( TTT aba + ˛曧奨
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㳏ヶ䙫㘖Ə⎆栳䛕Ḫ㘖䕝ὃ婍栳Ḳ䔏Ə⛇㭋⏖僤桎⎱⭟䔆䬻栳Ḳ⛇䴇ㇽ㘖䂡ṭ㖠

ᾦ䬰⛇䴇Ə俳昷∝ E滅✏䬓ᷧ屈昷˛✏⯍暂㕀⭟ḔƏ㕀⸒⏖Ọ㕀⯵⭟䔆⯮⤥妹㔠

ㇷ㛰⏸妹Əḍ᷻⇭E滅✏ I̊ II̊ III̊ IV 屈昷⎱廟ᷱ䬰ガ㲨姵媽˛‣⽾㳏ヶ䙫㘖Ə

ᷧ刓䙫⭟䔆⥩㞃奨⯮⯍暂䙫壄何弰⋽ㇷ⹥Ἴ媅姧㘩Ə态⸟㛪㨈㓓⯍暂䙫壄何Ə✏

KLᷱ⎽ᷧ⊼滅DƏḍὃ ADḔ❩䷁MƏ俳⽳✏M ᷱ⎽ᷧ滅 B ⥩̨㞃⭟䔆怀溣⁁Ə

ᷧ⮁㛪⽯橁娄⥩㭋㈧⁁⽾䙫㨈㓓壄何Ə㠠㜓䕒ᷴ⇡ᷧῲ⭳㕛䙫㩉⛺˛ 

 

⛽ 9 

⎆⛇Ⱈ⇡✏⯮䉐䏭᷽䔳䙫媅姧弰㏂ㇷ㊤屈䙫⹥Ἴ媅姧㘩Ə㛰Ẃ旃ᾩ䙫ᷴ孱『ᾄ䄝

ῄ㋨Ə⏖㘖⍢⽾弰㏂ㇷ⏍⣽ᷧῲ㖠⻶Ὥ㔿志Ə娘⤁⭟䔆ᷧ䛛䄈㲼䏭姊㕟⭟䙫ᷧẂ

ペ㲼㭊㘖⥩㭋˛㕟⭟⏙⏖Ọ㎷ᾂ⭟䔆䞔姊⎆⦲㥩⿜䙣ⰼ䙫㩆㛪Ə俳⊼ㄲ⹥Ἴ廆檻

∮㎷ᾂṭ⭟䔆ⅴ⻡㦲䙫㩆㛪˛ 

䔘䬓ᷰ栳䙫⇭㝷ḍ⏖⽾∗ TT coscos2 bax += ᷻ Tsinby = Ə㈧Ọ

Tcos
2

=
+ ba
x

᷻ Tsin=
b
y

Ə㔬 1sincos
2

22
22

=+=¸
¹
·

¨
©
§+¸

¹
·

¨
©
§

+
TT

b
y

ba
x

˛ 

䬓ṻ栳㘖㮻廪䰈▕䙫Ə⾅㊤屈⋽⽳䙫䴷㞃䙣䏥Ə⥩㞃 BE = Ə∮㈧ὃḲ⛽⽉

ᾦ㘖ᷧ⛺ƏṆⰘ㘖媑⏑奨⯮䕒䬭何㖣 B滅⍚⏖Ə⏑㘖怀㨊ᷧὭƏvan Schooten 䙫

壄何ἣḵ孱⽾䄈䔏㭍Ḳ✗ṭ˛ 

凚㭋Əvan Maanen 䙫┶栳ⷙ䵺姊㱡Ə⭟䔆忶怵怀㨊䙫┶栳Ọ⎱愴⏯⊼ㄲ⹥

Ἴ廆檻Ə晋ṭ⏖Ọ䷛侹⇭㝷凮姊栳僤⊂Ḳ⣽Ə恫⏖Ọ䞔姊⛺拷㛙䷁ᷴ㘖䳻Ị㕟䙫

㻻䭾Ə俳᷻ⰼ䤡ṭ㭞⏙䙫⃠‣Ọ⎱⹥Ἴ塏⾜凮Ị㕟塏⾜䙫ᷧ凛『˛ 

┶栳ⷙ䵺姊㱡ƏἭἣḵᷴ怵䙕ƏṆ娘㕀⸒⏖Ọ䵍⭟䔆⹼ᷲ怀ῲ栳䛕婍婍䛲： 
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⛽ 10 

怀ῲ┶栳⏖Ọ怙ᷧ㭌㊤屈⋽ㇷ⹼ᷲ怀ῲ┶栳： 

 

⛽ 11 

㔠孱ᷧᷲ⏖Ọ㔠ㇷ⹼ᷲ怀ῲ㨊⬷： 

 

⛽ 12 

∐䔏⛽ 12 怀ῲ┶栳䙫ペ㲼凮姊䬻ƏㇸῸ⏖Ọ䙣䏥㩉⛺Ṇ⏖Ọ䔏⏍⣽ᷧ䨕壄

何Ὥὃ⛽： 

ⷙ䟌ᷧ䈭❩䛛㖣㰛⹚✗杉ᷱƏ AB 䂡ᷧ

㢖ƏP䂡㢖ᷱᷧ滅̨ 勌ᷴ俪ㅕ㑐㓍⊂Ə䕝 A

 

A凮 B䂡ᷧ䟐⽉䴀䈮⅐滅Ə P䂡 A凮 B敺

Ḳᷧ滅˛勌ᷴ俪ㅕ㑐㓍⊂Ə䕝 A㖣 x廟ᷱ

 

A凮 B䂡ᷧ䟐⽉䴀䈮⅐滅Ə P䂡 A凮 B⣽

Ḳᷧ滅˛勌ᷴ俪ㅕ㑐㓍⊂Ə䕝 A㖣 x廟ᷱ

 

 



 ~ 209 ~ 

 

⛽ 13 

㛰嶊䙫㘖俨∴弐ῸṆペ∗ṭƄ 

 

⛽ 14Ə⻼凑 ScherƋ1995ƌ 

 

