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The Work of Daniel A. Spielman

Gil Kalai

Dan Spielman has made groundbreaking contributions in theoretical computer
science and mathematical programming and his work has profound connections to
the study of polytopes and convex bodies, to error-correcting codes, expanders, and
numerical analysis. Many of Spielman’s achievements came with a beautiful col-
laboration spanned over two decades with Shang-Hua Teng. This paper describes
some of Spielman’s main achievements.

Section 1 describes smoothed analysis of algorithms, which is a new paradigm
for the analysis of algorithms introduced by Spielman and Teng. Section 2 describes
Spielman and Teng’s explanation for the excellent practical performance of the
simplex algorithm via smoothed analysis.

Spielman and Teng’s theorem asserts that the simplex algorithm takes a poly-
nomial number of steps for a random Gaussian perturbation of every linear pro-
gramming problem.

Section 3 is devoted to Spielman’s works on error-correcting codes and in partic-
ular his construction of linear-time encodable and decodable high-rate codes based
on expander graphs. Section 4 describes other directions: spectral graph theory,
sparsifiers, graph partitioning, numerical analysis, and linear equation solvers.

1. Smoothed analysis of algorithms

I will introduce the motivation for smoothed analysis by quoting Dan Spielman
himself:

“Shang-Hua Teng and I introduced smoothed analysis to provide a means
of explaining the practical success of algorithms and heuristics that have
poor worst-case behavior and for which average-case analysis was un-
convincing. The problem of explaining the success of heuristics that
‘work in practice’ has long plagued theoreticians. Many of these have
poor worst-case complexity. While one may gain some insight into their
performance by demonstrating that they have low average-case complex-
ity, this analysis may be unconvincing as an average-case analysis is
dominated by the performance of an algorithm on random inputs, and
these may fail to resemble the inputs actually encountered in practice.

Smoothed analysis is a hybrid of worst-case and average-case analyses that
inherits advantages from both. The smoothed complexity of an algorithm is the
maximum over its inputs of the expected running time of the algorithm under slight
random perturbations of that input. The smoothed complexity is then measured
as a function of both the input length and the magnitude of the perturbations.
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If an algorithm has low smoothed complexity, then it should perform well on
most inputs in every neighborhood of inputs. Smoothed analysis makes sense for
algorithms whose inputs are subject to slight amounts of noise in their low-order
digits, which is typically the case if they are derived from measurements of real-
world phenomena.

The most important example of an algorithm with poor worst-case complexity
and excellent practical behavior is the simplex algorithm for linear programming.
We will discuss linear programming in the next section. Following Spielman and
Teng, the smoothed complexity of quite a few other algorithms, of geometric,
combinatorial, and numeric nature, were studied by various authors, see [48] for a
survey. Some highlights are: k-means and clustering [5]; integer programming [7];
superstring approximation [30]; Smoothed formulas and graphs [26].

2. Why is the simplex algorithm so good?

2.1. Linear programming and the simplex algorithm. In 1950
George Dantzig (see [10]) introduced the simplex algorithm for solving linear pro-
gramming problems. Linear programming and the simplex algorithm are among
the most celebrated applications of mathematics. See [37, 53].

A linear programming problem is the problem of finding the maximum of a
linear functional (called a linear objective function) on d variables subject to a
system of n inequalities. The set of solutions to the inequalities is called the
feasible polyhedron and the simplex algorithm consists of reaching the optimum
by moving from one vertex to a neighboring vertex of the feasible polyhedron.
The precise rule for this move is called the pivot rule. What we just described
is sometimes called the second phase of the algorithm, and there is a first phase
where some vertex of the feasible polyhedron is reached.

Understanding the complexity of linear programming and of the simplex algo-
rithm is a major problem in mathematical programming and in theoretical com-
puter science.

Early thoughts. The performance of the simplex algorithm is extremely good in
practice. In the early days of linear programming it was believed that the common
pivot rules reach the optimum in a number of steps that is polynomial or perhaps
even close to linear in d and n. As we will see shortly, this belief turned out to be
false.

A related conjecture by Hirsch asserts that for d-polytopes (bounded polyhedra)
defined by n inequalities in d variables there is always a path of length at most
n−d between every two vertices. The Hirsch conjecture was recently disproved by
Francisco Santos [36]. The known upper bound for diameter of graphs of polytopes
is quasi-polynomial in d and n [22]. (Of course, an upper bounds for the diameter
of the graph of the feasible polyhedron does not guarantee a similar bound for the
number of pivots for an effective simplex type algorithm.)
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The Klee-Minty example and worst-case behavior. Klee and Minty [24]
found that one of the most common variants of the simplex algorithm is exponen-
tial in the worst case. In fact, the number of steps was quite close to the total
number of vertices of the feasible polyhedron. Similar results for other pivot rules
were subsequently found by several authors. No efficient pivot rules for linear
programming is known which requires a polynomial number of pivots or even a
sub-exponential number of pivot steps for every LP problem problem. There are
randomized algorithms which requires in expectation a sub-exponential number
of steps exp(K

√
log nd) [19, 34]. Even for randomized algorithms a polynomial

number of steps is a distant goal.

