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In the year 1498, on the 26th of April, Vasco da Gama left the East African
port town of Malindi aboard the San Gabriel at the head of a small crew
of sea-weary sailor-fighters, bound for Kerala (or Malabar as the Arab sea-
traders called it) in the southwest of India. Behind him were nine months
of the long trajectory from Portugal across the Atlantic almost to the shores
of Brazil, back to the tip of Africa, and then along its east coast up to the
equator. The Portugal he came from was a country on the margin of cultural
Europe — small, poor and ignorant, but rich in ambition and Christian fer-
vour. Vasco’s expedition had the patronage and blessings of his king Manuel
and of the Pope, the one with his eye on the potentially great riches to be
garnered from trading in India’s spices and other treasures and the other
perhaps hoping to make contact with the long-believed but mythical Prester
John’s Christian kingdom of the east but, more realistically, to extend the
frontiers of Christendom into heathen lands.

Malindi, a prosperous little bazaar town teeming with merchants and
merchant men from Arabia and Persia and India, was ruled by a Moorish
sultan. It was to circumvent the stranglehold of the Moors on the land routes
to India and beyond that Portugal (and Spain) embarked on the bold and
exceedngly chancy adventure of seeking ocean routes. In the event the sultan
showed himself friendly and gave Vasco the one service without which his
expedition might have come to nothing — he arranged for an Indian master-
navigator, Kanaka by name, to help the Portuguese ride the monsoon winds
and currents across the Arabian Sea to the fabled spice ports of the Malabar
coast. Less than a month later, on 18 May, they made landfall to the north
of Calicut, marking the start of a century and a half of strife and bloodshed
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on land and at sea, during which they harvested spices and souls in equal
measure, until they were finally confined in their pocket colony of Goa.

It is appropriate to introduce the theme of this article with the arrival of
the Portuguese on the coconut coast of India (the name Kerala derives from
the word kera for coconut) because the hundred and fifty years or so of their
malign presence there constitute a period of momentous change in Europe
and in India, a beginning in one and an end in the other. The dark ages were
coming to a lingering close in the Europe that Vasco left. Fresh winds had
been blowing in through the windows opened to the Arab world and beyond
by the Crusades and, in the Iberian peninsula itself, the Moorish kingdom of
Andalusia. In the arts, the Renaissance was in full bloom; in 1498, Leonardo
was finishing The Last Supper and Michelangelo was a young man of twenty
three. The sciences were beginning to stir, throwing aside the dead hand
of ancient dogma; Copernicus was a student in Italy and, in another ten
years, would begin to think through his revolutionary ideas on heliocentric
planetary motion. But, as the savants knew only too well, the influence of
the Church of Rome remained strong: when Spain and Portugal were in
dispute about rights over their future conquests, it was the Pope who, in
1494, divided up the world between them. The Inquisition was still alive:
Savonarola was terrorising Florence and it was exactly five days after Vasco
landed in Calicut that he was caught and hanged.

By the time the Portuguese were driven out of Kerala by local forces
and the newly assertive Dutch, European science, astronomy, physics and
mathematics in particular, had made its decisive turn. Galileo had lived and
died and Kepler had turned Copernicus’s qualitative picture into a precise
geometrical model of the solar system. From Holland, the young Huygens
was beginning to exert his enormous intellectual influence on all of Europe
and, in France, Descartes, Fermat and others had laid the foundations for a
new mathematics transcending the geometry of the Greeks. Fresh ideas (and
some not so fresh) were wafting in or finally taking root, the most significant
of them “the recently established doctrine of numbers” as Newton described
it or the Arab system of numbers as most others did, the Indian decimal
place-value notation for naming, writing and manipulatng numbers as large
as one pleased. And Newton himself, who was soon to bring it all together
in one magnificent edifice of science, was a young man assiduously preparing
himself for his vocation as unifier extraordinary. That edifice still stands,
extended and embellished in innumerable ways: science has not looked back
since.
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The Calicut that welcomed Vasco da Gama, capital of the kingdom of the
Zamorins (sāmūtiri, lords of the ocean), was a remarkable place then, a
cosmopolitan city grown to great wealth on the spice trade. That Vasco
would have known. But he would have had little idea and cared less that
King Mana Vikraman, the ‘Rajah of Calicut’ for whom he was carrying a
letter from Manuel, was also a great patron of the arts and sciences. It would
have meant nothing to him that, at the very time of his setting foot on Indian
soil, a cluster of temple-villages nestling under the palms on the banks of the
river Nila (also called Perar in the past, now generally known as the river
Bharata) less than a day’s sailing to the south was home to a band of gifted
scholars carrying forward a long tradition of mathematical and astronomical
learning. Indeed, the year 1498 is almost the exact midpoint of a period of
just over two hundred years of creative mathematical ferment in this corner
of India, resulting in a body of knowledge far in advance of anything that was
known elsewhere at that time. The great Mādhava, founder of the school,
had died two generations earlier, but Nı̄lakan. t.ha, Mādhava’s true heir and
a colossus in his own right, was in his prime — his most influential work
Tantrasam. graha, a compendium in Sanskrit verse of Mādhava’s pathbreaking
results in mathematics and astronomy, was completed two years to the month
after the Portuguese landing.