van Maanen 䙫ὲ⬷㮻廪‶⏸姊㝷⹥ἼƏ⹼ᷲὃ俬Ẳ䴠㮻廪‶⏸䶃⏯⹥Ἴ䙫

ὲ⬷： 

1. 䵍⮁ᷧῲ㩉⛺*Ḳ⛽⽉Ə婍㰩⇡⅝Ḕ⾪˚敞廟˚䟔廟凮⅐䄍滅ƞ勌昷∝ỌⰡ

奶ὃ⛽Ə⅝㖠㲼䂡ἼƢ 

2. 勌 P䂡*ᷱḲỢヶ滅Ə婍怵 Pὃ*Ḳ⇮䷁ƞ勌昷∝ỌⰡ奶ὃ⛽Ə⅝㖠㲼䂡ἼƢ 

3. 勌Q䂡*⣽ḲỢヶ滅Ə婍怵 Pὃ*Ḳ⇮䷁ƞ勌昷∝ỌⰡ奶ὃ⛽Ə⅝㖠㲼䂡ἼƢ 

㬙姊䬻ᷱ志┶栳曧䔏∗⹼ᷲ⑤栳： 

1. ⑤栳 44ƋApolloniusx Conics ⍞ʕ IIƌ：ⷙ䟌ᷧ⛺拷㛙䷁Ə⁁⇡⭪䙫ᷧ㢄䛛⽸  ̨

2. 㩉⛺ℰ⭟『峑：㩉⛺䙫Ợヶ⇮䷁凮怵⇮滅䙫⅐䄍⌱⽸㈧⤥䙫ṳ抚妹䛟䬰˛ 

3. ⑤栳 9ƋApolloniusˣConicsˤ⍞ IVƌ：⥩㞃怵⏳ᷧ滅ὃ⅐㢄凮⛺拷㛙䷁ㇽ⛺

惤ẋ㖣⅐滅䙫䛛䷁Ə⎯⥩㞃⯮⅐䛛䷁䙫ⅎ㮜㋰㕛㢄䷁㮜凮⣽㮜Ḳ㮻Ὥ⇭≙Ə

ὦ⽾怀Ẃ䷁㮜ㇷ䂡旃㖣⏳ᷧ滅䙫媦⑳䷁㮜Ə悊ῲ态怵⇭≙滅䙫䷁⯮凮㛙䷁ẋ

㖣⅐滅Əḍ᷻怵䄍滅∗⣽惏滅㈧ὃ䙫䛛䷁⯮䂡㛙䷁䙫⇮䷁˛ 

旃㖣䬓ᷰῲ┶栳Ə㛰ᷧῲ㛰嶊䙫㕟⭟㔬Ṳ杅⸟‣⽾ᷧ㎷Ƌ㜵Ὲ㗵Ə1993ƌ：1836

⹛ƏGauss 䙫㛲⎲ Schumocher ⯒Ὲ␱娛 Gauss ᷧῲ⏒ Rümeker 䙫ạ䙣䏥⾅㩉⛺
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⣽ᷧ滅ὃ⇮䷁䙫㖠㲼Ə⅝Ḕ Rümeker 䙫㖠㲼曧⯴㩉⛺ὃ⛂㢄㈑䷁Ə俳 Schumocher

䙣䏥⏑奨ὃᷰ㢄㈑䷁⍚⏖˛㱹ペ∗怵ṭ⅔⤐ƏGauss ⛅Ὲ䵍 SchumocherƏḍ᷻␱

娛ẽ€曧⅐㢄㈑䷁⍚⏖˛ 

 
▙Ʊ䰎妔： 

Skemp 婴䂡：˥ 恶弖䧲⹶䙫䛕䙫⏑✏媑㛴㇞䕸俬Ə⾪䏭䧲⹶⍢奨㰩䞔姊Ὥ潴

⎢僯ƞ恶弖㎏䏭㈧ⰼ䏥䙫⏑ᷴ怵㘖㕟⭟䔉⒨Ə俳ᷴ僤␱娛⭟侹俬怀Ẃ㕟⭟䴷㞃㘖

ᷧ㭌ᷧ㭌墒㏔敲˚䙣ⰼ⇡Ὥ䙫ƞ⭪⏑㘖㕀㕟⭟㉧ⷎƏ俳ᷴ㘖㕀㕟⭟〄俪˛ Ƌ˦晚

㾋㯸孖Ə1995ƌ 

忶怵∐䔏⊼ㄲ⹥Ἴ廆檻怙堳⹥Ἴ㦲⛽Ə⭟䔆⏖䵺䔘⛽⽉䙫怊乳⊼ㄲ孱⋽Ọ⎱

⏫䨕⹥Ἴ憶䙫㸓憶凮姯䭾ƏὭ妧⯆⹥Ἴ⛽⽉ḍ怙俳䌃㸓˚㎉䩝⛽⽉塏⾜Ḳ敺䙫旃

ᾩƏ喰㭋✏⾪䏭䧲⹶ᷱ䞔姊ᷧῲ┶栳ㇽᷧῲ⑤栳䙫Ὥ潴⎢僯Əḍ⽾Ọⅴ䙣㗵˛㕟

⭟⏙∮㎷ᾂṭ⏍ᷧῲ杉⏸Ə⯮㕟⭟䴷㞃✏㭞⏙ᷱ䙫䙣ⰼ㻻⋽憴㖗␯䏥㖣⭟䔆杉

∴Ə⭟䔆Ṇ娘䄈㲼ⅴ䙣㗵㞷Ẃ㕟⭟䴷㞃ƏἭ忶怵㕟⭟⏙Əẍ⏖✏⾪䏭䧲⹶总∗˥ Ὲ

㛴˦䞔姊䙫䧲⺍˛㭋⣽ƏᷧẂ㕟⭟䴷㞃䵺怵㻻⋽Ə⸟Ọ㛛㊤屈ㇽ⅝ẽ塏⾜㖠⻶␯

䏥Ə俳ₚ䵘㕀⭟Ṇ⽧⽧吾憴㖣㭋Ə⭟䔆⤘⎢ṭ⭟侹⅝ẽ塏⾜䙫㩆㛪ƞ㕟⭟⏙∮㎷

ᾂṭ怀Ẃ㕟⭟ㇷ㞃䙫⅝ẽ塏⾜Əὦ⽾⭟䔆⽾Ọ⯮⭋䪲䙫㕟⭟䟌嬿怊䴷嵞Ὥ˛ 

㕛⏯⊼ㄲ⹥Ἴ廆檻凮㕟⭟⏙Ə恫⏖Ọὦ⽾⭟䔆㖣㕟⭟⏙Ḕ䍙⽾术ㄆƏ俳忶怵

䏥Ị䦸㉧䙣ⰼ≜怇㖗䙫ὃ⛽ⷌ⅞˚ὃ⛽㖠㲼Ọ⎱㖗䙫㕟⭟㥩⿜Ə俳⽳凮⏋Ị㕟⭟

⮝㈧䙣ⰼ⇡䙫ⅎ⮠㮻廪Ə喰㭋⯮凑庒䙫㕟⭟㥩⿜怊䴷嵞Ὥ˛ 

 
ᵒƱ⊁仁㖶䖬 
Dennis D. and Confrey J.Ƌ1997ƌ. “Drawing Logarithmic Curves with Geometer’s Sketchpad: A 

Method Inspired by Historical Sources”, in King J. Schattshmeider ed., Geometry Turned on, The 
Mathematical Association of America, pp.147-156. 

Freudenthal, H.Ƌ1971ƌ. “Geometry between the devil and the deep sea”, Educational Studies in 
Mathematics 3: 413-435. 

Isoda, M.Ƌ2000ƌ. “Inquiring mathematics with history and software”, in Frank Swetz, John Frauvel, 
Otto Bekken, Bengt Johansson and Victor Katz, eds. , History in mathematics education: A ICMI 
study, Kluwer, pp. 351-358. 

Scheer, D.Ƌ1995ƌ. Exploring Conic Sections with Geometer’s Sketchpad, Key Curriculum, p. 28. 

van Maanen, J.Ƌ1992ƌ. “Seventeenth Century Instruments for Drawing Conic Sections”, in John 
Fauvel and Jan van Maanen eds. , Learning from the Masters, The Mathematical Association of 
America, pp.80-86 

㜵Ὲ㗵Ƌ1993ƌ̨ ⾞ヶ⾾㕟⭟䍲⬷-檿㖖Əx 㕟⭟⑳㕟⭟⮝䙫㔬Ṳ 1 Əʕpp. 44-47˛㖗䫠Ə⇈䕗˛ 

檿⶟孖Ƌ2000ƌ̨ 昦㳉佬Ⱓ⥎㖖：x ⛺拷㛙䷁媽 Əʕ㔝拫㖣㜵㕮㝾Ḣ䷏Ḳx 㕟⭟䎴⯝ˤ̨ ⏗⋾ƏṄ䫇  ̨

晚㾋㯸孖ƋSkemp, R. R. 吾ƌƋ1995ƌ̨ˣ㕟⭟⭟侹⾪䏭⭟ˤ̨ ⏗⋾ƏṄ䫇˛ 
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㐶⨶⊰⪤椕㐗㘎 — Ჾ ᵊ㧟㑷䣉ⷍ 
Ancient Mathematical Texts used in the Classroom 

