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Résumé

In mathematics education, the importance of considering relationships
between syntax and semantic has already been support by many authors,
especially in the field of numbers and algebra, more often (but not always)
with few references to logical philosophy. In this paper, I aim to show that
a model theoretic point of view supports the relevance for mathematical
education of considering semantic as a key for conceptualisation ; this due
to the fact that it offers powerful tools to take in account the articulation
between forms and content, and to distinguish between truth and validity,
that are crucial issues in teaching and learning mathematics.
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1 Introduction
In our work, we assume a logical perspective on semantics, that suits with

the following definitions referring to Morris (1938) or Eco (1971). Semantics
concerns the relation between signs and objects they refer to ; syntax concerns
the rules of integration of signs in a given system, and pragmatics the rela-
tionship between subjects and signs (Morris, 1938 - Eco, 1971). According with
Da Costa (1997), it is necessary to take in account these three aspects for a
right understanding of logical mathematical fields. The two following examples
illustrates this point of view.

Example 1 The addition of integers
The semantical point of view refers to the defintion of the addition of two in-

tegers as the cardinal of the union of two relevant discrete collections ; the result
is independent of the nature of the involved object (with respect that mixing these
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objects will preserve their integrity) The Syntactic point of view comes when the
addition is defined as the iteration of the successor ; it does not necessitates
reference to quantities. This provides algorithmic rules in a given system of nu-
meration. The pragmatic aspects concern the articulation between both seman-
tical and syntactic aspects that is build by a forth and back between calculation
(syntax) and effective counting (semantics).

Example 2 The negation
Negation is a connector that articulates unavoidably semantics and syntax.

Indeed, the negation of a proposition exchanges the truth value (3 is an even
number / 3 is not an even number) and the negation of a property exchange
those objects who own the property (To be an even number / not to be an even
number), following precise syntactic rules with respect of the concerned lan-
guage. In French, for singular proposition, we apply “ne ..pas” on the verb (3
est un nombre pair/3 n’est pas un nombre pair) ; for universal propositions, ac-
cording with the linguistic norm, we apply the same rule (Tous les nombres sont
pairs/Tous les nombres ne sont pas pairs), while for existential proposition, we
use the quantifier “aucun” (no). 1 (Il y a un nombre pair / aucun nombre n’est
pair). However, it is well known that some linguistic forms may lead to refe-
rential ambiguities, needing to take in acount the context. In partcular, opposite
with the linguistic norm, statements in form "Tous...ne...pas" ("All ... are ...
not ") are sometimes interpreted as "Aucun" (No). For example, the statement
“Tous les nombres ne sont pas pairs” (1) (not all numbers are prime) is some-
times interpreted as “Aucun nombre n’est pair” (2) (No prime number is odd),
the contrary in Aristotle’ sense. It is noticeable that this interpretation is rein-
forced by the possibility of changing “ ne sont pas pairs” (are not even) in “sont
impairs” (are odd) in sentence (1), that gives “Tous les nombres sont impairs”,
synonym of (2). Generally, but not always, the context permits to choose the
right interpretation. This leads to actual difficulties for students in practising
mathematics, in particular, confusion between negation and contrary, that are
largely underestimated in the teaching of mathematics, whatever the level. 2

The semantic perspective in logic appears in Aristotle, and is developed in
the late nineteenth and early twentieth, mainly by Frege (1882), Wittgenstein
(1921), Tarski (1933, 1944) and Quine (1950). In particular, Tarski (1933, 1944)
provides a semantic definition of truth formally correct and materially adequate,
through the crucial notion of satisfaction of an open sentence by an object,
and developed a model theoretic point of view, in which semantics is at the
very core. Semantics is to put in relation with syntax on the one hand, and
pragmatic on the other hand. We have already introduce two examples in order
to illustrate this classification. In the second section, we indicate some crucial
issues in mathematics education related to syntax and semantic. In the third
one, we give epistemological insights on the elementary model therotic point of

1. see for example Fuchs 1996
2. this is developped in Durand-Guerrier and Ben Kilani 2004, and in Durand-Guerrier

and Njomgang-Ngansop, 2009
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view, before showing on two examples its fecondity for didactical analysis in
section 4.

