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Abstract. Yves Meyer has made numerous contributions to mathematics, several of
which will be reviewed here, in particular in number theory, harmonic analysis and partial
differential equations.
His work in harmonic analysis led him naturally to take an interest in wavelets, when
they emerged in the early 1980s; his synthesis of the advanced theoretical results in
singular integral operator theory, established by himself and others, and the requirements
imposed by practical applications, led to enormous progress for wavelet theory and its
applications. Wavelets and wavelet packets are now standard, extremely useful tools in
many disciplines; their success is due in large measure to the vision, the insight and the
enthusiasm of Yves Meyer.
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We start by reviewing the work by Yves Meyer chronologically, after which
we comment on the many ways in which his work has had an impact outside
mathematics.

1. Early work: Harmonic Analysis and Number
Theory (1964-1973)

Although the Mathematics Genealogy Project lists Jean-Pierre Kahane as his
Ph.D. advisor, Yves Meyer was essentially already an independent researcher when
he wrote his PhD thesis, in which he solved a problem raised by Lennart Carleson
about “strong Ditkin sets” [1]; this work constituted a precursor for later funda-
mental discoveries by Charles Fefferman and Elias Stein.

After his Ph.D., Meyer moved on to number theory, more precisely to Diophan-
tine approximations. One of his early results was the construction of an increasing
sequence of integers (kn)n∈N

such that for any t ∈ R, the sequence (t kn )n∈N
is

equidistributed modulo 1 if and only if t is transcendental [2]. This result preluded
the characterization by Georges Rauzy of normal sets. Meyer also became inter-
ested in Pisot numbers and found a new approach to a theorem by Rafael Salem
and Antoni Zygmund concerning sets of uniqueness of trigonometric expansions,
proving in particular that certain types of Cantor sets have the property of spectral
synthesis.
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Insights gained while working on these early results then led to the first major
contribution of Yves Meyer: the theory of model sets, which paved the road to the
mathematical theory of quasicrystals.
A set Λ ⊂ R

n is a model set if there exist a finite set F ⊂ R
n and a constant

C ∈ R+ such that (1) Λ − Λ ⊂ Λ + F , and (2) infλ∈Λ |x− λ| ≤ C for all x ∈ R
n.

Meyer proved the following theorem: if Λ is a model set and if θΛ ⊂ Λ then θ

is a Pisot or a Salem number. The following converse is also true: for each Pisot
or Salem number, there exists a model set Λ such that θΛ ⊂ Λ . This and many
other properties of model sets are established in [3], relating them to the theory
of mean-periodic functions developed by Jean Delsarte and Jean-Pierre Kahane.
It was later realized that some non-periodic patterns observed in chemical alloys,
now generally known as quasicrystals, could be identified with specific model sets.
It is worth noting that these fundamental discoveries by Yves Meyer predated the
first constructions of Penrose tilings came after these fundamental discoveries.

2. Singular integral operators: the Calderón pro-
gram (1974-1984)

Alberto Calderón proposed to construct an improved pseudodifferential calculus,
with minimal smoothness assumptions on the “symbol”; he introduced this gener-
alization so as to

obtain stronger estimates and to prepare the ground for application to

the theory of quasilinear and nonlinear differential operators.

In particular, these new operators should include singular integral operators, of
which the archetypical examples are the Hilbert transform H (in one dimension),

H(f)f(x) =
1

π
lim
ǫ→0

∫

y∈R, |x−y|>ǫ

1

x− y
f(y) dy ,

and the Riesz transforms Ri (in higher dimensions),

Ri(f)f(x) =
1

π
lim
ǫ→0

∫

y∈Rn, |x−y|>ǫ

xi

|x− y|n+1
f(y) dy .

More generally, a singular integral operator T in Caldéron-Zygmund theory is
associated with a kernel function K : R

n × R
n → R in the following way:

for arbitrary smooth functions f , g, both compactly supported, and with disjoint
supports,

∫

Rn

g(x)T (f)(x) dx =

∫

Rn

∫

Rn

g(x)K(x, y) f(y) dy dx ,

where K must satisfy some decay and cancellation conditions that nevertheless al-
low singular behavior of K(x, y) as y approaches x. (More precisely, it is required
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that |x− y|n |K(x, y)| be uniformly bounded, and that, for some δ > 0, and some

C ∈ R+, (|x− y| + |x′ − y|)
n
|K(x, y) −K(x′, y)| ≤ C

(
|x−x′|

|x−y|+|x′−y|

)δ
, again uni-

formly in x, x′ and y for x 6= x′, with a symmetric condition on K(x, y)−K(x, y′).)