—Quadratic Equations 

 
㇅⫌㐗㉆：㯨勪䏝 

Ḛ    仃：ⶔ⾞ι 

 

ᲾƱℋ墾 

✏⛲Ḕ㕟⭟䦸㕀㜷ḔƏ䬓ᷰ˚⛂ⅱ䙫ᷧKṳ㬈㖠䧲⻶㘖娘⤁⭟䔆⏳ㄆ“曊ㆩ”˚“姯䭾怵䧲壮

曃”˚“ᷴṭ姊ヶ〄˚ᷧ䟌⌱姊”˚“怵ṭ˥㜆昷˦⎯⾿ṭ”˚ “ᷴ䟌怺奨娔ầ溣”˚ “ịạ㌰㑟

ᷴ⮁”˚ “孱⋽⤁”䙫▕KƏ⅝Ḕ⎯Ọ˥ᷧKṳ㬈㖠䧲⻶㰩姊˦⑳˥ᷧKṳ㬈㖠䧲⻶䙫ㆰ䔏

┶栳˦㛧ịẽῸㄆ∗ ˥⛗曊˦凮˥杅⸟⛗曊˦̨ 䬭俬婍⛽喰吾㕟⭟⏙Ḕ旃㖣ᷧKṳ㬈㖠䧲

⻶䙫┶栳ὦ⭟䔆巚儒⇡Ą壃侹䏔䙫㭊䢡姊㲼ą㨈⻶Ə⾅俳⻡䪲⭟䔆姊ᷧKṳ㬈㖠䧲⻶ㆰ䔏

┶栳䙫凯嶊⑳Ὲ⾪˛ 

 

ᵊƱ䖶撚䦞䩾 

ᷧ⹛䴁 ṳ⹛䴁 

徸ἣ‣凮㖠㠠 

  y㖠㠠䙫徸ἣ‣ 

  y䔏㟌塏㲼㰩㖠㠠 

ᷧ㬈㖠䧲⻶ 

  yỌ䬍噆Ị塏㕟 

  y⻶⬷䙫怲䭾 

  yṳKᷧ㬈偖䪲㖠䧲⻶ 

杉䨴凮ḿ㲼⅓⻶ 

  y杉䨴凮┭檿⮁䏭 

ᷧ㬈凮ṳ㬈⇤㕟 

  yᷧ㬈⇤㕟凮⅝⛽⽉ 

  yṳ㬈⇤㕟凮⅝⛽⽉ 

  yṳ㬈⇤㕟䙫㛧⤎‣凮㛧⯶‣ 

 

᳇Ʊ┦㘎 
Ƌᷧƌ㕟⭟⏙䛟旃傳㙖Ƌ媲⎪斘昫ờᷧƌ 

Ƌṳƌ㉼⽘㩆˚㉼⽘䈮 

 

▙Ʊ⊁仁㑅䈹 
㡨⭾⷏Ə1995Ə㕟⭟㭞⏙⅟㔬ƏṄ䫇⇡䈯䤥 

㴑吓䔆Ə1999Ə⬻⬷凮㕟⭟Ə㗵㕮㛟Ⱗ 
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㴑吓䔆Ə1999Ə⾅㜵䳫䑆⇡䙣—㕟⭟⏙˚䦸⭟⏙㕮暭ƏṄ䫇⇡䈯䤥 

㜵乣敻Ə1992Əx Ṅ䫇䭾堺ˤ⎱⅝≰⾤㳏䟻䩝ƏṄ䫇⇡䈯䤥 

≰⻡棂˚⼜㭊漱Ə1989Ə㕟⭟ṻ〉⹛Ə㚰⛹⇡䈯䤥 

惔㛟㘌Ə1998ƏṄ䫇䭾堺Ə恣⯎⇡䈯䤥 

㝾䁵⅏˚㴑吓䔆˚㤱⺞㙖㝥孖Ə1983Ə㕟⭟⏙—㕟⭟〄ペ䙫䙣ⰼᷱⅱƏṄ䫇⇡䈯䤥 

㜵㕮㝾Ə2000Ə㕟⭟䎴⯝ƏṄ䫇⇡䈯䤥 

⧁㖠Ə1999Ə㕟⭟态⠘䬓ᷧ㜆 

ˣṄ䫇䭾䵺ˤ 

⛲䪲䷏孖椏Ə1999Ə㭞⏙㕀⸒㈲ⅱƋᷰƌ 

危㕮Ẩ˚㜵㔶デƏ1999Ə⛲ḔḔ⛲㭞⏙⛽媑Ə⻡⭶⇡䈯䤥 
Historical  Problems 

 

ᵒƱ㐗⨶㨣椝 

⛺杉䨴⿵溣䭾⑉Ƣ 

YesƄⰘ㘖⌱⽸ Ŀ⌱⽸ ×ʌ Ə悊 ʌ ⎯㘖ầ溣⑉Ƣ 

⯴ṭƏㇸῸ䨘⭪䂡⛺⑏䍮Ə悊὇䟌怺⛺⑏䍮㘖⿵溣䭾⇡Ὥ䙫▵Ƣ 

Ƌ姵媽˚䙣塏㘩敺ü  ü˩㉼⽘䈮ᷧ ƌ˪ 

ᷧ㎷∗⛺⑏䍮Ə὇⅒ㇷ㛪ペ∗䤽㱽ḲƏἭ㘖恫㛰⏍ᷧῲạ✏姯䭾⛺⑏䍮ᷱṆ㘖⏳㨊䙫

孺ạ⅐䜣䙣䛛ƄohƏsorryƏ㘖⅐䜣䙣ẕ——⏫ἴ妧䜥Ə怀ῲạⰘ⏒⁁——ⅇ⹻˛ 

媑嵞≰⾤㈧䔏䙫㖠㲼ƏⰘ⑳≂㈴⯶⃧㈧䔏䙫㖠㲼ᷧ㨊Ə☦Ə怀ῲạ⏖㘖⇡䔆✏ 1500

⹛∴䙫ᷧῲṭᷴ嵞䙫‰⤎㕟⭟⮝╻˛ 

Ƌ媲⯶⃧㉱⥠㈧䔏䙫㖠㲼ⅴ媑ᷧ怴ü  ü˩㉼⽘䈮ṳ ƌ˪ 

⏫ἴ妧䜥Ƅ⯶⃧⁁∗ṭ⹥恱⽉Ƣ 

὇⤎䳫僤⤇⁁∗⹥恱⽉Ƣ 

Ἥ㘖≰⾤怀ῲạ┱Ə䫆䄝⁁∗ṭ 3072 恱⽉Əḍ᷻䔘㭋⽾∗ṭᷧῲ杅⸟杅⸟杇徸㭊䢡

‣ 

䙫㕟：3.1416˛ 

    媑嵞怀ῲ⤮ạ——ⅇ⹻Ə✏䔆∴溿溿䄈⏴ƏㇸῸ✏⏙㖀ᷱ㉥ᷴ∗ẽ䙫⇡䔆⹛㛯㗌Ə㉥

ᷴ∗ẽ䙫⇡䔆✗ƏṆᷴ䟌怺ẽ㛥䵺ẋ怵⹥ῲ⥚㛲⎲˛Ἥ㘖Əᷧῲạ⁁怵䙫Ṳ⍢ᷴ㛪⛇䂡

ẽ㱹㛰✗ἴ㱹㛰⏴㜂㱹㛰ᷧ⼜慞慞䙫冰Ⱈ墒㭞⏙␅㱹˛⎴俳㘖✏䵺怵㘩敺䙫䬰⽬⽳Ə㛰
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ᷧẂ恙∗䙫䟌ⷘ㛪墒怀Ẃ㛧併⦀˚㛧⤮䉠䙫ペ㲼␟⻼˛怀ᷧ〉⤁⹛ὭƏᷧ䛛ᷴ㖞㛰㕟⭟

