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Preface

The Proceedings of SEOUL ICM 2014 consist of four volumes. In compliance with prece-
dents, the Organizing Committee published both electronic and traditional print versions
of the Proceedings for easier access and dissemination. Volumes II through IV were pub-
lished before the Congress, electronic versions of which were stored into USBs and dis-
tributed to all registered participants. A policy to allow unlimited access to the electronic
versions of all four volumes for non-commercial use was implemented. They are available at
www.icm2014.org/en/vod/proceedings and www.mathunion.org/ICM.

This volume is divided into five main parts. The first part consists of the speeches deliv-
ered during the opening ceremony of the Congress, including the presentations of the Fields
Medals, the Rolf Nevanlinna Prize, the Carl Friedrich Gauss Prize and the Chern Medal
Award, as well as the speeches and presentation of the Leelavati Prize made during the clos-
ing ceremony. The second part contains the laudations on the work of the awardees. The
third part compiles the articles of the plenary speakers while the fourth part compiles those
of the awardees and the Emmy Noether lecturer. The last part gathers the articles of the panel
discussions organized at the Congress. Volumes II through IV contains the articles of the
invited speakers categorized into 19 sections.

On behalf of the Organizing Committee, we would like to take this opportunity to express
our sincere gratitude to all authors for graciously providing their valuable articles and to
Kyungmoonsa for their devotion in the publications of this Congress. Lastly, we would like to
thank the technical editors, whose committed support and endeavor were essential in ensuring
the quality of the presentation of these publications.

Sun Young Jang
Young Rock Kim
Dae-Woong Lee
Ikkwon Yie



Editors’ Note

The articles of Manjul Bhargava and Martin Hairer, who were a plenary speaker and an in-
vited speaker, respectively, before the announcement of the 2014 Fields Medals, have been
relocated to the Special Lectures section of this volume. However, the article of Martin Hairer
also appears on pages 49 through 73 of Volume IV as the publications of the invited lectures
were completed prior to the Congress. Additionally, the following speaker and panels did
not opt to publish an article in this publication: Artur Avila (2014 Fields Medalist), panel on
Future of Publishing, and panel on R&D Policy.
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Organization of the Congress

Hyungju Park, Chairman of the Seoul ICM 2014 Organizing Committee

Korea’s ICM Bidding

The first mathematician from Korea to attend the Congress made it to Helsinki International
Congress of Mathematicians (ICM) in 1978 with a help of an IMU travel grant program for
developing countries. It could be said that the mathematical research in Korea until the early
1980s was rather isolated and sporadic at best. Korean mathematical community began its
globalization efforts by joining IMU in 1981 as a Group I member. In the mid-1980s, Korea
endeavored to jump start its mathematical research, inviting renowned mathematicians from
abroad to deliver lectures and providing young Korean mathematicians with opportunities
to glimpse at mainstream mathematics. Visible spinoffs occurred, including modernization
of academic curriculums and diversification of research centers. In light of such advance-
ment, Korea became a Group II member of IMU in 1993. In the 1990s, Korea made quite a
progress in improving its mathematical research both in quantity and quality, partly aided by
the influx of talented Korean mathematicians educated abroad who returned to Korea after
obtaining their degrees. The establishment of the first research institute in Korea devoted to
mathematics and theoretical physics, Korea Institute for Advanced Study (KIAS), in 1996
provided the infrastructure for further development.

A dramatic display of the progress of Korean mathematics was made at Madrid ICM
in 2006, to where three mathematicians, Jun-Muk Hwang, Jeong Han Kim and Yong-Geun
Oh, were invited as first Korean ICM invited speakers. This ignited a festivity among the
Korean mathematical community. Inspired by the evidence of the momentum in Korean
mathematics, Korean Mathematical Society (KMS) applied for a raise in its IMU group level
and was announced as a Group IV member in 2007. In the history of IMU, this still remains
as the only instance in which the group level of a member country was raised by two in one
shot. Highly motivated by this series of developments and to continue the momentum, KMS
decided to place a bid to host ICM 2014. In June of 2007, KMS launched an ICM Bidding
Committee of twelve members and appointed Hyungju Park as its Chair. Subsequently, an
ICM Bidding Advisory Committee of twelve members was also launched. David Eisenbud
and Efim Zelmanov of USA, Masaki Kashiwara of Japan and Yang Lo of China served as
advisory committee members. The committee proceeded with full-fledged preparatory work
and invested considerable amount of efforts and energy to establish bidding strategies and
write up a bidding proposal. In the early stage of preparation, the committee worked hard
to convince the Korean government on the significance of hosting the Congress in Korea.
Many effortful visits were made to the Ministry of Science and Technology, the Ministry of
Planning and Budget, and the National Assembly, that is, the Korean parliament.

On August 27, 2007, the Ministry of Science and Technology notified the bidding com-
mittee of the positive evaluation result on the viability of hosting ICM in Korea. The result
was sent for a financial feasibility assessment to the Ministry of Planning and Budget, whose
positive review was then sent to the Prime Minister’s Office that convened its 45th Interna-
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tional Event Review Committee Meeting in January 2008. This committee made an official
decision to declare the ICM bidding as a matter of national importance. With an active sup-
port from the government, the bidding committee was able to secure 200 million Korean
won (about 180 thousand US dollars) and 150 million Korean won (about 135 thousand US
dollars) in years 2008 and 2009, respectively, for its bidding efforts.

Four cities, Seoul, Busan, Daegu and Jejudo, expressed their interest in hosting the
Congress and submitted proposals to the committee by October 2007. The committee orga-
nized a site evaluation subcommittee and visited the convention centers in those cities. After
the visits and several meetings, the committee chose Korea’s capital city, Seoul, as its host
city candidate. A matter of urgency at the moment was to secure the fund for a travel grant
program to invite mathematicians from developing countries. To that end, Korean mathe-
matical community began its strenuous fundraising efforts and an ambitious plan to invite
1,000 mathematicians from developing countries began to materialize.

Brazil, Canada and Korea ended up submitting bidding proposals to IMU in November
2008. Korea’s proposal was centered on the theme, “Dreams and Hopes for Late Starters”.
Evidence of the growth of Korean mathematical research during the recent half-century was
demonstrated through various statistical data. Korea, which started as a developing country
with poor research environment, had achieved an unparalleled growth. This led to the con-
clusion that Korea’s hosting of ICM will convey a strong message of hope to those countries
still struggling. Korea emphasized its genuine concern and interest in aiding underprivileged
mathematicians and proposed a daring plan to invite 1,000 of those mathematicians.

The committee considered it important to secure a letter of support from the President
of Korea. Eventually, the President’s Office expressed great interest and enthusiastically
provided the needed letter. Letters of support from the Minister of Education, Science and
Technology, the Minister of Culture, Sports and Tourism, the Mayor of Seoul and the Vice
Minister of Foreign Affairs were also received.

An IMU site evaluation committee visited Korea from the 23rd till the 26th of February,
2009. In writing up the bidding proposal and welcoming the IMU team, the bidding commit-
tee established as one of its primary arguments the high respect for scholarship deeply rooted
in Korean culture. As a more practical measure to convey the firm governmental support, the
Prime Minister, the Minister of Education, Science and Technology and the Mayor of Seoul
personally met with the IMU team. The team also visited Samsung Electronics and experi-
enced Korea’s state-of-the-art I'T technology and was provided with a collection of more than
one hundred ICM-related news articles by Korean press along with their English summaries.

During the bidding process, the following twelve countries voluntarily sent letters of sup-
port for Korea: Japan, China, India, Hong Kong, Vietnam, Singapore, Malaysia, Thailand,
Cambodia, Philippines, Tunisia and Morocco. IMU held its annual Executive Committee
(EC) meeting in Fuzhou, China, during April 18 and 19, 2009. There, IMU decided to rec-
ommend Seoul as the hosting city for ICM 2014. IMU EC’s recommendation was formally
approved at the 2010 IMU General Assembly (GA) in Bangalore, India, held from August 16
to 17, 2010.

Preparation

At a plenary meeting on November 15, 2013, the National Assembly of Korea overwhelm-
ingly adopted a resolution in support of Seoul ICM. The resolution states that the National
Assembly
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* is dedicated to supporting Seoul ICM to hold a successful Congress,

» will make special efforts to encourage every citizen in all fields, including the gov-
ernment, industry, press and academia, to participate in and to have interest in the
Congress,

* is aware that the development and popularization of fundamental science, including
mathematics, is of significant importance to the national competitiveness, and

* urges the government to provide full support for Seoul ICM.

In celebration of the adoption of the parliamentary resolution, an ICM forum on “Beyond
and After Seoul ICM” was held on December 10th at the National Assembly, attended by two
legislators, a delegation from the National Assembly Standing Committee, a Deputy Minister
of Science, ICT and Future Planning, along with over 120 mathematicians.

Additionally, the Korean government declared the year 2014 as the Korean Mathemat-
ical Year and an official proclamation ceremony was held on January 13, 2014. With over
100 representatives from the science community, the Minister of Science, ICT and Future
Planning and the Minister of Education addressed the audience at the ceremony. Prior to
the ceremony, a forum on “Mathematics, a Key Player of Creative Economy” was held to
kick-start the activities planned for the year, at which Maria J. Esteban delivered a keynote
lecture on “Linkage between Mathematics and Industry”, followed by two invited lectures
and a panel discussion.

Hosting of the Congress

The 17th IMU General Assembly was held from August 10 to 11, 2014, in the historic city
of Gyeongju located in southern Korea. The history of Gyeongju dates back to ancient times,
when the city was the capital of the Silla Dynasty (57 BC-AD 935) that reigned for the
longest period in the history of Korea. The entire city has been designated as a UNESCO
World Cultural Heritage under the name, Gyeongju Historic Areas. During the assembly at
such historically rich city, Rio de Janeiro, Brazil, was announced as the next ICM host city.

The Seoul ICM was held for nine days from the 13th through the 21st of August, 2014,
at COEX in Seoul. Seoul, the capital of Korea, is the center of Korean culture and education
as well as politics and economics. As a city with a history of more than 600 years, Seoul is
unique in that historical sites and modern cultural facilities coexist in harmony. It is always
bustling with colorful events, performances and reenactments of traditional activities.

The Congress venue, COEX, is a business and cultural hub located in the heart of Seoul’s
business district. It is a convention and exhibition center as well as a popular entertainment
attraction for both domestic and foreign visitors. Asia’s largest underground mall, three five-
star hotels, a department store, a subway station, an airport terminal, to name a few, are all
located at COEX.

With a total of 5,217 registrants from 122 countries, the Seoul ICM set a new record
for highest numbers of participants and countries in the history of ICM. The Congress was
a scholarly festival of academic presentations and discussions and a feast of diverse cultural
programs for adolescents and the general public. Also, as the year’s Fields Medalists included
the very first female winner, an unprecedented and exceptional scene was presented during the
awarding ceremony as the host (the President of IMU), the awarder (the President of Korea)
and the awardee were all females. Various public programs, held during the days of the
Congress with an aim of popularizing mathematics, were participated by 21,227 adolescents
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and the general public. The record of a total of 27,359 participants at Seoul ICM will be
remembered for many years ahead.

It is a tradition of the Congress for international conferences in various mathematics fields
to hold before and after the Congress days in the hosting and neighboring countries. For the
case of Seoul ICM, a total of 51 satellite conferences, 35 in Korea and 16 in neighboring
countries, took place.

The opening ceremony on the first day of the Congress began with an opening address
and a welcoming address by Hyungju Park, the Chairman of the Seoul ICM Organizing Com-
mittee, and Ingrid Daubechies, the President of IMU. Park Geun-hye, the President of Korea,
attended the ceremony. After awarding the Fields Medals, the Rolf Nevanlinna Prize, the
Carl Friedrich Gauss Prize and the Chern Medal Award, she delivered a congratulatory ad-
dress, welcoming foreign visitors from all over the world and emphasizing the importance of
mathematics as a basis of advancement for the history of mankind. Over 4,000 domestic and
foreign figures from the mathematical community, the industry and the media attended the
ceremony, which was also broadcasted live through EBS (Educational Broadcasting System)
TV station. Numerous press personnel also visited to cover the ceremony. There were more
than 1,500 domestic media coverages during the Congress, reflecting the excitement and the
heated interest of the general public.

The EBS TV station worked closely with the organizing committee to bring a successful
hosting and expanding the base of mathematics. To this end, EBS designated an 18-days-
long period from August 4th through 21st as the Math Popularization Week and broadcasted
various mathematics-related contents such as mathematical documentaries. EBS also broad-
casted the opening ceremony and the public lectures of the Congress.

Daily newspapers, Math&Presso, were produced jointly with Korea Joongang Daily and
distributed during the days of the Congress, which included interviews of award winners and
special lecturers, and coverages on the cultural events that took place on every corner of the
venue. The organizing committee also collaborated with Springer to publish the Seoul In-
telligencer and distributed to all registered participants. This magazine contains informative
articles and several scientific papers, and was well received by its readers.

The organizing committee made special efforts to make all lectures available for watching
on the internet. VODs of official events such as the ceremonies and academic lectures can
be watched from the official website of Seoul ICM at www.icm2014.org and from a Youtube
channel at www.youtube.com/user/ICM2014VOD. Photographs taken during the Congress
can also be found from the Seoul ICM website and its Facebook webpage at www.facebook.
com/SEOULICM2014.

Four award winner lectures, five laudations, two award lectures, four special lectures, 19
plenary lectures 177 invited lectures, 646 short communications and 388 poster presenta-
tions were made as the scientific program of the Congress. This includes the Emmy Noether
Lecture by Georgia Benkart and the Abel Lecture by John Milnor. As a result, a total of
1,245 research results were introduced and participants were provided with an opportunity
to peek into the recent advancements in mathematics. In addition, eight invited panels were
organized during the Congress on the following topics:

* Why STEM?

¢ How should we teach better?

* Mathematics is everywhere

* R&D policy

IMAGINARY Panel: Math communication for the future — a Vision Slam
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» Mathematical Massive Open Online Courses
* Future of Publishing
* World Digital Mathematics Library

The Seoul ICM was positively evaluated not only on the quantity and quality of its sci-
entific programs and on its smooth management, but also on its role in extending support
for developing countries and reinforcing mathematical popularization. The Korean mathe-
matical community has continuously expressed and emphasized the solidarity and support
for mathematicians in developing countries striving amidst poor research environment. As a
result of such efforts, the NANUM program invited 1,000 mathematicians from developing
countries, of whom 664 participated in the Congress from 85 countries in South America,
Southeast Asia, Eastern Europe and Africa. The financial support was granted in three cate-
gories: 45% senior mathematicians, 45% junior mathematicians and 10% advanced graduate
students.

Upon this opportunity, IMU also organized and hosted the MENAO (Mathematics in
Emerging Nation: Achievements and Opportunities) Symposium at the Congress venue on
the day before the opening ceremony to discuss the measures in further supporting mathemat-
ics in developing countries. During this symposium, efforts to prepare various devices for
shared growth of developing countries began in earnest by establishing a research fellowship
for graduate students and raising funds.

An important feature of Seoul ICM compared to its precedents is that it not only served
as an academic event for scholars but that an extended participation of the general public was
drawn through various cultural programs.

In the evening of the opening ceremony, a public lecture was delivered by the honorary
president of the Renaissance Technologies, James Simons, who is renowned for integrating
mathematical theories into analyzing the stock market. Simons is also well-known for con-
tributing a large portion of his assets to the advancement of science and education. During
his public lecture in front of an audience of 5,000 on the very special role mathematics played
in his life, Simons confidently assured that mathematics will be the greatest weapon in the
scientific, technological and economic advancement of the future.

The IMAGINARY exhibition, jointly offered by the National Institute for Mathematical
Sciences (NIMS) of Korea and Mathematisches Forschungsinstitut Oberwolfach of Germany,
introduced and provided opportunity to experience contents-centered mathematical concepts
to visitors through the application of state-of-the-art hardware such as touch panels.

The Bridges conference is the largest-scale mathematics-based international conference
integrating mathematics and the arts. Bridges took place at Gwacheon National Science
Museum, a subway-ride away from COEX, during the Congress days. It held various events
and was visited by more than fifty thousand people.

On August 19th, a Math Movie Screening, cosponsored by the organizing committee and
the French Embassy in Korea, played a French documentary film titled, How I Came to Hate
Maths (Comment J’ai Détesté Les Maths). Cédric Villani personally attended the event to
introduce the film and to hold a Q&A session with the audience after the screening along with
two renowned mathematicians, Jean-Pierre Bourguignon and Gert-Martin Greuel. This was
an opportunity to present to the public the evidently expanding influence of mathematics. On
the same day, Baduk (Go) events, including simultaneous games with professional players,
drew intense interests from mathematicians and the general public.

For the logo of Seoul ICM, the organizing committee conducted a nationwide call for its
design. Selected after several rounds of review, the logo comprises two golden spirals that



Organization of the Congress 9

grow and expand at the rate of golden ratio, symbolizing the main theme of the Congress and
depicting the Tae-Geuk of the Korean national flag.

A mathematical calendar was produced and distributed through Seoul ICM website, which
integrated math formulas and facts with each day in the calendar. The calendar contains var-
ious contents from simple ones for elementary school students to challenging ones for expe-
rienced mathematicians, from common arithmetic operations to remarkably complex expres-
sions, and from witty mathematical jokes to rather serious facts. The main schedule of the
Congress was also marked in the calendar to aid the participants. The organizing committee
also worked collaboratively with the Korean government to issue Seoul ICM commemora-
tive stamps, which features the Pythagorean Theorem, Euler’s theorem giving necessary and
sufficient conditions of a graph having an Eulerian tour, and the Pascal’s Triangle.

A very notable component of Seoul ICM is its corps of volunteers. The organizing com-
mittee regarded ICM volunteers as potential leaders of future mathematics and designed the
volunteer program as an educational process rather than merely a source of manpower. The
committee decided to rule out minors and limited volunteers to college and graduate stu-
dents. In fact, there were strong interests from high school students, whose parents expressed
dissatisfaction to the committee during the selection process. The committee received more
than 700 volunteer applications. While the majority was mathematics majors, there were
also students from other diverse disciplines. Eventually, after application screenings and two
interviews, 280 volunteers were selected. A training program consisting of three rounds of
training courses was mandated. The program not only consisted of logistic training matters,
but also included lectures by renowned mathematicians on the importance of modern mathe-
matics. Almost all volunteers remained onsite until the end of the Congress without dropouts
and the volunteers’ blog was filled with touching stories of memorable moments. Some of
these students are already discussing how to save money to attend the next Rio de Janeiro
ICM. We believe this enthusiasm is no less than any success we may have accomplished
and advise future congress organizers to plan well ahead to run an energetic and successful
volunteer program.
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Opening Ceremony (i3 August 2014)

Opening Address
Hyungju Park, Chairman of the Seoul ICM 2014 Organizing Committee

President Park Geun-hye, Minister Choi
Yanghee, Ambassadors, Members of the
National Assembly, Excellencies, Distinguished
guests, Ladies and gentlemen, Dear friends and
fellow mathematicians,

On behalf the organizers of Seoul ICM, I am
truly excited to welcome you from around the
world to this Congress.

More than 125 countries are represented in
this congress, and even more if we include the
fifty one satellite conferences. I sincerely thank
the International Mathematical Union for the help and support it provided during the past
years, which saved us from many mistakes and pitfalls. And my heartfelt congratulations go
to the prize winners to be announced today.

During the many years of preparations for this congress, the level of support from the gov-
ernment and corporations of Korea has been phenomenal. The law-making body of Korea,
the National Assembly, adopted a resolution in support of Seoul ICM in November of 2013
and the Korean government declared the year 2014 as the Korean Mathematical Year in order
to maximize the impact of Seoul ICM.

Several prominent corporations made considerable contributions to this Congress under-
scoring the growing importance of mathematics in the society. This experience of working
together with many faces of our society will certainly help to open a new era of expanded
roles of mathematics in the 21st century.

With an illiteracy rate close to zero, the education of children is often the highest priority
for Korean families. This high regard for education and scholarship explains the steady influx
of gifted students into the mathematics profession. It undoubtedly contributed to the rapid
economic development of the country.

Our NANUM program required focused and concerted efforts of the Korean math com-
munity. It is our wish that the participants of this congress take the ICM excitement back
home, further extending the positive impacts of the Congress to future generations in their
respective countries.

This Congress also put much emphasis on public outreach programs. The public lectures
by James Simons and by the Leelavati prize winner, the Baduk match (go game) against
renowned masters, and the math movie projection event, to name a few, were made possible
by the efforts of our outreach team. These efforts will undoubtedly contribute to making
mathematics an essential part of mass culture of our times.
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I hope that you enjoy and are rejuvenated by the exciting mathematical lectures and by
the company of colleagues from afar. I hope you will also be able to savor some of the fine
attractions that our country offers.

Now, this is the opening day. May the excitement last for the remaining days. Again,
welcome.

Welcoming Address

Ingrid Daubechies, President of the International Mathematical Union

President Park Geun-hye, Minister Choi Yanghee, distin-
guished guests, Prize Winners and families, everybody who
is participating and attending here:

In the opening images you saw scenes from past ICMs.
We were in Hyderabad four years ago, and before that, in Bei-
jing and Madrid. At the recent General Assembly, which was
held just few days ago in beautiful Gyeongju, it was voted that
the next ICM will be in Rio in Brazil. But you will hear much
more about that in the Closing Ceremony. Now we are here,
this year, in Seoul for ICM 2014 in beautiful Korea. Dur-
ing the opening film, you already were introduced to Korea’s
history, its culture, its beauty, its serenity. During the next
few days, we will of course enjoy hearing about the recent
advances in mathematics. We will celebrate the IMU Prize
Winners. We will revel in being again the company of old
friends and in making new acquaintances, making new contacts, maybe laying the base for
new collaborations in this international mathematical community. I hope that you will also
find some time to enjoy Korea and its beautiful culture, its wonderful nature and its fabulous
food. (I'm sure I’ve gained already several pounds in the last couple of days!) But above all,
I think you will find that all this is made possible by the very smooth organization and very
hard and sustained work of the Local Organizing Committee. I have had many occasions
already, in the preparations to the ICM, to witness their dedication and efforts, and we will
continue to do so during the whole ICM. I would like to thank all of them on your behalf, for
this work.

To end this welcome address to the ICM, I want to express again my hope that you will
enjoy the remainder of this Opening Ceremony and of the whole Conference. Thank you.

Awards Ceremony

Ingrid Daubechies

Dear respected participants of the Congress, I am greatly honored to host this memorable
event, in my capacity as the President of IMU.

Today’s Awards Ceremony at Seoul ICM has a new component compared to past ICMs.
Each of the Fields Medalist and the Rolf Nevanlinna Prize winner, who have to be under 40,
will be introduced to you by a short movie. These videos are the result of a collaboration of
the IMU and the Simons Foundation; the IMU is grateful to the Simons Foundation for having
accepted to fund and produce these movies. After each movie, the laureate will step forward
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to be acknowledged before we proceed to the next movie. The Fields Medalist movies will
be shown in the alphabetical order of the last names of the laureates; they will be followed
by the movie for the Rolf Nevanlinna Prize winner. After the five movies are concluded, we
will proceed to the actual handing out of these five IMU awards.

Fields Medals have been awarded by the IMU since 1936. They recognize outstanding
mathematical achievement for existing work and for the promise of future achievement. From
the start, they were meant for young mathematicians. The rule is now that to be eligible to
receive a Fields Medal, mathematicians must have their 40th birthday after January 1st of the
year in which the ICM is held. Let us now meet this ICM’s Fields Medalists!

The four 2014 Fields Medalists are, in alphabetical order, Artur Avila, Manjul Bhargava,
Martin Hairer and Maryam Mirzakhani.

We will now proceed to the Nevanlinna Prize. The Rolf Nevanlinna Prize has been
awarded at every ICM since 1982. It was established by the IMU together with the Finnish
Academy of Sciences. It recognizes outstanding contributions in mathematical aspects of
information sciences. It is subject to the same age limit as the Fields Medal: to be eligible for
the Nevanlinna Prize, the 40th birthday of the winner must be after January 1st of the ICM
year.

The 2014 Nevanlinna Prize Winner is Subhash Khot.

At this time, the medals to the Fields Medalists and the Nevanlinna Prize winner will be
given to them by the President of the Republic of Korea. We start with the Fields Medals. As
before, we will follow the alphabetical order of the laureates’ last names. Professor Myung-
Hwan Kim, the President of the Korean Mathematical Society, and Professor Sug Woo Shin,
Associate Professor of UC Berkeley and Assistant Professor of MIT, will assist the Awards
Ceremony. As this ceremony proceeds, I will read the citations for each Medalist.

Artur Avila is awarded a Fields Medal for his profound contributions to dynamical sys-
tems theory, which have changed the face of the field, using the powerful idea of renormal-
ization as a unifying principle.

Manjul Bhargava is awarded a Fields Medal for developing powerful new methods in the
geometry of numbers, which he applied to count rings of small rank and to bound the average
rank of elliptic curves.

Martin Hairer is awarded a Fields Medal for his outstanding contributions to the theory
of stochastic partial differential equations, and in particular for the creation of a theory of
regularity structures for such equations.

Maryam Mirzakhani is awarded the Fields Medal for her outstanding contributions to the
dynamics and geometry of Riemann surfaces and their moduli spaces.

For the Nevanlinna Prize, Professor Pertti Mattila, the representative of the Finnish
Academy, will join us on the podium; while he assists with the award ceremony proper, I
will read you the citation:

Subhash Khot is awarded the Nevanlinna Prize for his prescient definition of the “Unique
Games” problem, and leading the effort to understand its complexity and its pivotal role in the
study of efficient approximation of optimization problems; his work has led to breakthroughs
in algorithmic design and approximation hardness, and to new exciting interactions between
computational complexity, analysis and geometry.

We will now announce the next two IMU Prize winners. The winners of both the Gauss
Prize and the Chern Medal Award will be called to the stage and acknowledged first. We start
with the first established of these two prizes, namely the Carl Friedrich Gauss Prize.

The Gauss Prize has been awarded at the ICM for the first time in 2006 and is now awarded
at every ICM. The Prize was established by the IMU and the German Mathematical Society.
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It honors a scientist whose mathematical research has had an impact outside mathematics—
either in technology, in business, or simply in people’s everyday lives. The Gauss Prize will
be presented by Professor Alfio Quarteroni, the Chair of the Carl Friedrich Gauss Prize Com-
mittee for 2014, who is now joining us on the podium. Professor Jiirg Kramer, the President
of the German Mathematical Society will represent the German Mathematical Society.

Alfio Quarteroni, Chair of the Carl Friedrich Gauss Prize Committee for 2014

Stanley Osher is awarded the Gauss Prize for his influential contributions to several fields in
applied mathematics, and for his far-ranging inventions that have changed our conception of
physical, perceptual, and mathematical concepts, giving us new tools to apprehend the world.

Ingrid Daubechies

It is now the turn of the Chern Medal Award. The Chern Medal Award was awarded for the
first time at the 2010 ICM and is now awarded at every ICM. It was established by the IMU and
the Chern Medal Foundation in cooperation with the Simons Foundation. It is awarded to an
individual whose accomplishments warrant the highest level of recognition for outstanding
achievements in the fields of mathematics. The Chern Medal Foundation and the Simons
Foundation will be represented by Trustee May Chu of the Chern Medal Foundation and
President James Simons of the Simons Foundation, who are now joining us on the podium.

I present the 2014 Chern Award winner, Phillip Griffiths. The chair of the Chern Medal
Award committee, Robert Bryant, asked me to read the citation to you.

Phillip Griffiths is awarded the 2014 Chern Medal for his groundbreaking and transfor-
mative development of transcendental methods in complex geometry, particularly his seminal
work in Hodge theory and periods of algebraic varieties.

At this time, we are ready for the awards to be handed to the Gauss and Chern Award
winners. This will be done by President Park Geun-hye of the Republic of South Korea. The
2014 Carl Friedrich Gauss Prize winner, Stanley Osher!

For the Chern Medal Award, we will be joined by May Chu, the Trustee of the Chern
Medal Foundation, and President Jim Simons of the Simons Foundation.

We will now proceed with the Chern Medal Award.

The 2014 Chern Medalist, Phillip Griffiths!
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Congratulatory Address

Park Geun-hye, President of Republic of Korea
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Honored mathematicians, respected Ingrid Daubechies, President of IMU (International Math-
ematical Union), distinguished guests from home and abroad, and ladies and gentlemen, I am
highly delighted that the International Congress of Mathematicians, which boasts more than
one hundred years of history and tradition, is being held in Seoul.

Today more than 4,000 mathematicians from approximately 120 countries and plenty of
young people dreaming to create a better future through mathematics have joined us here.
I would like to extend my sincere welcome to all of them. Let me first express my sincere
congratulations to seven mathematicians, who have been awarded the Fields Medals, the Rolf
Nevanlinna Prize, the Carl Friedrich Gauss Prize, and the Chern Medal Award. In particular, I
highly honor and admire the great spirit of challenge and passion of Dr. Maryam Mirzakhani,
the first female to be awarded the Fields Medal in its history.

Ladies and gentlemen, the study of mathematics enjoys the longest history within academia
and its magnificent legacy has been with us throughout the entire history of humanity. From
ancient times when humanity still lived without letters people started to calculate and mea-
sure. Indeed, mathematics transformed the life of humanity as universal language, going
beyond regions and nations, and serving as the basis of human logical thinking.

Even in this modern era, mathematics is still a critical foundation that stands at the center
of the development of advanced science and technology and changes in our lives. Without
mathematics, it would have been impossible to develop digital technology, which played a
critical role in bringing about the ICT revolution. Without mathematics, we would now live
in a world without our favorite movies and animations produced by computer graphics. By
applying mathematical models in finance and analysis of Big Data, new services and markets
are created. As we can see from these examples, mathematics allows us to solve problems
with new methods and principles and creates much higher added values by converging with
various fields, such as science and technology, industry, and culture and art. I firmly believe
that the development of humanity in the future is closely intertwined with mathematics.

The world has now entered an era of creativity and innovation where a single individual’s
outstanding creation and ideas can move the entire world. In this sense, creative, logical and
rational thinking that we acquire through mathematics is one of the most critical qualifications
for our future leaders. That is why I sincerely hope that mathematics will develop not only as a
pure academic subject for mathematicians but also as enjoyable and understandable learning
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for the general public and our youngsters who will be leading the future. I would like to ask the
honored mathematicians gathered here to inspire our young generation to enjoy mathematics
and grow up as creative and talented individuals with a sense of creativity and rationality who
ultimately contribute to the future of humanity.

Honored mathematicians, Korea achieved remarkable economic growth within a short
period of time and a parallel advance was achieved in the study of mathematics in spite of a
late start. Korea first joined the International Mathematical Union (IMU) in 1981 as a member
country of the lowest ranking group I. Later in 1993, its status was elevated to group II and
in 2007, it was promoted to group IV, climbing two rungs of the ladder at once. Koreans are
deeply grateful to the world’s mathematical community who have cordially welcomed Korean
mathematicians into their midst. Under the name of “NANUM,” we invited approximately
1,000 mathematicians from developing countries to share the dreams and hopes that Koreans
have enjoyed. Korea will be more than willing to contribute to co-prosperity of the entire
humanity by sharing our experience and know-how with the rest of the world in various
sectors, including the economy.

Respected mathematicians, to my knowledge, more than 1,200 papers have been released
through this Congress and various public lectures will be delivered by renowned mathemati-
cians in tandem with financial investors. We count on your dedication and commitment to
expand the academic foundation of mathematics through deeper and broader discussion and
to ultimately contribute to the advancement of humanity. It is my sincere expectation that
many students and public who find mathematics very difficult can have an opportunity to
develop genuine interest in mathematics and find out the unique charm and joy that only
mathematics can give.

Encircled by beautiful traces of our long history, Seoul is a city with numerous ancient
wonders, such as our royal palaces, but also a modern city with state-of-the-art in industry
and culture. Please enjoy the beautiful cultural heritage and vitality Korea offers and fill your
hearts with precious and wonderful memories during your stay.

Thank you.

Announcements

Ingrid Daubechies

We have one more announcement to make, one more IMU prize to announce, namely the
Leelavati Prize. The Leelavati Prize was awarded for the first time during the Closing Cere-
mony of the ICM in 2010. It was established by the IMU and the Indian government; it is now
funded by Infosys, as a permanent IMU prize to be awarded at every ICM. It is awarded for
outstanding contributions to increase the public awareness of mathematics as an intellectual
discipline and the crucial role it plays in diverse human endeavors.

The 2014 Leelavati Prize will be awarded to Adridn Paenza for his decisive contributions
to changing the mind of a whole country, namely Argentina, about the way it perceives math-
ematics in daily life and, in particular, for his books, his TV programs, and his unique gift of
enthusiasm and passion in communicating the beauty of mathematics.

The prize itself will be awarded only at the Closing Ceremony; you will have your own
chance of witnessing his enthusiasm and his passion during the public lecture he will give,
in this very hall, at 8 in the evening on August 20, the last full day of the Conference.

Next, I have an extra surprise for you. Although all the IMU prizes have been awarded
or announced, there is an extra announcement to be made and an extra award to be given.
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The Chern Medal Award consists of several components. Two of these are a Medal and an
award for the recipient, which Phillip Griffiths, the 2014 Chern Medal Award Winner, re-
ceived just minutes ago from the hands of President of the Republic of Korea. But there is
a third component, which is a check of 250,000 dollars that the Chern Medal Award Win-
ner can direct to a charitable organization of his choice. I learned, with great delight, that
Phillip Griffiths, has designated the African Mathematics Millennium Science Initiative, or
AMMSI, as the designee of this award. AMMSI is an organization close to the heart and
the concerns of the Commission for Developing Countries (CDC) of the IMU, it was fea-
tured yesterday at the one-day symposium Mathematics in Emerging Nations: Achievements
and Opportunities (MENAO), organized by the IMU. AMMSI is affiliated with several CDC
initiatives that help developing countries reach higher level of mathematics and sustain and
foster their mathematical communities. I would like to invite May Chu and Jim Simons, who
are representing the Chern Medal Foundation and the Simons Foundation, respectively, the
Chern Medal Award Winner for 2014, Phillip Griffiths, and Wandera Ogana, the director of
AMMSI, to join me on the stage, please.

Phillip Griffiths is known for not only his outstanding mathematics and his brilliant and
effective service to the mathematical community; in recent years he has also been very active
in fostering mathematics in developing countries, especially in Africa. I am sure that this
award is appreciated not only by AMMSI but by every one of us who strives to work towards
bringing mathematics everywhere. Thank you so much, Professor Griffiths.

IMU has become more active in the last few decades in fostering the growth of advanced
mathematical education and research in Emerging Nations. The NANUM initiative, cited
several times already and in particular by the President of Korea, was a wonderful initia-
tive of the Korean Local Organizing Committee, as well as the whole Korean mathematical
community, that fit beautifully in this whole framework, thereby freeing up CDC resources.
Typically the CDC sets aside money every year, prior to every ICM, to bring mathematicians
from developing countries and fund their participation in the ICM.

With part of these freed up resources, CDC organized the one-day MENAO symposium
yesterday. The symposium made the case, through presentations of economics expert in these
matters, as well as through case studies (Korea was one among those) and, examples, that pro-
moting advanced mathematical development in a country benefits its economic development.

MENADO also showcased many further opportunities, where, with modest funding, a great
impact can be obtained. We had presentations from a whole alphabet-soup of organizations,
each of which does fantastic things with fairly modest means, reaching many mathemati-
cians. Just to give a few examples: CIMPA organizes fantastic summer schools in all de-
veloping countries in the world; UMALCA, the Latin American and Caribbean association,
coordinates immense efforts from the more developed countries in that region to help the less
developed; TWAS, the World Academy of Sciences, strives to find fellowships for graduate
students everywhere in the developing world; CANP, an initiative of ICMI, the instruction
branch of the IMU, helps build capacity for mathematical education in less developed regions
by establishing network programs. So many more initiatives were showcased at MENAO,
among which AMMSI, which we just saw honored by the Chern Medal Award Winner.

In connection with all this, CDC is launching the Adopt-a-Mathematics-Graduate-Student
initiative, which we hope will interest mathematicians in developed country interested in
mentoring and helping support a student in a developing country. If this is your case, CDC
is working on a framework to match you, one-on-one with such a student. You can find a
preliminary description on the Friends of the IMU webpage; more will come on the CDC
webpage soon.
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At MENAO, we couldn’t yet announce the fantastic gift directed by 2014 Chern Medal
Award Winner to AMMSI, because the Chern Award winner hadn’t been announced publi-
cally. But we had yet another fantastic announcement, which I am happy to also broadcast
to all of you here. Namely, the five inaugural winners of the Breakthrough Prize in Mathe-
matics, Simon Donaldson, Maxim Kontsevich, Jacob Lurie, Terence Tao and Richard Taylor,
have let me know just a few days ago that they will each donate 100,000 dollars, for a total
of 500,000 dollars, to the IMU CDC to endow a fund that will award Breakout Graduate
Fellowships to math grad students from and in the developing world.

The IMU is profoundly grateful for the support from Phil Griffiths and from the five
Breakthrough Prize Winners to graduate education in the developing world. It also hopes
that this generous and shining example by top leaders of our mathematical community, who
believe in the small and collective efforts that we make and the impact these have, will inspire
others, both within and from outside the mathematical research world. Should you already
want to emulate them in a small way, you can do so right during ICM by participating in
DonAuction, a fundraising initiative that will last only for the period of the ICM. Check it
out at www.donauction.org or at the IMAGINARY stand in the ICM Exhibition space.

IMU’s most important business listed at the top of its charge is the organization of our
quadrennial International Congress. During the Congress, we will hear Plenary Lectures by
outstanding mathematicians, who have been asked make them accessible to a wide range of
mathematicians present here. We also will have Invited Lectures in many different direc-
tions. This ICM will have a record number of cross-listed talks, in the different sectional
meetings, illustrating the large extent to which different subfields within mathematics are
cross-fertilizing and influencing each other, a wonderful development. We will, of course,
all celebrate our Prize Winners, who will give their own lectures. We will have public evening
lectures, the first one tonight by Jim Simons and the last one on August 20th by the Leelavati
Prize Winner, Adridn Paenza. Apart from all this, I hope that you will also enjoy some of
the outreach activities, and visit the ICM exhibition space. And if you get a chance, visit
the Bridges 2014 conference, held in parallel to ICM, just a subway ride away in Gwacheon
Museum organized by the Bridges Organization of Math and Art.

I hope you will fully enjoy the ICM, the core of the Conference itself, the many other
activities that the Local Organizing Committee has organized around it and your stay in the
city of Seoul. Thank you so much for coming.

IMU Status Report

Martin Grotschel, Secretary of the International Mathematical Union

The exquisite glamour and the particular thrill
of this opening ceremony are almost over. It
is now time for the “boring stuff”. The IMU
Secretary is supposed to report, in the last pre-
sentation of this event, a glimpse of the “State
of the Union”.

Before doing this, let me mention that there
has been very hard work behind the shine that
you have seen and the lightness and friendli-
ness that you have experienced in Seoul so far.
I chaired of the organizing committee of ICM 1998, and I remember the effort involved well.
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Having been in close contact with the ICM 2014 organizing committee, I do know what
Hyungju Park and his team have suffered in the last years, in particular in the recent months
and days. Let us not forget, the team consists of volunteers and they do all that in their free
time with great energy and outstanding enthusiasm. Please give an extra applause to the col-
leagues involved in the organization of this great congress and all the additional activities
associated with it.

My job is to report to you about those people and organizations who have been working
in the last years behind the scenes for IMU and the mathematical community in general. |
want to point out that it has been a pleasure to collaborate with all the colleagues. Consensus
could always be reached, even despite initial dissents, since everyone served a joint good
cause: to promote and foster mathematics. Having been active for IMU for the last 20 years
and finishing my term as IMU Secretary at the end of this year, I can honestly state that I have
enjoyed all the work, that I feel happy to be a mathematician and to belong to this wonderful
community.

The role of the IMU Secretary is not to provide you with a vision of mathematics and
tell you how I or how IMU thinks the future of mathematics is going to be. Many lectures at
this congress will take care of that. I will tell you about some details of our work so that you
know what IMU has done in the recent four years. It will be brief, and I will highlight only
a few memorable topics.

The ICM-related committees are of particular importance. You have seen the winners of
the IMU awards a few moments ago and you have certainly studied the list of invited ICM
lecturers. Many colleagues were involved in choosing them. The IMU Executive Committee
(EC) set up the ICM 2014 Program Committee and one committee for each of the IMU prizes:
the Fields Medals, Nevanlinna Prize, Gauss Prize, Chern Medal Award and the Leelavati
Prize as well as for the ICM Emmy Noether Lecture.

The Program Committee (PC) is responsible for the scientific program of ICMs; the 2014
PC was chaired by Carlos Kenig and had eleven further members: Erwin Bolthausen, Alice
Chang, Welington de Melo, Héléne Esnault, Tim Gowers, Ravi Kannan, Jong Hae Keum,
Claude Le Bris, Alex Lubotzky, Jarik Nesetril, Andrei Okunkow. The PC was supported
by nineteen section panels. They jointly succeeded in coming up with an outstanding list of
speakers and in reaching a reasonable balance of regions, gender and mathematical fields.
A rough count shows that the number of PC and panel members is about the same as the
number of invited speakers, i.e. one PC/panel member chose one speaker - a truly significant
selection effort.

The Fields Medal Committee consisted of Luigi Ambrosio, David Eisenbud, Kenji Fukaya,
Etienne Ghys, Benedict Gross, Frances Kirwan, Jdos Kolldr, Maxim Kontsevich, Michael
Struwe, Ofer Zeituni, Glinter M. Ziegler and was chaired by IMU President Ingrid Daubechies.
This committee is fully responsible for the choice of the award winners. The same rule holds
for the other IMU prizes. The EC does not interfere; all IMU prize selection committees
work autonomously—their choice is IMU’s choice. I think we all agree that great choices
were made.

The Selection Committee for the Nevanlinna Prize was chaired by Avi Wigderson and had
Thierry Coquand, Yuri Nesterov, Jaikumar Radhakrishnan, Eva Tardos, and Leslie Valiant
as additional members. The Gauss Prize Selection Committee consisted of Weinan E, Bar-
bara Keyfitz, Andrés Weintraub, Aad van der Vaart and Alfio Quarteroni as chair. Robert
Bryant chaired the Chern Medal Award Selection Committee which had Kazuo Murota, Felix
Otto, Alain-Sol Sznitman and Claire Voisin as additional members. Finally, David Mumford
chaired the Leelavati Selection Committee and was supported by Oh Nam Kwon, Guillermo
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Martinez, M.S. Raghunathan, and Srinivasa Varadhan. The task of the Leelavati Selection
Committee is particularly difficult since it has to search the world with its many different
languages and cultural habits to find a person that contributed significantly to the public
awareness of mathematics as an intellectual discipline and of the crucial role it plays in di-
verse human endeavors. A wonderful Argentinian prize winner was detected. Please, attend
his lecture on August 20.

The responsibility for all IMU activities rests with the IMU Executive Committee (EC),
which consists of a President, a Secretary, two Vice Presidents, six Members-at-Large, and
the Past President, who has no voting rights. The EC is elected by IMU’s General Assembly
(GA), which appoints the EC for a four-year term. The GA is the “international parliament
of mathematics” and consists of the delegates of all members of IMU. Each member is rep-
resented by a number of delegates that depends on the membership group (1 to 5) it adheres
to.

The GA met on August 10 and 11, 2014 in Gyeongju and decided on the IMU leadership
for the term 2015-2018. Shigefumi Mori will be the next President, Helge Holden the IMU
Secretary, and Alicia Dickenstein and Vaughan Jones the new Vice Presidents. The Members-
at-Large will be Benedict Gross, Hyungju Park, Christiane Rousseau, Vasudevan Srinivas,
John Toland and Wendelin Werner. Shigefumi Mori, a former Fields Medalist, is the first IMU
President from Asia ever. VP Alicia Dickenstein is the first mathematician from Argentina
joining the EC and Hyungju Park the first Korean member of the EC. With Vaughan Jones and
Wendelin Werner the EC has three Fields Medalists as its members: the highest EC Fields
Medal density ever. Together with Ingrid Daubechies, these eleven colleagues will work hard
in the next four years to promote, encourage and support many international mathematical
activities.

There are subtle issues that the IMU usually does not mention in public. IMU often
receives requests to help mathematicians who have been imprisoned for political reasons (not
for crimes) or who have been treated unfairly. Advice is requested from political institutions
intending to advance mathematics. Mathematical institutes in danger of getting shut down or
in financial trouble ask for support in their struggle to survive, and we seek for donors and
sponsors for mathematical activities. IMU representatives work behind the scenes and try
their best to help mathematicians wherever possible. If you have crucial difficulties and feel
that international assistance might be of advantage, just send a message to the IMU Secretary.

Significant work is done in IMU’s Commissions and Committees. The largest commis-
sion is the International Commission for Mathematical Instruction (ICMI) that, founded in
1908, is actually older than IMU itself. ICMI has a wide range of activities. I want to mention
just one which I consider to be of particular importance: the Capacity and Network Project
(CANP). CANP aims to enhance mathematics education at all levels in developing countries
making their people capable of meeting the challenges these countries face. CANP helps
develop the educational capacity of those responsible for mathematics teachers and creates
sustained and effective regional networks of teachers, mathematics educators and mathemati-
cians, also linking them to international support. The major activity of a CANP project is a
two-week workshop for about forty participants, half of them coming from the host country
and half from regional neighbors, primarily aimed at mathematics teacher educators. CANP
workshops have been held in Mali with participants from Sub-Saharan Africa in September
2011, in Costa Rica in August 2012 with Central American and Caribbean participants, in
Cambodia in 2013, and the next one will be held in Tanzania in September 2014. Financial
support came primarily from IMU, contributions from UNESCO, ICSU, ICIAM, RECSAM
and SEAMS are acknowledged.
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The Internet and the World Wide Web have transformed mathematical communication at
least as much as the introduction of journals. This transformation and many of the commer-
cial pressures affect mathematicians in many ways. The IMU EC formed the Committee on
Electronic Information and Communication (CEIC) in 1998 to watch these developments,
advise the EC, through it the IMU and mathematicians generally about these trends and best
ways to adapt to these changes. I want to mention here only three panels organized by CEIC
at this congress that represent typical aspects of CEIC activity. Lead by the CEIC chair Pe-
ter Olver, CEIC members and invited experts will discuss the perspectives of “Mathematical
Massive Open Online Courses”, provide their views of “The Future of Mathematical Publish-
ing” and describe efforts that may lead to “The World Digital Mathematics Library” that we
are all dreaming of, namely an electronic repository that makes the mathematical literature
of all time online available for everyone everywhere in the world free of charge. Please, stay
informed by attending these panel discussions.

The Commission for Developing Countries (CDC) has been mentioned so often so far at
this opening ceremony that I will not add much to it. It is impossible, though, not to praise in
this context the NANUM project that is an initiative of our Korean colleagues to invite about
1,000 mathematicians from the developing world to ICM 2014. T hope that the NANUM
grantees will seize the unique chance to meet and network here with colleagues from the world
over. The MENAO (Mathematics in Emerging Nations: Achievements and Opportunities)
Symposium that CDC launched yesterday capitalized on the NANUM grantees and brought
together a large number of mathematicians from the developing world, active and potential
sponsors, and colleagues with particular interest in supporting mathematics in developing
countries. There were outstanding lectures that showed how mathematics has helped shape
countries, lives, individuals and communities. These lectures were more than a loud call to
IMU to keep on going in this direction.

At the GA meeting last weekend, Wandera Ogana has been elected as the new CDC pres-
ident, Herb Clemens and Kesavan as the CDC secretaries, and the three new CDC members
representing Latin America, Africa and Asia come from Columbia (Alf Onshuus), Cameroon
(Mama Foupouagnigni) and Philippines (Polly W. Sy). Three more CDC members will be
appointed in the near future.

During the last four years the following countries have joined IMU as Associate Members:
Cambodia, Gabon, Madagascar, Malaysia, Moldova, Nepal, and Oman. The applications of
Papua New Guinea and Senegal were approved two days ago. They will be new IMU Asso-
ciate Members as of September 1, 2014. IMU has three new Full Members: Montenegro,
Algeria and Ecuador, which was upgraded from Associate to Full Member.

To summarize the membership development: IMU has now seventy-one full member
countries, twelve are associate members, and four international organizations are affiliate
members. At ICM 2014, we count participants from 125 countries, and thus, there is more
room to grow.

Papua New Guinea and other new Associate Members are not hotspots of mathematics
yet, but IMU is trying hard to develop mathematics everywhere. Let us look at Korea and
let me go back with you to the year 1981. How many papers did mathematicians from the
Republic of Korea, the host country of this event, publish in 1981 in international journals?
Have your own guess! The almost unbelievable answer is 3! Korea is now number 11 in the
world ranking of mathematical publications. What a progress! Let us hope that some of the
countries that now became IMU members or associate members will experience the same
steep growth that, to a large extent, is based on a strong emphasis on education.

I started my presentation with saying that I am not going to tell you visions about mathe-
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matics; but I have one slide that I would like to show you - and I hope it indicates something
to think about. It is my firm belief that mathematics is THE scientific endeavor of this cen-
tury! The reason for my conviction is that all advanced industries and all advanced sciences
have meanwhile understood that mathematics is utilized in great depth and breadth for the
understanding of nature, the modelling of industrial processes, the shaping of products, etc.
Companies that want to stay competitive need mathematics, and if we want to save resources
and make careful use of our environment, mathematical modeling, simulation and optimiza-
tion are indispensable.

All this is unfortunately not so well known in the public, and that is something we have
to change by intensifying our outreach activities, one reason why the Leelavati Prize was set
up. It may sound strange, but also many mathematicians are not aware of the influence that
mathematics has in real life in the world around us. It seems that we have to explain also
within our community how important mathematics is.

Yesterday at the MENAO event, Eric A. Hanushek, an economist investigating the influ-
ence of education on economic development, reported his finding that cognitive skills are
causally related to economic development and that variations in growth rates across coun-
tries can be explained by consideration of the role of cognitive skills. He emphasized the
importance of mathematical education in these processes. Hanushek’s observations were
corroborated by Korea’s former Minister KunMo Chung, who spoke about the contribution
of mathematics to the development of a country. The clear statement was that the develop-
ment of skills, in particular mathematical skills, is the most important aspect of development
and growth. He also stressed that education at the top level does not suffice, good mathe-
matical education on all levels is necessary. That is a message we have to bring home to the
ministries in our own countries. We have to work on the whole range of education in order
to go forward and grow.

My final slide is an organizational chart. Four years ago the General Assembly decided
that the International Mathematical Union should have a permanent office. Since 1920 IMU
has been run by volunteers only. The GA felt that some sort of professionalization would be
necessary and asked for bids for establishing a permanent IMU Secretariat. Berlin won the
contest and the new office with five employees was opened in the beginning of 2011. But,
of course, IMU is not dominated by the Secretariat; it is still lead by the committees and
commissions I have told you about and run by volunteers who contribute to IMU in their free
time. Look around and see what volunteers can achieve!

This is the end of my report about what IMU has been doing. I do hope you feel some-
what encouraged thinking about contributing to IMU and its activities in the future. Please,
also consider contributing to the development of mathematics in your own country, join the
mathematical organizations and societies in your scientific environment, promote our science
and make it stronger.

Thank you for your attention.
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Closing Remark and Result Report
Hyungju Park, Chairman of the Seoul ICM 2014 Organizing Committee

Ladies and gentlemen and my fellow mathematicians, I am so happy to be here in this very
gracious ending of what we have been going through for nine days. We wanted this to be,
instead of a formality, we wanted this Closing Ceremony to be more festive and filled with
expectations for the next one. Here, you will soon hear from the next ICM Chair about their
plans and we already started looking forward to that. So I will briefly report some numbers
and some statistics about this ICM so that maybe you can all share what we have achieved
and what we have done for the past nine days. Before we move on, during our Conference
Dinner, I confessed some of our mistakes and people thought that was fun. So I will reveal
some more of our mistakes today.

Early this spring, we were told that the Pope will be visiting on the day of the Opening of
ICM. So we all panicked because we were hoping that the President of Korea will come to
our Opening and award the medals and prizes and it’s not easy to compete against the Pope.
We were very worried and eventually the Vatican graciously changed their schedule. My
suspicion is that some of the members of the Local Organizing Committee who are Catholics
maybe made some extra efforts to change the Vatican’s mind.

Another big crisis hit us several months ago also when we discovered that COEX, this
convention center, was undergoing a huge renovation project. If you actually go down to the
basement, where hundreds of small restaurants and cafeterias are, the whole area has been
renovated. That means that poor mathematicians will be busy listening to the lectures but will
be starving. So that was another crisis we had. We worked with many people and the COEX
people and they actually helped us a great deal. They rented us big rooms, C1, for free. That
room was given to us for free so that we can run a small food court there. That food court was
offered to us free of charge and that solved the problem. But, in a sense, it actually was even
better than usual because mathematicians could all come there and chat over lunches and I
think it worked better that way. At this point, I would like to show my gratitude to the COEX
management for being so flexible.

Of course, a TV station called EBS was very gracious and they actually put the Opening
Ceremony on air, live, during the Opening. It was like a sports event being broadcasted live
with commentators. So this time, our Opening Ceremony was broadcasted to whole Korea
live with two math professors as commentators. It created a new job. Now mathematicians
can be hired as commentators.

