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Model theory of difference fields and applications
to algebraic dynamics

Z0é Chatzidakis

Abstract. This short paper describes some applications of model theory to problems in algebraic
dynamics.

Mathematics Subject Classification (2010). Primary 03C60; Secondary 12H10, 14GXX.

Keywords. Model theory, difference fields, canonical base property.

1. Introduction

A few years ago, Hrushovski noticed that the model theory of difference fields could give a
new proof of a result of M. Baker on algebraic dynamics. Baker’s result deals with endo-
morphisms of P! defined over a function field K, and shows that under certain conditions,
the endomorphism of P! is isomorphic (over some algebraic extension of K) to one defined
over the constant field k£ of K. He answered thus a question of Szpiro and Tucker. Nothing
was known for varieties of higher dimension. We started working on this together, were
able to answer a question of Baker (1.7 in [1]) in case of function fields of characteristic
0, and got a descent result in some special cases: there is a bijective rational map from our
original algebraic dynamics (V, ¢) to one defined over the smaller field. Because our tools
are difference fields, the maps we obtain are in general only birational isomorphisms and not
isomorphisms when the dimension of the underlying variety is > 1. These results appeared
in [4] and [5].

It turns out that another model-theoretic tool, the Canonical Base Property, a property
enjoyed by existentially closed difference fields, allows one to obtain a fairly strong result
in a more general context. Explaining what is now known is the object of section 4 of this
paper.

Section 2 recalls some of the now classical results of the model theory of difference fields,
as well as some more recent ones (e.g., 2.12). In section 3, we explain briefly the connection
between our algebraic dynamics (V, ¢) (where ¢ is rational dominant, not necessarily a
morphism) and difference fields. In section 4, we introduce the Canonical Base Property,
some of its history, give some of its consequences, and explain briefly the strategy to show
that existentially closed fields of arbitrary characteristic enjoy it. Section 5 puts everything
together.

" Proceedings of the International Congress of Mathematicians, Seoul, 2014



2 Zoé Chatzidakis

2. Difference fields and their model theory

2.1. Basic definitions. A difference ring is a ring R with a distinguished endomorphism
o. A difference field is a difference ring which is a field (note that the endomorphism will
necessarily be injective). A difference ring becomes naturally a structure of the language
L ={+,—,-,0,0,1}, where +, —, - are interpreted as the usual binary operations, 0 and
1 are the usual constants, and o is interpreted by the endomorphism. The difference ring
is inversive if the endomorphism is onto. Every difference ring R has a unique up to R-
isorphism inversive closure, or inversive hull, i.e., an inversive difference ring containing it,
and which R-embeds into every inversive difference field containing R.

The difference polynomial ring in the variables Y = (Y1,...,Y,) over R, denoted
R[Y],, is the polynomial ring R[o7(Y;) | 1 < i < n,j > 0], endowed with the natural
extension of ¢ defined by sending 0/ (Y;) to o+ (Y;) for each i and j.

If K is a field, then zero-sets of elements of K[Y7,...,Y},], generate the closed sets of
a topology on K", and this topology is Noetherian. It is very similar to the Zariski topology.
I will call the closed sets of this topology o-closed.

All these results and more can be found in Richard Cohn’s book [7].

2.2. The model theory of existentially closed difference fields. A difference field K is ex-
istentially closed if every finite system of difference equations with coefficients in K which
has a solution in a difference field containing K, has a solution in K. Note that an exis-
tentially closed difference field is necessarily inversive and algebraically closed. Every dif-
ference field embeds into an existentially closed one, and the existentially closed difference
fields form an elementary class, with theory usually called ACFA. These fields were first
investigated in the 90’s by Macintyre, Van den Dries and Wood, see [12]. An indepth study,
concentrating on geometric stability properties of these fields was then started by Hrushovski
and myself, later joined by Peterzil [3, 6]. I will now recall some of the classical results.

The theory ACFA expresses the following properties of the £-structure K:

— K is algebraically closed, o € Aut(K);

—If U, V are irreducible (algebraic) varieties, with U C V xV 7, and such that U projects
dominantly onto V" and V7, then there is a such that (a,c(a)) € U. [Here V7 denotes the
variety obtained by applying o to the defining equations of V.]

2.3. Notation. N denotes the set of non-negative integers. We will work in a large suffi-
ciently saturated existentially closed difference field /. If E is a field, then E%9 denotes the
(field-theoretic) algebraic closure of E. If E is a difference subfield of U/, and a a tuple in U,
then F(a), denotes the difference field generated by a over E, i.e. E(a),=FE(c'(a) | i € N),
and E(a) =1 its inversive hull E(a),+1 = E(c'(a) | i € Z).

2.4. Some properties of ACFA and of its models. Most of the results here appear in [13]
or in [3]. ACFA does not eliminate quantifiers, the problem coming from the fact that an
automorphism of a field £ needs not extend uniquely to the algebraic closure E%9 of E.
However, this is the only obstacle, and one obtains that if F is an algebraically closed differ-
ence field, then ACFA U qfDiag(E) is complete (Here qfDiag(E) denotes the quantifier-free
diagramme of F in the language £(F) obtained by adjoining constant symbols for the ele-
ments of F). This last result has several important consequences:

(1) Completions of ACFA are obtained by describing the action of the automorphism on
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the algebraic closure of the prime field. This implies that ACFA is decidable.

(2) If E is a difference subfield of a model &/ of ACFA, and a, b are tuples in I/, then
tp(a/E) = tp(b/E) if and only if there is an E-isomorphism E(a)9 — FE(b)49
which sends a to b.

(3) If A C U, then the model-theoretic algebraic closure acl(A) of A is the smallest inver-
sive algebraically difference field containing A. The definable closure of A, dcl(A), is
usually much larger than the inversive difference field generated by A: it is the subfield
of acl(A) fixed by the elements of Aut(acl(A)/A) which commute with o.

(4) Let S C U™ be definable. Then there is a set W C U™ defined by difference
equations such that the projection 7 on the first n coordinates defines a finite-to-one
map from W onto S.

One can also show that any completion of the theory ACFA is supersimple (of SU-rank w),
and that it eliminates imaginaries. An important definable subset of 4, is the fixed field

Fix(o) :={a €U | o(a) = a}.

It is a pseudo-finite field, and its induced structure is that of a pure field. It is also stably
embedded, and therefore, if S C Fix(o)™ is definable in ¢/ with parameters from U/, then it
is of the form S” N Fix (o)™, where S’ is definable in the langauge of rings with parameters
from Fix (o).

In positive characteristic p, there are other definable automorphisms, which are built up
using the definable Frobenius automorphism Frob : x — 2P and its powers Frob,. More
precisely, if 7 = o"Frob™, where n > 1, m € Z, then Fix(7) is a pseudo-finite field,
stably embedded; the induced structure is that of a pure field if n = 1, but involves the
automorphism o if n > 1. We will also call Fix(7) a fixed field. One has the following
result:

(1.12in [3]) Let T be as above, (K, o) a model of ACFA, and consider its reduct the difference
field (K, 7). Then (K, 7) = ACFA.

2.5. Independence and SU-rank. As the theory is supersimple, every type is ranked by
the rank SU, a rank based on forking (or non-independence). In what follows, A, B, C are
subsets of U, a is a tuple of elements of I/, and F is a difference subfield of U/.

Independence of A and B over C, denoted AJ/CB, is characterized by the linear dis-
jointness of the fields acl(C'A) and acl(CB) over acl(C). A set D definable over E has
finite SU-rank iff every tuple a € D has finite SU-rank over F, and then

SU(D) = sup{SU(a/E) | a € D}.
One shows easily the following:

e SU(a/E) = 0if and only if a € acl(E).

e SU(a/FE) < 1if and only if for every B D E, either a and B are independent over E,
or a € acl(B).

o If tr.deg(E(a),/E) < oo, and F is a difference field containing E, then a.l p F' if
and only if tr.deg(E(a),/FE) = tr.deg(F(a),/F).

o If tr.deg(F(a),/F) < oo, then SU(a/E) < tr.deg(E(a)s/E).
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e SU(a/F) < wif and only if tr.deg(E(a),/E) < co.

If SU(a/E) < w, then tp(a/E) can be analysed in terms of types of SU-rank 1, and so
types of SU-rank 1 determine the properties of tp(a/FE). This will be explained below in the
paragraph on semi-minimal analyses. First, a few definitions:

Definition 2.6. Let T be a supersimple theory which eliminates imaginaries, U a sufficiently
saturated model of 7', and S C U™, P C U™ subsets which are invariant under Aut(U/A)
for some small subset A of U. E.g. S is A-definable, or is a union of realisations of types
over A.

(1) Sisone-basedif wheneveray,...,ap € Sand BD A, C = acl(Aa; ..., ap)Nacl(AB),
then (ay,...,a¢) and B are independent over C.

(2) A partial type is one-based if the set of its realisations is one-based.

(3) S is internal to P, resp. almost-internal to P, if for some finite set B, we have
S C dcl(ABP), resp. S C acl(ABP).

(4) (difference field context) S is gf-internal to P if for some finite set B, if a € S, then
there is some tuple b of elements of P such that a is in the inversive difference field
generated by ABb.

(5) If p, q are types, we say that p is internal, almost-internal, qf-internal, to g, if the set of
realisations of p is internal, almost-internal, qf-internal, to the set of realisations of q.

The following is one of the major results in the model theory of difference fields, and is
often called the dichotomy theorem:

Theorem 2.7 ([3, 6]). Let q be a type of SU-rank 1 in a model U of ACFA. Then either
q is one-based, or it is almost internal' to the generic type of Fix(7), where 7 = o if the
characteristic is 0, and in positive characteristic, T is of the form c"Frob™ for some n > 1,
m € Z relatively prime to n. Moreover; if the characteristic is 0 and q is one-based, then q
is stable stably embedded.

So, Theorem 2.7 tells us that if a type of SU-rank 1 is not one-based, then it is almost
internal to Fix(7) for some definable 7. The property of being one-based is very strong,
since it gives a criterion for independence. It also forbids the existence of two distinct group
laws, such as in fields. Hrushovski and Pillay ([11]) showed that stable one-based groups
of finite rank are particularly nice, and their result generalises partially to our context, as
follows:

Theorem 2.8. Let G be an algebraic group definable in a model U of ACFA, et let B be
a quantifier-free definable subgroup of G(U) which is one-based, and defined over some
E = acl(E). Let X be a quantifier-free definable subset of B™. Then X is a Boolean
combination of cosets of E-definable subgroups of B".

In particular, if Y is a subvariety of G", then' Y N B™ is a finite union of translates of
quantifier-free definable subgroups of B™.

IfU has characteristic 0, the result extends to arbitrary definable group G and definable
subsets X of B™: they are Boolean combination of translates of definable subgroups of B",
and these subgroups are defined over E.

The original formulation is: non-orthogonal to
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The following gives a useful characterization of types of SU-rank 1 which are almost-
internal to Fix(o):

Theorem 2.9. Let U be a model of ACFA, E = acl(E) a difference subfield of U and b
a tuple in U, with SUb/E) = 1. Then tp(b/E) is almost-internal to the generic type of
Fix (o) if and only if

tr.deg(E(b),/E) = 1 and {[E(b,c* (b)) : E(b)] | £ € Z} is bounded.

2.10. Some consequences of the dichotomy. The fact that definable sets which are orthog-
onal to the fixed fields are one-based, is at the core of several applications to number theory,
by Hrushovski ([9]) and by Scanlon ([17-19]). I will explain how its use gives a new proof
of the conjecture of Manin-Mumford. Recall first the

Conjecture of Manin-Mumford. Let A be an abelian variety defined over a number field
k, and let X C A be a subvariety. Then the Zariski closure of X (k*9) N Tor(A)(k9) is a
finite union of translates of abelian subvarieties of A by torsion points.

This conjecture, as well as several strengthenings (A a commutative algebraic group, k an
arbitrary field, with similar conclusions) have been proved using different methods. The one
by Hrushovski deals with an arbitrary commutative algebraic group G defined over a number
field. One important point is that the torsion subgroup lives in the semi-abelian quotient of
the group, and he shows that the number of components of the Zariski closure of Tor(G)NX
is bounded by the number of components of the Zariski closure of Tor(H) N 7(X), where
H is the quotient of G by its maximal vector subgroup, and 7 : G — H is the natural map.
Results of Mumford, together with a characterization by Hrushovski of one-based subgroups
of abelian varieties or of G,,, allow him to show that there is some ¢ € Aut(Q) such that
the torsion subgroup of G is contained in a quantifier-free definable subgroup B of G, which
defines a one-based group in any existentially closed difference field containing (Q, o). This,
together with 2.8 and a simple argument, give the result. Bounds on the complexity of
the difference equations defining B give bounds on the number of cosets involved in the
description.

The applications by Scanlon have a similar flavour.