㄂⥤俬✏䟻䩝≰⾤䔆∴䙫吾ὃƏ⍚ὦ㘖✏䦸⭟⥩㭋䙣总㙕怴䙫ằ⤐Ə⏑奨⯴ẽ㈧ὦ䔏怵

䙫㖠㲼䧴㛰䞔姊䙫ạƏ10 ῲạḔ㛰 8 ῲ㛪忒ᷴ⎱⽬䙫ペ奨✷ᷱ⯶⏕♠䙫㘩ℰ㩆⛅∗怵

⎢Ə⎢䛲䛲怀∗⹼㘖Ἴ娘ạ䉐ƞ悊⏍⣽⅐ῲạ⑉Ƣ⽯恡ㆥ䙫ƏẽῸ⭳⅏䛲ᷴㆩ≰⾤㈧ὦ

䔏䙫㖠㲼ü  ü  

    ㇸῸ㛥䵺⭟怵䙫⋥傈┶栳Ə≰⾤Ṇ㛪怀ᷧ⤾╻˛ㇸῸὭ䛲䛲ẽ㛥䵺⁁怵䙫ᷧ怺栳䛕： 

 

ƺᴛ䦞䩕圑ƻ↼佟䦞䧪ǀ20ǁ␍：ᶈ㗇彏㑷᳋䚣⟥⫍濕⋂ᳫ摉搾Ʋ₸⇕搾 20 㨣㗇㗦Ʋ

₸∕搾 14㨣濕ㅖ今堽圊 1775㨣塉㗦Ʋ␍彏㑷ⴼḓ濨 

 

    Ƌ䙣嬂侐 Aƌ 

Ƌ⸝⏳⭟⿜ᷧ怴ƌ 

Ƌ孺⏳⭟凑堳㻻䭾栳䛕Əṹ䛟姵媽ƌ 

    Ƌ⾜㰩凑栿俬ᷱ⏗姊媑凑ⷘ䙫㖠㲼ƌ 

    Ƌ俨⸒ὦ䔏㉼⽘䈮姊媑≰⾤䙫㖠㲼ü  ü˩㉼⽘䈮ᷰ ƌ˪ 

嬂侐 A ⎱㉼⽘䈮媲⎪斘昫ờṳ˛ 

 

‫Ʊ䰎㙚 

怀ᷧỤ㕀㠯⯍㖤䙫㘩敺Ə⋬㋓姵媽⎱⭟䔆ὃ⒨ⰼ䤡Ə䳫曧ṳ䮧媙㘩敺Ƌ90 ⇭揿ƌ̨ 䬭俬⇭

∌✏⛲Ḕṳ⹛䴁㙕态䏔⑳岮ℑ䏔Ḕ⏫㒮ᷧ䏔ὃ㭋Ụ㕀㜷䙫⯍樾㕀⭟Əㇷ㞃⥩ᷲ： 

Ƌᷧƌ⭟䔆⯴㕟⭟⏙ㄆ∗⥤⤮：䕝怀ᷧỤ㕀㠯Ḕ䙫㉼⽘䈮˩ᷧ˪—倽䵺Ḕ䙫䈮㮜⇡䏥㘩Ə

⭟䔆⯴㖣⛺怘䍮䫆㛪⇡䏥✏倽䵺ḲḔ塏䏥⇡ᷧ䨕ᷴ⏖何Ὲ䙫䥅ガ⑳⥤⤮Ƌ怀㘖䜆䙫▵Ƣƌ̨  

Ƌṳƌ⭟䔆㧩㖣㎉䴉ᷧẂㇽ娘➲営✏⾪ḔⷙḬ䙫˥䂡ầ溣 ：˦⛺怘䍮㘖⭟䔆⾅⯶⭟Ⱈ敲⦲ὦ

䔏䙫ᷧ䨕㕟⭟㉧堺Ə⏖Ọ媑⤎惏⇭䙫⭟䔆⯴㖣Ąʟ ą䙫ὦ䔏惤⽯䆆䷛˛⛇俳✏㎉姵Ąʟ ą

䙫怣徸㲼Ƌ䳫 15 ⇭揿ƌ㘩Ə⃿䮈㛧⽳䵍⇡䙫⛅䬻⏑㘖Ą䔏乐⬷ąƏ䄝俳✏姵媽䙫䕝㘩ㇸ✏

怀ᷧ例⭐⬷Ὸ䙫庒ᷱ⍢䛲∗ṭ∴㈧㜑㛰䙫䆘塞⑳⯯㳏 — 䆘ガ尯ᷴ㘖㎉䩝䙫噆妹▵Ƣ 

Ƌᷰƌ⭟䔆ᷱ㕟⭟媙䙫ㄲ⺍㛰㈧弰孱：䬭俬㈧㋸恟䙫⅐ῲ䏔䴁惤ᷴ㘖塏䏥䉠∌ℑ䦧䙫䏔䴁Ə

䔁凚⏖媑㘖⹚⸟ᷱ㕟⭟媙廪䂡ḽⷎ˚ῄ⭯˚㱹㛰⎴ㆰ˚㱹㛰⛅䬻䙫䏔䴁Ə⭟䔆㙕怴⯴凑ⷘ

䙫㕟⭟僤⊂㱹㛰Ὲ⾪Ə㛛㱹㛰塏总˚㺄态ペ㲼䙫ヶ栿Ƌᷴ媽㘖ㇷ严廪⥤ㇽ廪ⷕ俬ƌ̨ 怀ᷧỤ

㕀㠯≂敲⦲⯍堳㘩Ə⭟䔆ᷧ⥩⽧⸟ḍ㱹㛰⤑⤁⎴ㆰƏἭ⥩ỌᷱƋᷧƌƋṳƌ滅㈧志Ə✏怙堳

∗䬓ᷧ䮧媙Ḕ㮜㘩Ə敲⦲㛰⭟䔆Ḣ⊼⛅䬻┶栳Əịㇸㄆ∗橁娄⑳凯⥕˛⏳㘩✏媙⽳ƏṆ㛰
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⭟䔆ⰘẽῸ⯴⋥傈䫇┶栳䙫ὃ㲼⽣㭋⇭Ẓ˛⭟䔆栿ヶ⇭Ẓ⑳塏总凑ⷘ䙫ペ㲼˚ὃ㲼ṆⰘ塏

㗵ṭẽῸᷴⅴ⮚⿼Ąὃ挖ą˛ 

 