The most famous examples of such operators are given by the Cauchy integral
on a Lipschitz curve or the double layer potential on a Lipschitz surface. Together
with Ronald Coifman and Alan McIntosh, Yves Meyer [4] obtained a breakthrough
result in this framework, proving the boundedness of these Calderón-Zygmund
operators for arbitrary Lipschitz curves or surfaces. This breakthrough opened the
door for further fundamental results, such as the solution of the Dirichlet problem
in arbitrary Lipschitz domains by the method of layer potentials [5], the celebrated
T (1) theorem of Guy David [6], proving boundedness of general Calderón-Zygmund
operators under minimal conditions (generalized even further by David, Journé
and Semmes [7]), and the solution of Katos conjecture about the square root of
accretive differential operators [8].

One of the technical tools used repeatedly in the analysis of Calderón-Zygmund
operators consists in integral formulas of the type

Qs(f)(x) = sn
∫

Rn

f(x− y) q(sy) dy ,

where the function q : R
n → R is defined by q(x) = 2n ϕ(2x) − ϕ(x), for some

well-localized and smooth “bump function” ϕ on R
n, i.e. a smooth function with

fast decay and integral 1, often picked radially symmetric for simplicity. One then
easily checks that the following resolution of the identity holds, at least in the weak
sense, and for reasonable f ,

∫ ∞

0

Qs(Qs(f))
ds

s
= Cϕ f ,

where Cϕ depends on the choise of ϕ, but not on f . The integral over the scaling
parameter s can then be written as a sum over subsets of R+, carving up f into
components at different scales.

3. Signal and image processing: the Wavelet revo-
lution (1983-1993)

Wavelet theory finds its origin in the recurrent need to develop a localized version of
Fourier analysis, inasmuch as is possible within the Heisenberg principle constraint.

Early attempts to obtain time-frequency representations for arbitrary (bounded)
functions f : R → C, via linear and bilinear transforms, were motivated at least in
part by the desire to study the correspondence between classical and quantum me-
chanics: coherent state representations (already implicit in some of Schrödinger’s
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work; introduced more explicitly by Gabor in 1945) which can be viewed as short-

time Fourier transforms or windowed Fourier transforms,

Sw(f)(t, ω) =

∫

R

f(t+ τ) eiωτ w(τ) dτ

(where w is typically smooth and has compact support or fast decay), or the Wigner
transform,

W (f, g)(t, ω) =

∫

R

f(t+ τ) g(t− τ) e2iωτ dτ ;

in this last case, W (f, f) (in which g = f) is called the Wigner or Wigner-Ville
distribution of f , first introduced in the 1930s. Figure 1 illustrates these time-
frequency representations for one particular f .

In the windowed Fourier transform the extent of “time” or “frequency” local-
ization is fixed in advance by the choice of the window function w. For instance,
in Figure 1, the constant frequency component s1 is clearly delineated in the win-
dowed Fourier transform with wide window wwide, and much less so when wnarrow is
chosen; on the other hand, the temporal start of s2 can be identified with greater
accuracy in the windowed Fourier transform with wnarrow than with wwide. One
easily checks that, for a wide range of choices of f , g, including all f, g ∈  L2(R),

∫

R×R

Sw(g)(t, ω)Sw(f)(t, ω) dt dω = 2π

[ ∫

R

|w(s)|2 ds

] ∫

R

g(τ) f(τ) dτ ;

writing out explicitly the integrals in Sw(g), one finds that this can be interpreted
(in the weak sense) as

f(τ) = (2π)−1

∫

R×R

Sw(f)(t, ω)w(τ − t) e−iωτ dt dω ,

where we assume
∫

R
|w(s)|2 ds = 1 for simplicity. With judicious choices of the

window w and of parameters t0, ω0, there exist similar decomposition formulas

using discrete sums rather than integrals, i.e.

f(τ) = (2π)−1
∑

m,n∈Z

Sw(f)(mt0, nω0)w(τ −mt0) e−inω0τ .