LP ∈ P , the ellipsoid method and interior points methods. What can
explain the excellent practical performance? In 1979 Khachian [18] proved that
LP ∈ P ; namely, there is a polynomial time algorithm for linear programming.
This had been a major open problem since the complexity classes P and NP were
described in the late sixties, and the solution led to the discovery of polynomial
algorithms for many other optimization problems [15]. Khachian’s proof was based
on Nemirovski and Shor’s ellipsoid method, which is not practical. For a few years
there was a feeling that there is a genuine tradeoff between being good in theory
and being good in practice. This feeling was shattered with Karmarkar’s 1984
interior point method [20] and subsequent theoretical and practical discoveries.

Average case complexity. We come now to developments that are most closely
related to Spielman and Teng’s work. Borgwardt [8] and Smale [38] pioneered the
study of average case complexity for linear programming. It turns out that a certain
pivot rule first introduced by Gass and Saaty called the shadow boundary rule is
most amenable to average-case study. Borgwardt was able to show polynomial
average-case behavior for a certain model that exhibits rotational symmetry. In
the mid-80s, three groups of researchers [1, 2, 52] were able to prove quadratic
upper bound for the simplex algorithm for very general random models that exhibit
certain sign invariance.

2.2. Smoothed analysis of the simplex algorithm. We start with
a linear programming (LP) problem:

max < c,x >, x ∈ Rd

subject to Ax ≤ b

Here, A is an n by d matrix, b is a column vector of length n, and c is a column
vector of length d.

Spielman and Teng considered a Gaussian perturbation of the matrix A where
a Gaussian random variable with variance σ is added independently to each entry
of the matrix A.
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Theorem 2.1 (Spielman and Teng [43]). For the shadow-boundary pivot rule,
the average number of pivot steps required for a random Gaussian perturbation of
variance σ of an arbitrary LP problem is polynomial in d, n, and σ−1.

Spielman and Teng’s proof [43] is truly a tour de force. It relies on a very
delicate analysis of random perturbations of convex polytopes.

Let me mention two ingredients of the proof: The shadow-boundary method
can be described geometrically as follows. Consider an orthogonal projection of
the feasible polytope to two dimensions such that the starting vertex and the
optimal vertex are mapped to vertices of the projection. The walk performed by
the algorithm (in phase I) is a pre-image of walking along the boundary in the
projection. An important step in the proof is to show that the number of vertices1

in the projection is only polynomial in d, n, and σ−1.

A crucial part of the proof is explaining what a random perturbed polytope
looks like. In particular, it is required to prove that the angles at vertices of
these polytopes are not “flat.” Every vertex corresponds to a solution of d linear
equations in d variables and the angle at the vertex is described by a certain
algebraic parameter of the linear system called the condition number.

The study of condition numbers of random matrices is crucial to Spielman and
Teng’s original results as well as to many subsequent developments.

2.3. Further developments.

Smoothed analysis of interior point methods. For interior point methods
there is also an unexplained exponential gap between the practical and proven
number of iterations. Renegar [35] proved an upper bound of O(

√
nL) for the

number of iterations required for an interior point method to reach the optimum.
Here, L is the number of bits in the binary description of the problem. His analysis
strongly relies on the notion of condition number we men tioned above. (In fact,
Renegar’s result gives the upper bound O(

√
nR) where R is the logarithm of the

condition number.) Practical experience tells us that in real-life problems the
number of iterations is logarithmic in n. Can smoothed analysis explain this as
well?

Dunagan, Spielman, and Teng [11] proved that the expectation of R, the log
of the condition number of any appropriately scaled linear program subject to a
Gaussian perturbation of variance σ2 is at most O(log nd/σ) with high probability.
This may offer some explanation for the fast convergence practically observed by
various interior point methods.

Improvements, extensions, and simplifications. Spielman and Teng them-
selves, Vershynin [55], Tao and Vu [51], and others over the years have introduced
significant improvements to the polynomials estimates, simplifications of various

1The whole difficulty of linear programming consists in on the fact that the number of vertices
of the feasible polytope can be exponential in d.
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parts of the original proof, and extensions, to more general classes of perturba-
tions. The best-known bound for the polynomial in the theorem that was proved
by Vershynin is max(d5 log2 n, d9 log4 d, d3σ−4).

The framework of smoothed analysis can be rendered more and more convincing
by restricting the families of perturbations to more closely model the noise one
would actually expect in a particular problem domain. Tao and Vu [51] were able
to replace the Gaussian noise by various more general and arguably more realistic
types of noise.

