
THE WORK OF STANISLAV SMIRNOVHARRY KESTENStanislav (Stas for short) Smirnov is re
eiving a Fields medal for his ingeniousand astonishing work on the existen
e and 
onformal invarian
e of s
aling limits or
ontinuum limits of latti
e models in statisti
al physi
s.Stas demonstrated his mathemati
al skills at an early age. A

ording toWikipediahe was born on Sept 3,1970 and was ranked �rst in the 1986 and 1987 InternationalMathemati
al Olympiads. He was an undergraduate at Saint Petersburg StateUniversity and obtained his Ph.D. at Calte
h in 1996 with Nikolai Makarov as histhesis advisor. Stas has also worked on 
omplex analysis and dynami
al systems,and more physi
al models than per
olation (e.g., Ising model).Shall dis
uss his work on limits of latti
e models. This work should make sta-tisti
al physi
ists happy be
ause it 
on�rms rigorously what so far was a

eptedon merely heuristi
 grounds. The su

ess of Stas in analyzing latti
e models instatisti
al physi
s will undoubtedly be a stimulus for further work.Wonderful result of Stas (together with Hugo Duminil-Copin, [11℄). Announ
edonly two months ago. Rigorous proof that the 
onne
tive 
onstant of the planarhexagonal latti
e is√2 +
√

2.The 
onne
tive 
onstant µ of a latti
e L is de�ned as limn→∞[cn]1/n, where cn isthe number of self-avoiding paths on L of length n whi
h start at a �xed vertex v.Usually easy to show by subadditivity (or better submultipli
ativity; cn+m ≤ cncm)that this limit exists and is independent of the 
hoi
e of v. However, the value of µis unknown for most L. This result of Stas is another major su

ess in Statisti
alPhysi
s. 1. Per
olationSo far Stas best known for work in per
olation, so dis
uss this now.The �rst per
olation problem appeared in Amer. Math Monthly, vol. 1 (1894),proposed by M.A.C.E. De Volson Wood ([10℄). "An equal number of white andbla
k balls of equal size are thrown into a re
tangular box, what is the probabilitythat there will be 
ontiguous 
onta
t of white balls from one end of the box to heopposite end ? As a spe
ial example, suppose there are 30 balls in the length ofthe box, 10 in the width, and 5 (or 10) layers deep."Only an in
orre
t solution. Hiatus till 1954.Broadbent ([1℄) asks Hammersley at a symposium on Monte-Carlo methods (in1954): Think of the edges of Z
d as tubes through whi
h �uid 
an �ow with prob-ability p, and are blo
ked with probability 1 − p. p is the same for all edges, and2000 Mathemati
s Subje
t Classi�
ation. 60F05; 60K35.Key words and phrases. Fields medal, Conformal Invarian
e, Cardy's formula, 
rossingprobabilities. 1



englishTHE WORK OF STANISLAV SMIRNOV 2the edges are independent of ea
h other. If �uid is pumped in at the origin, howfar 
an it spread ? Can it rea
h in�nity ?Physi
ists interested in the model sin
e it seems to be one of the simplest modelswhi
h has a phase transition. In fa
t Broadbent and Hammersley ([1, 2℄) provedthat there exists a value pc, stri
tly between 0 and 1, su
h that ∞ is rea
hed withprobability 0 when p < pc, but 
an be rea
hed with stri
tly positive probabilityfor p > pc. pc is 
alled the 
riti
al probability. The per
olation probability θ(p) isde�ned as the probability that in�nity is rea
hed from the origin (or from any other�xed vertex).Let E be a set of edges. Say that a point a is 
onne
ted (in E ) to a point bif there is an open path (in E) from a to b. De�ne the open 
lusters as maximal
onne
ted 
omponents of open edges in E. By translation invarian
e, Broadbentand Hammersley result shows that for p < pc, with probability 1 all open 
lustersare �nite; for p > pc, (on Z
d) with probability 1 there exists a unique in�nite open
luster (see [3℄ for uniqueness). Can repla
e Z

d by another latti
e. Also 
an haveall edges open, but the verti
es open with probability p and 
losed with probability
1 − p. In obvious terminology, bond and site per
olation. Site per
olation is moregeneral than bond per
olation.For Stas' brilliant result shall 
onsider ex
lusively site per
olation on the 2-dimensional triangular latti
e.