2 Semantics and syntax : somme crucial issues in
mathematics education

There are several crucial issues in mathematics education related with the
articulation between semantics and syntax. I will mainly focus on the following
ones : Concrete issues versus abstraction - Objects and propertiesversus sta-
tements - Content versus form - Empirical versus theoretical - Truth versus
validity.

2.1 Concrete issues versus abstraction
The great Physician Paul Langevin considered that " Le concret, c’est de

l’abstrait rendu familier par l’usage" ("What is concrete is abstraction that be-
came familiar through use") (Langevin, 1950). This is an interesting point of
view that we can recognize as mathematics educators. For example, “Integer
number”, as the measure of the size of a discrete collection, is a rather abstract
concept. It has to be overcame by young children, before they can get faith in
the information that integers carry. This is one of the main issue of preleme-
natry (grade 3-6) and elementary (grade 6-11) school. It is then supposed to
be something concrete enough to support the algebraic construction in middle
school. In that sense, as stake by Chevallard, Integers provide a semantic for
the syntax of algebra.

Lorsqu’en classe de seconde, l’enseignant passe de l’observation
que 2+3 = 5 et 3+2 = 5 a l’écriture de la relation générale a+ b =
b+ a, il passe alors de calcul sur les nombres (entiers naturels) à un
calcul algébrique (à coefficients entiers naturels). En d’autre termes,
un calcul algébrique que nous ne définirons pas plus précisément ici,
rend manifeste une syntaxe à laquelle le domaine de calcul associé
fournit une sémantique. (Chevallard, 1989, p.50)

3

Barallobres (2007) propose a fine ingenierie relying on this perspective for
an initiation to elementary algebra (grade 11-13). Nevertheless, his work shows
clearly that the relationship between syntactic equivalence and semantics equi-
valence does not necessarily encompass the generality provided by syntax.

3. “When in grade 10 (15-16), teachers go from the observation 2 + 3 = 5 and 3 + 2 = 5
to the general relation a + b = b + a, they go from calculation on numbers (integers) to an
algebraic calculation (with integer coefficients). In other words, an algebraic calculation that
we will not define more precisely here, reveal a syntax for which the associated domain provide
a semantics” (our translation)
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2.2 Objects and properties versus statements
It is often said that mathematics deal with statemenats either true or false,

and that it is an important issue for students to incorporate this point. Howe-
ver, as Vergnaud claims, mathematics also deal with objects, properties, rela-
tionships, on which are build the operative invariants involved in mathematics
activity :

Concepts et théorèmes explicites ne forment que la partie visible
de l’iceberg de la conceptualisation : sans la partie cachée formée
par les invariants opératoires, cette partie visible ne serait rien. Ré-
ciproquement on ne sait parler des invariants opératoires intégrés
dans les schèmes qu’à l’aide des catégories de la connaissance expli-
cite : propositions, fonctions propositionnelles, objets - arguments"
(Vergnaud, 1991).

4

It is well known that the logical rule "a counter example is sufficient to
refuting a general statement" is in conflict with common sense. I claim that it is
also in conflict with mathematical activity, due to the fact that a mathematician
will not give up examining a conjecture after having found an isolated counter-
example. Opposite, it may contribute to progress in the problem solving (Polya
1945, Lakatos 1976, Balacheff 1987). To enlighten this point, it is necessary to
consider two facets of mathematical activity : one concerning the pursuit of truth
for close statements, the other concerning the exploration on objects, properties
and relationships. We developp now an example out of Arsac and al. (1992)
enlightening this point. In this book, the authors propose various situations
aiming to initiate students in grade 6 or 7 (11-13) to deductive reasonning,
more specifically to make them aware of the rules for mathematical debate.