The Nila at Tirunavaya
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The chronological landmarks do not end with this. The year 1499 marked
also the 1000th anniversary of the composition of the foundational work
known simply as Āryabhat.ı̄ya, ‘the work of Āryabhat.a’. Its one hundred
and twenty one cryptic verses formed the original spring from which flowed
almost all later Indian mathematics and astronomy — it is no exaggeration
to characterise every subsequent text on these subjects as forming part of
a many-faceted commentary on this one seminal work. The astronomer-
mathematicians living under the protection and patronage of the Zamorin in
the villages of Trikkandiyur, Tirunavaya, Triprangode and Alattiyur in the
basin of the Nila were only the last in a virtually unbroken line of scholars
starting with Āryabhat.a — who himself had worked far away in eastern India,
near the modern city of Patna — and spanning a productive millennium.

But, alas, they were the last. As the period known in Europe as the age of
discovery merged into an age of enlightenment, India marked not a renewal,
but the terminal decline of a tradition of learning going back three thousand
years to the vedic times. No worthwhile new mathematical or astronomical
knowledge emerged in Kerala or in India as a whole after about 1600 until
we come to modern times.

3

It is only recently that the circumstances of the rise and fall of the Nila
school — a better name than the commonly used ‘Kerala school’ in view of
its extreme geographical localisation within a radius of 10 kilometers or less
— and its extraordinary mathematical achievements have begun to attract
the kind of attention they deserve. This is despite the fact that some of these
breakthroughs were brought to the notice of European scholars as early as
1832 by Charles Whish in a presentation to the Royal Asiatic Society in
London. Much later, in the 1940s, a critical edition of one of the key texts
of the school, Yuktibhās. ā (in Malayalam, the language of Kerala), splendidly
annotated in a modern perspective by two fine commentators, Rama Varma
Tampuran and Akhilesvara Ayyar, appeared. The text and the commentary
both being in Malayalam, its publication did not have anywhere near the
kind of impact the contents merited. But its preparation served to inspire
the first serious articles in English on the main results of the Nila school, fol-
lowed, in the 1970s, by two books, one more or less technically complete (by
Sarasvati Amma) and the other addressed to the general reader (by George
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Gheverghese Joseph). Not surprisingly, some of these historians gave high
prominence to the most dramatic of the theorems of the Nila school, results
expressing certain trigonometric functions as infinite series in the appropri-
ate variables. The series in question are those for an angle as a function of
its tangent (and its special form as a series for π) and for the functions sine
and cosine in terms of the angle. Not surprising because, in mathematics
as we learned (and still teach) in school and college, these well-known series
have always been associated with the names of the founders in Europe of
the discipline of calculus, Newton and Leibniz, and they were considered key
steps in the demonstration of the power of calculus to find answers to hith-
erto insoluble problems. So, the first question to present itself is: how did
this isolated community on the Nila, carrying forward their old traditions
of learning and holding in reverence the long-gone masters Āryabhat.a and
the two Bhāskaras of whom they considered themselves disciples, arrive at
such deep insights and forge such powerful tools as to have anticipated the
fine fruits of European calculus by two centuries and more? The logically
inescapable answer is that they had invented calculus — since there is no
other route to these results — and this is borne out by the texts from the
period, especially the two mentioned above. In a particular mathematical
context, that of the geometry of the circle (or trigonometry), they had not
only got to the conceptual heart of calculus, the processes of local lineari-
sation and (Riemann) integration in current parlance, but also created the
technical innovations needed to attain their goal, that of mastering the rela-
tionship between an arc of the circle and its chord. In addition to the basic
notions of differentials and integrals and the connection between them which
we now know as the fundamental theorem, many classical techniques of cal-
culus make their appearance in their work — the principle of integration by
parts, multiple integrals and the idea that an integral can be considered to
be a function of its (upper) limit, a method of interpolation in terms of the
derivative, setting up a differential/difference equation for a function and
solving it, etc. Quite apart from their role in the derivation of the power
series, these very same conceptual and technical advances find productive
use in much less glamorous problems like the determination of the surface
area and volume of the sphere by a method which is recognisably the same
as that found in modern textbooks of elementary calculus.