2.11. The classical semi-minimal analysis. A standard result on supersimple theories states
that if ¢p(a/E) has finite SU-rank, then there are SU-rank 1 types p1,...,Dn, and tuples
ai,...,an such that acl(Fa) = acl(Eay ..., ay), and for each i, tp(a;/Fa;—_1) is almost-
internal to p;. Such a sequence ay, ..., a, is called a semi-minimal analysis of tp(a/E).

It may happen that one can choose the a;’s such that each ¢p(a;/F) is almost-internal
to p;; in that case, notice that tp(a/FE) is almost internal to the set S of realisations of the
p;’s. This is a strong condition on ¢p(a/F), and we will say in this case that ¢tp(a/E) is
almost-internal [to types of rank 1].

One can refine the semi-minimal analysis a little and impose that the a;’s are in dcl(Fa),
and that the types tp(a;/acl(Fa;_1)) are internal to p;, for all 4. But, as mentioned above, in
the case of difference fields, the definable closure is too large to hope obtain precise results
on definable sets. After some work, and precise analysis of what internality to a fixed field
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means, one obtains the following result:

Proposition 2.12 ([5, 2.13]). Let E be an inversive difference field, a a tuple in U such that
o(a) € E(a)™9.

(1) Then there are aq, . ..,a, = a € E(a),, such that, setting A; = E(a;_1), for each i
(with ag = 0), tp(a;/A;) satisfies one of the following:

() tp(a;/A;) is algebraic;
(i) tp(a;/A;) is one-based;
(iil) tp(a;/A;) is gf-internal to Fix (1) for some T = Frob™ ™.

(2) Furthermore, let{ > 1 be an integer, (U', o) amodel of ACFA, and f : (E(a)y,0") —
(U’',c") an embedding of difference fields. Then, if a1, ...,a, are as in (1), we have
similar results holding in U': tp"' (f(a;)/ f(A;)) is algebraic in case (i), one-based
in case (ii), and gf-internal to Fix(7*) in case (iii).

The content of this proposition is very strong. Note that in particular it implies that
whether the tuple a is “one-based over E” depends only on its quantifier-free type over E,
not on the particular embedding of F(a), into a model of ACFA. This result decomposes
the extension F(a),/E into a tower of field extensions, each one of a certain kind.

3. Difference fields and algebraic dynamics

Definition 3.1. An algebraic dynamics defined over a field K is given by a pair (V, ¢)
consisting of a (quasi-projective) variety defined over K, together with a rational dominant
map¢:V — V.

Remarks 3.2. In the literature, ¢ is often assumed in addition to be a morphism. Moreover,
one also often imposes that the morphism be polarized, i.e., that there is an ample vector
bundle £ on V and an integer ¢ > 1 such that ¢* £ ~ £%9, These hypotheses have strong
consequences which we will discuss later.

If L is a field extension of K, an algebraic dynamics (V, ¢) gives naturally rise to one defined
over L, by viewing V as defined over L. We will constantly use this remark, and always
consider them as algebraic dynamics over a large ambient algebraically closed field ¢/ (while
they may be defined over smaller subfields).

If V is not absolutely irreducible, it may become reducible when viewed over L, and for this
reason we will always assume that our varieties are absolutely irreducible.

Definition 3.3. If (V, ¢) and (W, ¢) are algebraic dynamics, a morphism (V, ¢) — (W, )
isarational map f : V — W such that f o ¢ = ¥ o f. Itis dominantif f : V — W is
dominant.

(3.4) Let (V, ¢) be as above, and consider the function field K (V') of V. The map ¢ then
yields an endomorphism ¢* of K (V'), which leaves K fixed, and is defined by f — f o ¢,
for ¢ € K(V) (We view the elements of K (V') as partial functions on V' (K) taking their
values in K).

The degree of the morphism ¢ is deg(¢) = [K(V) : ¢* K (V)]
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Another equivalent way of translating algebraic dynamics into the difference field context,
is the following: let a be a generic of V' over K, and define an endomorphism o of K (a) by
letting o be the identity on K, and setting o (a) = ¢(a). If f : (V, ¢) — (W, ¢) is a dominant
morphism, then b = f(a) will be a generic of W, and we will have o(b) = «(b). Thus
dominant morphisms of algebraic dynamics correspond to inclusions of difference fields.

3.5. Applying the semi-minimal analysis. Applying 2.12, there are tuples a1,...,a, =
a € K(a), such that for each i, o(a;) € K(a;) C K(a;+1), and tp(a;/K(a;—1)) is either
algebraic, or gf-internal to Fix(7), or one-based.

These tuples a; give rise to a fibration of (V, ¢), namely, if V; is the algebraic locus of a;
over K, ¢; the rational endomorphism of V; such that o(a;) = ¢;(a;) and g; : V; — V4
the rational map induced by the inclusion K (a;—1) C K (a;), we obtain

(V,0) 2% (Vi1 pn1)

Note that the fibers of these maps are not themselves algebraic dynamics: indeed, the map o
transports the fiber f,, *(an_1) to £, 1 (o(an—1)) = £, H(Pn_1(an_1)).

In-1
—

o B (Vi, o).

3.6. Internality to the fixed field Fix (o). Assume that ¢p(a;/K(a;—1)) is internal to
Fix(o), and that K (a;) intersects the separable closure K (a;—1)® of K(a;—1) in K(a;—1).
Then, over some L containing K (a;—1) and linearly disjoint from K (a;) over K(a;—1),
there is a tuple b such that L(a;) = L(b) and o(b) = b. This implies that L(a;) = L(o(a;)).
If ¢+ = 1, then we get that ¢, is a birational map, i.e., has degree 1. If ¢ > 2, we ob-
tain that ¢; induces a birational map between g; '(a;_1) and g; *(o(a;_1)), and we have
deg(¢i) = deg(¢i-1).

3.7. Algebraic extensions. Note that if a; is algebraic over K (a;_1), then also deg(¢;) =
deg(¢j—1).

4. The Canonical base property

This property was originally a property of compact complex manifolds, which was isolated
(independently) by Campana and Fujiki. Work of Moosa and Pillay provided a translation
of this property in model-theoretic terms ([13] and [15]); Pillay and Ziegler ([16]) showed
that various enriched fields enjoy it. This property will be later called the Canonical Base
Property, CBP for short, by Moosa and Pillay who investigate it further in [14], and ask
several questions.

Definition 4.1. Let 7" be a theory which eliminates imaginaries, U a saturated model of T,
A CUandaatupleinU, p(z) = tp(a/A).

(1) If T is stable and p is stationary, then p is definable, that it, for every formula ¢ (z,y),
there is a formula d, (y) (with parameters in A) such that for every tuple b in A (of the
correct arity), U |= d,,(b) if and only if ¢(x,b) € p. Furthermore, these definitions
define a (consistent and complete) type over U. The canonical base of p is the smallest
definably closed subset of I/ over which one can find parameters for all the formulas
d,(y) (in other words, contains the code of all sets defined by the d,(y)). It is denoted
by Cb(p) or Cb(a/A), and is contained in A.
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(2) If T is unstable, but simple, then the definition of canonical base is more involved,
see e.g. Wagner’s book [20], as it is defined in terms of extension base. It is easier
to define the algebraic closure of the canonical base, denoted Ch(p) or Cb(a/A): it
is the smallest algebraically closed subset B of A such that a and A are independent
over B. If T is supersimple, then Cb(p) will be contained in the algebraic closure of
finitely many realisations of p, and so will have finite SU-rank if p has. Note that this
definition also makes sense for infinite tuples, and we will often use it for the infinite
tuple enumerating the algebraic closure of a finite tuple.

Example 4.2. Consider the theory ACF of algebraically closed fields, say of characteristic
0 for simplicity, and let U be a large algebraically closed field, A C U a subfield, and a a
tuple in U. Assume that A(a) is a regular extension of A, and consider the algebraic locus
V of a over A. Then Cb(a/A) is simply the field of definition of V.

Example 4.3. Let a be a tuple in U, E a difference subfield of ¢/. If X is a tuple of inde-
terminates of the same size as a, then one can consider the ideal I of E[X], of difference
polynomials which vanish at a. As in classical geometry, this ideal has a smallest (differ-
ence) field of definition, i.e., there is a unique smallest difference subfield E of E such that
I is generated by its intersection with Ey[X],. Then Cb(a/E) = acl(Ep).

Definition 4.4. Let T be a supersimple theory which eliminates imaginaries. We say that T’
has the Canonical Base Property, or CBP, if whenever A and B are algebraically closed sets
such that SU(A/ANB) < w and B = Cb(A/B), then tp(B/A) is almost-internal (to types
of SU-rank 1).

4.5. Comments.

(1) Let C = AN B, and a, b finite tuples such that A = acl(Ca), B = acl(Cb). Then
SU(A/C) = SU(a/C). The notion of almost-internality is by definition preserved
under passage to the algebraic closure, so there are a set D = acl(D) containing A
and independent from B over A, and tuples by, ..., b, with SU(b;/D) = 1, such that
acl(DB) = acl(Db; ...by,).

(2) The definition in the stable case deals with finite tuples a and b, assumes that Cb(a/b)
= b, and deduces that tp(b/a) is internal to types of rank 1.

(3) Iftp(A/C) is one-based, then ... by definition of one-basedness, we know that A and
B are independent over their intersection, and therefore B = C'. To say it in another
fashion: if tp(a/E) is one-based, and B contains E, then Cb(a/B) C acl(Ea).

(4) Hrushovski, Palacin and Pillay give in [10] an example of an w-stable theory of finite
rank which does not have the CBP. This example is built up from the theory ACF of
algebraically closed fields.

Theorem 4.6 (Pillay-Ziegler [16]).

(1) The theory of differentially closed fields of characteristic 0 has the CBP (version for
stable theories).

(2) The elementary theory of an existentially closed difference field of characteristic 0 has
the CBP.
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Pillay and Ziegler have some additional partial results concerning types of rank 1 in
separably closed fields, but not the full and hoped for result. Their proof uses jet spaces,
and generalises only partially to positive characteristic, because of possible inseparability
problems. In order to show that the result holds for existentially closed fields of arbitrary
characteristic, one needs to show a decomposition result:

Theorem 4.7 (1.16 in [2]). Let T be a supersimple theory, U a large model of T, A, B and
C = AN B algebraically closed subsets of U such that SU(A/C) < w and B = Cb(A/B).
Then there are ay, . . . ,a, € A, types p1, ..., pn of SU-rank 1 (maybe over some larger base
set D which is independent from AB over C), such that acl(Cay ... ,a,) = acl(CA); and
each tp(a;/C) has a semi-minimal analysis in which all components are almost-internal to
the set of realisations of the Aut(U/C)-conjugates of p;.

Furthermore, each of the types p; is non-one-based.

From this, one shows easily that it suffices to show the CBP for types whose semi-
minimal analysis only involves one fixed non-one-based type of rank 1. In the particular
case of existentially closed difference fields of positive characteristic p, we must therefore
look at types analysable in terms of Fix(7), for the various possible 7. When 7 = o, one
shows the following:

Lemma 4.8. Let a be a finite tuple in U, of finite SU-rank over E = acl(E), and assume
that the semi-minimal analysis of tp(a/ E) only involves Fix(o)-almost-internal types. Then
there is a tuple b € E(a),+1 such that E(a),+1 is separably algebraic over E(b).

Inspection of the proof of Pillay-Ziegler then shows that there is no problem when 7 = ¢
their proof goes through verbatim. Working in the reduct (U, 7) then allows to obtain the
results for all types analysable in Fix(7). Using the dichotomy Theorem 2.7, this finishes
the proof of

Theorem 4.9 (3.5 in [2]). Existentially closed difference fields of any characteristic have
the CBP.

The CBP has several interesting consquences, which I will now list. Relative versions of
these results exist.

Theorem 4.10 (References are to [2]). Let T be a supersimple theory with the CBP, U a
saturated model, and A, B,C = AN B algebraically closed subsets of U, with SU(A/C')
finite.

(1) 2.1)If B = Cb(A/B), then tp(B/C) is almost-internal.

(2) (2.2) More generally, if tp(B/A) is almost-internal, then so is tp(B/C).

(3) (2.4) There is some D = acl(D) with C C D C A such that whenever E = acl(E) is
such that tp(A/ E) is almost-internal, then E C D.

4) (2.5) If B = Cb(A/B) and D is such that tp(A/D) is almost-internal, then so is
tp(AB/D).

(5) (2.10) Let a1, ag, by, by be tuples of finite SU-rank, S a set of types of SU-rank 1 and
assume that

—tp(be) is almost-internal to types in S,
—acl(by) Nacl(be) = acl(D),
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- ali/ble and azi/b2 by,
—as € aCl(Clelbg).

Then there is e C dcl(agbs) such that tp(as/e) is almost-internal to types in S and
eLby. In particular, if tp(as/bs) is hereditarily orthogonal to all types in S, then
ay € acl(eby).

4.11. Comments. Here is an easy consequence of item (1): assume that tp(A/C) is not
almost-internal, has finite SU-rank, and that A N B = C. Then A and B are independent
over C.

