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It is now more than 15 years since probability and statistics became a main stream strand across the 
curriculum commencing in the early elementary years (e.g., Australian Education Council [AEC], 
1991; Department of Education and Science and the Welsh Office [DES], 1989; National Council of 
Teachers of Mathematics [NCTM], 1989).  Although research and classroom experience during the 
ensuing period have produced a prodigious knowledge base on the teaching and learning of 
probability, there are still significant challenges regarding what probability should be taught and how 
it should be taught in order to foster understanding.  
 
 
The continuing challenge of what to teach 
 
Prior to probability and statistics becoming a mainstream strand, probability was only taught, if at all, 
at the high school level.  The high school curriculum in probability was part of the mathematics 
program and largely comprised “balls in urns problems” that had a major emphasis on counting and 
combinatorics.  As Scheaffer, Watkins, and Landwehr (1998) remarked in retrospect, “Counting is 
beautiful and useful mathematics, but it is not probability” (p. 17).  In addition to these veiled 
combinatorics problems there was often some treatment of the binomial and normal distributions and 
ipso facto of statistical inference.  
 
Mainstream probability: a beginning 
With the advent of the aforementioned curriculum reforms in the late eighties and early nineties, 
probability not only commenced in the early elementary school, it focused on key themes that were 
intended to spiral across the grade levels.  In analyzing emerging probability curricula of this period 
(AEC, 1991; DES, 1989; NCTM, 1989), Jones, Langrall and Mooney (2007) identified key themes or 
big ideas that percolated through the elementary, middle, and high school curricula.  In the 
elementary school curriculum, key ideas included the exploration and description of random 
phenomena arising socially and from random generators, and the representation and ordering of 
random outcomes.  This ordering process involved both experimental estimation and symmetry-based 
measures of probability, albeit, informal ones.  In the middle school, the key ideas of the elementary 
school curriculum were treated more formally with more precise representations of the sample space 
(both one- and two-stage experiments), empirical estimations and theoretical measures of the 
probabilities of events, and some consideration of compound events and independent events.  At the 
high school level, the measurement of probability was extended to random variables, discrete and 
continuous distributions (e.g., binomial, normal and geometric), and the use of these distributions in 
modeling random phenomena.  Probability distributions were also used to support work in statistical 
inference.   
 
Along with the identification of these key themes in content, educators at the cutting edge of 
curriculum development invariably highlighted the accompanying need for language and concept 
building (e.g., chance, certainty, odds, and independence) and, for the first time, advocated a highly 
visible emphasis on experimentation and simulation across all grade levels.  The emphasis on 
experimentation, advocated strongly in the writing of Steinbring (e.g., 1991), highlighted the 
importance of empirical estimation of probability (frequentist orientation) and its connection with 
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theoretical probability (classical orientation).  It also made possible the simulation and construction of 
various kinds of distributions (e.g., Burrill & Romberg, 1998; Scheaffer et al., 1998). This 
experimental orientation required technological support and was increasingly girded by graphics 
calculator and computer technologies that provided short- and long-run experimental data.  Finally 
there was a recognition that students of all ages would bring to the classroom misconceptions in 
probability (e.g., Konold, 1989, Shaughnessy, 1992, Tversky & Kahnemann, 1974), such as 
representativeness, availability, and the outcome approach, and that the content of these 
misconceptions should be confronted through experimental activity and reflection (NCTM, 1989, 
p. 110). 
 
Mainstream probability: further refinements 
By the arrival of the new millennium, the knowledge base in probability learning had burgeoned as a 
consequence of research undertaken during the 10-year period since probability and statistics became 
a mainstream strand (see Jones, 2005; Jones et al., 2007). This emerging research on students’ 
understanding of probability highlighted the need for greater curriculum emphasis on fundamental 
elements like variation and randomization.  
 
Variation is the sine qua non of both statistics and probability.  In statistics, variation refers to the 
differences exhibited by a sample of data values around some centre such as a mean or median.  For 
example, even though a group of children all belong to the same grade level, their heights will vary 
around an average.  More pertinently, if we weigh ourselves daily for a week, there will be small 
variations in mass about the weekly mean.  With respect to probability, variation is a key element of 
randomization in that outcomes vary about some expected value.  
 
