
The work of Elon Lindenstrauss

Harry Furstenberg

I’ve been asked to describe some of the achievements of Elon Lindenstrauss -

our Fields medalist. Elon Lindenstrauss’s work continues a tradition of interac-

tion between dynamical systems theory and diophantine analysis. This tradition

goes back at least to the year 1914 - when Hermann Weyl published a paper

entitled “An application of number theory to statistical mechanics and the the-

ory of perturbations.” In that paper Weyl used what we would call Kronecker’s

Theorem to show the validity of the ergodic hypothesis in certain situations. In

the meantime the roles have been reversed, with dynamical systems theory and

ergodic theory providing the tools for answering questions in number theory.

The number theoretical issues arising in the work of Lindenstrauss have to

do with so-called diophantine approximation - in which one asks whether in-

equalities having real solutions have integer solutions. In this area we encounter

a phenomenon which is reminiscent of ergodic behavior. It can be described

crudely by saying that whatever is not excluded for some good reason and can

happen in principle, will eventually happen - at least approximately. There is a

good reason that

−ε < x2 − (1 +
√

2)2y2 < ε

cannot be solved for small ε (this would imply that
√

2 is well approximable).

But this doesn’t apply to the three variable inequality:

−ε < x2 − (1 +
√

2)2y2 − αz2 < ε (α 6= 0 arbitrary)

and indeed by the relatively recently established Oppenheim conjecture, for any

positive ε, this has a solution in integers (x, y, z) not all 0.

An important advance has come about by enlarging the scope of dynamics

to include what will be referred to as “homogeneous dynamics”. Every since

Poincaré dynamical theory had broken out of the shackles of Ordinary Dif-

ferential Equations and a dynamical system comes about whenever we have a

1-parameter group {Tt} — think of t as time — of transformations acting in

a space X, which we identify as the phase space of the system. We have ho-

mogeneous dynamics when X is a homogeneous space of a Lie group; we can

write X = G/Γ. For any 1-parameter subgroup {g(t)} ⊂ G we can set Tt(gΓ) =

g(t)gΓ. Homogeneous dynamics allows one further abuse of the term “dynam-

ics”, extending the action from a 1-parameter subgroup of G to an arbitrary

Lie subgroup H ⊂ G, so that the time parameter can be higher dimensional.
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This liberalization of viewpoint has been quite fruitful in the recent application

of dynamics to number theory.

One particular homogeneous space has been the focus of activity in this

work, it is a space that appears implicitly in Minkowski’s geometry of numbers.

Namely, for a dimension d, we consider the space Ωd of unimodular lattices

spanned by d independent vectors in Rd. The group SL(d,R) acts transitively

on this space in a natural way: Ωd ∼= SL(d,R)/SL(d,Z). There is a measure

on Ωd invariant under the action of the group and the measure of Ωd is finite.

Nonetheless the space Ωd is non-compact in its natural topology. This is impor-

tant, as is Mahler’s criterion for a set Σ ⊂ Ωd to have compact closure. Namely,

Σ̄ is compact unless there is a sequence {σn} ⊂ Σ and vectors vn ∈ σn with

‖vn‖ → 0.

There is a broad spectrum of problems for which this is relevant. Namely,

let Φ(x1, x2, . . . , xd) be a homogeneous polynomial and we ask if for arbitrarily

small ε > 0 one can solve |Φ(x1, x2, . . . , x1)| < ε in integers not all 0. (This

would in fact imply that the range of Φ on Zd is dense in either R+,R−, or

both). Now define the subgroups

HΦ ⊂ G = SL(d,R) by HΦ = {h ∈ G : Φ(hv̄) = Φ(v̄) for all v̄ ∈ Rd}.

In general for a non-compact group H, one expects orbits Hx to be unbounded,

and then Mahler’s criterion will come into play. If we take x0 ∈ Ωd to be the

lattice Zd, then if HΦx0 is unbounded, this will imply that there exist h ∈ HΦ

and ~v ∈ Zd with ‖h~v‖ arbitrarily small which means that Φ(~v) is arbitrarily

small. This was the strategy leading to the solution of the Oppenheim conjec-

ture in the 80’s by Margulis. Here Φ(x1, x2, x3) = αx2
1 − βx2

2 − γx2
3 and HΦ

has the property investigated by Marina Ratner motivated by conjectures of

Raghunathan and Dani - of being generated by unipotent subgroups. (A linear

transformation is unipotent if 1 is its unique eigenvalue.) By this theory one

can classify all the closed HΦ-invariant subsets of Ω3 and in particular, one sees

that an HΦ-orbit has compact closure only if it is already compact. Margulis

shows that this can happen to the orbit of x0 = Zd only if α, β, γ are commen-

surable. Otherwise this orbit is unbounded which leads to the conclusion that

|Φ(x1, x2, x3)| < ε has integer solutions.

Another notorious diophantine approximation problem is Littlewood’s con-

jecture: for all pairs of real number α, β, if for x real we denote by ‖x‖ the

distance of x to the nearest integer, then

lim inf
n→∞

n‖nα‖ ‖nβ‖ = 0.