᳁Ʊ䰎妔 

Ƌᷧƌ✏䟌嬿˚㉧堺㗌㖗㛯䕗᷻㯸Ḣ˚凑䔘䙫岮姱䤥㛪壈Ə⼞媦ₚ㍯䟌嬿˚姺䷛㉧僤䙫⭟

㠈㕟⭟㕀備Əⷙᷴ嶚Ọ孺⭟䔆恐ㆰ怀ῲ「怆孱⋽䙫䤥㛪ƏẽῸ㛛曧奨⟠棱㴢䔏㕟⭟䟌嬿姊

㱡┶栳䙫僤⊂Ə⎱䟌怺⥩Ἴ䍙⎽˚⥩Ἴ⇭㝷岮姱Əḍ僤⑳∌ạ㺄态ペ㲼凮⏯ὃ䙫僤⊂Ƌ㕀

備惏⛲Ḕ⭟侹ㇷⰘ娼憶䟻䩝Ə1999ƌ̨ ✏巚儒Ąₚ䵘娼憶㖠⻶ą⎱Ą壃侹䏔⡒洏䮫䕮ą䙫

㕟⭟⏙媙䧲ḔƏ㛛僤ὦ⭟䔆ⰼ䏥⅝㕟⭟⭟侹䙫㴢⊂⑳䍏≜『˛ 

Ƌṳƌ✏ HPM 䟻䩝姯䕒怙堳怵䧲ḔƏ⎾㸓䙫⭟䔆⛡䄝⢅⊇ṭᷧẂ凮䜥ᷴ⏳䙫⭟侹䵺樾⑳

Ą媙⣽ą䟌嬿ƞ䬭俬✏◾婍䷏⯒㕟⭟⏙㕀㠯⑳㔝暭˚㕛䏭岮㖀䙫⏳㘩㛛㘖⎾䚱剖⤁˛㕟⭟

⏙Ⱈ₶䎐⅞㨈❲Ḕ䙫冇⑳剙⽐Ə㍳㏈ṭ旃捜Ṇㅸ㷢ṭ塏ガ˛勌㘖㕟⭟㕀⸒僤⏳ヶ⯴㕟⭟⏙

䙫婴嬿㘖㕟⭟㕀備⯯㥔䴇棱Ḕᷴ⏖ㇽ伡䙫ᷧ惏ỤƏ悊溣Ə㉱Ą㕟⭟⏙㕀㠯䷏⯒ą⇾⅌㕟⭟

㕀⸒䓫恟娼⇭㨀㹽⎪俪ḲᷧṆ⯮㘖ㇸῸ⏖㜆⽬䙫ᷴ恇䙫㜑Ὥṭ˛ 

 

攂     ᶴ     Ჾ 

㐶⨶⊰䖶撚侊㔭 — ᶡ㐶䕂㐃ᵉ 
ᲾƱḓ姀ᶡ㐶? 

ƋᷧƌAlgebra 䙫媅㹷 

˶algebra˷㘖ῲ㒨㛰昦㊰἖㕮˚㊰ᷨ㕮媅㹷䙫⬾˛ 

✏⤎䳫奦K 830 ⹛ⷍ⏚Ə昦㊰἖䬓ᷧῲ⤎㕟⭟⮝Ə⏳㘩Ṇ㘖⤐㕮⭟⮝—昦䈥 � 劘㊰⬷㨈 

(Al-khwarizmi) ⯒ṭᷧ㜓㕟⭟㛟Ə⅝㊰ᷨ㕮䈯㜓(䳫奦K 1140 ⹛) 䙫孖㕮䂡 ilm al-jabr 

Wa’l muquabalah˛al-jabr ✏怀ᷧ㜓㛟Ḕ䙫ヶ〄㘖˥䧢柬 Ƌ˦岇柬䧢∗䬰噆䙫⏍ᷧ恱孱ㇷ

㭊柬ƌƏὲ⥩：x2-7=3Æ x2=7+3ƞWa’l muquabalah 㘖˥⯴㵯 Ə˦ṆⰘ㘖⯮㖠䧲⻶⅐恱䛟

⏳䙫柬㵯⎢ㇽ㘖㉱⏳桅柬⏯὜˛al-jabr 忷㼟㻻孱ㇷ algebraƏ⛇㭋Ə algebra 㘖ᷧῲ㒨

㛰昦㊰἖㕮˚㊰ᷨ㕮媅㹷䙫勘㕮⬾Ə⅝㜓侐∮㘖˥䧢柬凮⯴㵯˦Ḳ⭟˛勘㕮 algebraƏ㲼

㕮 algebreƏ⾞㕮 algebraƏヶ⤎∐㕮 algebraƏ惤Ὥ㹷㖣㭋˛ 
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      擽䃼兯ㆇ⨎㣟弸▏䕂ά奨 

               

㛰ᷧῲ旃㖣昦㊰἖‰⤎㕟⭟⮝昦䈥劘㊰⬷㨈恡⚸䙫ₚ媑˛⤎䳫奦K 800 

⹛Ə昦䈥劘㊰⬷㨈䔆㴢✏䏥ằ墒䨘ὃự㛾䙫✗㖠Ə⯒ṭᷧẂ㛰旃䭾堺 

⑳Ị㕟㖠杉䙫吾ὃ˛Ąalgebraą怀ῲ⬾Ⱈ㘖㹷凑㖣ẽ㈧⯒䙫ᷧ㜓㛟䙫 

㛟⏴ — al-jabr (昦㊰἖㕮)˛ 

昦䈥劘㊰⬷㨈㘖昦㊰἖⸄⛲ḔƏ䬓ᷧῲ⯮Ą曝ąṆ䕝ὃᷧῲ㕟䙫㖗ペ 

㲼⯒⅌㛟Ḕ䙫㕟⭟⮝˛ẽ䙫㛟Ṇ㘖㈧㛰昦㊰἖㕮䙫㛟Ḕ䬓ᷧ㜓墒俢孖 

ㇷ㊰ᷨ㕮䙫˛ 

昦䈥劘㊰⬷㨈✏ẽ堳⯮怵怄䙫㘩 匰㓓ṭẽ䙫恡⚸Ə怀㘩ẽ䙫⦢⬷㭊 

㇞吾ẽῸ䙫䬓ᷧῲ⭐⬷˛✏ẽ䙫恡⚸ḔƏ昦䈥劘㊰⬷㨈⮁ṭᷧ柬奶∮： 

⥩㞃ẽ䙫⦢⬷䔆ᷲ䙫㘖ℹ⬷Ə悊溣ẽ䙫ℹ⬷⏖乣㉦ẽ㈧㛰恡䔉䙫 2/3Ə 

俳ẽ䙫⦢⬷∮䍙⽾ 1/3˛Ἥ㘖⥩㞃ẽ䙫⦢⬷䔆ᷲ䙫㘖⥚ℹƏ悊溣ẽ䙫⦢ 

⬷乣㉦ẽ㈧㛰岈䔉Ḕ䙫 2/3Əẽ䙫⥚ℹ 1/3˛ 

✏ẽ㭢⽳ᷴḬƏ⭐⬷⇡᷽ṭ�ẽ䙫⦢⬷䔆ṭᷧ⯴曀僅債�ᷧ䔞ᷧ⥚˛ 

怀ῲₚ媑ḍ㱹㛰␱娛ㇸῸ恡䔉⽳Ὥ㘖⿵溣⇭愴䙫ƏἭ㘖昦䈥劘㊰⬷㨈 

䙫恡⚸䜆䙫墒䢡⯍✗恜⭯ṭ˛䩝䫆ẽ䙫⦢⬷˚ℹ⬷˚⥚ℹ⏫⽾∗ṭ⤁ 

⯸恡䔉⑉? 

 

ƋṳƌAlgebra ⡀ḓ坩ᳫ娭ノƼᶡ㐶ƽ? 

