THE WORK OF STANISLAV SMIRNOV

HARRY KESTEN

Stanislav (Stas for short) Smirnov is receiving a Fields medal for his ingenious
and astonishing work on the existence and conformal invariance of scaling limits or
continuum limits of lattice models in statistical physics.

Stas demonstrated his mathematical skills at an early age. According to Wikipedia
he was born on Sept 3,1970 and was ranked first in the 1986 and 1987 International
Mathematical Olympiads. He was an undergraduate at Saint Petersburg State
University and obtained his Ph.D. at Caltech in 1996 with Nikolai Makarov as his
thesis advisor. Stas has also worked on complex analysis and dynamical systems,
and more physical models than percolation (e.g., Ising model).

Shall discuss his work on limits of lattice models. This work should make sta-
tistical physicists happy because it confirms rigorously what so far was accepted
on merely heuristic grounds. The success of Stas in analyzing lattice models in
statistical physics will undoubtedly be a stimulus for further work.

Wonderful result of Stas (together with Hugo Duminil-Copin, [11]). Announced
only two months ago. Rigorous proof that the connective constant of the planar
hexagonal lattice isv/2 +v/2.

The connective constant p of a lattice £ is defined as lim,, o0 [c,]*/"™, where ¢, is
the number of self-avoiding paths on £ of length n which start at a fixed vertex v.
Usually easy to show by subadditivity (or better submultiplicativity; ¢p+m < ¢ncm)
that this limit exists and is independent of the choice of v. However, the value of p
is unknown for most £. This result of Stas is another major success in Statistical
Physics.

1/n

1. PERCOLATION

So far Stas best known for work in percolation, so discuss this now.

The first percolation problem appeared in Amer. Math Monthly, vol. 1 (1894),
proposed by M.A.C.E. De Volson Wood ([10]). "An equal number of white and
black balls of equal size are thrown into a rectangular box, what is the probability
that there will be contiguous contact of white balls from one end of the box to he
opposite end 7 As a special example, suppose there are 30 balls in the length of
the box, 10 in the width, and 5 (or 10) layers deep."

Only an incorrect solution. Hiatus till 1954.

Broadbent ([1]) asks Hammersley at a symposium on Monte-Carlo methods (in
1954): Think of the edges of Z? as tubes through which fluid can flow with prob-
ability p, and are blocked with probability 1 — p. p is the same for all edges, and
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the edges are independent of each other. If fluid is pumped in at the origin, how
far can it spread ? Can it reach infinity ?

Physicists interested in the model since it seems to be one of the simplest models
which has a phase transition. In fact Broadbent and Hammersley ([1, 2]) proved
that there exists a value p., strictly between 0 and 1, such that oo is reached with
probability 0 when p < p., but can be reached with strictly positive probability
for p > p.. pe is called the critical probability. The percolation probability 0(p) is
defined as the probability that infinity is reached from the origin (or from any other
fixed vertex).

Let E be a set of edges. Say that a point a is connected (in E ) to a point b
if there is an open path (in F) from a to b. Define the open clusters as maximal
connected components of open edges in E. By translation invariance, Broadbent
and Hammersley result shows that for p < p., with probability 1 all open clusters
are finite; for p > p,, (on Z?) with probability 1 there exists a unique infinite open
cluster (see [3] for uniqueness). Can replace Z? by another lattice. Also can have
all edges open, but the vertices open with probability p and closed with probability
1 — p. In obvious terminology, bond and site percolation. Site percolation is more
general than bond percolation.

For Stas’ brilliant result shall consider exclusively site percolation on the 2-
dimensional triangular lattice.

—— =G, the triangular lattice,

---= Qd, the hexagonal lattice.

