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Fields Medal

Terence Tao

CITATION:
"For  his  contributions  to  partial  differential  equations,  combinatorics, 
harmonic analysis and additive number theory"

Terence Tao is a supreme problem-solver whose spectacular work has had an 
impact  across  several  mathematical  areas.  He  combines  sheer  technical 
power,  an  other-worldly  ingenuity  for  hitting  upon  new  ideas,  and  a 
startlingly natural point of view that leaves other mathematicians wondering, 
"Why didn't anyone see that before?"

At 31 years of age, Tao has written over 80 research papers, with over 30 
collaborators,  and his interests  range over a wide swath of  mathematics, 
including  harmonic  analysis,  nonlinear  partial  differential  equations,  and 
combinatorics. "I work in a number of areas, but I don't view them as being 
disconnected," he said in an interview published in the Clay Mathematics 
Institute Annual Report. "I tend to view mathematics as a unified subject and 
am particularly happy when I get the opportunity to work on a project that 
involves several fields at once."

Because of the wide range of his accomplishments, it is difficult to give a 
brief summary of Tao's oeuvre. A few highlights can give an inkling of the 
breadth and depth of the work of this extraordinary mathematician.

The first highlight is Tao's work with Ben Green, a dramatic new result about 
the fundamental building blocks of mathematics, the prime numbers. Green 
and Tao tackled a classical question that was probably first asked a couple of 
centuries  ago:  Does  the  set  of  prime  numbers  contain  arithmetic 
progressions of  any length? An "arithmetic  progression" is  a  sequence of 
whole  numbers  that  differ  by  a  fixed  amount:  3,  5,  7  is  an  arithmetic 
progression of length 3, where the numbers differ by 2; 109, 219, 329, 439, 
549 is a progression of length 5, where the numbers differ by 110. A big 
advance in understanding arithmetic progressions came in 1974, when the 
Hungarian mathematician Emre Szemeredi  proved that  any infinite set of 
numbers that has "positive density" contains arithmetic progressions of any 
length. A set has positive density if, for a sufficiently large number n, there is 
always  a  fixed  percentage  of  elements  of  {1,  2,  3,  ...  n}  in  the  set. 
Szemeredi's theorem can be seen from different points of view, and there are 
now at least three different proofs of it, including Szemeredi's original proof 
and one by 1998 Fields Medalist Timothy Gowers. The primes do not have 
positive density, so Szemeredi's theorem does not apply to them; in fact, the 
primes get sparser and sparser as the integers stretch out towards infinity. 
Remarkably, Green and Tao proved that, despite this sparseness, the primes 



do contain arithmetic progressions of any length. Any result that sheds new 
light on properties of prime numbers marks a significant advance. This work 
shows  great  originality  and  insight  and  provides  a  solution  to  a  deep, 
fundamental, and difficult problem.

Another highlight of Tao's research is his work on the Kakeya Problem, which 
in its original form can be described in the following way. Suppose you have 
a needle lying flat on a plane. Imagine the different possible shapes swept 
out when you rotate the needle 180 degrees. One possible shape is a half-
disk; with a bit more care, you can perform the rotation within a quarter-disk. 
The Kakeya problem asks, What is the minimum area of the shape swept out 
in rotating the needle 180 degrees? The surprising answer is that the area 
can be made as small as you like, so in some sense the minimum area is 
zero.
The  fractal  dimension  of  the  shape  swept  out  provides  a  finer  kind  of 
information about the size of  the shape than you obtain in measuring its 
area. A fundamental result about the Kakeya problem says that the fractal 
dimension  of  the  shape  swept  out  by  the  needle  is  always  2.