Example 3 About examples and counter-examples
Consider the general statement n2 − n + 11 is prime for every integer n.

Consider now the property n2 − n + 11 is prime. This property is verified by
every integer from 1 to 10 ; it is not verified by 11 (a counterexample that can be
recongnized on the form of the statement), and its multiples ; also 12 or 25 do not
verify the property. This situation has been implemeted in grade 7 in France, fol-
lowing a general organisation : individual work (about 10 min) - collective work
in small groups - redaction of a poster in each group - presentation and discus-
sion on the posters - institutionnalisation of what has been learnt concerning
the problem and the rule of mathematical debate. Exploring the statement in
grade 7 (12-13), students work with objects (integers) ; they make caluclations
by assigning a value to letter n and they look for the primality of the number
they get. Some of them declare the statement false as soon as they find 11 is a

4. "Concepts and explicit theorems form only the visible part of the iceberg of concep-
tualisation : without the hidden part formed by “operative invariants”, this visible part will
be nothing. Reciprocally, we are not able to talk about the “operative invariants” integra-
ted without the support of the categories of explicit knowledge : proposition ; propositional
functions, objects-arguments." (Vergnaud, 1991) (Our translation)
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counter example Others who first do not identify the counter-example 11 say the
statement is true, and then, after the counter-example has been recongnized in
the whole class, state that the statement is neither true, nor false, or both true
and false, or look for a domain where it is always true. We present now some
excerpts of the general debate on a particular poster on which the students have
written that the statement is true - Marie is one of the author of the poster.

(40) Student : there is an exception, hence it is not always
(41) Marie : That has been established. Except for this, it is always a prime

number. What if we eliminated 11. . . ? (. . . )
(63) Marie : Yes but 22 is twice 11 ; we can maybe try 33 ; I think that this

will also be an exception.
(64) Marie : I think they have won, because 25 is also an exception.
The debate went on conerning the number of exceptions necessary to get a

conclusion :
(76) Marie : They are no longer exceptions because 22, 33, are all multiples.
At the end of the debate, Marie added that to be sure of getting a true sen-

tence, it is necessary to be under 100. A more developped presentation of this
example can be found in Durand-Guerrier (2008).

2.3 Content versus form
An important part of the algebraic work consists in recognizing the form of

an expression and in transforming it in an equivalent expression through syn-
tactic rules. It could appears that it is completely "blind calculation" ; however,
interpretating such a syntactic equivalence in a given mathematical domain does
not lead necessarily to a sematic equivalence. Indeed, it is necessary for this that
the syntactic rules were in acquaintance with the semantic constraints.

“When someone in an algebraic context indicates a set of num-
bers, he also indicates all the semantics, ie. The denotation and the
equivalence of each sort of algebraic expression” (Nicaud et al., 2001.)

Example 4 The following algebraic expression are semantically equivalent when
interpreted in classical set of numbers (they have the same denotation, Drou-
hard, 1992) but if interpreted in a matrix context, due to the non commutativity
of mutliplication of two matrices, the thrid and fourth expressions are not equi-
valent to the first and the second ones.

1. 10x2 − 4y2

2. 5(x2 − 9y2)

3. (5x− 15y)(x+ 3y)
4. (10x4 − 35x2y2 − 45y4)/(x2 + y2)

2.4 Empirical versus theoretical/Truth versus validity
The relationship between empirical and theoretical aspects is essential in the

process of mathematisation, as state Chevallard :
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« Dans une mathématisation complète, on s’assure qu’un fait est
vrai sur une base expérimentale, puis on s’assure que dans la théorie
qu’on a bâtie par ailleurs, on peut déduire le fait en question. »
(Chevallard 2004, 35)

5

Example 5 The fact that 1/3 = 0, 333. . . . is a true statement is an empirical
result for a student who is able to master the division with a decimal quotient,
while the fact that 0, 999. . . .. = 1 is a true statement is clearly not an empirical
result.