What were the intellectual sources of this surge of mathematical creativ-
ity, apparently out of the blue? As our understanding of the unifying ideas
of Indian mathematics matures, it is becoming increasingly clear that the
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roots of the remarkable achievement of the Nila school go back directly to
Āryabhat.a’s preoccupation with the circle and its properties, in particular to
three themes from the Āryabhat.ı̄ya. The first is his statement of the value of
π as 3.1416 and its characterisation as “proximate”. The other two are the
table of sine differences in steps of π/48 (computed almost certainly by set-
ting up and solving approximately the second-difference equation for the sine
function) and the supplemental remark that, by working with finer divisions
of the circle, the computed values can be made more accurate. Mādhava (ca
1360 - 1430), the founding genius of the mathematical community on the
Nila, brought these themes together by resorting to an infinitely fine division
of the circle, the arctangent series resulting from the quest for an exact ex-
pression for the value of π and the sine series from the search for an exact
expression for the half-chord as a function of the corresponding arc. Nothing
that went before fully prepares us for the novel insights, a new philosophy
almost, that made the achievement possible in the first place; but there are
also several other strands, both conceptual and technical, woven into the fab-
ric that resulted, that of calculus in a clearly recognisable formulation. Chief
among them is a technique of recursive construction and reasoning running
through Indian thought from the earliest times and finding its first precise
articulation in the linguistic structure of early (vedic) orally expressed San-
skrit and in the parallel development of a decimal place-value enumeration in
terms of a systematic, recursive, number-nomenclature. The way conceptual
novelties are brought together with old but refurbished technical resources
is what makes the particular path taken by the Nila school to the invention
of calculus such a fascinating topic of study for the historian of mathemat-
ics. Partly because of the dominance of the geometry of the circle, both
as inspiration and field of application, Indian calculus unlike that of Newton
and Lebniz did not seek abstraction and generalisation beyond trigonometric
functions. But within this limitation, the techniques are more sophisticated
and the line of development logically better organised than in early European
work.

Most of the original sources describing the work of the Nila school are
in Sanskrit and most of them remain untranslated into any other language
to this day. Since many historians and students of Indian mathematics are
(and were) well-versed in Sanskrit, the language barrier has not been a seri-
ous obstacle to our appreciation of the results of Mādhava and his followers.
The more serious difficulty is that these Sanskrit texts either are compendia
of results without an indication of the proofs (yukti, “reasoned justification”)
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or stress aspects of the work which are not directly linked to their calculus
content. There is one text however which is impeccable in its judgement of
what is truly deep and valuable in the calculus-related material and which,
in addition, has proofs of virtually every single result cited, in particular the
main theorems on the power series expansions mentioned earlier. But here
there is a language barrier: this text Yuktibhās. ā is in Malayalam, limiting
its utility to the general scholarly world enormously. But to those who read
Malayalam — a masterly critical edition with detailed commentary has been
in existence since 1948 but that is also in Malayalam, as mentioned earlier
— it has been a treasure chest, the key text for anyone who wishes to un-
derstand the scale of the achievement of the Nila school. In particular, it
is this work that lets us see plainly that the new mathematics of Mādhava
was fundamentally about calculus rather than trigonometry or infinite se-
ries, remarkable though they may be in themselves. The prose format gives
the author, Jyes.t.hadeva, the space and the freedom to indulge in explana-
tions and asides allowing the reader invaluable glimpses into the collective
mathematical mind of the community of which he was a highly respected
representative — it will not be misleading to think of Jyes.t.hadeva as a sort
of Euclid on the Nila. Fortunately, this work has recently been translated
into English by K.V. Sarma under the title “Gan. ita-yukti-bhās. ā”; no longer
does a linguistic obstacle come in the way of a proper appreciation of the
riches it contains.