Item (4) answers a question of Moosa and Pillay ([14]).

Item (5) is a descent result, and is (together with 2.12) the main ingredient of the applications
to algebraic dynamics by Hrushovski and myself. After some work, and use of Proposition
2.12, one refines the descent result 4.10(5) to obtain the following:

Theorem 4.12 (4.11 in [2]). Let K1, Ky be fields intersecting in k, for i = 1,2, and with
algebraic closures intersecting in k™9, let V; be an absolutely irreducible variety and ¢; -
Vi — V; a dominant rational map defined over K;. Assume that K5 is a regular extension
of k, and that there is an integer v > 1 and a dominant rational map f : Vi — V5 such that
fopr = (bg) o f. Then there is a variety Vy and a dominant rational map ¢y : Vo — Vj,
all defined over k, a dominant map g : Vo — Vj such that g o g3 = ¢ o g, and deg(¢o) =
deg(¢2).

5. Applications of the CBP to algebraic dynamics

The original result of Matthew Baker. Let k be a field, C a curve over k, and K = k(C).
Let ¢ : P! — P! be defined over K, and of degree d > 2. One can define a logarithmic
height function on the points of P! (K), called the Weil height, and which I will denote by h.
For details, please see [1]. If K = k(t), then the Weil height of a point P € P(K) is simply
the minimal degree of polynomials needed to represent the point P. One then defines the
canonical height A(P) as:

h(P) = lim h(¢"™ (P))/d".

n—oo

[Here ¢(™ denotes the iteration n times of the map ¢.] One verifies that i(¢(P)) = dh(P
moreover, there is a constant C' > 0, such that for any point P, one has |h(P) — ( )| <
Clearly, any preperlodlc point P (i.e., such that for some integers m > n one has ¢! )(P)
¢(™ (P)) must have h(P) = 0. Baker’s theorem shows that these are the only ones, unless,
over some finite extension of K one has (P!, ¢) ~ (IP*, ) for some v defined over k:

);
C.

Theorem 5.1 ([1]). Let k C K and ¢ be as above. Assume that for no finite algebraic
extension of K', there is an M € PGLy(K") such that M~'¢M is defined over k. Then a
point P € PY(K) satisfies h(P) = 0 if and only if it is preperiodic.

He shows moreover that there is a positive e which bounds below the canonical height of
non-preperiodic points of P! (K).
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5.2. The analogue for higher dimensional varieties. The setting: Let V' be a quasi-projec-
tive variety defined over K, ¢ : V' — V a dominant rational map of degree d > 2. Once
fixed an embedding of V' into projective space, the Weil heights of points of V(K) exist as
before. (But to obtain the canonical height, additional conditions are necessary.) We assume
that for some N, the points P € V(K) such that all o™ (P),n > 0, have height < N, form
a Zariski dense subset of V.

The hope: (V, ¢) is isomorphic to some (W, v) defined over k.

5.3. The observation which makes things work. The following observation, due to Szpiro,
is what allows model theory to play a role, since it gives a certain configuration which one
can exploit.

Given some integer N, the points of V' (K') which have Weil height < N, form what we
will call a limited set, i.e., there is some algebraic set U defined over k, a constructible map
7 : U — V (defined over K), such that (U (k)) contains all points of V' (K') of Weil height
< N, and 7 is injective on U (k) (see e.g. section 3 of [4]). Consider the following sets:

Vo=n(Uk); V= (] ¢ V(o).

0<j<n

So, a point P will be in V;, if and only if each of P, ¢(P),...,»™ (P) has Weil height
< N.

The map ¢ induces a (partially defined) constructible map ¢* on U. Namely, if Q € U (k),
and ¢7(Q) € Vp, then ¢*(Q) is defined by 71¢*(Q) = ¢m(Q). Assume that for the number
N above, the sets V,, are Zariski dense in V. We now look at U,,, the Zariski closure of
7~1(V,,) NU(k). These sets form a decreasing chain of Zariski closed infinite subsets of U,
which must therefore stabilise at some integer n. Let U C U, be the union of all irreducible
components W of U,, such that w(W (k)) is Zariski dense in V. Then, the constructible ¢*
induces a permutation of the irreducible components of U of maximal dimension, and for
some r > 1, the constructible map ((b*)(r) yields a rational dominant endomap 1 of some
irreducible component W of U of maximal dimension. Note that 7(W (k)) is still Zariski
dense in V, but that 7 sends (W, 1) to (V,#(")). It turns out that this is sufficient to obtain
some results, using Theorem 4.12.

Theorem 5.4 ([5, 3.2], [2, 4.12]). With assumption as in 5.2, let U be a model of ACFA
containing K, and a a generic point of V over K satisfying o(a) = ¢(a).

(1) Assume that the semi-minimal analysis of tp(a/K) does not involve Fix(c). Then
there is a bijective morphism g : (V,¢) — (Vy, ¢o) for some (Vyy, ¢o) defined over k.
In characteristic 0, this g is a birational isomorphism.

(2) In the general case, there is a dominant rational map (V, ¢) — (V, ¢o) where (V, ¢g)
is defined over k, and deg(¢) = deg (o).

Sketch of Proof. 1 will use (the proof of) 4.11 in [2], and follow its notation. By the above
discussion 5.3, we know that there is some algebraic dynamics (V1, ¢1) defined over k, and
which dominates (V, ¢(T)) for some r > 1. Let U be a model of ACFA containing K, let as
be a generic of V satisfying o(az) = ¢(az2). Applying 4.11 of [2] (with K1 = k, K = K
and (Va, ¢2) = (V, ¢)), there is ag € K (az) such that o(a3) € k(as). If V; is the algebraic
locus of ag over k, and ¢ € k(Vp) is such that ¢g(az) = o(as), then deg(p) = deg(¢po),
and there is a rational dominant map (V, ¢) — (Vo, ¢o). This gives (2).
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The proof of 4.11 in [2] shows that tp(a2/K (ag),+1) is almost-internal to Fix(o).
Hence, in case (1), it must be algebraic. Thus K (as) is a finite algebraic extension of
K(a3). Let a € K(ag) be defined by K(a) = K(az) N K(a3)®, so that K(as)/K ()
is purely inseparable.

Now, recall from the proof of 4.11 that there is some generic a1 of V; over K, such
that a; € K(ap). Then k(a1) and K (ag) are linearly disjoint over k(a3), and because
K(a)/K(a3) is separable and K(a2) C K(a1), it follows that K («) = K(/5) for some
B € k(ay). Then 5 € k(a3)®. Aso(az) € K(az), wehave o(a) € K(a), hence o(8) € k().
Let V be the algebraic locus of 3 over k, and ¢ € k(V) such that o(3) = ¢(83), g the ratio-
nal map V' — V such that g(az) = . Then g is generically bijective, and sends (V, ¢) to
(f/7 ¢). In characteristic 0, we may take & = as, and g is then birational. This finishes the
proof of (1). ]

5.5. Comments. The fact that we work with function fields only tells us about the generic
behaviour of the algebraic dynamics, and does not allow us to show full isomorphisms, only
birational isomorphisms.

Remark 5.6. If in addition to the hypotheses of 5.2, one assumes that the map ¢ is a po-
larised morphism with associated constant ¢ > 1, then the conclusion of 5.4(1) holds, so
that we get the full result. This follows from an observation made without proof in [4]. The
proof I sketch below is due to Hrushovski.

Proof. First, note that the hypotheses imply, by a result of Fakhruddin [8], that we may as-
sume that V' C P¥ for some N, and that the morphism ¢ on V is the restriction to V of a
morphism ¢ : PV — PV Suppose that the conclusion of 5.4(1) does not hold, and let / be
a model of ACFA containing .

Let g : (V,¢) — (Vo,¢o) be given by 5.4, with deg(¢) = deg(¢p), let a = ay € U
be a generic of V satisfying o(as) = ¢(az) and let a3 = g(as) (a generic of Vj satisfying
o(asz) = ¢o(as)). Equality of the degrees of ¢ and ¢ implies that the restriction of ¢
to S = g~ !(a3) is an isomorphism. The variety S’ = ¢(S) equals S°, and therefore
deg(S’) = deg(S). We will show the following:

If S is a subvariety of V, and deg(S) = deg(¢(S)) (as subvarieties of PV ), then the
degree of the map ¢ restricted to S is ¢3™(5).

Let r = dim(S), and let L1, ..., L, be generic hyperplanes. Then deg(S’) = S’ - L; -
-+« L, and also equals |S’ N Ly N --- N L,|, the number of points of S" N Ly N---N L,
counted with multiplicities. Pulling back by ¢, we get

deg(S) = deg(S’) deg(¢|S) = ¢~ (S") N~ (L1)N--- N~ (L)
=S-qLy---qL, = q" deg(9)

(here we use ¢*L; = qL;). As deg(S) = deg(.9”), the restriction of ¢ to S has degree ¢".

As ¢|S is birational and therefore of degree 1, we must have = 0. This implies that S
is finite, i.e., that aq is algebraic over K (a3), and we conclude as in 5.4(1). O
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Logic and operator algebras
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Abstract. The most recent wave of applications of logic to operator algebras is a young and rapidly
developing field. This is a snapshot of the current state of the art.
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Borel reducibility, ultraproducts.

1. Introduction

The connection between logic and operator algebras in the past century was sparse albeit
fruitful. Dramatic progress has brought set theory and operator algebras closer together over
the last decade. A number of long-standing problems in the theory of C*-algebras were
solved by using set-theoretic methods, and solutions to some of them were even shown to
be independent from ZFC. There is much to be said about these developments (as witnessed
in three almost disjoint recent survey papers [30, 45, 96]), but that is not what this paper is
about. New applications of logic to operator algebras are being found at such a pace that
any survey is bound to become obsolete within a couple of years. Instead of presenting an
encyclopaedic survey, I shall proceed to describe the current developments (many of them
from the unpublished joint work, [33, 34]) and outline some possible directions of research.
The choice of the material reflects my interests and no attempt at completeness has been
made. Several results proved by operator algebraists without using logic that have logical
content are also included.

‘Logic’ in the title refers to model theory and (mostly descriptive) set theory, with a dash
of recursion theory in a crucial place.

2. Operator algebras

Let B(H) denote the Banach algebra of bounded linear operators on a complex Hilbert space
H equipped with the operation * of taking the adjoint. A C*-algebra is a Banach algebra
with involution which is *-isomorphic to a subalgebra of B(H) for some H. Notably, all
algebraic isomorphisms between C*-algebras are isometries. All C*-algebras considered
here will be unital, unless otherwise specified. A von Neumann algebra is a unital subalgebra
of B(H) which is closed in the weak operator topology. An algebra isomorphic to a von

" Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Neumann algebra is called a W*-algebra. Standard terminology from operator theory is
imported into operator algebras, and in particular positivity of self-adjoint operators plays an
important role.

I only have something to say about those von Neumann algebras that have a trace. A
normalized trace (on a von Neumann algebra or a unital C*-algebra) is a unital positive
functional such that 7(ab) = 7(ba) for all @ and b. We shall only consider unital algebras
and normalized traces. A trace on a von Neumann algebra is automatically continuous in the
weak operator topology. A tracial infinite-dimensional von Neumann algebra with a trivial
center is a I; factor. The terminology comes from von Neumann’s type classification, in
which the unique I,, factor is M,,(C); we shall not consider other types of factors.

If 7 is a trace on an operator algebra A then the /5-norm ||az = 7(a*a)'/? turns A into
a pre-Hilbert space. The algebra A is represented on this space by the left multiplication; this
is the GNS representation corresponding to 7. If A is a C*-algebra, then the weak closure
of the image of A is a tracial von Neumann algebra. If A is simple and infinite-dimensional,
this algebra is a II; factor. A GNS representation can be associated to an arbitrary positive
unital functional (state).

The category of abelian C*-algebras is equivalent to the category of locally compact
Hausdorff spaces and the category of abelian von Neumann algebras with a distinguished
trace is equivalent to the category of measure algebras. Because of this, these two subjects
are considered to be noncommutative (or quantized) topology and measure theory, respec-
tively.

There is only one (obvious, spatial) way to define the tensor product of von Neumann
algebras. A C*-algebra A is nuclear if for every C*-algebra B there is a unique C*-norm
on the algebraic tensor product of A and B. The importance of this notion is evident from
a variety of its equivalent characterizations (see [11]), one of them being Banach-algebraic
amenability. Although by a result of Junge and Pisier (see [11]) there is finite subset F' €
B(H) such that no nuclear C*-algebra includes F', these algebras are ubiquitous in a number
of applications.

For more on C*-algebras and von Neumann algebras see [8, 11, 55].