You might have noticed we have filmed all the plenary lectures, invited lectures and im-
portant events. They are being uploaded to Youtube and they are all available with links on
our homepage. So you can actually re-watch. If you missed any interesting lectures, you can
watch them through our homepage now. We didn’t hire professionals for that. Twenty-some
volunteers teamed up and they rented equipment. They filmed all the things, did the editing
and stayed until 1 a.m. each day to finish editing and put them up on Youtube. Because our
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Wi-Fi bandwidth is limited, they couldn’t do it during daytime so they did it until 1 a.m. in
very late nights. And I think it’s really touching that these volunteers were not paid at all. We
just covered their transportations. I think that’s a huge act of sacrifice and dedication. So,
thanks to their efforts. I think the whole math community of the world now can watch and
savor the memories and interesting mathematics that was presented in this Congress.

There were other things but I would just like to say one thing, though. We have offered to
invite 1,000 mathematicians from developing countries. Not all of them made it here. I wish
to express my sorrow for that. It turned out many of them didn’t have an international travel
experience before so assumed that visas can be obtained on the spot on the same day, which
is not usually the case. Whenever somebody called us asking for help in obtaining a visa to
Korea, we called the Korean embassy in that country and we requested emergency actions
and usually it worked. The Korean foreign ministry supported our initiatives a lot and they
acted to issue the visa in an expedited manner. However still, many of the NANUM recipients
didn’t get visas and didn’t let us know and I feel very sorry that many NANUM recipients
couldn’t come because of the visa problems. As far as I know, there are two mathematicians
who wanted to come but could not because of political reasons. I hope the international math
community would address this in the future so that this is not repeated. I will not release
the identities of those two but I know as a fact that they did not obtain passports from their
government because of their political beliefs.

We are very grateful for all the things. We are grateful for the good things that happened
and we are grateful for your forgiveness for what we didn’t do well. And I thank you for just
seeing the bright side and telling us that we did a good job. I know we probably screwed up
some of the things but thank you for not telling that to us now. But later, feel free to let us
know so that we can pass that onto the next organizers so they don’t repeat our mistakes.

Ok, so I guess I will show some numbers. I will do it very quickly. We had four Fields
Medalists. Let us congratulate them again. We have more.

We had these presentations. This is scientific programs. So we had a lot. We had minimal,
I think, no-shows. Every conference has some no-shows. That’s not avoidable, I think. But
we had very little. The number of invited lecture presenters, we had 188. We had many
abstracts. You see the number is a little too much because the Congress participants, we had
4,680 regular participants plus 537 accompanying persons. So we had a total of 5,217 people
who are registered. We had many media representatives here, many journalists. And there
were over 20,000 high school kids and from the general public visiting us. How did we count
them? Because we asked them to sign up for the Simons lecture and these big events and then
the people who just came without prior signing-up, we charged them one dollar for entrance.
So we can now count the money. So that’s how we came up with 21,227 participants of this
Congress. I thank the general public for the enthusiasm. So that’s the number of participants.
There were a huge number of Korean participants and there were many colleagues from USA.
That’s the statistics regarding the regions and that’s the number of participants.

NANUM. Eventually I told you that we issued invitations but many people couldn’t come
and that’s the end result. Those are the ones who actually brought their documents and got
the reimbursements. So those were the reimbursements we issued. I hope that everybody got
their reimbursement so far. By the way, there were 85 countries represented in the NANUM
program.

We had, again, a lot from the general public; especially the exhibitions were very well
visited. We had many booths. We had 564 staff members: 63 members of the Local Organiz-
ing Committee and we had, more than anything, 282 volunteers on site. Again, my deepest
gratitude goes to the volunteers. These boys and girls really did a great job and they are still
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here helping us. By the way, after this Closing Ceremony, we’re throwing a party for them
so they will have a party all night.

Believe it or not, there have been close to 1,500 media coverages about this Congress
during this Congress. This doesn’t count the coverages made before the Congress. I think
this is unheard-of, unprecedented, and this will be what we will start with. Other people in
other science disciplines in Korea are just envying mathematicians for having done this. So
these are the articles that appeared. By the way, this LED is too bright that no pointer will
work with it. I’'m very sorry to the plenary speakers who gave talks here, who couldn’t use
their pointers because pointers simply do not work with this. So you see that the Korean
public was especially thrilled to see the first female Fields Medalist together with the first
woman president of Korea together with the first woman president of IMU.

I know I overused my time. I was pretty on time during the Opening so this is a payback.
So thanks a lot and we will go on with others, especially the next ICM plan will be exciting.
So let us hear from others.

Awards Ceremony

Ingrid Daubechies, President of the International Mathematical Union

The time has now come for the Awards Ceremony for the Leelavati Prize.

The Leelavati Prize was awarded for the first time during the Closing Ceremony of ICM
2010 in Hyderabad. The prize was established by the IMU and by the government of India;
it is presently funded by Infosys, as a permanent IMU prize to be awarded at every ICM.

The Leelavati Prize accords high recognition for outstanding contributions to increasing
public awareness of mathematics as an intellectual discipline and the crucial role it plays in
diverse human endeavors.

Following the precedent set at its first awarding at ICM 2010, it was decided that the
Leelavati Prize winner will be announced during the Opening Ceremony, but that the award
ceremony itself is part of the closing exercises of each ICM. Adridn Paenza, the 2014 Leelavati
Prize winner, gave an exciting public lecture yesterday in this hall, in which he inspired kids
(who mobbed him afterwards) to not give up on math, so they would end up seeing the beauty
in it, and he encouraged all mathematicians to be more involved in the teaching of mathemat-
ics in schools so that we can show them the “right door” to which to enter math.

Adrian Paenza: I would like to call you forward to hand out the prize to you. You have
been awarded the prize for your decisive contributions to changing the mind of a whole coun-
try about the way it perceives mathematics in daily life and, in particular, for your books, your
TV programs and your unique gift of enthusiasm and passion in communicating the beauty
and joy of mathematics.

Infosys, the company funding this prize, had hoped to be able to send an officer to repre-
sent them, but in the end scheduling problems prevented this. Instead, Mr. Narayana Murthy,
the founder of Infosys and the Chairman of their Board, asked me to read the following state-
ment.

“Infosys is proud to sponsor the Leelavati Prize, which recognizes contributions in public
outreach in mathematics. I would like to congratulate Adridn Paenza on winning this prize.
Mathematics is often viewed as complicated by students and adults alike. Adridn has trans-
lated his love for the subject into work that addresses this issue via popular media like books
and television. I’m sure this has helped remove some mysticism and phobia around mathe-
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matics for many. We are pleased to recognize his accomplishments and enthusiasm in these
fields to the Leelavati Prize. Thank you.”

Adrian Paenza, 2014 Leelavati Prize Winner

It is a great honor for me to be here. But as

e an Argentinian mathematician, I am not unique
% in being honored this year. Argentinian math-

: ematicians have been doing great work for so
many years, and this year several of us are be-

ing honored. Miguel Walsh, just 26 years old,

got the Ramanujan Prize; Alicia Dickenstein

L 5 was elected as Vice-President of the IMU a few
".. } days ago, and now it is my turn, receiving the
Leelavati Prize. South America in general can

be proud — with Arthur Avila receiving a Fields Medal at this ICM, last week. None of these
achievements are isolated; seeing them as part of a whole framework makes us even happier.

Math is great. We need to grant public and free education for everybody. We also need
to understand that education is a basic human right. We, mathematicians, should be more
involved, as Ingrid was saying, in trying to lead our kids thru the ‘right door’.

So, thank you very much and I also want to say a couple of words in Spanish, thanking
also my students and my colleagues at the University of Buenos Aires. Without them, my
work would definitely have been impossible. So...

“Muchisimas gracias a todos los argentinos también. Sientan este premio como que es
un premio para ustedes. Mi gratitud para todo mi pais”. (Translation: “Many thanks to all
the argentinians too. Feel this award as an award to all of you. My gratitude to everybody in
my country”.)

L T

Address of IMU President
Ingrid Daubechies

This is the last event of the ICM. There will be many IMU activities after the ICM; let me
tell you a little bit about them. In January 2015, a new Executive Committee will take over.
Today we have here our new President, Shigefumi Mori, who will speak after me (this is the
last time I get to address you all in my capacity of IMU President!) Helge Holden will be
the new Secretary. Alicia Dickenstein and Vaughan Jones will take office as Vice Presidents,
and we have also new Members-at-Large of the Executive Committee. I will still be present
at Executive Committee meetings but without a vote. So I am fading away, and happy to do
SO.

At the General Assembly in Gyeongju, the IMU created the IMU Circle, which consists
of former organizers, committee chairs, EC members of the IMU and other people who have
been a great service to the IMU. Their list will soon be posted on the IMU website, which is,
as you all should know, mathunion.org.

We also have new members for the International Commission on the History of Math-
ematics (ICHM) and new members will soon be added to the Committee on Electronic In-
formation and Communication (CEIC). All this information can be found on mathunion.org.
The new members of the Commission for Developing Countries I would like to introduce
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explicitly. They are President Wandera Ogana, C. Herbert Clemens, Srinivasan Kesavan, Alf
Onshuus, Mama Foupouagnigni and Polly Sy from the Philippines.

At this ICM, apart from the programs that the Programs Committee put together, there
were also three extra panels that were organized by the Committee on Electronic Informa-
tion and Communication: Mathematical Massive Open Online Courses (MOQOCs), Future of
Publishing and World Digital Mathematics Library (WDML). Blogs on the first and the third
topics will be accessible via mathunion.org as always. On the second topic, there did not
seem to be any apparent feeling that a blog was needed. If many of you feel that the blog on
publishing should be reopened, please let us know.

Just prior to the ICM, CDC organized a one-day symposium on ‘“Mathematics in Emerg-
ing Nation: Achievements and Opportunities”, which we call MENAO for short. Lots of
the material that was available, talks and other materials will be posted on the CDC page on
mathunion.org. (At the end of this, I hope you will know, almost like a mantra, that you need
to go to mathunion.org to find news about the IMU!)

There was also a longer report written on IMU in the developing world in the context
of this meeting, which is called “The IMU in the Developing World”. That report, since it
was suggested by the organization Friends of the IMU (FIMU), has been posted on FIMU’s
website, friends-imu.org.

Yesterday, as you saw on the video, DonAuction culminated with a live prize drawing
emceed by Cédric Villani, who did a wonderful job, as always. There were, in the end, over
400 different people who contributed, here and online. Over 400 people... And the total was
over ten million Korean Won, I think that deserves your applause! All of you, you are friends
of the IMU.

For the transparency of the whole drawing process, we will post everything on donauc-
tion.org. Please give us a little time to get home and to get over sleep deprivation and then
everything will be posted. If you missed the whole DonAuction initiative, don’t worry. There
will be other opportunities on Friends of the IMU to donate to its efforts to raise money for
the CDC. These efforts with DonAuction are a mirror at a much smaller scale, at a scale we
can afford, of the fantastic gifts that I announced at the Opening Ceremony of the five Break-
through Prize winners and of the 2014 Chern Prize Winner, who together directed 750,000
dollars towards the efforts of the CDC.

That was what I wanted to tell you about IMU after the ICM. I am now very happy and
honored to introduce to you our wonderful new IMU President, Shigefumi Mori.

Address of IMU President-Elect

Shigefumi Mori, President-Elect of the International Mathematical Union

On behalf of the newly elected members of the Executive Committees (ECs) of IMU and
its commissions, I would like to express our sincere gratitude to the Nominating Committee
and the Election Committee both chaired by Professor Ragni Piene and Delegates of General
Assembly (GA) of IMU.

Following a Chinese proverb that encourages one to study the past to learn new things, I
would like to comment on the spectacular success of ICM 2014. The success depended on
the following people.

EC members, in particular, President Ingrid Daubechies, Secretary Martin Grotchel. Com-
mittees involved in the Local Organization in Korea: Executive Organizing Committee (OC)
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chaired by Prof. Hyungju Park, IMU GA OC chaired by Prof. [

Jeong Han Kim, and Local Program Committee chaired by

Prof. JongHae Keum. I only mentioned three, but there are ﬁ

more committees and especially many more people behind o~

them, without whom this congress would not have been this

successful. \
For the MENAO event just before ICM 2014, Korean Gov-

ernment launched a project called NANUM which invited

1,000 researchers from developing countries. This is quite sig- Pl

nificant, and they have set a new style of contribution. :'-,H, - ':
Although not apparent from the surface, the academic con- ‘.\‘ i

tent of ICM 2014 was designed by the Program Committee ot

chaired by Professor Carlos Konig. Without this committee B

the whole congress is just impossible, and again behind it there are Panel Committees and so
many people involved. Although Hyungju Park mentioned 5,000 people from oversea there
are many more people involved.

ICM 2014 is also receiving generous support from many organizations, including Friends
of IMU, Simons Foundation, Niels Hendrik Abel Board, and Mathematics Societies of many
countries.

Very helpful volunteers gave a personal touch to ICM 2014.

Finally I should add Medalists, who volunteered to show up in social events and they were
really helpful.

IMU is fortunate to be supported by so many people as above. I feel happy to be part of
it, which is one of the reasons why I accepted to be the President nominee.

Now looking ahead, I would like to mention my colleagues in the newly elected IMU EC.
Though I have some experience of IMU, various things have changed since then, and I would
like to learn especially from the current members, and it was very fortunate that all the people
elected just happened to be here at the Congress and we could meet.

The members made not only excellent academic achievements but also sincere services
to the mathematics community. For instance, the Secretary elect Professor Helge Holden has
a broad experience with European Mathematical Community and we already started working
together and going to make a good team. I can continue talking about other members, but
this is not the right moment and I just say that I am confident in my fellow EC members.

I should also mention the stable IMU Secretariat in Weierstrass Institute at Berlin. This
is new to me since this did not exist when I was involved in EC more than ten years ago.

Furthermore IMU circle, as mentioned by President Daubechies, was formed this year,
which consists of mathematicians who have made sustained and distinguished contributions
to IMU.

These are the new people with whom we will work together and we will also have a new
committee for women in mathematics. Though its name is not fixed, President Daubechies
will continue to be the key person in the committee.

There are new things we have to cope with. Mathematical communities are emerging
in developing countries and MENAO(Mathematics in Emerging Nations: Achievements and
Opportunities) organized by CDC(Commission for Developing Countries) was very timely
for this direction. Education is indispensable for mathematics in developing world, and
ICMI(International Commission on Mathematical Instruction) should take part. They should
work with the help of ICSU(International Council for Science), that is, under the umbrella of
ICSU. There are also problem of world digital mathematical library, and the list continues.
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I do not have any intention to pull IMU in any specific direction. I would like to listen to
various people, which is the Japanese or Asian way. My only main concern is to contribute to
the promotion of the international cooperation in mathematics. This is how I view the IMU
Presidency.

Introducing ICM 2018
Marcelo Viana, Chair of the ICM 2018 Organizing Committee

Dear Colleagues,

On August 11, at Gyeongju, the General As-
sembly of the IMU unanimously approved the
Brazilian bid to organize the International
Congress of Mathematicians ICM 2018 in Rio
de Janeiro. This will be the first time, in its
more than centennial history, that the ICM will
take place in the Southern Hemisphere.

We are honored by the IMU-GA’s decision
and thrilled by the perspective of bringing the
ICM-and all that it embodies—to Latin America. Ours is a young region of the world, where
the Congress can and will be a powerful tool to disseminate Mathematics in the whole society,
especially among the younger generations. Indeed we have chosen “Sowing Seeds” as the
theme for the Rio de Janeiro Congress.

We are also daunted by the challenge of following on our Korean colleagues footsteps:
Hyungju Park and his team did a terrific job in making this year’s Congress a big success and
theirs will indeed be a tough act to follow. But be assured that we will put the best of Brazilian
creativity and ingenuity to the task of making ICM 2018 an equally memorable event.

Actually, preparations for the Congress are already actively under way. The website went
live a few days ago (check www.icm2018.org) and it is now possible to submit proposals for
satellite events. Most specially, I invite you all to sign-up for the ICM 2018 Newsletter: just
go to the website, click on Newsletter and fill-in your name, email address and country. It only
takes a small fraction of a minute! And it will help us keep you current with the preparations.

Até breve no Rio de Janeiro! (See you soon in Rio de Janeiro!)

Vote of Thanks
Ingrid Daubechies

Every day, ICM participants told me how much they were enjoying the Congress. So many
people worked very hard to make this ICM a success — and the time has come to thank them!

The Program Committee and the members of the Panels for the different disciplines care-
fully put together the scientific program that we all enjoyed. The prize selection committees
did their thoughtful and considered work to select the Prize Winners. The Plenary and In-
vited Speakers, and the people who assisted them in preparing their talks, surely deserve our
thanks for preparing carefully and giving us clear presentations of their field and their work.
The Chairs of all the sessions helped keeping the complex schedule on track. The different
Panels, organized by the ICM and the IMU, led to an interesting dialog with the audience on
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the topics that were their focus. The contributed talks provided a rich and diverse collection
of results. The exhibitors gave us even more mathematical food for thought.

The receptions and parties were wonderful and we are grateful to each organization that
hosted one! We owe special thanks to the Mayor of Seoul, who hosted the banquet for the
Congress. And the IMU is extremely grateful to the President of the Republic of Korea, who
did us the great honor of attending our Opening Ceremony and awarding the Fields Medals,
the Nevanlinna Prize, the Gauss Prize and the Chern Medal Award.

But the people we should thank most of all are the local organizers! The Local Organiz-
ing Committee, led by its Chair, Hyungju Park, worked incredibly hard for more than four
years, in order to get everything organized into the smallest detail — and to deal brilliantly
with every crisis as it came up. They were assisted by a veritable army of incredibly devoted
volunteers, who we thank most wholeheartedly as well. The NANUM program was a won-
derfully generous initiative and it made it possible for so many mathematicians to come to an
ICM, an experience that would otherwise have remained just a dream for them... Let’s thank
NANUM’s Chair, Dongsu Kim, and the whole Committee for its hard work.

Finally, I want to thank all of you, participants who came from far away or from nearby,
and who, with your enthusiasm for mathematics, certainly contributed a lot to the success of
the 2014 International Congress of Mathematicians in Seoul!
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The work of Artur Avila

Etienne Ghys

Abstract. Artur Avila is awarded a Fields Medal for his profound contributions to dynamical systems
theory, which have changed the face of the field, using the powerful idea of renormalization as a
unifying principle.

1. Introduction

The citation for Avila’s award states:

“Avila leads and shapes the field of dynamical systems. With his collaborators, he has
made essential progress in many areas, including real and complex one-dimensional dynam-
ics, spectral theory of the one-frequency Schrodinger operator, flat billiards and partially
hyperbolic dynamics. Avila’s work on real one-dimensional dynamics brought completion
to the subject, with full understanding of the probabilistic point of view, accompanied by a
complete renormalization theory. His work in complex dynamics led to a thorough under-
standing of the fractal geometry of Feigenbaum Julia sets. In the spectral theory of one-
frequency difference Schrodinger operators, Avila came up with a global description of the
phase transitions between discrete and absolutely continuous spectra, establishing surprising
stratified analyticity of the Lyapunov exponent. In the theory of flat billiards, Avila proved
several long-standing conjectures on the ergodic behavior of interval-exchange maps. He
made deep advances in our understanding of the stable ergodicity of typical partially hy-
perbolic systems. Avila’s collaborative approach is an inspiration for a new generation of
mathematicians.”

Avila has published a huge number of papers, many of them solving long standing con-
jectures, with many collaborators. It is impossible to give an overview of his contribution in
a small number of pages, even in rough outlines.

Fortunately, on the rather recent occasion of the Brin prize for Avila, two detailed papers
were published, giving an excellent presentation of his work, at least in two of his main areas
of research: one dimensional dynamics and the billiards dynamics [2, 3]. The interested
reader is strongly encouraged to read these reviews.

I chose the option of following very closely the oral “laudation” that I presented during
ICM Seoul. I had to select a very small number of results among many other possibilities.

It is intended for the general mathematician, certainly not for the expert, and its only
purpose is to catch a glimpse of Avila’s work.

" Proceedings of the International Congress of Mathematicians, Seoul, 2014
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2. The setting

If I had to give a summary of four centuries of research in dynamics, in a few sentences, |
would write, following a joke by Yulij Ilyashenko, that there are three main stages in this
history.

The first stage was initiated by Newton:

“You are given an ordinary differential equation and your task is to find its solutions”.

Differential calculus has been indeed remarkably successful.

The second stage was initiated by Poincaré at the turn of the twentieth century, when

he realized that in most cases it is simply impossible to find a formula for solutions. This
corresponds for instance to the birth of chaos theory.

“You are given an ordinary differential equation and your task is to say something about
its solutions.”

If possible something useful, for instance something describing the qualitative behavior
when time goes to infinity.

The third stage began when mathematicians realized that, in practice, physicists never
know exactly the differential equation they want to solve. There are always unknown quanti-
ties, which may be small, but which do have some influence on the motion, some tiny friction
for instance. One could say that this period began in the 1960’s with Smale and Thom:

“You are NOT given an ordinary differential equation and your task is to say something
about its solutions.”
This is the field of research of Artur Avila. Most of his results turn around the question:

“What does a typical dynamical system look like?”

3. One dimensional dynamics and renormalization

Let us start with a basic example.
Consider a unimodal map f from an interval to itself, that is, a map having a single
maximum. Assume that the second derivative is negative at the maximum.

Pick a point x in the interval, take its image by f and iterate the process. One gets the
orbit of x, denoted { f™(x)}. The main question is to describe the sequence f™(z). Where
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does it go? Where does it accumulate? According to Smale-Thom’s message one should not
try to answer this question for every f, but for a typical f.

Here is one of the very first great results of Artur, jointly with Misha Lyubich and Wel-
ington de Melo, right after his PhD, improved a bit later in a joint work with Moreira.

In a non-trivial real analytic family f\(A € A) of unimodal maps (where A is some finite
dimensional parameter space), there is a dichotomy: for Lebesgue almost every A\, the map
[ is either Regular or Stochastic.

Of course, one should be more precise about the words used in this statement.

In the regular case, Lebesgue almost every orbit converges to some attracting cycle.
After some time, the dynamics becomes essentially periodic: no chaos appears. This is the
easy situation. The set of values of the parameter A for which this regular case holds is
typically an open and dense set in the parameter space A (but not of full Lebesgue measure).

The second case, stochastic, is chaotic. But chaos should not be understood as a negative
word. It does not mean that one cannot describe the motion. There is some absolutely con-
tinuous measure on the interval such that for Lebesgue almost every initial condition z the
sequence f"(x) is asymptotically distributed according to this measure, unless it converges
to a periodic cycle. So, this chaotic mode is still well understood since a single good mea-
sure describes the dynamics. The set of values of the parameter A for which this happens has
positive Lebesgue measure.

The theorem is that the union of regular and stochastic dynamics has full Lebesgue mea-
sure in the parameter space.

This result has a very long history and it is not possible to mention here all preliminary
steps. The reader is referred to Misha Lyubich survey paper [3]. This “Regular or Stochastic
dichotomy” was the first occasion confirming the general Palis conjecture on the behavior of
almost all orbits for typical dissipative dynamical systems.

As Lyubich writes “we have reached a full probabilistic understanding of real analytic
unimodal dynamics, and Artur Avila has been the key player in the final stage of the story”.

Of course, I cannot give any description of the proof of such a difficult theorem but I
would like at least to explain one of the key tools. The so called renormalization operator
has certainly not been invented by Artur but he knows better than anybody else how to use
it! It quickly became his magic stick: he uses it in most of his papers. That was the topic of
his plenary lecture in the previous Congress, in Hyderabad [1].

Start from a dynamical system, say a map f from a space X to itself.

Choose some small part X; of X and assume that the orbit of every point in X; comes
back in X1, maybe after many iterates.

Let us consider the map f; from X; to X; which maps every point of X7 to its first
return in X7 under the iterates of f.

&
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In many cases, the small X; is somehow similar to the big X and there is a zooming
out, from X to X, so that one can “renormalize” f; as a map from X to X. Let us denote
this new map by R(f). Therefore, one can think of R as an operator sending a dynamical
system f from X to X to some other dynamical system from X to X. This is called the
renormalization operator. The magical fact is that there is a strong correspondence between
the dynamics of R, acting on the space of maps f, and the dynamics of a typical element f.

As Adrien Douady used to say:

“We first plough in the dynamical plane and then harvest in parameter plane”.

Let us have a look at the first historical example. Consider a unimodal map f from the
interval to itself. The graph of f, together with the graph of its square f2 (i.e. f o f), may
look like in the following picture.

In this case there is a subinterval invariant by f2. Restricting f? to this interval, zooming
out and fliping, one gets back to the initial interval equipped with another unimodal map
R(f).

The general picture for this renormalization operator in this very special case has been
a conjecture for many years. This figure illustrates the dynamics of the operator R on the
infinite dimensional space of unimodal maps.

«

Coulet-Tresser and Feigenbaum, in the the late 70’s, had the intuition, based on numer-
ical evidence, that there is a fixed point for the renormalization operator R, the so-called
Feigenbaum map. Moreover the linearization at this fixed point has a one-dimensional ex-
panding direction and is contracting on some hypersurface. It was a wonderful joint venture
of many mathematicians to transform this intuition into a theorem. Among them, Lanford,
Sullivan and McMullen. Avila and Lyubich could eventually achieve Sullivan’s dream: in-
stead of a computer assisted proof, they produced a “brain assisted proof”” using some so-
phisticated technical preparation and then, just the standard Schwarz Lemma. A “proof from
the book™ as Erdos would have said.



The work of Artur Avila 51

4. Billiard tables

Imagine a box containing some perfect ideal gas, a huge number of bouncing molecules. For
simplicity, let us make the assumption, not very realistic physically, that the gas is so dilute
that the molecules don’t collide between themselves.

Each individual molecule travels along straight lines in the box and bounces from time
to time on the boundary. Molecules follow the orbits of a classical billiard ball game.

Let us make things simple and suppose that the box is actually 2 dimensional: a polygon
in the plane. Choose a point = on the boundary of the polygon, which is a finite union of
segments, and choose an initial velocity v, say of norm 1. Hit a ball there in that direction and
wait until the ball bounces again on the boundary in 2’ and gets off in some other direction
v’. This defines a dynamical system 7" which maps (x, v) to (z’,v’). Let us make the even
stronger assumption that the angles of this polygon are rational multiple of 7. The rationality
of the angles implies that the directions of the travelling ball can only take a finite number of
values.

On a rectangle for instance, the velocity vector takes only four values. Therefore one can
reduce the dynamics from dimension 2 to dimension 1. Now the configuration space will be
a finite union of intervals. Each side of the polygon defines a finite number of intervals, one
for each direction.

This kind of map is called an interval exchange transformation. Formally, the definition
is the following. Take the unit interval [0, 1] and split it into & subintervals. Now reorganize
the intervals according to some permutation. This defines a bijection from [0, 1] to itself.
Don’t worry about the endpoints. It is somehow like a generalized cards shuffling: you split
your deck into several intervals and you permute them. Therefore, the dynamics of a rational
polygonal billiard table is reduced to the dynamics of interval exchanges maps. Note that the
space of interval exchange maps, with a given number & of subintervals, is parameterized by
the product of the permutation group on & objects and a simplex, describing the lengths of the
subintervals. In particular in this case, the space of dynamical systems under consideration
is finite dimensional.

Now, let me state a theorem, due to Avila and Forni, again in the spirit of Smale-Thom.

Almost all interval exchange transformations are weakly mixing (except for trivial situa-
tions).

I should explain the words and say at least something about the proof.

“Almost all” should be clear since the space of interval exchange maps is finite dimen-
sional so that one has the Lebesgue measure at our disposal.

Let me define “mixing” first. Let f from X to X be a transformation preserving a
probability measure p. One says that f is mixing if, for every pair A, B of measurable
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subsets of X we have lim,, o, (A N f*(B)) = p(A)u(B). This means that when times
goes to infinity the dynamics somehow forgets the past: the events A and f"(B) have a
tendency to become independent. So a mixing dynamical system is a good approximation to
randomness. Katok showed, however, that an interval exchange map is never mixing.

“Weak mixing” is, of course, a weakening of the concept of mixing. It simply means that
u(AN f*(B)) converges to pu(A)u(B) in a weaker sense: restricting n to some subset E of
the integers, of density 1. Almost as good as mixing.

Avila-Forni’s theorem is a major progress in the understanding of the dynamics of bil-
lards. The main tool to prove this theorem is again renormalization. The renormalization
operator in this context acts on the space of interval exchange maps, which is a finite union
of finite dimensional simplices. The important fact is that, even though each interval ex-
change is a rather simple dynamical system, this renormalization operator turns out to be
very chaotic. This chaoticity in parameter space is the key to the understanding of a typical
interval exchange map. For many more details, see the survey paper by Giovani Forni [2].

5. Schrodinger operators

This is a topic in which the dynamical insight of Artur radically changed the landscape.
Imagine a 1-dimensional discrete quantum particle. Its state is described by some [?
function v on Z with complex values. One can think that the probability that the particle is
located at a point n is the square of the modulus of ¥ (n).
The time evolution of v, as usual, is described by the Schrodinger equation: the time
derivative of v is i Hy where H is the Schrodinger operator:

H()(n) =¢(n+1) +¢(n—1)+ V(n)p(n).

The first two terms give a discrete version of the Laplace operator and V' (n) is some
bounded potential describing the environment of the particle.

Note that H is a bounded self adjoint operator on /2. Everything depends on the spectrum
of H and the spectral measure.

Let me recall that the spectrum is the set of energies F/ such that H — E.Id is not
invertible. It is a compact set o(H ) in R.

The spectral measure associated to some v is the measure 11, (supported on o(H ))such
that for every continuous real valued function g, one has (¢, g(H)¢) = [ g djuy.

The spectral measures provide a key to the understanding of the dynamics of the quantum
particle. To say things in a non precise way:

o The particle “travels freely” if fu,, is absolutely continuous: the medium is conductor.
o The particle “travels a little bit” if y,, is singular continuous.

o The particle “does not travel” if yi,, is pure point. The medium is insulator.

The most interesting case occurs when V' is quasi-periodic. One can think for instance
of a quasicrystal. The special case of V' (n) = 2\ cos(2mn«) arises in this context as the
simplest example. This is called the almost Mathieu operator.

Based on numerics, the shape of the spectrum was conjectured to be a Cantor set when
« is irrational. In 1981, Mark Kac offered ten Martinis for a proof of this fact. Barry Simon
coined the term Ten Martini Problem.
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The following picture is the famous Hofstadter butterfly.
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Slicing this butterfly by a vertical line with first coordinate «, one gets the spectrum for
the critical case A = 1. Many papers were devoted to the ten Martini problem and other
conjectures in the 1980’s and 1990’s. It is probably fair to say that spectral theorists had
exhausted their toolboxes. New ideas and approaches were needed. Artur introduced new
dynamical methods in the problem and could solve the most difficult conjectures. Here is a
sample of some results:

Theorem (Avila-Jitomirskaya 2009). For all A # 0, and all irrational o, the spectrum oy
is a Cantor set.!

Theorem (Avila-Krikorian 2006). Leb(oy o) = 4|1 — |A].

This was already known by Jitomirskaya and Krasovsky in the non critical case, when A
is not equal to 1.

Theorem (Avila, Damanik, 2008). For all irrational o and |\| < 1, the spectrum is purely
absolutely continuous.

The key tool in the proofs of these difficult theorem is again renormalization.

Let me also mention, without giving any explanation that Artur created recently a global
theory of one frequency Schrddinger operators, describing in detail what he calls the strati-
fied analyticity of the Lyapounov exponent and the boundary of non uniform hyperbolicity.

Artur started his career by solving a number of long standing problems and conjectures
but he is also an exceptional theory builder. The whole theory was developed by Artur and
this required outstanding insight and exceptional technical abilities.

6. A gem

Let me finish by mentioning a puzzling theorem of Artur, which is somehow isolated in his
work. This is not directly related to dynamics: this is a pure partial differential equations

'They could not get the ten Martinis since meanwhile Mark Kac had unfortunately passed away.
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result. It is easy to state and Artur told me that almost every mathematician listening to this
theorem for the first time is immediately convinced that this is very easy and that he can
provide a short simple proof. But, this is not so...

Let f be a diffeomorphism of class C'! of some compact manifold of class C°. It is well
known, and easy to prove, that you can approximate f by C°° diffeomorphisms in the C'!
topology.

Artur’s theorem is that if the manifold is equipped with a C*° volume form and if f
preserves the volume, it can approximated in the C! topology by C*° diffeomorphisms which
are volume preserving.

Artur’s proof starts with a triangulation and does the approximation by induction on the
skeleton. It reminds me of the wonderful proofs by Gromov of his h-principles in PDE.

Avila’s contributions are amazing: I convinced that this is just a beginning.
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The work of Manjul Bhargava

Benedict H. Gross

Abstract. He has developed powerful new methods in the geometry of numbers and applied them to
count rings of small rank and to bound the average rank of elliptic curves.

The geometry of numbers was introduced by C.F. Gauss in the Disquisitiones Arithmeticae
[28, Art. 302], to estimate the class numbers of binary quadratic forms. It was developed by
G.L. Dirichlet and R. Dedekind, in the computation of the residue of the zeta function of a
number field at s = 1, and treated systematically by H. Minkowski in his book Geometrie
der Zahlen [34]. Many leading mathematicians, such as C.L. Siegel and H. Davenport, have
contributed to its modern development. Manjul Bhargava has continued in this great tradition
and taken it to new heights, adding several new ideas and techniques of his own. He has
applied them brilliantly to the study of orbits in integral representations, obtaining a number
of ground-breaking results on the distribution of number fields and their class groups, and
on rational points on elliptic and hyperelliptic curves. His work has changed the way that we
now approach the subject.

The geometry of numbers typically gives results on average, not for any chosen example.
For example, Gauss defined the class number H (D) as the number of orbits of the group
SLx(7Z) on the set of integral, positive-definite binary quadratic forms ax? + bxy + cy? with
negative discriminant b —4ac = —D. Based on extensive calculations, he was able to guess
that H (D) grows at essentially the same rate as v/D. He was not able to prove this; even
today we lack an effective proof. But Gauss gave evidence that the result holds on average:
as T — oo,

> H(D) ~ —T?’/Q

D<T

The proof (given in Mertens [33]) has three main steps. First, every SLy(Z)-orbit con-
tains a unique form whose coefficients satisfy

—a<b<a<c or 0<b<a<e

(see [28, Art. 171-172]). Hence the sum of class numbers for D < T is the number of
integral points in the corresponding region

AT) ={(z,y,2): —xe <y <z <z daz—y? <T}

of three-space (up to a neglible error as T" grows). The next step is to show that volume of
the region A(7) is finite, and equal to —T?’/ 2. A basic idea in the geometry of numbers

® Proceedings of the International Congress of Mathematicians, Seoul, 2014



The work of Manjul Bhargava 57

is to estimate the number of integral points in a region by its volume. If the region A(T)
were bounded, simple geometric arguments would then yield the asymptotic estimate on the
number of integral points. However the region has a cusp, and the final step is to determine
the number of integral points which lie in the cusp, and to show that they do not change the
asymptotic estimate given by the volume.

Nowadays we would add a fourth step, which is to provide an arithmetic interpreta-
tion of the orbits. In this case, the orbits of primitive forms of discriminant —D (those
with ged(a, b, ¢) = 1) correspond bijectively to the ideal classes (the quotient of the group
of invertible fractional ideals by the subgroup of principal ideals) of the quadratic ring
R = Z[%ﬂ]. In this bijection, Gauss’ famous composition law for classes of binary
quadratic forms corresponds to the group structure on the quotient. When —D is funda-
mental (not of the form —df? for another discriminant —d), every form is primitive and
the orbits correspond bijectively to the elements of the ideal class group of the imaginary
quadratic field Q(v/—D). Using a sieve, one can obtain an estimate for the corresponding
sum of class numbers, for negative fundamental discriminants of absolute value less than 7'.

It is often the arithmetic interpretation of the integral orbits that is most striking in Bhar-
gava’s work. He has developed a deep understanding of the representations of arithmetic
groups, which allows him to reformulate many central counting problems in number theory
in terms of estimates for the number of integral orbits of bounded height. In his PhD thesis
[1], Bhargava studied the representation of the group

G =SLy(Z)® on M =7*®7*®7?,

The symmetric square of M contains the adjoint representation of GG, and Bhargava presents
these three binary quadratic forms in a simple manner. Namely, he associates to each element
m in M a labeling of the cube

If we slice the cube into pairs of 2 x 2 matrices in three different ways

_la b e f]
Ml__cd:|7Nl_|:gh_
[ a ¢ b d |
M2—_691|7N2—|:f h_
__ae _ cg_
M = bf}’N?’_{d h |

we obtain three binary quadratic fo;ms
Q1(z,y) = —det(Myz — Nyy)
Q2(z,y) = — det(Maz — Nay)
Qs(z,y) = — det(Mzx — N3y).
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The three binary quadratic forms ()1, )2, and 3 all have the same discriminant d; this gives
a quartic polynomial which generates the ring of polynomial invariants on M. The G-orbit
of m is determined by the SLy(Z)-orbits of these binary quadratic forms, or equivalently by
a triple of ideal classes I, I> and I3 for the quadratic ring of discriminant d (which can now
be positive, negative, or zero). Furthermore, Bhargava shows that the product of these three
classes is trivial, and that every triple with trivial product arises from such an orbit. This
gives a beautiful, symmetric reformulation of Gauss’s law for the composition of binary
quadratic forms—the composition of three binary forms is in the trivial class (given by a form
which represents the integer 1) if and only if the three forms arise from a cube!

Bhargava has found arithmetic intepretations of the orbits in 14 integral representations
which generalize the representation corresponding to Gauss composition [1-5]. For exam-
ple, the symmetrization of M gives the action of the diagonal SLy(Z) on the space of binary
cubic forms of the type az® + 3bx?y + 3caxy? + dy>. In this case he shows that the orbits
correspond to quadratic rings with an ideal class I whose cube is the trivial class. These
representations (or their duals) all come from parabolic subgroups in Chevalley groups—
the group which acts is a subgroup of the Levi factor and the representation occurs on the
abelianization of the unipotent radical (cf. [27]). The representation Z2®Z?®Z? of SLa(Z)3
giving Gauss’s composition law comes from a maximal parabolic subgroup in the Cheval-
ley group of type D,, and three of the representations on his list come from distinguished
maximal parabolic subgroups in the Chevalley groups of type G2, Fy, and Eg. These three
representations are

o the action of GLy(Z) on Sym*(Z?) ® det ™!
o the action of SL3(Z) x GLy(Z) on Sym?(Z3) ® Z>
o the action of SL5(Z) x GL4(Z) on A?(Z5) @ Z*

They were studied over C by Sato and Kimura [37], and over general fields by Wright and
Yukie [39], as part of a program to generalize the results of Davenport and Heilbronn [23]
counting cubic fields. In each case, there is a polynomial invariant D, which has degree 4,
12, and 40 respectively and generates the full ring of invariants. Over the field of complex
numbers these representations have an open orbit where D # 0 with stabilizers isomorphic
to the symmetric groups S3, Sy, and S5 respectively [29].

Bhargava shows that the integral orbits where D is non-zero correspond to cubic, quartic,
and quintic rings respectively (that is, to commutative rings which are free abelian groups
of rank 3, 4, and 5 over Z) and that D is equal to the discriminant of the ring. This was
known for cubic rings, by work of Delone and Fadeev [24], but the quartic and quintic cases
were much more difficult and involved the introduction of auxiliary resolvents. Bhargava
then applies the geometry of numbers to count the number of rings of discriminant less
than T as T' — oo. Using a sieve, he converts this count to an asymptotic estimate for the
number of number fields of degree 3, 4 and 5 over Q with discriminant less than 7". For each
degree n < 5 and signature (71, 72) with 71 + 2ry = n, Bhargava shows that this number
grows like ¢(r1,72)T, where ¢(r1,72) is an explicit constant [6, 7]. As mentioned above,
the case of cubic fields had been treated in the work of Davenport and Heilbronn [22, 23],
but the quartic and quintic cases were much more complicated and the conjecture that the
growth was proportional to 7" had been open for thirty years. This work led Bhargava to a
guess for the constant ¢(ry, o) for all degrees n [8]. Applying similar counting methods to
some of the other representations led Bhargava to the resolution of some new cases of the
Cohen-Lenstra—Martinet heuristics [19] for the ideal class groups of number fields [6].
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All of the integral representations which generalize Gauss composition have the property
that there is a single polynomial invariant, whose non-vanishing defines an open orbit over
the complex numbers. Starting with his work with Arul Shankar on the Selmer groups
of elliptic curves, Bhargava turned to the study of integral orbits in representations with a
more complicated ring of invariants. For example, the action of PGL2(Z) on the space
Sym4(Z2) ® det 2 of binary quartic forms has a ring of invariants generated by a quadratic
polynomial I, a cubic polynomial J, and a sextic polynomial A with the single relation
27A = 413 — J2. In terms of the binary quartic form

F(z,y) = ax* + bady + ca®y® + day® + ey?

these invariants are given by
I = 12ae — 3bd + ¢*

J = T2ace + 9bed — 2Tad?® — 27eb? — 263,

The rational orbits where A # 0 are stable in the sense of geometric invariant theory—they
are closed with finite stabilizers. The stable orbits correspond to certain curves X of genus
one, defined by the equation

22 = F(x,y).

Furthermore, the Jacobian of X is isomorphic to the elliptic curve EZ whose equation is
determined by the polynomial invariants I and J

v =u® — (I/3)u — (J/27)

and whose discriminant is equal to A. Hence X is a principal homogeneous space for
the algebraic group E. The covariants in this representation give an unramified covering
7 : X — F of degree 4, such that 7(x + e¢) = w(x) + 2¢ [40]. The fiber above the origin of
I consists of the four points on the curve X where z = 0, and this gives a principal homo-
geneous space X [2] for the 2-torsion subgroup E[2]. The class of this homogeneous space
in H(Q, E[2]) determines the rational orbit (whose stabilizer is the finite group scheme
E[2]). Moreover, in the map of principal homogeneous spaces H'(Q, E[2]) — H*(Q, E),
the class of X [2] maps to the class of the curve X.

When the curve X has points over all completions of @, the corresponding coverings are
called locally solvable. The locally solvable orbits with invariants (I, J) correspond bijec-
tively to the classes in the 2-Selmer group Sely(E) of the elliptic curve E. The coverings
where the curve X has a rational point are called solvable and correspond to the classes in
the subgroup F(Q)/2E(Q) of Sely(£). Birch and Swinnerton-Dyer [18] showed that the
locally solvable rational orbits all have integral representatives (at least away from the prime
p=2).

Bhargava and Shankar [9] estimate the number of integral orbits with bounded invariants
I and J using the geometry of numbers. They also develop sieve methods which allow them
to convert this estimate into a count of 2-Selmer elements. Their main theorem is that the
average size of the 2-Selmer group of elliptic curves over Q is equal to 3, in the following
sense. Every elliptic curve E over Q has a unique model of the form

y =2+ Az + B

where A and B are integers with 443 + 27B2 # 0, which are not simultaneously divisible
by p* and p® respectively, for any rational prime p. Define the height of E by the formula



60 Benedict H. Gross

H(E) = Max(4]|A3|,27B?). Then the number of elliptic curves with height H(E) < T is
finite and grows at the same rate as a constant times 7°°/%. Bhargava and Shankar prove that
the limit, as T' — oo, of the ratio

S #Selp(B) /) Y 1

H(E)<T H(E)T

exists, and is equal to 3. The delicate analysis and geometry involved in their calculation
is astounding. For example, the theorem that the average order is 3 arises from a volume
calculation, essentially equivalent to the fact that the Tamagawa number of the group PGL,
is equal to 2. This gives the average number of non-identity elements in the Selmer group,
as the identity class is the only one that appears significantly in the cusp of the fundamental
domain! For a beautiful summary of this remarkable paper, see the Bourbaki talk of B.
Poonen [35].

Their calculation of the average value of the order of the 2-Selmer group Sely (F) gives
an upper bound for the average order of its subgroup E(Q)/2E(Q), and hence on the rank
of the group F(Q) of rational points. In this case the upper bound they obtain on the average
rank is 3/2. Before their work, it was not even known that the average rank was finite! But
Bhargava and Shankar push much further. They also study integral orbits in the analogous
representations (with two generating invariants over Q):

o the action of PGL3(Z) on Sym®(Z?) ® det ™!
o the action of SLy(Z) x SL4(Z) on Z? @ Sym?(Z*)
o the action of SL5(Z) x SL5(Z) on Z5 @ N2(Z5).

The stable locally soluble rational orbits in these representations correspond to elements in
the 3-, 4-, and 5-Selmer groups of elliptic curves over Q [21, 26]. (These representations also
arise in Vinberg’s theory, using the exceptional groups of type Fy, Er, and Eg. The action
on binary quartic forms comes from the exceptional group of type G [29]). Bhargava and
Shankar show that the average order of the 3-, 4-, and 5-Selmer groups is equal to 4, 7, and 6
respectively [10—-12]. This led to the conjecture that the average order of the m-Selmer group
of elliptic curves over Q is equal the sum of the divisors of m. In the case when m = 3, A.J.
de Jong had obtained slightly weaker results, with the field F,(T") in place of Q [32].

As a corollary of their calculation of the average order of these Selmer groups, Bhargava
and Shankhar are able to prove that the average rank is less than 1 (we suspect it is equal
to 1/2) and that at least 80% of elliptic curves over QQ have rank less than or equal to 1
(we suspect that 50% have rank 0 and that 50% have rank 1). Analogous results for other
families of elliptic curves (for example, curves with a marked rational point other than the
origin) have been obtained by Bhargava and W. Ho [17]. For the family of curves related to
the congruent number problem, there were earlier results of D.R. Heath-Brown [31].

The conjecture of Birch and Swinnerton-Dyer, that the rank of F(Q) is equal to the order
of vanishing of the L-function of E at the point s = 1, is known to be true when the order of
vanishing is less than or equal to 1 [30]. Starting from this point, Bhargava, C. Skinner, and
W. Zhang have recently shown, in a brilliant pair of papers [15, 16], that the conjecture of
Birch and Swinnerton-Dyer holds for at least 66% of all elliptic curves over Q (all of which
have rank 0 or 1). This uses the results of Bhargava and Shankar on the average order of the
5-Selmer group, as well as deep work of his co-authors on the Iwasawa conjecture [38] and
Kolyvagin’s conjecture [41].
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Bhargava’s methods also extend to the study of hyperelliptic curves of genus g > 2 over
Q. Such a curve has a homogeneous equation of the form

22 = F(z,y) = for®9 2 + f1a*9Tly + 4 fog0y?9T?

where = and y have degree 1, F'(x,y) is a binary form of degree 2¢g + 2 with integral co-
efficients and non-zero discriminant, and z has degree g + 1. G. Faltings, in work which
was awarded the Fields Medal in 1986, proved that there are only finitely many relatively
prime integral solutions, or equivalently, rational points on the projective curve [25]. One of
Bhargava’s most remarkable results is that for a majority of equations of a fixed genus g > 2,
ordered by the size of the coefficients, there are no rational points at all! This is true even if
we only consider curves which have points over every completion of QQ, and the proportion
of curves with no rational points tends to 1 very quickly as g becomes large. For example,
when g > 10 at least 99% of hyperelliptic equations of genus g have no rational solutions
[13].

Bhargava has also obtained precise results on the family of hyperelliptic curves of genus
g > 2 over Q with a rational Weierstrass point: the average order of the 2-Selmer group of
the Jacobian is equal to 3 [14]. These curves can all be given by equations with f, = 0,
f1 =1, and fo = 0, so by affine equations of the form

22 =229 poeop?9 4+ Cog+1-

Each curve has a unique equation of this form, provided that the coeflicients c;, are all in-
tegers and there is no rational prime p with p?* dividing ¢;, for all k. The estimate on the
2-Selmer group is obtained through a study of integral and rational orbits in the symmetric
square representation of the split special orthogonal group SO241. (This generalizes the ac-
tion of SO3 = PGL on binary quartic forms.) Since the bound 3/2 obtained on the average
rank of the Jacobian is less than the genus, the p-adic methods introduced by Chabauty and
developed by Coleman [20] can be used to effectively bound the number of rational points
on most of these curves [14]. B. Poonen and M. Stoll [36] have refined this method at the
prime p = 2 to show that for g > 3 most of these curves have only the one obvious rational
point at infinity, and that the proportion with only one rational point tends rapidly to 1 as g
becomes large. In particular, a monic polynomial of odd degree > 7 will rarely represent a
square!

Manjul Bhargava’s ideas are remarkably original, yet once discovered, form a natural
continuation of previous great work in the subject. His papers are written with great care,
in a distinctive style, and his lectures convey the unity and the beauty of mathematics. An-
drew Wiles (who was Bhargava’s PhD thesis advisor) wrote the following about his impact:
“The sense of a new field opening up before one’s eyes with an elegance and clarity that
remind one of one’s first encounters with classical mathematics is unique and sometimes
breathtaking."
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Abstract. Martin Hairer has been awarded the Fields medal for his groundbreaking work in the theory
of Stochastic Partial Differential Equations (SPDEs). A short account of his main contributions is
presented below.
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1. Introduction

Martin Hairer has established several ground breaking results in the theory of stochastic
partial differential equations (SPDEs). We focus this short account on his most striking
contributions.

2. Background

§1 Recall that a Wiener process { W, };>¢ (also called Brownian motion) is a centered Gaus-
sian process, built over a probability space (€2, F, P), with covariance EW, W, = min(s, t).
Its formal time derivative, the white noise Wt, is deﬁned by its linear action on L? test func-
tions: for deterministic f € L2?(R.), fo fo s)dW is the centered Gaus-

sian process with covariance R(t,t') = Omm(t ‘ ) f?(s)ds. Incase f € {f : f(t) =
fg h(s)ds,h € L*(R)}, this notion coincides with formal integration by parts:

/f AW, = W, f(t) /Wf(s

In addition, because ¢ — W; is almost surely a continuous process, one can give a sense to
the equation

t
X = Xo +/ 9(Xs)ds + W,
0

as soon a g is a Lipschitz function, in such a way that the map W. — X. is almost surely a
continuous map Cp(Ry) — C (R+)

Itd observed that the integral fo s)dW can be defined for certain random functions:
let F; be the o-algebra generated by the random variables {Ws, s < t}. A random function
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f i Ry x Q — Ris called adapted (to F3) if f; := f(t,w) is F-measurable for all

t. Let Ly denote the class of adapted random functions equipped with the norm ||h|y =

(E [y h*(s)ds)?. Then [ f,dW, extends to an isometry from Ly to L*(€, P). Using
this notion (the /16 integral), Itd [11] gave precise sense to solutions of the equation

t t
X, = Xo+ / g1 (X,)ds + / 2(X,)dW, @1
0 0

when both g; and g5 are smooth Lipschitz functions; in the last display, W. can be a multi-
dimensional Wiener process (with each coordinate an independent Wiener process), with X.
also multidimensional.

§2 The Itd theory has had enormous success in both pure mathematics (through links with
the theory of second order parabolic PDEs) and applied mathematics. However, the map
W. +— X. does not behave well under approximations: Wong and Zakai [16] (see also [14]
for the multidimensional case) observed that if one approximates the Wiener process by
piecewise linear interpolation over intervals of size e, calling the approximation W ¢, then
the solution of the ordinary differential equation

d € € € d €
%Xt = g1(X}) + 92(X7) - EWt

does not converge (as € — 0) to the solution of (2.1), but rather to the solution of

t t 1 t
Xt = XO + / gl(Xs)ds + / gZ(Xs)dWs + 5 / gé(Xs)g2(Xs)ds' (22)
0 0 0

One may combine the two last terms in (2.2) to a new type of stochastic integral, called the
Stratonovich integral. However, the nature of the correction term in (2.2) could depend on
the nature of the approximation. Further, in the multidimensional case, there is no general
way to extend the map W. — X to a continuous endomorphism on V' = Cy(R, ; R9).

§3 The situation can be remedied for SDEs using a device introduced by T. Lyons [13],
which he called rough paths analysis. The basic observation is that while the It6 map is not
continuous on V, one could add more data, namely the iterated integrals of the Wiener path
(or more precisely, certain antisymmetric combinations of such integrals). Those are viewed
as elements of the tensor algebra V = @V ®*. Putting an appropriate norm on V®* (the
p-variation norm), Lyons showed that if a path together with its first [p] iterated integrals has
a finite p-variation norm, then there is a unique extension to all V®™ for m > [p], which is
of finite p-variation norm, and further the It6 map can be extended to a continuous map on V-
valued paths. Probability theory now enters only in giving a meaning to the first [p| iterated
integrals; in the case of multidimensional SDEs, only the Wiener process and its Lévy area
fg Widwi — fg WJdW! are needed. Lyons expansion is thus a universal expansion: one
is given a base of universally defined elements, and one writes the solution of SDEs in terms
of those basis elements.

§4 One defines a space-time white noise £ in a way similar to the definition for tempo-
ral white noise: for deterministic f € L?(R, x R?), one declares the integral £(f) =
f]m wra f(8,7)€(s, z)dsdz to be a centered Gaussian variable of zero mean and variance

1£II3 = fR+ g J (s, 2)dsdz. One can then give an interpretation to certain linear parabolic
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stochastic partial differential equation
Opu(t,x) = Au(t, ) +&, u(0,z) = g(x) (2.3)

in terms of the Green function G(s, y;t,z) = G(t — s,z — y) for the heat equation, by

t
uto)= [ Gla—powins [ [ Gl-sa-pelsisy. @
Rd 0 JRd

The solution u is then a function only in dimension d = 1 (but can be given an interpretation
as a random distribution in higher dimension). One also can give sense to certain quasi-linear
equations (where nonlinear terms are added to the right side of (2.3)), as long as the added
terms are still well defined as function. One also can define similarly a space-only white
noise (in this case, the solution to (2.3) would be a function for d < 3).