4

We come back to the question of roots. Through much of its early history,
Kerala was almost as much on the margin of political (and a certain idea of
cultural) India as Portugal was of Europe. Never part of a pan-Indian empire,
its gaze was turned more to the lands beyond the ocean which brought it trade
and prosperity than to the vast subcontinent across the hills to the east and
north. Except for one astronomical text that is definitively placed in Kerala
and dated in 869 (a commentary on a work of Bhāskara I, very much in the
Āryabhat.an mainstream), there is no strong evidence that astronomy had
ever had a significant position in the life of the place before the founding
of the Nila school. If there was a line of scholars in the southwest of India
spanning the intervening five centuries, they have left no clear trail either in
the form of manuscripts or as identifiable conceptual advances. So where did
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Mādhava, and the legacy of mainstream Indian mathematics that he carried
forward, come from? What cultural currents account for the unmistakeable
lineage that connects the Nila community to Bhāskara II and Āryabhat.a?

A look at Kerala’s social history provides many of the answers. Beginning
in the 7th or 8th century, there began a migration into Kerala of vedic brah-
mins, first as a trickle from places as far afield as Ahicchatra on the Ganga,
but soon drawing in other regions, Maharashtra and the Konkan coast south
of Goa for instance, where earlier brahmin migrants had already settled. The
trickle became a flood by the 11th century and continued apace for another
three centuries or so. Of the many things they brought to their new home,
not all of them positive or progressive, pride of place must go to the language
of their rituals and of their learning, Sanskrit.

The impact of this massive influx on a materially well-off but culturally
self-regarding Kerala was nothing short of seismic. The Malayalam language
itself is the product of the churning that alien Sanskrit wrought on the variant
of old Tamil the natives spoke and composed their poetry in. Literature and
the performing arts were transformed beyond recognition. Philosophical and
religious speculation found a fertile new soil. The śāstras, astronomy and
mathematics of course, but architecture, the science of health and the martial
sciences as well, flourished as never before. Numerous centres of learning,
some of them large enough to be considered proper colleges or universities,
came up all over the region for the propagation not only of vedic but also
of the secular branches of knowledge. Rarely in history can there have been
such a radical transformation of the cultural matrix that defines a people,
and without the aid of arms, as Kerala went through in the centuries around
the turn of the first millennium.

By about the 14th century, the namputiris as the brahmins of Kerala
came to be called were no longer considered an alien people; quite the con-
trary. A reasonable demographic extrapolation puts their numbers at an
astonishing 20–25 % of the total population at that time — that they have
now dwindled to a numerically insignificant minority is another story — and,
thanks to the largesse of chieftains and kings, they were now a rich and pow-
erful part of the community with strong links to royal families. The Zamorins
were particularly generous benefactors. It was natural then that the banks of
the river Nila, home to two powerful rival Namputiri villages (one of which,
Śukapuram, was the native village of the geometer/algebraist Citrabhānu),
dotted with rich temples, and an area from which the Zamorins drew their
divine and secular legitimacy, should offer the astronomer-mathematicians
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a specially warm welcome. Given the Zamorins’ tradition of support for all
forms of learning, it is also no surprise that our mathematician heroes flour-
ished during a period of general renaissance that defied the permanent state
of war with the Portuguese, rubbing shoulders with poets and philosophers
and grammarians and physicians, together nurturing a vigorous life of the
mind that made the basin of the Nila the cultural heart of Kerala.