In both cases, the result can be proved in the standard real numbers theory,
with the classical definition of equality : two real numbers are equal if and only
if the difference between these two numbers is less than any strictly positive
number, but there is a fundamental difference. In the first case, the proof permits
to skate that the theoretical choices fit the empirical results ; in the second case,
the proof permits to skate that this unexpected result is a logical consequence
of the choices made in the standard real numbers theory ; it is noticeable that
to establish this truth, it is necessary to remain in the real number theory. It
is well known that tertiary students face strong difficulties with this strange
equality. Recently, in an experimental course where this equality was discussed,
a fresh tertiary student declared : “I understand the proof that 0, 999. . . .. = 1,
but I don’t believe it is true.”

3 What is a model-theoretic point of view ?
Model theory is developed by Tarski (1955) in the continuity of his work

on the semantic definition of truth for quantified logic. A semantic definition of
truth put in relation a formalized language with interpretative structures of this
language. This point of view was already present in Aristotle, but Wittgenstein
and Tarski give a decisive essor to this point of view in the early twentieth.

3.1 A semantic version of propositional calculus (Witt-
genstein, 1921)

In the Tractatus logico-philosophicus, Wittgenstein proposes a formalization
of the notion of proposition. A proposition is a linguistic entity that is either
true or false. The components of the system are “propositional variables”, that
could be interpreted as propositions in some particular piece of discourse. There
are two principles : the principle of bivalence, proposing that there are exactly
two truth values in the system - the principle of extension, which asserts that
the truth-value of a complex sentence is entirely determined by the truth values

5. In an achieved mathematisation, one insures that a fact is true on an experimental basis,
then one insures that in the theory that one has build furthermore, it is possible to deduce
the given fact.) (Our translation)
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of its elementary components. Wittgenstein introduced the truth-tables, and
consider all the possible distribution of truth values, in particular with two pro-
positions (16 distribution among them those of the classical connectors). With
the principle of extension, it is possible to determine the truth-table of any
complex sentence. Among them, tautologies and contradictions play a particu-
lar role. A tautology is a statement of the system true for any distribution of
truth-value, that means true for any interpretation in any piece of discourse,
while a contradiction is a statement of the system false for any distribution of
truth-value ; so false for any interpretation in any piece of discourse. Tautolo-
gies such as S ⇒ S′ support the classical inference rules. For example, given
the statement S : p(p ⇒ q) and the statemenat S′ : q, S ⇒ S′ is a tautology
associated to Modus Ponens (P ; and If P, then Q ; hence Q). Tautologies and
contradictions provide no information on the state of world, while the truth
value of a proposition which is neither a tautology nor a contradiction expresses
its agreement or its disagreement with the facts or the state of things that it
pretends describing (Wittgenstein, 1921).

3.2 The semantic conception of truth (Tarski, 1933, 1944)
The main concern of Tarski is to give a definition of truth materially ade-

quate and formally correct (Tarski, 1944). He claims that in his study, he only
looks for grasping the intuitions expressed by the so named « classical » theory
of truth, i.e. this conception that “truly”as the same signification as “in agree-
ment with reality” (opposite with a conception that “true” means useful under
such or such aspect (Tarski, 1933). In order to be formally correct, such a de-
fintion ought to be recursive, but it is not possible to grasp directly recursivity.
The idea of Tarski was to introduce the notion of satisfaction of a propositional
function (a predicate) of a given formal language in a « domain of reality » (a
piece of discours, a mathematical theory etc.) . He gave the nowaday classical
example : for all a, a satisfies the propositional function « x is white » if and
only if (it is the case that) a is white. This defintion of satisfaction is the key
for a recursive defintion of the thruth of a complex sentence. First, there is an
extension of logical connectors between propsitions, as defined by Wittgenstein,
to connectors between propositional functions (predicate), as we have already
seen for negation. For example, given an interpretation, and P and Q two mo-
nadic predicates (with exactly a free variable), and a an element of the discourse
universe, a satisfies P (x) ⇒ Q(x) if and only if a satisfies P (x) and Q(x), or
a does not satisfies P (x). Second, the two quantifiers "for all" and "exists at
least one" are defined in agreement with common sense. Then, once the logical
structure of a sentence is identified (atomic formulae, scope of connectors and
quantifiers), it is possible to establish the truth of the sentence, as soon as we
know the truth value of the interpretation of each atomic formula.
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3.3 A simple and fruitful point of view
The model theory emerge in 1955, but the main ideas are already present in