Recent research (Shaughnessy & Ciancetta, 2002; Watson & Kelly, 2003) has revealed a great deal of 
instability and misunderstanding in students’ conceptions of variation in both statistical and 
probabilistic environments.  In responding to this research, Shaughnessy (2003, 2006) has suggested 
that the study of variation should be a prime curriculum element in launching probability learning.  As 
a corollary to this curriculum direction, there is also a growing tendency to have students explore 
variation in statistical environments before studying variation in probabilistic environments.  In 
essence, the study of statistical variation is seen to be pivotal in providing a natural impetus for the 
study of randomization; however, as the next paragraph reveals, randomization incorporates a unique 
type of variation.   
 
Although the process of randomization had been given lip service in earlier curriculum documents, 
contemporary research (e.g., Batanero & Serrano, 1999) has revealed that high school students, even 
after instruction in probability, demonstrated serious limitations in their understanding of 
randomization.  These authors noted that “students overemphasized unpredictability and luck to 
justify their attributions of randomness and this tendency seemed greater in older students…” (p. 565).  
From a curriculum perspective, Batanero and Serrano emphasized the need for randomness to be 
considered in terms of its multiple properties: local variability, long-term stability, the length and 
frequency of runs, and the proportion of alternations.  Other researchers (e.g., Amir & Williams, 
1999; Watson & Moritz, 2003) have found similar issues vis-a-vis students’ thinking about luck, 
fairness and bias. 
 
Accordingly, in current thinking about the probability curriculum, variation and randomization are 
perceived as the launching and anchoring elements; in essence, they set the scene for key elements 
such as the representation of the sample space, empirical estimation and theoretical measures of 
probability, and probability distributions.  Several researchers (Gal, 2005, Watson, 2006, Watson & 
Callingham, 2003) have moved the content of the contemporary probability curriculum even further 
through their discourses on probability literacy and statistical literacy.  In referring to the knowledge 
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elements of his probability literacy framework, Gal (p. 46) not only includes familiar elements such as 
big ideas (variation, randomness, independence, predictability and uncertainty), figuring probabilities 
(finding or estimating the probability of an event), and language (the terms and methods used to 
communicate about chance), he also introduces ideas like context and critical questions.  Context 
deals with “the role of probabilistic processes and communications in the world” (p. 52), and critical 
questions focus on the need for people to become familiar with the flaws, problems, and biases in 
probabilistic information.  An example of a critical question in probability is presented below: 
 

Sam buys a Gold Lotto ticket every week.  He never selects the first six numbers (1, 2, 3, 
4, 5, and 6) because he believes his chances are better by selecting a number from each 
line of the entry form.  What do you think about Sam’s reasoning? 

 
Watson (1997, 2006) recommends that children should examine critical questions beginning in the 
primary grades.  She also underlines an important curriculum link between critical questions and 
context, in that critical questions can be readily extracted from media, financial, and scientific reports.  
 
In summary, the issue of what to teach in probability has undergone several changes in the more than 
15 years since probability became part of a mainstream curriculum strand.  These changes have been 
subtle rather than spectacular but they have forged, from the early grades, stronger links between 
statistics and probability through key concepts like variation.  The on-going changes have also 
produced a stronger focus on experimental probability and its connection with theoretical probability.  
Moreover, as a consequence of these changes, the powerful and historical connection between 
probability and statistical inference has been made more transparent (see Pfannkuch, 2005).  
 
 
The continuing challenge of how to teach 
 
Even though probability was not a regular part of elementary and middle school curricula until the late 
1980s, early research on children’s probabilistic thinking did draw implications for the teaching of 
probability.  Most noteworthy was the research of Efraim Fischbein (e.g., Fischbein, 1975, Fischbein 
& Gazit, 1984).  In these studies Fischbein attempted to use experimental activities, involving 
probability generators, to transform children’s primary intuitions (cognitive beliefs derived only from 
experience) into restructured cognitive beliefs or secondary intuitions.  This research set the scene for 
a more comprehensive instructional theory generated by Steinbring (1991) and for further research on 
instructional environments in the last 15 years (see Jones, 2005). 
 