§5 The biggest difference between space-time white noise and time-only white noise lies
in the lack of the notion of adapted processes: without it, one cannot extend £(f) to a rich
enough class of random integrands f. In addition, in the SPDE case, one is interested not
only in adding to the right side nonlinearities of the form g(u)&, but also terms of the form
(uz)? or other nonlinearities. However, the solutions to (2.3) can be checked to be only
Holder continuous (with exponent < 1/2) in space, and terms like (u;)? simply do not
make sense. We have now set the stage for Hairer’s theory of regularity structures.

3. Solving nonlinear PDEs - the KPZ example

§6 It is natural to attempt to give sense to an equation driven by rough noise by first molli-
fying the noise with an approximate Dirac function, solving the mollified equation, and then
tuning out the mollification. More precisely, given an equation

81‘,“ = L(“z 5)7

for some nonlinear differential operator L, and a positive bump function ¢(z, t) integrating
to 1, define the approximation

)= [ (TS ety

€

and solve the equation
Opu® = L(uf, £°).

One would like to know that u¢ converges to a limit, and that the limit does not depend on the
bump function ¢ used. As the discussion in §2 showed, this is too much to expect - one may
need to add a correction term, or in the case of SPDE:s, a correction term that may blow up as
e — 0. The first truly singular example in which this program was carried out successfully
was in Hairer’s construction of solution to the KPZ equation, to which we turn next.

§7 The KPZ equation (after Kardar-Parisi-Zhang) is the following SPDE:

Ou = Au+ (0pu)* + €. (3.1)
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The KPZ equation was introduced in order to model the evolution of (spatial) fluctuations of
interfaces [12]. It is now established, both rigorously [2], [1] and experimentally [15], that
the fluctuations of many physical systems converge to solutions of the (one dimensional)
KPZ equation, and moreover the latter are linked to fluctuations in random matrix models.
For the reasons explained in §4 and §6, the equation (3.1) does not make sense as written;
until Hairer’s work, the only way to give a meaning to (3.1) was to consider the Hopf-Cole
transformation u© = log h, note that h formally solves a stochastic heat equation (for which
the methods of linear equations described in §4 apply), and then define the solution to (3.1)
by taking logarithms. With the following theorem, Hairer changed all that. In the statement,
&€ is a mollification of ¢ as defined in §6.

Theorem 3.1 ([4]). There exists a sequence of constants C* — oo depending on the bump
function ¢ such that the solutions to the equation

Ot = Aut — O+ (9,u)* + €5, u(0,2) = ho(x) (3.2)
converge as € — 0 (in Holder norm) to a limit u.

The limit in Theorem 3.1 does not depend on the bump function used in the mollification,
and coincides with the logarithm of the solution to the stochastic heat equation. A-priori, the
solution is constructed only locally in time (i.e., up to a random explosion time), but because
the solution coincides with the logarithm of the solution to the stochastic heat equation,
which exists for all time, one deduces that the explosion time is infinite almost surely.

§8 Hairer’s solution replaces the universal basis employed in Lyons’ rough path theory by
a basis derived from the solution to the linearized equation; the basis is thus both prob-
lem dependent and local. More explicitly, he constructs a (Polish) space X consisting of
choices of finitely many distributions, together with a base of the linear span of these dis-
tributions at each space-time point, with the constraint that the bases satisfy appropriate
compatibility conditions and analytical bounds. He then constructs a measurable map ¥
from the probability space (2, F, P) (supporting the white noise) to X', and a continuous
map Sg : CF x X — C(Ry,C"?78) which gives u = Sg(ho, ¥(w)). The map Sg
is constructed as fixed point of a Picard iteration, while the construction of W involves a
renormalization procedure, where the mollification € plays the role of small parameter.

The constant C, in (3.2), that may blow up, is reminiscent of renormalization procedures
in mathematical physics, and arises from the need to tame singularities. In the case of other
equations, one may need to subtract more complicated terms in order to achieve convergence.
In all cases, the solution eventually appears as the unique fixed point of the sequence of
renormalizations.

Some of the results in [4] have roots in the earlier work [3].

4. Regularity structures

§9 Hairer’s solution for the KPZ equation was shortly followed by a general method to handle
SPDEs, as long as their solution “should make sense” using renormalization. In order to do
that, Hairer develops a systematic theory for the construction of base elements (that are
used to locally expand the solutions), together with a transfer rule between points; crucially,
only finitely many terms representing singularities need to be retained at each point. The
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following, taken from [5], are representative examples of applications of the theory.

Oh = Ah+(0;h)*+¢, (d=1,KPZ)
8t¢ = A¢_¢3+€7 (d:37¢§)
Ou = Au+ gij(x)0;udju+ f(u)n, (d=2,Parabolic Anderson)

(In the standard parabolic Anderson model, one has ¢ = 0 and f(u) = w, and 7 is spatial
white noise.) In both the KPZ and ®3 equation, the noise £ is space-time white noise. Note
that even without the nonlinear term, the solution to the ®3 equation is only a distribution,
not a function.

The mollified versions of the above equations are given as follows.

Oht = AR+ (0:h)? —C. +&°, (d=1,KPZ)
0ot = A¢°— () + Cept +£°, (d=3,93)
ot = Auf + gij(z) (;udju’ — Cebiy) + f(u)(n — Cef'(uf)), (d=2,PA)

In these equations, C., C, are constants that may blow up, and depend on the mollifier em-
ployed.

Theorem 4.1 ([5]). There exist choices of constants C., C. such that the solutions converge,
for a wide family of mollifiers, locally in time.

Here “converges” is in a topology adapted to the regularity of the problem. Specifically,
in the KPZ case, it was in Holder norm with exponent smaller than 1/2 while in the ¢ case,
it is in the space of distribution with (negative) regularity exponent in (—2/3, —1/2). Also,
“local in time” means that there may be a finite (but a.s. strictly positive) explosion time and
the solution is defined (and the molifications converge) only up to the explosion time. The
putative invariant measure for the ®4 equation, which is not shown to exist due to possible
explosion, is the ®4 Euclidean quantum field theory measure.

§10 To achieve these convergence results, Hairer expresses the solutions to the SPDEs in a
local basis, in such a way that the solution is determined uniquely at a point by only finitely
many irregular terms. The basis elements themselves are chosen to fit the structure of the
solution (often, just defined from the solution of the linearized equation), and are localized.
Hairer also introduces a renormalization map that allows one to relate expansions for differ-
ent values of € and eventually prove the convergence. The renormalization map is realized
in terms of explicit (finite dimensional) matrices. Hairer also developed a diagrammatic cal-
culus that allows one to keep track of the different basis elements needed in the description
of the solution. Hairer coined the term regularity structures to emphasize the fact that the
non-trivial part of the solution of the SPDE is determined by a finite dimensional space that
depends on the regularity of the solution and on the nature of nonlinearities in the equation;
the renormalization procedure for mollified noise is then performed in that space.

5. Other noteworthy results

§11 Earlier work of Hairer touched upon many aspects of the theory of SPDEs. A partic-
ularly strong line of work was jointly with J. Mattingly, where they studied the ergodicity



70 Ofer Zeitouni

of two dimensional stochastic Navier-Stokes equation, when the noise enters only through
finitely many modes. More explicitly, consider the stochastic Navier-Stokes equation on the
two-dimensional torus

dw = vAwdt + B(Kw,w)dt + QdWy, B(u,w) = —(u- V)w,

where K is a linear, divergence free operator (given in Fourier representation), () is an
operator representing coloring in space of noise, which influences only a finite number of
modes. Using the Malliavin calculus and an asymptotic form of the strong Feller property
(weak dependence on past initial conditions) which they introduce, Hairer and Mattingly
[7],[8].[9] give sharp conditions for ergodicity as function of support of noise; they get also
regularity of the solutions.

§12 In another direction, Hairer has come back full circle to corrections of the Wong-Zakai
type for SPDEs. This is done in [6] for Burgers-type parabolic SPDEs and, more recently, in
[10] using the machinery of regularity structures, for more general one dimensional SPDEs
driven by space-time white noise, where correction terms that are not present in the SDE
setup show up.

6. Summary

§13 Martin Hairer’s work has established a completely new approach to problems in the
theory of SPDEs that have remained largely untouchable for years. The framework he estab-
lished with his theory of regularity structures has transformed the field and is paving the way
to striking advance in the theory of SPDEs and in core models of mathematical physics.
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The work of Maryam Mirzakhani

Curtis T. McMullen

Abstract. Maryam Mirzakhani has been awarded the Fields Medal for her outstanding work on the
dynamics and geometry of Riemann surfaces and their moduli spaces.

1. Introduction

Mirzakhani has established a suite of powerful new results on orbit closures and invari-
ant measures for dynamical systems on moduli spaces. She has also given a new proof of
Witten’s conjecture, which emerges naturally from a counting problem for simple closed
geodesics on Riemann surfaces. This note gives a brief discussion of her main results and
their ramifications, including the striking parallels between homogeneous spaces and moduli
spaces that they suggest.

2. The setting

We begin with a résumé of background material, to set the stage.

Let M, denote the moduli space of curves of genus g > 2. This space is both a complex
variety, with dim¢ M, = 3¢ — 3, and a symplectic orbifold. Its points are in bijection with
the isomorphism classes of compact Riemann surfaces X of genus g.

The dimension of M, was known already to Riemann. Rigorous constructions of moduli
space were given in the 1960s, by Ahlfors and Bers in the setting of complex analysis and
by Mumford in the setting of algebraic geometry. Today the theory of moduli spaces is
a meeting ground for mathematical disciplines ranging from arithmetic geometry to string
theory.

The symplectic form w on M arises from the hyperbolic metric on X. As shown by
Wolpert, in the length—twist coordinates coming from a pair of pants decomposition of X,

one can write
3g—3

W = Z d&/\dn

1

The complex structure on M, arises from the natural isomorphism

T%M, = Q(X) = {holomorphic forms ¢ = ¢(z) dz* on X}

" Proceedings of the International Congress of Mathematicians, Seoul, 2014
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between the cotangent space to M, at X and the space of holomorphic quadratic differen-
tials on X. The Teichmiiller metric on M also emerges from its complex structure: on the
one hand, it is dual to the L' norm

lall = /X lg(=)] |d]? = area(X, |q])

on T% M ; on the other hand, it agrees with the intrinsic Kobayashi metric on M, (Royden).

Moduli space can be presented as the quotient M, = 7,/ Mod, of Teichmiiller space
— its universal cover, a contractible bounded domain in C3Y~3 — by the action of the
mapping—class group of a surface.

One of the challenges of working with moduli space is that it is totally inhomogeneous:
for example, the symmetry group of 7, (as a complex manifold) is simply the discrete group
Mod, (for g > 2). One of Mirzakhani’s remarkable contributions is to show that, neverthe-
less, dynamics on moduli space displays many of the same rigidity properties as dynamics
on homogeneous spaces (see §4).

3. From simple geodesics to Witten’s conjecture

We begin with Mirzakhani’s work on simple geodesics. In the 1940s, Delsarte, Huber and
Selberg established the prime number theorem for hyperbolic surfaces, which states that the
number of (oriented, primitive) closed geodesics on X € M, with length < L satisfies

€L

(The usual prime number theorem says that the number of prime integers with 0 < logp < L
is asymptotic to e /L.)

The number of simple closed geodesics (X, L) behaves quite differently; it only has
polynomial growth, and in 2004 Mirzakhani proved that

o(X,L) ~ CxL%°,

In contrast to the prime number theorem, the right—hand side here depends on both the genus
and geometry of X.

Although the statement above involves only a single Riemann surface X, Mirzakhani’s
proof involves integration over moduli space and leads to a cascade of new results, including
a completely unexpected proof of the Witten’s conjecture. The latter conjecture, established
by Kontsevich in 1992, relates the intersection numbers on moduli space defined by

<Td1, - 7Tdn> = / Cl(El)dl .. 'Cl(En)d”

g,mn

to a power series solution to the KdV hierarchy (an infinite system of differential equations
satisfying the Virasoro relations). Here M, , is the Deligne-Mumford compactification
of the moduli space of Riemann surfaces X with marked points (p1,...,p,), and ¢1(E;)
denotes the first Chern class of the line bundle E; — M g,n With fibers T* X.

Mirzakhani’s investigation of o (X, L) also leads to formulas for the frequen01es of dif-
ferent topological types of simple closed curves on X; for example, a random simple curve
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on a surface of genus 2 has probability 1/7 of cutting X into two pieces of genus 1. These
frequencies are always rational numbers, and they depend only on g, not X.

At the core of these results is Mirzakhani’s novel, recursive calculation of the volume
of the moduli space of Riemann surfaces of genus g with n geodesic boundary components
with lengths (L1, ..., Ly). This volume is defined by

Mg n(L1seyLn)

for example, one can show that P, 1 (L) = (1/24)(L? +4n?). In general, P, , is a polyno-
mial whose coefficients (which lie in (7)) can be related to frequencies and characteristic
classes, yielding the results discussed above. Previously only the values of Py ,,(0,...,0)
were known. The proofs depend on intricate formulas for dissections of surfaces along hy-
perbolic geodesics; see [8], [6] and [7]. Mirzakhani has also studied the behavior of M as
g — o0; see [9], [11].

4. Complex geodesics in moduli space

We now turn to Mirzakhani’s work on moduli spaces and dynamics. Her contributions to
this area include a prime number theorem for closed geodesics in M, counting results for
orbits of Mod, on 7, and the classification of Mod,—invariant measures on the space of
measured laminations M /L,. But perhaps her most striking work — which we will present
here — is a version of Ratner’s theorem for moduli spaces.

Complex geodesics. It has been known for some time that the Teichmiiller geodesic flow
is ergodic (Masur, Veech), and hence almost every geodesic v C M, is dense. It is difficult,
however, to describe the behavior of every single geodesic ~y; already on a hyperbolic surface,
the closure of a geodesic can be a fractal cobweb, and matters only get worse in moduli space.

Teichmiiller showed that moduli space is also abundantly populated by complex geodesics,
these being holomorphic, isometric immersions

F:H— M,.

In fact there is a complex geodesic through every X € M, in every possible direction.

In principle, the closure of a complex geodesic might exhibit the same type of pathology
as a real geodesic. But in fact, the opposite is true. In a major breakthrough, Mirzakhani and
her coworkers have shown:

The closure of any complex geodesic is an algebraic subvariety V= F(H) C M,,.

This long sought—after rigidity theorem was known previously only for g = 2, with some
restrictions on F' [5]. (In the case of genus two, V' can be an isometrically immersed curve,
a Hilbert modular surface, or the whole space Ms.)

Dynamics over moduli space. The proof of this rigidity theorem involves the natural action
of SLy(R) on the sphere bundle
Q 1M g M g
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consisting of pairs (X, ¢) with ¢ € Q(X) and ||¢|| = 1.

To describe this action, consider a Riemann surface X = P/~ presented as the quotient
of a polygon P C C under isometric edge identifications between pairs of parallel sides.
Such identifications preserve the quadratic differential dz2|P, so a polygonal model for X
actually determines a pair (X, ¢) € QM with ||g|| = area(P). Conversely, every nonzero
quadratic differential (X, ¢) € QM can be presented in this form.

Since SLy(IR) acts linearly on R? = C, given A € SLa(R) we can form a new polygon
A(P) C C, and use the corresponding edge identifications to define

A (X, q) = (Xa,q4) = (A(P),dz?)/ ~ .
Note that [X 4] = [X]if A € SO3(R). Thus the map A — X 4 descends to give a map
F :H = SLy(R)/SO2(R) — M,

which is the complex geodesic generated by (X, q).
The proof that F'(H) C M, is an algebraic variety involves the following three theorems,
each of which a substantial work in its own right.

1. Measure classification (Eskin and Mirzakhani). Every ergodic, SLo(R)—invariant
probability measure on (Q1 X comes from Euclidean measure on a special complex—
analytic subvariety A C QM (The variety A is linear in period coordinates).

This is the deepest step in the proof; it uses a wide variety of techniques, including
conditional measures and a random walk argument inspired by the work of Benoist
and Quint [1].

2. Topological classification (Eskin, Mirzakhani and Mohammadi). The closure of any
SLo(R) orbit in Q1 X is given by AN QX for some special analytic subvariety A.

3. Algebraic structure (Filip). Any special analytic subvariety A is in fact an algebraic
subvariety of QM. Thus its projection to M, V' = F(H), is an algebraic subvariety
as well.

See [2], [3] and [4] for these developments.

Ramifications: Beyond homogeneous spaces. This collection of results reveals that the
theory of dynamics on homogeneous spaces, developed by Margulis, Ratner and others, has
a definite resonance in the highly inhomogeneous, but equally important, world of moduli
spaces.

The setting for homogeneous dynamics is the theory of Lie groups. Given a lattice I' in
a Lie group G, and a Lie subgroup H of Gz, one can consider the action

H~ G/T
by left multiplication, just as in the setting of moduli spaces we have considered the action
SL2 (R) > QfTQ/ Modg .

One of the most powerful results in homogeneous dynamics is Ratner’s theorem. It implies
that if H is generated by unipotent elements, then every orbit closure Hx C G/T is a special
submanifold — in fact, it has the form

Hz=Jz CGJT
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for some Lie subgroup J with H C J C G. A similar statement holds for invariant mea-
sures. Since SL2(R) is generated by unipotent elements (matrices such as (} ¢) and its
transpose), one might hope for a version of Ratner’s theorem to hold in moduli spaces. This
is what Mirzakhani’s work confirms.

Hodge theory versus geometry. For another perspective, recall that M, embeds into the
moduli space of Abelian varieties A, = £,/ Spy,(Z), a locally symmetric space amenable
to the methods of homogeneous dynamics. But the complex geodesics in M, become in-
homogeneous when mapped into A, so they cannot be analyzed by these methods. Mirza-
khani’s work shows that one can work effectively and directly with M, rather than with A,
by geometric analysis on Riemann surfaces themselves.

Ramifications: Billiards. The SLy(R) action on Q1M is also connected with the theory
of billiards in polygons — an elementary branch of dynamics in which difficult problems
abound.

Let 7' C C be a connected polygon with angles in 7Q. The behavior of billiard paths
in T' is closely related to the behavior of the complex geodesic generated by a quadratic
differential (X, ¢) obtained by ‘unfolding’ the table 7. L

Indeed, the first examples of complex geodesics such that V' = F(H) C M, is an
algebraic curve — i.e. the image of the complex geodesic is as small as possible — were
constructed by Veech in his analysis of billiards in regular polygons. In this case the stabilizer
of the corresponding quadratic differential is a lattice SL(.X, ¢) C SLo(RR), which serves as
the renormalization group for the original billiard flow.

The work of Mirzakhani has bearing on several open conjectures in the field of billiard
dynamics. For example, it provides progress on the open problem of showing that, for any
table 7', there is an algebraic number C'7- such that the number N (7', L) of types of primitive,
periodic billiard paths in 7" of length < L satisfies

CrL?

N(T L) ~ rarea(T)

Eskin and Mirzakhani have shown that an asymptotic equation of this form holds after aver-
aging over L, and that C'r can assume only countably many values.

5. Dynamics of earthquakes

We conclude by discussing Mirzakhani’s work on the earthquake flow, and a measurable
bridge between the symplectic and holomorphic aspects of M.

A classical construction of Fenchel and Nielsen associates to a simple closed geodesic
v7C X € Mgy andt € R anew Riemann surface

X, = twy (X) € M,

obtained by cutting X open along -y, twisting by length ¢ to the right, and then regluing. The
resulting twist path in M is periodic; if v has length L, then X, = X;.

On the other hand, one can also twist along limits of weighted simple geodesics, called
measured laminations. As shown by Thurston, the space of measured laminations forms a
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PL manifold ML, = R89-6 with a natural volume form, and the limiting twists, called
earthquakes, are defined for all time.

Earthquakes are a natural feature of the symplectic geometry of moduli space. While
they can be defined geometrically by fracturing and regluing X along the (possibly fractal)
support of A € ML, they also arise more conventionally as the Hamilton flows associated
to the functions Y — length(\,Y).

The earthquake flow lives on the bundle LM, of unit length laminations over M,.
Mirzakhani has shown that, with respect to the natural measure on L M:

Thurston’s earthquake flow is ergodic.

Prior to this result, the dynamics of earthquakes seemed completely opaque. Not a single
example of a dense earthquake path in M, was known; we can now assert that almost every
earthquake path is dense and uniformly distributed.

Bridging the symplectic/holomorphic divide. The proof of ergodicity of the earthquake
flow uses a remarkable bridge between the symplectic and holomorphic sides of moduli
space.

In more detail, recall that the horocycle flow on Q1M is defined by the action of the
1-parameter group N = {(} %) : t € R} C SLy(R). Drawing on ideas from Thurston’s
work on stretch maps, Mirzakhani shows there is a measure—preserving map 3 : LM, —
Q1M 4 which transports the earthquake flow to the horocycle flow. In other words, we have
a commutative diagram of the form

earthquake flow O LM, :ﬁ> Q1 Mgy O horocycle flow .

l |

My My

But the horocycle flow on Q1M is well-known to be ergodic (this is a formal corollary of
ergodicity of the geodesic flow [12, Thm. 2.4.2]), so the same is true for the earthquake flow
[10]. (It is an open problem to establish Ratner—type rigidity for these flows.)

Summary. Mirzakhani’s research has integrated, with great originality, a broad range of
mathematical disciplines — including algebraic and symplectic geometry, low—dimensional
topology, and random processes. Her breakthroughs have transformed our perspective on
moduli spaces, and led the way to mathematical frontiers where striking developments are
still unfolding.
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The work of Subhash Khot

Sanjeev Arora

Abstract. Subhash Khot, the winner of the 2014 Nevanlinna Prize, has brought new clarity to the study
of approximation algorithms for NP-hard problems, and opened new avenues of research. Several of
these concern his Unique Games Conjecture, which has led to optimal inapproximability results that
exactly characterize the approximability of the problem.

The P # NP conjecture implies that NP-hard problems have no efficient algorithms (where
efficient means the running time has to be polynomial in the input size). Since the class of
NP-hard problems includes thousands of practical problems we still need to devise ways to
handle them in practice. An approximation algorithm is an attractive possibility. Such an
algorithm finds, for every input, a solution of value at least o times the optimum. (If the
problem involves minimization instead of maximization, the approximation algorithm finds
a solution of cost at most « times the optimum.) The parameter « is called the approxima-
tion ratio. Designing such approximation algorithms has been a fertile research area in the
the past few decades. This study also injects new ideas into mathematics since it calls for
approximate characterizations of optimality.

1. Background: Approximation can be NP-hard:

Surprisingly, for a variety of problems it can be shown that achieving certain approximation
ratios is also NP-hard —i.e., no easier than exact optimization. To put it another way, a good
enough approximation algorithm can be used to solve the exact problem as well. Formally,
this is shown by giving a reduction from the exact optimization (which is NP-hard) to ap-
proximation. This field took off with the proof of the PCP Theorem in the early 1990s [5, 6],
which, after rapid development, resulted in a 1997 paper of Hastad [19] that proves so-called
threshold results: these exhibit an approximation ratio « for the problem such that an effi-
cient algorithm can achieve this ratio, and yet achieving approximation ratio a.+¢ is NP-hard,
where € = o(1). The existence of threshold results is somewhat unexpected: a priori, one
can imagine a continuous scale of difficulty, whereby achieving a ratio « is polynomial-time,
aratio (3 is NP-hard for some /3 > «, and ratios in («, 3) have computational complexity in-
termediate between P and NP-hard. By ruling out this intermediate complexity, a threshold
result gives a precise characterization of the approximability of the problem.

" Proceedings of the International Congress of Mathematicians, Seoul, 2014
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An example: Consider the solvability of a system of linear equations modulo 2, which is
of course testable in polynomial time via Gaussian elimination. But what if the system is
unsatisfiable? Can we give an approximation of some sort? A natural notion is to look for
an assignment that satisfies as many equations as possible. Computing the best such assign-
ment is NP-hard (which implies there is no maximization version of Gaussian elimination),
but there is a simple 1/2 approximation: just assign a random value to each variable. For
any constraint of the form z1 + x2 + - - - 2, = b (mod 2) the probability that the random as-
signment satisfies it is 1/2, so linearity of expectation implies that the fraction of equations
satisfied overall is 1/2. Since the best assignment can at most satisfy all the equations, we
conclude that the random assignment is a 1/2-approximation. Hastad showed that achieving
a 1/2 + e-approximation is NP-hard. This is a threshold result.

Though threshold results have strong appeal, unfortunately, only a few examples came
out of Hastad’s techniques.

2. Khot’s contributions

Khot made several seminal contributions to the study of inapproximability. First, in a se-
quence of papers he introduced new kinds of PCP Theorems tailored to proving inapprox-
imability results for a host of open problems: Shortest Lattice Vector [22], Hypergraph Col-
oring [31], Agnostic Learning of Halfspaces [17], Bipartite Clique [23] etc. As part of
this study he came up with a promising new direction for proving threshold results via the
Unique Games Conjecture. Through substantial work by him and others, this has had many
unexpected consequences, which we now describe.

Unique Games Conjecture: In 2004 Khot [21] introduced a problem called UNIQUE GAMES
and conjectured that computing a good approximation to it —in the sense described below—
is NP-hard. He supported this so-called Unique Games Conjecture (UGC) by pointing out
that the problem seems resistant to usual techniques of designing approximation algorithms
—specifically, linear programming (LP) and semidefinite programming (SDP), two popu-
lar techniques from convex optimization. He also showed that assuming his conjecture, he
could prove new threshold results for problems that had seemed resistant to Hastad’s tech-
niques. In subsequent work, often with coauthors, he greatly extended this research program,
which led to new threshold results for a variety of problems. These threshold results say that
computing an a-approximation to the problem (where « is problem-dependent) would give
a good polynomial-time approximation algorithm for the UNIQUE GAMES problem that refutes
the UGC.

The original statement of the UGC was notation-heavy but an important paper of Khot,
Kindler, Mossel, and O’Donnell [26] has yielded an equivalent statement that is cleaner. The
conjecture posits the NP-hardness of the following problem for every positive ¢ < 0.001:
given a system of linear equations modulo a prime p > p(e€), where each equation involves
only two variables, it is NP-hard to distinguish between the following two cases: (a) there
is an assignment to the variables that satisfies at least (1 — ¢€) fraction of the equations (b)
Every assignment satisfies fewer than 1/2 the equations.

In part (b), 1/2 can be replaced by any other constant less than 1. Furthermore, without
loss of generality the system can be assumed to consist only of equations of the type x; —
xj = ¢;; (mod p).
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As noted in our earlier example, the theory of NP-hardness rules out a robust polynomial-
time analog of Gaussian elimination, i.e., an efficient algorithm that finds approximate so-
lutions to linear systems that satisfy “almost all” or “most”equations. The UGC rules such
robust analogs even for linear systems with a very simple structure.

New threshold results and inapproximability results. The UGC led to a raft of thresh-
old results including for max cut [26, 37], VERTEX COVER [30] and CONSTRAINT SATISFACTION
PROBLEMS [38]. This confirmed Khot’s original insight that UGC should prove useful for
threshold results. More unexpectedly, the UGC also implies the best inapproximability re-
sults we know of for several other well-studied problems such as GROTHENDIECK CONSTANT,
SPARSEST CUT, GRAPH COLORING. Such results had proved difficult to obtain via traditional PCP
Theorems. See Khot [25] and Trevisan [40] for a survey.

Such results suggest that though the unique games problem may at first sight seem a sim-
ple deviation from classical linear algebra, in fact it lies solidly in combinatorial optimiza-
tion. The rich tapestry of its connections to classical problems of combinatorial optimization
have convinced most experts that to make further algorithmic progress on a host of open
problems, we have to first tackle (prove or disprove) the UGC.

2.1. Unexpected Impacts of UGC. As mentioned, the study of UGC has had many conse-
quences that were unexpected, including by Khot himself (personal communication).

Proof of optimality of specific approximation algorithms. A surprising aspect of the
above nonapproximability results—compared for example to results proved earlier using the
PCP Theorem or Hastad’s Theorem—is that they end up proving the optimality of a spe-
cific algorithm (usually, LP or SDP based) in the following very strong sense: any problem
instance where this specific algorithm doesn’t do well (i.e., for which the value of the so-
lution is indeed « factor from optimal) can be used in the reduction from UNIQUE GAMES to
the problem. At first sight such an implication seems to make sense since a threshold re-
sult ought to give some insight into the optimum algorithm—after all, it implies that the
optimum algorithm does no better than an o approximation on some instances. But this
implication is actually in the reverse direction: it turns a single a bad instance for a specific
algorithm into a hardness result (implying that no other algorithm works) which is unprece-
dented in computational complexity. This phenomenon was strongly suggested in the works
of Khot et al. [26] and Khot-O’Donnell [29], but got its clearest explanation in the work of
Raghavendra [38], which yielded threshold results for the entire class of constraint satisfac-
tion problems (CSPs). Raghavendra shows the existence of a problem-specific threshold «
without giving any finite algorithm to compute it. (The explicit value of this « is known
for a handful of problems.) He does this by showing, as hinted above, that any specific in-
stance where the SDP approximation is worse than « can be used as a gadget in a reduction
that proves that every algorithm (not only SDP) that does better than a 4+ ¢ would yield a
polynomial-time algorithm for uNIQUE GaMEs that refutes the UGC.

Let’s explain this mysterious connnection in more detail for a concrete problem, MAX cuT
(given a graph, find a partition of vertices into two sets so as to maximise the number of edges
going between them), where the approximation threshold is known to be 0.878... This ap-
proximation ratio is achieved by an SDP-based algorithm of Goemans and Williamson [18].
We know this computes no better than a 0.878... approximation, thanks to Feige and Schecht-
man [16]. Their counterexample is a geometric graph: it contains vertices that correspond
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to a dense set of points in R* for sufficiently large constant k& and edges corresponding to
vertex pairs u, v’ whose corresponding vectors make an angle of about 138 degrees.

In the paper [26] this counterexample graph is turned into an actual reduction from UNIQUE
GAMES to MaxcuUT that shows that any efficient algorithm that computes better than a 0.878+¢-
approximation to max cut will falsify the UGC.

New results in analysis of boolean functions and isoperimetry. The statements in the
previous paragraph—which would have seemed miraculous and unproveable to any expert
10 years ago—rest upon some new mathematical advances. To see the need for these, one
must delve into how one reduces UNIQUE GAMES to MAX cUT. If the UNIQUE GAMES instance
consists of equations mod p then we produce an instance of Max cur, such that for each
variable in the UNIQUE GAMES instance the new graph contains a copy of the boolean hypercube
{—1, 1}?. If the UNIQUE GAMEs instance included the equation say x —y = 11 mod p, then we
connect in the new graph any pair u, v’ where u is in the hypercube for x, and v’ is a vertex
in y’s hypercube, and they make an angle equal to about 138 degrees once the coordinates
of u' are shifted by 11 places modp. (This is a rough description; we are omitting details.)
Thus the algebraic structure of the linear system is encoded in the edge interconnections of
the new graph, and furthermore, this encoding uses a graph related to the hard instance for
MaAX cuT described earlier.

To prove the correctness of this reduction, one has to prove that the ability to approx-
imate Max cuT to a factor better than 0.878.. 4+ € allows one to solve the original UNIQUE
GAMES instance better than allowed by the UGC. The crux of this proof is a characteriza-
tion of high-capacity cuts (i.e., those where the number of cut edges is close to optimal) in
the above hypercube graph. Such a characterization requires fourier analysis on boolean
hypercube (surveyed by Kalai and Safra [20]). The new insight of [26] was a robust charac-
terization of the maximum cuts of the above version of the boolean hypercube, encapsulated
in their majority is stablest conjecture. The cut corresponding to the MAJORITY function
(namely, one that is 1 iff a majority of the input coordinates are 1) have capacity proportional
to 0.878. Any cut with significantly higher capacity must correspond to a junta, i.e. largely
determined by O(1) coordinates. They showed that this robust characterization, if true, im-
plies that near-optimum cuts in the overall graph can be “decoded” to an assignment by using
one of these junta coordinates for the hypercube as the value for the corresponding variable
in the UNIQUE GAMES instance. Furthermore, this assignment satisfies a lot of equations in the
UNIQUE GAMES instance.

The majority is stablest conjecture was essentially proved shortly thereafter by Mossel
et al. [37]. In the ensuing years the above template of designing reductions has been used in
other papers and has also led to more results in analysis of boolean functions and isoperime-
try (see Khot’s survey [24]).

New nonembeddability results for geometric embeddings of metric spaces. How well
does a metric space (X,d;) resemble a metric space (Y,d2)? A natural measure is the
minimum distortion C' > 1 for which there exists a map f: X — Y and a scaling constant
~ > 0 such that

ydi (7, y) < dao(f(2), f(y)) < Crydi(a,y).

Starting with the work of Linial, London, and Rabinovich [36], characterizing such distor-
tion for interesting pairs of metric spaces has become an important research area due to its
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algorithmic applications. An example of such rich applications was the Goemans-Linial
conjecture, which stated that the lowest distortion for embedding negative type metrics into
¢11s O(1). If true, this conjecture would yield an approximation ratio O(1) for the SPARSEST
cut problem in graphs via SDP. At the time that conjecture was made, the best upperbound
on distortion was O(log n), which follows from a much more general bound of Bourgain [9]
for embedding any n-point metric space into 5. In 2005 Arora et al. [4] made progress
on the conjecture by improving the upper bound to O(+/log nloglogn). This raised hopes
that the Goemans-Linial conjecture may be true, but Khot and Vishnoi [32] dashed such
hopes by disproving the conjecture. Note a disproof requires showing the nonexistence of
an embedding with O(1) distortion, for which very few general techniques are known. Khot
and Vishnoi’s construction uses the boolean hypercube and they prove the nonexistence of
a suitable embedding via fourier analysis similar to the one sketched above. This construc-
tion was inspired by the fact that the Goemans-Linial conjecture had been shown to violate
UGC [10, 32], so intuitions about why UNIQUE GaMEs is hard must yield a counterexample to
the Goemans-Linial conjecture. Their construction is beautiful and its analysis uses fourier
analysis of boolean functions analogous to the one sketched above. The techniques were ex-
tended by Khot and Naor [28] to prove nonembeddability results for other metric spaces such
as edit-distance or Levenshtein metrics used in biology and other fields. More recently the
works of Lee and Naor [35], and Cheeger, Kleiner, and Naor [11, 12] have greatly improved
the Khot-Vishnoi result for negative type metrics.

New flowering of higher order spectral graph theory. Not everyone is convinced about
the truth of the UGC, leading to some serious attempts to disprove it. Arora, Khot, Kolla,
Steurer, Tulsiani and Vishnoi [3] showed that the UNIQUE GAMES problem is easy for random
and random-like graphs. This suggested that finding hard instances of the problem is non-
trivial. Then Arora, Barak and Steurer [2] showed that the UNIQUE GAMES problem has very
subexponential algorithms, running in time exp(n°). Though this doesn’t disprove the UGC,
it does suggest that the problem has some structure not shared by other NP-hard problems
(as far as we know). This structure involves the higher eigenvalues of the connection graph
associated with the uniQuE—this is the graph that contains a vertex for each variable, and
an edge corresponding to each pair of variables that are involved in a linear constraint. This
fresh insight has since led to a host of other results in spectral graph theory, including ver-
sions of higher-order Cheeger-type inequalities for graphs(see [34] and its bibliography), and
ingenious constructions of families of graphs [7] showing the near-tightness of the analysis
of the algorithm of [2], which means that UGC has likely survived this attack and lives on.

Progress on Kelvin’s Problem in ®¢: 1In the 19th century Lord Kelvin posed the problem
of determinining the minimum surface area of a surface A in R> such that A + Z2 tiles all
of ®3. This problem is still open. The problem has also been studied for R¢ for d > 3,
where it is even unclear how the area of such a A should grow with d. Since the unit cube
gives a suitable tiling, its surface area of 2d is an upper bound. Furthermore, since A has
volume 1 its area is at least that of the unit sphere, which is Q(+/d). Inspired by a failed
attempt to prove the UGC via a technique called parallel repetition, Kindler, O’Donnell,
Rao, Wigderson [33] exhibited a suitable A of area O(v/d), which matches the lower bound
up to constant factors. This was the first major advance on Kelvin’s problem in <.
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3. Current status of UGC

It is only fair to end this remarkable story with some perspective and a report on our current
beliefs about the UGC.

Some researchers suspect a disproof of the UGC could come out of an algorithm using
the SDP hierarchies of Lasserre and Parillo, which can be seen as feasible versions of Sum of
Squares proof systems (inspired, as the name suggests, by work on Hilbert’s 17th problem).
These hierarchies are known to be at least as powerful as the higher-order spectral method
of [2]; see Barak and Steurer’s survey [8]. A better algorithm for ynique games would also
imply new algorithms for the SMALL-SET EXPANSION problem on graphs [39].

Khot continues to work on proving the UGC, and has made partial progress in joint work
with Moshkovitz [27].

Very likely, only one of these two directions will succeed, but it is also conceivable
that they meet in the middle, and the UNIQUE GaMEs problem has intermediate complexity
—i.e., unsolvable in polynomial time yet not NP-hard. (The author finds this outcome most
plausible.) In this case, all the above inapproximability results would be still valid and useful
—- since the approximation problems in question have been shown at least as hard as UNIQUE
GaMEs, we would conclude that they are also unsolvable in polynomial time. But whether
they are NP-hard would become an open question.
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Abstract. In this paper we briefly present some of Stanley Osher’s contributions in the areas of high
resolution shock capturing methods, level set methods, partial differential equation (PDE) based meth-
ods in computer vision and image processing, and optimization. His numerical analysis contributions,
including the Engquist-Osher scheme, total variation diminishing (TVD) schemes, entropy conditions,
essentially non-oscillatory (ENO) and weighted ENO (WENO) schemes and numerical schemes for
Hamilton-Jacobi type equations have revolutionized the field. His level set contributions include new
level set calculus, novel numerical techniques, fluids and materials modeling, variational approaches,
high codimension motion analysis, geometric optics, and the computation of discontinuous solutions to
Hamilton-Jacobi equations. As we will further detail in this paper, the level set method, together with
his total variation contributions, have been extremely influential in computer vision, image processing,
and computer graphics. On top of that, such new methods have motivated some of the most funda-
mental studies in the theory of PDEs in recent years, completing the picture of applied mathematics
inspiring pure mathematics. On optimization, he introduced Bregman algorithms and applied them to
problems in a variety of contexts such as image processing, compressive sensing, signal processing,
and machine learning. Finally, we will comment on Osher’s entrepreneurship and how he brought his
mathematics to industry.
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1. Introduction

Shock capturing numerical methods have seen revolutionary developments over the past 40
years. These are methods which deal with the numerical solutions of partial differential
equations (PDEs) with discontinuous solutions. Such PDEs include nonlinear hyperbolic
systems such as Euler equations of compressible gas dynamics. The problems are difficult
because traditional linear numerical methods are either too diffusive, or give unphysical os-
cillations near the discontinuities which can lead to nonlinear instabilities. The class of high
resolution numerical methods overcomes this difficulty to a large extent.

Level set methods have seen tremendously expanded applications in many areas over the
past 25 years. This has been made possible by the flexibility of the level set formulation in
dealing with dynamic evolutions and topological changes of curves and surfaces, and by the
mathematical theory and numerical tools developed in the past 25 years in studying these
methods.
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PDEs based methods in computer vision, image processing, and computer graphics have
been actively studied in the past few years. Again, the rapid development of mathematical
models, solution tools such as level set methods, and high resolution numerical schemes has
made PDEs based methods one of the major tools in computer vision and image processing.

A large number of inverse problems such as those arising in image processing, com-
pressive sensing, signal processing, and machine learning are formulated as optimization
problems typically with nonsmooth objective functions, dense data, and solutions that are
sparse in a certain sense. The recent advances in algorithms for such problems have led to a
large number of successful applications across many areas of science and engineering.

Stanley Osher has made influential contributions to all these fields. A distinctive feature
of his research is that he emphasizes both fundamental problems in algorithm design and
analysis, and practical considerations for the applications of the algorithms. Osher’s work
has been highly influential, an indication of this being the citation statistics. For example,
according to the Web of Science (ISI) database, which lists papers in selected journals of
high impact, the 235 papers of Osher listed there have been collectively cited 28,016 times
(as of June 13, 2014, the same below). Among these, 46 papers have been cited over 100
times each. The h-index of Osher is 64. The top five highly cited papers of Osher include
the paper of Osher and Sethian [123] on level set methods, cited 4,896 times; the paper of
Rudin, Osher and Fatemi [132] on total variation based noise removal, cited 3,151 times; the
paper of Sussman, Smereka and Osher [142] on level set approach for two-phase flows, cited
1,568 times; the paper of Shu and Osher [138] on finite difference essentially non-oscillatory
(ENO) schemes and total variation diminishing (TVD) Runge-Kutta methods, cited 1,447
times, and the paper of Harten, Engquist, Osher and Chakravarthy [66] on ENO schemes,
cited 1,183 times. The more recent paper by Goldstein and Osher [56] on split Bregman
algorithms has already been cited 517 times. Thomson Reuters has chosen this paper as a
Hot Paper in Computer Science in July 2011. Recently (in 2014) Thompson-Reuters listed
the most highly cited authors of significant papers published between 2002-2012. Osher was
ranked in the top 1% in both Mathematics and Computer Science.

Before ending this section, we remark that early in his career, Osher did a lot of re-
search on the study of linear stability for finite difference and other numerical methods for
hyperbolic, parabolic, and other types of PDEs, as well as well-posedness for those PDEs,
especially for initial-boundary value problems. This includes for example the work in [104]
which followed up on a seminal paper of Kreiss [80] and used Toeplitz matrices in an elegant
way to derive what was later called the GKS condition [61], and the work in [105] where sta-
bility conditions for initial-boundary value problems for parabolic equations were obtained,
generalizing the work of Varah [146]. In [93], Majda and Osher extended Kreiss’ well
posedness condition for initial-boundary value problems for hyperbolic equations to those
with uniformly characteristic boundaries. In [92], Majda and Osher analyzed the reflection
of singularities at the boundary for nongrazing reflection for hyperbolic equations. In [94],
Majda and Osher showed how error propagates globally within the domain of dependence
for numerical approximations to coupled hyperbolic systems. The paper [91] by Majda, Mc-
Donough and Osher was the first to recommend the use of smooth cutoff functions on the
frequency domain for spectral methods to confine errors to local regions near propagating
discontinuities and for stability. Sharp estimates on the region of propagation were obtained.
These cutoffs are now widely used in the literature and the paper is still frequently cited,
71 times total (Web of Science), including many in recent years. Finally, in [35], Engquist,
Osher and Zhong obtained wavelet based fast algorithms for linear hyperbolic and parabolic
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equations, and in [32, 41, 42], Engquist, Fatemi and Osher considered numerical methods
for high frequency asymptotics for geometric optics. These might be considered nonlinear,
since the eikonal equation is. We shall not review in detail these early works of Osher on
linear methods in the remaining part of this paper.

2. High resolution shock capturing methods

Shock capturing methods refer to a class of numerical methods for solving problems con-
taining discontinuities (shocks, contact discontinuities or other discontinuities), which can
automatically “capture” these discontinuities without special effort to track them. A typical
situation would be the solution of hyperbolic conservation laws, such as the Euler equations
for inviscid fluid flow dynamics. Almost all shock capturing schemes, including those devel-
oped by Osher and his collaborators, are of the conservation form. However, there are certain
situations where a relaxation on the strict conservation would be beneficial and would not
hurt the convergence to weak solutions under suitable additional assumptions. The work
of Osher and Chakravarthy [111] on the “weak conservation form” for schemes on general
curvilinear coordinates, and the work of Fedkiw et al. on “ghost fluid” method [45], which
treats the fluid interface in a non-conservative fashion, are such examples.

2.1. First order monotone schemes. In the late 70s and early 80s, designing good first
order monotone schemes for solving scalar conservation laws which give monotone shock
transitions and can be proven to converge to the physically relevant weak solutions (e.g.
Crandall and Majda [30]), with suitable generalization to systems, was an active research
area. The Godunov scheme is a scheme with the least numerical dissipation among first
order monotone schemes, however it is costly to evaluate for complex flux functions, and its
flux is only Lipschitz continuous but not smoother. The Lax-Friedrichs scheme is easy to
evaluate and very smooth but is excessively dissipative.

In [33] and [34], Engquist and Osher designed monotone schemes for the transonic
potential equations and for general scalar conservation laws, which are relatively easy to
evaluate, are C'' smooth, and have a small dissipation almost comparable with Godunov
schemes. These Engquist-Osher schemes soon became very popular, especially for implicit
type methods and steady state calculations, for which the extra smoothness of the numerical
flux helped a lot. Similar schemes for Hamilton-Jacobi equations were given by Osher and
Sethian [123].

Later, Osher [106] and Osher and Solomon [125] generalized these schemes to systems
of conservation laws, obtaining what was later referred to as the Osher scheme in the lit-
erature. The Osher scheme for systems has a closed form formula (for Euler equations of
gas dynamics and many other systems), hence no iterations are needed, unlike the Godunov
scheme. It is smoother (C'!) than the Godunov scheme and also has smaller dissipation than
the simpler Lax-Friedrichs scheme. Applications of the Osher scheme to the Euler equations
can be found in Chakravarthy and Osher [17].

In [121], Osher and Sanders designed a conservative procedure to handle locally varying
time and space grids for first order monotone schemes, and proved convergence to entropy
solutions for such schemes. These ideas have been used later by Berger and Colella on their
adaptive methods, e.g. [7].
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2.2. High resolution TVD schemes. First order monotone schemes are certainly nice in
their stability and convergence to the correct entropy solutions, however they are too diffusive
for most applications. One would need to use many grid points to get a reasonable resolution,
which seriously restricts their usefulness for multidimensional simulations.

In the 70s and early and mid 80s, the so-called “high resolution” schemes, i.e. those
schemes which are at least second order accurate and are stable when shocks appear, were
developed. These started with the earlier work of, e.g., the flux-corrected transport (FCT)
methods of Boris and Book [8], and the monotonic upstream-centered scheme for conserva-
tion laws (MUSCL) of van Leer [145], and moved to Harten’s TVD schemes [65]. Osher
and his collaborators did extensive research on TVD schemes, and contributed significantly
towards the analysis of such methods, during this period. These include the schemes devel-
oped and analyzed in [108, 109, 112], and the very high order (measured by truncation errors
in smooth, monotone regions) TVD schemes in [113].

2.3. Entropy conditions. The entropy condition is an important feature for conservation
laws. Because weak solutions are not unique, entropy conditions are needed to single out a
unique, physically relevant solution. Osher and his collaborators did extensive research on
designing and analyzing entropy condition satisfying numerical methods for conservation
laws.

In [95], Majda and Osher proved that the traditional second order Lax-Wendroff scheme,
although linearly stable, is not L? stable when solving nonlinear conservation laws with
discontinuous solutions. They then provided a recipe of adding artificial viscosities, such that
the scheme maintained second order accuracy yet could be proven convergent to the entropy
solution. This scheme is however oscillatory, hence not very practical in applications.

In [108], Osher provided a general framework to study systematically entropy conditions
for numerical schemes. This was followed by the work of Osher and Chakravarthy [112] in
the study of high resolution schemes and entropy conditions, the work of Osher [109] on
generalized MUSCL schemes, the work of Osher and Tadmor [126] on entropy condition
and convergence of high resolution schemes, and the work of Brenier and Osher [10] on
entropy condition satisfying “maxmod” second order schemes. Entropy condition satisfying
approximations for the full potential equation of transonic flow were given in [117].

2.4. ENO and WENO schemes. In the mid 80s it was realized that TVD schemes, despite
their excellent stability and high resolution properties, have serious deficiency in that they
degenerate to first order at smooth extrema of the solution [112]. Thus, even though TVD
schemes can be designed to any order of accuracy in smooth monotone regions, see for
example the schemes up to 13th order accurate in [113], practical TVD schemes are referred
to as second order schemes since the global L' errors of any TVD scheme can only be second
order, even for smooth but non-monotone solutions.

In [67], Harten and Osher relaxed the TVD restriction, and replaced it by a uniformly
non-oscillatory (UNO) restriction, in that the total number of numerical extrema does not
increase and their amplitudes could be allowed to increase slightly. The UNO scheme in
[67] is uniformly second order accurate including at smooth extrema. However, it was soon
realized that the UNO restriction was still too strong and excluded schemes of higher than
second order. Thus, the concept of ENO, or essentially non-oscillatory, schemes was first
given by Harten, Engquist, Osher and Chakravarthy [66] in 1987. The clever idea is that of
an adaptive stencil, which is chosen based on the local smoothness of the solution, measured
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by the Newton divided differences of the numerical solution. Such schemes allow both
the number of numerical extrema and their amplitudes to increase, however such additional
oscillations are controlled on the level of truncation errors even if the solution is not smooth.
ENO schemes have been extremely successful in applications, because they are simple in
concept, allow arbitrary orders of accuracy, and generate sharp, monotone (to the eye) shock
transitions together with high order accuracy in smooth regions of the solution including at
the extrema.

The original ENO schemes in [66] are in the cell averaged form, namely they are finite
volume schemes approximating an integrated version of the PDE. Finite volume schemes
have the advantage of easy handling of non-uniform meshes and general geometry in multi-
space dimensions, however they are extremely costly in multi-space dimensions, when the
order of accuracy is higher than two. Later, Shu and Osher [138, 139] developed conservative
finite difference based ENO schemes using point values of the numerical solution, which are
more efficient in multi-dimensions.

Also in [138], a class of nonlinearly stable high order Runge-Kutta time discretization
methods is developed. Termed TVD time discretizations, these Runge-Kutta methods have
become very popular and have been used in many schemes. See, e.g. [57] for a review of
such methods.

Analysis of ENO schemes was given in Harten et al. [68]. Applications of ENO schemes
to two and three dimensional compressible flows, including turbulence and shear flow calcu-
lations, were given in Shu et al. [140]. Triangle based second order non-oscillatory schemes
were given in Durlofsky, Engquist and Osher [31]. Non-oscillatory self-similar maximum
principle satisfying high order shock capturing schemes were given in Liu and Osher [88].
Efficient characteristic projection in upwind difference schemes was given in Fedkiw, Mer-
riman and Osher [48]. Convex ENO schemes without using field-by-field projection were
given in Liu and Osher [89]. Chemically reactive flows were simulated in Ton et al. [143]
and in Fedkiw, Merriman and Osher [47].

The popularity of ENO schemes is demonstrated by the citation statistics: among Os-
her’s five most highly cited papers mentioned in the introduction, two of them are about
ENO schemes, i.e. [138] and [66]. The top cited paper of Osher [123], is on level set meth-
ods but also uses second order ENO schemes for the numerical solutions and is where the
construction of ENO schemes for general Hamilton-Jacobi equations began.

An improvement of ENO scheme is the WENO (weighted ENO) scheme, which was
first developed by Liu, Osher and Chan [90]. WENO improves upon ENO in robustness,
better smoothness of fluxes, better steady state convergence, better provable convergence
properties, and more efficiency.

2.5. Hamilton-Jacobi equations. We will now move to the description of Osher’s work in
designing schemes for solving Hamilton-Jacobi equations. Further discussions on this topic
will also be given in the next section on level set methods.

Viscosity solutions for Hamilton-Jacobi equations were first proposed by Crandall and
Lions [28] in order to pick out the physically relevant solution. In addition, monotone first
order accurate numerical methods were first proven to converge by Crandall and Lions in
[29]. In [107], Osher gave explicit formulas for solutions to the Riemann problems for non-
convex conservation laws and Hamilton-Jacobi equations. See also the multidimensional
Riemann solver of Bardi and Osher [4]. These are important for numerical schemes such as
Godunov schemes using such Riemann solvers as building blocks.
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In [123], Osher and Sethian, in the context of discussing level set methods, provided a
first order monotone scheme (an adaptation of the Engquist-Osher scheme [34]) and a second
order ENO scheme based on the framework of [138] and [139]. In [124], Osher and Shu
developed high order ENO schemes for solving Hamilton-Jacobi equations, using various
building blocks including the Lax-Friedrichs flux, the local Lax-Friedrichs flux, and the Roe
flux with an entropy fix. In [81], Lafon and Osher developed high order two dimensional
triangle based non-oscillatory schemes for solving Hamilton-Jacobi equations.

More recently, Osher and his collaborators have studied the fast sweeping methods for
efficiently solving steady state Hamilton-Jacobi equations. In [144], Tsai et el. developed
fast sweeping method for Godunov-type first order schemes for a class of Hamilton-Jacobi
equations, which converges very fast for computing steady state solutions. In [74], Kao,
Osher and Qian developed fast sweeping method for Lax-Friedrichs type schemes. In [76],
Kao, Osher and Tsai developed fast sweeping method based on Legendre transform of the
numerical Hamiltonian using an explicit formula. Finally, in [75], Kao, Osher and Qian
generalized the previous techniques to triangulated meshes.