Figure 1Would like to have a global (as opposed to mi
ros
opi
) des
ription of su
hsystems. What is θ(p,L) ? Behavior of the "average 
luster size" and some otherfun
tions. Have a fair understanding of the system for p 6= pc �xed. E.g., if p < pc,then (with probability 1) there is a translation invariant system of �nite 
lusters.The probability that the volume of the 
luster of a �xed site ex
eeds n de
reasesexponentially in n (see [12℄, Theorem 6.75). If p > pc, then there is exa
tly onein�nite open 
luster. If C denotes the open 
luster of the origin, then for p > pcand some 
onstants 0 < c1(p) ≤ c2(p) < ∞,
c1n

(d−1)/d) ≤ − log
[

Pp{|C|
]

= n} ≤ c2n
(d−1)/d.



englishTHE WORK OF STANISLAV SMIRNOV 3For d = 2 we even know that
0 < − lim

n→∞
n−(d−1)/d log

[

Pp{|C|
]

= n} < ∞,i.e., for some 0 < c(p) < ∞,
Pp{|C|

]

= n} = exp
[

− (c + o(1))n(d−1)/d
](see [12℄, Se
tion 8.6).Expe
t most interesting behavior for p equal or 
lose to pc.We have here a system with a fun
tion θ(p,L), whi
h has a phase transition, but,at least in dimension 2, is 
ontinuous. Physi
ists have been su

essful in analyzingsu
h systems by use of so-
alled s
aling hypothesis: for p 6= pc there is a single lengths
ale ξ(p), 
alled the 
orrelation length, su
h that for p 
lose to pc, at distan
e nthe pi
ture of the system looks like a single fun
tion of n/ξ(p). More expli
itly, itis assumed that many quantities behave like T

(

n/ξ(p)
) for some fun
tion T whi
his the same for a 
lass of latti
es L. What happens when p = pc ? No spe
iallength s
ale singled out (other than the latti
e spa
ing) ? The 
orrelation length isbelieved to go to ∞ as p → pc. Therefore, shall think of looking at our system ina �xed pie
e of spa
e, but letting the latti
e spa
ing go to 0. Call this "taking thes
aling limit" or "taking the 
ontinuum limit." Stas' great result: This limit existsand is 
onformally invariant for 
riti
al site per
olation on the triangular latti
e inthe plane. 2. The s
aling limitWhat to expe
t when p = pc ? One hopes that at least the 
luster distributionand the distribution of the interfa
es (
urves separating two adja
ent 
lusters) 
on-verge in some sense in the s
aling limit. Sin
e there is no spe
ial s
ale, one expe
tss
ale invarian
e of the limit. If L has enough symmetry 
an also hope for rotationalsymmetry of s
aling limit. In dimension two, s
ale and rotation invarian
e togethershould give invarian
e under holomorphi
 transformations. If one believes in s
aleinvarian
e, then 
an expe
t power laws, i.e., that 
ertain fun
tions behave like apower of n or |p − pc| for n large or p 
lose to pc. E.g., if we set R = R(p) = theradius of the open 
luster of the origin, then s
ale invarian
e at p = pc would give(2.1) Ppc

{R ≥ xy}
Ppc

{R ≥ y} → g(x)for some fun
tion g(x), as y → ∞ and x ≥ 1 �xed. This, in turn, would imply
g(xu) = g(x)g(u) and g(x) = xλ for some 
onstant λ. Complete proof of (2.3) andevaluation of λ in [17℄ is mu
h more intri
ate.Ne
essarily λ ≤ 0, sin
e (2.1) ≤ 1 for x ≥ 1. Now let ε > 0 and (1 + ε)k ≤ t ≤
(1 + ε)k+1. Then(2.2) Ppc