⌨᷽ᷪ䳧Ə奦㖠㕟⭟敲⦲䵺䔘⤐Ḣ㕀倝䨳㛪䙫ₚ㕀⣒ₚ⅌Ḕ⛲˛奦K 1711 ⹛Ə㷬㜄⺞

䆀䙮⸄凮䛛暟ⷈ⺃嶀⭶䇕㛥㛰㭋⯴婘： 

 

䩕⨶ᴉ䋄濕䕄₸㑺㓑䱑濕∱堽㯉䩕㮓ᵤ⑂濕≝Ẁᳫ◉䩕㮓濕⸺䣯㽸Ƽ擽䃼㗯Ⲳ䃼ƽ濕Ƽ擽

䃼㗯Ⲳ䃼ƽ仃濕ά储㘯㑷ᴉ姀ᴝƲ濑ƺ㘯劭懂烉 ⵵䁗▙ᴛƻ濒 

 

ᷱ㕮Ḕ䙫˥昦䈥㜘ⷛ䈥˦ṆⰘ㘖 algebreƋ㲼㕮ƌ䙫柚孖˛ 

 

Ḕ⛲㷬Ị㕟⭟⮝㜵╫嘔Ƌ奦K 1811—1882 ⹛ƌ⑳勘⛲ₚ㕀⣒‰䂯ẅ⊂ƋAlexander  

WyliwƏ奦K 1815 —1887 ⹛ƌ⏯孖䙫㕟⭟吾ὃ㛰：x ⹥Ἴ⎆㜓ˤ⽳Ṅ⍞ƞAugustus De 

Morgan 䙫ˣỊ㕟⭟ ƋʕElements of AlgebraƏ1835ƌ⑳併⛲㕟⭟⮝ E.Loomis 䙫ˣỊ⾕

䨴㋥䴁 ƋʕElements of Analytical Geometry and Differential and Integral CalculusƏ
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1850ƌ̨ ⅝ḔƏ✏ˣỊ⾕䨴㋥䴁ˤ怀㜓㛟䙫⹶Ƌ奦K 1859.5.10ƌḔƏ˥ Ị㕟˦䬓ᷧ㬈Ọ㕟

⭟⯯㛰⏴婅䙫⽉⻶墒㭊⻶㎷⇡： 

 

ᳫ㮓ᴉ▙ 濕∱堽㮓ᴉᶡ㐶ᴝƲ妶 Ʊ妶ᴖ㑷Ʊ妶ᵐᴖ䤋濕▙ ⃣ᶣḋ㧟濕ᶡ㐶⃣ᶣ壖

唝Ʋ㮓斔㩈濕䋄㿟䐮ᴝƲ 

⏳ᷧ⹛Ƌ奦K 1859 ⹛ƌƏ怀⅐ạ⎯⏯孖x Ị㕟⭟ˤ̨ 怀㘖Ḕ⛲䬓ᷧ㜓ỌỊ㕟䂡⏴䙫㛟Ə˥ Ị

㕟 怀˦ῲ⏴婅Ṇ⾅悊ῲ㘩⽳嵞ᷧ䛛㲦䔏凚ằ˛⎯Ə䂡ầ溣㜵╫嘔⑳‰䂯ẅ⊂㛪㉱˶ algebra˷

俢孖ㇷ˥Ị㕟˦⑉Ƣ✏ˣỊ㕟⭟ˤ䙫˥⅌敧ὲ姧˦ḔƏṳạ⯒怺： 

 

䏦⨕ᶡ㐶濕ピ᳋⩘㐶濕ピ㗨䚣ᴉ⩘㐶濕ắᶣ⨕ᶡᴉƲ⼄䏦ᴉⲰ䚣㐶濕ピ▞⟨䳿濕ᵤᶣ⨕

ᶡƲ 

 

ᷴḬḲ⽳Ə䔘勘⛲ₚ㕀⣒⁬嘔暬(John Fryer)⏊孖˚㷬㜄㕟⭟⮝取嗬劚Ƌ1833—1902ƌ

䬭志勘⛲㕟⭟⮝取憳⏟ƋW.Wallaceƌ䙫吾ὃˣỊ㕟堺 Ƌʕ1873ƌḔƏẽῸ✏⍞楽䬓ᷧ㬥⯒

怺： 

 

ᶡ㐶ᴉ㮓濕㿟妔ḓ㐶濕䕄⊭ᶹᶣḓ壖唝ᶡᴉƲᶈ堽◉ヾ⳶䏦仃濕㪍ᶣᵊ⇿‫ỉ⨕㪋ᶡƲ 

 

怀⏳㘩Ṇ媑㗵ṭ㷬㜄⹥ἴ⤎㕟⭟⮝⯴Ị㕟䙫䛲㲼˛ 

 

濑᳇濒⊢Ⳋ傖䕂Ǎ logistica ǎ vsǍ number theory ǎ 

⯴ᷧ刓䙫⭟䔆ㇽ例䜥Ə˥ Ị㕟˦㋮䙫ㇽ娘Ⱈ㘖˥Ḕ⭟㕟⭟˦Ḕ䙫Ị㕟㖠䧲怲䭾ƞ䄝俳Ə⯴

㖣ᷧἴ⎾怵廪⤁㕟⭟姺䷛䙫㕟⭟䳢⭟䔆ㇽ䔁凚㘖ᷧἴ㕟⭟⏙䙫㄂⥤俬俳姧Ə⯴㖣˥Ị㕟˦

ṳ⬾䙫⮁侐⏖僤Ⱈ⽾㖆愳ῲ俨⌱⤐ṭ˛ 

✏⏋ⷳ冿㘩ỊƏạῸᾦⷙ⯮Ჾ僪䕂㐶⨕弉䩕⑳䛒䤴巁ㅻ嬟䕂㐶䋄妔䙫⭟┶⌧⇭敲Ὥṭ˛

˥䭾堺 Ƌ˦arithmeticƌ⯯㋮Ą㕟䙫䏭媽ąƏ柾㛰䏥✏㕟媽䙫ヶ⑚ƞ⑳⯍䔏䙫˥姯䭾㉧ⷎ˦

Ƌlogisticƌ㛰桖吾䙫ᷴ⏳˛ 

 

濑▙濒Ƽ᳋⊭‪ⵤ悍ƽ濑incommemsurable濒䕂奋䚣∯㤝：Ǎ logos ǎvsǍ alogos ǎ 

    

瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧 

㑷    㛷    䕂    䧤    唝 

ㇸῸ䏥✏ὦ䔏䙫㕟⭟堺媅˥㠠 Ə˦勘媅 rootƏ⾞媅 wurzelƏ㲼媅 racineƏḔ㕮”㠠”Ə惤

㘖㹷凑㖣㊰ᷨ⬾ radix 䙫孖⏴˛✏㕟⭟ᷱ㛰曀憴ヶ侐Əᷧ䨕㘖㋮㖠䧲⻶䙫姊Ə⏍ᷧ䨕㘖㋮
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ᷧῲ㭊㕟䙫⹚㖠㠠˛ 