previous papers. It relies on a simple and very fruitful point of view.

3.3.1 Model of a formula

Given a formalized language L, a syntax providing well-formed statements
(formulae) : F , G, H . . . .., an interpretative structure (a domain of reality, a
piece of discourse, a mathematical theory) is a model of a formula F of L if and
only if the interpretation of F in this structure is a true statement.

Example 6 Let us consider the formula : ∀x∀y(S(x, y)∧S(y, x)⇔ (x = y)) and
the set R of ordered real numbers in which S is interpretated as the relationship
‘to be inferior or equal’. The interpretation of F in R expresses that « the
relationship ‘to be inferior or equal’ is antisymetric. This statement is true.
Hence, we have a model of F . Opposite, if in the set of ordered real numbers, S
were interpretated as the relationship ‘to be equal’, we will not have a model of
F .

3.3.2 Logical consequence

From the concept of model of a formula, Tarski defines the clue concept of
logical consequence in a semantic perspective : a formula H is a logical conse-
quence of a formula G if and only if any model of G is a model of H (Tarski,
1936). As it was the case for propositional logic in Wittgenstein (1921), logical
consequences support validity, and hence classical mode of reasoning in mathe-
matics (Quine, 1950), as the following ones.

1. G : p(x) ∧ (p(x)⇒ q(x)) H : q(x) H is a logical consequence of G related
with Modus Ponens in Predicate calculus.

2. F : p(x) - G : ∀xp(x) - H : ∃xp(x)
F is a logical consequence of G - G is not a logical consequence of F
H is a logical consequence of F - F is not a logical consequence of H

3. F : ∀x∃yp(x, y) ∧ ∀x∃yq(x, y)
G : ∀x∃y(p(x, y) ∧ q(x, y))
F is a logical consequence of G - G is a not a logical consequence of F .

The last point is closely related with the dependance rule and may lead to
unvalid proofs, encountered both in History of mathematics, and in tertiary
students work (Durand-Guerrier and Arsac, 2005) 6

6. This will be enlightened in paragraph 4.1.
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3.4 Methodology of deductive sciences
In his famous book Introduction to logic, Tarski introduced in chapter VIII

the methodology of deductive sciences. Given a mini deductuive theory (he gave
the example of the congruence of segments), in which there are primitive terms,
defined terms, axioms and theorem, one associates an axiomatic formal system,
without reference to objects, that means a language and a set of formulae that
could be reinterpretatd in the given mini theory. He defines then a model of the
axiomatic system as any interpretation in which the formulae corresponding to
the axioms of the given theory are interpreted by true statements. Of course,
the first theory is a model of the axiomatic formal system, but there are also
other models. This leads to two important results.

3.4.1 Deduction theorem

Tarski proves, along with other logicians, the deduction theorem, namely

Theorem 1 Every theorem of a given deductive theory is satisfied by any mo-
del of the axiomatic system of this theory ; moreover at every theorem one can
associate a general logical statement logically provable that establishes that the
considered theorem is satisfied in any model of this type.

As a consequence, all the theorems proved from a given axiomatic system
remain valid for any interpretation of the system. This leads to the so named
Proof by interpretation.