FiGURE 1

Would like to have a global (as opposed to microscopic) description of such
systems. What is §(p, £) 7 Behavior of the "average cluster size" and some other
functions. Have a fair understanding of the system for p # p,. fixed. E.g., if p < p,,
then (with probability 1) there is a translation invariant system of finite clusters.
The probability that the volume of the cluster of a fixed site exceeds n decreases
exponentially in n (see [12], Theorem 6.75). If p > p., then there is exactly one
infinite open cluster. If C denotes the open cluster of the origin, then for p > p.
and some constants 0 < ¢1(p) < ca(p) < 00,

en@=D/d) < o [Pp{|CH =n}< con(d-D/d,



englishTHE WORK OF STANISLAV SMIRNOV 3

For d = 2 we even know that
0< — lim n~“@"Y/4og [P,{|C|] = n} < oo,

n—oo

i.e., for some 0 < ¢(p) < o0,
P{[C]] = n} = exp [ = (¢ + o(1))n "= D/]
(see [12], Section 8.6).

Expect most interesting behavior for p equal or close to p..

We have here a system with a function 6(p, £), which has a phase transition, but,
at least in dimension 2, is continuous. Physicists have been successful in analyzing
such systems by use of so-called scaling hypothesis: for p # p. there is a single length
scale (p), called the correlation length, such that for p close to p., at distance n
the picture of the system looks like a single function of n/¢(p). More explicitly, it
is assumed that many quantities behave like T'(n/&(p)) for some function T' which
is the same for a class of lattices £. What happens when p = p. 7 No special
length scale singled out (other than the lattice spacing) ? The correlation length is
believed to go to co as p — p.. Therefore, shall think of looking at our system in
a fixed piece of space, but letting the lattice spacing go to 0. Call this "taking the
scaling limit" or "taking the continuum limit." Stas’ great result: This limit exists
and is conformally invariant for critical site percolation on the triangular lattice in
the plane.

2. THE SCALING LIMIT

What to expect when p = p. 7 One hopes that at least the cluster distribution
and the distribution of the interfaces (curves separating two adjacent clusters) con-
verge in some sense in the scaling limit. Since there is no special scale, one expects
scale invariance of the limit. If £ has enough symmetry can also hope for rotational
symmetry of scaling limit. In dimension two, scale and rotation invariance together
should give invariance under holomorphic transformations. If one believes in scale
invariance, then can expect power laws, i.e., that certain functions behave like a
power of n or |p — p.| for n large or p close to p.. E.g., if we set R = R(p) = the
radius of the open cluster of the origin, then scale invariance at p = p. would give

P AR > zy}
P AR =y}
for some function g(z), as y — oo and x > 1 fixed. This, in turn, would imply
g(zu) = g(x)g(u) and g(x) = z* for some constant \. Complete proof of (2.3) and

evaluation of A in [17] is much more intricate.

Necessarily A < 0, since (2.1) < 1 for > 1. Now let ¢ > 0 and (1 +&)* <t <
(1+¢)k*1. Then

(2.1) — g(x)

k .
P,,{R>(1+¢)}
22) P >ty <P > (1 M=p >1 Pe L
(22) P {R>1} <P {R>(1+6)} =B {R> }EPPC{RZ(H@@,D}
Since ( ( )
Pp RZ 1+5j A .
< : 1 =(1 g
PpC{R2(1+5)(j—1)}_>g( +e)=(1+¢)" asj — oo,
we obtain

P, {R>1t} <t*°W a5t — co.
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By replacing k by k + 1 and reversing the inequality in the lines following (2.2) we
see that

log P, {R >
(2.3) PR >t} =t*°W ast — oo or lim log p AR 21} _
i t—00 logt

A

Of course we did not prove (2.1) here, nor did we obtain information about .
Different but related kind of power law

log [0(p)]
log(p — pe)

Exponents such as A and (3 are called critical exponents. It is believed that all
these exponents can be obtained as algebraic functions of only a small number of
independent exponents. Physicists have indeed found (non-rigorously) that various
quantities behave as powers. On basis of heuristics and simulations, exponents are
believed to be universal: they depend basically on the dimension of the lattice only.
Should exist and be the same for the bond and site version on Z2 and the bond and
site version on the triangular lattice. For the planar lattices physicists predicted
values for many of these exponents.