2.1. Imtertwining. A metric structure is a complete metric space (A, d) equipped with
functions f: A™ — A and predicates p: A™ — R, all of which are assumed to be uniformly
continuous on d-bounded sets. Consider two separable complete metric structures A and B.
Assume we have partial isometric homomorphisms ®,,: F,, — G,, ¥,,: G,, — F, 4, for
n € Nsuchthat F,, C F,,11 C Aand G, C G, 41 € Bforn € Nand |J,, F,, and |J,, G,
are dense in A and B respectively. Furthermore assume that in the following diagram

F Fy F3 Fy A
o v wa) e
G Gy Gs G4 B

the n-th triangle commutes up to 2~ ™. Then ®: | J,, F;, — B defined by ®(a) = lim,, ®,,(a)
and U: {J,, G,, = A defined by ¥(b) = lim,, ¥,,(b) are well-defined isometric homomor-
phisms. Their continuous extensions to A and B are respectively an isomorphism from A
onto B and vice versa.
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Variations of this method for constructing isomorphisms between C*-algebras comprise
Elliott’s intertwining argument. In Elliott’s program for classification of separable, nuclear,
unital and simple C*-algebras maps ®,, and V,, are obtained by lifting morphism between
the K-theoretic invariants (so-called Elliott invariants) of A and B. The first result along
these lines was the Elliott—Bratteli classification of separable AF algebras (i.e., direct limits
of finite-dimensional C*-algebras) by the ordered K. Remarkably, for A and B belonging
to a rather large class of nuclear C*-algebras this method shows that any morphism between
Elliott invariants lifts to a morphism between the algebras. Elliott conjectured that the sep-
arable, nuclear, unital and simple algebras are classified by K-theoretic invariant known as
the Elliott invariant. This bold conjecture was partially confirmed in many instances. See
[77] for more on the early history of this fascinating subject.

Examples of separable, nuclear, unital and simple C*-algebras that limit the extent of
Elliott’s classification program were given in [78] and [90]. Algebras defined in [90] have
a remarkable additional property. Not only do the nonisomorphic algebras A and B have
the same Elliott invariant, but in addition they cannot be distinguished by any homotopy-
invariant continuous functor. We shall return to these examples in §4.3. The revised Elliott
program is still one of the core subjects in the study of C*-algebras (see [25]).

2.2. Strongly self-absorbing (s.s.a.) algebras. An infinite-dimensional C*-algebrais UHF
(uniformly hyperfinite) if it is an infinite tensor product of full matrix algebras M, (C). If
A is UHF, then every two unital copies of M,,(C) in it are unitarily conjugate and therefore
every endomormphism of A is a point-norm limit of inner automorphisms. The generalized
natural number of A has as its ‘divisors’ all n such that M,,(C) embeds unitally into A.
Glimm proved that this is a complete isomorphism invariant for the separable UHF algebras.

If A is UHF then it has a unique trace 7. The tracial von Neumann algebra corresponding
to the 7-GNS representation of A (§2) is the hyperfinite 11 factor, R, and it does not depend
on the choice of A. It is the only injective II; factor and it has played a key role in the
classification of injective factors [19].

Two *-homomorphisms ® and ¥ from A into B are approximately unitarily equivalent
if there is a net of inner automorphisms vy, for A € A, of B such that

limy a) o ®(a) = ¥(a)

for all a € A (convergence is taken in the operator norm for C*-algebras and in the /o-
norm for tracial von Neumann algebras). If A ® B = A we say that A is B-absorbing and
if A® A = A then we say that A is self-absorbing. Here and in what follows, we will
often be providing two definitions at once, one for von Neumann algebras and another for
C*-algebras. The difference comes in the interpretation of ®, either as the von Neumann
(spatial) tensor product ® or as the C*-algebra minimal (spatial) tensor product ®. McDuff
factors are the R-absorbing II; factors. A separable C*-algebra D is strongly self-absorbing
(s.s.a.) [92] if there is an isomorphism ®: D — D ® D and map id®1p : D - D ® D is
approximately unitarily equivalent to ®. The definition of strongly self-absorbing is modified
to II; factors following the convention stated above, by replacing || - || with || - ||2 and ® with
&.

The hyperfinite factor R is the only s.s.a. tracial von Neumann algebra with separable
predual (Stefaan Vaes pointed out that this was essentially proved in [19, Theorem 5.1(3)]).
A UHF algebra A is s.s.a. if and only if it is self-absorbing. However, the latter notion is
in general much stronger. For any unital C*-algebra A the infinite tensor product @)y A is
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self-absorbing but not necessarily s.s.a. Every s.s.a. C*-algebra D is simple, nuclear and
unital [23].

Three s.s.a. algebras are particularly important. The Jiang—Su algebra Z is an infinite-
dimensional C*-algebra which is indistinguishable from C by its Elliott invariant. Conjec-
turally, Z-absorbing infinite-dimensional separable, nuclear, unital and simple algebras are
classifiable by their Elliott invariant. The Cuntz algebra O is the universal algebra generated
by two partial isometries with complementary ranges. The Cuntz algebra O, is the univer-
sal unital C*-algebra generated by partial isometries v,,, for n € N, with orthogonal ranges.
The first step in the Kirchberg—Phillips classification of purely infinite separable, nuclear,
unital and simple algebras was Kirchberg’s result that every such algebra is O,-absorbing
and that O is A-absorbing for every separable, nuclear, unital and simple algebra (see [77]).

3. Abstract classification

A Polish space is a separable, completely metrizable topological space. A subset of a Polish
space is analytic if it is a continuous image of some Polish space. Essentially all classi-
cal classification problems in mathematics (outside of subjects with a strong set-theoretic
flavour) can be modelled by an analytic equivalence relation on a Polish space. Moreover,
the space of classifying invariants is also of this form, and computation of the invariant is
usually given by a Borel measurable map. This is indeed the case with C*-algebras and the
Elliott invariant [43].

If E and F are equivalence relations on Polish spaces, E is Borel-reducibleto F', E <p F|
if there exists a Borel-measurable f: X — Y such that z E y if and only if f(z) E f(y). One
can interpret this as stating that the classification problem for F is not more difficult than the
classification problem for F'. Following Mackey, an equivalence relation E Borel-reducible
to the equality relation on some Polish space is said to be smooth. By the Glimm—Effros
dichotomy the class of non-smooth Borel-equivalence relations has an initial object [52],
denoted Fj. It is the tail equality relation on {0, 1}. While the Glimm-Effros dichotomy
was proved by using sophisticated tools from effective descriptive set theory, the combina-
torial core of the proof can be traced back to work of Glimm and Effros on representations
of locally compact groups and separable C*-algebras. See [47, 57] for more on (invariant)
descriptive set theory.

When is an equivalence relation classifiable? Many non-smooth equivalence relations
are considered to be satisfactorily classified. An example from the operator algebras is the
Elliott—Bratteli classification of separable AF algebras by countable abelian ordered groups.
A rather generous notion is being ‘classifiable by countable structures.” Hjorth’s theory of
turbulence [54] provides a powerful tool for proving that an orbit equivalence relation is not
classifiable by countable structures.

Sasyk and Tornquist have proved that every class of injective factors that was not already
satisfactorily classified is not classifiable by countable structures [80, 81]. By combining
results of [24, 44, 48, 71, 79], one proves that the following isomorphism relations are Borel-
equireducible.

(a) Isomorphism relation of separable C*-algebras.

(b) Isomorphism relation of Elliott—classifiable separable, nuclear, unital and simple alge-
bras.
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(c) Isometry relation of separable Banach spaces.
(d) Affine homeomorphism relation of metrizable Choquet simplices.

(e) Isometry relation of Polish spaces.

Each of these equivalence relations (as well as the isometry of a class of separable metric
structures of any given signature) is Borel-reducible to an orbit equivalence relation of a
Polish group action [24].

Being Borel-reducible to an orbit equivalence relation is, arguably, the most generous
definition of being concretely classifiable. Conjecturally, E, the tail-equivalence relation
on [0,1]Y, is an initial object among Borel equivalence relations not Borel-reducible to an
orbit equivalence relation [58]. Notably, the isomorphism of separable Banach spaces is the
< p-terminal object among analytic equivalence relations [46].

The answer to the question “When is an equivalence relation classifiable’ is frequently
of somewhat sociological nature. It is notable that the isomorphism relation of abelian unital
C*-algebras (generally considered intractable) is Borel-reducible to the isomorphism rela-
tion of Elliott-classifiable Al algebras (for which there is a satisfactory classification rela-
tion). Also, as pointed out by David Fremlin, most analysts find that normal operators are
satisfactorily classified up to conjugacy by the spectral theorem, although they are not clas-
sifiable by countable structures.

Nevertheless, the theory of Borel-reducibility is a great example of a situation in which
logic provides concrete obstructions to sweeping conjectures. For example, the classification
of countable abelian torsion free groups of rank n + 1 is strictly more complicated than the
classification of countable abelian torsion free groups of rank n for every n [89]. (Notably,
the proof of this result uses Popa superrigidity of 1I; factors, [75].) This theory was recently
successfully applied to (non)classification of automorphisms of group actions on operator
algebras ([59], automorphisms of C*-algebras [60, 64] and subfactors [9].

A partial Borel-reducibility diagram of classification problems in operator algebras is
given in Figure 3.1. For an explanation of terminology see [30, §9]. I am indebted to
Marcin Sabok for pointing out that the isomorphism of countable structures of any signature
is Borel-reducible to the isomorphism relation of separable AF algebras [15].

Borel-reduction of equivalence relations as defined above does not take into the account
the functorial nature of the classification of C*-algebras. Some preliminary results on Borel
functorial classification were obtained by Lupini.

4. Model-theoretic methods

Until recently there was not much interaction between model theory and operator alge-
bras (although model theory was fruitfully applied to the geometry of Banach spaces, (see
[53]). Recent emergence of the logic of metric structures [5], originally introduced only for
bounded metric structures, created new opportunities for such interactions. It was modified
to allow operator algebras in [36].

4.1. Logic of metric structures. Model theory can roughly be described as the study of
axiomatizable classes of structures and sets definable in them. Axiomatizable properties
can be expressed in syntactic terms, but they are also characterized by preservation under
ultraproduts and ultraroots (see §6). A category C is axiomatizable if there exists a first-
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order theory T such that the category 2t(C) of all models of T is equivalent to the original
category.

Classical model theory deals with discrete structures, and its variant suitable for metric
structures as defined in §2.1 was introduced in [5]. In this logic interpretations of formu-
las are real-valued, propositional connectives are real-valued functions, and quantifiers are
sup, and inf,. Each function and predicate symbol is equipped with a modulus of uniform
continuity. This modulus is a part of the language. If the diameter of the metric structures
is fixed, then every formula has its own modulus of uniform continuity, respected in all
relevant metric structures. Formulas form a real vector space equipped with a seminorm,
l¢(Z)|| = |sup #(a)?| where the supremum is taken over all metric structures A of the
given language and all tuples a in A of the appropriate type. Formulas are usually required
to have range in [0, c0) (or [0, 1] in the bounded case) but allowing negative values results in
equivalent logic; see also [4]. The theory of a model is the kernel of the functional ¢ — ¢*,
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where ¢ ranges over all sentences (i.e., formulas with no free variables) of the language. This
kernel uniquely defines the functional, which can alternatively be identified with the theory.
The weak*-topology on this space is also known as the logic topology. If the language is
countable then the space of formulas is separable and the spaces of theories and types (see
§4.4) are equipped with compact metric topology.

Two metric structures are elementarily equivalent if their theories coincide. A formula is
existential if it is of the form inf; ¢ () for some quantifier-free formula ¢(z). The existential
theory of Ais Th3(A) = {¢ € Th(A) : ¢ is existential }.

There are several equivalent ways to adapt the logic of metric structures to operator
algebras and to unbounded metric structures in general [3, 36]. Axiomatizability is defined
via equivalence of categories as above, but model M (A) associated with A has more (albeit
artificial) structure. It is equipped with domains of quantification, bounded subsets of A
on which all functions and predicates are uniformly continuous (with a fixed modulus of
uniform continuity) and over which quantification is allowed. It is the existence of category
9M(C), and not its particular choice, that matters.

In the simplest version of M (A) quantification is allowed only over the (operator norm)
n-balls of the algebra. The notion of sorts over which one can quantify corresponds to those
functors from the model category into metric spaces with uniformly continuous functions
that commute with ultraproducts (see [36, 2]). For example, M (A) can be taken to con-
sist of all matrix algebras M,,(A) for n € N, as well as completely positive, contractive
maps between them and finite-dimensional algebras. This is important because nuclearity is
equivalently characterized as the CPAP, the completely positive approximation property (see
[11] and [12]).

C*-algebras are axiomatized as Banach algebras with an involution that satisfy the C*-
equality, ||aa*|| = ||a||?, by the Gelfand—Naimark and Segal (GNS mentioned earlier) theo-
rem. Abelian C*-algebras are obviously axiomatized by sup,, , [y — yz|| and non-abelian
C*-algebras are slightly less obviously axiomatized by inf), <1 |1 — ||| + [lz*|| (a C*-
algebra is nonabelian if and only if it contains a nilpotent element).