Far from being an isolated and historically mystifying phenomenon, the
resurfacing of Indian mathematics/astronomy on the banks of the Nila thus
acquires a continuity with the mainstream tradition to which, textually and
intellectually, it had always been understood to belong. Almost all the prac-
titioners from Mādhava onwards till the line died out were namputiris of one
variety or another. (The two well-known exceptions, both relatively late,
have caste names which identify them as sons of namputiri fathers; one of
them, Śaṅkara Vāriyar, authored the Sanskrit work Yuktid̄ıpikā which served
as the main source of information on Nila mathematics before the English
translation of Yuktibhās. ā appeared). Mādhava himself, about whom very
little is known beyond his mathematics, is said to have been an emprantiri,
a name given in Kerala to brahmins who or whose immediate ancestors had
lately arrived from Karnataka (which had been a staging area on the brahmin
migratory route from the north), a circumstance which lends extra support
to the connection with the mainstream mathematics of the preceding cen-
turies. He is also said to have been from Sangamagrama, ‘the village at the
confluence’, whose identity has remained as puzzling as the details of his life.
There is no currently recognisable Sangamagrama in this part of Kerala, but
one particular spot in the Nila basin, Tirunavaya, very close to where some
of the mathematicians are known to have hailed from, was also sometimes
called Trimūrtisaṅgama on account of the presence there, on either bank of
the river, of temples dedicated to all three of the main Hindu deities. On
the other hand, Maharashtra and Karnataka are full of Saṅgameśvara tem-
ples — every sangam seems to have merited being consecrated to its lord.
While Mādhava’s exact provenance thus remains uncertain, the possibilities
are not mutually exclusive; in any case, the gap in time and space between
Bhāskara II (12th century, Maharashtra) and Mādhava appears no longer
unbridgeable. There is other supporting evidence as well. Several of the Nila
texts are commentaries on the work of Āryabhat.a and the two Bhāskaras
and even work which is not is full of references to and quotations from them.
The largest number of extant copies of their work (more than half of them
in the case of Āryabhat.a) are in Kerala, transcribed on palm leaf most often
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in Malayalam characters; Kerala was in a very real sense the last bastion of
Indian mathematics.

5

The essential continuity of Indian mathematical culture can in fact be traced
to a past as remote from Āryabhat.a’s time as the latter was from the Nila
school. To take geometry first, the foundational step of his trigonometry was
to consider, for a given arc of a circle, not its chord but half the chord of twice
that arc. One of the radial lines passing through the ends of the arc then cuts
the chord of twice the arc perpendicularly at its midpoint. To any arc (sub-
tending an angle θ at the centre) is thus associated a right triangle whose two
short sides are sin θ and cos θ (for a unit circle). Now right triangles and their
Pythagorean property (‘the theorem of the diagonal’, to loosely translate its
Indian designation) have been a universal and eternal theme of geometry in
India from the earliest of the late-Vedic altar-construction manuals known
as the Śulbasūtra (ca 800–700 BCE) right through to the calculus-related
infinitesimal methods of the Nila school. Indeed, orthogonality of a pair of
lines plays the same primordially important role in India as parallelism does
in Euclidean geometry, extending even to the definition of the similarity of
two (generally, right) triangles as the mutual orthogonality of the three pairs
of sides.

The genesis of the other, non-geometrical, strand running through the
work of the Nila school, namely the place-value system of naming numbers
(with 10 as base) together with its applications and generalisations, is of even
greater antiquity. The oldest (readable) Indian literary work, the R. gveda,
compiled into one corpus around 13th–12th century BCE from poems com-
posed probably much earlier, already has an abundance of decimal number
names. The vedic culture was dominantly, perhaps exclusively, oral. That
made it obligatory to express the elementary arithmetical principles underly-
ing a (decimal) place-value number system through a structured set of rules
for number names serving the same function as the written, symbolic, po-
sitional notation pioneered by the Babylonians (with 60 as base) somewhat
earlier. This was achieved by inventing (arbitrary) names for the numbers 1
to 9 as well as for the powers of 10 and combining these names by the use
of two grammatical rules representing the operations of multiplication and
addition. The result is a system of nomenclature that associates to every
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(non-negative) number name a unique decimally expressed number, i.e., as
the value of a polynomial with coefficients in {0, 1, · · · , 9} when the variable
is fixed at 10. The number names from the R. gveda are conclusive evidence
of a total mastery of natural numbers in their enumerative role in decimal
form and of the required arithmetical background. That mastery led very
quickly to the development of a sophisticated arithmetic involving fractions
and negative numbers, not to mention zero; even though we have to wait
till the 7th century (Brahmagupta) for an explicit statement of the rules of
general arithmetic, there are many indications of their use in earlier material.