The pathbreaking work of Stas and Lawler, Schram, Werner has made proof of
some power laws possible. E.g., processes related to site percolation on triangular
lattice, loop erased random walk, uniform spanning tree. Nevertheless, no proof
yet of universality for percolation. Tacitly assume all further results for percolation
on the triangular lattice. As stated by Stas in his lecture at the last ICM (]22],p.
1421), "The point which is perhaps still less understood both from mathematics
and physics points of view is why there exists a universal conformally equivalent
scaling limit."

Many people believe that proving existence and conformal equivalence of scaling
limit would be useful. This is still vague statement. Topology for scaling limit not
clearly specified. It seems that M. Aizenman (see [15], bottom of p. 556) was the
first to express the existence of the limit of crossing probabilities as a requirement
for scaling limit.

A crossing probability of a Jordan domain D with boundary the Jordan curve
0D is a probability of the form

— B aspl pe.

P{3 a simple, occupied path in D from the arc [a, b] to the arc [c,d]},

where D = closure of D, and a, b, ¢, d are four points in counterclockwise order on
0D and the interiors of the four arcs [a,b], [b,c], [c,d] and [d,a] are disjoint. We
may replace "occupied path" by "vacant path" in this definition.

Seems reasonable to require that each crossing probability converges to some
limit if our percolation configuration converges. We shall see soon that this is
indeed the case in Stas’ approach.

F1GURE 2
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Now suppose D is a Jordan domain with boundary the Jordan curve J which
contains the 4 points a,b, c,d (more generality is possible, but we don’t discuss
technicalities here). Consider limit of crossing probability from arc [d, a] to arc
[b, c]. Replace d by z and consider the function

H%(a,b,c,z) = E{Q%(a,b,c,z)}
as a function of z € D, where

(2.4) Q°(z) = there exists in D a simple, occupied path from the
' arc [b, c] to the arc [c, a] which separates z from the arc [a, b].

Want to show that limgs;q H°(a,b,c,2) exists and has value which agrees with
Cardy’s formula ([8]).

Stas realized that H’(-) has to satisfy certain boundary conditions which we
denote as (BC), without spelling them out.(A mixed Dirichlet-Neumann problem).
It has a unique harmonic solution h, say. He had the great insight how to use
uniqueness of harmonic functions which satisfy (BC) on D. By a sequence of
ingenious tricks Stas manages to show that every subsequential limit of H°(a, b, c, 2)
(as 6 | 0) is harmonic in z € D, and satisies (BC) and hence equals h. Since h is
unique, the full limit lims, HY(a,b,c,z) must exist and be equal to h. This limit
is conformally invariant by construction.

By using Riemann mapping theorem can transfer calculation of A on D to cal-
culation of h on an equilateral triangle. On such a triangle it is a linear function.
Thus the crossing probabilities H? have limits, which can be computed explicitly.
These limits agree with Cardy’s formula ([8]).

This shows that individual crossing probabilities have a scaling limit which agree
with Cardy’s formula as desired. From here on there is still a lot of work to do
to obtain the "full scaling limit". Stas [20, 21] outlined what needs to be done
to get weak convergence of all long occupied and vacant paths. This was done by
[5, 6, 7]. Later expositions in [4, 24]. Especially complicated is the picture of all
loops. There are loops inside loops etc. As stated in the abstract of [5]: "These
loops do not cross but do touch each other indeed, any two loops are connected by
a finite 'path’ of touching loops."

3. SCHRAMM-LOEWNER EVOLUTIONS (SLE).

A short time before Smirnov’s paper, Schramm tried to find out how confor-
mal invariance could be used (if shown to apply) to study also other models than
percolation. Loewner tried with his evolutions to prove Bieberbach’s conjecture.
He represented a family of curves (one for each z € H) by means of a single func-
tion U;. Here H is the open upper halfplane, U; is a given function, and after a
reparametrization, g; is a solution of the initial value problem

0 2

(3.1) Egt(z) O EA 9o(2)

=Z.

Let
T. = sup{s : solution is well defined for ¢ € [0, s) with gs(z) € H}

and Hy := {2z : T, > t}. Then g is the unique conformal transformation from H;
onto H for which g;(z) — 2z — 0 as z — oo (see [16], Theorem 4.6). The g; arising
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in this way are called (chordal) Loewner chains and {U;} the driving function. See
[16], Theorem 4.6.