The proof that the tracial von Neumann algebras with a distinguished trace are also ax-
iomatizable ([36], first proved in [6]) goes deeper and uses Kaplansky’s Density Theorem.
Again, quantification is allowed over the (operator norm) unit ball and the metric is the ¢
metric ||lalls = 7(a*a)'/2. The operator norm is not continuous with respect to the £ metric
and it therefore cannot be added to II; factors as a predicate.

There are elementarily equivalent but nonisomorphic separable unital AF algebras. This
is proved by using descriptive set theory. The association A — Th(A) is Borel, and hence
the relation of elementary equivalence is smooth (§3). The category of AF algebras is equiv-
alent to the category of their ordered K groups. By the Borel version of this result and the
fact that the isomorphism of dimension groups is not smooth the conclusion follows.

The following proposition is taken from [34].

Proposition 4.1.

(1) For every separable, nuclear, unital and simple C*-algebra there exists an elementar-
ily equivalent, separable, non-nuclear, C*-algebra.

(2) The reduced group C*-algebra of the free group with infinitely many generators
C:(F) is not elementarily equivalent to a nuclear C*-algebra.

Instead of providing a genuine obstruction, this proposition precipitated some of the most
interesting progress in the field.
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Here is a simple but amusing observation. The Kadison—Kastler distance between subal-
gebras of B(H ) is the Hausdorff (norm) distance between their unit balls. For every sentence
¢ the map A +— ¢* is continuous with respect to this metric. Therefore the negation of an
axiomatizable property is stable under small perturbations of an algebra (see [18] and refer-
ences thereof for more on perturbations of C*-algebras).

4.2. Elementary submodels. If A is a submodel of B, it is said to be an elementary
submodel if ¢4 = ¢P | A™ for every n and every n-ary formula ¢. The Downwards
Lowenheim—Skolem theorem implies that every model has a separable elementary sub-
model. Its C*-algebraic variant is known as ‘Blackadar’s method’ and is used to provide
separable examples from known nonseparable examples (see [8, I1.8.5] and [72]).

Proposition 4.2. Assume A is a C*-algebra and B is its elementary submodel. Then B is a
C*-algebra with the following properties.

(1) Every trace of B extends to a trace of A.

(2) Every ideal of B is of the form I N B for some ideal I of A.
(3) Every character of B extends to a character of A.

4) If A is nuclear so is B.

In particular, B is monotracial and/or simple if and only if A has these properties. It
should be noted that neither of these properties is axiomatizable, because neither of them is
preserved under taking ultrapowers (see [76] for the nonaxiomatizability of having a unique
trace and §6 for the ultrapowers).

A drastic example of a property that does not persist to elementary submodels is given in
Theorem 8.1.

4.3. Intertwining again. We return to Elliott’s intertwining argument (§2.1):

A1 A2 A3 A4 ce A= hmn An
wloslu sl on
Bl BQ Bg B4 ce B = hmn Bn

If the maps ®,, are expected to converge to an isomorphism, it is necessary that they approx-
imate elementary maps. For a formula ¢(Z) and a tuple @ in the domain of ®,, one must
have ¢(a)4 = lim, ¢(®,(a))?. Even more elementarily, the algebras A and B ought to
be elementarily equivalent (no pun intended). Every known counterexample to Elliott’s pro-
gram involves separable, nuclear, unital and simple algebras with the same Elliott invariant,
but different theories. For example, the radius of comparison was used in [91] to distinguish
between continuum many nonisomorphis separable, nuclear, unital and simple algebras with
the same Elliott invariant, and it can be read off from the theory of an algebra [34].

This motivates an outrageous conjecture, that the following question has a positive an-
Swer.

Question 4.3. Assume that separable, nuclear, unital and simple algebras A and B have
the same Elliott invariant and are elementarily equivalent. Are A and B necessarily isomor-
phic?
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Since being Z-stable is axiomatizable (see §6.1), the revised Elliott conjecture that all
Z-stable separable, nuclear, unital and simple algebras are classified by their Elliott invari-
ant is a special case of a positive answer to Question 4.3. All known nuclear C*-algebras
belong to the so-called bootstrap class, obtained by closing the class of type I algebras under
operations known to preserve nuclearity (see [8]). An (expected) negative answer to Ques-
tion 4.3 would require new examples of separable, nuclear, unital and simple algebras. Can
model-theoretic methods provide such examples?

4.4. Omitting types. Let [F,, be the set of formulas whose free variables are included in
{z1,...,2,}. An n-type is a subset t of IF,, such that for every finite ty € t and for every
€ > 0 there are a C*-algebra A and n-tuple @ in the unit ball of A such that |¢(a)| < e for
all ¢ € ty. By applying functional calculus one sees that this definition is equivalent to the
apparently more general standard definition ([5]) in which types consist of arbitrary closed
conditions. An n-type t is realized by n-tuple @ in the unit ball of A if ¢(a)” = 0 for all ¢
in t. It is omitted in A if it is not realized by any n-tuple in A;. £.0§’s theorem implies that
every type is realized in an ultraproduct; we shall return to this in §6.0.1 but presently we are
concerned with omitting types.

The omitting types theorem of classical (‘discrete’) model theory [67] provides a simple
condition for omitting a type in a model of a given theory. A predicate p is definable if
for every £ > 0 there exists a formula ¢(Z) which up to ¢ approximates the value of p.
A type is definable if the distance function to its realization in a saturated model (§6.0.1,
§7.1) is definable. By the omitting types theorem of [5] a type is omissible if and only if it
is not definable, with the additional stipulation that it be complete (i.e., maximal under the
inclusion). While a definable type is never omissible even if it is incomplete, Ben Yaacov
has isolated types that are neither definable nor omissible. His example was simplified by T.
Bice.

Theorem 4.4 ([39]).

(1) There is a theory T in a separable language such that the set of types omissible in
some model of T is a complete 33 set.

(2) There are a complete theory T in a separable language and a countable set P of types
such that for every finite Py € P there exists a model M of T that omits all types in
Py, but no model of T omits all types in P.

Therefore the question of whether a type is omissible in a model of a given metric theory
is by (1) far from being Borel or even analytic and therefore intractable, and by (2) separately
omissible types over a complete theory are not necessarily jointly omissible. Both results
stand in stark contrast to the situation in classical model theory.

The idea that the omitting types theorem can be used in the study of C*-algebras emerged
independently in [14] and [83]. A sequence t,, for n € N, of m-types is uniform if there
are formulas ¢;(z) for j € N with the same modulus of uniform continuity such that t,, =
{¢;(Z) > 27™ : j € N} for every n. In this situation, the interpretation of the infinitary
formula ¢(Z) = inf; ¢;(Z) is uniformly continuous in every model (with a fixed modulus of
uniform continuity) and moreover sup; ¢(7)* = 0 if and only if A omits all t,,.

Nuclearity, simplicity, as well as many other important non-axiomatizable properties of
C*-algebras (including nuclear dimension or decomposition rank < n; see [99]) are char-
acterized by omitting a uniform sequence of types. The classical theory of omitting types
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applies to such types unchanged: a uniform sequence of types is omissible in a model of a
complete theory T if and only if none of the types is isolated [39]. As an extra, this charac-
terization shows that one can find a separable elementary submodel of a nonnuclear algebra
that is itself nonnuclear by assuring that it includes a tuple that realizes the relevant type

4.5. Strongly self-absorbing algebras II. These algebras have remarkable model-theoretic
properties. Every s.s.a. algebra D is a prime model of its theory (it elementarily embeds into
every other model of its theory) and every unital morphism of D into another model of its
theory is elementary (§4.2).

Proposition 4.5. If D and F are s.s.a. algebras then the following are equivalent.

(1) Eis D-absorbing: E ® D = E.
(2) D is isomorphic to a subalgebra of E.
(3) Ths(D) C Tha(E).

The implications from (1) to (2) and from (2) to (3) are always true, but both converses
fail in general. S.s.a. algebras are as rare as they are important and the following diagram
represents all known s.s.a. algebras, given in the order defined by either clause of Proposition
4.5.

O,
[
Ooo® UHF

@) UHF

— ~
OO\Z/

Finding an s.s.a. algebra other than the ones in the diagram would refute the revised
Elliott program.

5. Tracial von Neumann algebras

Many of the pathologies that plague (or enrich, depending on the point of view) the theory
of C*-algebras are not present in von Neumann algebras.

By a result of McDulff, the relative commutant of a II; factor in its ultrapower is trivial,
nontrivial and abelian, or the factor tensorially absorbs R (see Proposition 6.1). Each of these
three classes is nonempty, and there is presently no other known method for distinguishing
theories of II; factors (see [37]).

The hyperfinite II; factor R is a canonical object and every embedding of R into a model
of its theory is elementary (§4.5). However, there are embeddings between models of the
theory of R that are not elementary (i.e., the theory of R is not model-complete), and in
particular this theory does not allow the elimination of quantifiers [31, 51]. This may be an
indication that we do not have the right language for the theory of II; factors. The obstruction
for the elimination of quantifiers extracted in [31] from [56] is removed by adding a predicate
for the unitary conjugacy relation. As this is a definable relation, adding such predicate
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affects only syntactical structure of the language. It is not clear whether adding finitely, or
even countably, many such predicates could make the theory of R model-complete. This
may suggest that the theory of R is as complicated as the first-order arithmetic or ZFC.

Given a II; factor M and a projection p in M, are M and its corner pMp elementar-
ily equivalent? By the Keisler—Shelah theorem, this is equivalent to asking whether these
algebras have isomorphic ultrapowers. A positive answer would imply that all free group
factors L(F,), for n > 2, are elementarily equivalent, giving a ‘poor man’s’ solution to the
well-known problem whether the free group factors are isomorphic (see [22]). On the other
hand, a negative answer would provide a continuum of distinct theories of II; factors that are
corners of L(F3). A deeper analysis of the model theory of II; factors is likely to involve
Voiculescu’s free probability.

In recent years theories of C*-algebras and von Neumann algebras are increasingly con-
sidered as inseparable. Some of the most exciting progress on understanding tracial C*-
algebras was initiated in [68]. We shall return to this in §6.1, but see also [12].

6. Massive algebras I: Ultraproducts

We now consider algebras that are rarely nuclear and never separable, but are nevertheless
indispensable tools in the study of separable nuclear algebras.

Ultraproducts emerged independently in logic and in functional analysis (more precisely,
in the theory of II; factors) in the 1950’s (see the introduction to [88]). If (A,,d,), for
n € N, are bounded metric structures of the same signature and I/ is an ultrafilter on N, then
the ultraproduct [ [,; Ay, is defined as follows. On the product structure [ [, A,, consider the
quasi-metric

dy((an), (b)) = limy, 1y dy(an, by).
Since every function symbol f has a fixed modulus of uniform continuity, it defines a uni-
formly continuous function on the quotient metric structure [ [, A,/ ~q,,. This structure is
the ultraproduct of A,,, for n € N, associated to the ultrafilter /. It is denoted by Hu A,.

In the not necessarily bounded case one replaces [[,, A, with {(an) € [, 4n : an
belong to the same domain of quantification}. With our conventions, in the operator algebra
case this is the /. -product usually denoted [ ],, A,,. The nontrivial fact that an ultrapower of
tracial von Neumann algebras is a tracial von Neumann algebra is an immediate consequence
of the axiomatizability.

The usefulness of ultraproducts draws its strength largely from two basic principles. The
first one is £os’s theorem, stating that for any formula ¢(Z) we have

¢(d)nu An = lim,, 3 (b(an)AnV

This in particular implies that the diagonal embedding of A into its ultrapower is elementary
(§4.2), and therefore the theory is preserved by taking ultrapowers. The second principle
will be discussed in §6.0.1.

This may be a good place to note two results in abstract model theory that carry over to
the metric case [5]. A category K with an appropriately defined ultraproduct construction
is closed under the elementary equivalence if and only if it is closed under isomorphisms,
ultraproducts, and ultraroots (i.e., AY e K implies A € K). By the Keisler—Shelah theorem,
two models are elementarily equivalent if and only if they have isomorphic ultrapowers.
Both results require considering ultrafilters on arbitrarily large sets (see [86]).
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The fact that it is easier to prove that an ultraproduct of C*-algebras is a C*-algebras
than that an ultraproduct of tracial von Neumann algebras is a tracial von Neumann algebra
is reflected in the fact that it is easier to prove that the C*-algebras are axiomatizable than
that the tracial von Neumann algebras are axiomatizable.

All ultrafilters considered here concentrate on N and are nonprincipal. It is not possible
to construct such an ultrafilter in ZF alone, as a (rather weak) form of the Axiom of Choice
is required for its construction. However, results about separable C*-algebras and separably
acting II; factors proved using ultrafilters can be proved without appealing to the Axiom of
Choice, by standard absoluteness arguments.

An ultrapower of an infinite-dimensional, simple, unital C*-algebra is by L.o$’s theorem
unital. It is, however, nonseparable, not nuclear, and it is simple only under exceptional
circumstances. This shows that none of these three properties is axiomatizable (cf. Proposi-
tion 4.1). Nevertheless, separable, nuclear, unital and simple C*-algebras can be constructed
by using the Henkin construction and omitting types theorem ([39], see §4.4).