2.6. Additional topics. Even though it does not exactly fit the title of this section, the work
of Lagnado and Osher [82, 83] is worth mentioning. These papers concern solving an inverse
problem to compute the volatility in the European options Black-Scholes model, and they
were the first to use PDE techniques to solve this inverse problem, via gradient descent
and Tychonoff regularization, allowing the volatility, which is a coefficient in a parabolic
equation, to be a function of the independent variables, stock price and time. These papers
have attracted a lot of attention after their publication.

Also worth mentioning is the work of Fatemi, Jerome and Osher [43] on using ENO
schemes to solve the hydrodynamic models of semiconductor device simulations. This was
the first work of using high order shock capturing methods in semiconductor device simula-
tions, and has led to many further developments later in the literature.

3. Level set methods

Osher’s most cited paper is [123], which introduced the level set method for dynamic implicit
surfaces. The key idea was the Hamilton-Jacobi approach to numerical solutions of a time
dependent equation for a moving implicit surface. In a series of papers that followed [123],
Osher and coworkers introduced a level set calculus for the practical treatment of discretized
implicit surfaces defined by time evolving partial differential equations. We summarize some
of the main points below, but refer the interested reader to the review article of Osher and
Fedkiw [115] and the references within. In addition, we refer the reader to the book [116]
by Osher and Fedkiw.

Suppose that the surface is implicitly defined as the zero isocontour of a function ¢. Then
the local sign of ¢ can be used to define the inside and outside regions of the domain. Im-
plicit functions make simple Boolean operations easy to apply. The gradient of the implicit
function is perpendicular to the isocontours of ¢ pointing in the direction of increasing ¢,
and therefore can be used to define the normal to the interface. Similarly the mean curvature
of the interface is defined as the divergence of the normal. One can readily define the charac-
teristic function, define the Heaviside functions, compute volume integrals, define the Dirac
delta function as the directional derivative of the Heaviside function in the normal direction,
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compute surface integrals, etc.

A key factor for the success of level set methods is the use of high order high resolution
type schemes reviewed in section 2, for the conservation laws and Hamilton-Jacobi equa-
tions. These include in particular the ENO and WENO schemes. Stanley Osher has been
the leader in this area, and the level set method would not be what it is today without the
creative and vigorous approach to the numerical analysis aspect of the method that he has
shown. Implicit surface models are not new by any means, but robust and rigorous numerical
methods that make them extremely powerful are new and are due primarily to Osher’s ideas
and leadership.

Even with these high order accurate approaches to solving the Hamilton-Jacobi equa-
tions, one can obtain surprisingly inaccurate results when the level set function solution
becomes too steep or too flat, i.e. discontinuous or poorly conditioned. In [25], Chopp con-
sidered an application where certain regions of the flow had level sets piling up on each other
increasing the local gradient, and other regions of the flow had level sets that separated from
each other flattening out ¢. In order to reduce the numerical errors caused by both the steep-
ing and flattening effects, [25] introduced the notion that one should reinitialize the level
set function periodically throughout the calculation. In [131], Rouy and Tourin proposed a
numerical method for the shape from shading problem that was later generalized into the
modern day reinitialization equation of Sussman, Smereka and Osher [142]. Unfortunately,
this straightforward reinitialization routine can be slow, especially if it needs to be done ev-
ery time step, although [142] noted that just a few time iterations are usually needed. In order
to obtain reasonable run times, [25] restricted the calculations of the interface motion and the
reinitialization to a small band of points near the ¢ = 0 isocontour. This idea of computing
solutions to Hamilton-Jacobi equations local to the interface has been studied further in the
work of Adalsteinsson and Sethian [1] and Peng et al. [127].

3.1. Fluids and materials. Chronologically, the first attempt to use the level set method
for flows involving external physics was in the area of two phase inviscid compressible flow.
Mulder, Osher and Sethian [100] appended the level set equation to the standard equations
for one phase compressible flow. The level set was advected using the velocity of the com-
pressible flow field so that the zero level set of ¢ corresponds to particle velocities and can
be used to track an interface separating two different compressible fluids. Later, Karni [77]
pointed out that such method suffered from spurious oscillations at the interface and pro-
posed a non-conservative fix. A more robust fix was later proposed by Fedkiw et al. [45]
by creating a set of fictitious ghost cells on each side of the interface, and populating these
ghost cells with a specially chosen ghost fluid that implicitly captures the Rankine-Hugoniot
jump conditions across the interface. This method was referred to as the ghost fluid method.
Later extensions included the treatment of shocks, detonations and deflagrations [46], inter-
faces separating compressible flows from incompressible flows [15], and interfaces separat-
ing Eulerian discretizations of fluids from Lagrangian discretizations of solids [44]. More
recently, both [103] and [54] have proposed fully conservative versions of this ghost fluid
method. Moreover, the method proposed in [103] is easy to implement in multiple spatial
dimensions, works for contacts, shocks, detonations and deflagrations, and has been shown
to prevent the one grid cell per time step spurious wave instabilities (identified by [26]) that
occur in stiff under-resolved detonation waves.

The earliest real success in the coupling of the level set method to problems involving
external physics came in computing two-phase incompressible flow, in particular see Suss-
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man, Smereka and Osher [142] and Chang et al. [20]. The Navier-Stokes equations were
used to model the fluids on both sides of the interface. Generally, the fluids will have differ-
ent densities and viscosities and the presence of surface tension forces causes the pressure
to be discontinuous across the interface as well. Although these early works smeared out
these discontinuous quantities across the interface, this was later remedied by Kang, Fedkiw
and Liu [73] using the methods developed by Liu, Fedkiw and Kang [87]. Later, Nguyen,
Fedkiw and Kang [102] extended these techniques to treat low speed flames.

A level set regularization procedure was proposed in Harabetian and Osher [63] for ill-
posed problems such as vortex motion in incompressible flows. This regularization, cou-
pled with non-oscillatory numerical methods for the resulting level set equations, provides
a regularization which is topological and is automatically accomplished through the use of
numerical schemes whose viscosity shrinks to zero with the grid size. There is no need for
explicit filtering, even when singularities appear in the solution. The method also has the
advantage of automatically allowing topological changes such as merging of surfaces.

An application of this procedure for incompressible vortex motion was given in Hara-
betian, Osher and Shu [64]. An Eulerian, fixed grid, approach to solve the motion of an
incompressible fluid, in two and three dimensions, in which the vorticity is concentrated on
a lower dimensional set, is provided. The numerical variables for the level sets are actually
smooth, thus allowing for accurate numerical simulations. Numerical examples including
two and three dimensional vortex sheets, two dimensional vortex dipole sheets and point
vortices, are given.

Level set type analysis was also used to obtain rigorous results identifying the Wulff
minimizing shape and the evolution of growing crystals moving with normal velocity defined
as a given positive function of the normal direction, thus verifying a conjecture of Gross.
Moreover it was also shown that the Wulff energy decreases monotonically under such an
evolution to its minimum [119]. A spinoff came in [128] where it was proven that any
two dimensional Wulff shape can be interpreted as the solution a corresponding Riemann
problem for a scalar conservation law — jumps in the direction of the normal correspond to
contact discontinuities, smoothly varying thin flat faces correspond to rarefaction curves and
planar facets correspond to constant states. The work in [119] also motivated the derivation
of a new class of isoperimetric inequalities for convex plane curves [59].

Molecular beam epitaxy (MBE) is a method for growing extremely thin films of material.
A new continuum model for the epitaxial growth of thin films has been developed. This new
island dynamics model has been designed to capture the larger length scale features. The key
idea involves the level set based motion of islands of various integer levels — see for example
[21, 62, 99].

3.2. Other applications. In [154] a variational level set approach was developed. Key
ideas were the use of a single level set function for each phase, the gradient projection method
of [132] to prevent overlap and / or vacuum, and the liberal use of the level set calculus as
described earlier. See also [155], [122] and [18]. Typically level set methods are used to
model codimension one objects, e.g. curves in R? or surfaces in R . In [11], this technology
was extended to treat codimension two objects, e.g. curves in R3, using the intersection of
the zero level sets of two functions. See also [24]. In [114] a level set based approach
for ray tracing and for the construction of wavefronts in geometric optics was introduced.
The approach automatically handles the multivalued solutions that appear and automatically
resolves the wavefronts. The key idea, first introduced in [36] in a “segment projection”
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(rather than a level set) approach, is to use the linear Liouville equation in twice as many
independent variables and solve in this higher dimensional space via the idea introduced
in [11]. See also [141] and [134]. Level set methods have been applied to a variety of
other problems as well. They have been used to compute solutions to Stefan problems to
study crystal growth [22, 78], to simulate water and fire for computer graphics applications
[37, 50, 101], and to reconstruct three dimensional models from arbitrary unorganized data
points [156, 157].

4. Image processing and computer vision

The use of partial differential equations (PDE’s) and curvature driven flows in image pro-
cessing and computer vision has become an active research topic in the past two decades,
thanks in part to the pioneering contributions of Stanley Osher on level set and total varia-
tion (TV) methods. The basic idea is to deform a given curve, surface, or image with a PDE,
and obtain the desired result as the solution of this PDE. Sometimes, as in the case of color
images, a system of coupled PDEs is used. The art behind this technique is in the design,
analysis, and numerical implementation of these PDEs. The attributes of PDEs in image
processing are discussed for example in [16, 136]. In [2] the authors prove that a few basic
image processing principles naturally lead to PDEs.

When considering PDEs for image processing and numerical implementation, we are
dealing with derivatives of non-smooth signals, and the right framework must be defined,
connecting this with Osher’s contributions in shock capturing schemes and numerical analy-
sis in general. As introduced in [2, 3], the theory of viscosity solutions provides a framework
for rigorously employing a partial differential formalism, in spite of the fact that the image
may not be smooth enough to give a classical definition to the derivatives involved in the
PDE. These works also showed with a very elegant axiomatic approach the importance of
PDEs in image processing. This is also the framework that brings rigorousness to the level
set methods developed by Osher and collaborators.

Ideas on the use of PDEs in image processing go back at least to Gabor [51] and to Jain
[72]. The field took off thanks to the independent works of Koenderink [79] and Witkin
[148]. These researchers rigorously introduced the notion of scale-space, that is, the repre-
sentation of images simultaneously at multiple scales. In their work, the multi-scale image
representation is obtained by Gaussian filtering. This is equivalent to deforming the original
image via the classical heat equation, obtaining in this way an isotropic diffusion flow. In
the late 80s, Hummel [69] noted that the heat flow is not the only parabolic PDE that can
be used to create a scale-space, and indeed argued that an evolution equation which satisfies
the maximum principle will define a scale-space as well. The maximum principle appears
to be a natural mathematical translation of causality. Koenderink once again made a major
contribution into the PDEs arena when he suggested to add a thresholding operation to the
process of Gaussian filtering. As later suggested by Merriman, Bence and Osher [97, 98]
and by Ruuth, Merriman and Osher [133], and proved by a number of groups [5, 39, 70, 71],
this leads to a curvature motion geometric PDE, one of the most famous among geometric
PDEs.

The approach in Merriman, Bence and Osher (MBO) [97] leads to a series of mathemat-
ical work on threshold dynamics type approximation schemes for propagating fronts, see for
example Ishii, Pires and Souganidis [71]. The MBO algorithm was also extended to net-
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works of interfaces in the original papers. Recently Esedoglu and Otto [38] extended it to
arbitrary surface tensions by making it into a variational problem. Also, the algorithm was
found to be particularly useful in segmentation of imaging data on graphs, e.g., in Merkurjev,
Sunu and Bertozzi [96].

In [135], Ruuth et al. extended this approach to diffusion generated motion of curves in
R3. Solving a vector heat equation and thresholding lead to moving the curve in the direction
of the normal with velocity equal to its curvature.

Perona and Malik’s work [129] on anisotropic diffusion, together with the work by
Rudin, Osher and Fatemi on total variation [132] and by Osher and Rudin on shock fil-
ters [120], have been among the most influential papers in the area, explicitly showing the
importance of understanding non-linear PDEs theory to deal with images. They proposed to
replace the linear Gaussian smoothing, equivalent to isotropic diffusion via the heat flow, by
a selective non-linear diffusion that preserves edges. Their work opened a number of theoret-
ical and practical questions that continue to occupy the PDEs image processing community,
see, e.g., [3, 130].

The TV model [132] is basically the predecessor of compressed sensing, and has been
one of the most influential papers in the modern era of inverse problems. The TV model is
frequently used as a regularization term for inverse problems.

Many of the PDEs used in image processing and computer vision are based on moving
curves and surfaces with curvature based velocities. In this area, the level set numerical
method developed by Osher and Sethian [123], is very influential, and is the standard in
critical applications like medical image segmentation, and implemented in the most popular
packages in the area, e.g., ITK.

It should be noted again that a number of the above approaches rely quite heavily on a
large number of mathematical advances in differential geometry for curve evolution [58] and
in viscosity solutions theory for curvature motion (see e.g., [23, 40].) It is fascinating that
Osher’s work in this subject not only leads to state-of-the-art applications but has inspired
some of the top mathematical minds of this century to investigate the underlying theory
behind such beautiful methods.

One of the basic ideas behind this area is: the fact that images are represented in digital
computers in the form of discrete objects should not limit the tools to those of discrete
mathematics. It is “legal” to use tools from differential equations and differential geometry,
and then deal with the computer implementation of the algorithms from the point of view of
numerical analysis. Here is where Stanley Osher got his call.

The frameworks of PDEs and geometry driven diffusion have been applied to many
problems in image processing and computer vision, since the seminal works mentioned
above. Examples include continuous mathematical morphology, invariant shape analysis,
shape from shading, segmentation, tracking, object detection, optical flow, stereo, image de-
noising, image sharpening, contrast enhancement, and image quantization. Today PDEs are
a standard tool in these areas, something that was almost unheard of before Osher’s fun-
damental TV, shock capturing, and level set papers. Osher’s ideas have led to renewal of
automatic image segmentation methods, a subject of uttermost importance in medical image
analysis. In [19], multiple phases and their boundaries, represented via the level set method,
evolve and interact in time, to minimize a bulk-surface energy. Combining several level set
functions together, triple junctions were also represented and evolved in time. Based on these
ideas, Chan and Vese presented a multi-phase level set model for image segmentation. Triple
junctions and complex topologies are segmented using more than one level set function.
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5. Computer graphics and the movies

As will be elaborated on in section 7 on industrial entrepreneurship, Stanley Osher has never
been content simply sitting in his office quietly writing papers. He has been at the heart
of the UCLA style of mathematics since that term was coined and has always believed that
good schemes are used by people, many people, and therefore has been more of a crusader
than a mathematician. This approach to the work is what fostered its proliferation in many
application areas, and here we briefly discuss computer graphics and the film industry.

Over the last fifteen years, the entire field of computer graphics has evolved from a novice
community of hackers in regards to fluid dynamics into a fairly savvy group of researchers
that regularly collaborate with numerical analysts on topics of interest to the Journal of Com-
putational Physics, International Journal for Numerical Methods in Engineering, Computer
Methods in Applied Mechanics and Engineering, etc — and some of them even publish pa-
pers in these journals. The main reason for this is that people in the industry have found the
UCLA style of mathematics in regards to both fluid dynamics and level set methods quite
useful. In fact 15 years ago the community was quite convinced that one only needed a
triangle to solve every problem. This started to change dramatically when two papers, [49]
and [50], were published in 2001 in the largest computer graphics conference, SIGGRAPH.
These papers outline an approach for computational fluid dynamics for smoke and inter-
face treatment for liquids that changed how the computer graphics community viewed the
computational physics community. Since then there have been too many computer graphics
papers to count on fluids, interfaces and level sets. But it is worth noting that one of Osher’s
students received an Academy Award for using level sets and related technology to create
water in many movies, including the giant whirlpool maelstrom in Pirates of the Caribbean.
To date, Industrial Light & Magic has used Stanley Osher’s technologies for 30 to 40 films
and they are also being used by every single major film company including Pixar, Disney,
Weta, Dreamworks, etc. Who would have thought that the Tar Monster in Scooby Doo would
make its way from cartoons to the big screen via the level set method?

Thanks to Osher’s work, drawing on surfaces has become much simpler and the appli-
cations in computer graphics are striving. Once again, the precise equations are given in

[6].

6. Optimization and Bregman methods

Osher made significant contributions in optimization through introducing Bregman algo-
rithms [56, 110, 118, 153] and popularizing them in a variety of contexts such as image
processing (e.g., [13, 14, 55]), compressive sensing (e.g., [12, 153]), signal processing (e.g.,
[27, 149]), and machine learning (e.g., [52, 137]). His effort gives rise to both faster algo-
rithms and higher quality solutions for a broad spectrum of optimization problems, leading
to a large number of successful applications in many areas.

Osher’s Bregman algorithms are based on the so-called Bregman divergence [9]. Given
a convex function r, the Bregman divergence between two points x and y is D(z,y) =
r(z) — (r(y) + (Vr(y),x —y)). In z, it is the difference between r and its linearization at y.
In case r is non-differentiable, Vr(y) is replaced by a subgradient p € dr(y). Although it is
not a distance, D(z,y) is larger if x and y are further apart on the same straight line. So, it
is also called the Bregman distance.
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Osher’s Bregman algorithms have important applications in inverse problems, which tra-
ditionally arise from the study of physical phenomena, formulated via forward problems,
and solved to reconstruct the information or causes from the observations, or sometimes to
obtain desired effects. Most inverse problems are ill-posed in the sense that the observations
are not sufficient to uniquely determine the solution, or small noise in the observations leads
to large errors in the solution, or both. To address ill-posedness, a common approach is to
minimize a regularization function r(z) so that the solution tends to have the desired prop-
erty. To have tractable computation, convex regularization functions are typically used. For
example, given an underdetermined linear system Az = b, minimizing ||z||; tends to give a
sparse, and sometimes the sparsest, solution to the system. In [110], Osher et al. propose to
replace 7(z) by the r-induced Bregman divergence and iteratively minimize D (z,z*~1),
where 1 is a scalar and 2! is the previous solution.

This simple change has significant benefits. (i) When the observation is contaminated by
random noise, this approach can yield a better solution than directly minimizing r(z). (ii)
When the observation is noise free, the iteration z* < min, uD(z,2""1) + || Az — b||3
converges quickly to an r-minimum solution to Az = b. In particular, when 7 is convex and
piece-wise linear (e.g., ¢1 norm), the iteration converges finitely; in practice, it often takes as
few as 5-10 iterations.

Since random noise exists in numerous inverse problems, benefit (i) is widely appre-
ciated. For example, in MR imaging [86], it improves image quality and preserves more
important features during image reconstruction. In compressive sensing, given the same
amount of noise, its solution is sparser and cleaner than the ¢; solution [110, 153]. In sparse
logistic regression for feature selection, restricted to the same amount of loss, it uses fewer
features (fewer typically means more accurate feature selection).

Although Osher et al. later find that their Bregman algorithm is equivalent to the method
of multipliers (see §3.4 of [153]), also known as the augmented Lagrangian method, they
discover an interesting property called error forgetting [152], when the algorithm is applied
to sparse optimization. In a nutshell, error forgetting means that the error at each iteration,
as long as below a certain threshold, does not accumulate and can even cancel each other
iteratively until the solution reaches the true solution at around the machine precision. This
explains why the Bregman algorithm is especially efficient on sparse optimization problems.
Despite the equivalence to an existing algorithm, benefit (ii) and error forgetting of the al-
gorithm open the way to extremely successful and wide applications of Bregman and split
Bregman algorithms.

Split Bregman [56], as the name indicates, is the Bregman algorithm applied to the prob-
lem in which the objective function has a split form, namely, r(x) = ri(z1) + ro(22),
where = [z1;22]. At each iteration, one solves two subproblems, subproblem ¢ mini-
mizing 7;(z;) plus a quadratic function of x;, @ = 1,2. Unlike alternating minimization,
this approach can handle linear constraints on x1, x2, or both of them. This is a real power!
Through simple transforms and additional variables, it provides simple solutions to problems
with awkward combinations of objective functions and/or constraints, for instance, the joint
constraints of matrix X being symmetric positive semi-definite and having nonnegative en-
tries, the sum of ¢; and nuclear-norm objectives, the composite objective of f(g(x)) where
one of f and g is nonsmooth, etc. Without splitting, it is numerically challenging to handle
them, but the split Bregman subproblems are often easy, and even have closed form solu-
tions; see, for example, [53, 60, 84, 85, 147, 150, 151]. Omitting the details on parameter
selection, one can split the awkward combinations of objectives and constraints and develop



102 Ron Fedkiw, Jean-Michel Morel, Guillermo Sapiro, Chi-Wang Shu, and Wotao Yin

a split Bregman based algorithm in just a few hours for many optimization problems, yet
also find it nearly state-of-the-art in terms of both speed and solution accuracy. Although
the same algorithm dates back to work in PDE computation during the 1950’s, which was
later developed into an optimization algorithm in 1980’s, the algorithm lost favor around
1990-2005 in nonlinear optimization. Osher’s split Bregman algorithm stimulates its revival
and makes unique and important contributions to solving many modern sparse optimization
problems that have recently arisen across many areas. As mentioned in the introduction, less
than five years after the publication of Osher’s split Bregman paper [56] in 2009, the paper
has been cited over 500 times according to the Web of Science database.

7. Industrial entrepreneurship: Pushing applied math to the limit

One distinctive feature of Osher’s research style is that he pays a lot of attention to convert
state of the art research results immediately to high tech applications, by directly involving
in founding companies.

The first such effort is the company Cognitech, inc., cofounded with Rudin. This com-
pany helped introduce PDE techniques, especially TV based restoration, of image process-
ing, to practical forensic image processing, using TV methods to clean up video images.
The foundation of these techniques is the famous paper of Rudin, Osher and Fatemi [132].
The sensational success of Cognitech during the 1992 Los Angeles riot has been written
up several times in popular press. It is now a very successful company, owned by Rudin,
specializing in law enforcement surveillance videos, etc.

The second such effort is the company Level Set Systems, which is in business since
1999. It has developed the state-of-the-art point cloud compression package. Many indus-
tries ranging from geospatial data collection/storage to 3D medical imagery can benefit from
this compression algorithm. Other projects such as hyperspectral imaging have useful ap-
plications in mining to detect desired materials, as well as security applications detecting
chemical or biological agents. Graphics and exapixel camera processing are among various
projects Level Set Systems has worked on. One major foundation of all these developments
is the research in level set methods.

The third such effort is the company Luminescent Technologies. This company, co-
founded with Eli Yablonovitch and others, is the first commercial company that introduced
“Inverse Lithography Technology (ILT)” to the field of Electronic Design Automation to
solve the traditional Optical Proximity Correction (OPC) problems, using latest research re-
sults in level set methods and efficient algorithms for Hamilton-Jacobi equations. With this
technology, non-intuitive mask patterns, which are beyond the capabilities of traditional ap-
proaches, are generated with superior performance in printing patterns of only a few dozens
of nanometers on chips. It is now widely used by most EDA companies in one way or
another. It is considered as one of the most significant advancement in the EDA industry.

8. Concluding remarks

Stanley Osher exemplifies mathematics and provides the perfect picture of an applied math-
ematician. His work has all the components expected from leaders in the area, from solving
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real problems to motivating deep mathematical studies. While most researchers hope to
make it big once in their career, Stanley Osher made it multiple times. He has co-authored
a handful of breakthrough and area opening papers and has influenced industry from movie
post-production to chip manufacturers.
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Mark L. Green

1. Overview of Some Major Accomplishments

(1) Algebraic equivalence # homological equivalence [37]

(2) Geometry of period domains (w. Wilfried Schmid) [38—40, 51, 52]
(3) Non-rationality of the cubic 3-fold (w. Herb Clemens) [18]

(4) Holomorphic maps (w. James Carlson and MG) [15, 25, 31]

(5) Brill-Noether Problem (w. Joseph Harris) [48]

(6) Infinitesimal Variation of Hodge Structure (w. James Carlson, MG, Joseph Harris)
[13, 14, 16, 21, 22, 35, 47]
(7) Homotopy Theory of Kéhler Manifolds (w. Pierre Deligne, John Morgan, Dennis Sul-
livan) [20]
(8) Exterior Differential Systems (w. Robert Bryant, S.S. Chern, Robert Gardner, Hubert
Goldschmidt) [6-8]
(9) Conservation Laws of Exterior Differential Systems (w. Robert Bryant and Lucas Hsu)
[10, 11]
(10) Isometric Embeddings (w. Eric Berger, Robert Bryant, Deane Yang) [3, 4, 12]
(11) Tangent Space to Algebraic Cycles (w. MG) [23, 24]
(12) Mumford-Tate Groups (w. MG, Matt Kerr) [27]

The goal of this paper is to give a treatment of a few of these topics [(1), (3), (4), (10), (11),
(12) in the list above] at a level that will be accessible to a general mathematical audience.
Topics (1) and (10) wil be treated in the most depth. This is not intended as a survey of
Griffiths’ work for experts.

Besides the work discussed here, Griffiths is known for his many students and mathemat-
ical descendants, and for his many important books [1, 2, 6, 24, 26, 27, 29, 36, 45, 46, 49, 50]
both expository and research monographs, many significant expository articles [9, 17, 19, 30,
32-34, 41-44], and his extensive work in the developing world.

2. Griffiths’ Work in Hodge Theory and Algebraic Cycles

With the development of algebraic topology by Henri Poincaré, a variety of geometric meth-
ods flourished. It was soon realized that certain classes of geometric objects were especially

" Proceedings of the International Congress of Mathematicians, Seoul, 2014
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worth studying. An outstanding example of this was the work by Solomon Lefschetz, who
found a number of surprising facts about the topology of smooth projective varieties.
Complex projective space CP" is (C"*!1 — 0)/ ~, where

A(Zl, e ,Zn+1) ~ (Zl,. . .,Zn_;,_l)

for A € C*. A smooth projective variety is a smooth complex submanifold M of CP* for
some N. By a theorem of Chow, such an M is defined by algebraic equations, i.e. by the
vanishing of a collection of homogeneous polynomials in z1, ..., 2x11. An example of the
phenomena discovered by Lefschetz, is that the cohomology groups H*(M, C) have even
dimension when £ is odd, a generalization of the fact that for a compact Riemann surface,
H'(M, C) has dimension 2g. Once Poincaré and Elie Cartan had developed the calculus of
differential forms, which are the essential tool for doing integration on manifolds, it became
possible via De Rham’s Theorem to express cohomology in terms of differential forms. If
A¥ (M) are the C> k-forms on a smooth real manifold M, there is a generalization of grad,
curl and div, the exterior derivative

d: A¥(M) — A*L(M)
with d?> = 0. The De Rham cohomology

Ker(d: A¥(M) — AFL(M))

Hpp(M) = Im(d: AF=1(M) — Ak(M))

then satisfies
Theorem (De Rham).

{closed k—forms on M}

HE (M)~ H(M,R) = :
pr(M) (M,R) {exact k—forms on M}

Thus every topological cohomology class is represented by a closed form, but not uniquely.
Inspired by Maxwell’s equations in electromagnetics, Hodge discovered a way to choose a
unique representative in a geometric manner. M must be a compact oriented Riemannian
manifold, i.e. there is an analogue of the usual inner product on the tangent space to each
point of M, varying smoothly. In this circumstance, there is an adjoint to the exterior deriva-
tive

d*: AF(M) — A*Y(M).

The Laplacian
A =dd* +d*d: AF(M) — A*(M)

turns out to be an elliptic operator. The harmonic forms are defined by
HE(M) = Ker(A: A¥(M) — AF(M)).

Then
Alw) =0« dw=0and d*w = 0.

There is thus a natural map
H(M) — Hpp(M);
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by using elliptic operator theory, Hodge argued that this map is an isomorphism, and thus
that every cohomology class is represented by a unique harmonic form.

Once we have a complex manifold, then switching to complex-valued forms and coho-
mology, there is a decomposition

AR(M) = @y = API(M).

Here, if 21, ..., 2, are local complex coordinates, then if z; = x; + 7y;, the complex-valued
1-forms have a pointwise basis dz1, . ..dz,,dz, . . ., dZ,, where

de = da:j + idyj, déj = dCEj — Zdy]
Now pointwise, the k£ forms decompose into those of type p,q, i.e. sums of terms
dziy N-+-dzy) NdZj, A AN dZ,.

It would then be natural to hope that the decomposition of forms by type passed to De Rham
cohomology, but this does not happen for an arbitrary compact complex manifold. The man-
ifold needs to possess a special type of Hermitian metric, a Kéhler metric. Complex pro-
jective space has such a metric, the Fubini-Study metric, and this restricts to give one on any
smooth projective variety M.

Complex manifolds decompose

d=0+0,
where -
0: API(M) — APFLI(M),  D: API(M) — APTH (M),
We then have = +1
. AP:q pq
HP() = Ker(9: AP9(M) — APT+ (M)
Im(9: AP2=1(M) — APa(M)).

A Hermitian metric allows one to construct adjoints for these operators, and hence Laplacians

Ay = 00" +0%0, Ag=0900*+0%0
Note that
Ag: API(M) — APYM), Ag: API(M) — AP9Y(M).

The key fact for Kihler manifolds is that

1

Ag=A5=-A.

2

It
HP (M) = Ker(Ag: APY(M) — API(M)),
then this identity plus elliptic operator theory for A5 gives a decomposition
W (M) = P HPIM)
p+q=Fk

and isomorphisms
HPY(M) = HPY(M).



The work of Phillip Griffiths 117

The result is the Hodge decomposition for a compact Kidhler manifold

Hpp(M)= @ HP(M).
p+q=k

Although the harmonic representatives depend on the choice of Kéhler metric, the decompo-
sition of the cohomology groups does not.
Because the conjugate of H?*9(M) is H?P (M), we see that

k
dim(H** (M) = 2) " dim(HP2FH1 7P (M)

p=0

and hence is even, the discovery of Lefschetz alluded to earlier.

Once one understands what happens for a single M, it is reasonable to study families.
A family of smooth manifolds is a manifold M together with a smooth map p: M — B,
where B is the unit ball and dp is surjective at all points, and thus M; = p~1(t) is a smooth
manifold for ¢ € B. Nothing interesting happens in the category of smooth manifolds, as
the M, are all diffeomorphic, but if we move to the category of complex manifolds, with p
holomorphic and B aball in C", then the M, can be inequivalent as complex manifolds. Such
families were studied by Kodaira and Spencer, and they created an appropriate deformation
theory of complex manifolds.

If one has a holomorphic family of compact Kéhler manifolds, because the M; are all
diffeomorphic in a natural way, one can identify the H*(M;, C) and ask whether the Hodge
decomposition varies analytically, i.e. whether the H?*9(M;) are holomorphically varying
families of complex subspaces of what we may think of as the fixed vector space H*(M;, C).
The answer is, unfortunately, they do not.

One of Griffiths’ first contributions was to change the question. He defined the Hodge
filtration

Fka(M, C) — Hk,O(M) ® kal,l(M) @D Hp,k*p(M) — @HT’]C*T(M).

r>p
This is a decreasing filtration
H*(X,C)
=F°H*(M,C) D F*H*(M,C) D> --- D FFH*(M,C) D FF 1 H*(M, C) = 0.
Theorem (Griffiths). In an analytic family, the spaces FP H* (M;, C) vary analytically.

There was, however, a surprise. Because, for example,

d dv dw

as we vary M;, at most one dz; can be changed into a linear combination involving dz;’s by
a first derivative. The result is:

Theorem (Griffiths’ Infinitesimal Period Relation).

%F”H’“(Mt, C) C FP'H*(M;, C).
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The space of possible Hodge filtrations of given dimensions, satisfying various other
conditions (the Hodge-Riemann relations) is called the period domain. The infinitesimal pe-
riod relation, also known as Griffiths transversality, gives a natural linear space of 1-forms
which much vanish on the image of the period mapping for any family. These 1-forms con-
stitute an exterior differential system which in general is not integrable. One important
consequence of this is that while for £ = 1, all Hodge polarized structures arise from geom-
etry, this cannot be the case for £ > 2.

For M a smooth projective variety, an algebraic subvariety of M is the locus defined by a
collection of homogeneous polynomials. There is a notion of dimension, and the codimension
of Y is dim(M) — dim(Y"). An algebraic cycle of codimension p is a finite formal linear

combination
Z = E niZi,
i

where n; € Z and Z; is a codimension p algebraic subvariety. We write

ZP(M) = { > niZ;

n; € Z, sum is ﬁnite}

and
ZP(M,Q) = {anzz

If dim (M) = n, then an algebraic subvariety Y of codimension p has a homology class
Y] € Hap—2p(M, Z). By Poincaré Duality, for M/ compact and connected,

n; € Q, sum is ﬁnite}

Hon—2p(M,Z) = H*”(M,Z),
and the image of [Y] under this isomorphism is
ny € H**(M,Z),

the Poincaré dual class of Y. The defining formula for 1y is

/w:/ wAny
Y M

for w a closed (2n — 2p)-form on M —technically, we should pull back to a desingularization
of Y. Hodge noted that only forms w of type n — p, n — p can have non-zero integral on Y,
and thus

ny € HPP(M).

Z = Z"%sz
Nz =Y mninz,.
i

If i: Z — C is the coefficient map, by Hodge,

For a cycle

set

nz € HPP(M) N H* (M, Z).
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We thus have a map
n: ZP(M) — HPP(M) Ni . H*(M,Z)

and similarly a map
nq: Z°(M,Q) — HPP(M) N i, H* (M, Q).

Anelement of HP*P(M)Ni,.H??(M, Z) is called a Hodge class and an element of HP?(M)N
i H?P(M, Q) a rational Hodge class. In either case, if the class is in the image of 7 or 7q,
it is said to be represented by an algebraic cycle, and:

Conjecture (Hodge Conjecture). 7q is surjective, i.e. some positive multiple of any Hodge
class is represented by an algebraic cycle.

There are three important notions of equivalence of algebraic cycles. If [Z] = 0, or
equivalently nz = 0, Z is said to be homologically equivalent to 0. The other two are
algebro-geometric in character. If C' is a connected compact Riemann surface, and Z €
ZP(M x C), welet Z, = Z - (M x {a}) for x € C, where - denotes intersection of
algebraic cycles—this has some subtleties. The cycles Z,, Z, for x,y € C are said to be
algebraically equivalent, and algebraic equivalence is the equivalence relation generated by
such equivalences for all choices of C, z,y. If we restrict C' to be a CP*', we get the notion
of two cycles being rationally equivalent. These three equivalences will be denoted

Z Zhom 0, Z =450, Z=0.

Likewise, ZP (M )nom Will denote the codimension p algebraic cycles homologically equiv-
alent to 0, etc.
The implications are

Z =t 0 = ZEalg 0= Z =hom O.

At this point, it is useful to review what these concepts mean in the simplest case, that
where M is a connected compact Riemann surface. Here

ZY M) = Z npp| np € Z, sum is finite
peM

These are the same as topological O-chains. For Z = 3 npp, nz = (3_,np)1nm, where
1, is the generator of H2(M,Z). Classically, the degree of Z is

deg(Z) = Z np

and elements of Z1(M) are called divisors, i.e.
ZY (M) = Div(M).

and
ZH(M)hom = Divo(M) = Ker(deg: Div(M) — Z).
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The maximum principle implies that M has no non-constant global holomorphic func-
tions. However, there will be global meromorphic functions.

C(M) = {global meromorphic functions f on M}

and
C*(M) ={f € C(M) | f not identically 0}.

Given f € C*(M), at any point p € M we can define the local degree v, (f) of f at p by,
in terms of a local holomorphic coordinate z at p,

f(z) = (z=p)»Pg(2),
where ¢(z) is defined locally, is holomorphic, and g(p) # 0. There is then a map
div: C*(M) — Div(M)
defined by
Fe w(fp
P

It is a classical result that
deg(div(f)) =0 for f € C*(M)

and thus
div: C*(M) — Divo(M)

Unwinding the definitions,
Z =rat 0 & Z € Im(div).

and also
Z =0 0& 7 € Divo(M).

Thus in the case of connected compact Riemann surfaces,
Ehom:Ealg7éErat .

It was an important question, formulated by Grothendieck, whether =},,,,==.1¢ holds for
cycles of codimension > 2. It was this problem that Griffiths solved—indeed, he showed that
there are cycles Z =y, 0 such that no positive integral multiple of Z is =, 0.

To understand the background of his solution, it is helpful to explore further the classical
theory of connected compact Riemann surfaces. In the case of the Riemann sphere, i.e. CP?,
a surface of genus 0, we have

C*(CP') = {p(2)/q(2) | p(2), q(2) polynomials not identically 0} .
It follows that for Z € Div(CP1),
Z € Im(div) < deg(Z) =0 for genus 0.
In the case g = 1, we have a complex torus

T = C/A,
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where
A={m+n\|m,neZ},

where A € C — R. It is worth noting that different \’s can give complex tori which are not
bihilomorphic as complex manifolds. 7" inherits the structure of an abelian group from C,
and we will denote addition by &. This allows us to define a natural map

@: Divo(T) = T

by
Z Npp — SpNpp-
p

The Abel-Jacobi Theorem for a torus states:
Theorem (Abel-Jacobi for a torus).
(i) Z € Im(div) < deg(Z) =0and @ (Z) =0;
(ii) @®: Divo(T) — T is surjective.

In order to deal with curves of higher genus, we can reformulate the map & as follows: if
Z € Divo(T), write Z = 9 for some 1-chain ~, then

®(Z) = / dz.

If we change ~ by a 1-cycle on 7', we change the value of the integral by an element of A.
On a Riemann surface of genus g, the analogue of dz are global objects w that can be
written as f(z)dz locally, where f is a holomorphic function and dz transforms as a differ-
ential when we change coordinates, i.e. dw = (dw/dz)dz. These objects are called abelian
differentials or holomorphic 1-forms. It is an important classical result that the dimension
of the space of holomorphic 1-forms, called the analytic genus, is equal to the topological
genus g. If wy, ..., w, is a basis for the abelian differentials, and Z € Div (M) is written as

Z = 0, then define
AJM(Z): </w1,~--7/wg>v
v gl

2g 2g
A:{(ZniAwl,...,Zni//\wg> niEZ},
=1 i =1 i

where Ai,..., Ay, is a basis for Hy(M,Z). We may think of AJ(M) € C9/A, which
turns out to be a torus, called the Jacobian variety of 1/, denoted .J(M ). The Abel-Jacobi
Theorem now states:

modulo

Theorem (Abel-Jacobi Theorem).

(i) Z € Im(div) < deg(Z) =0and A (Z) = 0;
(il) AJnr: Divo(M) — J(M) is surjective.
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As a consequence, for compact connected Riemann surfaces,

Zl(M)hom o J(M)

Ay ————F—
JM ZI(M>rat

In terms of Hodge theory, for a compact connected Riemann surface M,
HY (M) = HY(M) & H*' (M),

and
HYY(M) = {abelian differentials of M}

and
H(M) = {conjugates of abelian differentials of M}

An intrinsic way to write the Jacobian is

. HO(M)
YD = s zy

Although all complex tori are complex manifolds, indeed Kihler manifolds, only certain
ones are smooth projective vareties—these are called abelian varieties. It is a wonderful fact
that although the construction of J(M ) given here is transcendental, in fact J (M) is always
an abelian variety. Perhaps inspired by this fact, André Weil constructed a generalization
of the Jacobian in higher dimensions that is always an abelian variety. The story is that
Griffiths was slated to give a seminar on Weil’s construction, but when it came time to prepare
his talk, he discovered the journal was missing from the library. He therefore decided to
reconstruct the signs in Weil’s rather intricate construction by assuming that the intermediate
Jacobian varies holomorphically in families. In fact, Weil’s intermediate Jacobian does not
have this property, and thus Griffiths had inadvertently defined a new intermediate Jacobian,
different from Weil’s. It was eventually realized that Griffiths’ construction was the more
productive one, and it proved an essential element in his proof that homological equivalence
and algebraic equivalence are distinct.

Griffiths’ definition can be expressed rather simply as

_ H*"1(M,C)
- FPH21(M,C)+ H*» 1 (M,Z)’

JP(M)

This agrees with the definition for Riemann surfaces, i.e. J*(M) = J(M). For p = 2, we
have Lo 0.3

H>*(M)e H>(M

H3(M,7Z)

For p > 2, JP(M) is in general not an abelian variety, but it does vary holomorphically in
families.

A very nice feature of Griffiths’ definition is that one can define an Abel-Jacobi map that
varies holomorphically on families of cycles. If

Z € Zp(M)homa
then write Z = 9y for a 2n — 2p + 1-chain +. Then for w € FPH?*?~1(M, C),

Aw
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is well-defined, and this gives a map
AJM: ZP(M)hom — JP(M)

Griffiths showed that Z € ZP(M ), implies that AJy,(Z) = 0. This gives a well-defined
map

zZP (M)horn
Zp(M)rat

For p > 2, it is known that this map is far from being either injective or surjective in general.

Now assume that Z € ZP(M x C), where C' is a compact connected Riemann surface.
We may view this as a family of algebraic cycles Z, € M x {t}, which we think of as a
family of cycles in M. If ty € C' is a base-point, then

Ady: — JP(M).

Zy — Zyy € ZP(M)a1g € ZP (M )nom.
This gives a holomorphic map
C — JP(M)

by
t— AJM(Zt — Zto)-

We also have a map C' — J(C) by
t s AJo(t — to).

By the universal property of the Jacobian of a curve, the first map factors through a map
J(C) — JP(M). Now recall that J(C) is an abelian variety but J?(M ) need not be. From
the above it follows that

AJM(Zt — Zt0> S Jp(M)ab,

where JP(M),p denotes the maximal abelian variety contained in JP (). This implies:
Theorem (Griffiths). AJys takes ZP (M )a1g 10 JP (M) ap,.
There is thus a well-defined map

Zp(M)hom . JP(M)
ZP(M)alg Jp(M>ab‘

AJMZ

In order to show that homological and algebraic equivalence of algebraic cycles are distinct,
it is enough to find an example where this map is non-zero.

The problem is that it is difficult to actually evaluate this map. However, the derivative of
this map is easier to compute, and this is the strategy adopted by Griffiths.

The argument uses a construction that goes back to Poincaré and Lefschetz, and which
Lefschetz used in proving the Hodge Conjecture in codimension 1-normal functions. Let
M C CP be a smooth projective variety. A cycle Z € ZP(M) is called primitive if,
letting H be a general hyperplane,

[Z] . [H] =0in Hgnfgp,Q(M N H)
Denote this as Z? (M )prim. If Z € ZP(M ) prim, then
AJMﬂH(Z H) € Jp(MﬂH)
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We thus get a map

v: {hyperplanes in CP"} — U JP(MNH).
H

If we pick a pencil of hyperplanes {t; H; + toHo} =2 CP?!, chosen so that M N H has at
worst mild singularities for hyperplanes in the pencil, then we may still define the intermediate
Jacobians. Let J = |J JP(M N H). Restricting v gives a holomorphic map

vy: CP' > 7
and it is known that
vz =04 Z =phom O.

For V a smooth 4-fold in CP® defined by a homogeneous polynomial of degree 5, Grif-
fiths was able to show that ZP(V')prim/ZP(V )hom # 0 and that for a general hyperplane
H,

JP(VNH)ap =0.

This is done by assuming J? (VN H),1, # 0 and differentiating the condition that this deforms
with H, and showing by an infinitesimal argument that J?(V N H),, = 0 for a general H.
Now for a non-zero Z € ZP(V ) prim/ZP(V )hom. ¥z # 0 and therefore for a general H,

Advaua(Z-H) ¢ JP(VN H)ap.

Thus we cannot have
Z - H =, 0,

but by primitivity
Z-H =hom 0.

This proves that algebraic and homological equivalence are different.

3. The Work of Clemens and Griffiths on Non-Rationality of the Cubic Three-
fold

For M a compact connected complex manifold, the field of meromorphic functions of M
will be denoted C(M). If M C CP¥ is a smooth projective variety of dimension n, then

C(M)
[ P(z0,...,2n) _
=9 ——= P, @ homogeneous of the same degree and Q|,, not =0, .
Q(Z(),...ZN) M

Note that C(CP") = C(x,...,x,), where C(x1, ..., x,) is the field of rational func-
tions in n variables. It is known that for M smooth projective of dimension n, C(M) is a
finite algebraic extension of C(z1, ..., zy).

M is said to be a rational variety if C(M) = C(zq,...,x,). M is said to be unira-
tional if C(M) is a finite degree subfield of C(x1, . . ., x,, )—this is equivalent to the geometric
condition that M is the image of CP" under a generically finite rational map.
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It was a celebrated problem to know whether unirational implies rational. In dimension
1, this is Luroth’s Theorem, and in dimension 2, it is a theorem of Castelnuovo.

A smooth cubic threefold M is a smooth projective subvariety of CP* defined by a ho-
mogeneous polynomial of degree 3. There is a classical geometric construction that shows
that such an M is unirational. Clemens and Griffiths proved that smooth cubic threeflds are
not rational.

The essential tool is to study the intermediate Jacobian J?(M). For cubic threefolds,
H39(M) = 0, and it follows that .J?(M) is an abelian variety. In order for M to be rational,
it is necessary that

JA(M) = 69 J(Cy)

for some finite collection of compact connected Riemann surfaces C;. For cubic threefolds,
H?1(M) has dimension 5, and thus so does J?(M). It is known that for g > 4, not every
principally polarized abelian variety is a Jacobian or sum of Jacobians. It is thus necessary
to find some geometric invariant that distinguishes which abelian varieties cannot be direct
sums of Jacobians of compact Riemann surfaces.
For a principally polarized abelian variety A of dimension g, there is a theta-divisor ©
and the classes
N = ! ng "
(9 —k)!

are Hodge classes. A is said to have level k if

Nk = Nw

for some codimension g — k algebraic subvariety W. Note that IV is a subvariety, i.e. a cycle
whose coefficients are all > 0. Because © always exists, all principally polarized abelian
varieties have level g — 1. For A = J(C),

M = Mm(AJc)»
so Jacobians of curves have level 1, and hence so do principally polarized abelian varieties
of the form @;J(C};). The proof proceeds by showing that for a smooth cubic threefold X,
J?(X) does not have level 1.

It is 4 conditions for a given line L C CP* to be contained in a given cubic threefold M.
The Grassmannian of lines in CP* has dimension 6, and there is indeed a surface of lines
contained in M, known as the Fano surface of lines S. The geometry of J2(M) is related
to S by

J2(M) = J(9).
One can then use the geometry of .S to get information about J2(M). In particular,
J2(S) = J*(X),
and there is thus, after picking a base point sg € S, a map
p: S — J*(S)

by

s+ Ads(s — sg).
Looking at t(S) allows one to show that J?(X) has level 2. Results from the classical
geometry of the Fano surface of lines are then invoked to show that J?(X) does not have
level 1, and hence the non-rationality of the cubic threefold.
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4. Work of Griffiths with James Carlson and MG on Holomorphic Maps

The classical theorem of Picard is:

Theorem (Picard). A holomorphic map f: C — CP' — {p,q,r} is constant for distinct
points p,q, 1.

This was later generalized to:

Theorem (Picard). A holomorphic map f: C — T —{p} for a 1-dimensional complex torus
T or to a compact Riemann surface M of genus g > 2 is constant.

What these all have in common is that their simply-connected cover is the disc A, and the
map f lifts to a holomorphic map f: C — A, which then is constant by Liouville’s Theorem.

Lars Ahlfors realized that the key element in the argument is the fact that the punctured
Riemann surfaces have metric of constant negative curvature.

Theorem (Ahlfors). Let f: A — M be a holomorphic map to a (possibly noncompact) Rie-
mann surface that has a metric of Gaussian curvature < —1. Then f is distance-decreasing,
where we use the Poincaré metric of constant negative curvature on /.

A way of stating the Picard theorems more uniformly is to take
f:C—>M-—D,

where M is a compact Riemann surface of genus g and D is a set of d points. The condition
we need is that
2g—-2+4+d >0,

which can be rephrased as x (M) + d > 0, where x (M) is the Euler characteristic.

In general, given a compact Kihler manifold M and a codimension 1 algebraic cycle
(called a divisor) D on M, there is a standard construction of a holomorphic line bundle
Lp — M and a meromorphic section sp: M — Lp such that div(sp) = D, ie. D is
the divisor of sp, counting multiplicities. It is a consequence of Hironaka’s resolution of
singularities that there is no loss of generality in describing a space as M — D in assuming
that D has normal crossings.

Algebraic subvarieties D of codimension 1 on M are given locally as the zero locus, with
multiplicity 1, of an analytic function h on M. D is said to have normal crossings if it is
possible at every point of D to find local coordinates 21, . .., 2, for M such that

h=z129"" 21

for some k < n.
Given a holomorphic line bundle L — M and if a basis of sections s1, ..., sy of L have
no common zero, they define a holomorphic map

ér: M — CPN-1

so that z € M maps to the point with homogeneous coordinates (s1(2),...,sny(z)). Which
local trivialization of L is used to consider the s;(z) as taking values in C does not matter,
because of the scale factor equivalence of homogeneous coordinates. If ¢, is an embedding,
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L is said to be very ample and if ¢ is an embedding for some & fold tensor product of L,
k > 0, L is said to be ample. On a compact connected Riemann surface, Lp is ample if
and only if deg(D) > 0; in higher dimensions, L, is ample if, for some choice of Hermitian
metric on L, ¢1 (L) is a positive form.

Another way to rephrase the classical Picard theorems is that

a1 (Qy) + 1o

is a positive class, or that
Qy ®Lp

is an ample bundle.
The interesting interaction between differential geometry and algebraic geometry drew
the attention of Griffiths and his students.

Theorem (Griffiths). Let M be a compact Kdhler manifold of dimension n such that Q0% is
a very ample line bundle, i.e. its sections give an embedding of M in some CP™N. Then any
holomorphic map

f:C"—>M
is degenerate, i.e. df is identically of rank < n.

This was generalized in joint work with James Carlson:

Theorem (Carlson-Griffiths). Let M be a compact Kdhler manifold of dimension n and D
a divisor on M with normal crossings such that )}, @ Lp is an ample line bundle on M.

Then any holomorphic map
f:C*"—>M-—-D

is degenerate, i.e. df is identically of rank < n.

In fact, they prove a Nevanlinna defect relation type statement, a quantitative result on
how often f(C"™) meets D.
The situation for non-equidimensional maps

fC—>M-D

is more complicated. An example of Peter Kiernan showed that there are non-constant maps
f: C— CP? — C, where
C={z¢+20+28=0}

is the Fermat curve of degree d. After considering many examples, Griffiths and I formulated
the following: A map f: C — M — D is algebraically degenerate in the situation where
f(C) is contained in a lower-dimensional algebraic subvariety of M.

Conjecture (Green-Griffiths). For M, D as in the Carlson-Griffiths theorem above, any
holomorphic map f: C — M — D is algebraically degenerate.

This conjecture helped to inspire some conjectures of Vojta [56] and Lang [53, 54] on
rational points.

The line of thought coming out of the Ahlfors Lemma and the Griffiths and Carlson-
Griffiths work led to the question of what algebro-geometric objects on a smooth projective
variety M might be used to show that holomorphic maps from C to M must be algebraically
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degenerate. The classical Picard theorem can be redone using Griffiths’ argument using holo-
morphic 1-forms. With the work of Bogomolov on symmetric differentials, i.e. sections of
the symmetric product S¥Q} | it was realized that these can also be used. Griffiths and I in-
troduced jet differentials, objects which pounce on the k-jet of a holomorphic map from the
disc and produce a number that is changed by A" for some m when the map is reparametrized
by z — Az. These are sections of a vector bundle Jj ,,, — M. It is possible to compute
the Euler characteristic of this bundle and to show that it grows with the highest possible
degree for a variety of general type. Going from that to getting sections requires controlling
the higher cohomology groups in even degrees. For surfaces, this is not difficult, but only in
recent work by Demailly has it been shown that the higher cohomology groups grow more
slowly that HO( Ty ).

Theorem (Green-Griffiths for n = 2, Demailly for all n). For X a smooth n-fold of general
type, for k sufficiently large, H 0(jk7m) grows as a polynomial in m of the maximal possible
degree.

5. Work of Griffiths with Robert Bryant, Eric Berger and Deane Yang on Iso-
metric Embeddings

On a C* manifold M of dimension n with local coordinates x1, . .., x,, one denotes by %

the vector field whose directional derivative of any function f is %. A Riemannian metric

on M is a smoothly varying positive definite inner product <, > where
EPSUANCANS
i3 = 6951 ’ ox j

is a positive-definite symmetric matrix G = (g;;).
If F: M,, — R" is an embedding, F = (fi, ..., fn), then the metric induced by F is

OF OF = Offoft
99 =< G0y 9w, 2= 0w, 0,

The isometric embedding problem is, given M with a Riemannian metric G, does there
exist an F': M, — R” whose induced metric is . The problem can be local, if we just
want to do this on each small open neighborhood of M, or global if we want to do it on all
of M at once.

The matrix G has (”;rl) independent entries, so if N = (";1) the isometric embedding

problem becomes (";“1) PDE’s in (”'QH) unknown functions.

Theorem (Cartan-Janet). The local isometric embedding problem can be solved in the real-

analytic category for N = (”31)

John Nash [55] solved the global isometric embedding problem, which requires large
values of V. Robert Greene [28] solved the C*° local isometric embedding problem for
N =("}") +n.

A very nice uniqueness result is:
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Theorem (Berger-Bryant-Griffiths). For N < (72‘) the solutions to the local isometric em-
bedding problem for f: M, — R for a “general” G depend on at most a finite number of
constants.

In this paper, the focus will be on existence results for the local isometric embedding
problem with N = (";1)

Forn = 2, the classical result is that the local C*° isometric embedding problem F': My —
R3 is solvable if the Gaussian curvature K is nowhere 0.