⾞⛲ạ✏ 1480 ⹛∴⽳Ə䔏˥. ˦Ὥ塏䤡㖠㠠Əὲ⥩：. 3 Ⱈ㘖 3 䙫⹚㖠㠠˛㕷㳉悊⤸㉱

radix 丕⯒ㇷ RƏ怀ῲ䬍噆⽳Ὥㇷ䂡䕝㘩态䔏䙫㖠㠠䬍噆˛ὲ⥩：嵒ℲƋGielis vander 

Hoeckeƌ✏ 1537 ⹛⯮
5
4 ⯒ㇷ R

5
4
ƏCardanoƋ侐⤎∐ạƌ✏ 1539 ⹛Ṇ㉱ 9⯒ㇷ R.9.˛

Ἥ⏳㘩敺✏᷽䔳䙫⏍ᷧẂ⛲⮝Ṇ恫㛰⅝ẽᷴ⏳䙫䬍噆墒䔏Ὥ塏䤡㖠㠠˛ 

1637 ⹛Ə䬂⍈ℹ✏ẽ䙫吾ὃˣ⹥Ἴ⭟ˤḔ楽ℯ≜䔏 x˚y˚z Ὥ塏䤡㜑䟌㕟Əᷧ䛛㲦䔏∗

䏥✏˛✏怀㜓㛟ḔƏ⇡䏥㭞⏙ᷱ䬓ᷧῲ⹚㖠㠠䬍噆 ˛䬂⍈䈥✏⎆㛟䬓ᷧ䈯䙫 299 柨Ḕ

⯒怺： 

 ⡀㙚ハ⾱㬀 a2+b2 䕂ⴱ㑷㛷濕⫯⪩Ḛ 22 ba + 濕⡀㙚⾱㬀 a3濖b3濔abb 䕂䦉㑷㛷濕⫯

⪩Ḛ abbbaC +− 33. Ʋ 

凚㖣䏥✏ㇸῸ㈧ὦ䔏䙫䪲㖠㠠䬍噆奨ᷧ䛛∗ 18 ᷽䳧㈴⇡䏥̨ 䛎岄ƋDela Loubereƌ✏ 1732

⹛䔏ṭ 3 25  ƏḲ⽳䪲㖠㠠䙫䬍噆㈴ㅉㅉ墒⻊䂡ὦ䔏˛ 

瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧瀧 

⾅㖠䧲䏭媽䙫㻻怙Ὥ䛲Ə敲㖠㲼⏖媑㘖姊⤁㬈㖠䧲⻶䙫ℯ₀䟌嬿˛ὲ⥩：敲ᷧῲ㭊㕟 A

䙫⹚㖠㠠Ə⑳敲ᷧῲ⯍㕟 B 䙫䪲㖠㠠Ə⾬䄝㘖姊㖠䧲⻶ x2ƐAƠ0 ⑳ x3ƐBƠ0 Ḳ∴⍚曧⅞

₀䙫㖠㲼⑳㥩⿜˛ṆⰘ㘖媑Ə✏㗐㜆㕟⭟䙣ⰼḔƏ敲㖠㲼䙫ㇷ䆆凮␍ƏⰘ㱡⮁ṭ婙㕮㗵䙫

㖠䧲䏭媽㈧僤㓛ⰼ䙫䧲⺍˛ 

⛇㭋Ə䕝䕉总Ⓦ㊰㖖䙫⭟䔆ⷳ἖㖖✏䟻䩝⋥傈⮁䏭㘩Ə䙣䏥ṭ⏍ᷧ䨕ᷴ⏳㖣䕉㯶ⓙ⭟〄

ペƋ⭮⮀敺䙫ᷧ⇮惤㘖㕛㕟ㇽ㕛㕟䙫㮻Ə晋㭋Ḳ⣽Ə᷽ ᷱⰘᷴⅴ㛰⅝ẽ䙫㝘奦ṭƌ䙫㕟Ƌ 2ƌ
㘩Ə䕉㯶⭟㴥䙫㉾㊹ᾦ墒婴䂡㘖挖怵ṭᷧῲ䙣ⰼỊ㕟㖠䧲䏭媽䙫⤎⥤⤸㩆˛⾅㭋Ə⏋ⷳ冿

✏㕟⭟䟻䩝ᷱ䙫憴滅Ṇ⾅Ą㕟䙫䏭媽ą弰⏸ṭ⹥Ἴ⭟⽉䙫䟻䩝Ə⛇䂡✏⹥Ἴ⭟䙫᷽䔳墶⏖

Ọᷴ䔏⛅䬻䄈䏭憶∗⹼㘖ᷴ㘖㕟—怀ῲịẽῸ⛗㓥䙫┶栳˛ 

 

ᵊƱ⊢⚁⊈ᵸ䕂ƾ⑬士㮓ƿ墡㑷䣉 
➪⎱Ə怀ῲ䵍ạ䄈昷䥅䦿⍗屈䙫⛲⮝Ə㛰吾ᷱ⤐䙫峯䦕—Ⱓ佬㲚㮶⹛⮁㜆䙫㰥㿒Ə⸝Ὥ

傌㱪䙫㷋䨴✆ƏṆ⬼備ṭᷧῲ尷⮳䙫⏋㕮㗵˛ 

⏋➪⎱㛰凑ⷘ䙫㛟⯒䳢䵘Ə㛟⯒㘩䔏⢏㰨⯒✏䴀匰ᷱ˛䴀匰㘖䔏㣴䉐䙫檺峑ⰼ敲⽳⁁ㇷ

䙫Ə㛰滅桅ἣḔ⛲䬂ᷱ䙫呍冃Ə⏑㘖㛛⎁⽾⤁˛怀㘖ᷧ䨕㗺ṥ墩䙫䴀Ə⛇㭋Ə⭳㕛ῄ䕀∗

䏥✏䙫杅⸟⯸˛ 

㛰旃㕟⭟䟌嬿䙫䴀匰㕮ờḔƏḢ奨䙫㘖厒㖖䦸䴀匰 — 䏥⬿㖣厒㖖䦸Ə⑳叱⛇䴀匰 — 䏥

⬿㖣⤎勘⍁䉐椏˛怀⅐Ụ䴀匰䙫⹛Ị䛟徸Ə⤎䳫㘖奦K∴ 1700 ⹛Əⅎ⮠㘖栳暭⑳姊䬻˛

厒㖖䦸䴀匰ᷱ姿廰ṭ 25 栳Ə叱⛇䴀匰ᷱ姿廰ṭ 385 栳˛㛰嶊䙫㘖Ə叱⛇䴀匰ᷱᷧ敲栔ᾦ

⯒ṭ⛂ῲ⬾：㰩䟌㋮⌾Ƅ 
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  ỌᷲẲ䴠ㇸῸ⾅䴀匰Ḕ㈧䟌怺䙫⏋➪⎱ạ姊ᷧKᷧ㬈㖠䧲⻶䙫䉠㭱㖠㲼—▕娔㲼˛ 

  勈▞䯗切䧪 24朊：Ჾỉ悍濕⅞᳈⩁䕂
7
1
濕䨇㑺 19濕㬀廗ỉ悍Ʋ 

墡㮓：ℯ娔ᷧῲ䬻㠯 7 Ə ∮ 7+
7
7

= 8 Ə 8 ×
8
19
㈴㘖栳䛕Ḕ䙫 19Ə 

        ㈧Ọ㭊䢡䬻㠯㘖
8
19

 ×7 =
8
516 ˛ 

           

㚍㙕䯗切 6619Ƌ䏥䂡㞶㝾⍁䉐椏㔝営⒨Ə6619 㘖椏営䷏噆Ə⹛Ị䳫䂡奦K∴ 2160Ɛ

1700 ⹛ƌ： 

⫅Ჾỉ映䤋㽸 100䕂㨡㑷⸠濕⃄ノ‧ỉ⫍㨡㑷⸠濕‴ᳫ䕂Ჾỉ㨡㑷⸠彈搵㓭⊤Ჾỉ㨡㑷

⸠彈搵䕂
4
3Ʋ 

墡㮓：ℯ娔䬻㠯㘖 1 ⑳
4
3Ə 

        ∮ 1 + ¸
¹
·

¨
©
§
4
3 2  = 1 +

16
9

= 
16
25

 = ¸
¹
·

¨
©
§
4
5 2    

        俳栳䛕㘖 100 = Ƌ10ƌ2 

          10：
4
5

 = 8 

        ㈧Ọ⯮⎆娔䙫恱敞㓛⤎ 8 ῴƏ㭊䢡䬻㠯㘖 1 ×8 = 8Ə
4
3  × 8 = 6 ˛ 

暽䄝Ḵ䛲Ḳᷲἣḵ廪ằ㗌䙫㖠㲼溢䅐ƏἭ㜑◾ᷴ㘖⯴ㅊ㖣䔏Ą㭊䢡姊㲼ą䙫ㇸῸ㎷ᾂṭ⏍

ᷧ䨕〄䶔˛㘖␍Ƣ 
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攂     ᶴ     ᵊ 
 

  
             