Instructional theory in probability: a beginning 
Utilizing an epistemological analysis of the nature of stochastics (statistics and probability), 
Steinbring (1991) examined probability from both its frequentist (empirical) and classical (theoretical) 
forms.  He claimed that neither the empirical situation nor the theoretical model can act alone to 
express the meaning of probability; rather, there is a need to develop these two dependent ideas in 
unison.  For Steinbring, learning involved the following sequence: (a) personal judgments or 
predictions about the random phenomenon in question; (b) comparisons between the empirical data 
and various conjectured theoretical models; and (c) the creation of generalizations and more precise 
characterizations of the random phenomenon, based on an evaluation of the comparisons described in 
(b).  As an example of Steinbring’s instructional process, let us investigate, as a random process, the 
first service performance of world number one tennis player, Roger Federer.  A possible instructional 
sequence might go as follows:  make some personal judgments about the percentage of Federer first 
serves that go in; collect actual data on Federer’s first serve and make comparisons between the first-
serve data and probability models of his first service (e.g., binomial, geometric); and finally, produce 
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a more precise description of the key statistical features of his first service that is based on one or 
more of these models.  
 
Computer environments  
Computers became an important tool in supporting Steinbring’s instructional theory in that they 
provided powerful classroom tools for creating more realistic simulations and for generating data.  
The advent of computer environments also enabled teachers and students to deal with more realistic 
probability problems, ones where simulation provided a genuine alternative to complex computations 
(Biehler, 1991).  
 
While the initial development of computer environments and simulations was directed largely at 
forging the gap between frequentist (empirical) and classical (theoretical) probability, recent research 
with computer microworlds (Pratt, 2000, Stohl, 1999-2002) has resulted in new pedagogical advances 
in probability.  For example, working from the assumption that students hold multiple, even 
competing, intuitions, Pratt’s Chance-Maker microworld enabled students to engage in a task that 
refined their understanding of randomness by enabling them to generate and evaluate the long-term 
behavior of gadgets (probability generators that sometimes required fixing).  The microworld helped 
them to focus their evaluation of random behavior by examining the sample space and data 
distribution of the gadgets and this in turn supported and enriched their understanding of randomness.  
Similar theoretical assumptions characterize Stohl’s (1999-2002) Probability Explorer microworld.  
 
From an instructional perspective, Pratt (2005) recommended that teachers need to produce 
probabilistic tasks that are linked to teaching objectives and are also rewarding for children.  In 
particular, he advocated the design of tasks that incorporate purpose (have a meaningful outcome for 
the student) and utility (enable children to appreciate the applicability of the idea).  Finally, he claimed 
that these tasks should involve the student in testing personal conjectures, performing large-scale 
experiments, and in experiencing the systematic variation of the context.  These latter characteristics, 
although geared to a computer environment, have a salient link with Steinbring’s (1991) instructional 
sequence. 
 
Cognitive frameworks and instructional theory 
Fischbein (1975), Steinbring (1991) and Pratt (2005) all highlighted the need for instruction to build 
on students’ existing notions of probability, whether they be immature intuitions or more formal 
understandings.  Given the importance of this link between instruction and students’ probabilistic 
thinking, recent research on cognitive frameworks (e.g., Jones, Langrall, Thornton, & Mogill, 1997; 
Polaki, 2005; Tarr & Jones, 1997, Watson, Collis, & Moritz, 1997) adds a further dimension to the 
development of instructional theory.  These frameworks (see Fig. 1) characterize and describe 
students’ probabilistic thinking according to various levels of cognitive maturity and across various 
probabilistic concepts such as sample space, probability of an event, conditional probability, and 
independence.  As such the frameworks provide a coherent overview of the kinds of probabilistic 
reasoning that students can be expected to bring to the classroom.  They also equip teachers with 
domain specific knowledge that can be used in the design, implementation, and assessment of 
instruction in probability.  
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LEVEL 1 
(Subjective) 

 
LEVEL 2 

(Transitional) 

 
LEVEL 3 

(Informal quantitative) 

 
LEVEL 4 

(Numerical) 
 

 
INDEPENDENCE 

 
• Predisposition to 

consider that 
consecutive events 
are always related. 

• Pervasive belief that 
they can control the 
outcome of an event. 

• Uses subjective 
reasoning which 
precludes any 
meaningful focus on 
independence. 

• Exhibits unwarranted 
confidence in 
predicting successive 
outcomes. 

 
• Shows some 

recognition as to 
whether consecutive 
events are related or 
unrelated. 

• Frequently uses a 
“representativeness” 
strategy, either a 
positive or negative 
recency orientation. 

• May also revert to 
subjective reasoning. 

 
• Recognizes when the 

outcome of the first 
event does or does 
not influence the 
outcome of the 
second event.  In 
replacement 
situations, sees the 
sample space as 
restored. 