Conceptually the most fundamental of the several ways in which the se-
quence of natural numbers influenced the Nila work on calculus was the
freedom from the fear of infinity resulting from the recognition that “there
is no end to the names of numbers” (Yuktibhās. ā). That led to a way of deal-
ing with what we would now call infinitesimals by dividing a finite quantity,
generally geometric in origin, by a large number and letting that number
grow without bound. This is the only limiting procedure that is ever used
but it is the key step on the path from the earlier finitistic discrete methods
to the full realisation of Āryabhat.a’s enigmatically expressed vision. At a
more abstract level, as important as its enumerative and arithmetic power
and flexibility is the principle of recursive construction on which the place-
value representation of numbers is based. The Nila work is rich in examples
of the imaginative generalisations of the principle. Many of the proofs are
recursive in nature, relying on an infinite sequence of ‘refinements’ imposed
on a clever initial approximation for a quantity, each refinement consisting
of feeding the output of a particular stage in the process as the input in
the next stage. Still more striking is the occurrence of the first instances
of consciously designed inductive proofs. Yuktibhās. ā pays much attention to
an elaborate and logically sound presentation of the steps involved in such
proofs; indeed in an early section describing the ground rules for the building
up of arbitrarily large decimal numbers, it goes over the foundations of arith-
metic in a manner not very different from the way we would do it starting
from the succession axiom of Peano. And, in a final flourish of the power
of recursive thinking, the same text — the context is the estimation of the
remainder when the π series is terminated after an arbitrary finite number of
terms — defines a general polynomial by replacing the base 10 in the decimal
representation of a number by a variable (an arbitrary positive integer) and
allowing the entries in the different ‘places’, which are now the coefficients in
the polynomials, to be rational numbers both positive and negative. It then
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proceeds to work out the algebraic operations on polynomials and rational
functions by resorting to the underlying model of decimal numbers, a step
echoed uncannily by Newton (in the tract De Methodis Serierum et Flux-
ionum, 1670-71) to justify his manipulations of infinite series by an appeal
to “the doctrine recently established(!) for decimal numbers”.

6

It is in trying to trace the linkages among different cultures and their distinc-
tive approaches to acquiring and validating new knowledge that the historian
comes face to face with a vexing dilemma: when can a body of evidence be
considered firm enough for it to demonstrate a decisive influence on a dis-
covery (or, of course, its absence) from another, prior culture? In the field
of mathematics it would appear reasonable to suppose that its universal and
immutable truths will reveal themselves sooner or later to the prepared ra-
tional mind, provided only that an incentive or urge to seek out those truths
exists. Nevertheless, it used to be perfectly acceptable, and not so long ago,
for serious historians of mathematics to declare in effect that no significant
discovery was made independently more than once. The truth of this dictum
(‘the dictum’ from now on), most clearly enunciated by van der Waerden,
cannot obviously be settled before all the evidence is in and that may never
come to pass; in any case we are far from such a decisive moment.

That does not mean that attempts to look for cross-cultural currents are
not worthwhile, only that remaining open-minded is often a viable option
and occasionally the only one.

