
 
The 2010 Gauss Prize 

 
Yves Meyer, Professor Emeritus at École Normale Supérieure de Cachan, France, 
has been selected for the 2010 Gauss Prize “for fundamental contributions to number 
theory, operator theory and harmonic analysis, and his pivotal role in the development 
of wavelets and multiresolution analysis”.  
 

 
Yves Meyer’s Work 

“Whenever you feel competent about a theory, just abandon it.” This has been 
Meyer’s principle in his over four decades of outstanding mathematical research 
work. He believes that only researchers that are newborn to a theme, can show 
imagination and have big contributions. In this sense, Meyer has had four distinct 
phases of research activity corresponding to his explorations in four disparate areas 
– quasicrystals, Calderón-Zygmund programme, wavelets and Navier-Stokes 
equation. The varied subjects that he has worked on are indicative of his broad 
interests. In each one of them Meyer has made fundamental contributions. His 
extensive work in each would suggest that he does not leave a field of research that 
he has entered until he is convinced that the subject has been brought to its logical 
end. It is as if Meyer appears on the scene, ties up various loose ends and gives a 
unifying picture of the existing disparate approaches, which lays the foundation for 
a proper theoretical framework that has the Meyer stamp on it and he leaves the 
scene.  
 
The seeds for Meyer`s highly original approach in every branch of mathematics that 
he has ventured into were perhaps sown early in his career. He started his research 
career after having been a high school teacher for three years folowing his 
university education. He completed his Ph. D. in 1966 in just three years. ``I was my 
own supervisor when I wrote my Ph. D.,`` Meyer has said.  This individualistic 
perspective to a problem has been his hallmark till this day.     
 
In 1970 Meyer introduced some totally new ideas in harmonic analysis (a branch of 
mathematics that studies the representation of functions or signals as a 
superposition of some basic waves) that turned out to be not only useful in number 
theory but also in the theory of the so-called quasicrystals. There are certain 
algebraic numbers called the Pisot-Vijayaraghavan numbers and certain numbers 
known as Salem numbers. These have some remarkable properties that show up in 
harmonic analysis and Diophantine approximation (approximation of real numbers 
by rational numbers). For instance, the Golden Ratio is such a number. Yves Meyer 
studied these numbers and proved a remarkable result. Meyer's work in this area 
led to notions of Meyer and model sets which played an important role in the 
mathematical theory of quasicrystals. 
 
Quasicrystals are space-filling structures that are ordered but lack translational -----
-------------------------------------symmetry and are aperiodic order in general. Classical 



theory of crystals allows only 2, 3, 4, and 6-fold rotational symmetries, but 
quasicrystals display 5-fold symmetry and symmetry of other orders. Just like 
crystals quasicrystals produce modified Bragg diffraction, but where crystals have a 
simple repeating structure, quasicrystals exhibit more complex structures like 
aperiodic tilings. Penrose tilings is an example of such an aperiodic structure that 
displays five-fold symmetry. Meyer studied certain sets in the n-dimensional 
Euclidean space (now known as a Meyer set) which are characterized by a certain 
finiteness property of its set of distances. Meyer's idea was that the study of such 
sets includes the study of possible structures of quasicrystals. This formal basis has 
now become an important tool in the study of aperiodic structures in general.  
 
In 1975 Meyer collaborated with Ronald Coifman on what are called Calderón-
Zygmund operators. The important results that they obtained gave rise to several 
other works by others, which have led to applications in areas such as complex 
analysis, partial differential equations, ergodic theory, number theory and 
geometric measure theory. This approach of Meyer and Coifman can be looked 
upon as the interplay between two opposing paradigms: the classical complex-
analytic approach and the more modern Calderón-Zygmund approach, which relies 
primarily on real-variable techniques. Nowadays, it is the latter approach that 
dominates, even for problems that actually belong to the area of complex analysis.  
 
The Calderón-Zygmund approach was the result of the search for new techniques 
because the complex-analytic methods broke down in higher dimensions. This was 
done by S. Mihlin, Calderón and A. Zygmund who investigated and resolved the 
problem for a wide class of operators, which we now refer to as singular integral 
operators or Calderón--Zygmund operators. These singular integral operators are 
much more flexible than the standard representation of an operator, according to 
Meyer. His collaborative work with Coifman on certain multilinear integral 
operators has proved to be of great importance to the subject. With Coifman and 
Alan MacIntosh he proved the boundedness and continuity of the Cauchy integral 
operator, which is the most famous example of a singular integral operator, on all 
Lipschitz curves. This had been a long-standing problem in analysis. 
 