3.4.2 Proof by interpretation

A proof that a given statement is not a logical consequence of the axioms
of a theory consists in providing a model of the theory that is not a model of
the formula associated with the statement in question. For example, the non-
Euclidean geometries provide models of the axiomatic formal system build on
the four first Euclid’saxioms. That the fifth Euclid’s postulate is not true in
non-euclidian geometries proves that it is not a logical consquence of the four
others. It will not be possible to provide a logical proof of this postulate from
the four others ; as a consequence, due to the fact that in eucldian geometry,
we want this statement to be true, it is necessary to add it as an axiom of the
Euclidian Geometry.

As said Sinaceur (1991a), the model theoretic point of view offers powerful
tools to take in account form and content and to distingish between truth and
validity, that are crucial issues in teaching and lerning mathematics. In a didactic
perspective, this point of view offers fruitful paths to enrich a priori analysis and
analyze students activity, as we will see in the next section.
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4 Didactic perspectives
As we have seen in the previous section, a main issue of a semantic perspec-

tive is to overcome the limitations of syntax in order to explicit the relationships
between truth and validity. We will elnlighten this now on two examples. The
first example concerns a proof out of a French Textbook (Houzel, 1996, 26) in
which we can identify a lack of rigor that could be problematic in a mathema-
ticas education perspective. The second example is an illustration of the use of
the model theoretic point of view to analyze mathematical activity.

4.1 About an invalid inference rule
In Houzel (1996), a French textbook adresses to fresh tertiary students, we

meet at the very beginning classical theorems in calculus and their proof. As it
is often the case, the proofs are rather short, some steps remaining implicit. This
is a common practise in textbooks, due to the fact that expliciting every steps
would provide proofs difficult to read. However, in some cases, it could hide
important features concerning validity, which is at the very core of proof, and
could reinforce difficulties met by students. This is the case with the example
that we present now. The theorem to prove is a classical one 7.

Theorem 2 Given two functions f and g defined in a subset A of the set of
real numbers, and a an adherent element of A, if f(t) and g(t) have h and k
respectively for limits as t tends to a remaining in A, then h+k is the limit of
f+g has in a.

Proof.
By hypothesis,
forall ε > 0, there exists η > 0 such that t ∈ A and |t− a| ≤ η
implies
|f(t)− h| ≤ ε and |g(t)− k| ≤ ε ;
thus we have
|f(t) + g(t)− (h+ k)| = |f(t)− h+ g(t)− k| ≤ |f(t)− h|+ |g(t)− k| ≤ 2ε.

The first assertion could be interpreted as the application of the invalid
inference rule : “for all x, there exists y, such that F (x, y)” and “for all x,
there exists y, such that G(x, y)” hence “for all x, there existsy such that F (x, y)
and G(x, y)”

In some interpretations, it is possible that the two premises are true and the
consequent is false, due to the fact that given a value for x, once a value for y
chosen among those which existence is asserted for F , it is not possible a priori
to consider that this value satisfies also G. This is precisely codified in natural
deduction systems such as Copi’s one who provides rules for introduction and
elimination of connectors and quantifiers (Copi, 1954). The use of this invalid
rule can be found in many situations, providing a proof with a gap. Of course,

7. we translate from french
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in the proof by Houzel, we know that it is easy, given an ε, to build a common
η for the two functions due to the properties of order on real numbers, but it
is not always possible. In some cases, the use of this invalid rule lead to an
incorrect proof for a true statement, or an incorrect proof of a false statement.
This may be encountered either in history (Abel, Cauchy, Liouville, Seidel) or
in undergraduates or graduates students’ proofs. Such examples can be found in
Durand-Guerrier and Arsac (2005) and Durand-Guerrier (2008). This enlightens
a very important difference between an expert and a novice in mathematics :
an expert in a mathematical field knows when it is dangerous to slack off the
rigorous application of rules of inference, while novices have to learn this during
the time they acquire the relevant mathematical knowledge. This supports our
hypothesis that these two aspects of mathematics cannot be learned separately.