6.0.1. Countable saturation. We define the second important property of massive alge-
bras. If a type (see §4.4) is allowed to contain formulas with parameters from an algebra A
we say that it is a type over A.

An algebra A is countably saturated if every countable type t(Z) over A is realized in
A if and only if it is consistent. (These algebras are sometimes said to be N;-saturated. The
latter terminology is more conveniently extended to higher cardinalities.) Every ultrapower
associated to a nonprincipal ultrafilter on N is countably saturated. A weakening of countable
saturation suffices for many purposes (see §7), and we shall return to full saturation in §7.1.

6.1. Relative commutants. In the theory of operator algebras even more important than
the ultrapower itself is the relative commutant of the algebra inside the ultrapower,

ANAY ={bec AY : ab = baforall a € A}.

The current prominence of ultrapowers as a tool for studying separable algebras can be traced
back to McDuff ([70]) and the following proposition (generalized to s.s.a. algebras in [92]).

Proposition 6.1. If D is strongly self-absorbing and A is separable, then A is D-absorbing
if and only if D embeds into A’ N AY.

The nontrivial, converse, implication uses the following (a lemma in model theory that I
learned from Wilhelm Winter) proved using the intertwining argument.

Lemma 6.2. If A C B are separable metric structures and BY has a sequence of isometric
automorphisms o, such that lim, o, (a) = a for all a € A and lim,, dist(o,(b), A) = 0
forall b € B, then A and B are isometrically isomorphic.

Noting that all nonprincipal ultrafilters on N ‘look the same’ and in particular that the
choice of U/ in Proposition 6.1 is irrelevant as long as it is a nonprincipal ultrafilter on N, one
may ask the following.

Question 6.3. If M is a separable metric structure, does the isomorphism type of MY (and
M' N MY, if M is a Banach algebra) depend on U at all?

If M is a Hilbert space or a measure algebra, then a simple argument (using Maharam’s
theorem in the latter case) gives a negative answer. Also, Continuum Hypothesis (CH) im-
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plies negative answer to both questions for an arbitrary separable M (see §7.1). Therefore,
the question is whether CH can be removed from this proof.

Question 6.3 for relative commutants was asked by McDuff [70] and Kirchberg ([61]) in
the case of McDuff factors and C*-algebras, respectively. In [49] it was proved that, under
some additional assumptions on A, CH is equivalent to the positive answer to either of these
questions! This was achieved by using only results from classical (‘discrete’) model theory.
By using the logic of metric structures and Shelah’s non-structure theory, the full result was
proved in [35] and [41].

Theorem 6.4. Assume CH fails. If M is a separable C*-algebra or a McDuff factor with
a separable predual, then M has22™° nonisomorphic ultrapowers and 92" nonisomorphic
relative commutants associated to nonprincipal ultrafilters on N.

Let’s zoom out a bit. A complete first-order theory T has the order property if there exist
n > 1 and a 2n-ary formula ¢(Z, §) such that for every m there is a model 9t of T which
has a ‘¢-chain’ of length at least m. A ¢-chain is a sequence Z;, y;, for ¢ < m, such that

¢(fz,gj) =0if: <jand d)(.fz,gj) =1if:i>j.

This is the metric version of one of the important non-structural properties of theories in
Shelah’s stability theory ([85] and [35]). The theory of any infinite-dimensional C*-algebra
and of any II; factor has the order property. This is proved by continuous functional calculus
and by utilizing noncommutativity, respectively. However, the theories of abelian tracial
von Neumann algebras do not have the order property, essentially by applying Maharam’s
theorem on measure algebras.

Theorem 6.5. Suppose that A is a separable structure in a separable language.

(1) If the theory of A does not have the order property then all of its ultrapowers associ-
ated to nonprincipal ultrafilters on N are isomorphic.

(2) If the theory of A has the order property then the following are equivalent:

N
(a) A has fewer than 22°° nonisomorphic ultrapowers associated with nonprincipal
ultrafilters on N.

(b) all ultrapowers of A associated to nonprincipal ultrafilters on N are isomorphic.
(c) the Continuum Hypothesis holds.

6.2. Model theory of the relative commutant. The notion of a relative commutant does
not seem to have a useful generalization in the abstract model theory and its model-theoretic
properties are still poorly understood.

While the structure of relative commutants of II; factors in their ultrapowers provides
the only known method for distinguishing their theories, every infinite-dimensional separa-
ble C*-algebra has a nontrivial relative commutant in its ultrapower ([61], also [35]). The
relative commutant of the Calkin algebra (§7) in its ultrapower is trivial [61] and the relative
commutant of B(H) may or may not be trivial, depending on the choice of the ultrafilter
[40].

It is not difficult to see that the existential theory of A’ N AY depends only on the theory
of A. However, a result of [61] implies that there is a separable C*-algebra A elementarily
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equivalent to Oy such that A’ N AY and Oy N OY have different V3-theories. (An V3-
sentence is one of the form sup; infy ¢(Z, §) where ¢ is quantifier-free.) In the following all
ultrafilters are nonprincipal ultrafilters on N.

Proposition 6.6. Assume A is a separable C*-algebra.

(1) ForallU and V, the algebras A’ N AY and A’ N AY are elementarily equivalent.
(2) For every separable C C A’ N AY we have Ths(A’ N C' N AY) = Tha(A’ N AY).

(3) If D is a separable unital subalgebra of A’ N AY then there are Xy commuting copies
of D inside A' N AY.

An entertaining proof of (1) can be given by using basic set theory. Collapse 2% to ¥;
without adding reals. Then U/ and V are still ultrafilters on N and one can use saturation
to find an isomorphism between the ultrapowers that sends A to itself. The theories of two
algebras are unchanged, and therefore by absoluteness the result follows. Clause (3) is an
immediate consequence of (2) and it is a minor strengthening of a result in [61].

When A is not Z-stable, the relative commutant of A can have characters even if it is
simple ([62]). In the case when algebra A is nuclear and Z-stable, A’ N AY inherits some
properties from A. For example, each of the traces on A’ N AY extends to a trace on AY by
[68] (cf. Proposition 4.2). The relative commutants of s.s.a. algebras are well-understood;
the following was proved in [33].

Proposition 6.7. If D is a s.s.a. algebra and U is a nonprincipal ultrafilter on N, then
D' N DY is an elementary submodel of DY. Moreover, CH implies that these two algebras
are isomorphic.

6.3. Expansions and traces. If a metric structure A is expanded by adding a new predicate
7, its ultrapower AY expands to the ultrapower of the expanded structure (A, 7)% which still
satisfies £.o$’s theorem and is countably saturated.

If A is a unital tracial C*-algebra then its traces form a weak*-compact convex subset
T'(A) of the dual unit ball. For 7 € T'(A) denote the tracial von Neumann algebra associated
with the 7-GNS representation (§2) by N... If A is simple and infinite-dimensional and 7
is an extremal trace then N, is a factor, and if A is in addition nuclear and separable then
N is isomorphic to the hyperfinite factor R. This is because A is nuclear if and only if its
weak closure in every representation is an injective von Neumann algebra, and R is the only
injective II; factor with a separable predual. The following was proved in [68] and improved
to the present form in [62].

Proposition 6.8. If A is separable and T € T(A), then the quotient map from A’ N AY to
N!0 (N is surjective.

If b € AY is such that its image is in the commutant of N/, then by countable saturation
one finds a positive element ¢ of norm 1 such that 7(¢) =0 and ¢(a,b—ba,, ) = (apb—bay,)c=0
for all a,, in a fixed countable dense subset of A. The fact that the type of such c is consistent
follows from the fact that the image of bis in N’. Then (1 — ¢)b(1 — ¢) isin A’ N AY and it
has the same image under the quotient map as b.

Proposition 6.8 precipitated remarkable progress on understanding tracial C*-algebras,
the most recent results of which are [69] and [82].
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7. Massive algebras II: Coronas

Another class of massive C*-algebras (with no analogue in von Neumann algebras) has spe-
cial relevance to the study of separable algebras. If A is a non-unital C*-algebra, the multi-
plier algebra of A, M (A), is the noncommutative analogue of the Cech—Stone compactifica-
tion of a locally compact Hausdroff space. It is the surjectively universal unital algebra con-
taining A as an essential ideal. The corona (or outer multiplier) algebra of A is the quotient
M(A)/A. Some examples of coronas are the Calkin algebra Q(H) (the corona of the alge-
bra of compact operators) and the asymptotic sequence algebra {o.(A)/co(A) for a unital
A. The latter algebra, as well as the associated central sequence algebra A’ N o, (A)/co(A)
are sometimes used in classification of C*-algebras instead of the metamathematically heav-
ier ultrapowers and the corresponding relative commutants. While FL0§’s theorem miserably
fails for the asymptotic sequence algebra, all coronas and corresponding relative commu-
tants share some properties of countably saturated algebras. The simplest of these properties
is being SAW*: for any two orthogonal separable subalgebras A and B of a corona there
exists a positive element ¢ such that ca = a foralla € A and cb = 0 forall b € B.

7.0.1. Quantifier-free saturation. An algebra C' is quantifier-free saturated if every count-
able type over C consisting only of quantifier-free formulas is consistent if and only if it is
realized in C. An algebra C'is countably degree-1 saturated if every countable type over C'
consisting only of formulas of the form ||p||, where p is a *-polynomial of degree 1, is con-
sistent if and only if it is realized in C. A dummy variable argument shows that the degree-2
saturation is equivalent to quantifier-free saturation. By refining an argument introduced by
Higson, the following was proved in [32].

Theorem 7.1. If A is a corona of a separable non-unital C*-algebra, or a relative commu-
tant of a separable subalgebra of such corona, then A is countably degree-1 saturated.

A very interesting class of countable degree-1 saturated C*-algebras was isolated in [94].

7.0.2. A sampler of properties of countable degree-1 saturated algebras. Assume C' is
countably degree-1 saturated (the results below also apply to tracial von Neumann algebras,
and in this case (1), (3) and (5) do not even require countable degree-1 saturation).

(1) C has SAW* as well as every other known countable separation property [32].
(2) A separable algebra A is isomorphic to a unital subalgebra of C'if and only if Thg(A)
C Tha(C).

(3) A representation of a group I" in A is a homomorphism 7: I' — (GL(A), -). It is uni-
tarizable if there is an invertible h € A such that h~!7(g)h is a unitary for all g € T.
Conjecturally unitarizability of all uniformly bounded representations of a group I' on
B(H) is equivalent to the amenability of T" (see [74]). If T is a countable amenable
group, then every uniformly bounded representation 7 of I' in C' is unitarizable [17].

(4) C'isnotisomorphic to the tensor product of two infinite-dimensional algebras ([26] for
the ultraproducts of II; factors and [50] for the general result). Therefore an ultrapower
or a corona is never isomorphic to a nontrivial tensor product and the separability
assumption is needed in Proposition 6.1.

(5) (‘Discontinuous functional calculus.’) If a is a normal operator, then by the continuous
Sfunctional calculus for every continuous complex-valued function g on the spectrum,
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sp(a), of a the naturally defined g(a) belongs to the abelian algebra generated by a.

Proposition 7.2. Assume C is countably degree-1 saturated and B C {a}' NC is separable,
U C sp(a) is open, and g: U — C is a bounded continuous function. Then there exists
¢ € CNC*(B,a) such that for every f € Cy(sp(a)) we have

cf(a) = (9)(a).
If moreover g is real-valued then c can be chosen to be self-adjoint.

The ‘Second Splitting Lemma’ ([10, Lemma 7.3]) is a special case of the above when C
is the Calkin algebra, a = hy is self-adjoint, and the range of g is {0, 1}.

7.0.3. Failure of saturation. While the asymptotic sequence algebras, as well as some
abelian coronas, are fully countably saturated [42], this is not true for sufficiently noncom-
mutative coronas. By a K-theoretic argument N. C. Phillips constructed two unital embed-
dings of the CAR algebra into the Calkin algebra Q(H) that are approximately unitarily
equivalent, but not conjugate by a unitary ([32, §4]). This gives a countable quantifier-
free type over Q(H) that is consistent but not realized. Even coronas of separable abelian
C*-algebras provide a range of different saturation properties (see [42]).

7.1. Automorphisms. A metric model A is saturated if every type over A whose cardinal-
ity is smaller than the density character x(A) of A (i.e., the smallest cardinality of a dense
subset) which is consistent is realized in A. The Continuum Hypothesis (CH) implies that
all countably saturated models of cardinality 2%° are saturated. A transfinite back-and-forth
argument shows that any two elementarily equivalent saturated models of the same density
character are isomorphic and that a saturated model A has 2X(4) automorphisms. By a count-
ing argument, most of these automorphisms are outer and moreover nontrivial when ‘trivial
automorphism’ is defined in any reasonable way; see [20] for a (Iengthy) discussion. This
explains the effectiveness of CH as a tool for resolving problems of a certain form. A deeper
explanation is given in Woodin’s celebrated E%-absoluteness theorem (see [100]).