{R ≥ t} ≤ Ppc
{R ≥ (1 + ε)k} = Ppc

{R ≥ 1}
k

∏

j=1

Ppc
{R ≥ (1 + ε)j}

Ppc
{R ≥ (1 + ε)(j−1)} .Sin
e

Ppc
{R ≥ (1 + ε)j}

Ppc
{R ≥ (1 + ε)(j−1)} → g(1 + ε) = (1 + ε)λ as j → ∞,we obtain

Ppc
{R ≥ t} ≤ tλ+o(1) as t → ∞.
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ing k by k + 1 and reversing the inequality in the lines following (2.2) wesee that(2.3) Ppc
{R ≥ t} = tλ+o(1) as t → ∞ or lim

t→∞

log Ppc
{R ≥ t}

log t
= λ.Of 
ourse we did not prove (2.1) here, nor did we obtain information about λ.Di�erent but related kind of power law

log
[

θ(p)
]

log(p − pc)
→ β as p ↓ pc.Exponents su
h as λ and β are 
alled 
riti
al exponents. It is believed that allthese exponents 
an be obtained as algebrai
 fun
tions of only a small number ofindependent exponents. Physi
ists have indeed found (non-rigorously) that variousquantities behave as powers. On basis of heuristi
s and simulations, exponents arebelieved to be universal: they depend basi
ally on the dimension of the latti
e only.Should exist and be the same for the bond and site version on Z

2 and the bond andsite version on the triangular latti
e. For the planar latti
es physi
ists predi
tedvalues for many of these exponents.The pathbreaking work of Stas and Lawler, S
hram, Werner has made proof ofsome power laws possible. E.g., pro
esses related to site per
olation on triangularlatti
e, loop erased random walk, uniform spanning tree. Nevertheless, no proofyet of universality for per
olation.Ta
itly assume all further results for per
olationon the triangular latti
e. As stated by Stas in his le
ture at the last ICM ([22℄,p.1421), "The point whi
h is perhaps still less understood both from mathemati
sand physi
s points of view is why there exists a universal 
onformally equivalents
aling limit."Many people believe that proving existen
e and 
onformal equivalen
e of s
alinglimit would be useful. This is still vague statement. Topology for s
aling limit not
learly spe
i�ed. It seems that M. Aizenman (see [15℄, bottom of p. 556) was the�rst to express the existen
e of the limit of 
rossing probabilities as a requirementfor s
aling limit.A 
rossing probability of a Jordan domain D with boundary the Jordan 
urve
∂D is a probability of the form

P{∃ a simple, o

upied path in D from the ar
 [a, b] to the ar
 [c, d]},where D = 
losure of D, and a, b, c, d are four points in 
ounter
lo
kwise order on
∂D and the interiors of the four ar
s [a, b], [b, c], [c, d] and [d, a] are disjoint. Wemay repla
e "o

upied path" by "va
ant path" in this de�nition.Seems reasonable to require that ea
h 
rossing probability 
onverges to somelimit if our per
olation 
on�guration 
onverges. We shall see soon that this isindeed the 
ase in Stas' approa
h.

Figure 2



englishTHE WORK OF STANISLAV SMIRNOV 5Now suppose D is a Jordan domain with boundary the Jordan 
urve J whi
h
ontains the 4 points a, b, c, d (more generality is possible, but we don't dis
usste
hni
alities here). Consider limit of 
rossing probability from ar
 [d, a] to ar

[b, c]. Repla
e d by z and 
onsider the fun
tion

Hδ(a, b, c, z) := E{Qδ(a, b, c, z)}as a fun
tion of z ∈ D, where
Qδ(z) = there exists in D a simple, o

upied path from thear
 [b, c] to the ar
 [c, a] whi
h separates z from the ar
 [a, b].