The Gabor transform is exactly of this type, with a Gaussian window w. These
integrals or sums can be viewed as ways to write f as a superposition of “atoms”
w[t,ω](τ) := w(τ − t) e−iωτ that are each well localized in time and frequency
around their label [t, ω]; note that each w[t,ω] is obtained from the “generating”
atom w by simple translation in time and in frequency. These decompositions
suffer, however, from the shortcoming illustrated by Figure 1: the choice of the
window fixes the trade-off between precision in time and frequency localization,
which then remains the same throughout the time-frequency plane.

This shortcoming led Jean Morlet, a seismological engineer, to introduce a new
integral transform based on time-scale atoms, generated by translates and dilates
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of an atom ψ, i.e. ψ[a,t](τ) := Na ψ
(
τ−t
a

)
, where the normalization constant

Na can be adapted to the application at hand; often Na = a−1/2 is selected,
ensuring a constant L2(R)-norm for the ψ[a,t]. Typically one picks ψ smooth, with
fast decay; it is essential that it also satisfy

∫
R
ψ(t) dt = 0. Analogously to the

windowed or short-time Fourier transform Sw(f)(t, ω) =
∫
f(τ)wt,ω(τ) dτ , one

then defines the wavelet transform Tψ(f) by

Tψ(f)(a, t) =

∫

R

f(τ)ψ[a,t](τ)) dτ .

The bottom right panel of Figure 1 illustrates that Tψ(f) does provide a time-
frequency representation with high resolution in time for high frequency compo-
nents, and high resolution in frequency for low frequency components.

The main theoretical properties of this transform were studied, in collaboration
with Jean Morlet, by mathematical physicist Alex Grossmann. In particular, they
showed that, in the same way as for the windowed Fourier transform, (and with
the choice Na = a−1/2)

∫

R×R

Tψ(g)(a, t) Tψ(f)(a, t) dt a−2da = 2π

[ ∫

R

|ξ|−1 |ψ̂(ξ)|2 dξ

] ∫

R

g(τ) f(τ) dτ ,

where ψ̂ is the Fourier transform of ψ. Again, this can be interpreted as

f(τ) = (2π)−1

∫

R×R

Tψ(f)(a, t)ψ[a,t](τ) dt a−2da ,

with
∫

R
|ξ|−1 |ψ̂(ξ)|2 dξ = 1 for simplicity; judicious choices of ψ and of parameters

t0, a0 lead to a similar discrete decomposition formula,

f = (2π)−1
∑

m,n∈Z

Tψ(f)(an0 , m an0 t0)ψ[an

0
,m an

0
t0] .

These decomposition formulas for f turn out to be exactly the same as the formula
at the end of the previous section (restricted to dimension 1): its integral over the
scale s corresponds here to the integral over a, and the integral over t is just an
explicit writing-out of the convolution inherent to the “outer” Qs; the “inner” Qs
is subsumed in the wavelet transform Tψ(f).

Yves Meyer was the first to notice this similarity, and to realize that the wavelet
transform proposed by Grossmann and Morlet was related to the very rich and
powerful Calderón-Zygmund theory. He soon established that, in contrast to the
windowed Fourier transform, the wavelet transform allows for discrete versions in
which the ψ[an

0
,man

0
t0] constitute an orthonormal basis for L2(R). Several new

families of bases, constructed by Meyer and by his student Pierre-Gilles Lemarié-
Rieusset, as well as by the mathematical physicist Guy Battle, soon joined the two
already existing constructions, by Alfred Haar and Jan-Olov Stromberg respec-
tively, all featuring dyadically scaled functions of the type ψj,k(t) = 2j/2 ψ(2jtk),
with j, k raging over Z. In collaboration with Stéphane Mallat, Meyer constructed
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a general framework, multiresolution analysis, that not only provided the right set-
ting to construct further wavelet bases, but also allowed the seamless integration
of the new wavelet point of view with the existing Calderón-Zygmund theory. In
particular, Meyer showed in his celebrated book [9] that these wavelet bases are
unconditional bases for a host of classical function spaces; this is a key feature
in many applications of wavelets, for instance in data compression and statistical
estimation.