Towards a strongly polynomial algorithm for linear programming. One
of the outstanding open problems in computational complexity is that of finding
a “strongly polynomial algorithm for linear programming” [32, 39]. This roughly
means an algorithm that requires a polynomial number of arithmetic operations in
terms of d and n which do not depend on L, the number of bits required to present
the inequalities. The number of arithmetic operations required by the simplex
algorithm depends exponentially on d but does not depend on L. One can hope
that a strongly polynomial algorithm for linear programming will be achieved by
some clever pivot rule for the simplex algorithm. The most significant result in
this direction is by Tardos [50] and takes an entirely different route. She proved
that the polynomial algorithms that are in general not strongly polynomial are
strongly polynomial for a large family of linear programming problems that arise
in combinatorial optimization.

Based on the smoothed analysis ideas, Kelner and Spielman [23] found a ran-
domized polynomial-time simplex algorithm for linear programming. Finding such
an algorithm was a goal for a long time and the result may be a step towards a
strongly polynomial simplex algorithm.

3. Linear-time decodable and encodable high rate
codes

3.1. Codes and expanders.

Codes. The construction of error-correcting codes [54] is also among the most
celebrated applications of mathematics. Error-correcting codes are eminent in
today’s technology from satellite communications to computer memories.

A binary code C is simply a set of 0-1 vectors of length n. The minimal distance
d(C) is the minimal Hamming distance between two elements x, y ∈ C. The same
definition extends when the set {0, 1} is replaced by a larger alphabet Σ. When the
minimal distance is d the code C is capable of correcting [d/2] arbitrary errors. The
rate of a code C of vectors of length n is defined as R(C) = log |C|/n. Codes have
important theoretical aspects. The classical geometric problem of densest sphere
packing is closely related to the problem of finding error-correcting codes. So is
the classical question of constructing “block design,” which arose in recreational
mathematics and later resurfaced in the design of statistical tests.



6 Gil Kalai

Error-correcting codes have important applications in theoretical computer sci-
ence, which have enriched both areas. Codes are crucial in the area of “Hardness
of approximations and PCP,” and quantum analogs of error correcting codes are
expected to be crucial in the engineering and building of quantum computers.

Expanders. Expanders are special types of graphs. Roughly speaking, a graph
with n vertices is an expander if every set A of vertices |A| ≤ n/2 has at least
εn neighbors outside A. While the initial motivation came from coding theory,
expanders quickly found many applications and connections in mathematics and
theoretical computer science. See [13] for a comprehensible survey. Pinsker gave
a simple probabilistic proof of expander graphs with bounded degree. The first
explicit construction was given by Margulis [31]. There are important connections
between the expansion properties, spectral properties of graphs-Laplacian [4, 3],
and random walks [16]. Number theory enables the construction of a remarkable
optimal class of expanders called “Ramanujan graphs” [28].

3.2. From expanders to codes. An important class of codes are those
of minimal distance αn errors α < 1/2. Finding the largest rate of these codes is a
famous open problem. Probabilistic constructions due to Gilbert and Varshamov
give the highest known rates for binary codes with minimal-distance αn. The first
explicit construction for codes with positive rate that correct a positive fraction
of errors (for large n) was achieved by Justesen [17] and was one of the major
discoveries of coding theory in the seventies.2 A major open problem was to find
such codes which admit a linear time algorithm for decoding and for encoding.

In the early sixties Gallager [14] described a method to move from graphs to
codes. Michael Sipser and Spielman [49] were able to show that codes that are
based on expander graphs (thus called expander codes) have positive rate, correct
a positive fraction of errors, and have a simple decoding algorithm. A remarkable
subsequent result by Spielman is

Theorem 3.1 (Spielman 1995, [40]). There is a construction of positive rate linear
codes which correct a positive fraction of errors and which admit a linear time
algorithm for decoding and for encoding.

Spielman’s full result is quite difficult and requires a substantial extension of
Gallager’s original construction which is similar to the construction of “supercon-
centrators” from expanders. Let me explain how Sipser and Spielman were able
to construct high-rate codes via expanders.

Start with an expander bipartite graph G with two unbalanced sides A and
B. Suppose that vertices in A have degree c and vertices in B have degree d and
that d > c. (Thus, |A|d = |B|c; put |A| = n.) The code C will consist of all 0,1
vectors indexed by vertices in A such that for every vertex b of B the coordinates
indexed by the neighbors of b sum up to zero. This gives us a linear code (namely,
C is a linear subspace of {0, 1}|A|) of dimension |A| − |B|. The minimum distance

2Later, constructions based on algebraic geometry were found which give, for large alphabets,
even higher rates than the Gilbert-Varshamov bound.
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between two vectors of C is simply the minimal number of ones in a vector in C.
Now enters the expansion property. Assume that for every set B′ of vertices in
B such that |B| ≤ α|B| the number of its neighbors in A is at least δ|B′|, where
δ = εc/d. This implies that every vector in the code C has at least εn ones.