(2.4)Want to show that limδ↓0 Hδ(a, b, c, z) exists and has value whi
h agrees withCardy's formula ([8℄).Stas realized that Hδ(·) has to satisfy 
ertain boundary 
onditions whi
h wedenote as (BC), without spelling them out.(A mixed Diri
hlet-Neumann problem).It has a unique harmoni
 solution h, say. He had the great insight how to useuniqueness of harmoni
 fun
tions whi
h satisfy (BC) on D. By a sequen
e ofingenious tri
ks Stas manages to show that every subsequential limit of Hδ(a, b, c, z)(as δ ↓ 0) is harmoni
 in z ∈ D, and satisies (BC) and hen
e equals h. Sin
e h isunique, the full limit limδ↓0 Hδ(a, b, c, z) must exist and be equal to h. This limitis 
onformally invariant by 
onstru
tion.By using Riemann mapping theorem 
an transfer 
al
ulation of h on D to 
al-
ulation of h on an equilateral triangle. On su
h a triangle it is a linear fun
tion.Thus the 
rossing probabilities Hδ have limits, whi
h 
an be 
omputed expli
itly.These limits agree with Cardy's formula ([8℄).This shows that individual 
rossing probabilities have a s
aling limit whi
h agreewith Cardy's formula as desired. From here on there is still a lot of work to doto obtain the "full s
aling limit". Stas [20, 21℄ outlined what needs to be doneto get weak 
onvergen
e of all long o

upied and va
ant paths. This was done by[5, 6, 7℄. Later expositions in [4, 24℄. Espe
ially 
ompli
ated is the pi
ture of allloops. There are loops inside loops et
. As stated in the abstra
t of [5℄: "Theseloops do not 
ross but do tou
h ea
h other�indeed, any two loops are 
onne
ted bya �nite 'path' of tou
hing loops."3. S
hramm-Loewner Evolutions (SLE).A short time before Smirnov's paper, S
hramm tried to �nd out how 
onfor-mal invarian
e 
ould be used (if shown to apply) to study also other models thanper
olation. Loewner tried with his evolutions to prove Bieberba
h's 
onje
ture.He represented a family of 
urves (one for ea
h z ∈ H) by means of a single fun
-tion Ut. Here H is the open upper halfplane, Ut is a given fun
tion, and after areparametrization, gt is a solution of the initial value problem(3.1) ∂

∂t
gt(z) =

2

gt(z) − Ut
, g0(z) = z.Let

Tz = sup{s : solution is well de�ned for t ∈ [0, s) with gs(z) ∈ H}and Ht := {z : Tz > t}. Then gt is the unique 
onformal transformation from Htonto H for whi
h gt(z) − z → 0 as z → ∞ (see [16℄, Theorem 4.6). The gt arising



englishTHE WORK OF STANISLAV SMIRNOV 6in this way are 
alled (
hordal) Loewner 
hains and {Ut} the driving fun
tion. See[16℄, Theorem 4.6.Loewner 
hains and driving fun
tion {Ut} were deterministi
. S
hramm [18℄asked whether a random driving fun
tion 
ould produ
e some of the known random
urves as Loewner 
hain {gt}. He showed in [18℄ that if the pro
ess {gt} has 
ertainMarkov properties, then one 
an obtain this pro
ess as Loewner 
hain only if thedriving fun
tion is√κ × Brownian motion, for some κ ≥ 0.The pro
esses whi
h have su
h a driving fun
tion are 
alled SLE's (originally thisstood for "sto
hasti
 Loewner Evolution", but is now 
ommonly read as S
hramm-Loewner evolution).When a 
hain is an SLEκ, new 
omputations be
ome possible or mu
h simpli�ed.In parti
ular, the existen
e and expli
it values of most of the 
riti
al exponentshave now been rigorously established (but see questions Q2 and Q4 below). Stashas made major 
ontributions to these determinations in [17, 23℄. In parti
ular heprovided essential steps for showing that a 
ertain interfa
e between o