The work of Yves Meyer paved the way to the construction on orthonormal
bases of compactly supported wavelets [10] and their subsequent biorthogonal gen-
eralization [11], corresponding to subband filtering algorithms with finite filters.
The biorthogonal wavelet filters of [11] were selected as the filters of choice in the
JPEG2000 image compression standard, recently adopted for the digital movies
presently reaching movie theaters worldwide.

Wavelets have many more applications to science and technology, including
denoising algorithms, adaptive numerical approximation of PDEs, medical and
astronomical imaging, turbulence and genomic analysis.; a beautiful description
of different perspectives can be found in the book [12] by Yves Meyer, Stéphane
Jaffard and Robert Ryan. These applications are reflected by a large number
of industrial patents, workshops, conference sessions and publications devoted to
these applications.

In order to satisfy the requirements for an applications to astrophysics, Meyer,
in collaboration with Ronald Coifman, extended the construction of wavelet bases
to wavelet packet bases, which have since been used in numerous applications as
well.

4. Navier-Stokes equations (1994-1999)

Yves Meyers interest in Navier-Stokes equation was inspired by a series of talks
and papers by Marie Farge, as well as by a paper by Guy Battle and Paul Feder-
bush., suggesting suggested that wavelet transforms might yield better results than
pseudo-spectral algorithms for the numerical approximation of turbulent flow. This
belief was grounded by the observation that turbulence involves a cascade of energy
across a large range of scales and that wavelets provide a natural tool to identify
the different scales and to analyze their interaction.

This led Yves Meyer to launch an research program on the Navier-Stokes equa-
tion, in collaboration with his students Marco Cannone, Fabrice Planchon and
Pierre-Gilles Lemarié-Rieusset. It turned out that it is in fact more efficient to
stick to Littlewood-Paley decompositions than to use wavelet expansions for the
analysis of Navier-Stokes equations; using these decompositions they proved global
existence of the solution in the space C(R+, L

3(R3)) when the initial condition u0

is oscillating in the sense that it belongs to a Besov space of negative order; this
was an improvement on the earlier Fujita-Kato theorem. A uniqueness result was
later established by Pierre-Gilles Lemarié.

Another famous contribution of Yves Meyer to partial differential equations is
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an improved div-curl lemma, stating that if E and B are two square integrable
vector fields such that ∇·E and ∇×B vanish, then E ·B belongs to the Hardy space
H1. This remarkable result, first suggested by Pierre-Louis Lions, was proved by
Yves Meyer and his collaborators in [13].

5. Recent work (2000-2008)

The results obtained by the group of Yves Meyer in nonlinear evolution equations
led him to believe that there might be a functional norm governing the eventual
blow-up of the solution to the Navier- Stokes equation. This endeavor ultimately
led to dramatically improved Gagliardo-Nirenberg inequalities involving negative-
regularity spaces, explaining why the solution of the Navier-Stokes equation does
not blow up when the initial condition is oscillating. The study of these oscillatory
patterns also led Yves Meyer back to the arena of image processing. A classical
problem in image analysis is the separation of geometric features and texture.
The algorithm proposed by Yves Meyer is based on a minimization procedure
which involves the BV-norm to measure the geometric (or “cartoon”) content and
a negative smoothness norm to measure the oscillatory texture. This strongly
improves on a celebrated algorithm proposed by Stanley Osher and Leonid Rudin.
A comprehensive mathematical synthesis explaining the role of oscillation in both
nonlinear partial differential equations and image processing was given by Yves
Meyer in [14].

Most recently, Yves Meyer has been active in the field of compressed sensing.
This very active field studies the extent to which one can exploit the inherent low-
dimensional nature of an object or feature under study, when taking measurements
in a high dimensional setting, when the identity of the “active” components is
unknown. Based on abstract results from functional analysis and approximation
theory from the 1960s, the fundamental estimates recently garnered an explosive
amount of interest, after the work of Emmanuel Candès, Terrence Tao, David
Donoho and many others who constructed concrete algorithms and illustrated their
promise in applications.