4.2 A back and forth between objects and theoretical ela-
boration in Solid geometry

We will present now an example of analysing mathematical activity in solving
problem for a model theoretic point of view. The problem is to determine all the
regular polyhedrons, i.e. all the convex polyhedrons whose faces are congruent
regular polygons, with the same number of faces at each vertex. As it is well
known, there are five regular polyhedrons, known as the Plato’s Solids. A clue
result is that there is no regular polyhedron with hexagonal faces. Indeed, while
assembling three regular hexagons, we get a full angle (four rights angles, 360
degrees), such that it is not possible to get a triedre angle. This problem was
proposed by Thierry Dias, in the frame of a long term research (Dias, 2008)
in a teacher training session (primary school) concerning the role of the expe-
rience in learning mathematics. Various materials have been provided (plastic
pieces easy to articulate and disarticulate, compass, rules, square, protractor,
scissors, strong paper). The work of four teachers working together on the pro-
blem (Charles, Simon, Georges, Julie) has been audio and video recorded. We
worked on the transcription of the audio, using the video for some precision
when needed.

Our focus is on a moment where they put in relation what they are expe-
riencing with the material with their mathematical knowledge, and/ or their
daily life, concerning the possibility of realising, or not, a regular polyhedron
with hexagons.

4.2.1 A view on the teachers work

At the beginning of the work, Julie expresses the idea that there is an infinity
of such polyhedrons “because I can have a triangle, a square, a pentagon, an
hexagon, . . . ”, while Georges enounces that he has a doubt on the possibility
to realise it, and declares that “there is necessarily a law somewhere”. Simon
tries to make a solid with regular pentagons, while Charles, who is convinced
that it is possible, try to make a solid with regular hexagons. The idea of the
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football balloon appears 8, and also the search of a numerical progression, while
Simon became convinced for the possibility of realising a regular polyhedron
with hexagons. As the pieces of plastic are flexible, they try to give a volume. The
importance of angle emerges progressively.We give an excerpt of the exchanges. 9

1. Georges : « you imagine that opening a little bit more .. »
2. Simon : « yes, yes, the angle, a small angle more and you can do.. »
3. Charles : « Sure »
4. Simon : « .. . thousands .. you have diamonds that have I do not know how

many facettes (he shows with his hands the contours of a kind of sphere)
5. Charles : « yes »
6. Simon : « there are things with regular faces that have hundreds some-

times».
7. Georges : « No, but I believe that it does not work ; it corresponds you

know to the pavage of floor when we put on tiles, it remains flat, never
you can do a « truc » (. . . ) tiles that you put on the floor.

8. Simon : «ouais but me, for me, if does. . . but there, is it possible that it
forms an angle. . . . »

9. Georges : « look, you encounter anew a figure which practically identical,
on a big.. « machin », you see . . . on a big hexagon..so you see we will
encounter the same problem, anew when you will have done many like
this. »

10. . Charles : « but here also I encounter the a yes but I am not on a straigth
line »

11. Simon : « That imports is that when we have five sides, it is possible to
do an angle which. . . I don’t know how it is. . . »

12. Georges : « Yes »
13. Simon : 100, 100, 115 degrees »
14. Georges : « hum.. »
15. Simon : « So, as soon as you have six, it is no more possible to do an angle

»
16. Georges : « that is »

4.2.2 Evolution of the « local mini theory » of the group

We now look at the teacher work with the lense of the methodology of
deductive sciences (see subsection 3.4). Analysing the interactions, we consider
that at the very beginning of their work, some statements are considered by the
participants as true. We consider so a mini theory T containing the definition
that we have provided (a regular polyhedron is a convex polyhedron whose faces

8. the footbal balloon is a semi-regular polyhedron with hexagonal and pentagonal faces
9. we translate from french.
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are congruent regular polygons with the same number of faces at each vertex),
and two explicit axioms :

A1 : There is exactly a regular polyhedron for each regular polygon. A2 :
There is a infinity of regular polygons.