Loewner chains and driving function {U;} were deterministic. Schramm [18]
asked whether a random driving function could produce some of the known random
curves as Loewner chain {g;}. He showed in [18] that if the process {g;} has certain
Markov properties, then one can obtain this process as Loewner chain only if the
driving function isy/k x Brownian motion, for some & > 0.

The processes which have such a driving function are called SLE’s (originally this
stood for "stochastic Loewner Evolution", but is now commonly read as Schramm-
Loewner evolution).

When a chain is an SLE,;, new computations become possible or much simplified.
In particular, the existence and explicit values of most of the critical exponents
have now been rigorously established (but see questions Q2 and Q4 below). Stas
has made major contributions to these determinations in [17, 23]. In particular he
provided essential steps for showing that a certain interface between occupied and
vacant sites in percolation is an SLEg curve.

The SLE calculations confirm predictions of physicists, as well as a conjecture
of Mandelbrot. Can now describe various planar random curves by means of SLE
paths. Also intersection properties of Brownian paths. SLE, processes with differ-
ent k can have quite different behavior. A good survey of percolation and SLE is
in [19], and [16] is a full length treatment of SLE.

4. GENERALIZATION AND SOME OPEN PROBLEMS

I don’t know of any lattice model in physics which has as much independence
built in as percolation. It is therefore of great significance that Stas has a way
to attack problems concerning the existence and conformal invariance of a scaling
limit for some models with dependence between sites, and in particular for the
two-dimensional Ising model. Stas and Dmitry Chelkak can apparently show that
in the critical Ising model interfaces between spinclusters have a conformally in-
variant scaling limit which is described by SLE3 curves. The oldest lattice model ?
Enormous literature. I am largely ignorant of this literature and have not worked
my way through Stas’ papers on these models. Nevertheless am excited by the fact
that Stas is seriously attacking such models.

To conclude, here are some problems on percolation. These also have appeared
in other lists, (see in particular [19]),but you may like to be challenged again.

Q1 Prove the existence and find the value of critical exponents of percolation on
other two-dimensional lattices than the triangular one and establish universality in
two dimensions.

This seems to be quite beyond our reach at this time. Probably even more so is
the same question in dimension > 2.

Q2 Prove a power law and find a critical exponent for the probability that there
are j disjoint occupied paths from the disc {z: |z| <r} to {z:]z] > R}. Forj=1
this is the one-arm problem of [17]. For j > 2, the problem is solved, at least for
the triangular lattice, if some of the arms are occupied and some are vacant (see
Theorem 4 in [23]), but it seems that there is not even a conjectured exponent for
the case when all arms are to be occupied or all vacant.
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More specific questions are
Q3 Is the percolation probability (right) continuous at p. ? Equivalently, is there
percolation at p. ? This is only a problem for d > 2. The answer in d = 2 is that
there is no percolation at p;
Q4 Establish the existence and find the value of a critical exponent for the
expected number of clusters per site. This quantity is denoted by
= 1
k(p) = Z ﬁpp{ici}
n=1
in [12], p. 23. The answer is still unknown, even for critical percolation on the
two-dimensional triangular lattice. It is known that x(p) is twice differentiable on
[0, 1], but it is believed that the third derivative at p, fails to exist; see [14], Chapter
9. This problem is mainly of historical interest, because there was an attempt to
prove that p,. for bond percolation on Z? equals 1/2, by showing that (p) has only
one singularity in (0, 1).

5. CONCLUSION

I have been amazed and greatly pleased by the progress which Stas Smirnov and
coworkers have made in a decade. They have totally changed the fields of random
planar curves and of two dimensional lattice models. Stas has shown that he has
the talent and insight to produce surprising results, and his work has been a major
stimulus for the explosion in the last 15 years or so of probabilistic results about
random planar curves.

As some of the listed problems here show, there still are fundamental, and prob-
ably difficult, issues to be settled. T wish Stas a long and creative career, and that
we all may enjoy his mathematics.

F1GURE 3
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