3.3. Tornado codes. Dan Spielman has made other important contribu-
tions to the theory of error-correcting codes and to connections between codes and
computational complexity. Some of his subsequent work on error-correcting codes
took a more practical turn. Spielman, together with Michael G. Luby, Michael
Mitzenmacher and M. Amin Shokrollahi constructed [29] codes that approach the
capacity of erasure channels. Their constructions, which are now called tornado
codes, have various practical implications. For example, they can be useful for
compensating for packet loss in Internet traffic.

4. Fast linear-system solvers and spectral graph
theory

Spielman recently focused his attention to one of the most fundamental problems in
computing: the problem of solving a system of linear equations. Solving large-scale
linear systems is central to scientific and engineering simulation, mathematical
programming, and machine learning.

Inspired by Pravin Vaidya’s work on iterative solver that uses combinatorial
techniques to build preconditioners, Spielman and Teng were able to settle an open
problem raised by Vaidya in 1990:

Theorem 4.1 (Spielman and Teng [46]). There is a nearly linear time algorithm
for solving diagonally dominant linear systems.

Their solver incorporates basic numerical techniques with combinatorial tech-
niques including random walks, separator theory, and low-stretch spanning trees.
This endeavor have grown into a body of interdisciplinary work, and in the process

• Numerically motivated combinatorial concepts such as spectral sparsifiers
were introduced.

• Efficient graph-theoretic algorithms for constructing sparsifiers were found
and applied to matrix approximation.

• Nearly linear-time clustering and partitioning algorithms for massive graphs
were developed with the guidance of spectral analysis.

A recent practical fruit is the development of an asymptotically and practically
efficient nearly-linear time algorithm by Koutis, Miller and Peng [25], which in-
corporates Spielman and collaborators’ constructions of low-stretch spanning trees
[12] and of sparsifiers [45].
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In the rest of this section we will describe three themes in this endeavor, but
let me first make a remark about the relation of Spielman’s work with numerical
analysis. Numerical analysis may well deserve the title of “queen of applied math-
ematics” and thinking numerically often gives a whole new dimension to mathe-
matical understanding. Algorithms discovered in numerical analysis and scientific
computing are among the most important and most useful algorithms known to
mankind. Many of the notions and results discussed in Section 1 and in this sec-
tion are related to numerical analysis. Spielman and Teng [43] proposed smoothed
analysis as a framework for the theoretical study of certain numerical algorithms
and Spielman’s recent endeavor have built new bridges between numerical analysis
and discrete mathematics.

The following themes are heavily entangled in Spielman’s work, but I will de-
scribe them separately. For more, see Spielman’s article in these proceedings [41].

Sparsifiers. What is a sparsifier? Very roughly, given a graph G (typically dense,
with a quadratic number of edges in terms of the vertices), a sparsifier H is a sparse
graph with a linear or nearly linear number of edges that captures (in a sense that
needs to be specified) structural properties of G. So expanders can be thought of
as sparsifiers of the complete graph.

Spielman and Teng [45] gave a spectral definition of sparsifiers and this def-
inition turned out to be very fruitful. Recent works by Spielman with several
coauthors [6, 42] give answers to the following questions: How are sparsifiers con-
structed? What are they good for? If sparsifiers are analogs of expanders what
are the analogs of Ramanujan graphs? One of the major new results is nearly
linear-time algorithms to construct sparsifiers.

Graph partitioning via spectral graph theory. Splitting graphs into a struc-
tured collection of subgraphs is an important area in pure and applied graph theory.
A tree-like structure is often a goal. And the Tarjan-Lipton separator theorem [27]
for planar graphs is an early graph-partitioning result that often serves as a role
model.

By bounding the eigenvalue of the Laplacian of bounded-degree planar graphs,
Spielman and Teng [45] gave an algebraic proof of the Lipton-Tarjan’s theorem and
its extensions, providing an explanation of why the spectral partitioning works on
practical graphs including finite-element meshes and planar-like graphs.

Solvers for linear systems of equations based on graph Laplacians. In a
series of papers Spielman and his coauthors considered systems of linear equations
based on Laplacian matrices of graphs. This may look rather special but it is a
fascinating class of linear systems and various others systems of linear equations
can be reduced to this case. See [41].

Conclusion. The beautiful interface between theory and practice, be it in
mathematical programming, error-correcting codes, the search for Ramanujan-
quality sparsifiers, the analysis of algorithms, computational complexity theory, or
numerical analysis, is characteristic of Dan Spielman’s work.
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