A fundamental limitation in most approaches was that the best results were
obtained with measurement matrices generated by probabilistic methods; typically
deterministic constructions are less efficient. Yves Meyer gave the first determin-
istic construction of an optimal sensing system, based on the theory of model sets
that he introduced at the start of his career, as well as a concrete algorithm for sig-
nal recovery from the measurements obtained by this system; in his approach the
randomness is replaced by the pseudo-periodic structure generated by the model
set.
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6. Conclusions

The scientific life of Yves Meyer combines deep theoretical achievements in har-
monic analysis, number theory, partial differential equations and operator theory,
with a constant quest for a truly interdisciplinary exchange of ideas and the devel-
opment of relevant and concrete applications.

This is illustrated most notably by his leading role in the development of wavelet
theory, in which his research in harmonic analysis and operator theory led him
naturally to the development of the computational multiscale methods that are at
the heart of numerous applications of wavelets and wavelet packets in information
science and technology.

His pioneering role is clear from the record. But to all his students and collabo-
rators, Yves Meyer also stands out by other characteristics, maybe less tangible in
the written record – his insatiable curiosity and drive to understand, his openness
to other fields, his boundless enthusiasm and energy that inspired many young
scientists, not all of them mathematicians, and the selfless generosity with which
he untiringly promoted their work.
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related topics, Astérisque, 249, 1998.

[9] Y. Meyer, Wavelets and operators, vol. I, II and III, Cambridge University Press,
1992.

[10] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure &
Appl. Math., 41, 909-996, 1988

[11] A. Cohen, I. Daubechies, and J.C. Feauveau, Biorthogonal bases of compactly sup-

ported wavelets, Comm. Pure & Appl. Math., 45, 485-560, 1992.



Gauss Prize 9

[12] S. Jaffard, Y. Meyer and R. Ryan, Wavelets, tools for sciences and technology, SIAM,
2001.

[13] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and

Hardy spaces, J. Math. Pures Appl., 247-293, 1993.

[14] Y. Meyer, Oscillating patterns in some nonlinear evolution equations, Mathematical
foundation of turbulent viscous flows, Lecture notes in mathematics 1871, Springer
2006.

218 Fine Hall, Princeton University, Washington Road, Princeton NJ 08540, USA
E-mail: ingrid@math.princeton.edu



10 Ingrid Daubechies

0 5 10

0

2

4

time

da
ta

0 5 10
0

20

40

60

80

time
fr

eq
ue

nc
y

time

fr
eq

ue
nc

y

2 4 6 8 10
0

20

40

60

80

time

fr
eq

ue
nc

y

2 4 6 8 10
0

20

40

60

80

time

fr
eq

ue
nc

y

2 4 6 8 10 12
0

20

40

60

80

time
sc

al
e

0 5 10
2

4

6

8

Figure 1. Examples of time-frequency representations. Top row left: the signal
f(t) = f1(t) + f2(t) defined by f1(t) = .5t + cos(20t) for 0 ≤ t ≤ 5π/2, and f2(t) =
cos

`

4

3
[(t− 10)3 − (2π − 10)3] + 10(t− 2π)

´

for 2π ≤ t ≤ 4π ; middle: the “instantaneous
frequency” for its two components: for f1, ω(t) = 20 for 0 ≤ (t − 10)2 ≤ 5π/2, and for
f2, ω(t) = 4t2 + 10 for 2π ≤ t ≤ 4π; right: the Wigner-Ville distribution of f . Bottom
row left: the (absolute value of a) a continuous windowed Fourier transform of f(t),
with a window wwide with a wide (compact) support in t; middle: same, but now with
a window wnarrow with a less wide (compact) support in t; right: the (absolute value of
a) a continuous wavelet transform of f(t), where ψ is the Morlet wavelet (essentially a
modulated Gaussian).
The quadratic nature (in f) of the Wigner-Ville distribution causes “interference” terms
in the time-frequency representation, avoided in linear time-frequency methods such as
the windowed Fourier transforms.
The two windowed Fourier transforms show how the choice of the window influences the
corresponding time-frequency representation; in the wavelet transform the fine scale at
high frequencies, and the wider time support at lower frequencies make it possible to
identify both the frequency of f1 and the onset of f2 with greater accuracy than in either
of the windowed Fourier transform representations.