Meyer calls the research phase on wavelets, which have had a tremendous impact on 
signal and image processing, as having given him a second scientific life. A wavelet is 
a brief wave-like oscillation with amplitude that starts out at zero, increases and 
decreases back to zero, like what may be recorded by a seismograph or heart 
monitor. But in mathematics these are specially constructed to satisfy certain 
mathematical requirements and are used in representing data or other functions. As 
mathematical tools they are used to extract information from many kinds of data 
including audio signals and images. Sets of wavelets are generally required to 
analyze the data. Wavelets can be combined with portions of an unknown signal by 
the technique of convolution to extract information from the unknown signal.  
 
Representation of functions as a superposition of waves is not new. It has existed 
since the early 1800s when Joseph Fourier discovered that he could represent other 



functions by superposing sines and cosines. Sine and cosine functions have well 
defined frequencies but extend to infinity; that is, while they are localized in 
frequency, they are not localized in time. This means that although we might be able 
to determine all the frequencies in a given signal, we do not know when they are 
present. For this reason a Fourier expansion cannot represent properly transient 
signals or signals with abrupt changes. For decades scientists have looked for more 
appropriate functions than these simple sin and cosine functions to approximate 
choppy signals. 
 
To overcome this problem several solutions have been developed in the past decades 
to represent a signal in the time and the frequency domain at the same time. The 
effort in this direction began in the 1930s with the Wigner transform, a construction 
by Eugene Wigner, the famous mathematician-physicist. Basically wavelets are 
building blocks of function spaces that are more localized than Fourier series and 
integrals. The idea behind the joint time-frequency representations is to cut the 
signal of interest into several parts and analyze each part separately with a 
resolution matched to its scale. In wavelet analysis, appropriate approximating 
functions that are contained in finite domains and thus become very suitable for 
analyzing data with sharp discontinuities. 
 
The fundamental question that the wavelet approach tries to answer is how to cut 
the signal. The time-frequency domain representation itself has a limitation imposed 
by the Heisenberg uncertainty principle that both the time and frequency domains 
cannot be localized to arbitrary accuracy simultaneously. Therefore, unfolding a 
signal in the time-frequency plane is a difficult problem which can be compared 
with writing the score and listening to the music simultaneously. So groups in 
diverse fields of research developed techniques to cut up signals localized in time 
according to resolution scales of their interest. These techniques were the precursors 
of the wavelet approach.  
 
The wavelet analysis technique begins with choosing a wavelet prototype function, 
called the mother wavelet. Time resolution analysis can be performed with a 
contracted, high-frequency version of the mother wavelet. Frequency resolution 
analysis can be performed with a dilated, low-frequency version of the same 
wavelet.  The wavelet transform or wavelet analysis is the most recent solution to 
overcome the limitations of the Fourier transform. In wavelet analysis the use of a 
fully scalable modulated window solves the signal-cutting problem mentioned 
earlier. The window is shifted along the signal and for every position the spectrum 
(the transform) is calculated. Then this process is repeated several times with a 
slightly shorter (or longer) window for every new cycle. The result of this repetitive 
signal analysis is a collection of time-scale representations of the signal, each with 
different resolution; in short, multiscale resolution or multiresolution analysis.  
Simply put the large scale is the big-picture, while the small scale shows the details. 
It is like zooming in without loss of detail. That is, wavelet analysis sees both the 
forest and trees. 
 



In geophysics and seismic exploration, one could find models to analyze waveforms 
propagating underground. Multi-scale decompositions of images were used in 
computer vision because the scale depended on the depth of a scene. In audio 
processing, filter banks of constant octave-bandwidth (dilated filters) applied to the 
analysis of sounds and speech and to handle the problem of Doppler shift multiscale 
analysis of radar signals were evolved. In physics multiscale decompositions were 
used in quantum physics by Kenneth G. Wilson for the representation of coherent 
states and also to analyze the fractal properties of turbulence. In neuro-physiology, 
dilation models had been introduced by the physicist G. Zweig to model the 
responses of simple cells in the visual cortex and in the auditory cochlea. Wavelet 
analysis would bring these disparate approaches together into a unifying 
framework. Meyer is widely acknowledged as one of the founders of wavelet theory.  
 
In 1981, Jean Morlet, a geologist working on seismic signals had developed what are 
known as `Morlet wavelets`, which performed much better than the Fourier 
transforms.  Actually Morlet and Alex Grossman, a physicist whom Morlet had 
approached to understand the mathematical basis of what he was doing, were the 
first to coin the term wavelet in 1984. Meyer heard about the work and was the first 
to realize the connection between Morlet`s wavelets and earlier mathematical 
constructs, such as the work of Littlewood and Paley used for the construction 
functional spaces and for the analysis of singular operators in the Calderón-
Zygmund programme. 
 