• Can differentiate, 
albeit imprecisely, 
independent and 
dependent events in 
“with” and “without” 
replacement 
situations. 

• Some reversion to 
representativeness. 

 
• Distinguishes 

dependent and 
independent events 
in replacement and 
non-replacement 
situations, using 
numerical 
probabilities to 
justify their 
reasoning. 

• Observes outcomes 
of successive trials 
but rejects a 
representativeness 
strategy. 

• Reluctance or refusal 
to predict outcomes 
when events are 
equally-likely. 

 

Figure 1.  An extract of a framework describing middle-school students’ thinking in independence 
(Tarr & Jones, 1997) 

 
In terms of the design of instruction, cognitive frameworks highlight the diversity of students’ 
probabilistic reasoning and they assist teachers in the formulation of learning goals, in the 
development of learning activities and in conjecturing how the learning process might go.  In essence, 
they enable teachers to plan meaningful instructional sequences similar to those advocated by 
Steinbring (1991) and Pratt (2005).  With respect to implementation of instruction, cognitive 
frameworks can act as a filter for analyzing students’ oral and written responses and for building 
questions that will stimulate students to acquire more mature probabilistic thinking.  Finally cognitive 
frameworks can assist teachers in assessing students’ performance over time and in evaluating the 
effectiveness of their own instruction. 
 
Instruction that connects with statistics 
In discussing what aspects of probability should be taught, I made reference to recent developments 
that encourage a stronger link between probability and statistics, such as those involving the concept 
of variation.  Shaughnessy (2003) took this link even further by advocating an instructional process 
that introduces the study of probability through data. 
 
In explicating this data-based instruction, Shaughnessy (2003) built on the work of Gigerenzer (1994) 
who suggested that problems should be framed in terms of frequencies rather than probabilities.  The 
problem below provides an illustration of how this might occur. 
 

The price of regular unleaded gas in Australia was below $1.20 on only 15 of the last 100 
days.  How many days in the next 20 would you expect gasoline to fall below $1.20?  

 
This data-inspired use of frequencies is seen to provide a more contextual and transparent approach 
for students, at least in the initial stages of probability learning.   Shaughnessy wrote, “The importance 
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of probability questions in the context of real data supercedes past approaches to probability that 
started with counting problems and games of chance” (p. 224).  In furthering instructional theory, 
Shaughnessy has also highlighted the importance of maintaining an ongoing connection between 
statistics and probability and he especially emphasized the connection between the concept of 
variation in statistics and the concept of sample space in probability.  On the one hand, students need 
to be able to identify the set of possible outcomes in a probability experiment; on the other hand they 
need to realize that while the outcomes vary they occur predominantly in a “likely range” (p. 224).  
The connection between variation and sample space needs to be re-examined regularly: in diverse 
contexts and in various aspects of probability content culminating in the powerful bond between 
probability distribution and confidence intervals. 
 
Like the issue of what to teach, the challenge of how to teach probability has also undergone 
substantial change during the past 15 years, with the main thrust being on the development of 
instructional theory that unifies statistics and probability.  In this kind of instruction data are used to 
presage probability through frequency, to link sample space and variation, to connect empirical and 
theoretical probability, and to build notions of probability distributions.  Such an instructional theory 
also recognizes the importance of learning environments, both computer and otherwise, that utilize 
cognitive frameworks of students’ probabilistic thinking to inform instruction that incorporates both 
purpose and utility.    
 
 
Conclusion 
 
The teaching of probability is in its infancy, especially as part of a mainstream curriculum strand that 
traverses elementary, middle-school, and high-school education.  In spite of the fact, that it was 
mathematically desirable for statistics and probability to be unified in a single strand, early curriculum 
documents (AEC, 1991; DSE, 1989; NCTM, 1989), especially at the elementary and middle-school 
levels, generally treated the two areas as separate topics.  Research and instructional experiences over 
the past 15 years have resulted in a concerted effort to link statistics and probability in addressing the 
challenges of “what to teach” and “how to teach”.  Given this stronger connection, it is appropriate in 
a paper like this to advocate more universal usage of the term “stochastics”.  In my mind the use of 
stochastics would provide a more valid curriculum indicator of where the probability and statistics 
strand is headed and would also send a robust signal to researchers interested in investigating the 
learning and teaching of probability and statistics. 
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