From this mini theory, emerge two logical consequences : E1 : It is possible
to realise a regular polyhedron with hexagonal faces. E2 :There is an infinity
of regular polyhedrons.

Along the work, appear a new existential statement : E3 : There exist regular
polyhedrons with a very large number of faces.

and the negation of E1, namely E4, and its corrolaire E’4 : E4 : It is not
possible to realise a regular polyhedron with hexagonal faces. E’4 : No regular
polyhedron has hexagonal faces.

supported by a new axiom : A3 : It is possible to cover the plane with
hexagons.

And finally, appears a last axiom : A4 : To realise a polyhedron, it is
necessary to be able to do an angle.

Within the group, the two contradictory statements E1 and E4 are concur-
rent. Due to the principle of contradiction, it is necessary to reject one of the
two statements. In such a situation, it is possible either

1. to work for establishing the existential statement E1 ;
2. to prove that the universal statement E4 is a logical consequence of axioms ;
3. to rework the theory (axioms and/or definitions) ;
4. d) to question the experimental context
Georges first questions the experimental context (« to take rigid things »),

then he proposes an adaptation of the definition for the solid that Charles and
Simon try to build (« playing on the small spaces »), while Simon and Charles
remain on the position a), till the exchange number 8 in which Simon introduces
implicitly the new axiom :

A4 : « To realise a polyhedron, it is necessary to be able to do an angle »
Georges and Simon agree that this permit to eliminate E1.
They then engaged themselves actively in the problem resolution with the

new mini local theory which comprises the axioms A2, A3 et A4. Indeed, the
rejection of E1 destroy the axiom A1, providing a counterexample (the hexagon)
to the general statement. It is to notice however that this is not explicitly said in
the group and the statement E2 (there exist an infinity of regular polyhedron)
is not questioned at that moment in the group. This statement is no more a
logical consequence of the assumed axiom. We know that it is false, but their in-
vestigation lead them to consider it as true, considering the convex polyhedrons
get with various Rhombi.

In this situation, we have a typical example of back and forth between "sen-
sible objets" and "theoretical objects" that we encounter in geometry, suppor-
ting the thesis that Euclidian geometry can be considered as a modelisation of
the sensible space, as stated Nicod (1924) 10.

10. Tanguay and Grenier 2009 show rather similar phenomenoms
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5 conclusion
Adopting a semantic point of view, and being situated at a meta mathematic

level, a model-theoretic point of view provides on the one hand a frame to analyse
a priori the situations under both mathematical and didactical aspects, and on
the other hand to analyse students’ activity, in particular by providing to the
researcher a methodology to identify and study the elaboration, the evolution
and the eventual overtaking of the local axiomatic all along the resolution and/or
the proving process. In that sense, we strongly agree with Sinaceur (1991b, 2001)
that :

La logique semble bien, contrairement à ce que pensait Wittgen-
stein, un indispensable moyen, non de « fonder » mais de comprendre
l’activité mathématique. C’est-à-dire pour une part, explorer la rela-
tion de l’implicite à l’explicite d’une théorie.(. . . ) Une part essentielle
de l’analyse épistémologique est ainsi ouvertement prise en charge
par l’analyse logique. (. . . ). En même temps elle apparaît comme
une épistémologie effective dans la mesure où la réflexion est orien-
tée vers et investie dans l’agir.(Sinaceur, 1991b) 11

We have given some evidence of the relevance of the model theroetic point
of view for the researcher ; our hypothesis is that it is also relevant for teacher
training, in particular in order to develop an epistemological vigilance on their
own practises conerning logical aspect of mathematics activity. An open question
cocnerns why, when and how teaching logic for fostering students competencies
in proof and proving in mathematics. Further resaearch are needed.
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