Imagine  now that  the needle  is  not  in  a  flat  plane,  but  in  n-dimensional 
space, where n is bigger than 2. The n-dimensional Kakeya problem asks, 
What is the minimum volume of an n-dimensional shape in which the needle 
can be turned in any direction? Analogously with the 2-dimensional case, this 
volume can be made as small as you like. But a more crucial question is, 
What can be said about the fractal dimension of this n-dimensional shape? 
No one knows the answer to that question. The technique of the proof that, 
in the 2-dimensional plane the fractal dimension is always 2, does not work 
in higher dimensions. The n-dimensional Kakeya problem is interesting in its 
own  right  and  also  has  fundamental  connections  to  other  problems  in 
mathematics in, for example, Fourier analysis and nonlinear waves. Terence 
Tao  has  been  a  major  force  in  recent  years  in  investigating  the  Kakeya 
problem in n dimensions and in elucidating its connections to other problems 
in  the  field.

Another problem Tao has worked on is understanding wave maps. This topic 
arises  naturally  in  the  study  of  Einstein's  theory  of  general  relativity, 
according to which gravity is a nonlinear wave. No one knows how to solve 
completely the equations of general relativity that describe gravity; they are 
simply beyond current understanding. However, the equations become far 
simpler  if  one  considers  a  special  case,  in  which  the  equations  have 
cylindrical  symmetry.  One aspect of  this simpler case is called the "wave 
maps" problem, and Tao has developed a program that would allow one to 
understand  its  solution.
While  this  work  has  not  reached  a  definitive  endpoint,  Tao's  ideas  have 
removed a major psychological obstacle by demonstrating that the equations 
are not intractable, thereby causing a resurgence of interest in this problem.

A  fourth  highlight  of  Tao's  work  centers  on  the  nonlinear  Schroedinger 
equations. One use of these equations is to describe the behavior of light in a 
fiber optic cable. Tao's work has brought new insights into the behavior of 



one particular Schroedinger equation and has produced definitive existence 
results  for  solutions.  He  did  this  work  in  collaboration  with  four  other 
mathematicians, James Colliander, Markus Keel, Gigliola Staffilani, and Hideo 
Takaoka.  Together  they  have  become  known  as  the  "I-team",  where  "I" 
denotes many different things, including "interaction". The word refers to the 
way that light can interact with itself in a medium such as a fiber optic cable; 
this  self-interaction is  reflected in  the nonlinear term in the Schroedinger 
equation  that  the  team  studied.  The  word  "interaction"  also  refers  to 
interactions  among  the  team  members,  and  indeed  collaboration  is  a 
hallmark of Tao's work. "Collaboration is very important for me, as it allows 
me to learn about other fields, and, conversely, to share what I have learnt 
about my own fields with others," he said in the Clay Institute interview. "It 
broadens my experience, not just in a technical mathematical sense, but also 
in being exposed to other philosophies of research and exposition."

These highlights of Tao's work do not tell the whole story. For example, many 
mathematicians  were  startled  when  Tao  and  co-author  Allen  Knutson 
produced beautiful  work on a problem known as Horn's conjecture,  which 
arises in an area that one would expect to be very far from Tao's expertise. 
This is akin to a leading English-language novelist suddenly producing the 
definitive  Russian  novel.  Tao's  versatility,  depth,  and  technical  prowess 
ensure that he will remain a powerful force in mathematics in the decades to 
come.
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Terence Tao was born in Adelaide, Australia, in 1975. He received his PhD in 
mathematics  in  1996  from  Princeton  University.  He  is  a  professor  of 
mathematics  at  the  University  of  California,  Los  Angeles.  Among  his 
distinctions  are  a  Sloan  Foundation  Fellowship,  a  Packard  Foundation 
Fellowship,  and  a  Clay  Mathematics  Institute  Prize  Fellowship.  He  was 
awarded the Salem Prize (2000), the American Mathematical Society (AMS) 
Bocher  Prize  (2002),  and  the  AMS  Conant  Prize  (2005,  jointly  with  Allen 
Knutson).

PICTURE CAPTION

Tubes  that  are  transverse  can  have  smaller  intersection,  and  thus  larger 
union, than tubes that are nearly parallel. Recent progress on problems such 
as  the  Kakeya  conjecture  has  been  aided  by  a  "bilinear"  approach  that 
excludes the latter case from consideration. Image courtesy of Terence Tao.
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Terence Tao portrait, courtesy of Terence Tao. 