Theorem (Bryant-Griffiths-Yang). The local C* isometric embedding problem
F: M; — RS
is solvable if the Einstein curvature is # 0 and is not a square.

The solution of this problem involves some very interesting issues in partial differential
equations, in particular, the case when the characteristic variety is smooth but codimension
1.

For a partial differential operator, the symbol is the “leading term,” i.e. the term involving
the highest order derivatives. For example, for the Laplacian

82
A= —
227
the symbol is
> &
For the wave operator
0? 0?
07 " 2 0a7’

SEDM

The characteristic variety of the operator D is the zero locus of its symbol ¢ p, and denoted
here as Zp. Because op is homogeneous, the zero locus is a cone, and we may thus regard

the symbol is

=p CRP"!

if D in a PDO in n variables. For the Laplacian, 25 = (), while for the wave operator it is
non-empty. Elliptic operators have empty characteristic variety. The difficulty in solving a
system of PDE’s is related to how complicated the characteristic variety is.

A generalization of a system of PDE’s is an exterior differential system. These were
studied by Elie Cartan and were the subject of a monograph by Bryant, Chern, Gardner,
Goldschmidt and Griffiths. Although EDS will not be used in this exposition, this is the
framework used by Bryant-Griffiths-Yang.

If we choose a point p € M such that F'(p) = (0, ..., 0) and the tangent space

To(F(M)) ={z, =0|v>n}
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then we can take x4, . .., x, as local coordinates and then for v > n,
x, = fY(x1,...,2n) = Q"(x1,...,2,) + higher order terms,
where Q¥ is a homogeneous quadric. This turns out to give an intrinsic map
H: N,(M) — S*T,(M)*

by
)

ox,

This is a classical object, the second fundamental form of M at p. The isometric embedding
equations are

— Q.

s o fzz o fz/
gij i + Z 8332 8xj'
v>n
Bryant-Griffiths-Yang consider the variational equation we get by starting from a given em-
bedding and seeing what the relationship is between an infinitesimal change in the f* and
the g;; is. Letting g;; and f Y represent time derivatives, we have

Z afr ofv 8f” afv
dz; Ox; 8:Cj ox;

This is a system of first order linear differential operators—the point of considering the vari-
ational problem is that it linearizes the isometric embedding problem. We may without loss
of generality assume that at p that the position of I'(p) and T,y (F'(M)) do not change, and
thus

/¥ = Q" + higher order terms

and ' '
f¥ = Q" + higher order terms.

In order to get something that does not vanish at p, we must take the second partials of the
equation for ¢;;. We obtain

Z 82@1/ aQQV N aZQu 82QV N aZQl/ 82Qu N
8xk8:rl 895]'89% Ox;0x;  Ox;0xy, Ox;0x;  Ox;0x) Oxj0)
62Qu 82QV

8xj8xl al%la%k

The left-hand side of this lies in S?T},(M)* ® ST, (M)*. The intrinsic part of this, inde-
pendent of adding quadratic terms to local coordinates 1, . . ., x,, is the image of

+ higher order terms

AT, (M)* @ A*T,(M)* — S*T,(M)* @ S*T,(M)*

We thus look at

1 9%§i; o B % _ %Gt
89%8951 0$10$] 3xzaxl &rk&rj
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which equals

aZQu aQQu B 82QV 82QV 82@1/ 82QV B
= Ox;j0xy, 0r;0x;  Ox;07) Ox;0%;  Ox;07; OX;0%)

52 QV H2 Q'u
O0x;0x; Ox,;0xy,
The right-hand side of the equation, without the higher order terms, has a symmetry which
places it in K, the space of curvature like tensors, where K = (T;‘)(Z’Q), the representation

with Young diagram a 2 x 2 square.
The equation above may be expressed by saying that

H,: N,(M) — S*T,(M)*
is the unknown and H,, pairs with it to give an element of K. This pairing is the polarization

of the Gauss equations relating the (extrinsic) second fundamental form to the (intrinsic)
Riemannian curvature. The symbol of this prolonged system D of linear PDE’s becomes

+ higher order terms.

op: Ny(M)* @ S*T,(M)* — K.

The characteristic sheaf M p of a system of linear PDE’s is the cokernal of dual of op,
viewed as a map of vector bundles on CP(T,(M)). In our case,
op: K @ Op(r,(ar)) = Np(M) ® Op (1, (1)) (2)-
Thus
K*® OP(TP(M)) — NP(M) %4 OP(T,,(M))@) — Mp —0
is exact. This map is just pairing with /. The characteristic variety of D is

Ep = supp(Mbp).
We are interested in the real points of =p.
Unwinding, Zp is the locus where for some w € N, (M), there is a point of P(T,(M))
where Hp,(w) maps to 0 in K.
Q=73 ,.,w'Q"and Q;; = 02Q/0z;0x, then for the point (1,0,...,0) to be in
=p, the condition is that for a symmetric matrix (Uw) the coefficient of ©17 in

Qjrui + Quujr — Qiruji — Qjiuik
is zero for all choices of indices, i.e that

01:011Qjk + 01;061£ Qi1 — 01;061Qk — 01:61£Qj1 = 0

for all choices of indices. This forces Q) = 0 unless either j = 1 or & = 1, as otherwise
the first term is non-zero for ¢ = [ = 1 and the other three terms are all 0. But Q;; = 0
unless either j = 1 or £ = 1 is equivalent to saying that () = x1 L for some linear factor L.
Conversely, if () = x1 L, one may easily compute to see that the coefficient of w17 is 0. Thus,
decoupling from the choice of the point (1,0, ...,0), we have

—
=D

={{eT,(M)"| Z w” Q" = &p for some p € T, (M)* & some w = (w”) € Np(M)}.

v>n
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It
SZZ&%, #:Zml’i,
i=1 i=1

then the conditions for £ € =p are that we can find a non-zero vector w = (w"”) € N,(M)
and p = (p;) € T,(M)* such that

D w'QY = iy + &

v>n

forallz, j. Thisis ("+1) equations in the ( ) +n unknowns w”, u;. The matrix of coefficients
is a square matrix of the form (A B), where A has ( ) columns, and involves the Q7; and B
has n columns and involves the &;. The condition that a solution exists is that the determlnant
of this matrix vanishes, and this is one equation homogeneous of degree n in the &;. We thus
conclude:

Theorem (Bryant-Griffiths-Yang). For a general isometric embedding, =p C RP" !isa
hypersurface of degree n.

When n = 2, this hypersurface is a quadric in RP!, i.e. it is either 2 points, one point,
or empty. These correspond to the cases where the Gaussian curvature K is negative, zero or
positive. In case of negative curvature, the two points are the asymptotic directions for the
surface, the directions where the second fundamental form vanishes.

When n = 3, one has a real cubic curve in RP2, i.e. an elliptic curve. For the same
reasons that a real cubic polynomial in one variable always has a real root, such a real elliptic
curve is never empty.

Returning to the original linearized equations,

Z afv afr 8f” afv
Ox; Ox;j 5':L'j Ox;’

weE may rewrite this as
; — a afl/ 3% 8 8fl/ fU 82fy 3%
9 _,;—Lax] <a$¢f ) +8azz <a$]f ) _28$i8$jf '

Now ¢;; € S?T,(M)* and the last term of the equation above is just Qv fv e ST, p(M)*.
If we work in S2T »(M)*/Im(H,), the last term goes away and we get a system of linear
differential operators Dy that goes between the vector bundles

T,(M)* — S*T,(M)* /Im(Hy).

If H), is generic, and in particular if it is of maximal rank dim(N,(M)) = (}), then Dy
is a system of linear differential operators between vector bundles of the same rank! In the
language of PDE’s, this says that the system is determined when N = (”;1) A similar
computation for the more general situation of an isometric embedding

f: M, - RN

with H,, generic gives that Dy maps T,,(M)* to a vector bundle of the following ranks:
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M ("I = (N=n)ift N < ("5 +n;
2) 0if N > ("I") +n.

In case (2), one can eliminate all of the partial derivatives, and thus obtain an algebraic prob-
lem to solve for the f Y. This is the situation of the local theorem of Robert Greene alluded
to early in this section, and also in the work of John Nash on the global isometric embedding
problem. By (1), if ("') +n > N > ("), we get an overdetermined system, and if
N < ("}"), we get an undetermined system.

In the context of exterior differential systems, the process of going from D to Dy is one
of deprolongation, reversing the basic prolongation construction of EDS.

The final steps in solving the local isometric embedding problem for f: M3 — RS in-
volve some delicate estimates from the theory of partial differential equations which are nei-
ther elliptic nor hyperbolic, and hinge on an analysis of the geometry of the real elliptic curve
Zp, which for example can have one or two connected components.

For higher n, the determinantal hypersurface one gets for =Zp can be singular, as determi-
nantal hypersurfaces in general are singular along the locus where they drop rank by at least

2, and this has codimension 4 in general.

6. Work of Griffiths with MG on Tangent Spaces to Algebraic Cycles

This work is intentionally speculative. Due to Griffiths and Wilfried Schmid in one param-
eter and Cattani-Kaplan-Schmid in several parameters, there is a well-developed variational
theory for Hodge structures. While there is a variational theory for algebraic subvarieties,
there is no comparable theory for algebraic cycles. There are formidable obstacles to being
able to use such a theory to go from infinitesimal information to a geometric deformation of
a cycle, and even formal deformations that are unobstructed at all levels may be obstructed
geometrically.

If we have a point p on a smooth projective variety M, the tangent space of O-dimensional
submanifolds of M at pis just T),(M). As a subvariety, if p is non-reduced, it can have a very
complicated ideal, which then can vary, and one gets the Hilbert scheme. As an algebraic
cycle, there is a different problem—by analogy with physics, a “particle and antiparticle” can
appear, e.g we can deform p as p(t) + ¢(t) — r(t), where p(0) = ¢(0) = r(0) = p.

For codimension 1, the sheaf of divisors D, sits in an exact sequence

0— Oy — My — Dy — 0,

where O}, and M3, are respectively the sheaves of nowhere vanishing holomorphic and
meromorphic functions on M. The tangent spaces to this sequence gives an exact sequence

0— Oy = Mpy — PPy — 0,

where PP, is the sheaf of principal parts on M. A family of divisors is given locally by
div(f(t)), and if '
f(t) = f+tf + higher order terms,

the derivative is the principal part f /f.
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For 0-cycles on M with n the dimension of M, the expression for the tangent space to
cycles is '
T.7"(M) = iliﬁr&é’mth,I(OM/m;, Q’Xj/b) ~ Hg(Q’X/[_/IQ)
Here m, is the ideal of local holomorphic functions on M vanishing at =, and Q’x;/b is the
sheaf of Kahler differentials of degree n — 1 on M over Q. The Kahler differentials over
Q are defined in the same way as their more geometric relative, the Kihler differentials over
C, except that for constants,

de=10

is only required for ¢ € Q. Thus regarding r as a function,
d(mr?) = 2mrdr + ridr.

We need to be in the algebraic category, i.e. no transcendental functions. Finally, (Q’;/[_/b)
is the local cohomology at x.
The p’th Chow group is

ZP(M
CH?(M) = Zp(](\4)r)at.
The Bloch-Quillen theorem describes this in terms of algebraic K-theory as
CHP(M) = H"(Kp(Om)),
where cohomology is taken in the Zariski topology. Spencer Bloch gave the formal relation

TCHP(M) = H? (O )

Now there is a natural map

Hg(Qlf\/f/lq) - Hp(QIz)\;/lq)

which is the map, for p = n,
T,.2"(M) —- TCH"(M).

Geometrically, one must take these formal statements with a grain of salt. Not only can
the first-order deformation of cycles be obstructed, but also so can the first-order deformation
of rational equivalences. For example, on an M with H??(M) = 0, we have

HQ(Q}W/Q) = kef(HQ(Q}wc) - QE/Q ®Q Hg(OM))-

However, to have a geometric global 1-parameter family of codimension 2 cycles, we need to
be mapping to J2(M).y, and this is a Hodge-theoretic obstruction to a tangent vector being
tangent to a geometric family.

There has been ongoing interesting work in this direction [5, 57].
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7. Work of Griffiths with Matt Kerr and MG on Mumford-Tate Groups and
Mumford-Tate Domains

A polarized Hodge structure of weight % is a vector space Vg over Q together with a pairing
Q : VQ X VQ — Q

and a decomposition of Vg = V ®q C as

Ve= € vre,

p+q=k

where the V7:9 are complex subspaces satisfying VP4 = V%P, The polarization condition
is that () is symmetric when k is even and antisymmetric when k is odd, and:

(1) Riemann-Hodge I: Q(V?,V?4") = 0 unless (p, q) = (¢, p');

(2) Riemann-Hodge II: The Hermitian form H (v, w) = "~ Q) (v, w) is positive-definite
on VP4,

There is a natural way to make @,V ® @), V* into a Hodge structure. A (rational)
Hodge class for V' is an element, if k = 2p, of Vo N VPP, A Hodge tensor of type a, b for
V' is a rational Hodge class for @,V ® &), V*. The Hodge tensors for V" are the direct
sum of the Hodge tensors for V' of type a, b.

The Mumford-Tate group of V is

MT(V)={L € Aut(VR, Q) | L fixes the Hodge tensors of V'}.

This is an algebraic group over Q.

A linear isomorphism L € Aut(Vg, Q) preserving @ is an isomorphism of Hodge
structures if L(V??) = VP4 for all p, ¢; let Hy denote this group. The Mumford-Tate
domain associated to V' is

D=MT(V)/Hy.

The question this work is about is: What reductive algebraic groups can be Mumford-Tate
groups? Characterize the ways that such a group be realized as a Mumford-Tate group? What
are the associated Hodge structures having this Mumford-Tate group? What is the geometry
of Mumford-Tate domains?

An especially interesting case was that of the exceptional Lie group G2 (non-compact
real form), which can be a Mumford-Tate group.

The condition to be a Mumford-Tate group is that Gg must have a real maximal compact
torus, i.e. a real torus 7" whose dimension is the rank of G. What makes this especially
interesting is that that this is the same condition as the condition that arises in representation
theory for GG to have discrete series.
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Abstract. We will discuss the proof of Waldhausen’s conjecture that compact aspherical 3-manifolds
are virtually Haken, as well as Thurston’s conjecture that hyperbolic 3-manifolds are virtually fibered.
The proofs depend on major developments in 3-manifold topology of the past decades, including Perel-
man’s resolution of the geometrization conjecture, results of Kahn and Markovic on the existence of
immersed surfaces in hyperbolic 3-manifolds, and Gabai’s sutured manifold theory. In fact, we prove a
more general theorem in geometric group theory concerning hyperbolic groups acting on CAT(0) cube
complexes, concepts introduced by Gromov. We resolve a conjecture of Dani Wise about these groups,
making use of the theory that Wise developed with collaborators including Bergeron, Haglund, Hsu,
and Sageev as well as the theory of relatively hyperbolic Dehn filling developed by Groves-Manning
and Osin.
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1. Introduction

In Thurston’s 1982 Bulletin of the AMS paper Three Dimensional Manifolds, Kleinian
groups, and hyperbolic geometry [81], he asked 24 questions which have guided the last
30 years of research in the field. Four of the questions have to do with “virtual” properties
of 3-manifolds:

¢ Question 15 (paraphrased): Are Kleinian groups LERF? [53, Problem 3.76 (Hass)]

o Question 16: “Does every aspherical 3-manifold have a finite-sheeted cover which is
Haken?” This question originated in a 1968 paper of Waldhausen. [52, Problem 3.2] !

o Question 17: “Does every aspherical 3-manifold have a finite-sheeted cover with pos-
itive first Betti number?” [53, Problem 3.50 (Mess)]

¢ Question 18: “Does every hyperbolic 3-manifold have a finite-sheeted cover which
fibers over the circle? This dubious-sounding question seems to have a definite chance
for a positive answer.” [53, Problem 3.51 (Thurston)]

The goal of this talk is to explain these problems, and how they reduce to a conjecture of
Wise in geometric group theory.

Note that there are now several expository works on the topics considered here [10, 11,
13, 20, 29].

® Proceedings of the International Congress of Mathematicians, Seoul, 2014



142 Tan Agol

2. 3-manifold topology

Haken introduced the notion of a Haken manifold as a way to understand certain 3-manifolds
via an inductive procedure by cutting along surfaces [43].

Definition 2.1. A closed essential surface f : ©? — M?3 is a surface with either

e X(X) <0and fyg : m(X) — 71 (M) is injective or
e X2 82 and [f] # 0 € mo(M) (in other words, f is not homotopically trivial).

If M is a manifold, then M is termed aspherical if its universal cover M is contractible. For
example, this holds if M/ = R™. In three dimensions, M is closed and aspherical if and only
if M = R3, or equivalently 7o (M) = 73(M) = 0 (this is a non-trivial consequence of the
geometrization conjecture). By the sphere theorem of Papakyrokopoulos [69], equivalently
|1 (M)| = oo and M is irreducible.

If M is aspherical and contains an embedded essential surface, then M is called Haken.

For example if M is aspherical, and rank(H;(M;Q)) = b1 (M) > 0, then M is Haken.
This follows from the loop theorem.

A 3-manifold M fibers over the circle if there is a map n : M — S! such that each
point preimage 1~ !(x) is a surface called a fiber.

If M is closed and 3-dimensional and fibers over S*, then the fiber is a genus g surface
F,, and M is obtained as the mapping torus of a homeomorphism f : F; — F,

Fy x [0,1]
{(2,0) ~ (f(2), D)}

A fibered 3-manifold M has positive first betti number, and the fiber surface is essential.
Therefore M is aspherical and Haken if g > 0.

A motivating question in 20th century 3-manifold topology:

Given an immersed essential surface in a 3-manifold, does there exist an em-
bedded essential surface of the same type?

This has been an important question because embedded essential surfaces are easier to work

with than immersed surfaces in general. For example, the theory of normal surfaces allows

certain questions about embedded essential surfaces in 3-manifolds to be made algorithmic.
Examples include when x(3) > 0:

o Dehn’s Lemma [25] [69, Papakyriokopoulos 1957]: If an embedded loop in OM is
homotopically trivial, then it bounds an embedded disk.

o The Loop Theorem [69]: Similar statement for an immersed loop in OM..

o The Sphere Theorem [69, Papakyriokopoulos 1957] [75, Stallings 1969]: If mo (M) #
0 (i.e., there’s an immersed essential sphere in M), then there exists an embedded
essential sphere in M.

L “Of those irreducible manifolds, known to me, which have infinite fundamental group and are not sufficiently
large, some (and possibly all) have a finite cover which is sufficiently large.” [84] Waldhausen may only have been
referring to small Seifert-fibered space examples that he was aware of, but the general question has been attributed
to him.
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o The annulus and torus theorems [49, Jaco-Shalen] and [50, Johannson]:

In a Haken manifold, if there is an immersed essential annulus or torus, then there is
an embedded one.

« The Seifert fibered space theorem (Scott, Tukia, Casson-Jungreis, Gabai): If the center
Z(m(M)) # 0 and M is aspherical, then M is Seifert-fibered.

As was known to Waldhausen, there is an infinite class of aspherical Seifert-fibered
spaces which are non-Haken, so one cannot hope to extend the torus theorem to non-Haken
3-manifolds. For example, one may consider the unit tangent bundle to a turnover orbifold
of euler characteristic < 0. However, these are easily shown to be virtually Haken, since
they have a finite-sheeted cover homeomorphic to the unit tangent bundle of a surface. Thus,
one may ask the question:

Given an immersed essential surface in a 3-manifold, does there exist a finite-
sheeted cover with an embedded essential surface of the same type?

These classic theorems of 3-manifold topology are now superseded by the Geometriza-
tion Theorem (Question 1 from Thurston’s list [81] [53, Problem 3.45 (Thurston)]). The
geometrization theorem states that an irreducible 3-manifold M admits a (possibly non-
orientable) embedded essential surface > < M which is unique up to isotopy, such that
X(2) = 0 and each component of M — ¥ admits a complete locally homogeneous Rieman-
nian metric of finite volume. There are eight possible model geometries for these metrics.

This question was formulated by William Thurston at Princeton in the 1970s, and was
proved by him for Haken 3-manifolds [82, 83], and conjectured to hold in general. A proof
of the conjecture was given by Grigori Perelman in 2003 using Ricci flow [70], finishing a
program of Hamilton who introduced the Ricci flow in the 1980s [45].

The most interesting and least understood homogeneous geometry is hyperbolic geome-
try.

Consider a chunk of glass sitting on a table, so that the speed of light n is proportional
to the height above the table (Figure 2.1). Then light will follow a geodesic path in the glass
which is a semicircle or line perpendicular to the tabletop.

55 = Z/f
rd
i -
Pl x'//
- 5 rays | n=1

—-
/ -

Figure 2.1. A physical model for hyperbolic space

This gives a physical model for the upper half space model of hyperbolic space.



144 Tan Agol

Manifolds modeled on this geometry are hyperbolic 3-manifolds if they admit a complete
Riemannian metric of constant curvature —1, with fundamental group a Kleinian group (if
it is finitely generated). Classic examples of hyperbolic 3-manifolds are the Seifert-Weber
dodecahedral space, the figure eight knot complement, and the Whitehead link com-
plement. Given a cusped hyperbolic 3-manifold (finite-volume non-compact), Thurston
showed that one may deform the hyperbolic metric to obtain hyperbolic metrics on Dehn
fillings [80, Theorem 5.8.2]. A Dehn filling is obtained from a manifold with torus boundary
by identifying the boundary with the boundary of a solid torus (Figure 2.2). The homeomor-
phism type of the Dehn filling is determined by the slope of the meridian of the torus, which
may be regarded as a rational number € PQ".

Figure 2.2. Dehn filling on the figure 8 knot complement

Thurston proved that all but finitely many slopes € PQ" give Dehn fillings on a hyper-
bolic 3-manifold whice are hyperbolic.

An aspherical 3-manifold M whose geometric decomposition does not contain a hyper-
bolic piece is called a graph manifold. If M is not geometric, then all of the geometric
pieces of the JSJ decomposition are modeled on the geometry H? x R.

3. Virtual properties of 3-manifolds

We say that a property of a space holds virtually if it holds for a finite-sheeted cover, or a
property holds virtually for a group if it holds for a finite-index subgroup.

« Recall that a compact aspherical 3-manifold M is Haken if it contains an embedded
m1-injective surface (e.g. a knot complement). The Seifert-Weber space is non-Haken
[19, Burton-Rubinstein-Tillmann], as well as hyperbolic surgeries on the figure 8 knot
complement [80, Corollary 4.11].

o A 3-manifold M is virtually Haken if there is a finite-sheeted manifold cover M —
M such that M is Haken, e.g. hyperbolic surgeries on the figure 8 knot complement
are virtually Haken [27, Dunfield-Thurston].

« Waldhausen conjectured that every aspherical 3-manifold M is virtually Haken (the
virtual Haken conjecture, Question 16).

« A fortiori, does M have a finite-sheeted cover M — M with by (M) > 0 (Question
17)? Recall that by (M) = rank(H,(M;Q)).
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Remark: Since closed 3-manifold fundamental groups have balanced presentations,
it is unlikely that a generic 3-manifold M has b (M) > 0, which clarifies the difficulty
of this question.

o M is virtually fibered if there exists a finite-sheeted cover M — M such that M
fibers.

o If M fibers, then b (M) > 0, so this is stronger than asking for virtual positive betti
number.

o There have previously been several classes of hyperbolic 3-manifolds shown to vir-
tually fiber, including 2-bridge links (Walsh), some Montesinos links (Agol, Boyer,
Zhang, Guo) and certain alternating links (Aitchison-Rubinstein) as well as many ex-
amples of hyperbolic manifolds (Bergeron, Chesebro-DeBlois-Wilton, Gabai,
Leininger, Reid, Wise, Aitchison-Rubinstein). Some of these constructions have the
advantage that they give explicit descriptions or prescriptions for finding a cover that
fibers.

o Thurston asked whether every hyperbolic 3-manifold is virtually fibered (Question
18)?

If M is a finite volume hyperbolic 3-manifold, and f : F,, — M is an essential immer-
sion of a surface of genus g > 0, then there is a dichotomy for the geometric structure of the
surface discovered by Thurston, and proven by Bonahon in general [15].

Either f is

« geometrically finite or

« geometrically infinite.

The first case includes quasifuchsian surfaces. A quasifuchsian surface group is discrete
and preserves a circle in C such that the convex hull of this curve has finite covolume under
the group action. More generally, a geometrically finite group preserves a convex subset of
hyperbolic space whose quotient by the group has finite (non-zero) volume.

In the geometrically infinite case, the surface is virtually the fiber of a fibering of a
finite-sheeted cover of M.

The Tameness theorem [1, Agol], [21, Calegari-Gabai] plus the covering theorem of
[22, Canary] implies a similar dichotomy for finitely generated subgroups of 71 (M):

either a subgroup is geometrically finite, or it corresponds to a virtual fiber. The limit
set of a fiber of a fibration is O H? = C, but may be regarded as a sphere-filling curve [24,
Cannon-Thurston]. Analogous to the loop, sphere, annulus and torus theorems, one may
ask:

Given an essential map of a surface f : ¥ — M with x(X) < 0, is there an
essential embedding > — M?

The answer to this question is no since there are examples of non-Haken 3-manifolds such as
the figure 8 knot hyperbolic fillings which have virtual positive betti number, and therefore
contain an immersed essential surface, but no embedded essential surface.
With further hypotheses on the surface, the answer to this question can be a qualified yes.
Gabai proved that if f : ¥ & M is an immersed oriented surface with x(X) < 0, and
f«([Z]) # 0 € Hy(M), then there is an embedded essential surface ¥’ < M such that
2] = £.[S] € Hy(M), and x(E') > x(Z) [30-321.
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Gabai’s proof makes use of an inductive method called sutured manifold hierarchies to
construct a foliation of the manifold with an embedded compact leaf, and obtain the desired
lower bound on Euler characteristic by analyzing the Euler class of the foliation.

Theorem 3.1 ([51, Kahn-Markovic] [53, Problem 3.75 (Waldhausen)]). Hyperbolic 3-mani-
folds contain immersed quasi-fuchsian surfaces which are arbitrarily close to being totally
geodesic.

The limit sets of these surfaces in 9., H? can be made arbitrarily close to being a round
circle.

There has been much previous work on this problem, by Bart, Cooper, Lackenby, Li,
Long, Masters, and Zhang.

4. 3-manifold fundamental group properties

Definition 4.1. A group G is residually finite (RF) if for every 1 # g € G, there exists a
finite group K and a homomorphism ¢ : G — K such that ¢(g) # 1 € K.
Alternatively,

{11= (] H (4.1

[G:H]<o0
Examples of residually finite groups include

« finitely generated linear groups [61, Malcev];
¢ 3-manifold groups [46, Hempel] + Geometrization [70]; and

« mapping class groups of surfaces [35, Grossman].

Definition 4.2. A subgroup L < G is separable if forall g € G— L, thereexists ¢ : G — K
finite such that ¢(g) ¢ ¢(L).

Alternatively,
L= N H (4.2)

L<H<G,[G:H]<oc0

Residual finiteness of G is equivalent to 1 < G is separable.

Definition 4.3. A subgroup L < G is weakly separable if for all ¢ € G — L, there exists
¢ : G — K such that ¢(L) is finite and ¢(g) ¢ ¢(L) (K need not be finite).

Example 4.4.

o If L < G is finite, then L is (trivially) weakly separable in G.

o Let H <1 G be a normal subgroup of G, then H is weakly separable in GG. In fact, we
may use the quotient ¢ : G — G/H to weakly separate all elements of G — H from
H.

Definition 4.5. A group G is Locally Extended Residually Finite (LERF) if finitely gen-
erated subgroups of G are separable (local means finitely generated).

Previously well-known examples of LERF groups include



Virtual properties of 3-manifolds 147

° Zn’
o free groups [44, Hall] and surface groups [74, Scott];
« certain doubles of compression body groups [33, Gitik];

« Bianchi groups PSL(2,Z[v/—d]) [6, Agol-Long-Reid] and certain other arithmetic
subgroups of PSL(2, C) such as the fundamental group of the Seifert-Weber dodeca-
hedral space;

¢ 3-dimensional hyperbolic reflection groups [41, Haglund-Wise].

There are examples of 3-manifold groups which are not LERF which are graph manifold
groups [18, Burns-Karrass-Solitar].

Thurston’s question 15 is whether Kleinian groups are LERF? LERF allows one to lift
m1-injective immersions to embeddings in finite-sheeted covers [74, Scott] (Figure 4.1).
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Figure 4.1. A surface immersed in a 3-manifold with separable fundamental group lifts to an embed-
ding in a finite-sheeted cover

In fact, Matsumoto showed that there are certain graph manifolds which contain surfaces
which do not lift to an embedding in any finite-sheeted covering space [64, Matsumoto].
These examples highlight the importance of hyperbolicity with respect to subgroup separa-
bility.

4.1. Virtual fibering. Thurston’s virtual fibering question was stated for hyperbolic 3-mani-
folds, and does not hold for general 3-manifolds.

Theorem 4.6 (Przytycki-Wise 2012). If M is an aspherical closed 3-manifold which is not
a graph manifold, then M is virtually fibered.

Svetlov characterized virtually fibered graph manifolds (e.g. unit tangent bundles to
closed hyperbolic surfaces are not virtually fibered), but the criterion is technical to state
[79, Svetlov].

Definition 4.7. A group G is Residually Finite Rationally Solvable or RFRS if there is a
sequence of subgroups G = Gy > G > G2 > --- such that N;G; = {1}, [G : G;] < o0
and Gy = ker{G; — Z* — (Z/n;)*?} for sequences n;, k; € N.
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Remark 4.8. We may assume that G; < G, in which case G/G; is a finite solvable group.
Thus, the RFRS condition is a strong form of residual finite solvability.

We remark that if G is RFRS, then any subgroup H < G is as well.

Examples of RFRS groups are free groups, surface groups, Z™ and free products of RFRS
groups.

For a 3-manifold M with RFRS fundamental group, the condition is equivalent to there
existing a cofinal tower of finite-index covers

M(—Ml%M2<—"'

such that M, ; is obtained from M; by taking a finite-sheeted cyclic cover dual to an embed-
ded non-separating surface in M;. Equivalently, 1 (M, 1) = ker{m (M;) — Z — Z/kZ}.
This condition implies that M has virtual infinite by, unless 71 (M) is virtually abelian.

Theorem 4.9 ([2, Agol]). If M is aspherical and 71 (M) is RFRS, then M virtually fibers.

The proof makes use of sutured manifold theory, the inductive technique mentioned
before for studying foliations of 3-manifolds introduced by Gabai. For a self-contained
proof, see a preprint of [29, Friedl-Kitayama].

Theorem 4.10 ([86, Corollary 14.3, Theorem 14.29 Wise]). Haken hyperbolic 3-manifolds
are virtually fibered.

The theorem includes non-compact hyperbolic 3-manifolds with finite volume uncondi-
tionally.

5. Geometric group theory

Let G be a finitely generated group, with generators G = (g1, ..., gn). The Cayley graph
of G with respect to the generating set {g1,...,¢g,}isagraphI' = I'(G, {¢1, . . ., gn }) With
vertex set V(I') = G, and edge set E(I') = {(g,9- gi)|g € G,1 < i < n}. So the degree of
each vertex g is 2n.

We may regard I" as a metric space, by letting edges of I" have length 1, and taking the
path metric. So the distance d(1, g) between vertices 1, g € V(I") is the smallest & such that
g= gf‘_jl . -gil. Then clearly d(h, h - g) = d(1, g), since the metric is invariant under the
left group action of G on I'(G, {¢1, ..., gn}).

The Cayley graph I'( F», {a, b}) of the two generator free group F = (a, b) with respect
to the free generating set {a, b} is an infinite 4-valent tree, with oriented edges labeled a, b.
Geometric group theory is the study of properties of groups from the geometric properties of
the Cayley graph. This notion has some origins in the work of [26, Dehn 1911] on the word
problem for surface groups, but was introduced by [66, Milnor 1968] who studied the growth
of balls in Cayley graphs of groups as a function of the radius, and [23, Cannon 1984] who
studied the Cayley graphs of hyperbolic manifolds.

If G acts properly and cocompactly on a metric space X (for example, X = M the
universal cover, where M is a compact Riemannian manifold, and G = 71 (M )), then some
geometric properties of X are reflected in the geometric properties of the Cayley graph
I'(G,{g1,---,9n}). So we may study properties of a group G by studying the geometric
properties of X.
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For example, Milnor observed that if the volumes of balls of radius r in X grow exponen-
tially with r, then the same will hold for the balls in I', with volume replaced by the number
of vertices. Exponential growth of balls holds for universal covers of compact Riemannian
manifolds with negative curvature.

Cannon ’84 realized that Cayley graphs of hyperbolic manifolds have a nice recursive
combinatorial structure for the balls of radius r. This notion was then extended and codified
by [34, Gromov 1987] in the notion of a hyperbolic group.

A (Gromov-)hyperbolic geodesic metric space X may be defined by Rips’ “slim trian-
gle” condition: for points A, B in the metric space, let [A, B] C X be a geodesic connecting
A and B. Then X is called a §-hyperbolic metric space if for any three points A, B,C' € X,

[B,C] C N5([A,B]U[A,C]).

EINT3

For example, hyperbolic space H" is log(1 + v/2)-hyperbolic and a tree is 0-hyperbolic.

If I'(G,{g1,...,9n}) is a d-hyperbolic metric space for some ¢, then G is called a
(Gromov)-hyperbolic group (sometimes also called d-hyperbolic, word-hyperbolic, or just
hyperbolic group).

Gromov proved many properties of these groups, such as there exists a compactification
(G, {g1,---,9n}) UOx(G), so that O (G) is independent of the generating set and I".

Definition 5.1. Let X be a geodesic metric space, and Y C X. Then Y is R-quasiconvex
in X if for every y1,y2 € Y, the geodesic [y1,y2] C X lies in an R-neighborhood of Y,
[y1,y2] C Nr(Y).

For example, X is d-hyperbolic if [a, b] U [b, ] is d-quasiconvex for every a,b,c € X.

Let G be a hyperbolic group, with Cayley graph I'. A subgroup H < G may be regarded
as a subspace H C G = V(') C T'. Then we say H is quasiconvex if it is R-quasiconvex
in I for some R. It follows from quasigeodesic stability that // will be quasiconvex in the
Cayley graph with respect to any (finite) generating set of G.

Motivating examples of hyperbolic groups are Kleinian groups without Z? subgroups
(e.g. fundamental groups of closed hyperbolic manifolds and convex cocompact Kleinian
groups), and more generally fundamental groups of closed negatively curved manifolds.
Motivating examples of quasi-convex subgroups are quasi-fuchsian surface groups (such as
the fundamental groups of the essential Kahn-Markovic surfaces) in closed hyperbolic 3-
manifold groups, and cyclic subgroups of arbitrary hyperbolic groups.

Theorem 5.2 ([4, 62, Agol, Groves, Manning, Martinez-Pedrosa 2008]). If hyperbolic
groups are RF, then Kleinian groups are LERF

So it may be possible to show that hyperbolic 3-manifold groups are LERF by showing
that Gromov-hyperbolic groups are RF

Caveat: This approach seems quite unlikely to work, since many experts believe that
there are non-RF Gromov-hyperbolic groups.

6. Cube complexes

A topological space X is locally CAT(0) cubed if X is a cube complex such that putting
the standard Euclidean metric on each cube gives a locally CAT(0) metric (a form of non-
positive curvature). Gromov [34] showed that this metric condition is equivalent to a purely
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Figure 6.1. For the endpoints of each geodesic, there is a quasifuchsian limit set which separates the
endpoints

combinatorial condition on the links of vertices of X, they are flag. A flag simplicial com-
plex has the property that its simplices are determined by the 1-skeleton: if one sees a k + 1
complete subgraph in the 1-skeleton, then there is a k-simplex spanning the subgraph. If X
is locally CAT(0) and simply-connected, then it is globally CAT(0).

In a locally CAT(0) cube complex, there are canonical maps of codimension-one locally
geodesic subcomplexes W 9 X called hyperplanes, which are obtained by taking the
union of midplanes in each cube. The components of the hyperplane complex correspond to
equivalence classes of an equivalence relation on edges of the complex generated by edges
lying on opposite sides of a square.

A locally CAT(0) square complex has the property that the link of each vertex is a graph
of girth > 4 (there are no triangles). In this picture of a square complex, the link of each
vertex is a 5-cycle, so it is a CAT(0) square complex.

A topological space Y is cubulated if it is homotopy equivalent to a compact locally
CAT(0) cube complex X ~ Y (equivalently, Y is aspherical and 71 (X) = m(Y)). We
also say in this case that 71(Y") is cubulated. We are interested in 3-manifolds which are
cubulated.

Remark 6.1. If Y = M3, and X ~ Y is a CAT(0) cubing, then dimX may be > 3. Tao
Li has shown that there are hyperbolic 3-manifolds Y such that there is no homeomorphic
CAT(0) cubing X = Y [56].

A theorem of [73, Sageev 1995] associates a cocompact action of 71 (M) on a (globally)
CAT(0) cube complex if M contains an immersed essential surface. Sageev’s construction
gives a cube complex in which each immersed essential surface in a 3-manifold corresponds
to an immersed hyperplane.

For example, Sageev’s construction applied to a fiber surface gives an action factoring
through the Z action on R, with quotient S*. In the case of a geometrically infinite surface in
a hyperbolic 3-manifold, Sageev’s construction gives rise to a crystallographic group action.

Theorem 6.2 ([12, Bergeron-Wise 2012]). Closed hyperbolic 3-manifolds are cubulated.

Bergeron-Wise give a condition for cubulation. If every geodesic in H? has the property
that its endpoints in ., H? are separated by the limit set of a quasifuchsian surface, then one
may use finitely many surfaces so that Sageev’s construction will give a proper cocompact
action on a CAT(0) cube complex (Figure 6.1).

The surfaces produced by Kahn-Markovic have limit sets which are close to any given
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Figure 6.2. Some graphs with their associated RAAGs
Sr =Rose U, (k-torus for each k-clique in T")
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Figure 6.3. Defining the Salvetti complex St

circle, so can separate any pair of points in O, H?3. Thus closed hyperbolic 3-manifolds are
cubulated.

There were many known examples of cubulated hyperbolic 3-manifolds before this the-
orem, e.g. alternating link complements [7, Aitchison-Rubinstein]. Other examples come
from duals to tessellations by right-angled polyhedra.

6.1. Right angled Artin groups.

Definition 6.3. Let I" be a simplicial graph. The right-angled Artin group Ar (RAAG)
defined by I" has a generator for each vertex v € V(I'), and relators vw = wv if (v,w) €
E(T) is an edge of T

The Salvetti complex Sp associated to Arp is a K (Ar, 1) which is a locally CAT(0)
cube complex, defined by taking a wedge of loops (rose), one for each generator, and attach-
ing a k-torus for each complete subgraph (k-clique) of I' (Figure 6.3). The 2-skeleton by
construction gives a presentation 71 (Sp) = Ar.

The Salvetti complex has the property that the links of the vertices are flag simplicial
complexes, and therefore these complexes are locally CAT(0).
Examples include

o The free group associated to the trivial graph I" with no edges, for which St is a wedge
of loops

o The n-torus associated to the complete graph on n vertices K,,, for which Sx, = 1T"
the n-torus

o The complement of a chain of 4 links (Figure 6.4).

6.2. Special cube complexes. Special cube complexes are defined in terms of properties
of their hyperplanes. Hyperplanes are embedded and 2-sided. Moreover, there are no self-
osculating or inter-osculating hyperplanes (Figure 6.5). The midplane of a cube is dual to the
edges of the cube it crosses. Thus, we may regard a hyperplane as an equivalence class of
(oriented) edges generated by the equivalence relation of two edges lying on opposite sides of
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Figure 6.4. The complement of a chain of 4 links

a square. If the orientation of edges dual to a hyperplane is preserved in an equivalence class,
then the hyperplane is said to be 2-sided. If no adjacent edges of a square are in the same
equivalence class, then the hyperplane is embedded. If equivalent edges share a common
vertex, which is the end or beginning of both edges, then we say that the hyperplane osculates
(Figure 6.5 (a)). If two hyperplanes osculate at one vertex, and cross at another vertex,
then we say that the hyperplanes interosculate (Figure 6.5 (b)). These are the forbidden
configurations in a special cube complex.
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Figure 6.5. Configurations forbidden in a special cube complex
The motivating examples of special cube complexes are Salvetti complexes of RAAGsS.

Here’s an example of a special cube complex X homeomorphic to a surface. The hyper-
planes consist of six curves colored blue and red in Figure 6.6.

(a) The hyperplanes (b) The green square complex

Figure 6.6. A special cube complex X homeomorphic to a surface
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Figure 6.7. The crossing graph of X

The crossing graph T'(X) of a cube complex X has vertices corresponding to the hyper-
planes of X, and two vertices of I'(X) are connected by an edge if and only if the corre-
sponding hyperplanes of X cross (Figure 6.7).

Theorem 6.4 ([39, Haglund-Wise 2007]). If X is a special cube complex with hyperbolic
fundamental group 1 X (in the sense of Gromov), then w1 X embeds in a RAAG Ar(x) and
quasi-convex subgroups of w1 X are separable.

For the proof, take the crossing graph I'(.X) associated to X and form the RAAG Ar ).
There is a natural map from X to the Salvetti complex Sr(x) sending every edge dual to
a hyperplane to the corresponding edge in the Salvetti complex, and extending over the
higher skeleta. This map is a locally isometric immersion when X is special, and therefore
m1(X) < Arx).-

For example, applying this construction to St just recovers the identity isometry St —
Sr and the isomorphism 71 (Sp) = Ap!

The notion of a virtual retract was defined independently by [60, Long-Reid] and [38,
Haglund]:

Definition 6.5. A subgroup L < G is a virtual retract if there exists G’ < G a finite-index
subgroup such that < G' and a retract r : G’ — L, meaning |, = Id.

E.g. if A C T is a subgraph spanned by vertices, there is a natural retract Ar — Aj,
setting generators of Ar corresponding to vertices not in A to 1.

Claim: If G is residually finite, and L is a virtual retract of Gz, then L is separable in G.

Haglund proved that quasi-convex subgroups of RAAGS are virtual retracts [38]. This is
proved geometrically using “‘canonical completions™ and “canonical retracts”.

Theorem 6.6 ([2, Agol 2008]). If M?3 is special cubulated, then M is virtually fibered.

Since M is special cubulated, M ~ X, where X is a CAT(0) compact special cube
complex. Thus 71 (M) = m1(X) < Ap(x), a Right-Angled Artin Group. The RAAGs have
the RFRS property, so it passes to 1 (M) and implies that M is virtually fibered.

We resolved a conjecture of Wise which implies Thurston’s questions.

Theorem 6.7 ([86, Conjecture 19.5 Wise] [3, Agol 2012]). Locally CAT(0) cube complexes
with hyperbolic fundamental group are virtually special.

The importance of hyperbolicity in the hypotheses of this theorem is made apparent by
the following remarkable theorem:

Theorem 6.8 ([17, Burger-Mozes 1997]). There are simple groups which are the funda-
mental group of a locally CAT(0) square complex whose universal cover is a product of
finite-valence regular trees.
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Corollary 6.9. Let M be a closed hyperbolic 3-manifold. Then w1 M is LERF, large, and
M virtually fibers.

A group G is large if there is a finite-index subgroup G’ < G which surjects a free group
on 2 generators.

This resolves positively Thurston’s questions 15-18. The next sections will discuss the
background needed in the proof of Theorem 6.7. We remark that the proof of Theorem 6.7
makes use of ideas introduced in the context of 3-manifold topology, including hierarchies
and relatively hyperbolic Dehn filling. However, to prove the theorem, it is essential that one
work in the category of hyperbolic groups, rather than specialize to hyperbolic 3-manifold
groups which are of interest for Thurston’s questions.

6.3. Amalgamated products and HNN extensions. Given groups A, B, C, and injections
w1 :C — A @y : C — B, we may form the amalgamated product G = A x¢ B, which
has a (relative) presentation (A, B|p1(c) = p2(c), ¢ € C). By combinatorial group theory,
A, B,C — @ inject.

Similarly, suppose we have two subgroups B, C' < A, such that there is an isomorphism
¢ : B — C. Then the HNN extension G = Asx, has the presentation (A, t[tct™ =
¢(c),c € B).

For example, all RAAGs are HNN extensions (more generally, any group GG with a sur-
jection G — Z). For any vertex v of a graph I' defining a RAAG, one has an associated
HNN decomposition, where A is the RAAG Ar_,, where I' — v is the subgraph obtained by
deleting all edges adjacent to v. The subgroup defined by link(v) is both B and C in this
case, where ¢ = Id, since the generator corresponding to v in Ar commutes with all the
elements in Ay, (). This HNN decomposition may be realized geometrically by splitting
the Salvetti complex St along the hyperplane dual to the generator corresponding to v.

For example, applying this to the complete graph RAAG Ak, , one obtains the HNN
extension Z" = 7" 'x4. Another example is a 3-manifold fibered over S', A = 71 (Fy),
B=C=A,and ¢ : B — C'is an isomorphism induced by a homeomorphism f : Fj; — Fj,.
Then 7 (Tf) = Ax,.

6.4. Quasiconvex hierarchies. The notion of a hierarchy originated in the study of 1-
relator groups (the Magnus hierarchy), and in the study of Haken 3-manifolds (a Haken
hierarchy).

Definition 6.10. The class of groups QVH (standing for “Quasiconvex Virtual Hierarchy”)
are defined inductively by
(1) 1€ QVH
2) If G = Axc Bor G = Ax,, with A, B,C € QVH and quasiconvex in G, then
G € QVH.
(3) Let H < G with [G : H] < oco. If H € QVH then G € QVH (in particular with (1),
any finite group K € VH).
The class of groups M Q% is defined similarly, but we require that C' is malnormal in G
in (2) as well.

It is not hard to show that if M is a hyperbolic 3-manifold, then 71 (M) € QVH if and
only if M is virtually Haken with a finite-sheeted cover containing an embedded quasifuch-
sian surface.
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Special cube complexes with hyperbolic fundamental group are also in QV7H, with hier-
archy induced by cutting along hyperplanes.

If we have a closed hyperbolic 3-manifold M fibering over S* with fiber 3, then 71 (X2)
is not quasi convex in 71 (M), so 71 (M) is not necessarily contained in QVH.

Theorem 6.11 ([86, Wise 2011]). Let G € QVH. Then G is virtually special. That is, there
is a CAT(0) cube complex X so that G acts properly cocompactly on X, and a finite-index
subgroup G' < G such that X /G is a special cube complex.

Wise showed that one-relator groups with torsion are in QVH. This resolved a conjecture
of [9, Baumslag 1967].

6.5. Relatively hyperbolic Dehn filling. Recall that the figure eight knot complement has
a complete hyperbolic metric of finite volume. However, the figure eight knot group G is not
a hyperbolic group, since it contains the peripheral subgroup Z? = P < G coming from the
m1-injective torus that is the boundary of a tubular neighborhood of the knot.

However, I mentioned that Thurston proved that all but finitely many Dehn fillings on the
figure 8 knot complement are closed hyperbolic 3-manifolds. In fact, the core of the solid
torus of the Dehn filling is a closed geodesic in the hyperbolic structure on the Dehn filling.

Let G/, be the fundamental group of p/q Dehn filling on the figure eight knot comple-
ment. Then P N ker{G — G,,q} = ((p,q)). In fact, ker{G — G/} is freely generated
by conjugates of the subgroup ((p, q)).

The group G is not hyperbolic, but it is relatively hyperbolic. Roughly, this means that
if we take the coset graph of the subgroup P, then this graph is -hyperbolic. This notion
was suggested by Gromov, and developed by Bowditch [16] and Farb [28]. There’s an extra
condition needed called “bounded coset penetration”.

Alternatively, Groves and Manning showed that if one attaches “combinatorial horoballs”
to the cosets of the peripheral group P, then the resulting space is d-hyperbolic if and only
if GG is relatively hyperbolic to P [36].

For example, if F' is a free group, and h € F is a primitive element, then F' is hyperbolic
relative to (h).

For a relatively hyperbolic group, such as the figure eight knot complement, there is an
analogue of Thurston’s hyperbolic Dehn filling theorem.

Theorem 6.12 ([36, Groves-Manning][68, Osin]). Let G be a group which is hyperbolic
relative to the subgroup P. Then there is a finite set of elements S C P — {1} so that if
P’ QP is finite-index with SN P’ = (), then the quotient G| < P’ > is a hyperbolic group.
Moreover, PN < P’ >= P’

For example, if GG is a hyperbolic group, and i € G is a primitive element, then G is
hyperbolic relative to (h). Then for all sufficiently large n, G/ < h™ > will also be a
hyperbolic group. This result is due to Gromov (or rather small-cancellation theory), but the
relatively hyperbolic Dehn filling theorem vastly generalizes this result.

6.6. MSQT. We state a special case of the Malnormal Special Quotient Theorem (MSQT):

Theorem 6.13 ([86, Wise 2011]). Let G be a virtually special hyperbolic group, and let
h € G. Then there exists N such that G /{(h™)) is virtually special hyperbolic for all N|n.

Remark: The hyperbolicity of G/ < h™ > for n large may be proved using relatively
hyperbolic Dehn filling.
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The general statement of the malnormal special quotient theorem is a bit more technical
to state. First we need a definition. A collection of subgroups {H1, ..., H,,} < G form an
almost malnormal collection provided that for any element g € G with |H;NgH ;g™ '| = oo,
we must have ¢ = j and g € H;. We state a strengthened version of the MSQT:

Theorem 6.14 ([86, Theorem 12.3, Malnormal Special Quotient Theorem (MSQT)],[5]).
Let G be hyperbolic, virtually special, and H = {H;,...,Hy} < G a almost malnormal
collection of quasi convex subgroups. Then there exists H; <t H; such that forany H! < H;,
such H] <\ H; and H;/H! is virtually special hyperbolic, the quotient group G = G| <<
Hi,..., H! >> isvirtually special hyperbolic.

Remarks on the proof. The original version of Wise assumes that [H; : H]] < oco. The
hypothesis implies that (G, H) is relatively hyperbolic. Using hyperbolic Dehn filling results
of Groves-Manning and Osin, one may conclude that G is hyperbolic whenever H;/H;
avoids a finite set of elements by Theorem 6.12. The difficult thing is showing that the
quotient is cubulated and virtually special.

What Wise actually proves is that there is a finite-index normal subgroup G’ <t G which
has an induced peripheral structure (G’, H'), so that 7’ contains representatives of each G’
conjugacy class of H; N G'. Moreover, he shows that a hyperbolic Dehn filling on (G’, H')
admits a malnormal quasiconvex hierarchy, so is in M Q#H. Then he applies his joint work
with Haglund [42] and Hsu [47] to conclude that groups with a malnormal quasiconvex
hierarchy are virtually special. One may then choose the Dehn filling of G’ to be induced
from a Dehn filling of GG, and thus the Dehn filling of G will be virtually special. The main
difference in the new proof of this theorem in [5] is that we first form a malnormal hierarchy
of G’ which terminates in copies of H’. This gives a malnormal hierarchy for any Dehn
filling of G’, giving the same conclusion.

The MSQT is the key result that Wise uses to prove that groups in QVH are virtually
special (Theorem 6.11).

6.7. Weak separability of subgroups. The starting point for applying Wise’s results to
prove his conjecture is the following result proved in the appendix to the paper:

Theorem 6.15 ([3, Agol-Groves-Manning, Appendix]). Let G be a hyperbolic group, and
H < G a quasi-convex virtually special subgroup. Then H is weakly separable in G.

The proof of this result is an inductive argument using relatively hyperbolic Dehn filling.
It is a direct generalization of the previously mentioned result (Theorem 5.2) that if hyper-
bolic groups are residually finite, then quasiconvex subgroups are separable. The proof is by
induction on height of quasiconvex subgroups, which measures how many conjugates of a
subgroup intersect in an infinite group. So finite groups have height zero, almost malnormal
groups have height 1. One uses relative hyperbolic Dehn filling to reduce the height, and
eventually find a quotient in which the image of the subgroup is finite. Note that the same
induction on height is used by Wise in the proof of Theorem 6.11 in order to reduce the case
of QVH to the M QH case.

Hyperbolicity is used in a crucial way in the proof of this theorem, making it inapplicable
for example to the examples of Burger-Mozes (Theorem 6.8).
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7. Outline of the proof of Wise’s conjecture

The proof of Wise’s conjecture (Theorem 6.7) is by induction on dimension. Let X be a
compact locally CAT(0) cube complex with G = 7 X hyperbolic. Let W 9 X be the
immersed hyperplane complex. Then the maximal dimension of cubes in W is one less than
those in X, so by induction we may assume that W is virtually special. Then we may apply
weak separability to conclude under these hypotheses that

Theorem 7.1. There exists G < G, G/G" = G, X/G” >~ X such that X has 2-sided
embedded acylindrical compact hyperplanes.

The acylindrical hypothesis is equivalent to the condition that the fundamental groups of
the hyperplanes of X’ are malnormal in G”. If X — X were a finite-sheeted cover, then we
would be done, since we would have proved that 71 (X) is in QVH. However, the proof of
the theorem produces an infinite-sheeted regular cover.

Definition 7.2 (Crossing Graph). Let I'(X) be a graph with vertex set V(I'(X)) = W the
hyperplanes of X', and edges (W7, Ws) € E(I'(X)) if WiNW3 # () or if there is an essential
cylinder going between W, and Ws.