By the above, CH implies that an ultrapower AY of a separable, infinite-dimensional
algebra has automorphisms that do not lift to automorphisms of ¢,(A). Much deeper is
a complementary series of results of Shelah, to the effect that if ZFC is consistent then
so is the assertion that any isomorphism between ultraproducts of models with the strong
independence property lifts to an isomorphism of the products of these models [87]. No
continuous version of this result is known. One difficulty in taming ultrapowers is that the
ultrafilter is not a definable object; in particular Shelah’s results apply only to a carefully
constructed ultrafilter in a specific model of ZFC.

Motivated by work on extension theory and a very concrete question about the unilat-
eral shift, in [10] it was asked whether the Calkin algebra has outer automorphisms. Since
the Calkin algebra is not countably saturated (§7.0.3) it took some time before such an au-
tomorphism was constructed using CH [73]. This is one of the most complicated known
CH constructions, involving an intricate use of EE-theory to extend isomorphisms of direct
limits of separable subalgebras. A simpler proof was given in [28, §1], and the method was
further refined in [20]. Instead of following the usual back-and-forth construction in which
isomorphisms between separable subalgebras are recursively extended, one uses CH to em-
bed the first derived limit of an inverse system of abelian groups into the outer automorphism

group.
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Forcing axioms imply that the Calkin algebra has only inner automorphisms [28]. Con-
jecturally, for every non-unital separable C*-algebra the assertion that its corona has only
(appropriately defined) ‘trivial’ automorphisms is independent of ZFC (see [20]). Even the
abelian case of this conjecture is wide open [42].

The ‘very concrete question’ of Brown—Douglas—Fillmore alluded to two paragraphs ago
is still wide open: Is there an automorphism of Q(H) that sends the image of the unilateral
shift $ to its adjoint? Fredholm index obstruction shows that such an automorphism cannot
be inner. Since the nonexistence of outer automorphisms of Q(H) is relatively consistent
with ZFC, so is a negative answer to the BDF question. Every known automorphism « of
Q(H) in every model of ZFC has the property that its restriction to any separable subalgebra
is implemented by a unitary. Both s and $* are unitaries with full spectrum and no nontrivial
roots. It is, however, not even known whether $ and $* have the same (parameter-free) type
in Q(H); a positive answer would provide a strong motivation for the question of whether
Q(H) is countably homogeneous.

7.2. Gaps. A gap in a semilattice B is a pair A, B such thata A b = 0 for all @ € A and
all b € B but there is no ¢ such that cANa = aand cAb = 0foralla € Aand b € B.
There are no countable gaps in a countably saturated Boolean algebra such as P(N)/ Fin,
the quotient of P(N) over the ideal Fin of finite sets. In 1908 Hausdorff constructed a gap
in P(N)/ Fin with both of its sides of cardinality X;. Later Luzin constructed a family of
N; orthogonal elements in P(N)/ Fin such that any two of its disjoint uncountable subsets
form a gap. It should be emphasized that both results were proved without using CH or any
other additional set-theoretic axioms.

Hausdorff’s and Luzin’s results show that P(N)/Fin is not more than countably sat-
urated. In particular, if the Continuum Hypothesis fails then the obvious back-and-forth
method for constructing automorphisms of P(N)/ Fin runs into difficulties after the first
N; stages. In one form or another, gaps were used as an obstruction to the existence of
morphisms in several consistency results in analysis, notably as obstructions to extending a
partial isomorphism ([84, § V], [21, 28]).

Two subalgebras A and B of an ambient algebra C' form a gap if ab = 0 for alla € A
and b € B, but there is no positive element ¢ such that ca = a and ¢b = 0 for all a € A and
all b € B. The gap structure of P(N)/ Fin can be imported into the Calkin algebra, but the
gap structure of the latter is also much richer [101].

However, the failure of higher saturation in coronas is also manifested in a genuinely
noncommutative fashion. A countable family of commuting operators in a corona of a sep-
arable algebra can be lifted to a family of commuting operators if and only if this is true for
each one of its finite subsets.

Proposition 7.3. In Ms({/co) there exists a family of Ny orthogonal projections such
that none of its uncountable subsets can be lifted to a commuting family of projections in
Mo (loo).

This was stated in [45] for the Calkin algebra in place of (barely noncommutative)
M (Lo /co), but the proof given there clearly gives the stronger result. The combinato-
rial essence for the proof of Proposition 7.3 echoes Luzin’s original idea. One recursively
constructs projections p, in M (¢ ) so that p,p. is compact but ||[p, p,/]|| > 1/4 for all
~v # ~'. Then the image this family in the corona is as required, as a counting argument
shows that no uncountable subfamily can be simultaneously diagonalized.
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Recall that every uniformly bounded representation of a countable amenable group in
a countably degree-1 saturated algebra is unitarizable (Proposition 7.2). This is false for
uncountable groups. This was proved in [17] and improved to the present form in [93] using
Luzin’s gap.

Proposition 7.4. There is a uniformly bounded representation ™ of @Nl 7/27 on
Ms(Loo /co) such that the restriction of T to a subgroup is unitarizable if and only if the
subgroup is countable.

The construction of Kadison—Kastler-near, but not isomorphic, nonseparable algebras in
[16] involves what at the hindsight can be considered as a gap. It is not known whether there
is a separable example (see [18] for several partial positive results).

8. Nonseparable algebras

Not surprisingly, the theory of nonseparable algebras hides surprises and problems not pres-
ent in the separable case; see [95].

8.1. Nonseparable UHF algebras. Uniformly hyperfinite (UHF) algebras are defined as
tensor products of full matrix algebras (§2.2). However, there are two other natural ways
to define uniformly hyperfinite: as (i) an inductive limit of a net of full matrix algebras,
or (ii) as an algebra in which every finite subset can be arbitrarily well approximated by
a full matrix subalgebra. These three notions, given in the order of decreasing strength,
coincide in the separable unital case. Dixmier asked whether separability is needed for this
conclusion. The answer is that in every uncountable density character, UHF and (i) differ,
but that one needs an algebra of density character Y5 in order to distinguish between (i) and
(ii) [38]. An extension of methods of [38] resulted in a nuclear, simple C*-algebra that has
irreducible representations on both separable and nonseparable Hilbert space [27]. This is in
contrast with the transitivity of the space of irreducible representations of a separable simple
C*-algebra [63].

8.2. Representation theory. Representation theory of separable algebras has deeply af-
fected development of the classical descriptive set theory, as evident from the terminology
of both subjects (terms ‘smooth’ and ‘analytic’ have the same, albeit nonstandard in other
areas of mathematics, meaning). Extension of the work of Glimm and Effros on represen-
tation theory combined with methods from logic initiated the abstract classification theory
(§3). The representation theory of nonseparable algebras was largely abandoned because
some of the central problems proved to be intractable (see the introduction to [1]). One
of these stumbling blocks, Naimark’s problem, was partially solved in [1] (see also [96]).
By using a strengthening of CH (Jensen’s {>y, principle) and a deep result on representa-
tion theory of separable C*-algebras (an extension of [63] mentioned above), Akemann and
Weaver constructed a C*-algebra that has a unique (up to spatial equivalence) irreducible
representation on a Hilbert space, but is not isomorphic to the algebra of compact operators
on any Hilbert space. An extension of [1] shows that {w, implies the existence of a sim-
ple C*-algebra with exactly m inequivalent irreducible representations. By a classical result
of Glimm (closely related to the Glimm-Effros dichotomy), a simple separable C*-algebra
with two inequivalent representations has 2%° inequivalent representations. It is not known
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whether a counterexample to Naimark’s problem can be found in ZFC alone or by using an
axiom other than {, (such as ¢, for k > N;). The fact that every forcing notion that adds
a new real number destroys all ground-model examples is a bit of an annoying teaser.
Cyclic representations of C*-algebras are, via the GNS construction (§2), in a natural bi-
jective correspondence with their states (i.e., positive unital functionals). Pure (i.e., extremal)
states are noncommutative versions of ultrafilters. The space of nonprincipal ultrafilters on
N, (along with the associated quotient structure P(N)/ Fin) is arguably the most important
set-theoretically malleable object known to man. The study of pure states on B(H) (i.e.,
‘quantized ultrafilters’) has already produced some surprising results ([2, 7]; also see [66]).

8.3. Amenable operator algebras. A prominent open problem in the theory of operator
algebras is whether every algebra of operators on a Hilbert space which is amenable is iso-
morphic to a C*-algebra. By using Proposition 7.4, one obtains the following [17, 93]).

Theorem 8.1. There exists a nonseparable amenable subalgebra of Ms({~,) which is not
isomorphic to a C*-algebra. None of its nonseparable amenable subalgebras is isomorphic
to a C*-algebras, yet it is an inductive limit of separable subalgebras (even elementary
submodels) each of which is isomorphic to a C*-algebra. Moreover, for every € > 0 such an
algebra can be found in an £-Kadison—Kastler neighbourhood of a C*-algebra.

The question whether there exists a separable counterexample remains open; see [65].

9. Concluding remarks

The most recent wave of applications of logic to operator algebras started by work of Nik
Weaver and his coauthors, in which several long-standing problems were solved by using ad-
ditional set-theoretic axioms (see [96]). Although we now know that the answers to some of
those problems (such as the existence of outer automorphisms of the Calkin algebra) are in-
dependent from ZFC, statements of many prominent open problems in operator algebras are
absolute between models of ZFC and therefore unlikely to be independent (see the appendix
to [29] for a discussion).

Nevertheless, operator algebras do mix very well with logic. Jon Barwise said “As lo-
gicians, we do our subject a disservice by convincing others that the logic is first-order and
then convincing them that almost none of the concepts of modern mathematics can really
be captured in first-order logic.” Remarkably, some of the deepest results on the structure
of C*-algebras have equivalent formulation in the language of (metric) first-order logic (this
applies e.g., to [97] and [98]).

In many of the developments presented here methods from logic were blended with
highly nontrivial operator-algebraic methods. Good examples are the proof that the the-
ory of IR does not allow elimination of quantifiers [51] the key component of which comes
from [13], the already mentioned use of [56], and blending of {>w, with the transitivity of
pure state space of separable simple algebras [63] in [1].

Finally, some results in pure logic were motivated by work on operator algebras. Exam-
ples are Theorem 6.5, which is new even for discrete structures, and negative and positive
results on omitting types (§4.4).
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Abstract. We introduce the concept of an amenable class of functors and define homology groups for
such classes. Amenable classes of functors arise naturally in model theory from considering types of
independent systems of elements. Basic lemmas for computing these homology groups are established,
and we discuss connections with type amalgamation properties.

Mathematics Subject Classification (2010). Primary 03C45; Secondary 55N35.

Keywords. Amalgamation functors, homology groups, model theory, Hurewicz correspondence,
groupoids.

This paper abstracts the model theoretic results from [6] to a more general category-theoretic
context. Namely, we introduce the concept of an amenable class of functors. It is a class
of functors from a family of finite sets which is closed under subsets into a fixed image
category satisfying a short list of axioms. We show that most of the general results proved
in [6] hold in the broader amenable context. In addition we give some fundamental lemmas
and examples which supplement the results of [6].

In Section 1, we introduce the notion of an amenable class of functors into a fixed cate-
gory and we define the homology groups H,,(.A, B) for an amenable class .4 and an object
B in the image category. Model theory provides the best examples of amenable classes of
functors, as described in [6].

In Section 2, given a rosy structure, we introduce the notion of the fype homology groups,
in contrast to the ser homology groups defined in [6]. We show that the two homology groups
are isomorphic.

Section 3 supplies some basic sufficient conditions for triviality of the homology groups
and gives some additional examples of homology groups from model theory.

In Section 4 we outline some ongoing investigations related to our homology theory.

1. Simplicial homology in a category

In this section, we generalize the homology groups for rosy theories defined in [6] to a
more general category-theoretic setting. Then we aim to provide a general framework for
homology group computations. This section uses model theory only as a source of examples.

- Proceedings of the International Congress of Mathematicians, Seoul, 2014
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1.1. Basic definitions and facts. Throughout this section, C denotes a category. If s is a
set, then we consider the power set P(s) of s to be a category with a single inclusion map
luw © W — v between any pair of subsets « and v with u C v. A subset X C P(s) is called
downward-closed if whenever u C v € X, then u € X. In this case we consider X to be
a full subcategory of P(s). An example of a downward-closed collection that we will use
often below is P~ (s) := P(s) \ {s}. We use w for the set of natural numbers.

We are interested in a family of functors f : X — C for downward-closed subsets
X C P(s) for various finite subset sets s of the set of natural numbers. For u C v € X,
we shall write f2 := f(ty,0) € More(f(u), f(v)). Before specifying the desirable closure
properties of the collection A of such functors, we need some auxiliary definitions.

Definition 1.1.

(1) Let X be a downward closed subset of P(s) and let ¢ € X. The symbol X |; denotes
the set {u € P(s\t) |[tUue X} C X.