2



This fits into the framework just discussed for the polynomial

ψ(x1, x2, x3) = x1(αx1 − x2)(βx1 − x3)

where we disallow x1 = 0. A linear transformation carries this to

Θ(X,Y, Z) = XY Z

and HΘ is (locally) just the diagonal subgroup


e−t−s 0 0

0 et 0

0 0 es


. This

has no non-trivial unipotent subgroups; and the Ratner theory does not apply.

Nonetheless, Margulis has conjectured that a bounded orbit for Hθ is necessarily

compact and this conjecture, as in the foregoing discussion, has the Littlewood

conjecture as a consequence.

We have here a contrast of unipotent homogeneous dynamics with what

might be called — with Katok — higher rank hyperbolic dynamics. The former

is “tame”: neighboring points separate at a polynomial rate, whereas in hyper-

bolic dynamics they can separate at an exponential rate. Thanks largely to the

work of Ratner, the unipotent theory may be said to be largely understood,

whereas the hyperbolic theory is in a less satisfactory shape.

The earliest confirmations of Raghunathan’s conjectures for unipotent ac-

tions came from the case d = 2 with results regarding the horocycle flow

which corresponds to the subgroup

{(
1 t

0 1

)}
. The hyperbolic counterpart,{(

et 0

0 e−t

)}
, leads to the geodesic flow which is the prototypical example of

chaotic dynamics. This would lead one to expect that the higher dimensional

cases of diagonal group actions can only get worse, thus leaving little hope for

a dynamical approach to the Littlewood conjecture.

Among those who spearheaded the initiative to understand the phenomenon

of rigidity in the hyperbolic framework was Anatole Katok, who, in a paper with

Ralph Spatzier gave conditions for a rigidity result in the hyperbolic setup. In

this paper the importance of the acting group being of rank ≥ 2 is underscored.

An analogy is drawn to a phenomenon I have studied; namely the paucity of

closed subsets of the group R/Z invariant under two endomorphisms x → px

(mod 1)and x → qx (mod 1), provided {pnqm} is not contained in some {rn}.
(That is to say log p/ log q is irrational). The only closed sets are R/Z itself

and finite sets of rationals. It is an open question whether the only invariant

measures are correspondingly the obvious ones: Lebesgue measure and atomic
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measures supported on rational and combinations of these. This example has

been instructive for the following reason. Namely if one adds the condition that

one or the other transformation, x → px or qx (mod 1) has positive entropy

with respect to the invariant measure in question, then the measure must have

a Lebesgue component. This result of Dan Rudolph which partially answers

our query regarding ×p,×q suggests that for diagonal homogeneous actions,

positive entropy will also play a significant role. This is the case already in the

paper of Katok and Spatzier where other hypotheses are necessary. The state-

of-the-art theorem in this regard is due to Einsiedler, Katok and Lindenstrauss

and it depends heavily on new ideas of Lindenstrauss, requiring only positive

entropy along some 1-parameter subgroup to conclude that an invariant measure

is of an algebraic character. This theorem provides the crucial step to proving

a modified version of Littlewood’s conjecture - a version representing the first

significant advance on the Littlewood problem: for all but a set of dimension 0

of pairs α, β of real numbers, lim infn→∞ n‖nα‖ ‖nβ‖ = 0.

One of the seminal contributions of Lindenstrauss to this realm is his broad-

ening of the notion of recurrence of a measure to a wide variety of situations,

in particular, to situations where the measure is not invariant under a certain

set of transformations. Quoting Lindenstrauss, “the only thing which is really

needed is some form of recurrence which produces the complicated orbits which

are the life and blood of ergodic theory.”

This brings us to what is possibly the most exciting work of Elon Linden-

strauss; namely the solution of the Quantum Unique Ergodicity question in the

arithmetic case. From the mathematical standpoint the issue is whether eigen-

functions of the Laplace operator on a negatively curved manifold tend to be

more and more evenly spread over the space as the eigenvalue tends to negative

infinity. In the special case of arithmetic hyperbolic surfaces, the so-called Hecke

operators come into the picture and they act on the limiting measure arising

from such a sequence of eigenfunctions. This action is recurrent and the tools

developed by Lindenstrauss become applicable to this situation at hand, and

lead elegantly to a solution of the problem.

Solving the so-called arithmetic quantum unique ergodicity conjecture of

Rudnick and Sarnak is exciting if for no other reason than that the conjecture

has been established provisionally, based on the generalized Riemann hypothe-

sis. While this doesn’t bring us closer to a solution of this famous question, this

connection does testify to the depth of the mathematics involved.

I close my introductory remarks by mentioning one of the corollaries of Elon

Lindenstrauss’s handling of the arithmetic QUE conjecture; namely replacing
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reals by adèles and integers by rationals, we can speak of the adelic analogue of

geodesic flow: namely, the action of the diagonal of SL2(A) on SL2(A)/SL2(Q).

The striking statement is that the adelic geodesic flow is uniquely ergodic.

I think it is fair to say that there is both power and beauty in the mathe-

matical work of Elon Lindenstrauss.
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