Definition 7.3 (Coloring space). Let [n] = {1,...,n}. Let
Cn(T) ={c: V(') = [n]lc(Wr) # c(Ws),Y(W1, W) € E(T')}
denote the space of n-colorings of the graph I'.

We regard C,,(I") as a closed subspace of the Cantor set [n]V ). If deg(T') < k, then
Cra(T) # 0.

A coloring ¢ € C,(I'(X)) gives rise to a hierarchy of X: cut along the hyperplanes
colored 1, then the hyperplanes colored 2, ..., and finally the hyperplanes colored n. What is
left at the ends are stars of the vertices of X', with residues of the colorings remaining on the
boundary facets. We call these colored polyhedra.

The idea of the proof is to “reverse-engineer” a hierarchy of a finite-sheeted cover of X,
which is modeled on the hierarchy coming from a coloring of X'. We want to find a finite
collection of colored polyhedra which is balanced, so that the number of colorings of a face
is the same for the two polyhedra containing the face.

Then we may glue together polyhedra inductively, in order to reverse-engineer a hierar-
chy of a finite-sheeted cover, which is therefore virtually special by Wise (Figure 7.1).

7.1. Colorings of graphs. I'll discuss a lemma which is used in the proof of Wise’s con-
jecture.
Let I' be a graph of bounded valence < k, and let G be a group acting cocompactly on I
Let C,,(I") be the space of all colorings of I". Then C,,(I") is a compact topological space,
considered as a closed subspace of the Cantor set [n]''.

Lemma 7.4. There exists a probability measure i on Cy41 (') which is G-invariant.

The proof of this lemma proceeds by coloring the vertices V' (I') randomly with n-colors,
n > k + 1. The probability that two endpoints of and edge e € E(I") have the same color is
1/n. One can produce an (n — 1)-coloring of the vertices, by sending each vertex colored n
to the smallest color unused by its neighbors. By induction then, one produces a measure on
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Figure 7.1. Gluing polyhedra at the 4th stage of the hierarchy should preserve the lower stages

(k + 1)-colorings of V(I') which have probability of coloring the endpoints of e the same
color as < 1/n. Taking a weak-* limit of these measures, one obtains a G — invariant
measure f on V(F)WH] which is supported on the colorings of I'.

7.2. Colorings and hierarchies. The probability measure is just an artifice to construct a
solution to the gluing equations. We want to reverse engineer a hierarchy of a finite-sheeted
cover. We have a finite (non-compact) hierarchy associated to the cover &X'. The probability
measure allows us to extract some finiteness associated to this hierarchy.

7.3. Polyhedra and facets. Let P denote the stars of vertices of X, which we will call
polyhedra. Let F denote the facets of X', which are dual to each edge of X, and are the
facets of the polyhedra P. Each facet F' € F will be contained uniquely in two polyhedra
P,Q € P, PNQ = F. There are 4 polygons in the example in Figure 6.6 up to the action
of G (we won’t draw P’ and ()’ which are duplicates of P and Q). As a concrete example,
we take a covering space of X which kills the red curves, and kills the third power of the
blue curves, giving a cover looking like Figure 7.2. Note that only half of the cover is drawn;
the other half is obtained by doubling along the blue curves to get an infinite surface without
boundary.

7.4. Supercoloring. Each polyhedron and facet of &’ will correspond uniquely to one of X
via the covering X — X.

We refine the k£ + 1-coloring of the hyperplanes WV by the coloring of a neighborhood
of size j in I'(X"), where j is the color of a vertex, to get supercolored hyperplanes. The
facets F' € JF get supercolored by their corresponding hyperplanes, and polyhedra will be
supercolored by their facets.

7.5. Polyhedral gluing equations. The variables for the gluing equations will be super
colored polyhedra, and the gluing equations will say that for a given super colored facet F',
the super colorings of P which induce the same super coloring of F' must equal the super
colorings of ) which induce the super coloring of F'. We require that the variables are G-
invariant, in which case they are determined by finitely many variables corresponding to the
polyhedra of X (or G-orbits of super colored polyhedra of X).

The G-invariant measure p gives a solution to the gluing equations with non-negative
weights. Then we can get an integral solution to the gluing equations with non-negative



Virtual properties of 3-manifolds 159

A
| 1 | |
= ~ II._ Fi
\l. . ~ e \.‘ b - _-"'/ r"
e S | A —~ A
- ] =F ] e
| | P_IE Q| I
T L ., ya o
B e b i TR b i
1 B ) 1 1
) T | ) T |
- ¥ — 4 b L
| | | |
— ‘. r p— F. — m
" \ \\‘- -/,1' - "l.- '\._ 3 ."/
1 o 1 T |
|
[} = 1 [ ——
” Lk A - A
A — R
| | | |
.'_L P X
~ :

Figure 7.2. The cover X of the cube complex in Figure 6.6 and polyhedra and facet

Figure 7.3. The face F' has different supercolorings, even though the facet is colored the same in both
colorings

weights, since the equations are linear with integral coefficients. We take the integral solution
to the polyhedral gluing equations, and use them to glue up a finite-sheeted cover of X,
which is “modeled” on the hierarchies associated to colorings of X.

7.6. Gluing up the hierarchy. We construct a sequence of (usually disconnected) finite
cube complexes Vj, k+1 > j > 0, with boundary pattern {01 (), ..., 09;(V;)} determined
by the unpaired faces colored j. The final stage 1y will be a finite-sheeted cover of X. The
first stage V11 is obtained by taking a number of copies of each supercolored polyhedron
determined by the integral solution to the gluing equations. In our example, £ = 6, so the
first stage is V7 (Figure 7.4). If we glued the faces of the polyhedra V. together preserving
colors, then we would obtain a finite-sheeted branched cover of X. So we have to be careful
at each stage that the gluing extends to an unbranched covering space.

The next stage of the hierarchy V), is obtained from Vj; by gluing the faces labeled
k + 1 in pairs along matching supercolored faces (in our example, k& 4+ 1 = 7 is represented
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Figure 7.4. Collection of supercolored polyhedra determined by the solution to the gluing equations,
giving V7

by black, obtaining Vg, Figure 7.5).

P | Q P | Q
N

Q' Q'
) P/r;-* | P /’J' RQ I 4\()

JPI)P1 ra(raqf

Figure 7.5. Gluing V7 to get Vs

We glue V5 from a cover Vs of Vs by gluing the boundary pattern dsVg (which in our
example is colored yellow Figure 7.6):

The supercoloring guarantees that the two sides of 05V have consistently supercolored
hyperplanes, and therefore is a finite-sheeted cover of the hyperplane in a representative
coloring of X (Figure 7.6 (a)). The MSQT allows us to pass to a finite-sheeted cover 1)6 in
which both sides of 36{/6 match by an isometry (Figure 7.6 (b)).

We obtain V; from V; 1 by finding a covering space f)i_i'_l — V;+1 in which the boundary
pattern d;.1V; 1 may be matched up in pairs which reverse the coorientations and preserve
super colorings. Constructing the cover V; ; requires another application of Wise’s MSQT.

The cube complex V), will have no boundary pattern, and thus will give a finite-sheeted
covering space Vy — X and which has by construction has embedded acylindrical hyper-
planes, and therefore a malnormal hierarchy.

One more application of Wise’s theorem (MQH = virtually special) gives a cover
Vo — X which is special.
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Figure 7.6. Taking a cover Ve of Vs to be able to glue to get Vs

8. 3-manifold applications

8.1. Non-positive curvature. We state a result that combines the statements of theorems
of Liu and Przytycki-Wise:

Theorem 8.1 ([58, Theorem 1.1] [71, Corollary 1.4]). Let M be an aspherical compact
3-manifold. The following are equivalent:

(1) M admits a complete metric of non-positive curvature
(2) M is virtually homotopic to a special cube complex
(3) w1 (M) virtually embeds in a right-angled Artin group
(4) 71 (M) is virtually RFRS

In particular, such manifolds are virtually fibered.

The manifolds which do not admit a metric of non-positive curvature are graph mani-
folds, and have been characterized by Svetlov in terms of the BKN equations [78].

A corollary of this result is that if M/ admits a non-positively curved metric, then 71 (M)
is linear (in fact, embeds in GL(n,Z)). It is still unresolved whether graph manifold groups
are linear. It would be remarkable if there are examples of fibered graph manifolds with
non-linear fundamental group, since it would imply the existence of non-linear mapping
class groups.

8.2. Virtual torsion. Let K be a finitely generated abelian group.

Theorem 8.2 ([76, Sun 2013]). Given M a closed hyperbolic 3-manifold, there is a finite-

sheeted cover M — M such that Hy (M) = K @ L.

For each summand Z/NZ of K, Sun constructs an immersed complex C'y — M which
has a surface with one boundary component which wraps N times around a loop, and such
that 771 (C'y) — 71 (M) is an injection, in fact with quasiconvex image. Take such a complex
for each cyclic summand of K, and immerse a wedge of these complexes in M to get a
quasiconvex immersion of a complex C' — M such that 71 (C) < 71 (M) is quasiconvex.
We also have by construction H;(C;Z) = K. By the virtual retract property, there is a

cover M — M such that there is a retract 7 : 7y (M) — m(C). Then we have a retract
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re : Hi (M) — H,(C). Therefore, we have H,(M) = H,(C) & ker(r,) = K & L, for
L = ker(ry).

Theorem 8.3 ([77, Sun 2014]). Let M be a closed hyperbolic 3-manifold. For any closed
manifold N, there is a finite cover M — M such that there is a degree 2map p : M — N.

Since the map H*(N;Z/pZ) — H?3(M;Z/Z) is an isomorphism for p odd, there is
an embedding of cohomology rings H*(N;Z/pZ) — H*(M;Z/pZ). Thus, not only can
one achieve arbitrary torsion in covers of a hyperbolic 3-manifold, but one can also embed
any cohomology ring of a 3-manifold, at least with odd order coefficients (one may also use
rational coefficients).

8.3. Heegaard gradient. For )M a closed 3-manifold, the Heegaard genus g(M) is the
minimal genus of a surface X, C M such that ¥, bounds handlebodies to each side (>, is
a Heegaard surface. The Heegaard gradient of M is

29(M) — 2
Vg(M) = inf M
M—M finite [’/TlM 7T1M]

This notion was introduced by Lackenby to probe the virtual Haken conjecture [54].
If M is fibered, then it is easy to see that Vg(M) = 0.

Conjecture 8.4 (Lackenby [54]). Let M be a closed hyperbolic 3-manifold. M is virtually
fibered if and only if Vg(M) = 0.

This conjecture now follows (essentially trivially) from the virtual fibering conjecture,
and therefore hyperbolic 3-manifolds have Vg(M) = 0. Note that Ichihara has shown that
Seifert-fibered 3-manifolds with infinite fundamental group have zero Heegaard gradient,
even though some of them are not virtually fibered. It remains to compute the Heegaard
gradients of graph manifolds which are not virtually fibered.

Theorem 8.5. A closed orientable 3-manifold M has Vg(M) < 0 if and only if it is prime
or M = RP3#RP3.

Proof. First, note that if M is not prime or RP*#RP?, then Vg(M) > 0. The sphere de-
composition of M gives a graph-of-groups decomposition of 71 M with trivial edge groups.
After passing to a finite-sheeted cover, one may assume that the vertices of this graph all
have degree > 3. Then the corank of m; M is > 1 (the corank is the maximal rank free
group surjected by 71 (M)). As one passes to further finite-sheeted covers, the corank grows
at least linearly with the index, and therefore the corank gradient is > 0, a fortiori the rank
gradient and Heegaard gradient.

If |71 (M)| < oo, then Vg(M) < 0 by the Poincaré conjecture, and if |71 (M)| = Z or
ZJ2Z % Z/27Z, then Vg(M) = 0.

Now, suppose M is aspherical. If M has non-zero Gromov norm, then M virtually
fibers, and therefore Vg(M) = 0 [71]. If M has zero Gromov norm, then M is a graph
manifold.

If M is Seifert-fibered (with infinite fundamental group), then this was proved by Ichi-
hara [48]. It is easy to check that this holds for graph manifolds with non-trivial JSJ de-
composition as well. There is a finite-sheeted cover in which each Seifert piece is homeo-
morphic to ¥ x S!, for some surface with boundary Y. The Heegaard genus of each piece
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is b1(X) + 1. By passing to a further cover, we may assume that the JSJ decomposition
is bipartite, so that M = M; Up My, where M; = ¥; x S (3; may be disconnected),
and T = OM; = OM,; is the union of JSJ tori. Each M; has a Heegaard splitting of
genus by (M;), in M; = H; U C;, where H; is a union of handlebodies of genus by (M;),
and T = OM; C 0C;. We may construct a Morse function on M, which has T as a
level set, and induces a perfect Morse function M;, which is standard on H; and C; (al-
though the restriction to M, will have the indices flipped). The index O critical points
lie in Hj, so that there are by(M;) index O critical points, and similarly the index 3 crit-
ical points lie in Ha, so there are by(Mz) of them. There are by(Hy) = by (M) critical
points of index one in Hy, and there are bo(Msz) = by(Msy) — bo(Ma) critical points of
index one in Cy. Similarly, there are by (Hz) = by(M2) critical points of index two in
Hs, and bo(M;y) = by(My) — bo(My) critical points of index two in C;. Now, detele-
scope the Morse function on M to get a Heegaard splitting of M, then cancel all but one
of the index O critical points with index 1 critical points. This gives a Morse function with
by (Hl) + bl(MQ) - bo(Mg) — bo(Ml) = bQ(Ml) + bQ(MQ) = 61(21) + 61(22) index one
critical points.

Now we observe that by passing to covering spaces M — M, we may make the ratio
(b1 (21) +b1(22))/[M : M] arbitrarily close to zero, by unwrapping the S* direction of M,
and M> an arbitrarily large amount. This shows that the Heegaard gradient is zero. ]

Definition 8.6. Let G be a group, then d(G) is the minimal number of generators needed to
generate G (if G is not finitely generated, set d(G) = o0).
Now, suppose G is a residually finite group. Define

d —1
Vd(G) = in &
G<G,|G:Gl<o [G : G]
If (G,,) is a chain of subgroups G, 11 < G, < G with [G : G,,] < oo, define

V(G (Gn)) = lim ==

Clearly Vd(G) < Vd(G, (G,,)).

Let M be a closed aspherical 3-manifold with 7 (M) = G. Then 2d(G) < g(M), and
therefore Vd(G) = $Vg(M) = 0. It is known that there are manifolds M with d(G) <
% g(M) [14, 57]. If M is hyperbolic, and G,, < G are congruence subgroups, then it is shown
that Vg(M, G,,) > 0 [54, 59]. As observed by Abert-Nikolov, the fixed price conjecture of

Gaboriau would imply that Vd(m; M, G,,) = 0 for any cofinal chain (G,).
Question 8.7. For M a closed 3-manifold with 71 M = G, what is

inf d(m N N)?
Lind(mN)/g(V)

For further properties of 3-manifold groups, we refer to the comprehensive survey [8,
Section 6].

9. Cubulated groups

Theorem 9.1 ([63, Markovic 2012]). Let I" be a word-hyperbolic group, such that 01" =
S? (and T acts effectively on Os,T'). Suppose moreover that T is cubulated. Then T is
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isomorphic to a Kleinian group. In particular, if I is torsion-free, then I' = w1 (M) for some
closed hyperbolic 3-manifold.

This gives a possible approach to Cannon’s conjecture, which is that I' is a Kleinian
group. One could try to carry out the technique of Kahn-Markovic to try to find quasiconvex
subgroups with limit sets circles in 0., 1" which satisfy Bergeron-Wise’s condition, that one
can separate any pair of points in O, 1" by a circle limit set of a surface subgroup.

We remark that there are many other classes of cubulated hyperbolic groups to which
Theorem 6.7 applies: C’ (%) groups (Wise), random groups at density < é (Ollivier-Wise),
certain ascending HNN extensions of free groups (Button, Hagen-Wise), and isometry groups
of certain polygonal complexes (Desgroseilliers-Haglund, Futer-Thomas).

10. Group theoretic applications

We point out a minor observation regarding Haglund-Wise’s theorem [39]:

Theorem 10.1. Ler G act properly cocompactly and virtually specially on a cube complex
X. Then G embeds in a finite extension of a RAAG.

The point is that there is a normal subgroup G’ < G such that X /G’ is special. The
embedding X/G" — Sp(x/qr) is functorial, in that combinatorial automorphisms of X /G’
extend to Sp(x/q). Thus, G embeds in an extension of Ap(x/q) by G/G’. Thus, all
hyperbolic 3-manifold groups embed in finite extensions of RAAGs. This observation may
have importance, for example, in understanding the representations of 3-manifold groups,
by examining the representations of finite extensions of RAAGs.

We point out another consequence of virtual specialness. Given a RF group G, let G
denote its profinite completion.

Definition 10.2. A group G is good if for every finite G-module M, there is an isomorphism
H*(G,M) = H*(G,M).

Theorem 10.3. Let G be a virtually compact special group. Then G is good.

Proof. This follows by induction from [37, Proposition 3.6]. If G is virtually compact
special, then it has a finite-index subgroup which admits a quasi-convex hierarchy. Then
G = A x¢ B, where A, B, C are virtually compact special. By induction, A, B, C are good
groups. Also, by [40], the groups A, B, C are virtual retracts, and therefore are efficient. So
by [37, Proposition 3.6], we conclude that G is good. 0

Remark: We cannot apply directly [37, Proposition 3.9], since we don’t know that G is
subgroup separable, only that quasiconvex subgroups are separable.

In general, cubulated hyperbolic groups are not LERF, for example by Rips’ construction
[72, 85]. However, quasiconvex subgroups are separable. So it is natural to ask for which
hyperbolic groups are finitely generated subgroups quasiconvex? This is a strong form of
coherence.

Theorem 10.4. Negatively curve square complex groups are LERF.

A negatively curved square complex has vertex links graphs of girth > 5, so that it admits
a CAT(-1) metric making each square a hyperbolic square with angles 27 /5. This follows
from a result of McCammond-Wise that negatively curved square complexes are locally
convex [65].
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11. Open questions

1.

10.
11.

12.

13.

14.

(Long-Reid) Can two Kleinian groups which are non-isomorphic have the same profi-
nite completion?

Remark: This is equivalent to the question, given two hyperbolic 3-manifold groups,
do they have the same collection of finite quotients?

Are compact 3-manifold fundamental groups linear?

Remark: The only aspherical case left is graph manifolds which don’t admit a non-
positively curved metric by Theorem 8.1.

Is there an algorithm to detect if a compact cube complex is virtually special?

Find a bound on the index of a cover of an aspherical 3-manifold which is Haken. The
bound should be some computable function of some complexity of the 3-manifold,
such as the minimal number of tetrahedra of a triangulation. In principle, there is
an algorithm which will find a Haken cover. The most practical approach is likely
to enumerate homomorphisms p : 7 (M) — K, K a finite group, and compute
Hy(m1(M); Q[K]), which is the homology of the covering space corresponding to
ker(p) [27].

Let M be a 3-manifold with rank(H;(M;F,)) > 4. Does M admit a regular p-cover
M with by (M ) > 0 ? If this were true, it might yield a more practical approach to
finding Haken covers [55].

For any two hyperbolic 3-manifolds M, M, are there fibered covers M/ — M; such
that there is a non-zero degree map M — M/, which preserves the fibering?

Do closed hyperbolic 3-manifolds contain immersed quasi-fuchsian surfaces of odd
Euler characteristic?

[67, Niblo-Wise] Which 3-manifold groups are LERF? No Seifert-Seifert gluings in
JSJ?

Consider a hyperbolic group G which acts properly on a cube complex with finitely
many orbits of hyperplanes, but not necessarily cocompactly. Is G virtually special?

Which knot groups are RFRS?

Are braid groups B,, RFRS? Remark: Mapping class groups are not virtually RFRS
in general (cf. [58, Liu]).

Does a finite volume hyperbolic 3-manifold M admit a cover which fibers over S*
with orientable foliation of the pseudo-Anosov map?

For M a finite-volume hyperbolic 3-manifold, I' = 1 (M), does rank(I) = rank(I)
= maz{rank(I'/N)|N < T, [ : N] < co}? Note that M has a finite-sheeted cover
M — M which has this property, in fact such that

rank(mi(M)) = rankH,(M;7/27),

since a fibered manifold always has a finite-sheeted cover with this property.

Is there a strengthening of the Malnormal Special Quotient Theorem? Let G be hy-
perbolic and cubulated and (G, P) be relatively hyperbolic. Are there finitely many
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elements that we may exclude in P so that any Dehn filling which avoids these el-
ements is cubulated? This would be a strengthening of the MSQT (and there is an
obvious generalization to multiple peripheral subgroups).

15. Which cocompact lattices in hyperbolic buildings are cubulated?
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L-functions and automorphic representations

James Arthur

Abstract. Our goal is to formulate a theorem that is part of a recent classification of automorphic
representations of orthogonal and symplectic groups. To place it in perspective, we devote much of
the paper to a historical introduction to the Langlands program. In our attempt to make the article
accessible to a general mathematical audience, we have centred it around the theory of L-functions,
and its implicit foundation, Langlands’ principle of functoriality.
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1. Preface

Suppose that f(x) is a monic polynomial of degree n with integral coefficients. For any
prime number p, we can then write f(x) as a product

f(x) = fi(x)--- fr(x)  (modp)

of irreducible factors modulo p. It is customary to leave aside the finite set S of primes for
which these factors are not all distinct. For those that remain, we consider the mapping

p— I, ={n,...,n.}, ni:deg(fi(x)),
from primes p ¢ S to partitions II,, of n. Here are two basic questions:
(I) Is there some independent way to characterize the preimage
P ={p ¢ S: I, =11}

of any partition II of n?

(IT) What is the density of P(II) in the set of all primes, or for that matter, the set of all
positive integers.

Suppose for example that f(z) = x? + 1. Then S consists of the single prime 2, while
P(1,1)={p: p=1(mod4)}

and
P(2)={p: p=3(mod4)}.

® Proceedings of the International Congress of Mathematicians, Seoul, 2014
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This well known supplement of the law of quadratic reciprocity gives us a striking answer to
(D). As for (II), P(1, 1) and P(2) are each known to have density % in the set of all primes.
Combined with the prime number theorem, this gives an asymptotic formula

Jim [POLa)l/(o ) =12 T={11}, {2),

for the set
P(l,z) ={pecP(): p<ux}

of primes p € P(II) with p < x. If the generalized Riemann hypothesis can be proved, there
will be much sharper asymptotic estimates.

In general, the two questions have significance that goes well beyond their obvious initial
interest. The first could perhaps be regarded as the fundamental problem in algebraic number
theory. The second has similar standing in the area of analytic number theory. Both questions
are central to the Langlands program.

In this article we combine an introduction to the theory of automorphic forms with a
brief description of a recent development in the area. I would like to make the discussion
as comprehensible as I can to a general mathematical audience. The theory of automorphic
forms is often seen as impenetrable. Although the situation may be changing, the aims and
techniques of the subject are still some distance from the common “mathematical canon”. At
the suggestion of Bill Casselman, I have tried to present the subject from the perspective of
the theory of L-functions. These are concrete, appealing objects, whose behaviour reflects
the fundamental questions in the subject. I will use them to illustrate the basic tenets of
the Langlands program. As we shall see in §4, L-functions are particularly relevant to the
principle of functoriality, which can be regarded as a foundation of the Langlands program.

The new development is a classification [4] of automorphic representations of classical
groups G, specifically orthogonal and symplectic groups, in terms of those of general linear
groups GL(N). It was established by a multifaceted comparison of trace formulas. These
are the trace formula for G [1] and its stabilization [2], which is now unconditional thanks
to the proof of the fundamental lemma [33], and the twisted trace formula for GL(N) [22]
and its stabilization, which is still under construction [31, 41, 42]. We refer the reader to the
surveys [3, 5, 6], each written from a different perspective, for a detailed description of the
classification. We shall be content here to formulate a consequence of the classification in
terms of our two themes, L-functions and the principle of functoriality.

Upon reflection after its completion, I observe that the article is not typical of plenary
reports for an ICM. It represents a broader, and perhaps denser, introduction than is cus-
tomary. I hope that the nonspecialist for whom the article is intended will find the details
comprehensive enough without being overwhelming.

2. Classical introduction

Recall that a Dirichlet series is an infinite series
— (2.1)

for a complex variable s and complex coefficients a,. If the coefficients have moderate
growth, the series converges when s lies in some right half plane in C. If they are bounded,
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for example, the series converges absolutely when the real part Re(s) of s is greater than 1.
More generally, if the coefficients satisfy a bound

lan] < en,

for positive real numbers ¢ and k, the series converges absolutely in the right half plane
Re(s) > k + 1. Since the convergence is uniform in any smaller right half plane, the sum of
the series is an analytic function of s on the open set Re(s) > k + 1.
The most famous example is the Riemann zeta function
= 1
(s)=3 = (2.2)
n=1 n
Since the coefficients are all equal to 1, this converges as an analytic function of s for
Re(s) > 1. Euler had studied the series earlier for real values of s. He discovered a re-

markable formula )
=TI (=,=) 23)
p

for ((s) as a product over all prime numbers p, which he proved using only the fundamental
theorem of arithmetic and the formula for the sum of a geometric series. With the later theory
of complex analysis, Riemann was able to extend the domain. He showed that the function
has analytic continuation to a meromorphic function of s in the entire complex plane, which
satisfies a functional equation

C(s) = 2°7" L sin(ws/2)(1 — s)¢(1 — ) (2.4)
in terms of its values at points s and 1 — s. He observed further that if
Ly(s) = m*/*I(s/2),

where I'(+) is the gamma function (here and in (2.4)), the product

L) = La(o)6(s) = La(s) - TT (=) @5)

satisfies the symmetric functional equation
L(s) = L(1 —s). (2.6)

The functions ((s) and L(s) are both analytic in the complex plane, except for a sim-
ple pole at s = 1. Riemann conjectured that the only zeros of L(s) lie on the vertical line
Re(s) = 1/2. This is the famous Riemann hypothesis, regarded by many as the most im-
portant unsolved problem in mathematics. Its interest stems from the fact that the zeros
{p = 1/2 + it} of L(s) on this line are in some sense dual to prime numbers, or more
accurately, to logarithms {v = log p"} of prime powers. We can think of the former as a set
of spectral data and the latter as a set of geometric data, which are related to each other by
a Fourier transform. The Riemann hypothesis implies a very sharp asymptotic estimate for
the number

m(z) = [P(x)] = {p < =}
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of primes less than or equal to z. One particularly explicit form [34] of the estimate is
1
|7(z) — li(z)] < 8—\/510g x, x > 2658, 2.7)
s
for the principle value integral

li = — dt.
i) /0 logt

Because the function /i(x) is easy to approximate for large values of x, and is asymptotic

to a function that strongly dominates the error term, this is a striking estimate indeed.

og
For example, if x = 10'%, one sees that 7(x) and li(x) are positive integers with 97 digits
each, the first 47 of which match!

Dirichlet later generalized Riemann’s construction to series of the form

(2.8)

where x(n) is what later became known as a Dirichlet character. We recall that y is a
complex valued function on N such that

x(nm) = x(n)x(m),

x(n+ N) = x(n),
and
x(n) =0, if ged(n, N) > 1,

where NV is a positive integer called the modulus of x. One says that x is primitive if its
nonzero values are not given by restriction of a Dirichlet character with modulus a proper
divisor of N (in which case N is called the proper divisor of ). This means that x generates
the cyclic group of characters on the multiplicative group (Z/ZN)*. The series (2.8) behaves
very much like the Riemann zeta function. It converges if Re(s) > 1. It has an Euler product

Vi, =] (1_;) (2.9)

(p)p~*

It also has analytic continuation to a meromorphic function on the complex plane. However,
its functional equation is a little more interesting.

To state it, we can suppose without loss of generality that x is primitive. We account for
the gamma function and powers of 7 in the analogue of (2.4) by setting

Lg(s,x) = ()"0 ((s + a) /2),

o, ifx(-) =1
a_a(X)_{L ify(—1) = —

where

The product

L(s,x) = Lr(s, x)L" (s, x) = T'r(s, x) H < ) (2.10)
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then satisfies the functional equation
L(s,x) =¢(s,x)L(1 — s,%), (2.11)
where X is the complex conjugate of x, and
(s, x) = N~Y2 ¢ (x), (2.12)

for

N—-1
2(0) = £(1/2,) = N2 (DD xmperm V), =V

The expression in the brackets is a Gauss sum. It is the analogue for a finite field (or ring) of
the classical gamma function for the field R. Its generalizations are an important part of the
functional equations of nonabelian L-functions.

Dirichlet introduced his L-series to study the prime numbers in an arithmetic progres-
sion. Suppose that  is primitive and nontrivial. Dirichlet showed that the L-function (2.8)
(or its normalization (2.10)) is actually an entire function of s € C, and in addition, that
its value L(1,y) at 1 is nonzero. He then used this to show that for any integer a with
gcd(a, N) = 1, the number

m(a, N) = [P(a, N)| = {p = a(mod N)}|
of primes p in the arithmetic sequence
a,a+ N,a+2N,....

is infinite. The generalized Riemann hypothesis is the assertion that the only zeros of the
entire function L(s, x) again lie on the line Re(s) = % It implies an analogue

\7(z,a, N) — ¢(N) " i(z)| < Cy/zlog, x> 2,
of the asymptotic estimate (2.7), for the number
n(z,a,N)=|{p € P(a,N): p <z}
of primes in the arithmetic sequence less than or equal to . The familiar Euler function
d(N)=1{a: 1 <a <N, ged(a,N) = 1}|

equals the number of such arithmetic progressions.

These remarks illustrate the power of L-functions. They are directed at some of the
deepest analytic questions on the distribution of prime numbers. The L-functions we have
described are just the beginning. They are the simplest among an enormous but unified col-
lection of L-functions, which have the potential to resolve fundamental arithmetic questions
about prime numbers, as well as refinements of the analytic questions we have looked at.
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3. Artin L-functions and class field theory

There seems not to be complete agreement on what kind of Dirichlet series (2.1) should be
called an L-function. To qualify, it should certainly converge to an analytic function in some
right half plane Re(s) > k + 1. It should also have an Euler product

H(1+cp,1p—s +cpap ), Re(s) > k +1, (3.1)
p

for a family of coefficients C' = {c,,,, }. Finally, it ought to have (or at least be expected to
have) analytic continuation and functional equation. We shall take these conditions as our
working definition.

The Euler product often arises naturally as an incomplete product, taken over the primes
outside a finite set S. However, the expected functional equation is generally best stated for
the completed product, in which one adds factors L, (s, C) for the primes p € S, as well as
a factor Ly (s, C) for the “archimedean prime” R as above. If we also write L, (s, C') for the
factors with p € S, we then have the given incomplete L-function

LS(S,C) = H LP(‘SvC)a

pgS
and its better behaved completion
L(s,C) = La(s, O)( I Zo(s. C))LS(S, 0). (3.2)
peS

Treating Dirichlet L-functions as a guide, we would be looking for a functional equation
L(s,C) =¢(s,C)L(1 —s,CY), (3.3)
where C"V is some “dual” family of coefficients attached naturally to C, and

e(s,C) = b8P e(L,0),
for a positive real number b, and a complex number 5(%, (') that is independent of s.

The higher L-functions that will be our topic are of two kinds, automorphic and arith-
metic. The former are primarily analytic objects, while the latter are algebraic. The Riemann
zeta function is the common ancestor of them all. It is a mainstay of analytic number theory.
However, it can also be regarded as the “trivial” case of the arithmetic L-functions we shall
describe in this section. Dirichlet L-functions L(s, x) are automorphic. As in the case of the
zeta function, it is the application of analysis (real, complex and harmonic) to L(s, x) that
leads to its analytic continuation and functional equation, and to the location of any poles.

An important family of arithmetic L-functions was introduced by Emile Artin. These are
attached to N-dimensional representations

T FE/Q — GL(N,(C)

of the Galois group I'g,g = Gal(£/Q) of a finite Galois extension £ of Q. We shall
describe them here from the perspective of the questions (I) and (II) raised in the preface.
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For any F/, we have the finite set S = Sg of prime numbers p that ramify in F, and for
any unramified p ¢ Sg, a canonical conjugacy class Frob,, (the Frobenius class) in I'g /q.
This is one of the first constructions encountered in algebraic number theory. To be concrete,
we can take F to be the splitting field of a monic, integral polynomial f(z) of degree n, as in
the preface. For any prime number p, we then have the corresponding factorization of f(x)
into irreducible factors f;(z) modulo p, with degrees n;. This embeds Sg in the finite set
S = Sy of primes p for which these factors are distinct. The choice of f(z) also identifies
' /@ with a conjugacy class of subgroups of the symmetric group .S,,. For any unramified
prime p ¢ Sg, Frob, is then mapped to the conjugacy class in .S,, defined by the partition
I, = {n1,...,n,} of n. In particular, the set

Spl(E/Q) = {p ¢ S : Frob, = 1}

of prime numbers that split completely in E, is the set of p such that f(x) breaks into linear
factors modulo p. It is known [38, p. 165] that Spl(F/Q) characterizes E. In other words,
the mapping

E — Spl(E/Q),

from Galois extensions of Q to subsets of prime numbers, is injective. A variant of the
question (I) would be to characterize its image. This would amount to a classification of
Galois extensions F of Q.

For any p ¢ S, the image r(Frob,) under the representation r of I' ¢ gives a semisim-
ple conjugacy class in the complex general linear group GL(N, C). Artin defined its local
L-factor

Ly(s,7) =det(1— 7’(Frobp)p_s)_17 pé&S, (3.4)
in terms of the associated characteristic polynomial. It clearly has an expansion in terms
of powers of p~*, and therefore has the general form of the factor of p in (3.1). Artin then
defined an incomplete L-function as the Euler product

L5(s,r) =[] Lo(s, ), (3.5)

pES

which he conjectured had analytic continuation with functional equation of the general form
(3.3). The question (IT) will be reflected in the analytic properties of the resulting function of
s. However, the analytic continuation and functional equation of (3.5), let alone the relevant
analogue of the Riemann hypothesis, is a more serious proposition. Since L7(s,r) is a
fundamentally arithmetic object, it cannot be studied in terms of the kind of analysis that
Dirichlet applied to the L-functions L(s, x). Artin treated it indirectly.

Suppose that the Galois group Gal(FE/Q) is abelian, and that r is irreducible, and there-
fore one-dimensional. The classes 7(Frob,) are then just nonzero complex numbers. The
(incomplete) Artin L-function becomes a product

1
L3(s,7) = H —
s 1 — r(Frob,)p

that resembles the Euler product (2.9) of a Dirchlet L-function. Indeed, if p divides the
modulus of y (written p|N), x(p) vanishes, and the corresponding product (2.9) can then be

written
L(s,x) = [ I
pgsS

1
1—x(p)p=s’
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where
S={p: pIN}.

This formal similarity between the products L (s, r) and L (s, x) turns out in fact to be an
identity. More precisely, for any one-dimensional Galois representation r, there is a Dirichlet
character  such that the function L°(s,r) equals L°(s, ). The new L-function therefore
has the analytic behaviour of the Dirichlet L-function L° (s, x). In particular, it has analytic
continuation, and its completed L-function (3.2) (with r in place of C') satisfies the functional
equation (3.3) (with 7 = 7 in place of C'V).

The assertion that for every r there is a x is a rather deep classical result, known as
the Kronecker-Weber theorem. It finesses the question of the behaviour of abelian Artin
L-functions by imposing limits on the set of abelian extensions of Q. From an elementary
calculation in algebraic number theory, one obtains the converse theorem that for every
there is an r. More precisely, if y has modulus [V, there is a one-dimensional representation
r of the abelian Galois group of the cyclotomic Galois extension Q(e%i/ N of Q such that
X(p) equals 7(Frob,), for any p that does not divide N. The Kronecker-Weber theorem can
then be interpreted as the assertion that any finite abelian extension of Q is contained in the
cyclotomic extension of Nth roots of 1, for some N.

The Kronecker-Weber theorem predated Artin by many years. However, Artin was work-
ing over an arbitrary number field F, a finite field extension of Q, rather than Q itself. The
definitions we have made so far are easily extended from Q to F. The ring 0 = op of alge-
braic integers of F' does not generally have unique factorization, so one must replace prime
numbers p in Z with prime ideals p in o, and integers n in Z with general (integral) ideals a
in 0. Any ideal then has a norm

Na=lo/a = (Np1)™ -~ (Np,)* = |o/pa[* -+ -[o/pr|*", (3.6)

where

— 1,01 ar
a=pi---po

is its unique factorization into prime ideals. The definition of a Dirichlet series (2.1) for Q
can then be extended to F’ by replacing the sum over n by a sum over a, and the correspond-
ing variable n~* by (Na)~*®. The same goes for an Euler product (3.1). A Dirichlet series
for F' does reduce to a Dirichlet series for QQ, since the norm of a prime ideal p is a power
of a prime number p. Howeyver, a Dirichlet or Artin L-function over F' represents something
different, even though it can be regarded as a Dirichlet series (2.1) with Euler product (3.1).

Artin worked from the beginning over F'. He defined the L-function L°(s,) for any
N-dimensional representation

r: Ty — GL(N,C) 3.7)

of the Galois group of a finite Galois extension E//F. Algebraic number theory again tells
us that for any p outside the finite set S = Sk of prime ideals for F' that ramify in E, there
is a canonical conjugacy class Frob, = Frobg,p, in I'g/p. The definition (3.4) therefore
does extend to F' if we replace p~® by Np~*. Artin also introduced factors for the ramified
primes p € S, and for the archimedean “primes” v for F' (now a finite set S, rather than just
the one completion R of Q). He conjectured that the resulting product L(s, ) had functional
equation (3.3), with an e-factor £(s, r) he formulated in terms of r.

It was in this context that Artin obtained the analytic continuation and functional equation
for the abelian L-functions L(s,r). Dirichlet characters x can still be defined by a variant
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of the prescription for Q above, and the same analysis that works for Q gives the analytic
continuation and functional equation of a general Dirichlet L-function L(s, x). With this in
mind, Artin established an F'-analogue of the Kronecker-Weber theorem, known now as the
Artin reciprocity law. It again asserts that for any one-dimensional Galois representation r
over F, there is a Dirichlet character x over F' such that x(p) equals r(Frob,), for every
unramified prime ideal p for F'. This leads to the identity L(s,r) = L(s, x) of L-functions,
and therefore the desired analytic properties of the arithmetic L-function L(s, 7).

The Artin reciprocity law is one of the central assertions of class field theory. Unlike
the general constructions above, it becomes much deeper in the passage from Q to F', even
though the assertion remains similar. As in the case F' = Q, the general law asserts that the
abelian field extensions over F' are limited to those attached to Dirichlet characters . These
may then be classified by the “reciprocity law”

r(Frobp) = x(p), peEs, (3-8)

according again to the remark on [38, p. 165].

For completeness, we note that Artin L-functions are but the simplest in the general
family of arithmetic L-functions, called motivic L-functions. A Q-motive M over F' (which
we will not try to define!) also comes with a finite dimensional representation 7,7 ¢ of the
absolute Galois group I'r = I's JF In this general case, however, it takes values in an /-adic
general linear group GL(N, Qy), for a variable prime number ¢ ¢ S. It therefore gives rise
to a (continuous) homomorphism

ri =@ rare: Tr — [ GLIN, Q) (3.9)
l y4

from I'p to a large, totally disconnected group. It therefore represents a much larger quotient
of I' than does a complex valued representation (3.7). The motive should also come with
a finite set .S of prime ideals in F' such that 757 ¢ is unramified in any prime p ¢ S U Sy,
where Sy is the set of primes in F’ that divide the prime ¢ of Q. The family {ry; ¢} of ¢-adic
representations is conjectured to be compatible, in the sense that the image 7/,¢(Frob,) of
the associated Frobenius class in GL(N, Q) is the image of a semisimple conjugacy class
ra (Froby) in GL(N, Q) that is independent of /. The incomplete L-function of M is then
given by an Euler product

L(s, M) = [ det(1 — rar(Froby)(Np) =) ", (3.10)

pES

which converges in some right half plane, and which is again expected to have analytic
continuation with functional equation. Notice that any complex representation (3.7) of '/
that is defined over QQ gives a compatible family (3.9) of ¢-adic representations. It represents
a Q-motive over I of dimension 0.

4. Automorphic L-functions

Dirichlet L-functions are the analytic counterparts of abelian Artin L-functions. Class field
theory, the culmination of many decades of effort by number theorists past, represents a clas-
sification of the finite abelian field extensions of any number field. It tells us that any abelian
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Artin L-function is a Dirichlet L-function. An L-function of the former sort therefore inher-
its all of the rich properties that can be made available for the latter through analysis. What
are the analytic counterparts of nonabelian Artin L-functions? They are the automorphic
L-functions introduced by Robert Langlands [23] in 1970.

Automorphic representations are the nonabelian generalizations of Dirichlet characters,
and their abelian generalizations introduced later by Erich Hecke. They are defined for any
connected, reductive algebraic group GG over the number field £'. Algebraic groups represent
a conceptual hurdle for many, but a reader is invited to take G to be the general linear group
GL(N) of invertible (N x N)-matrices. For any ring A (abelian, with 1), G(A) is then equal
to the group GL(N, A) of (N x N)-matrices with entries in A and determinant equal to a
unitin A. We want to take A to be the ring A = A of adeles of F'. This is a locally compact
topological ring, in which F' embeds as a discrete subring. It is often a second hurdle, but
avoiding it would make matters considerably more complicated. The idea is really quite
simple and natural.

By definition, the group of adelic points of G is a restricted direct product

G =[] G, @

taken over the valuations v on F'. For any v, F, is the locally compact field obtained by
completing F' with respect to v. It is modeled on the standard case of the completion F), =
R of F = Q with respect to the usual absolute value | - |, = | - |. We recall that the
complementary valuations for /' = Q are the nonnegative functions

p~ ", ifu=(a/b)p", fora,b,r € Z, (a,p) = (b,p) =1,
ulp = e
0, ifu=0,

on QQ, parametrized by prime numbers p. In general, the restricted direct product is the
subgroup of elements

.T:Hl'v, z, € G(F,),

in the direct product such that for almost all valuations v, z,, lies in the maximal compact
subgroup G(o0,) of points in G(F3,) with values in the compact subring

0y = {uy € Fyy ¢ |uyly < 1}

of integers in F),. It becomes a locally compact group under the appropriate direct limit
topology. The group G(F') embeds in G(F,) (as a dense subgroup). The diagonal embed-
ding of G(F) into G(A) then exists (because an element in G(F') is integral at almost all
valuations v), and is easily seen to have discrete image.

Since G(F) is discrete in G(A), the quotient G(F)\G(A) is a reasonable object. It
comes with a right invariant measure, which is determined up to a positive multiplicative
constant. One can therefore form the associated space L? (G(F)\G(A)) of square-integrable
functions. It is a Hilbert space, equipped with the unitary representation

(R(y)9)(x) = ¢(ay),  x,y€G(A), ¢ € L*(G(F)\G(A)),

of G(A) by right translation. One could describe an automorphic representation of G to
be an irreducible representation of G(A) that occurs in the spectral decomposition of R.
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This description is actually more of an informal characterization than a definition. It is
also more restrictive than the formal definition in [8] and [26]. We shall take the broader
definition, without recalling its two equivalent formulations established in [26]. We will then
call automorphic representations that satisfy the narrower spectral condition above globally
tempered.

Suppose for example that GG is the abelian algebraic group GL(1). Then G(A) is the
multiplicative group A* of elements « in A whose components z,, € F;, are all nonzero and
of valuation 1 for almost all v. This is the group of ideles, introduced earlier by Chevalley.
A (globally tempered) automorphic representation of G = GL(1) is a character x on the
idele class group F*\ A*, or in other words, a continuous F™*-invariant homomorphism from
A* to the group U(1) of complex numbers of absolute value 1. It is the generalization of
a Dirichlet character introduced by Hecke, which he called a Grossencharakter, and which
is now generally referred to as a Hecke character. Hecke worked in the classical context of
ideals a, but his constructions are a little easier to formulate now in the language of ideles. It
is an early illustration of the convenience of the language of adeles. In this regard, a Dirichlet
character is just a Hecke character of finite order.

One of the remarkable discoveries of Langlands has been the fundamental role played
by a certain dual group of . The dual group is a complex connected reductive group G,
whose Coxeter-Dynkin diagram is the dual of the diagram of GG. It comes with an action of
the absolute Galois group I'r = I'iz /> @ compact totally disconnected group, which factors
through the finite quotient I';, of I'p attached to some finite Galois extension £ of F'.
Langlands built this action into the dual group as the semidirect product

LGE = @ X FE/F;

or more canonically
LG =G x FF,

that is now known as the L-group. If G equals GL(N) for example, G is just the complex
general linear group GL(N,C). In this case, the action of 'z on G is trivial, so we can
take £/ = F. For the case that G is orthogonal or symplectic, the families that will be our
ultimate interest, we refer the reader to the beginning of §5.

Automorphic L-functions L(s, 7, r) were defined by Langlands for any G. They depend
on an automorphic representation 7 of (G and a finite dimensional representation

r: *G — GL(N,C) 4.2)

of L'G. It is understood that 7 is continuous on I' » and analytic on G, and in particular, that

it factors through a finite quotient ',/ of I'. Its image is therefore a complex group with

finitely many connected components. We will review the definition in the rest of this section.
We first recall [13] that any 7 can be written as a restricted tensor product

T = ® o, oy € II(Gy), 4.3)

where II(G,) is the set of irreducible representations of the locally compact completion
G(F,) of G(F). The interest is not so much in the individual constituents 7, of 7, as in the
relations they need to satisfy among themselves in order that the product be automorphic.
Much of the data that characterize these representations is quite explicit. For example, it is
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a consequence of what it means for (4.3) to be a restricted direct product that the irreducible
representations 7, of G(F,) will be unramified! for almost all v. A well known integral
transform, introduced into p-adic harmonic analysis by Satake, leads to a canonical mapping?

Ty — ¢(Ty)

from the set of unramified representations 7, of G(F,) to the set of semisimple conjugacy
classes in “'G. The automorphic representation 7 thus gives rise to a family

CS(W) - {Cv(ﬂ) - c(ﬂ—v) Fv g S}

of semisimple classes in “G.
If we are given r as well as 7, we obtain a family

{T(CU(T()) N S}

of semisimple conjugacy classes in GL(N, C). The incomplete automorphic L-function of
7 and r is then defined in terms of the characteristic polynomials of these classes. It equals
the product

L’ (s,m,r) H L(s,my,74), “4.4)
vgS
where )
L(s,my, 1) = det(l — r(cv(ﬂ))qv_s)f , 4.5)
and

Qv fv = |0y /pol

is the order of the residue class field of F},. The product is easily seen to converge for s in
some right half plane, and is clearly a Dirichlet series (2.1) with Euler product (3.1). The
definition can be compared with that of the incomplete Artin L-function (3.4) and (3.5), or
rather its generalization from Q to F'. The analogy is clear, even though the earlier definition
was in terms of ideals rather than the formulation here in terms of valuations.

Langlands introduced automorphic L-functions in [23]. He conjectured that they have
analytic continuation, with a very precise functional equation

L(s,m,r)=¢e(s,m,7) L(1 —s,m,7"), (4.6)

where
L(s,m,r)= Lg(s,, r)L (s,m,r) H L(s,my,7y) 4.7

is a completed L-function obtained by appending a finite product

Lg(s,m,r) Hstv,rU
veS

This means that F’, is nonarchimedean, that G, = G X g F}, is quasisplit and split over an unramified extension
of F, and that the restriction of 7, to a hyperspecial maximal compact subgroup K, of G(F) contains the trivial
1-dimensional representation.

2The mapping becomes a bijection if one takes the restricted form “Gg of the L-group, and then takes its
range to be the set of semisimple conjugacy classes in ©G g whose image in I' g /F equals the Frobenius class
Frob, = Frobg, g, if v is unramified in E. This basic condition on the Satake transform was observed by
Langlands in [23].
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of suitable factors at the ramified valuations v € S (including the archimedean valuations
v € So of F), and
e(s,m,r) = H (8, Ty, T, Yy (4.8)

veS

is a finite product of local monomials in g, ®. The local e-factors on the right would depend
on the local components v, of a fixed, nontrivial additive character ¢ on the group F'\A,
while the global product on the left hand side of (4.8) would be independent of . Langlands
did not define the ramified local L- and e-factors in [23]. Nevertheless, his introduction of
the general automorphic L-function in [23], with its proposed functional equation (4.6), was
an enormous step beyond the abelian automorphic L-functions of Hecke.? It depends above
all on the L-group “G he introduced at the same time.

We have now described two fundamental families of L-functions. They are the arithmetic
L-functions of the last section and the automorphic L-functions of this section. Langlands
later conjectured that the former family is a subset of the latter. In other words, for any motive
M (which for present purposes we can take to be an N-dimensional representation of a finite
Galois group '/ ), there should be a pair (7, ) such that the completed L-functions satisfy

L(s,M) = L(s,m,r). 4.9

In particular, the analytic continuation and functional equation for L(s, M) would follow
from the same properties for L(s, 7, 7). This would be a striking and far reaching gener-
alization of the method used by Artin to establish the analytic continuation and functional
equation of abelian Artin L-functions.

There is actually a theory that applies directly to nonabelian Artin L-functions. Richard
Brauer established a general property of the representations of a finite group (the Brauer
induction theorem), which he used to express any nonabelian Artin L-function L(s,r) as a
quotient of finite products of abelian Artin L-functions L(s, r1) (over finite extensions F of
F). Combined with the results of Artin described in §2, this shows that L(s, ) has analytic
continuation, with a functional equation of the desired sort. However, it does not give much
control over the analytic behaviour of L(s,r). In particular, it gives no information on
a fundamental conjecture of Artin, which asserts that an irreducible, nonabelian Artin L-
function is entire.

Brauer’s theorem has, however, led to important results on local arithmetic L- and e-
factors. These apply more generally to the variant of the Galois group that Weil introduced
as a consequence of class field theory. Like the absolute Galois group I', the Weil group
W is defined if F' is a local or a global field. It is a locally compact group, equipped with
a continuous homomorphism Wy — I'rp with dense image and connected kernel, whose
maximal abelian quotient is given by

P if 7 is local,
Wb = Wewe 5 By (4.10)
F*\A*, if F is global.

If F'is the global field we are discussing here, W comes with a conjugacy class of embed-

3Hecke also introduced some nonabelian L-functions for the group G = GL(2) and the standard two dimen-
sional representation 7.
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dings
Wr, — T'p,

!

Wp——IF

for any v, that are compatible with the abelianization (4.10). (See [39, §1].) These proper-
ties imply that the Artin reciprocity law described in §2 extends to a canonical isomorphism
from the group of 1-dimensional representations of W to the group of (1-dimensional) au-
tomorphic representations of G = GL(1). Moreover, the Brauer induction theorem extends
to N-dimensional representations 7 of Wr. It leads to a global L-function

L(s,r) = H L(s,ry) = H L(s,7y) H det(1 — 7“(Fr0bv)qv_5)_1 4.11)

veES vgS

that has analytic continuation and functional equation

L(s,r) = e(s,r) L(s,r"), (4.12)
for a global e-factor
e(s,r) =[] e(s.rosb0). (4.13)
veS

As in the special case of Artin L-functions, we obtain little control over the analytic
behaviour of the global L-functions L(s, r) in the full complex domain. The global interest
in these results is therefore limited. However, Deligne used them to establish important
local results [39, §2]. He showed that the local L-functions L(s,r,) in (4.11) and e-factors
(s, 7y,1,) in (4.13) have a canonical local definition. In particular, they can be constructed
independently of the global representation 7.

The global L-functions L(s,r) attached to representations of W are not all motivic,
unlike Artin L-functions. We cannot therefore really regard them as arithmetic. On the other
hand, they are not automorphic, since they are not generally defined in terms of automorphic
representations. Perhaps they should be regarded as objects that lie between the two classes.
In any case, L(s, ) should still be equal to an automorphic L-function. This is again among
the original conjectures of Langlands in [23]. Deligne’s constructions then become important
for the local classification of representations, and in particular, for comparison with the local
L- and e-factors in (4.7) and (4.8).

5. The principle of functoriality

Langlands’ conjectural functional equation (4.6) for a general automorphic L-function is
very deep, and far from known. However, among the cases that are known, there is one
that deserves special mention. It is the standard automorphic L-function, in which G equals
GL(N), and r equals the standard N-dimensional representation St of “Gr = GL(N, C).

Abelian Hecke L-functions are given by the further special case that G = G'L(1). Hecke
established their analytic continuation and functional equation, using the classical language
of ideals. Tate later simplified Hecke’s proof by introducing the ring of adeles A. In his
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famous thesis [37], he established the results through the interplay of multiplicative harmonic
analysis on the idele class group

F\A* = GL(1, F)\GL(1, A)

with additive harmonic analysis on the group A.

Following Langlands’ paper [23], Godement and Jacquet [15] extended the method of
Tate to GL(N), with the additive group of adelic matrices My n(A) in place of A. It
follows from their results and later refinements [16] that the standard (completed) L-function

L(s,m) = L(s,n,St) (5.1

for any automorphic representation 7 of GL(N) is well defined, and has analytic continua-
tion with functional equation

L(s,m) =¢e(s,m) L(1 —s,m").