Of the two main streams that finally merged into the calculus of the
Nila school, the geometric and the arithmetical, the source of the former
can be directly traced, as we have seen, to Āryabhat.a’s trigonometry and,
further back, to the geometry of orthogonal lines of the late Vedic texts, the
Śulbasūtra. Earlier than that it is difficult to go with any confidence. There
have been suggestions that Vedic geometry may be linked to Babylonian
mathematics with its ‘Pythagorean triples’ of integers, a hypothesis that
conforms to the dictum. There are also slightly stronger indications of a
degree of continuity with the geometric patterns seen on artefacts from the
Indus valley culture (in an area contiguous with the early Vedic settlements,
around the beginning of the 2nd millennium BCE). For the present these are
no more than hints. A much stronger case can be made for the debt the
astronomical component of Āryabhat.a’s work owes to Greek ideas (which
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itself may have roots in Mesopotamia), and especially the epicyclical model
of planetary motion of Ptolemy of Alexandria; Āryabhat.a’s genius lay in the
synthesis of the new astronomical ideas with the indigenous geometric legacy.

As for the arithmetical stream, it is legitimate to ask what the decimal
number nomenclature of R. gveda owes to the earlier (ca 1800 BCE) base-60
positional notation of the Babylonians. Once again, there is no conclusive
answer. While the Babylonian number notation had a special symbol for 10,
there seems to have been nothing decimal in the recorded computations; in
particular, fractions are sexagesimally written. The contemporaneous Indian
civilisation, the pre-Vedic Indus valley or Harappan civilisation in its ‘ma-
ture’ phase, shows little sexagesimal influence in its weights and measures.
The Indus writing remains unread; it has symbols which likely stand for
numbers but it is premature to try to decide what base the Harappans used.
If external influences are discounted, it may well be that the origins of the
rules governing the decimal number names of R. gveda are to be sought in a
pervasively recursive mindset that manifested itself in other aspects of Vedic
thinking as well: in rituals and chants, in phonology and, most notably, in
grammar.

7

While the precise details of the origins of the decimal system are largely lost
in the mists of antiquity, a great deal more is known about its later spread
outside India, at first to Persia and the Arab lands. Europe came to know of
it early in the 13th century through Fibonacci but it was not until the 16th
century that it began to have a serious impact on the sciences. Other parts of
Indian mathematics, the work of Brahmagupta for example, travelled along
equally winding and slow routes to finally reach Europe by the time it was
ready to embark on its age of scientific discovery.

But what of the work of the Nila school? For anyone who does not dis-
miss the dictum out of hand, it is perfectly reasonable to wonder whether
the Nila work found its way to the shores of Europe in time to influence
the development of calculus there, especially in view of the fact that among
the earliest of the European achievements were the very same trigonometric
series that Mādhava wrote down more than two and a half centuries earlier.
There has been a certain amount of speculative theorising about this question
recently, based on circumstances and coincidences, primarily the presence of
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Jesuit priests in Kerala during the 16th century. But of direct evidence of
any sort there has not been a shred so far. A search, perhaps not very com-
prehensive, in the libraries of Paris and Rome aimed at unearthing scientific
manuscripts of Kerala origin has turned up nothing. The unfortunate fact
for the historian is that some of the likely repositories of potentially relevant
material no longer exist. The Lisbon earthquake of 1755 destroyed almost
all of the archives and libraries of the city, including those which housed the
Portuguese colonial records. Even more tragic was the burning down by the
Dutch (in 1663, two years before Newton’s enforced and miraculously pro-
ductive sabbatical at home) of the great Jesuit library of Cochin, reputed to
have contained many learned volumes in local and European languages.