            

 

 

 

 

 

ǀ    ㅓ    ⸯ    䄅    ᵊ    ǁ 

                      E           C          F 

                     A                         B 

                                    d            

 

  

 

 

 

                                ooooooooooo O  

 

 

 

                              pppppp 

 

ǀㅓⸯ䄅ᵊǁ䕂壹墡 

ị⛺⌱⽸䂡 rƏ⛺ⅎ㎌㭊 n 恱⽉䙫杉䨴䂡 SnƏ恱敞 AB䂡 anƏ 

∮ ACƠBCƠa2n˛ 

濑Ჾ濒ᶣ建序㮓㬀◑映䤋 

         AOBƠ
n

S
n Ə⛂恱⽉ AOBCƠ

n

S
n2  

⛂恱⽉ ABFE Ơ2   ABCƠ2Ƌ
n

S

n

S
nn −2 ƌƠ )(2 2 nn

SS
n

−  

O 

D 

˩  孬  俺  A  ˪ 

有一個㮴方形的⠟，每一邊的㮴中⥿開

一個⠟旑。出⍨旑後巁 20 㮶有一㥆㪊。

出⎨旑巁 14㮶後，徚③姐巁 1775 㮶チ

⧎能夠看到惴一㥆㪊。問這個⠟的邊旈

是多少熕 

˩  ㋦  ⿂  䊘  一  ˪ 

嬜自墝⿂⏁剛䵕傧䷤列䏜婩上Ṕ䬱

23 節。 
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         AOBƎABFEƠ
n

S
n Ǝ )(2 2 nn

SS
n

− Ơ )2(1 2 nn
SS

n
− ơ

n

S
ơ

n

S
n2  

㈧Ọ S2nƟSƟƋ2S2nƐSnƌ  

濑ᵊ濒Sn䕂㬀㮓 

ịODƠ rn Ə CDƠ dn ƠrƐrn    Ə ABƠ na  

rnƠ
22

4
1

n
ar −  

a2nƠ
22

4
1

nn
ad +  

S2nƠƋ 2
1 × R ×

n
a
2
1

ƌĿ2nƠ
2
n

an R 

䔘 nƠ12 ⏖⽾ πƠ 3Əⅴ㼟㬈怣徸˛ 

嬂志㘩㋰⭟䔆䧲⺍ㇽ媮凚 nƠ12 ⍚⏖˛ 

Ọᷱ䂡≰⾤✏ˣṄ䫇䭾堺ˤ㖠䔗堺㳏Ḕ䙫ὃ㲼˛ 

 

ǀ    ㅓ    ⸯ    䄅    ᳇    ǁ 
 

I                                   H          B         K 
          

 

 

 

 

 

 

 

 
 

A                                   L         C          M 
 

ǀㅓⸯ䄅᳇ǁ䕂壹墡Ƌ≰⾤㳏ƌ 

敞㖠⽉ HKMLƠ2OXƎX2Ǝ14X 

᷻敞㖠⽉ HBCLƠ敞㖠⽉ BKMC------ Ƌ1ƌ 

✏敞㖠⽉ ACBI ḔƏ䛛妹ᷰ妹⽉ ABCƠ䛛妹ᷰ妹⽉ ABI-----Ƌ2ƌ 

✏敞㖠⽉ HFDB ḔƏ䛛妹ᷰ妹⽉ BFDƠ䛛妹ᷰ妹⽉ BFH----Ƌ3ƌ 

✏敞㖠⽉ ALFJ ḔƏ䛛妹ᷰ妹⽉ AFLƠ䛛妹ᷰ妹⽉ AFJ------Ƌ4ƌ 

J F 
D 

G 

P E N 
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䔘Ƌ1ƌƋ2ƌƋ3ƌƋ4ƌƏ 

敞㖠⽉ IJDBƠ敞㖠⽉ HLCB 

î 敞㖠⽉ HKMLƠ2 敞㖠⽉ IJDB 

î X2Ǝ34xƠ2×1775×20 

î ➵䈭敞 250 㭌˛ 

攂     ᶴ     ᳇ 
 

⭟ 䔆 ὃ ⒨ 妧 㑐 

㝾 墼 㯸 

                                             

Sol:㭊㖠⽉䙫ᷱ恱//1775 䙫恱㈑ㇷ⅐ῲ

䛟ἣᷰ妹⽉Ə⯴ㆰ恱ㇷ㮻ὲ 

                        x    x                  î 1775:(34+2x)= x:20 

                                              Î34x+2x2=35500 

2x             x2+17x – 17750=0 

                                            Î䔘㠠䙫⅓⻶Ə 

                                                恱敞=2x=250(㭌)……….Ans   
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         ƋxƐ250ƌƋxƎ284ƌƠ0 
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娔➵䈭
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敞䂡 x 
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2
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2
1  
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17 ƌ2 

ƋxƎ8.5ƌ2Ơ17750Ǝ72.25 
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Figure 1 

 

Using History of Mathematics in Teaching Radical Root Numbers 
 

Ching-Ju CHIOU 
Taipei Municipal Shr-Jian Junior High School 

 

Being a mathematics teacher in junior high school, I am glad to experiment with 
different methods of teaching to offer my students various learning experience.  So I 
hope that teaching through history of mathematics will be helpful to my students.  In 
my presentation, I will show how I used history of mathematics to teach the concept 
and notation of square root numbers. 

In mathematics textbook, square root numbers are introduced through the length 
of a side of a square.  This reminded me of Nine Chapters on the Mathematical Art 
because square root numbers are also introduced in the same way. Nine Chapters on 
the Mathematical Art is the most important mathematics book in ancient china and 
was written in Han dynasty (about first century).  Though it had great influence on 
the development of china mathematics, we still don’t know the author. In the fourth 
chapter of Nine Chapters on the Mathematical Art, the author introduced an algorithm 
to find out what the length of a side of a square.  And he said: “In the case of an 
extraction which does not finish, the root cannot be extracted [exactly] and it is 
necessary to ming (杉) it with the side [of the square]” (敲Ḳᷴ䛈俬䂡ᷴ⏖敲Ə䕝Ọ

杉⑤Ḳ)  For examples, the ming of 100 is 10, and the ming of 5 is 5 .  Besides, 
there is an algorithm in Nine Chapters on the Mathematical Art to find out the length 
of a side of a square.  Liu Hui (about 263 A.D.), the most important commenter, 
explained through a geometric model (see Figure 1). 

 
 
 
 
 
 
 
 
 
 

In my class, I introduced and showed Nine Chapters on the Mathematical Art to 
the students.  They all very surprised that how it could be a mathematics book.  
There are no formulas in it and it is so different from the texts book they have seen.  
I also talked about Liu Hui and his contribution.  After introducing mathematics of 
ancient china, I not only presented some notations in west, including Christoff 
Rudolff’s and Rene Descartes’ notation, but also explained the evolution of the 
notation of radical root.  Because the notation of radical root is very strange for 
beginning learners, I hoped that through these learning experience students might not 
disgust it.  Regarding the algorithm in Nine Chapters on the Mathematical Art to 
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find out the length of a side of a square, it was introduced to my students after they 
had some basic ideas of radical root numbers.   Through the geometric model, most 
of them understood this algorithm and found it to be interesting and useful. 

 

Although I cannot explicitly conclude that how history of mathematics help my 
students learn mathematics, most of my students interested in what I presented and 
liked the way of learning mathematics.  Some students told me they not only learned 
mathematics but also Chinese literatures, history and English.  I think this experience 
would help students have more positive attitude to mathematics.  This is one of my 
educational goals. 