This method also gives further information about the analytic behaviour of standard L-
functions. For example, if the automorphic representation  is cuspidal, L(s, 7) is an entire
function of s unless N = 1 and 7(x) = |z|* for some A € C, in which case L(s,n) is
analytic apart from a simple pole at s = 1 — A.

For any G, we write 11, (G) for the set of automorphic representations of G (in the
broad sense of [26] we have agreed upon). We then write

Cont (G) = {e(7) : 7 € Mo (G)} (5.2)

for the set of families ¢®(7) of automorphic conjugacy classes, taken up to the equivalence
relation defined by S ~ cf if ¢, = c1,, for almost all v. We emphasize that these are con-
crete objects. They represent the fundamental data encompassed in the seemingly abstract
notion of an automorphic representation. As we have noted, the arithmetic significance of
these data is not so much in the value of any one class ¢, () as in the relationships among
the classes as v varies.

In his original paper [23], Langlands made a profound conjecture that later became
known as the principle of functoriality. We shall state it in the restricted form that applies to
the concrete families Coyt (G).

Principle of Functoriality (Langlands). Suppose that G and G’ are quasisplit* groups over
the number field F'. Suppose also that

p: ta' — L@

is an L-homomorphism (that is, a continuous, analytic homomorphism that commutes with
the two projections onto I p) between their L-groups. Then if ¢ = {c,} lies in Cant(G’), the

family
c=p(c) = {p(c,)}

lies in Coyt(G). In other words, if ¢ = c(n") for some ' € W, (G"), then ¢ = c(7) for
some € I (G).

4See the brief description of this property at the beginning of the next section.
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The principle of functoriality is the central problem in the theory of automorphic forms.
It asserts that the internal relations in an automorphic family ¢’ = ¢(n’) for G’, whatever
they might be, are reflected in the internal relations in some automorphic family ¢ = ¢(m)
for G. The principle of functoriality has been established in a significant number of cases.
But as challenging as these have been, they pale in comparison with the cases that have not
been established.

In the same paper [23], Langlands pointed out some fundamental applications of functo-
riality. The first concerns the automorphic L-functions he had just introduced.

Suppose that G, G, p, ¢ = ¢(n) and ¢ = ¢(7) are as in the assertion of functoriality.
If r is an IN-dimensional representation of ©G, the composition r o p is an N-dimensional
representation of “G’. We then obtain an identity

L3(s, w10 p) = L(s,m,7) (5.3)

of incomplete automorphic L-functions from the definitions, and of course, the principle
of functoriality. This relation might seem almost routine at first glance, certainly not the
sweeping observation it actually is. But consider the special case with G, GL(N), ¢ = ¢(m)
and cy = c(my) in place of G', G, ¢’ and c respectively. Then p can be identified with an
N-dimensional representation r of “G, and (5.3) specializes to an identity

LS(Sv T, ’I”) = LS(Sa TN, St) = LS(S77TN)'

The general incomplete automorphic L-function on left thus equals a standard incomplete
L-function, the function for which we already have analytic continuation and functional
equation. If we set’

Ls(s, ™, 7“) = Ls(s, 7TN)

and
e(s,m,r)=c(s,mn),

for the supplementary terms, the completed L-function satisfies
L(Sv T, T) = LS(87 , T)LS(Sa T, T) = LS(S7 7T]V)'LS(S7 TrN) = L(87 ﬂ-N)? (54)

and the general functional equation (4.6) then follows from its analogue for standard L-
functions.

A second immediate application of functoriality pointed out by Langlands in [23] is to
nonabelian class field theory. It concerns the seemingly trivial case of functoriality with
G’ = {1}. Despite its apparent simplicity, however, this case comes with answers to the two
general questions (I) and (II) from the Rreface.

If G’ equals {1}, the dual group G’ also equals {1}, but the L-group “G" is still the
absolute Galois group I'r. We again take the second group G to be GL(N). An L-
homomorphism from G’ to “G will be continuous (by definition) on its totally disconnected
domain I' . It can therefore be identified with an N-dimensional representation

r: Tg/p — GL(N,C) (5.5)

5In order that the two left hand sides here depend only on 7, we assume implicitly that 7 is isobaric, in
the sense of [27, §2]. It is then the unique automorphic representation of GL(IN) with the given eigenfamily
c¢(mn) = c(m), according to [18]. Notice that we do not obtain a local construction for the factors in these
supplementary terms, unlike in their analogues (4.11), (4.13) for representations of Weil groups. This requires
a stronger (and more complex) assertion of functoriality as in [23], and is predicated on a local classification of
representations, such as that obtained for special orthogonal and symplectic groups in [4].
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of the Galois group of some finite Galois extension E of F'. The only automorphic represen-
tation of G’ is the trivial representation 1. However, the associated automorphic family ¢(1)
is still interesting. It is represented by the set

S(1) = {c,(1) = Frob, : v ¢ S}

of Frobenius conjugacy classes in '/  of primes v of F' that are unramified in £, according
to footnote 2 from the last section. The principle of functoriality in this case asserts that
its r-image r(c(1)) is automorphic for GL(N). In other words, there is an automorphic
representation m of GL(N) such that

co(m) = 1(cy(1)) = r(Frob,), véesS.

This can be regarded as a general answer to the question (I). Since it includes an analytic
characterization of the set Spl(F/F') of primes of F' that split completely in E, it also
amounts to a classification theory for general Galois extensions of F’, the long standing
dream of earlier number theorists. The arithmetic data {Frob, } that characterize finite Ga-
lois extensions E of F' ([38, p. 165]), and that are conveniently packaged by the characters
of continuous, finite dimensional representations of I', can be represented by the analytic
data {c, ()} of automorphic representations of general linear groups.

Langlands’ formulation of nonabelian class field theory has implications for L-functions.
It follows from the definitions (3.4), (3.5), (4.5) and (4.4) that for G’ = {1}, the automorphic
L-function L(s, 1, 7) on the left hand side of (5.4) is equal to the completed Artin L-function
L(s,r). It therefore equals an automorphic L-function L(s, 7n) = L(s, ) for GL(N). We
should note here that the general principle of functoriality implicitly includes some common
spectral properties of the two automorphic representations 7’ and 7. In particular, if the
representation r in (5.4) is irreducible, the automorphic representation 7wy of GL(N') should
be cuspidal. If N > 2, this implies that the automorphic L-function L(s, 7y ) is entire, as
we noted at the beginning of the section. On the other hand, the Artin conjecture mentioned
near the end of §3 asserts that the irreducible L-function L(s, ) is entire. The principle of
functoriality, in the case G’ = {1} and G = GL(N), therefore implies this well known
conjecture of almost one hundred years. By relating L(s,r) to a standard automorphic L-
function L(s, 7y ), we would obtain what could be considered an answer to the question
(IT). For since we now have an understanding of the poles of L(s, 7y ), and can perhaps hope
someday to have also an understanding of its zeros, we would have the means to estimate
the distribution of the classes {Frob, }. Notice that this is a beautiful generalization of the
indirect method in Section 2 used by Artin to study abelian L-functions. In both cases, an
analytic problem for arithmetic L-functions is solved by showing that these functions are
also automorphic L-functions, for which the analytic behaviour is better understood.

In addition to the two striking consequences of functoriality in [23] we have just de-
scribed, Langlands proposed two further applications. One is to the generalized Ramanujan
conjecture, the other to a generalization of the conjecture of Sato-Tate. Both have implica-
tions for L-functions. For the sake of completeness, we shall say a word on each.

The generalized Ramanujan conjecture can be formulated for any G. It asserts that the lo-
cal constituents , of certain natural automorphic representations 7 in the discrete spectrum
of G are (locally) tempered, in the extension to the local groups G(F,) by Harish-Chandra
of the definition from classical Fourier analysis. If G = GL(N), for example, it is the uni-
tary cuspidal automorphic representations to which the conjecture applies. The connection
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with L-functions, suggested by Langlands and reinforced by later local harmonic analysis, is
that the local components 7, of 7 will be tempered if and only if the L-functions L(s, 7, )
are analytic in the right half plane Re(s) > 1. Given this property, Langlands deduced
the generalized Ramanujan conjecture from the principle of functoriality, and the fact that a
representation 7 in the discrete spectrum is automatically unitary [23, p. 43—49]. For more
recent progress for the group G = GL(2), we refer the reader to [20] and [19].

A generalized Sato-Tate conjecture is only hinted at in [23], and then just in the last
paragraph on p. 49. It would apply to any automorphic representation 7 of GG that satis-
fies the generalized Ramanujan conjecture. We assume the principle of functoriality. The
Ramanujan condition is then valid. It implies that for any unramified place v ¢ S, the con-
jugacy class ¢, () in LG intersects a fixed maximal compact subgroup YK = K x I'r in
LG=GxT ., and can therefore be identified with a conjugacy class in © K. The problem
is to determine the distribution of these classes as v varies. If the family ¢(7) is a proper
functorial image of a family ¢(7’) for some group G’, one could determine the distribution
of ¢(m) from that of ¢(7’). One can therefore assume that 7 is primitive, in the sense that it
is not a proper functorial image from some G’. We would then expect® that

—ordg—1 (L(s,m, 7)) =[r:1]

for any finite dimensional representation p of “G. That is, the order of the pole of L(s, 7, )
at s = 1 equals the multiplicity of the trivial representation of “G in 7. It would then follow
from the Wiener-Ikehara Tauberian theorem that the distribution of the classes {c,(7)} in
LK is given by the Haar measure on “ K. In concrete terms, one would be able to express
the distribution of classes

{eo(m)N T : v ¢ S}

in a maximal torus 7 = T x I in “K in terms of the explicit density function on T
obtained from the Haar measure that occurs in the Weyl integration formula. (See [35, §2,
Appendix].)

I have attempted to introduce the subject through Langlands’ original paper [23] without
discussing subsequent developments. The most famous of these is undoubtedly Wiles’ work
on the Shimura-Taniyama-Weil conjecture [43], which he used to prove Fermat’s Last The-
orem. An important foundation for Wiles’ work was the Langlands-Tunnell theorem that
two-dimensional representations r of solvable Galois groups I'g, satisfy Artin’s conjec-
ture. This followed from base change for GL(2) [28], established by Langlands as an early
application of the trace formula. (See [1, §26], for example.) I mention also that R. Taylor
has established the classical Sato-Tate conjecture, which applies to the group G = GL(2),
by using base change for GL(N) [7] and other means to extract what is needed from the
unproven principle of functoriality. (See [40] and the references there.)

6. Orthogonal and symplectic groups

The monograph [4] contains a classification of automorphic representations of quasisplit or-
thogonal and symplectic groups over the number field F'. The groups of interest are attached

9This is actually a little stronger than the principle of functoriality, of which it represents a converse of sorts.
However, Langlands’ recent ideas [29] for attacking the principle of functoriality, speculative as they may be, would
treat this question as well.
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to the four infinite families of complex simple Lie algebras. These in turn are represented by
the following four infinite families of Coxeter-Dynkin diagrams, for which I am indebted to
W. Casselman.

Type An
O—O0—+++—0 O o)
Type By,
Type Cy,
Type Dy,

For corresponding complex groups, we could take the special linear groups SL(n + 1, C),
the odd orthogonal groups SO(2n + 1, C), the symplectic groups Sp(2n,C) and the even
orthogonal groups SO(2n,C). The family A,, is the starting point for the classification.
Since the representation theory is simplest for general linear groups [18], [30], we take the
reductive groups GL(N,C), N = n + 1, as the complex representatives for this family.

We want to take these groups over the number field F', which is not algebraically closed.
But according to a fundamental theorem of Chevalley, any one of these complex groups
corresponds naturally to a canonical group over F'. It is the split group attached to the given
diagram (and centre). Our interest is actually in quasisplit groups. These are obtained by
twisting the Galois action on any given split group by a supplementary Galois action on the
diagram. The symmetry group of a diagram is the group of bijections of the set of vertices
that preserve all edges and directions. It equals Z/27Z in type A, is trivial in types B,, and
C,., and equals’ Z /27 in type D,,. A quasisplit group is determined by a homomorphism
from the Galois group I' to the symmetry group of the diagram. Following [5], we will not
treat nonsplit, quasisplit groups of type A,,. These are unitary groups, for which we refer
the reader to [32]. Since a quasisplit group of type B,, or C,, is split, we have only then to
consider type D,,. In this case, a quasisplit group is determined by a quotient of ' of order
1 or 2, or in other words, a Galois extension F/F' of degree 1 or 2.

From now on, G will stand exclusively for one of our quasisplit groups of type B,,,
C,, or D,,. Its construction above relies on the identification of the supplementary Galois
action on the diagram with the Galois action on the underlying split group (determined by
a fixed splitting). The transfer of this action to the dual group G is what is used to define

7If n = 4, this group is actually isomorphic to S3, but we agree to consider only the standard symmetries that
interchange the two right hand vertices in the diagram.
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the semidiArect product LG =G xT . (See [21, §1].). We list the three families of ob-
jects (G, G, G ) explicitly, where E/F is the minimal Galois extension through which the
action of I' i factors.

Type Bn: G = SO(2n + 1) is split, G = Sp(2n,C) = LGg, E = F.

Type Cy: G = Sp(2n) is split, G = SO(2n + 1,C) = LGy, E = F.

Type D,,: G = SO(2n) is quasisplit, G = S0(2n,C), "G = SO(2n,C) x T'g/p,
deg(E/F) € {1,2}.

The other family corresponds to diagrams of type A,,. We are taking the underlying group
in this case to be the split group GL(N), with dual group GL(N, C), and minimal L-group
L(GL(N))E also equal to GL(N,C),for N =n+land F = F.

The monograph [4] is devoted to a classification of automorphic representations of any
of our groups G in terms of those of general linear groups. In the rest of this section, we
shall discuss how it relates to functoriality and L-functions, the central themes of this article.
The classification is based on two general cases of the principle of functoriality. We shall
describe them each in turn, following the remarks at the end of §1 of [5].

Cases of Functoriality: 1. This case arises from the natural embedding of a complex clas-
sical group into a complex general linear group. According to our understanding, GG is any
one of our quasisplit classical groups of type B,,, C,, or Dy, over F'. There is then a canon-
ical embedding of the dual group G into a general linear group GL(N, C), for N equal to
2n, 2n + 1 and 2n respectively. If G is split over F', this extends trivially to a canonical
L-embedding R

LG=GxTp — "(GL(N)) = GL(N,C) x I'p

of the full L-group of G to that of GL(N). In the special case of type C,,, we also obtain
a nonstandard L-embedding of “G into »(GL(N)) for any quadratic extension E/F, by
mapping the quotient I'p ) = I'p /T isomorphically into the central subgroup {£1} of
the image of O(2n + 1,C) in GL(N,C). If G is not split over F, it is of type D,,. The
associated quadratic quotient '/ then acts on G = SO(2n, C) through the nonidentity
connected component of the complex group O(2n,C). This leads again to a canonical L-
embedding of L-groups

LG=GxTr — L(GL(N)) = GL(N,C) x ['p.
2. In the second general case, G is as in the first. This time, however, we take a product
G =Gy x G
of smaller such groups. We require that the dual group
G'= G x G
come with a natural embedding into G. This means that
G = Sp(2m,C) x Sp(2n — 2m,C) C Sp(2n,C) = G,
G' = SO(2m,C) x SO(2n +1 —2m,C) € SO(2n+1,C) = G,

and
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G’ = S0(2m,C) x SO(2n — 2m,C) C SO(2n,C) = G,

for integers 0 < m < n, when G is of type B,,, C,, and D,, respectively. If G is of type
B,,, G is split, and the L-embedding of G’ into G extends trivially to an L-embedding
of G’ into LG If G is of type C,,, G and G are split, but G| can be a quasisplit group
defined by an extension F; of F' of degree 1 or 2. In this case, we obtain an L-embedding

L = (G xGY) xTp — "G =G xTp

from the nonstandard embedding of the second factor ©'GY, attached to the quadratic exten-
sion F1/F. Finally, if G is of type D,,, it is the quasisplit group defined by an extension
E = F(V/d) of degree 1 or 2. We can then take G, and G/, to be quasisplit groups of types
D,,, and D,,_,, defined by any extensions E; = F(\/dy) and Fy = F(+/d>) such that dyds
equals d. It is then easy to see that there is a natural L-embedding of L-groups

LG = (G x GY) xTp — G =G xTp.

We thus obtain two basic cases of the principle of functoriality by taking the L-homomor-
phism p to be any one of the L-embeddings we have just described. The first is at the heart
of the classification of representations of GG (both local and global) in terms of those of
GL(N). The second provides the foundation for an understanding of the precise functorial
correspondence from G to GL(N).

Theorem 6.1. The principle of functoriality stated in §4 is valid if p is any one of the L-
embeddings in the two general cases described above.

This theorem is a consequence of the classification of representations of G in [4]. It
has a significant application to Rankin-Selberg products. These are the automorphic L-
functions whose arithmetic analogues correspond to tensor products of finite dimensional
representations of I'r (or Wr).

We first review the standard theory of Rankin-Selberg products for general linear groups.
In this case, the underlying quasisplit group is a product GL(NN1) x GL(Nz), while the
underlying representation = r of its L-group is given by the standard representation

g =9gnN; X gN, ' X — gnN; X th27 gn; € GL(NMC)a

of the dual group GL(Ny,C) x GL(N3,C) on the N = N; Ny-dimensional vector space of
complex (N7 x Ny)-matrices X. For any automorphic representation 7y = 7y, ® my, of
this group, we can form the incomplete L-function

Ls(s,ﬂ'N1 X TN,) = Ls(s,ﬂ'N,rN)
of (4.4). In this case, it is known how to define the local L-functions
L(S77TN1,’U X 7"-NQ,U) = L(Suﬂ-N,’LHTN,’U) (61)

and e-factors
(S, TNy 0 X TNy 0y Vo) = (S, TN v, TN ws Yu) (6.2)

in a purely local manner for all valuations v, in such a way that the completed L-function

L(Saﬂ-]\h X 7TN2) = LS(S77TN1 X 7TN2) LS(S,WNl X 7TN2) = LS(Saﬂ-erN) LS(S’TFerN)
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has analytic continuation and functional equation
L(s,mn, X Tn,) = (s, 7N, X wn,) L(1 — s, 75, X 7)),
for the associated global e-factor

e(s, N, X TN,) = (8, TN, TN).

The general principle of functoriality applies to the mapping ry from GL(Ny,C)
XGL(N3,C) to GL(N,C). However, it is far from known in this case. On the other
hand, and in contrast to Langlands’ first application of functoriality described in §4, the
analytic continuation and functional equation of Rankin-Selberg products has been estab-
lished directly. There have been two different approaches to the theory, both of which lead
to the same results. The original method [10, 17, 18], [30, Appendix] combines certain inte-
grals with the Poisson summation formula, in a way that is reminiscent of Tate’s thesis [37]
(which applies to the special case that (N7, N2) = (N, 1)). The other approach, known as
the Langlands-Shahidi method [11, 24, 36], combines Whittaker models and intertwining
operators with the analytic continuation and functional equations for Eisenstein series estab-
lished by Langlands in his study [25] of continuous automorphic spectra. It is capable of
considerably broader application.

Our application of Theorem 6.1 is to Rankin-Selberg products for classical groups, specif-
ically a product G; X G2 of any two groups from our general family of quasisplit special
orthogonal and symplectic groups. From the standard L-embeddings

pit "Gi — F(GL(N),  i=1,2,
of Case 1 above, we obtain a homomorphism
p1 X p2: ¥(Gy x Gy) — GL(N;,C) x GL(N,,C).

If 7 = m ® mo is an automorphic representation of G; X Ga, and r is the composition
TN o (p1 X p2), we can form the partial L-function

LS(Saﬂ-l X 7T2) = LS(S77T”I”)

for the group G1 X G5. We apply Theorem 6.1 to the two L-embeddings p;. It attaches to
the two automorphic representations m; € Il,,(G;) two (self-dual, isobaric) automorphic
representations 7wy, € Il (1V;) for the general linear groups GL(NV;), such that

L3(s,m X mg) = L5 (s, mn, X 7, ).

In other words, the partial L-function for G; x G2 on the left equals its analogue for
GL(N1) x GL(N3) on the right. It follows from the theory we have just described for
general linear groups that we can define the supplementary L-factor

Lg(s,m X mg) = Ls(s, TN, X TN,) (6.3)

and the global e-factor
5(37 T X 71'2) = 5(877TN1 X 7TN2) (64)
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for G1 X (G5 so that the completed L-function
L(s,m x mg) = Lg(s,m X WQ)LS(s,m X g) (6.5)
has analytic continuation, with the functional equation
L(s,m X m9) =¢e(s,m X 7o) L(1 — s,m X Ta). (6.6)

Our discussion for G; x G4 does not to this point include a local theory. That is, it does
not give a local construction of the factors implicit in the left hand sides of (6.3) and (6.4).
This is in contrast to the theory for GL(NN), which not only gives a local construction for the
factors (6.1) and (6.2) for the right hand side, but also relates them (according to the local
Langlands correspondence for GL(N)) to their arithmetic analogues in (4.11) and (4.13),
for representations 7y, , ® 1N, Of the local Weil groups Wg, . The stronger results for
G1 X G4 follow, at least for representations 7; that are globally tempered, from the local and
global classifications in [4].

In summary, Theorem 5.1 establishes two cases of functoriality for quasisplit orthogonal
and symplectic groups. As a corollary of the first case, we also obtain the analytic continua-
tion of the corresponding Rankin-Selberg L-functions (6.5), with functional equation (6.6).
This last result is very much in the spirit of our earlier discussion. Like Artin’s proof of
analytic continuation and functional equation for the abelian L-functions that bear his name,
and Langlands’ reduction of the analytic properties of general Artin L-functions and general
automorphic L-functions to the principle of functoriality, the approach is indirect. Rather
than deal with the unknown L-functions directly, we establish classification theorems that
limit their scope. That is, contrary perhaps to what might have been expected, the unknown
L-functions are in fact included among a class of L-functions whose analytic behaviour is
understood.

7. Remarks on the classification

We have not described the classification [4] that might have been the natural topic of this
article, having chosen instead to focus on its simpler implications for our historical intro-
duction to the Langlands program. The classification is given by Theorems 1.5.1, 1.5.2 and
1.5.3 of [4]. Itis also summarized from different points of view in the three surveys [3, 5, 6].
Partial results were established earlier for generic representations in [9, 14], by quite differ-
ent methods. It is now possible to see where the generic representations of these papers fit
into the general classification [4, Proposition 8.3.2].

We conclude with a few very general remarks on the structure of the classification. The
first of the two cases of functoriality in Theorem 6.1 gives a canonical mapping

Caut(G) — Caut (N) = Caut (GL(N))? (7.1)

from automorphic eigenfamilies for our classical group G to automorphic eigenfamilies for
GL(N). The methods of [4] are designed for the representations that occur in the spectral
decomposition of L?(G(F)\G(A)), namely the subset II(G) C I,y (G) of automorphic
representations we are calling globally tempered. The version of Theorem 6.1 that arises?®

8t is not stated explicitly in [4]. In fact, the analogue of the second case of Theorem 6.1 is not quite true for
C(G), thanks to an interesting pathology discovered by Cogdell and Piatetskii-Shapiro. (See [5, §3] and [6, §8].)



194 James Arthur

most directly from [4] actually applies to automorphic eigenfamilies that are globally tem-
pered, namely the image C(G) C Caut(G) of II(G) under the mapping m — ¢(m). The
restriction of (7.1) can be seen from [4] to give a canonical mapping

C(G) — C(N) (7.2)

from C(G) to the image C(N') C Caut (V) of the set II(IV) of globally tempered automorphic
representations of GL (V). We shall comment briefly on the general steps needed to obtain
a classification® of II(G) from (7.2).

The general linear group G L(N) has the remarkable property that the mapping 7w —
c(my) from II(N) to C(N) is a bijection. This follows from fundamental theorems of
Jacquet-Shalika [18] and Moeglin-Waldspurger [30]. (See [4, §1.3] and [6, §4].) The com-
position

II(G) — C(G) — C(N) <~ II(N)

then gives a mapping 7 — mx from II(G) to II(IV). Langlands’ theory of Eisenstein se-
ries [25] constructs the automorphic spectrum of any group in terms of automorphic discrete
spectra. For our group G, it is therefore enough to classify the subset II5(G) of represen-
tations in II(G) that occur in the discrete spectrum, the subspace L3, (G(F)\G(A)) of
L?(G(F)\G(A)) that decomposes under right translation by G(A) into a direct sum of ir-
reducible representations. To classify automorphic representations of G in terms of those of
GL(N), we would need to give an explicit description of the restricted mapping

T — TN, 7 € I5(G), (7.3)

from I3 (G) to II(V). Specifically, we would need to characterize the image and the kernel
of this mapping.

To characterize the image of (7.3), it is necessary to analyze the (globally tempered)
automorphic representations of GL(IV) that are self-dual. This is not difficult to do, using
the general structure of the set of self-dual, N-dimensional representations of an arbitrary
Galois group I' g, for guidance, and the classification in [30] of the automorphic, relatively
discrete spectrum of GL(N) [4, §1.2, 1.4]. The problem, it then turns out, is to establish two
necessary and sufficient conditions for a self-dual cuspidal automorphic representation 7y
of GL(N) to lie in the image of (7.3). One is a familiar condition [9, 14] on the existence
of a pole at s = 1 of a certain automorphic L-function of 7. The other is a more technical
condition in harmonic analysis, which is harder to state, but which is at the centre of the
argument. The two conditions are among the last things to be established in the classification,
but they lead in the end to a clear description of the image of (7.3).

The fibres of (7.3) are often large. They occur in packets

H¢,, 1/J€\I/2(G),

parametrized by a family W(G) of objects ¢ that is in canonical bijection with the image
of (7.3), the subset of II(/V) we have just discussed. These global “parameters” have local-
izations ), at valuations v, which are parameters in the more familiar sense. They belong to
the set ¥(G, ) of local L-homomorphisms!©

Yy Lp, x SU(2) — LG,

%In principle, one can obtain a classification of the larger set II,yt (G) from that of II(G) in [4] and the criterion
for automorphy in [26]. (See [6, §8])

1In the domain, L g, is the local Langlands group. Itis defined as the local Weil group W g, if v is archimedean,
and the product of W, with a separate copy of SU(2) if v is nonarchimedean.
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taken up to (A}-conjugacy in the local L-group “G,,, such that the image of 1,, in G is rela-
tively compact. A significant part of the global classification in [4] is purely local. To every
local parameter v, € (G, ), one has to attach a canonical, finite set I1,,, C Ilypnit(G,) of
irreducible unitary representations of G(F),). A global packet II, is then defined as the set
of restricted tensor products

Hw:{ﬂ':®ﬂ'vl WUGH%} (7.4)

of representations from the corresponding local packets. The subset ®1,44(G ) of parameters
¢, € Y(G,) that are constant on the factor SU(2) are known as (bounded) Langlands
parameters. A prerequisite for the study of the general packets I, in Chapter 7 of [4] is the
proof in Chapter 6 of [4] of the local Langlands correspondence for GG,,. This asserts!! that
the set Iiemp (Gy) of (locally) tempered, irreducible representations of G(F,) is a disjoint
union over ¢, € ®,q44(G,) of the local Langlands packets Iy, .

The global classification thus depends on a local description of representations in or-
der to define the global packets (7.4). The main global result of [5] is Theorem 1.5.2. It
gives a multiplicity formula for any irreducible representation of G(A) in the discrete spec-
trum. More precisely, the theorem asserts that any representation in II5(G) lies in a unique
global packet II,,. For any m & IL, it then gives an explicit multiplicity formula for 7 in
L3 (G(F)\G(A)) in terms of invariants attached to its local constituents. Its proof is a
multifaceted induction, which includes most of the other results in [4], and takes up much of
the volume.
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Abstract. The goal of the lecture is to survey the emerging field of integrable probability which aims at
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of stochastic processes. The methods of analysis are largely algebraic, and they are deeply rooted in
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Introduction

This talk is about probabilistic systems that can be analyzed by essentially algebraic meth-
ods.

The historically first example of such a system goes back to De Moivre (1738) and
Laplace (1812) who considered the problem of finding the asymptotic distribution of the
sum of i. i. d. random variables for Bernoulli trials, when the pre-limit distribution is ex-
plicit, and took the limit of the resulting expression. While this computation may look like
a simple exercise when viewed from the heights of modern probability, in its time it likely
served the role of a key stepping stone — first rigorous proofs of central limit theorems
appeared only in the beginning of the XXth century.

As an example of a similar modern development, we are currently in a “De Moivre-
Laplace stage” for a certain class of stochastic systems which is often referred to as the KPZ
universality class, after an influential work of Kardar-Parisi-Zhang in mid-80’s. We will be
interested in the case of one and two space dimensions.

While the class and some of its members have been identified by physicists, the first
examples of convincing (actually, rigorous) analysis were provided by mathematicians, who
were also able to identify the distributions that play the role of the Gaussian law. For one
space dimension, they are often referred to as the Tracy-Widom type distributions as they had
previously appeared in Tracy-Widom’s work on spectra of large random matrices.

The reason for mathematicians’ success was that there is an unusually extensive amount
of algebra and combinatorics required to gain access to suitable pre-limit formulas that ad-
mit large time limit transitions. The “exactly solvable” or integrable members of the class
should be viewed as projections of much more powerful objects whose origins lie in rep-
resentation theory. In a way, this is similar to integrable systems that can also be viewed
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as projections of representation theoretic objects; and this is one reason we use the words
integrable probability to describe the phenomenon.

What goes below is a write-up of an hour-long talk; detailed expositions can be found in
[9, 15, 20, 23].

1.

Suppose that one is building a tower out of unit blocks. Blocks are falling from the sky, as
shown on Figure 1.1, and the tower slowly grows. If one introduces randomness by declaring
the times between arrivals of blocks to be independent identically distributed (i.i.d.) random
variables, then one obtains the simplest 1d random growth model. The kind of question we
would like to answer is what the height h () of tower at time ¢ is?

o
:

Figure 1.1. Building a tower from standard blocks.

The classical central limit theorem (see e.g. [6, Chapter 5] or [45, Chapter 4]) provides
the answer: -
h(t) = ey 't + Ecaey 212,

where ¢ and ¢y are the mean and standard deviation of the times between arrivals of the
blocks, respectively, and ¢ is a standard normal random variable N (0, 1).

2.

Let us try to generalize by introducing one space dimension.

If blocks fall independently in different columns, then one obtains a 2d growth model,
as shown on Figure 2.1. When there are no interactions between blocks and the blocks are
aligned (cf. the left panel of Figure 2.1), the columns grow independently and fluctuations
remain of order ¢'/2 — this is called “random deposition”.

But what happens if we allow column interaction by, for example, letting blocks travel
finitely many (say, no more than 1) units left or right to locate the lowest possible landing
position, cf. middle panel of Figure 2.1. Such random growth processes are commonly
called “random deposition with relaxation”. Or if we make blocks sticky so that they attach
to the sides of the boxes in adjacent columns, as shown on the right panel of Figure 2.1 —
this is known as “ballistic deposition”?
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Figure 2.1. Random deposition, random deposition with relaxation, and ballistic deposition.

Computer simulations (see e.g. [5]) show that the height fluctuations in the second and
the third model are of order t'/# and t'/3, respectively, and it is visible to a naked eye that
the roughness of the interface is different, cf. Figure 2.2.

We are pretty far from fully understanding the observed phenomenon; for example, prov-
ing the 1/3 fluctuation exponent for ballistic deposition is way beyond currently available
techniques. However, we can do something else.

Figure 2.2. Computer simulations of the three models of random growth (from [5]).

Physicists know fairly well how to identify broad classes of random growth models that
should have exactly the same asymptotic behavior of interface fluctuations — those are
known as ‘universality classes’. In O space dimensions, the classical central limit can be
viewed as an illustration of such behavior: The universality class consists of all growth mod-
els with i. 1. d. intervals between block arrivals, and the Gaussian distribution describes the
universal fluctuations. Although for now we can only wish for something similar in > 1
space dimensions, we are capable of finding exactly solvable, or integrable models in cer-
tain universality classes and analyzing them to a great level of detail, thus identifying the
(conjecturally) universal fluctuations.
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3.

One (simple) example of an integrable model in 0 space dimensions is the case when the
times between block arrivals are geometrically distributed random variables. Then the tower
height h(t) at any time moment is distributed as a sum of independent Bernoulli random
variables; its distribution is given by binomial coefficients, and the application of Stirling’s
formula proves the convergence of rescaled h(t) to the standard Gaussian. This is the cele-
brated De Moivre-Laplace theorem.

Let us now describe an integrable model of random growth in one space dimension.
Consider the interface given by a broken line with segments of same length and of slopes
+1, as shown on Figure 3.1, left panel. Its growth consists of adding a new unit box at each
local minimum, independently after an exponentially distributed waiting time.

0000000000000

Figure 3.1. Broken line with slopes 1 with local minimum where a box can be added, and correspon-
dence with particle configurations on Z

There is also an appealing equivalent formulation of this growth model. Project the
interface to a straight line at 45 degree angle to the segments, and place “particles” at images
of unit segments of slope —1 and “holes” at images of segments of slope +1, see Figure
3.1, right panel. Then the random growth process is equivalent to the following particle
update rule (as seen from examining the picture): Each particle jumps to the right by one
unit independently of the others after an exponential waiting time (in other words, each
particle jumps with probability dt in each very small time interval [¢, ¢ + dt]) except for the
exclusion constraint: Jumps to the already occupied spots are prohibited. One can view this
as a simplified model of a one-lane highway with particles representing cars. This model is
widely known under the name of Totally Asymmetric Simple Exclusion Process (or TASEP,
for brevity), cf. [52, 53, 66].

At large times, in the first order approximation (law of large numbers type behavior
also referred to as hydrodynamic limit, obtained when time and space coordinates are scaled
in the same way) TASEP’s interface evolves deterministically according to the (first order,
nonlinear) inviscid Burgers equation

% = —a%(p(l =),

where p = p(z,t) € [0, 1] is the local density of TASEP’s particles. This is a nontrivial
statement that has been proved in a fairly large generality, see e.g. the introduction of [38]
for a brief survey. In particular, the shocks in the solution of this equation correspond to the
traffic jams in the system of cars-particles on a one-lane highway.

Proceeding to fluctuations around the global hydrodynamic interface profile, here is the
very first result that rigorously proved the existence of the 1/3 exponent (it was conjectured
by physicists more than two decades earlier [37, 40, 46]).
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Figure 3.2. Wedge and flat initial conditions: broken lines and corresponding particle configurations.

Theorem ([42]). Suppose that at time O the interface h(x;t) is a wedge h(x,0) = |x| as
shown on Figure 3.2, left panel. Then for every x € (—1,1)

. h(tx,t) — cq(z)t B
tlggoﬂ" < co(x)th/3 . _S> = F(s),

where c1(x), ca(x) are certain explicit functions of x.

Here F»(s) is a distribution that originated in random matrix theory, known under the
name of the GUE Tracy-Widom distribution. It is the limiting distribution, as the size of the
matrix tends to infinity, of the properly centered and scaled largest eigenvalue in the Gaus-
sian Unitary Ensemble of random matrices (which is the probability measure with density
proportional to exp(—Trace(X?)) on Hermitian matrices), see [68].

At first glance, one might expect that because of universality, the fluctuations of the
TASEDP interface should be described by F» for any initial condition. However, one proves
the following

Theorem ([17, 61]). Suppose that at time O the interface h(x;t) is flat as shown on Figure
3.2 (right panel). Then for every x € R

(h(:c,t) — cst

lim P PRIV

t—o00

> —8> = Fi(s),

where cs, cq are certain explicit positive constants.

Similarly to F»(s), Fi(s) from the right-hand side is the GOE Tracy-Widom distribution
that arises as a scaling limit of the largest eigenvalue in Gaussian Orthogonal Ensemble of
real symmetric matrices distributed according to const - exp(—Trace(X?))dX, see [69]. 1

4.

This caveat, however, appears to be only a minor correction to the universality principle: The
two theorems above conjecturally provide the distributions of the fluctuations for a whole
universality class of random growth models in (1+1) dimensions which is usually referred to

'The indices “2” and “1” stand for the dimension of the base field over the reals; one can naturally define
distributions Fig for 8 > O that at 3 = 1,2,4 correspond to the largest eigenvalues of Gaussian Orthogo-
nal/Unitary/Symplectic Ensembles, see [60].
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as the Kardar-Parisi-Zhang (KPZ) universality class. It is just that the asymptotic behavior
becomes more delicate than in (0+1) dimensional case, namely, while for deterministic initial
conditions scaling by t'/3 is always the same, the resulting distribution may also depend on
the “subclass” of the model. Conjecturally, for deterministic initial conditions, the only two
generic subclasses are the ones we have seen. They are distinguished by whether the global
interface profile is locally curved or flat near the observation location.

The KPZ universality class was suggested in [46], and its members can be described as
random growth models that have three key features:

o Locality of growth — distant parts of the interface evolve independently;

o Smoothing mechanism (a.k.a. relaxation) — deep holes in the interface tend to fill up,
and no fractal structures appear;

« Lateral growth — the interface grows in the normal direction to its global profile (this
could be relaxed to simply claiming that the vertical speed of growth depends on the
slope of the global profile).

While the above description may seem vague, it works remarkably well. As an example,
out of the three models of Figure 2.1 above, all three have local growth, the last two have a
smoothing mechanism, and only ballistic deposition enjoys lateral growth 2. A recent survey
of the KPZ universality class in (1+1) dimensions can be found in [27].

S.

As was mentioned above, TASEP is one integrable model in the KPZ class. One way to
describe its solvability is to say that its study can be reduced to that of a determinantal point
process (see e.g. [7] and references therein for details on such processes). The techniques of
the determinantal point processes can be utilized to solve a few other random growth models
in the KPZ class. Those include (citation lists are non-exhaustive, see also references therein
and survey [35])

e Discrete time TASEPs [15, 16, 18, 44];

o Discrete and continuous time PushASEPs [14, 15];

« Directed last passage percolation with geometric/Bernoulli/exponential edge weights
[2, 42, 43];

« Polynuclear growth processes [3, 4, 18, 41, 59, 62].

The exact conjectures on fluctuation behavior of generic models in the KPZ class were
derived from asymptotic analysis of these determinantally solvable cases.

In recent years, there has been a substantial progress in analyzing a class of integrable
yet not determinantal KPZ models. Those include (again, citations lists are non-exhaustive)

o Partially Asymmetric Simple Exclusion Process (PASEP or ASEP) [13, 70];

2[f a growth model is local, has relaxation, but its vertical speed of growth is independent of the global slope,
then it is said to below to the Edwards-Wilkinson (EW) universality class [34], which is much simpler than the KPZ
class (in particular, its asymptotics can be described via Gaussian processes). This is the universality class to which
random deposition with relaxation belongs.
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« KPZ equation, or stochastic heat equation, or continuous Brownian polymer [1, 11,
25, 32, 63];

« ¢-TASEPs [9, 10, 28, 31, 36];
o Semi-discrete Brownian polymer [9, 11, 55];

o Fully discrete log-Gamma polymer [12, 30].

As one can see, we have a fairly good control over integrable representatives of the
(1+1)d KPZ universality class, and their list keeps growing. However, proving any statement
about large time fluctuations for a generic (1+1)d KPZ model is still well beyond our reach.

6.

The (1+1)d KPZ fluctuation behavior that was obtained through integrable models has re-
cently found remarkable experimental confirmations, see e.g. [67, 74].

lElilt':._? 'E‘S&}T

N

Figure 6.1. Views of a stepped surface from three different angles.

7.

Let us now proceed to the case of two space dimensions. To be concrete, we will be interested
in random stepped surfaces built from standard 1 x 1 x 1 cubes without holes and overhangs,
as pictured on Figure 6.

Comparing to the interface interpretation of TASEP, see Figure 3.1, it is natural to con-
sider the random growth process where standard cubes are being added at any allowed posi-
tion independently with an exponential waiting time. Alas, apart from numerical simulations,
nothing is known about large time behavior of such a process, even conjecturally, even on
the law of large numbers (hydrodynamic) level, let alone the fluctuations.

On the other hand, uniform measures on stepped surfaces subjected to certain polygonal
boundary conditions and constrained by the volume underneath are well known to form, in
the limit of infinite volume, beautiful deterministic limit shapes given by explicit algebraic
curves, cf. Figure 7.1, [24, 26, 51, 56, 57] and references therein.

It is therefore natural to ask whether it would be possible to find examples of integrable
random growth models in (2+1) dimensions and, in particular, can those be used to grow
such algebraic limit shapes.
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Figure 7.1. Algebraic limit shapes.

8.

Let us present an example of an integrable growth model from [15]. It is not quite as simple
as randomly placing standard cubes into all possible positions randomly, but it is not too
complicated either.

As for the TASEP, there are two descriptions of the model, as a growing interface and as
a particle system. We start with the latter.

The state space of the particle system is a triangular array of interlacing variables

S = {{x?}kzlm cz"E | o, <ap ) < ka}, n=12....
m=1,...,n

As initial condition, we consider a densely packed one: At time ¢ = 0 we have z}"(0) =
k — m for all k, m, see Figure 8.1, left panel. The particle locations are pictured using
the axes that are at 7/3 angle, the horizontal axes measures the particle positions z%, and
the (sloped) vertical axis measures the upper index. The particle locations are marked with
small filled circles, the right-most ones in each row representing z» =0, m =1,2,....

The particles evolve according to the following stochastic dynamics. Each of the par-
ticles 2} has an independent exponential clock of rate one, and when the z}'-clock rings
the particle attempts to jump to the right by one. If at that moment z}" = a:};”_l -1
then the jump is blocked. If that is not the case, we find the largest ¢ > 1 such that
= foll =... = xz’ﬂ:rccjll, and all ¢ particles in this string jump to the right by one. A
Java simulation of this dynamics can be found at http://www-wt.iam.uni-bonn.de/~{ }ferrari/
animations/AnisotropicKPZ.html .

Informally speaking, the particles with smaller upper indices are heavier than those with
larger upper indices, so that the heavier particles block and push the lighter ones in order for
the interlacing conditions to be preserved.

Figure 8.1. An integrable (2+1)-dimensional model of random growth.

Let us illustrate the dynamics using Figure 8.1, which shows possible few first particle
jumps with four rows of particles (n = 4 in the above notation). At times close to 0, only the
right-most particle in each row can jump (that is, the other ones are blocked by lower/heavier
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neighbors); the freedom to jump is denoted by empty circles on the second panel of Figure
8.1. The red circle denotes the free particle (it’s 23) whose clock rang first. If we simply
moved this particle to the right we would have violated the interlacing condition; instead, we
additionally move higher/lighter particles in a minimal way that preserves the interlacing.
This results in 3 and 4 also moving the right by one, and we end up with the particle
configuration pictures on the third panel. Now more particle are free (empty circles), and we
again assume that it is the red one (z3) that goes first. This move does not violate interlacing,
and we land at the fourth panel. There x3 jumps and pushes z7, etc.

Observe that S("1) ¢ S§("2) for ny < no, and the definition of the evolution implies that
the process on nj rows is a marginal of that on ny rows. Thus, we can think of the stochastic
evolution on the space of infinite point configurations {z}"} k=1...m,m>1"

The images of Figure 8.1 offer two three-dimensional interpretations — that of unit boxes
being added and the other one with unit boxes being removed. Focusing on the first one, it
is easily seen that the evolution of our particle system is equivalent to the following random
growth recipe for the stepped surface: Each directed column of the form pictured in Figure
8.2 that can be added to the surface without creating holes or overhangs, is being added
independently of the others with exponential waiting time of rate 1. For this reason we call
this model the directed column deposition model.

@@@@

Figure 8.2. Directed sticks that are being added to the stepped surface

9.

Let us note a few properties of the interacting particle systems that we just described.

o The set of left-most particles {z7"},,>1 evolves independently of the rest of the sys-
tem, and its evolution is nothing but TASEP, with the initial condition z7*(0) =
—m + 1 that is commonly referred to as the step initial condition.

o The set of right-most particles {z]' },,,>1 also evolves independently and forms “Push-
TASEP” or “long range TASEP”: If one views {z]! + m},,>1 as particle locations in
Z, then when the xi—clock rings, the particle a:ﬁ + k jumps to its right and pushes by
one unit the (possibly empty) block of particles sitting next to it. If one disregards the
particle labeling, one can think of particles as independently jumping to the next free
site on their right with unit rate.

o For our densely packed initial condition, the evolution of each row {x}"}r=1,. m.
m = 1,2,..., is also a Markov chain. It can be defined as Doob’s h-transform for
m independent rate one Poisson processes with the harmonic function / equal to the
Vandermonde determinant. In diffusive (large time) limit, it yields the Dyson Brown-
ian Motion on spectra of the Gaussian Unitary Ensemble of random matrices, and we
thus see an immediate connection between TASEPs and random matrices.
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10.

The directed column deposition model is a representative of a fairly broad class of integrable
growth models in (2+1) dimensions, cf. [8, 15, 19, 21]. In particular, such models can be
used to grow the algebraic limit shapes mentioned above. As an example, Figure 10.1 shows
one variant of how this may happen via growing the support of the random interface.

Figure 10.1. Growth of a random stepped surface by its support.

11.

The integrability of the models allows one to obtain very fine asymptotic results as the time
of the growth tends to infinity, see Figure 11.1 a picture of the directed column deposition
model at a large time. Let us describe the types of results that are achievable; each of them
has been verified in at least one model, and they are expected to hold very broadly (we refer
to Appendix B in the journal version of [15] for a brief survey and references).

Figure 11.1. Simulation of the directed column deposition model.

¢ In hydrodynamic limit regime, when space and time are scaled in the same way, a
deterministic limit shape forms, and it evolves according to a first order PDE of the
form hy(z,t) = f(z, V,h), where the interface is represented as the plot of a function
h : R? x R>o — R, and the function f in the right-hand side depends on the model
(compare to the inviscid Burgers equation for TASEP).

« The (random) boundaries of the disordered regions asymptotically behave as interfaces
from the (1+1)d KPZ universality class (which should not be surprising as we already
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12.

mentioned that the left and right boundaries of the disordered region on Figure 11.1
are indeed TASEP and PushTASEP interfaces).

The models belong the (2+1) dimensional Anisotropic KPZ universality class. In a
little known dichotomy, the KPZ class in (2+1) dimensions splits into two subclasses,
isotropic and anisotropic ones. The split is related to the (mathematically ill posed)
KPZ equation h¢(x,t) = Ayh + Q(Vih) + {space-time white noise}, where Q is
a quadratic form, and this quadratic form may have either signature (1,1) or (—1, —1)
in the isotropic case, or signature (£1, 1) in the anisotropic one. Many natural mod-
els of random growth in (2+1) dimensions are isotropic (like the one with random
placement of single unit cubes), and thus our results cannot be extended to them via
the universality principle.

The one-point fluctuations around the limit shape in the bulk of the random surface
are Gaussian, with variance growing as logt for large time ¢. This was predicted
on the basis of (formal) one-loop expansion in renormalization group analysis of the
Anisotropic KPZ equation in [73]. This claim was first verified with the appearance
of the integrable models.

The multi-point fluctuations around the limit shape are described by a remarkable
object known as the Gaussian (massless) Free Field (GFF, for short). Let us explain
this claim in more detail.

Figure 12.1. Directed column deposition model and its fluctuations.

It is instructive to look on Figure 12.1 whose right panel depicts fluctuations of the in-

terface around the limit shape in the directed column deposition model (the random stepped
surface is pictured on the left panel). The spikes have average size of \/log(t), and the over-
all plot of the fluctuations seems too rough to represent any meaningful function. This is
indeed so, and the GFF that describes the fluctuations in the large time limit is a generalized
random function.

More exactly, there exists a bijective map

Q : {limit shape} — H = {z € C : Sz > 0},
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where by “limit shape” above we mean the smooth surface that approximates the disordered
region of the interface, such that the fluctuations near a given point of the limit shape are

given by
o ()
VA

where ¢;’s are the eigenfunctions of —A on H with Dirichlet (zero) boundary conditions,
Ar’s are the corresponding eigenvalues, and {y } is a collection of standard i. i. d. Gaussians.

For each () € H, the above series is almost surely divergent, but if one pairs the right-
hand side with a test function, the resulting series converges and defines a Gaussian random
variable. A mathematical introduction to the GFF can be found in [64], [33, Section 4], [39,
Section 2] and references therein.

GFF(Q) =Y & QeH,
k

13.

The GFF can be (formally) verified to constitute a time-stationary solution to the (formal)
(2+1)d Anisotropic KPZ equation [65], thus one could anticipate the appearance of the GFF
in the models of the corresponding universality class. However, this appearance is rather
nontrivial: The bijective map 2 is crucial for the GFF to show up, and yet its presence is in
no way captured by the Anisotropic KPZ equation.3

The analysis of integrable models thus predicts that for any random growth model in
(2+1)d Anisotropic KPZ class, under a suitable identification of the limit shape with a region
in the complex plane, the fluctuations will be described by the GFF. Such a prediction would
not have been possible without integrable examples.

14.

We have so far used mostly probabilistic language to describe our problems and results.
However, the key feature of the subject of integrable probability is that the analysis is largely
performed by algebraic methods.

The hierarchy of integrable models that includes most of those mentioned above, shad-
ows that of multivariate special functions that originate from representation theory and in-
tegrable systems, as characters/zonal spherical functions for Lie groups/symmetric spaces
over real/complex/finite/p-adic fields, and as eigenfunctions for integrable quantum many
body systems.

Representation theoretic tools are essential in our approach. One example that is espe-
cially important is Casimir operators of Lie theory and their generalizations.

Figure 14.1 represents the hierarchy, with the top box corresponding to the so-called
Macdonald processes [9] that are defined in terms of celebrated (multivariate symmetric)
Macdonald polynomials. The Macdonald polynomials form a two-parameter deformation of
the Schur polynomials that are well-known as irreducible characters of U (N) and GL(N, C).

It is easy to deform (= add parameters to) a random growth model viewed as a proba-

3The map 2 is a close relative of a similar map discovered and broadly utilized in the context of dimer models
[49-51].
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Macdonald processes q, t [0, 1)
Ruijsenaars-Macdonald integrable system
Representations of Double Affine Hecke Algebras

q-Whittaker processes ~ t=0 Hall-Littlewood processes q =0

q-deformed quantum Toda lattice Spherical functions for p-adic groups

Representations of @N, Uq(g[_\,)

General  RMT t=qb?—1

Calogero-Sutherland, Jack polynomials
Spherical functions for Riem. Symm. Sp.

Whittaker processes t=0 Kingman partition structures q=0
q—1 t=1
Quantum Toda lattice, repr. of GL(n, R )

Schur processes q=t

Characters of symmetric, unitary groups

Figure 14.1. Macdonald processes and their degenerations.

bilistic object. However, most such deformations destroy integrability. The reason is that
algebraic structures (in contrast to probabilistic ones) are usually very rigid. Thus, finding
meaningful deformations of algebraic structures is very nontrivial.

Historically, first two different one-parameter deformations of the Schur polynomials
were suggested: around 1960 by algebraists Ph. Hall and D. E. Littlewood,* and around 1970
by a statistician H. Jack. The Hall-Littlewood polynomials naturally arose in finite group the-
ory and were later shown to be indispensable in representation theory of GL(n) over finite
and p-adic fields. The Jack polynomials extrapolated the so-called zonal spherical functions
arising in harmonic analysis on Riemannian symmetric spaces from three distinguished pa-
rameter values that correspond to spaces over real and complex numbers and quaternions.
They are also known as eigenfunctions of the trigonometric Calogero-Sutherland integrable
system.

In mid-1980’s, in a remarkable development I. Macdonald [54] united the two defor-
mations into a two-parameter deformation known as Macdonald polynomials. The two pa-
rameters are traditionally denoted as ¢ and ¢. The Hall-Littlewood polynomials arise when
q = 0, and the Jack polynomials correspond to the limit regime ¢t = ¢’ — 1, where # > 0.
Schur polynomials correspond to ¢ = t. Other significant limits are Schur’s Q-functions (for
q = 0,t = —1); monomial symmetric functions (¢ = 0, ¢t = 1); and ¢g-Whittaker functions
arising for ¢t = 0.

Each box of the degeneration scheme of Figure 14.1 corresponds to certain values of ¢

4This is not the most famous mathematician with this last name, that would be J. E. Littlewood.
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and t. There is a natural way to associate probability distributions to each of the boxes as
well, and many of those are interesting in their own right (some of them are listed inside
the scheme). Rich structural (representation theoretic!) properties of the special functions
involved deliver tools that are essentially sufficient for analyzing various asymptotics of the
arising probabilistic objects. This is the backbone of all the models discussed above.

It is worth noting that the bridge between representation theory and probability benefits
the former as well. The corresponding part of representation theory often referred to as
asymptotic representation theory was founded by Vershik and Kerov in late 1970’s, see e.g.
[22, 47, 48, 71, 72] and references therein. Its latest developments lead to new constructions
of infinite-dimensional Markov processes, see [58] and references therein.