At least for the present, then, we have little choice but to draw whatever
conclusions we can from whatever circumstantial evidence we can muster.
That means going beyond high points such as the trigonometric series that
everyone knows about now to a painstakingly detailed comparison of the
textual material, carried out with rigour and judgement. Such an endeavour
is within our reach thanks to the availablity, finally, of an English version of
the one indispensable text of the Nila work in calculus, namely Yuktibhās. ā.
A first reading of it in parallel with Newton’s early calculus writings shows
not a great deal in common in their motivation. The Indian approach has a
single-minded focus on trigonometric issues of interest in astronomy whereas
the European work, already before Newton (Fermat for example), was much
concerned with local questions such as the determination of local extrema
or the problem of tangents to a general conic — tangency as a fundamental
notion is absent in the Nila work, perhaps because tangents to a circle are
trivially constructed. The thorough European familiarity with Greek geome-
try played a role in this, as did, equally surely, the interplay of geometry and
algebra that Descartes brought about. Indeed, reading early Newton with an
eye attuned to Yuktibhās. ā, one is struck by how frequently one meets phrases
referring to arbitrary functions and arbitrary curves. The technical details
are also often different. For instance, Newton’s technical mainstay, the bino-
mial series for a fractional exponent, does not occur in the Nila work at all,
nor in Indian mathematics as a whole; its place and the place of much else
is taken by the many variants of the infinitely iterated refining process men-
tioned earlier. As for the commonalities like the rule of integration by parts or
the calculation of the integrals of powers, they can safely be attributed to the
universality of mathematics; it seems reasonable to suppose that, once the
basic notions of calculus were acquired, they were the inevitable early steps
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on the path to progress. Here again, it is notable that the Nila texts confine
themselves strictly to integrating positive integral powers (by a method es-
sentially identical to the one employed later by Fermat) while Newton’s early
notes already consider integrals of fractional powers. Above all, European
calculus has its own distinctive prehistory going back to the the geometry
of Apollonius and the physics of Archimedes. Particularly relevant are the
ideas of the medieval French divine Nicole Oresme, a near contemporary of
Mādhava, who liberated the plane from its role as the arena in which ge-
ometry is played out and gave it an abstract identity, making it the setting
for the graph of a function; Oresme went so far as to formulate the idea of
quadrature: the area under the (discrete) graph of the speed of a body as a
function of time is its displacement.

It would seem on the whole that only an uncritical subscriber to the
dictum can be bold enough to assert a wholesale transfer of the Nila calculus
into Europe. We should in fact be rejoicing that the existence of two parallel
tracks in the development of calculus opens up a promising and fertile area
in the comparative study of how cultural factors influence seekers after the
universal truths of mathematics, a discipline still in its infancy.

8

Historians who put a date to the post-Renaissance rejuvenation of math-
ematics in Europe generally agree on the first half of the 17th century as
marking its advent. The Nila school was well and truly in decline by then.
Astronomical manuals continued to be produced for a time, but mostly as
aids to the compilation of almanacs with little original or even pedagogically
noteworthy in them. Creative mathematical activity never recovered. If we
take Descartes’ La géométrie (1637) as a covenient reference point, there are
only two books from Kerala after that (from early 17th and 18th centuries)
worthy of passing notice and neither adds anything to our understanding
of the 15th and 16th century masterpieces. (One of them has a claim to
fame: it computes π to 22 decimal places using an error estimate going back
to Mādhava.) As European mathematics was hitting its stride, mathematics
and its teaching in Kerala had already wasted away, never to be revived until
modern times.

Many factors can be and have been cited to account for the sudden demise
of this once-vibrant tradition of learning — for it was not only mathematics
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and astronomy that withered away. That access to learning and even basic
education was restricted to a very narrow, socially superior, section of people
was surely one of them. As the relative number of brahmins began to fall
due to their own short-sighted and socially regressive marital customs, the
‘catchment area’ began to shrink to the point almost of vanishing: we have
already noted that some of the later writers of the Nila school had only their
fathers as brahmins. Among the purely intellectual factors, the aversion to
abstraction and generalisation is probably another. Because the differentials
of the sine and cosine functions repeat themselves after the first two orders,
differentials of general order were never considered. That in turn is the most
plausible explanation of why Mādhava’s sine and cosine series around zero
were not generalised (technically a trivial step) to an expansion around an
arbitrary point, true Taylor series.

One can go on. But there can be little doubt that the decisive event that
triggered the decline was the Portuguese (to begin with; the Portuguese were
followed by the Dutch and the Dutch by the English) invasion. Little is known
about the conditions in which Nı̄lakan. t.ha and those who followed him went
about their work in those turbulent times, building on the legacy bequeathed
by Mādhava and, farther back, by their long-gone but unforgotten original
guru Āryabhat.a, reflecting, writing and teaching. The Malabar coast was a
battlefield throughout the 16th century and the first half of the 17th, and
the delta of the Nila was a particularly bloody theatre. The Zamorins finally
threw off the intruders but at the cost of their treasure and part of their
kingdom. They could not have had much time to spare for the star-gazers of
their realm.
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