Meyer studied whether it was possible to construct an orthonormal basis with 
wavelets. (An orthonormal basis is like a coordinate system in the space of functions 
and, like the familiar coordinate axes, each base function is orthogonal to the other. 
With an orthonormal basis you can represent every function in the space in terms of 
the basis functions.) This led to his first fundamental result in the subject of 
wavelets in a Bourbaki seminar article which constructs a whole lot of orthonormal 
bases with Schwarz class functions (functions which have values only over a small 
region and decay rapidly outside). This article was a majotr breakthrough that 
enabled subsequent analysis by Meyer. ``Ìn this article,`` says Stéphane Mallat, ``the 
construction of Meyer had isolated the key structures in which I could recognize 
similarities with the tools used in computer vision for multiscale image analysis and 
in signal processing for filter banks.`` 
 
A Mallat-Meyer collaboration resulted in the construction of mathematical 
multiresolution analysis, and a characterization of wavelet orthonormal bases with 
conjugate mirror filters that implement a first wavelet transform algorithm that 
performed faster than the Fast Fourier Transform (FFT) algorithm. Thanks to the 
Meyer-Mallat result, wavelets became much easier to use. One could now do a 
wavelet analysis without knowing the formula for the mother wavelet. The process 
was reduced to simple operations of averaging groups of pixels together and taking 
differences, over and over. The language of wavelets also became more comfortable 
to electrical engineers. 
 



In the eighties digital revolution was all around and efficient algorithms were 
critically needed in signal and image processing. The JPEG standard for image 
compression was developed at that time. In 1987, Ingrid Daubechies, a student of 
Grossman, while visiting the Courant Institute at New York University and later 
during her appointment at AT&T Bell Labs, discovered a particular class of 
compactly supported conjugate mirror filters, which were not only orthogonal (like 
Meyer`s) but were stable and which could be implemented using simple digital 
filtering ideas. The new wavelets were simple to programme and they were smooth 
functions unlike some of the earlier jumpy functions. Signal processors now had a 
dream tool: way to break up digital data into contributions of various scales.  
 
Combining Daubechies` and Mallat`s ideas, one could do a simple orthogonal 
transform that could be rapidly computed in modern digital computers. Daubechies 
wavelets turn the theory into a practical tool that can be easily programmed and 
used by a scientist with a minimum of mathematical training. Meyer`s first 
Bourbaki  paper actually laid the foundations for a proper mathematical 
framework for wavelets. That marked the beginning of modern wavelet theory. In 
recent years wavelets have begun to provide an interesting alternative to Fourier 
transform methods. 
 
Interestingly, Meyer`s the first reaction to the work of Grossman and Morlet was 
``So what! We harmonic analysts knew all this a long time ago!`` But he looked at 
the work again and realized that Grossman and Morlet had done something 
different and interesting. He built on the difference to eventually formulate his basis 
construction. ``Meyer`s construction of the orthonormal bases and his subsequent 
results in the area were the key discovery that opened the door to all further 
mathematical developments and applications. Meyer was at the core of the catalysis 
that brought together mathematicians, scientists and engineers that built up the 
theory and resulting algorithms,`` says Mallat. 
 
Since the work of Daubechies and Mallat applications that have been explored 
include multiresolution signal processing, image and data compression, 
telecommunications, fingerprint analysis, statistics, numerical analysis and speech 
processing. The fast and stable algorithm of Daubechies was improved subsequently 
in a joint work between Daubechies and Albert Cohen, Meyer`s student, which is 
now being used in the new standard JPEG2000 for image compression and is now 
part of the standard toolkit for signal and image processing.  Techniques for 
restoring satellite images have also been developed based on wavelet analysis.  
 
More recently, he has found a surprising connection between his early work on the 
model sets used to construct quasicrystals -- the ‘Meyer Sets’ -- and ‘compressed 
sensing’, a technique used for acquiring and reconstructing a signal utilizing the 
prior knowledge that it is sparse or compressible. Based on this he has developed a 
new algorithm for image processing. A version of such an algorithm has been 
installed in the space mission Herschel of the European Space Agency (ESA), which 
is aimed at providing images of the oldest and coldest stars in the universe.  



`To my knowledge,`` says Wolfgang Dahmen, ``Meyer has never worked directly on 
a concrete application problem.`` Thus Meyer`s mathematics provide good 
examples of how the investigations of fundamental mathematical questions often 
yield surprising results that benefit humanity. 
 
R. Ramachandran 