Unfortuantely, a further discussion of the integrable probability and its representation
theoretic origins is beyond the goals of the present talk, and we refer an interested reader
to detailed expositions of different parts of this exciting and rapidly developing domain in
[9, 15, 20, 23, 29].
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The Great Beauty of VEMs

Franco Brezzi

Abstract. In this paper I review the main features of the (newborn) Virtual Element Method, and of
its application to the approximation of boundary value problems for Partial Differential Equations of
particular relevance for applications. I will mostly concentrate on the definition of the Virtual Element
spaces, that, roughly, consist of (vector valued) functions that are solution of (systems of) partial dif-
ferential equations in each subdomain of a decomposition of the computational domain into polygons
or polyhedra of quite general shape. Then I will give some hint on the use of these spaces for the
discretization of some classical toy-problems like Heat conduction, Darcy flows, and Magnetostatic
problems.
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1. Introduction

The aim of this paper is to give some hints on a (brand new) technique, recently introduced in
Scientific Computing, with the name of Virtual Element Methods. 1t is one of the many pos-
sible applications of the so-called Galerkin Method to approximate the solution of boundary
value problems for Partial Differential Equations in variational form.

To give an idea of the Galerkin method in one of the simplest possible examples, assume
that one wants to compute the approximate solution of the PDE —Awu = f in a given (say,
polygonal, for hyper-simplicity) domain €2, with the boundary conditions v = 0 on 0€2. The
variational form of this problem consists in looking for a function © € V such that

/gradu-gradvdx:/fvdx YoeV (1.1)
Q Q

where the space V is chosen as H} (), that is, the space of square integrable (classes of
Lebesgue measurable) functions with square integrable derivatives (in 2) that vanish on 0.

The Galerkin method consists in choosing a finite dimensional subspace V;, C V and
looking for uy, € V}, such that

/ graduy, - gradvydz = / fopde Yop € Vp,. (1.2)
Q Q

It is then (in this toy-case) an easy exercise to show that such a u;, exists and is unique in
V3, together with the estimate

/ lgrad(u — uy)|*dz < inf / lgrad(u — v,)|?dz (1.3)
Q Q

v €Vh
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that connects the error ||u — wy,|| with the best approximation that could be given of the
solution u within the subspace V/,.

More generally, the mathematical analysis of this type of procedures assumes that we are
given a sequence of subspaces {V}, }1,, indexed by the parameter h (positive, and tending to
zero). The target is to prove, under suitable assumptions on the sequence of decompositions,
that the sequence of solutions {uy, }, converges to the exact solution v when & tends to 0. As
far as possible, one also tries to connect the speed of such a convergence in terms of suitable
properties of the sequence {V}, }1,. See e.g. [39].

Many choices are available for the construction of such subspaces. One of the most
common and most successful ones is that of Finite Elements: one decomposes the domain §2
in small pieces and takes V}, as the space of functions that are piece-wise polynomials. The
most classical case is that of decompositions in triangles (see two examples in Figure 1.1),
in which one takes functions that are polynomials of degree < 1 in each triangle. It is easy
to see that each function of V}, in this case, is characterized by its values at the vertices of
the triangles, that will therefore become the unknowns of our approximate problems.

Figure 1.1. Triangulations of a rectangle: non-uniform or uniform

The most obvious generalization is obtained by taking, instead, polynomials of degree
< 2 1in each triangle (and the unknowns will then be the values at the vertices and the values
at the midpoint of each edge). And so on, using piecewise polynomials of degree < k with
k=1,2,3,...etc.

For the mathematical analysis one will then consider a sequence of decompositions
{Tn}n, and, for a fixed k, connect the speed of convergence of uy, to u in terms of prop-
erties of the sequence. Typically, the parameter h will be connected to the biggest among the
diameters of all the elements of the decomposition 7. Clearly, to let h — 0 will mean to
consider finer and finer decompositions, and to measure the speed of convergence we look
for estimates of the error ||[u — wy|| in terms of the powers of h (and of the degree k). See
again [39].

In three dimensions one uses, for instance, tetrahedra instead of triangles, and life is a
bit more complicated. But already in two dimensions, as soon as we abandon the use of
triangles, life becomes decidedly more complicated. Quadrilaterals (when we do not restrict
ourselves to parallelograms) can already be a source of some practical (meaning: when we
have to write the computer code!) headaches, and hexahedra are much worse. See for
instance [6, 8, 22, 36, 44, 60, 63, 66], and the references therein.

Luckily, in the majority of applications the use of triangles/tetrahedra and or quadrilater-
als/hexahedra is sufficient to give very effective practical methods.
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There are however several types of problems where the use of much more general polyg-
onal or polyhedral elements becomes highly desirable. The most relevant, so far, are the anal-
ysis of fractured materials and crack propagation (see, e.g. [1, 26, 40, 73, 74,77, 78, 84], and
the references therein), topology optimization (see, e.g. [3, 24, 25, 50, 56, 79, 87, 89, 98],
and the references therein), computer graphics (see, e.g. [43, 45-47, 57, 61, 69, 72, 97])
and several other applications including fluid-structure interaction or two phase flows (see
for instance [37, 38, 52, 64, 71], and the references therein). But their use for structured
materials (see, e.g. [76, 79, 80, 83]) is also a promising direction, as well as for many other
applications (see, e.g. [48, 76, 88, 90, 95] and the references therein).

The literature on these types of decompositions is quite wide, both from the Mathemat-
ical and the Engineering point of view. Here I just quote, in addition to the ones already
mentioned: [5, 9-12, 23, 27, 29, 42, 53-55, 59, 62, 70, 75, 81, 82, 86, 91-94, 96], and the
references therein.

In the last decade the use of Mimetic Finite Differences (a sort of finite differences,
allowing very general decompositions, but not within the framework of Galerkin methods)
underwent an impressive growth. I just mention, among the more recent papers, [4, 13, 17—
20, 28, 30, 32-34, 41, 65].

The Virtual Element Methods (VEMs, in the title of the present paper) could be seen
as an evolution of Mimetic Finite Differences, keeping their tremendous generality for the
type of usable decompositions, but falling back into the simpler and more elegant realm of
Galerkin approximations. See [2, 14-16, 21, 35, 49, 51, 68].

Here I want to describe, mostly for non-experts, the very basic features of the method,
concentrating on a few very simple cases, and just giving hints and references to the more
sophisticated (and practically much more interesting) developments of the last two years.

Here and there, I will do a certain amount of hand-waving, trying to trade precision
for clarity. I apologize for that in advance. However, in these cases, I will always warn
the readers, and address those that are interested in precise details to some papers already
published or at least available on my web page.

An outline of the paper is as follows. In the next section, I will introduce some of the most
commonly used functional spaces in the approximation of PDE’s. In doing so, I will take,
as toy-examples, some super-simplified problems in variational formulation (namely: Darcy
flows, both in the primal and in the mixed formulation, and the magnetostatic problem). In
the subsequent section I will try to give an idea on the classical Finite Element spaces used
in the practice of Scientific Computing. Then, in Section 4 I will present the basic ideas on
the construction of Virtual Element Spaces. Their main properties will be presented in the
subsequent section, and their use in the approximation of PDE’s will be briefly illustrated
in Section 6. Some conclusions will be drawn in the final section, and a quite ample set of
references will be in charge of (partly) heal the lack of details of the whole paper.

2. Typical model problems and functional spaces

In this section I will recall a few model problems of interest in applications, together with
their variational formulations. To start with, I recall some of the most used functional spaces.

2.1. The spaces most used in variational formulations. Let (2 be a Lipschitz continuous
polyhedral domain. The following spaces are the common bricks used to deal with PDEs.
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L?(Q) and (L3(2))® := square integrable (vector valued) functions on ().
H(div; Q) = {Te€(L?(Q))3s.t divr €L?(Q)}

H(curl; Q) = {p e (L?(N))?s.t. curlp € (L*(Q))3}
H(grad; ) = {ve L?(Q)st gradv € (L*(Q))*} = HY(Q)

2.2. Primal formulation of Darcy problem. We consider now the classical model prob-
lem of Darcy flow (fluid flow through a porous medium). We denote by p the pressure,
by u the velocities (actually, the volumetric flow per unit area), by f the source and by
K a material-depending tensor (representing the ratio between the permeability tensor and
the viscosity coefficient). For the sake of simplicity, we also take the (totally) unrealistic
choices: K = I (= identity) and p = 0 at the boundary 0f2. Taking also into account the
physical laws: u = —KVp = —Vp (Constitutive Equation), and divu = f (Conserva-
tion Equation) we end up with the model problem already considered in the introduction:
Find p € H}(Q) such that —Ap = f in Q. As we already saw in the introduction, we can
consider the variational formulation: find p € H}(Q) such that:

/ Vp - Vgdx = / fqdx Vg € Hy(9). 2.1
Q Q

2.3. Mixed formulation of Darcy problem. There is however another variational formu-
lation of the same problem, that in many practical cases is even more convenient than (2.1),
and goes under the name of mixed formulation. It amounts to keep both unknowns u and p,
looking for p € L?(Q2) and u € H (div; Q) such that

/u-VdQ:/pdivde Vv e H(div; Q) (2.2)
Q Q

and
/divuqu—/ fqdQ  VqeL*Q), (2.3)
Q Q

where we see the spaces H (div;{)) and L?({2) coming into the game (as spaces where we
look for the solution, that therefore need to be discretized).

2.4. Magnetostatic equations. Another very simple model problem is given by the mag-
netostatic equations. Here, given a polyhedral domain 2, and given j = (divergence free)
current density vector and p = magnetic permeability constant, we consider the unknowns
u = vector potential with the gauge divu = 0, H = z~'curl u = magnetic field, and B =
magnetic induction, together with the physical laws: B = yH, curlH = j, and divB = 0
(that however has already been taken into account with the use of the vector potential u, since
div B = div uH = div curlu = 0). We supplement these equations with the (moderately
realistic) boundary conditions u A n = 0 on 9f).
The classical magnetostatic equations can therefore be written now

curlp tcurlu=j and divu=0 in Q (2.4)

and we supplement them with the boundary conditions u A n = 0 on 9f2. In order to reach
a variational formulation of the problem, we define first

Hy(curl; Q) := {¢ € H(curl; Q) such that o An =0 on 00} (2.5)



The Great Beauty of VEMs 221

and we introduce a Lagrange multiplier p € H} () to take into account the gauge div u = 0.
Hence we can write the variational formulation as:

Find u € Hy(curl, Q) and p € H}(Q) such that :
(u~tcurlu,curlv) — (Vp,v) = (j,v) Vv € Hy(curl; Q) (2.6)
(1, Vg) =0 Vg € Hy (),

showing an example of use for H (curl; ) and H} (Q).

2.5. Continuity requirements for the basic spaces. Before entering the details of the
VEM approximations for these spaces, I will make a final consideration on the continuity
requirements for each of them. Assume that we have, say, a piecewise smooth vector valued
function v : Q — R3. Then, if you want to ensure that it belongs, globally, to (H*(2))3
you must require that all the components of v are continuous at the inter-element boundaries.
If instead you want to ensure that v belongs, globally, to H (curl; €2), you must require that
its tangential components are continuous at the inter-element boundaries, while for having
v € H(div;{2) you must require the continuity, at the inter-element boundaries, of its nor-
mal component. Finally, as natural, no continuity is required to ensure v € (L3(Q))3.

The knowledge of these continuity requirements is crucial in building approximations:
roughly speaking, the quantities that are required to be continuous must be single-valued
al the inter-element boundaries, and in practice one needs to prescribe them as degrees of
freedom in the approximations.

3. Classical F.E. approximations

3.1. Basic polynomial spaces. To give the flavor of typical Finite Element approximations,
let us see to simplest possible choices of polynomial spaces on a tetrahedron:

Py := {constants} (1d.o.f.)
RTy:={r=a+cx}withacR*andc € R (4d.o.f.)
No:={p=a+cAx}withacR?*andc € R? (6d.0.f.)
P, :={v=a+c-x}witha € Randc € R? (4d.0.f.)

A function in IP; can obviously be individuated by its value at the four vertices of the
tetrahedron, and a vector in (IP;)? will be individuated by the three values of its three compo-
nents at each vertex. A vector valued function in Ny will be individuated by the (constant!)
values of its tangential components along each of the six edges. Instead, a vector valued
function in RTj will be individuated by the values of its normal components on each of the
four faces. It is an easy exercise to check that the normal component of an element of RTj,
on any plane, is always constant. Finally, a function in Py can obviously be individuated by
its value, say, at the barycenter.

3.2. Lowest order finite element spasces. Let now 7 be a decomposition of €2 in tetrahe-
dra. We consider the following finite element approximations.

L2(Q) ~ L := {q € L*(Q) such that 7 € Py VT € Ty},
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H(div;Q) ~ RTy := {1 € H(div; Q) s.t. 7)p € RTy VT € Ty},
H(curl; Q) ~ Ny := {p € H(curl; Q) s.t. o|p € Ng VT € Ty},
H(grad; Q) ~ L] := {v € H(grad; Q) s.t. v € Py VT € Tp}.

It is easy to see, from the previous discussion, that: i) a function in £ is individuated by its
values at the barycenter of each tetrahedron of the decomposition, ii) a function in RT is
individuated by the values of its normal component at each face of the decomposition, iii) a
function in N is individuated by the values of its tangential component at each edge of the
decomposition, and iv) a function in £} is individuated by its values at each vertex of the
decomposition.

o
Z

o RT, 0

V

Figure 3.1. Degrees of freedom for the four polynomial spaces

All this is very elegant and, at the same time, very practical. This is not always the case.
For instance, the most elegant available form for polynomial approximations (of degree k)
of H(curl) in a cube like (—1,1)3 is given by

spcm{yz(wg(m, z) —ws(x,y)),
zz(wz(z,y) — wi(y, 2)),
wy(wr(y, 2) — wale, 2))
+ (P1)? + grad s(z, y, 2)

where each w; (i = 1,2, 3) ranges over all polynomials (of 2 variables) of degree < k and

s ranges over all polynomials of superlinear degree < k + 1, where the superlinear degree

of a monomial is defined as “ordinary degree ignoring variables that appear linearly”, [7].
Clearly nobody ever tried to do something similar on a dodecahedron....

4. Virtual element spaces

4.1. Polygonal and polyhedral elements. There is a wide literature on Polygonal and
Polyhedral Elements, with applications to several important fields in Engineering and Com-
puter Sciences. See for instance [5, 27, 45, 58, 61, 67, 85, 93, 94], and the references therein.
In general, these methods present the members of the discrete subspace as the solutions
of suitable problems within each element. These problems are then solved in an approximate
way, to obtain their values at the nodes of a suitable numerical integration formula (that, in
turn, is used in order to compute the integrals that appear in the variational formulation).
The Virtual Element Methods follow this path insofar as to use solutions of (systems) of
PDE equations. However, they do not attempt an approximate solution of these equations
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Figure 4.1. Voronoi tassellations: coarser and finer

(a most expensive step) and use instead suitable integrations by parts in order to compute
the integrals (appearing in the variational formulations) exactly, at least when one of the two
terms is a polynomial of a degree up to k, where k denotes the accuracy that has been chosen
by the user (the higher is k, the most expensive is the computation). This ensures the full
satisfaction of the so-called patch-test of order k, that roughly requires that: if the solution
of the original problem is, globally, a polynomial of degree < k, then the solution of the
discretized problem coincides with the exact solution. A property that is considered as very
important in the Engineering literature, and that is lost when using numerical integration.

Let us see how this can be done, on some toy problem.

Assume that we are given a sequence of decompositions {7}, }, of the computational do-
main € into polygons or polyhedra. To fix the ideas, we just assume that the decomposition
satisfies the following assumption

o HO For the 2-dimensional case, we assume that: HO5 - there exists a fixed real number
p such that each polygon E is starshaped with respect to all the points of a ball of
diameter phg and all its edges have a length > hg (where hg is the diameter of F).
In three dimensions, we assume that: HO3 - there exists a fixed real number p such that
each polyhedron F is starshaped with respect to all the points of a ball of diameter ph g
and all its faces satisfy the two dimensional assumption HOy with constant p.

Note that HO easily implies, among other things, that there exists an integer number N,
depending only on p, such that the number of edges of each element is bounded by N.

4.2. General features of VEM Spaces. As for other methods, the trial and test functions
inside each element are rather complicated (e.g. solutions of suitable PDE’s or systems of
PDE’s).

However, contrary to other methods,

i) they do not require the approximate evaluation of trial and test functions at the inte-
gration points.
ii) In most cases they satisfy the patch test exactly (up to the computer accuracy).

iii) We have a whole family of spaces (conforming and nonconforming approximations of
all the main functional spaces)
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4.3. Approximations of H1(Q) = H (grad; ©2). We consider first the two-dimensional
case. For each element F that satisfies HO, and for each integer £ > 1 we consider the local
spaces:

ngd“l (OE) :={g| g € C°(OFE) and gle € Pi(e) for all edge e € OE}, 4.1)

and
Vgt (E) := {v| vjpp € Bp%“ (OE) and Av € P_»(E)}. (4.2)
Then we define, in a very natural manner:
Vigdah(Q) == {v € H'(Q) | vjp € V3" (E) forall E € Tp,} . (4.3)

‘We then consider the three dimensional case. For each element E that satisfies HO, and
for each integer k£ > 1 we consider first the local spaces:

Broel(9E) = {g| g € C°(OE) and g); € V;?3%!(f) for all face f € OE} 4.4)

and
Vkrfgd“l(E) ={v|vE € B,Tj%d“l(@E) and Av € Pr_o(E)}, 4.5)
and then we define:
Vgt Q) .= {v € H'(Q)| vp € V'§"(E) forall E € T } . (4.6)

We can now consider the global degrees of freedom (say, in three dimensions):

o The values of v at the vertices of 7T,

o [ vqr_odsforalledgee € Ty, Vgp_o € Pr_z(e),

. fquk,gdf for all face f € Tn, Vqp—2 € Pr_a(f),

o [5vqr—odE forall element E € Ty, Vgr_2 € Pr_2(E),

4.4. Approximations of H (div; €2). Ineach element F, and for each integer k, we define
Bl%(0E) == {g| g). € PV edge e € OE} in 2d,
BI%*(OE) :={g| gy € Py ¥ face f € JE} in 3d.
The local spaces, in two dimensions, will then be
kagce(E) ={r|7T-ne Bgf;“(aE), divr € Px_q, rot T € Pr_1},
and in 3 dimensions
VIs(B) == {7 |t neB[Y(0F), divr € Pp_y, curlT € (Py_1)*}.
Finally, in all cases , the global spaces will be written as
VI3 (Q) == {r € H(div; Q)| 7 € Vi q(E) forall E € Ty }. (4.7)

Before describing the degrees of freedom, we define, on a generic domain O, the space
Gi-(O) as the subset of the g € (Px(O))? such that

/ g-gradq;1dO0 =0 Vqpi1 € Pryq(O).
o

Then we can choose the degrees of freedom in Vk{ 7°°(Q) as
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. /7- -nqpde Vai € Pr(e) Vedgee

o / T-grad qp_1dFE Vqp—1 € Pr_1(E) Velement £
E

. / T-gidE Vgr € Gii(E) Velement E
E

in two dimensions, and

. /7’ ‘nqpdf Yqr € ]P’k(f) Y face f
!

. / 7 -grad q,_1dE Vgi—1 € Pr_1(E) Velement E
E

. / T-grdE Vgi € Gi(F) Velement E
E

in three dimensions.

4.5. Approximations of H (curl; Q). For the 2-dimensional case, we can think that
H(curl; Q) is obtained from H (div;(2) by a simple rotation of 7/2. With this, we can
just think that also its discretization

V,fgg “(£2) is obtained by rotating Vk{ 5 Cof /2.

Namely, we can consider vector fields that on each edge have a tangential component in
Py (e) , and whose divergence and rotation are in P, _1(e) for each element E. The corre-
sponding degrees of freedom can also be easily obtained by rotating the corresponding ones
for Vk{gce(Q).

We can therefore turn to the (more complex) discretizations of H (curl; ) in three di-
mensions.

In each element E, and for each integer k, we therefore set

B (OE) = {¢| @)y € Vi(f)V face f € IE and
@ - te is single valued at each edge e € OE'}
where we denoted by t. the unit tangent vector to an edge e. Now we can set
VU (E) = {g] gy € B (9E), divp € Py_y, curleurly € (Py_s)°}

where | is, on each face, the tangential part of . We can therefore define the global space
as:

Vi (Q) = {p € H(eurk:Q)| ¢ € V§"(E) forall E € Ty }.

In V,fgg “(£2) we can take the following degrees of freedom:

« for every edge e: /go te qrde Vai € Pr(e)

e
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« for every face f:

/go -rot g,_1df Vagr—1 € Pr_1(f)
f

/f - riydf Ve, € R ()

where th is the subset of the r € (P4 (f))? such that

/1‘ ‘rot gx11df =0 Vart1 € Pra(f)
f
« and for every element E:

[ @ rotaiae Va1 € (Bor(E))®
E

E

where R;; 5(E) is the subset of the r € (P;(E))? such that

/ r-curlqdE =0 Vagt1 € (Pry1(E))°
E

4.6. Approximations of L2(€2). The approximation of spaces as L2(Q) or (L?(£2))?does
not present any difficulties. As the space has no continuity requirements, we can just take
piecewise polynomials discontinuous (vector valued) functions:

Vesume(Q) = {q| g € Py.a(E) forall E € Ty},

5. Useful properties

We observe that the classical differential operators grad, curl, and div send these VEM
spaces one into the other (up to the obvious adjustments for the polynomial degree). Indeed:

grad (V'g%) C Vel eurl (VE99) € ViIors div (V%) € velmpe. (5.

But possibly the most crucial feature common to all these choices is the possibility to
construct (starting from the degrees of freedom, and without solving approximate problems
in the element) an approximate L?-type scalar product

[u,v]p = Z [, v]nEe, (5.2)

EcTy,

with the following properties:
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P1 [Pk, Vln,E = (Pk, V)o,E Vpr € (Px(E))?, Vv inthe VEM space

(where (pk,V)o, i represents the L?(E) inner product, or the (L?(E))? inner product for
vector valued functions), and

P2 Ja* > a, > 0independent of h such that

a[vI§ g < v, Vine < o*||v|[§ 5, Vv inthe VEM space,

where obviously | v|[§ 5 := (v, V)o x. In turn, properties P1 and P2 can be easily obtained,
if we are able to compute the L2-projections onto PP, of the elements of the VEM spaces.
Indeed, assume that for every v in the VEM space and for every polynomial p; you can
compute (up to computer precision) an element II9v in P;, such that

(v — Hgv,pk)ovE =0 V pr € Pg Vv in the VEM space. (5.3)
Then you can set
[u,v]n. 5 = (2w, T1Y0) + S(u — Iu, v — Tv) (5.4)

where S is “any” symmetric bilinear form that, roughly speaking, scales like the true >
inner product (see [14], [35], or [16] for a precise definition, more details and examples).

Needless to say, these approximate L>-type inner products depend on the type of Virtual
Elements that we are dealing with. Hence, in what follows, we are going to use a different
name for each of them. With obvious notation we will, therefore, have scalar products
(4, V]V EM nodal and [, Vv B volume fOr scalar functions, together with [u, v]v g edge
and [u, V]y g, face for vector-valued functions.

6. VEM approximations of PDE’s

Using the L2-type projection operators, and, if needed, the properties (5.1) one can find
an easy and systematic way to discretize PDE’s by means of Virtual Element spaces. It
should be pointed out, however, that on specific occasions alternative solutions could be
more effective. Moreover, the discretization of the forcing terms requires some (minor)
additional care that I do not discuss here. See for instance [14] or [31].

6.1. VEM’s for primal Darcy. Remembering equation (2.1) we can now formulate the
approximate problem as: find py, € Vk’f‘z’dal such that:

[gradpy,, gradqs|v Em,edge = [fs @h]VEM nodal

for all g5, € VEM'9%!.

6.2. VEM’s for mixed Darcy. The approximate version of the mixed formulation (2.2)-
(2.3) can now be written as: find p;, € Vk“fll’fgw and uy, € ka’ 9°¢ such that:

[Un, VilvEM, face = [Phy diV VL]V EM,volume
for all vy, € Vk{ 5, and

[divup, gn]vEM votume = 5 qnlv EM, volume

for all g5, € V,2ore.
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6.3. VEM’s for electromagnetic problems. The VEM approximation of the magnetostatic
problem (2.6), in turn, can be chosen as: find uy, in Vkicég ¢ and py, in kagdal such that:

1

[N_ curl Up, curl Vh]VEM,face - [me Vh]VEM,edge

. d
= [J, ValvEM,edge Y Vi € V57"
and
(W, Vanlvemeage =0 Y, € Vg4

Remark 6.1. To tell the truth, in order to set up the proof, one has to think that the Virtual
Element space has been ftilted, or, as we say (cfr. [2]), enhanced. This does not correspond
to a change in the code, but it simplifies the proofs that, without it, would become more
cumbersome. I decided not to enter these aspects, and to refer the interested readers to [2]
and [16].

It has to be pointed out that these methods are extremely robust with respect to the choice
of the geometry of the decomposition. To give the flavor of their capability, I report the
results made on a fotally crazy sequence of meshes going from 4 x 4 to 16 x 16 winged
horses, clearly inspired by Escher. The results have been obtained with the primal and mixed
formulation of Darcy problem, having p = sin(2z) cos(3y) as exact solution (courtesy of
Alessandro Russo and Donatella Marini).
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Figure 6.1. Winged horses: 4x4 and 16x16

7. Conclusions

Virtual Elements is a new method, and a lot of work is needed to assess its pros and cons.
Its major interest is on polygonal and polyhedral elements, but its use on distorted quads,
hexahedra, and the like, is also quite promising. For triangles and tetrahedra the interest
seems to be concentrated in higher order continuity (e.g. [35]). The use of VEM mixed
methods seems to be quite interesting, in particular for their connections with Finite Volumes
and Mimetic Finite Differences.



The Great Beauty of VEMs 229

o2 o2

. —— VEM1 lIp,=p |l in L ) —— VEM1 lIp,=p |l in L
10 /..., h2 T T T T 10 /... h2 T T

S T S h? -1
10 b e D 10 §|

yyyyyyyyyy h?
1074 1067h i e
10_3 0.9 0.8 0.7 ‘—06 0.5 0.4 103 0.9 ‘08 0.7 0.6 0.5 0.4
10 10 10 10 10 10 10 10 10 10 10 10

Figure 6.2. L? error for primal (left) and mixed (right) formulations
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Mathematics of sparsity (and a few other things)
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Abstract. In the last decade, there has been considerable interest in understanding when it is possible
to find structured solutions to underdetermined systems of linear equations. This paper surveys some
of the mathematical theories, known as compressive sensing and matrix completion, that have been
developed to find sparse and low-rank solutions via convex programming techniques. Our exposition
emphasizes the important role of the concept of incoherence.

Mathematics Subject Classification (2010). Primary 00A69.

Keywords. Underdetermined systems of linear equations, compressive sensing, matrix completion,
sparsity, low-rank-matrices, £1 norm, nuclear norm, convex programing, Gaussian widths.

1. Introduction

Many engineering and scientific problems ask for solutions to underdetermined systems of
linear equations: a system is considered underdetermined if there are fewer equations than
unknowns (in contrast to an overdetermined system, where there are more equations than
unknowns). Examples abound everywhere but we immediately give two concrete examples
that we shall keep as a guiding thread throughout the article.

o A compressed sensing problem. Imagine we have a signal z(t), t = 0,1,...,n — 1,
with possibly complex-valued amplitudes and let & be the discrete Fourier transform
(DFT) of x defined by

n—1 '
Z(w) = z(t)e 2wty =0,1,...,n—1
t=0

In applications such as magnetic resonance imaging (MRI), it is often the case that we
do not have the time to collect all the Fourier coefficients so we only sample m < n
of them. This leads to an underdetermined system of the form y = Az, where y is
the vector of Fourier samples at the observed frequencies and A is the m x n matrix
whose rows are correspondingly sampled from the DFT matrix.! Hence, we would like
to recover x from a highly incomplete view of its spectrum.

o A matrix completion problem. Imagine we have an n, X ny array of numbers z(¢1, t2)
perhaps representing users’ preference for a collection of items as in the famous Net-
flix challenge; for instance, (¢, t2) may be a rating given by user ¢; (e.g. Emmanuel)
for movie ¢, (e.g. “The Godfather””). We do not get to see many ratings as only a few
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entries from the matrix x are actually revealed to us. Yet we would like to correctly in-
fer all the unseen ratings; that is, we would like to predict how a given user would rate
a movie she has not yet seen. Clearly, this calls for a solution to an underdetermined
system of equations.

In both these problems we have an n-dimensional object x and information of the form
yr = (ag,z), k=1,...,m, (1.1)

where m may be far less than n. Everyone knows that such systems have infinitely many
solutions and thus, it is apparently impossible to identify which of these candidate solutions
is indeed the correct one without some additional information. In this paper, we shall see that
if the object we wish to recover has a bit of structure, then exact recovery is often possible
by simple convex programming techniques.

What do we mean by structure? Our purpose, here, is to discuss two types, namely,
sparsity and low rank.

o Sparsity. We shall say that a signal z € C™ is sparse, when most of the entries of
x vanish. Formally, we shall say that a signal is s-sparse if it has at most s nonzero
entries. One can think of an s-sparse signal as having only s degrees of freedom (df).

o Low-rank. We shall say that a matrix x € C™*"2 has low rank if its rank r is (sub-
stantially) less than the ambient dimension min(n1,n2). One can think of a rank-r
matrix as having only r(nq + ng — r) degrees of freedom (df) as this is the dimension
of the tangent space to the manifold of rank-r matrices.

The question now is whether it is possible to recover a sparse signal or a low-rank
matrix—both possibly depending upon far fewer degrees of freedom than their ambient
dimension suggests—from just a few linear equations. The answer is in general negative.
Suppose we have a 20-dimensional vector x that happens to be 1-sparse with all coordinates
equal to zero but for the last component equal to one. Suppose we have 10 equations reveal-
ing the first 10 entries of x so that ap = ex, k = 1, ..., 10, where throughout e, is the kth
canonical basis vector of C™ or R™ (here, n = 20). Then y = 0 and clearly no method what-
soever would be able to recover our signal . Likewise, suppose we have a 20 x 20 matrix of
rank 1 with a first row equal to an arbitrary vector x and all others equal to zero. Imagine that
we see half the entries selected completely at random. Then with overwhelming probability
we would not see all the entries in the first row, and many completions would, therefore, be
feasible even with the perfect knowledge that the matrix has rank exactly one.

These simple considerations demonstrate that structure is not sufficient to make the prob-
lem well posed. To guarantee recovery from y = Az by any method whatsoever, it must be
the case that the structured object x is not in the null space of the matrix A. We shall assume
an incoherence property, which roughly says that in the sparse recovery problem, while x
is sparse, the rows of A are not, so that each measurement gy, is a weighted sum of all the
components of . A different way to put this is to say that the sampling vectors a;, do not
correlate well with the signal x so that each measurement contains a little bit of informa-
tion about the nonzero components of x. In the matrix completion problem, however, the
sampling elements are sparse since they reveal entries of the matrix x we care to infer, so
clearly the matrix x cannot be sparse. As explained in the next section, the right notion of

More generally,  might be a two- or three-dimensional image.
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incoherence is that sparse subsets of columns (resp. rows) cannot be singular or uncorrelated
with all the other columns (resp. rows). A surprise is that under such a general incoherence
property as well as some randomness, solving a simple convex program usually recovers the
unknown solution exactly. In addition, the number of equations one needs is—up to possible
logarithmic factors—proportional to the degrees of freedom of the unknown solution. This
paper examines this curious phenomenon.

2. Recovery by convex programming

The recovery methods studied in this paper are extremely simple and all take the form of a
norm-minimization problem

minimize ||z| subjectto y = Az, (2.1)

where || - || is a norm promoting the assumed structure of the solution. In our two recurring
examples, these are:

o The ¢; norm for the compressed sensing problem. The ¢; norm, ||z|l,, = >, |z,
is a convex surrogate for the ¢y counting ‘norm’ defined as |{i : x; # 0}|. It is the
best surrogate in the sense that the ¢; ball is the smallest convex body containing all
1-sparse objects of the form =+e;.

o The nuclear norm, or equivalently, Schatten-1 norm for the matrix completion problem
defined as the sum of the singular values of a matrix X. It is the best convex surrogate
to the rank functional in the sense that the nuclear ball is the smallest convex body
containing all rank-1 matrices with spectral norm at most equal to 1. This is the
analogue to the /1 norm in the sparse recovery problem above since the rank functional
simply counts the number of nonzero singular values.

In truth, there is much literature on the empirical performance of ¢; minimization [72,
67, 66, 26, 73, 41] as well as some early theoretical results explaining some of its success
[55, 35, 37, 34, 75, 40, 46]. In 2004, starting with [16] and then [32] and [20], a series
of papers suggested the use of random projections as means to acquire signals and images
with far fewer measurements than were thought necessary. These papers triggered a massive
amount of research spanning mathematics, statistics, computer science and various fields
of science and engineering, which all explored the promise of cheaper and more efficient
sensing mechanisms. The interested reader may want to consult the March 2008 issue of
the IEEE Signal Processing Magazine dedicated to this topic and [49, 39]. This research is
highly active today. In this paper, however, we focus on modern mathematical developments
inspired by the three early papers [16, 32, 20]: in the spirit of compressive sensing, the
sampling vectors are, therefore, randomized.

Let F be a distribution of random vectors on C™ and let a, ..., a,, be a sequence of
i.i.d. samples from F'. We require that the ensemble F' is complete in the sense that the
covariance matrix 2 = [E aa™ is invertible (here and below, a* is the adjoint), and say that
the distribution is isotropic if X is proportional to the identity. The incoherence parameter is
the smallest number p(F') such that if a ~ F, then

2
. < .
max - [{a,e) [7 < p(F) (2.2)
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holds either deterministically or with high probability, see [14] for details. If F' is the uni-
form distribution over scaled canonical vectors such that 3 = I, then the coherence is large,
ie. u = n. If x(t) were a time-dependent signal, this sampling distribution would corre-
spond to revealing the values of the signal at randomly selected time points. If, however, the
sampling vectors are spread as when F' is the ensemble of complex exponentials (the rows
of the DFT) matrix, the coherence is low and equal to x = 1. When X = I, this is the lowest
value the coherence parameter can take on since by definition, u > E | (a, e;) | = 1.

Theorem 2.1 ([14]). Let x* be a fixed but otherwise arbitrary s-sparse vector in C". Assume
that the sampling vectors are isotropic (X = I) and let y = Ax* be the data vector and the
0y norm be the regularizer in (2.1). If the number of equations obeys

m > Cg-p(F)-df -logn, df=s,

then x* is the unique minimizer with probability at least 1 — 5/n — e~P. Further, Cs may
be chosen as Cy(1 + j3) for some positive numerical constant Cy.

Loosely speaking, Theorem 2.1 states that if the rows of A are diverse and incoherent
(not sparse), then if there is an s-sparse solution, it is unique and ¢; will find it. This holds as
soon as the number of equations is on the order of s - log n. Continuing, one can understand
the probabilistic guarantee as saying that most deterministic systems with diverse and inco-
herent rows have this property. Hence, Theorem 2.1 is a fairly general result with minimal
assumptions on the sampling vectors, and which then encompasses many signal recovery
problems frequently discussed in practice, see [14] for a non-exhaustive list.

Theorem 2.1 is also sharp in the sense that for any reasonable values of (1, s), one can
find examples for which any recovery algorithm would fail when presented with fewer than
a constant times p(F') - s - logn random samples [14]. As hinted, our result is stated for
isotropic sampling vectors for simplicity, although there are extensions which do not require
) to be a multiple of the identity; only that it has a well-behaved condition number [53].

Three important remarks are in order. The first, is that Theorem 2.1 extends the main
result from [16], which established that a s-sparse signal can be recovered from about
20 - s - log n random Fourier samples via minimum ¢; norm with high probability (or equiv-
alently, from almost all sets with at least this cardinality). Among other implications, this
mathematical fact motivated MR researchers to speed up MR scan acquisition times by sam-
pling at a lower rate, see [56, 78] for some impressive findings. Moreover, Theorem 2.1 also
sharpens and extends another earlier incoherent sampling theorem in [9]. The second is that
other types of Fourier sampling theorems exist, see [43] and [79]. The third is that in the case
the linear map A has i.i.d. Gaussian entries, it is possible to establish more precise sampling
theorems. Section 5 is dedicated to describing a great line of research on this subject.

We now turn to the matrix completion problem. Here, the entries X;; of an n; X ng
matrix X are revealed uniformly at random so that the sampling vectors a are of the form
e;e; where (i, j) is uniform over [n1] X [n2] ([n] = {1,...n}). With this,

Xij = <€i€;~<, X>

where (-, -) is the usual matrix inner product. Again, we have an isotropic sampling distribu-
tion in which ¥ = (nyn2)~11. We now need a notion of incoherence between the sampling
vectors and the matrix X, and define the incoherence parameter p(X) introduced in [15],
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which is the smallest number z(X) such that

lg%)f” (77,1/7’) : “WCOI(X)€i||%2 < M(X)

2
15?22 (n2/7) - HTFrOW(X)ejHKQ < u(X),

(2.3)

where 7 is the rank of X and 7. (x) (resp. mow(x)) is the projection onto the column
(resp. row) space of X. The coherence parameter measures the overlap or correlation be-
tween the column/row space of the matrix and the coordinate axes. Since ), ||Teoi(x)€ill7, =
tr(meoi(x)) = 7, we can conclude that (X)) > 1. Conversely, the coherence is by defini-
tion bounded above by max(n1,n2)/r. A matrix with low coherence has column and row
spaces away from the coordinate axes as in the case where they assume a uniform random
orientation.? Conversely, a matrix with high coherence may have a column (or a row space)
well aligned with a coordinate axis. As should become intuitive, we can only hope to recover
‘incoherent’ matrices; i.e. matrices with relatively low-coherence parameter values.

Theorem 2.2. Let X* be a fixed but otherwise arbitrary matrix of dimensions ni X ng and
rank r. Let y in (2.1) be the set of revealed entries of X* at randomly selected locations
and || - || be the nuclear norm. Then with probability at least 1 — n=1°, X* is the unique
minimizer to (2.1) provided that the number of samples obeys

m > Cy - u(X)-df-log?(ny +ng), df =7r(ny +ny — 1),
for some positive numerical constant C.

We have adopted a formulation emphasizing the resemblance with the earlier sparse
recovery theorem. Indeed just as before, Theorem 2.2 states that one can sample without
any information loss the entries of a low-rank matrix at a rate essentially proportional to
the coherence times its degrees of freedom. Moreover, the sampling rate is known to be
optimal up to a logarithmic factor in the sense that for any reasonable values of the pair
(1(X), rank(X)), there are matrices that cannot be recovered from fewer than a constant
times p(X) - df - log(ny + n2) randomly sampled entries [21].

The role of the coherence in this theory is also very natural, and can be understood when
thinking about the prediction of movie ratings. Here, we can imagine that the complete
matrix of ratings has (approximately) low rank because users’ preferences are correlated.
Now the reason why matrix completion is possible under incoherence is that we can exploit
correlations and infer how a specific user is going to like a movie she has not yet seen, by
examining her ratings and learning about her general preferences, and inferring how other
users with such preferences have rated this particular item. Whenever we have users or small
groups of users that are very singular in the sense that their ratings are orthogonal to those of
all other users, it is not possible to correctly predict their missing entries. Such matrices have
large coherence. (To convince oneself, consider situations where a few users enter ratings
based on the outcome of coin tosses.) An amusing example of a low-rank and incoherent
matrix may be the voting patterns of senators and representatives in the U. S. Congress.

A first version of this result appeared in [15], however, with one additional technical as-
sumption concerning the approximate orthogonality between left- and right-singular vectors.
This condition appears in all the subsequent literature except in unpublished work from Xi-
aodong Li and the author and in [27], so that Theorem 2.2, as presented here, holds. Setting

2If the column space of X has uniform orientation, then for each i, (n1/7) - E ||meqi(x)€i H%z =1
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n = max(ny,ny), [15] proved that on the order of (X)) - n%°r - log n sampled entries are
sufficient for perfect recovery, a bound which was lowered to p(X) - nr -log® n in [21], with
a < 6 and sometimes equal to 2. Later, David Gross [47], using beautiful and new argu-
ments, demonstrated that the latter bound holds with a = 2. (Interestingly, all three papers
exhibit completely different proofs.) For a different approach to matrix completion, please
see [52].

One can ask whether matrix completion is possible from more general random equations,
where the sampling matrices may not have rank one, and are still i.i.d. samples from some
fixed distribution F'. By now, one would believe that if the sampling matrices do not correlate
well with the unknown matrix X, then matrix completion ought to be possible. This belief
is correct. To give a concrete example, suppose we have an orthobasis of matrices F =
{Bj; }1<j<n.n, and that we select elements from this family uniformly at random. Then [47]
shows that if

) Bl% < u(X
gleaé (nl/r) ||7rcol(X) HF—:U( )

max (na/7) - | Bow(x) |7 < p(X),
(|l - |7 is the Frobenius norm) holds along with another technical condition, Theorem 2.2
holds. Note that in the previous example where B = e;e, | 7ol X)BH% = || Teol( X)eiHi )
that we are really dealing with the same notion of coherence.

3. Why does this work?

The results we have presented may seem surprising at first: why is it that with on the order
of s - logn random equations, #; minimization will find the unique s-sparse solution to the
system y = Az? Our intent is to give an intuitive explanation of this phenomenon. Define

the cone of descent of the norm || - || at a point = as
C ={h: ||z + ch| <|z| for some ¢ > 0}. (3.1)
This convex cone? is the set of non-ascent directions of || - || at z. In the literature on convex

geometry, this object is known as the tangent cone. Now it is straightforward to see that a
point x is the unique solution to (2.1) if and only if the null space of A misses the cone of
descent at x, i.e. C N null(A) = {0}. A geometric representation of this fact is depicted
in Figure 3.1. Looking at the figure, we also begin to understand why minimizing the ¢,
and nuclear norms recovers sparse and low-rank objects: indeed, as the figure suggests, the
tangent cone to the ¢; norm is ‘narrow’ at sparse vectors and, therefore, even though the
null space is of small codimension m, it is likely that if m is large enough, it will miss the
tangent cone. A similar observation applies to the nuclear ball, which also appears pinched
at low-rank objects. As intuitive as it is, this geometric observation is far from accounting
for the style of results introduced in the previous section. For instance, consider Theorem
2.1 in the setting of Fourier sampling: then we would need to show that a plane spanned
by n — m complex exponentials selected uniformly at random misses the tangent cone. For
matrix completion, the null space is the set of all matrices vanishing at the locations of the

3A cone is a set closed under positive linear combinations
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(a) £1 ball (b) Nuclear ball

Figure 3.1. Balls associated with the ¢, and nuclear norms together with the affine feasible set for (2.1).
The ball in (b) corresponds to 2 X 2 symmetric matrices—thus depending upon three parameters—with
nuclear norm at most equal to that of . When the feasible set is tangent to the ball, the solution to
(2.1) is exact.

revealed entries. There, the null space misses the cone of the nuclear ball at low-rank objects,
which are sufficiently incoherent. It does not miss the cone at coherent low-rank matrices
since the exact recovery property cannot hold in this case. So how do we go about proving
these things?

Introduce the subdifferential of || - || at z, defined as the set of vectors

Azl = {w: ||z + h|| > ||z|| + (w, h) forall h}. (3.2)
Then z is a solution to (2.1) if and only if
Jv L null(A) such that v € 9||z||.

For the ¢; norm, letting T be the linear span of vectors with the same support as x and T+
be its orthogonal complement (those vectors vanishing on the support of x),

Ollzlle, = {sgn(x) +w:w e T*, |w|,, <1}, (3.3)

where sgn(z) is the vector of signs equal to x; /|z;| whenever |x;| # 0 and to zero otherwise.
If we would like z to be the unique minimizer, a sufficient (and almost necessary) condition
is this: 7" N null(A) = {0} and

Jv L null(A) such that v = sgn(z) +w, w € T, ||Jwl|,, < 1. (3.4)

In the literature, such a vector v is called a dual certificate.

What does this mean for the Fourier sampling problem where we can only observe the
Fourier transform of a signal z(¢), ¢t = 0,1,...,n — 1, at a few random frequencies k €
Q c {0,1,...,n — 1}? The answer: a sparse candidate signal = is solution to the ¢;
minimization problem if and only if there exists a trigonometric polynomial with sparse
coefficients P(t) = ), . cr exp(i2mkt/n) obeying P(t) = sgn(z(t)) whenever z(t) # 0
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and |P(t)] < 1 otherwise. If there is no such polynomial, (2.1) must return a different
answer. Moreover, if T’ N null(A) = {0} and there exists P as above with |P(¢)| < 1 off the
support of x, then x is the unique solution to (2.1).#

Turning to the minimum nuclear norm problem, let X = USV™* be a singular value
decomposition. Then

X |[s1 = {sen(X) + W : W € T+, |[W|[s= < 1};

here, || - [|s1 and || - || s~ are the nuclear and spectral norms, sgn(X) is the matrix defined as
sgn(X) = UV*, and T is the set of matrices with both column and row spaces orthogonal
to those of X. With these definitions, everything is as before and X is the unique solution to
(2.1)if T Nnull(A) = {0} and, swapping the £, norm for the spectral norm, (3.4) holds.

4. Some probability theory

We wish to show that a candidate solution x* is solution to (2.1). This is equivalent to being
able to construct a dual certificate, which really is the heart of the matter. Starting with [16],
a possible approach is to study an ansatz, which is the solution v to:

minimize ||v|l, subjectto v L null(A)and Prv = sgn(x*),

where Pr is the projection onto the linear space T' defined above. If || - |* is the norm dual
to || - ||, then the property ||Priv||* < 1 would certify optimality (with the proviso that
T Nnull(A) = {0}). The motivation for this ansatz is twofold: first, it is known in closed
form and can be expressed as

v = A*AT(A;AT)il sgn(:L'), 4.1)

where A7 is the restriction of A to the subspace 7T'; please observe that A%, Ar is invertible
if and only if 7" N null(A) = {0}. Hence, we can study this object analytically. The second
reason is that the ansatz is the solution to a least-squares problem and that by minimizing its
Euclidean norm we hope to make its dual norm small as well.

At this point it is important to recall the random sampling model in which the rows of A
are i.i.d. samples from a distribution F' so that

m
* *
A*A = E apary,
k=1

can be interpreted as an empirical covariance matrix. When the distribution is isotropic
(3 = I) we know that E A*A = m I and, therefore, E A7 Ar = m Ir. Of course, A*A
cannot be close to the identity since it has rank m < n but we can nevertheless ask whether
its restriction to 7' is close to the identity on 7'. It turns out that under the stated assumptions

of the theorems,

1 1 3
—Ir <X —A%Ar < =1 4.2
glr = —Ardr = olr, 4.2)

4The condition 7" N null(A) = {0} means that the only polynomial P(t) = > (<<, _1 Ck exp(i27kt/n),
with ¢, = 0 whenever k €  and support included in that of z, is the zero polynomial P = 0.
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meaning that m ! A% A7 is reasonably close to its expectation. For our two running exam-
ples and presenting progress in a somewhat chronological fashion, [16] and [21] established
this property by combinatorial methods, following a strategy originating in the work of Eu-
gene Wigner [81]. The idea is to develop bounds on moments of the difference between the
sampled covariance matrix and its expectation,

Hpr =1Ir — milA}AT.

Controlling the growth of E tr(H2¥) for large powers gives control of || Hr || se. However,
since the entries of A are in general not independent, it is not possible to invoke standard
moment calculation methods, and this approach leads to delicate combinatorial issues in-
volving statistics of various paths in the plane that can be interpreted as complicated variants
of Dyck’s paths.

Next, to show that the ansatz (4.1) is indeed a dual certificate, one can expand the inverse
of A7 Ar as a Neumann series and write it as

v = Zvj, v; = m~ A" Ap Hi sgn(x).

=0

In the ¢; problem, we would need to show that || Pr.vl||, < 1; that is to say, for all ¢ at
which z(t) = 0, |v(¢)| < 1. In [16], this is achieved by a combinatorial method bounding
the size of each term v, (t) by controlling an appropriately large moment E |v;(¢)|?*. This
strategy yields the 20-s-log n bound we presented earlier. In the matrix completion problem,
each term v; in the sum above is a matrix and we wish to bound the spectral norm of the
random matrix Pr.v. The combinatorial approach from [21] also proceeds by controlling
moments of the form E tr(z7z;)", where z; is the random matrix z; = Pp.v;.

There is an easier way to show that the restricted sampled covariance matrix is close to
its mean (4.2), which goes by means of powerful tools from probability theory such as the
Rudelson selection theorem [64] or the operator Bernstein inequality [2]. The latter is the
matrix-valued analog of the classical Bernstein inequality for sums of independent random
variables and gives tail bounds on the spectral norm of a sum of mean-zero independent ran-
dom matrices. This readily applies since both I — A* A and its restriction to T are of this
form. One downside is that these general tools are unfortunately not as precise as combina-
torial methods. Also, this is only one small piece of the puzzle, and it is not clear how one
would use this to show that || Pr.v||* < 1, although [15] made some headway. We refer to
[61] for a presentation of these ideas in the context of signal recovery.

A bit later, David Gross [47] provided an elegant construction of an inexact dual cer-
tificate he called the golfing scheme, and we shall dedicate the remainder of this section to
presenting the main ideas behind this clever concept. To fix things, we will assume that we
are working on the minimum ¢; problem although all of this extends to the matrix comple-
tion problem. Our exposition is taken from [14]. To begin with, it is not hard to see that if
(4.2) holds, then the existence of a vector v L null(A) obeying

[1Pr(v—sgn(z))lle, <6 and  [[Provfle, <1/2, 4.3)

with § sufficiently small, certifies that x is the unique solution. This is interesting because by
being a little more stringent on the size of v on T+, we can relax the condition Prv = sgn(x)
so that it only holds approximately. To see why this is true, take v as in (4.3) and consider the
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perturbation v’ = v—A* Ar(A% A7) "' Pr(sgn(z)—v). Thenv’ L null(A), Prv’ = sgn(x)
and

1Prov'lle. < 1/2+ || A7 Ar (A7 A7) ™ Pr(sgn(z) — v) e

Because the columns of A have Euclidean norm at most p(F')y/m, then (4.2) together with
Cauchy-Schwarz give that the second term in the right-hand side is bounded by § - v/2u(F),
which is less than 1/2 if ¢ is sufficiently small.

Now partition A into row blocks so that from now on, A; are the first m rows of the
matrix A, Ay the next mgo rows, and so on. The ¢ matrices {4; }ﬁzl are independently
distributed, and we have m; + mo + ... + my = m. The golfing scheme then starts with
vo = 0, inductively defines

1
vj = EA;AjPT(sgn(x) —vj_1) +vj_1
J
forj =1,...,¢, and sets v = vy. Clearly, v is in the row space of A, and thus perpendicular

to the null space. To understand this scheme, we can examine the first step
1 *
vy = — AT A, Prsgn(z),
miy

and observe that it is perfect on the average since Ev; = Prsgn(x) = sgn(z). With
finite sampling, we will not find ourselves at sgn(x) and, therefore, the next step should
approximate Pr(sgn(x) — vy), and read

1
vy = v1 + — A5 Ao Pr(sgn(x) — vy).
ma

Continuing this procedure gives the golfing scheme, which stops when v; is sufficiently close
to the target. This reminds us of a golfer taking a sequence of shots to eventually put his ball
in the hole, hence the name. This also has the flavor of an iterative numerical scheme for
computing the ansatz (4.1), however, with a significant difference: at each step we use a
fresh set of sampling vectors to compute the next iterate.

Set ¢; = Pr(sgn(z) — v;) and observe the recurrence relation

1 *
qj = (IT — 7PTAJ-A]'PT)(]]'_1.
m;j

If the block sizes are large enough so that || 7 — m}lPTA;T A Pr||se < 1/2 (this is again
the property that the empirical covariance matrix does not deviate too much from the identity,
compare (4.2)), then we see that the size of the error decays exponentially to zero since it is
at least halved at each iteration.5 We now examine the size of v on T, that is, outside of the
support of x, and compute

¢
1

v=S" —A*Aqi_,.

Zm- i 95-1
j=1 """

SWriting H; = Ip — mjflPTA;AjPT, note that we do not require that ||H;||gec < 1/2 with high
probability, only that for a fixed vector z € T, ||H;z||z, < ||2|ley/2, since H; and g;_1 are independent. This
fact allows for smaller block sizes.
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The key point is that by construction, A7 A; and ;1 are stochastically independent. In a
nutshell, conditioned on g; 1, A} A;g;—1 is just a random sum of the form > ok ak (K, gj—1)
and one can use standard large deviation inequalities to bound the size of each term as fol-
lows:

1
EHPTA;AJ‘%AH&O < tjllgi-1lle
]

for some scalars ¢; > 0, with inequality holding with large probability. Such a general
strategy along with many other estimates and ideas that we cannot possibly detail in a paper
of this scope, eventually yield proofs of the two theorems from Section 2. Gross’ method is
very general and useful, although it is generally not as precise as the combinatorial approach.

5. Gaussian models

The last decade has seen a considerable literature, which is impressive in its achievement,
about the special case where the entries of the matrix A are i.i.d. real-valued standard normal
variables. As a result of this effort, the community now has a very precise understanding of
the performance of both ¢;- and nuclear-norm minimization in this Gaussian model. We
wish to note that [62] was the first paper to study the recovery of a low-rank matrix from
Gaussian measurements, using ideas from restricted isometries.

The Gaussian model is very different from the Fourier sampling model or the matrix
completion problem from Section 1. To illustrate this point, we first revisit the ansatz (4.1).
The key point here is that when A is a Gaussian map,

Priv=AL.q, q=Ap(AsAr) sgn(z),

where ¢ and A*T . are independent, no matter what 7" is [8].¢ Set dr to be the dimensi