upied andva
ant sites in per
olation is an SLE6 
urve.The SLE 
al
ulations 
on�rm predi
tions of physi
ists, as well as a 
onje
tureof Mandelbrot. Can now des
ribe various planar random 
urves by means of SLEpaths. Also interse
tion properties of Brownian paths. SLEκ pro
esses with di�er-ent κ 
an have quite di�erent behavior. A good survey of per
olation and SLE isin [19℄, and [16℄ is a full length treatment of SLE.4. Generalization and some open problemsI don't know of any latti
e model in physi
s whi
h has as mu
h independen
ebuilt in as per
olation. It is therefore of great signi�
an
e that Stas has a wayto atta
k problems 
on
erning the existen
e and 
onformal invarian
e of a s
alinglimit for some models with dependen
e between sites, and in parti
ular for thetwo-dimensional Ising model. Stas and Dmitry Chelkak 
an apparently show thatin the 
riti
al Ising model interfa
es between spin
lusters have a 
onformally in-variant s
aling limit whi
h is des
ribed by SLE3 
urves. The oldest latti
e model ?Enormous literature. I am largely ignorant of this literature and have not workedmy way through Stas' papers on these models. Nevertheless am ex
ited by the fa
tthat Stas is seriously atta
king su
h models.To 
on
lude, here are some problems on per
olation. These also have appearedin other lists, (see in parti
ular [19℄),but you may like to be 
hallenged again.Q1 Prove the existen
e and �nd the value of 
riti
al exponents of per
olation onother two-dimensional latti
es than the triangular one and establish universality intwo dimensions.This seems to be quite beyond our rea
h at this time. Probably even more so isthe same question in dimension > 2.Q2 Prove a power law and �nd a 
riti
al exponent for the probability that thereare j disjoint o

upied paths from the dis
 {z : |z| ≤ r} to {z : |z| > R}. For j = 1this is the one-arm problem of [17℄. For j ≥ 2, the problem is solved, at least forthe triangular latti
e, if some of the arms are o

upied and some are va
ant (seeTheorem 4 in [23℄), but it seems that there is not even a 
onje
tured exponent forthe 
ase when all arms are to be o

upied or all va
ant.
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i�
 questions areQ3 Is the per
olation probability (right) 
ontinuous at pc ? Equivalently, is thereper
olation at pc ? This is only a problem for d > 2. The answer in d = 2 is thatthere is no per
olation at pc;Q4 Establish the existen
e and �nd the value of a 
riti
al exponent for theexpe
ted number of 
lusters per site. This quantity is denoted by
κ(p) =

∞
∑

n=1

1

n
Pp{

∣

∣C
∣

∣}in [12℄, p. 23. The answer is still unknown, even for 
riti
al per
olation on thetwo-dimensional triangular latti
e. It is known that κ(p) is twi
e di�erentiable on
[0, 1], but it is believed that the third derivative at pc fails to exist; see [14℄, Chapter9. This problem is mainly of histori
al interest, be
ause there was an attempt toprove that pc for bond per
olation on Z

2 equals 1/2, by showing that κ(p) has onlyone singularity in (0, 1). 5. Con
lusionI have been amazed and greatly pleased by the progress whi
h Stas Smirnov and
oworkers have made in a de
ade. They have totally 
hanged the �elds of randomplanar 
urves and of two dimensional latti
e models. Stas has shown that he hasthe talent and insight to produ
e surprising results, and his work has been a majorstimulus for the explosion in the last 15 years or so of probabilisti
 results aboutrandom planar 
urves.As some of the listed problems here show, there still are fundamental, and prob-ably di�
ult, issues to be settled. I wish Stas a long and 
reative 
areer, and thatwe all may enjoy his mathemati
s.

Figure 3
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