(2) For s, t, and X as above, let f : X — C be a functor. Then the localization of f at t
is the functor f|; : X|; — C such that

fle(u) = f(tUw)

and whenever u C v € Xy,

(fle)y = fusi -

(3) Let X C P(s) and Y C P(t) be downward closed subsets, where s and ¢ are finite
sets of natural numbers. Let f : X — Cand g : Y — C be functors.
We say that f and g are isomorphic if there is an order-preserving bijection o : s — ¢
with Y = {o(u) : v € X} and a family of isomorphisms (h,, : f(u) = g(o(u)) : u € X)
in C such that for any u C v € X, the following diagram commutes:

flu) = g(o(u)

lfﬁf lgﬁ:;
flo) — g(o(v))

In the definition if ¢ is an arbitrary bijection, then f and g are said to be weakly isomor-
phic.

Remark 1.2. If X is a downward closed subset of P(s) and ¢ € X, then X|,; is a downward
closed subset of P(s \ t). Moreover X|; does not depend on the choice of s.

Definition 1.3. Let A be a non-empty set of functors f : X — C such that X C P(w) is
finite and downward closed and C is a fixed category (called the image category of A). We
say that A is amenable if it satisfies all of the following properties:

(1) (Invariance under weak isomorphisms) If f : X — Cisin Aandg:Y — C is weakly
isomorphic to f, then g € A.

(2) (Closure under restrictions and unions) If X C P(s) is downward-closed and f :
X — C is a functor, then f € A if and only if for every u € X, we have that
f TP e A
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(3) (Closure under localizations) Suppose that f : X — C is in A for some X C P(s)
and t € X. Then f|, : X|;, — Cis also in A.

(4) (Extensions of localizations are localizations of extensions) Suppose that f : X — Cis
inAandt € X C P(s)issuchthat X|, = XNP(s\t). Suppose that the localization
fle : X NP(s\t) — C has an extension g : Z — C in A for some Z C P(s \ t).
Then there is amap go : Zg — Cin Asuchthat Zy = {uUv:u € Z,v C t}, f C go,
and gol: = g.

Remark 1.4. Model theory supplies the best examples of the amenable collection of func-
tors. For example, as in [6] we could take C to be all boundedly (or algebraically) closed
subsets of the monster model of a first-order theory, and let A be all functors which are
“independence-preserving” (in Hrushovski’s terminology [11]) and such that every face f(u)
is the bounded (or algebraic) closure of its vertices; then 4 is amenable. We may further
restrict A by requiring, for instance, that all the “vertices” f({i}) of functors f € A real-
ize the same type, or by placing further restrictions on “edges” f({¢,;j}) and other higher-
dimensional faces. We can also take C to be a category of fypes of the closed subsets of the
model. These examples will be explained more precisely in Section 2.

Definition 1.5. Suppose that f : X — C is a functor from a downward-closed collection X
of sets and B € Ob(C). If f() = B then we say that f is over B. Let Ag denote the set of
all functors f € A that are over B.

Remark 1.6. It is easy to see that condition (2) in Definition 1.3 is equivalent to the con-
junction of the following two conditions:

(1) (Closure under restrictions) If f : X — Cisin Aand Y C X with Y downward-
closed, then f | Y is also in \A.

(2) (Closure under unions) Suppose that f : X — Cand g : Y — C are both in .4 and
that f | X NY =g [ X NY. Then the union fUg: X UY — Cis also in A.

For instance, if these two conditions are true and f : X — C is a functor from a
downward-closed set X such that f [ P(u) € A for every u € X, then if uy,...,u,
are maximal sets in X, we can use closure under unions (n — 1) times to see that f € A
(since it is the union of the functors f | P(u;)).

For the remainder of this section, we fix a category C and a non-empty amenable
collection A of functors mapping into C. As we mentioned in the above remark, every
functor in A can be described as the union of functors whose domains are P(s) for various
finite sets s. Such functors will play a central role in this paper.

Definition 1.7. Let n > 0 be a natural number. A (regular) n-simplex in C is a functor
f:P(s) — C for some set s C w with |s| = n + 1. The set s is called the support of f, or
supp(f).

Let S, (A; B) denote the collection of all regular n-simplices in .Ap. Then let S(A; B)
= U, Sn(A; B) and S(A) := Upcopc) S(A; B).

Let C,(A; B) denote the free abelian group generated by .S,,(A; B); its elements are
called n-chains in Ap, or n-chains over B. Similarly, we define C(A; B) :=J,, Crn(A; B)
and C(A) := Upecop(c) C(A; B). The support of a chain c is the union of the supports of
all the simplices that appear in ¢ with a non-zero coefficient.
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The adjective “regular” in the definition above is to emphasize that none of our simplices
are “degenerate:” their domains must be strictly linearly ordered. It is more usual to allow
for degenerate simplices, but for our purposes, this extra generality does not seem to be
useful. Since all of our simplices will be regular, we will omit the word “regular” in what
follows.

Now the rest of the development of the homology theory in this section will be exactly the
same as the particular case of model theory described in the first section of [6]. The proofs
are exactly the same and the reader will notice that the list of axioms for amenable family
of functors singles out basic technical properties which enable the arguments in section 1
of [6] work. For the sake of completeness, we list here the all the definitions, lemmas, and
theorems we will need for later sections but without giving proofs.

We begin with the notion of boundary operators used to define homology groups in our
context.

Definition 1.8. If » > 1 and 0 < i < n, then the ith boundary operator 0!, : C,,(A; B) —
Cr—1(A; B) is defined so that if f is an n-simplex with support s = {sg < -+ < s, }, then

0,(f) = f1P(s\ {s:})

and extended linearly to a group map on all of C,,(A; B).
If n > 1and 0 < i < n, then the boundary map 0,, : Cp,(A; B) — C,_1(A; B) is
defined by the rule
On(e) = Y (~1)'d;(c).

0<i<n
We write 9° and 0 for 9!, and 0,,, respectively, if n is clear from context.

Definition 1.9. The kernel of 9, is denoted Z,, (A; B), and its elements are called (n-)cycles.
The image of 0,11 in C, (A; B) is denoted B, (A; B). The elements of B,,(A; B) are called
(n-)boundaries.

It can be shown (by the usual combinatorial argument) that B,,(A; B) C Z,,(A; B), or
more briefly, “0,, 0 9,41 = 0.” Therefore we can define simplicial homology groups relative

to A:

Definition 1.10. The nth (simplicial) homology group of A over B is
Hn(A; B) = Zn(A; B)/Bn(A; B).

There are two natural candidates for the definition of the boundary of a 0-simplex. One
possibility is to define 9y(f) = 0 for all f € Sy(A; B). Another possibility is to ex-
tend the definition of an n-simplex to n = —1; namely a (—1)-simplex f is an object
f(0) in C. Then the definition of a boundary operator extends naturally to the operator
0o : f € So(A;B)— B.

As we show in Lemma 3.1, computing the group Hj in a specific context using the
first definition gives Hy =2 Z while using the second definition we get Hy = 0. Thus,
the difference between the approaches is parallel to that between the homology and reduced
homology groups in algebraic topology [1].

Next we define the amalgamation properties. We use the convention that n denotes the
set {0,1,...,n—1}.
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Definition 1.11. Let .4 be an amenable family of functors into a category C and let n > 1.
(1) A has n-amalgamation if for any functor f : P~ (n) — C, f € A, thereis an (n —1)-
simplex g O f such that g € A.

(2) A has n-complete amalgamation or n-CA if A has k-amalgamation for every &k with
1<k<n.

(3) Ahas strong 2-amalgamation if whenever f : P(s) — C, g : P(t) — C are simplices
inAand f | P(sNt) =g | P(sNt), then f Ug can be extended to a simplex
h:P(sUt) = Cin A.

(4) A has n-uniqueness if for any functor f : P~ (n) — C in A and any two (n — 1)-
simplices g1 and g» in A extending f, there is a natural isomorphism F' : g1 — g2
such that F' | dom(f) is the identity.

Remark 1.12.

(1) There is a mismatch that n-amalgamation refers to the existence of (n — 1)-simplex
extending its boundary. But this numbering is coherent with historical developments
of amalgamation theory in model theory and homology theory in algebraic topology.

(2) The definition of n-amalgamation can be naturally extended to n = 0: A has 0-
amalgamation if it contains a functor f : {(}} — C. This holds in any amenable family
of functors.

Definition 1.13. We say that an amenable family of functors A is non-trivial if A has 1-
amalgamation, and satisfies the strong 2-amalgamation property.

The following remark is immediate from the definitions.

Remark 1.14. Any non-trivial amenable collection of functors A contains an n-simplex for
eachn > 1.

Everywhere below, we only deal with non-trivial amenable families of functors.

1.2. Computing homology groups. As in [6] we introduce special kinds of n-chains which
are useful for computing homology groups.

Definition 1.15. If n > 1, an n-shell is an n-chain ¢ of the form
£ Y (=1'fi,
0<i<n+1

where fo, ..., fn+1 are n-simplices such that whenever 0 < i < j < n + 1, we have
6ij = 6]_1fi.

Definition 1.16. If n > 1, and n-fan is an n-chain of the form
+ Y (=D
i€{0,..,k,...,n+1}

for some k < n + 1, where the f; are n-simplices such that whenever 0 < ¢ < j < n, we
have 9" f; = &7~ f;. In other words, an n-fan is an n-shell missing one term.
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If ¢ is an n-fan, then Jc is an (n — 1)-shell; and .A has n-amalgamation if and only if
every (n—2)-shell in A is the boundary of an (n—1)-simplex in .4. And A has n-uniqueness
if and only if every (n — 2)-shell in A is the boundary of at most one (n — 1)-simplex in A
up to isomorphism.

As mentioned earlier, we now state without proofs a series of lemmas and theorems
analogous to those in [6], Section 1. In particular, we state two “prism lemmas” (1.25 and
1.27) and a result that every element of a homology group is the equivalence class of a shell
(Theorem 1.28).

Lemma 1.17. Ifn > 2 and A has n-CA, then every (n — 1)-cycle is a sum of (n — 1)-shells.
Namely, for each ¢ € Z,,_1(A; B), c = Y, o fi, there is a finite collection of (n — 1)-shells
¢i € Zn—1(A; B) such that ¢ = ), (—1)" ovc;.

Moreover, if S is the support of the chain c and m is any element not in S, then we can
choose ., a;c; so that its support is S U {m}.

Corollary 1.18. Assume A has n-CA for some n > 2. Then H, _1(A; B) is generated by
{[c] : cisan (n — 1)-shell over B}.
In particular, if any (n — 1)-shell over B is a boundary, then so is any (n — 1)-cycle.
Corollary 1.19. If A has n-CA for some n > 3, then H,,_2(A; B) = 0.
Corollary 1.18 will be strengthened to Theorem 1.28.

Definition 1.20. If n > 1, an n-pocket is an n-cycle of the form f — g, where f and g are
n-simplices with support S (where S is an (n + 1)-element set).

Lemma 1.21. Suppose that f,g € S,,(A) are isomorphic functors such that Op, f = Ong.
Then the n-pocket f — g is a boundary.

Lemma 1.22. Suppose that n > 1 and A has (n + 1)-amalgamation. Then for any n-fan

g=+ > (-U'f
i€{0,....k,...,n+1}
there is some n-simplex fi, and some (n + 1)-simplex f such that g + (—1)* f;, = 0f.
The next lemma says that n-pockets are equal to n-shells, “up to a boundary.”

Lemma 1.23. Assume that A has the (n + 1)-amalgamation property for some n. > 1.
For any B € C, any n-shell in Ag with support n + 2 is equivalent, up to a boundary in
B,.(A; B), to an n-pocket in Ag with support n + 1. Conversely, any n-pocket with support
n + 1 is equivalent, up to a boundary, to an n-shell with support n + 2.

From Corollary 1.18 and Lemma 1.23 we derive the following:

Corollary 1.24. If A has 3-amalgamation, then Ho(A; B) is generated by equivalence
classes of 2-pockets.

Lemma 1.25 (Prism lemma). Let n > 1. Suppose that A has (n + 1)-amalgamation. Let
f — f' be an n-pocket in Ag with support s, where |s| = n + 1. Lett be an (n + 1)-
element set disjoint from s. Then given n-simplex g in Ag with the domain P(t), there is an
n-simplex g' such that g — g’ forms an n-pocket in Ag and is equivalent, modulo B, (A; B),
to the pocket | — f'. We may choose ¢’ first and then find g to have the same conclusion.
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Corollary 1.26. Let n > 1. Suppose A has (n + 1)-CA. The group H,,(A; B) is generated
by equivalence classes n-shells with support n + 2.

We have a shell version of the prism lemma as well:

Lemma 1.27 (Prism lemma, shell version). Let A satisfy (n + 1)-amalgamation for some
n > 1. Suppose that an n-shell f := Zo<¢<n+1(_1)ifi and an n-fan

g = Z (=1)'gi

i€{0,....k,...,n+1}

are given, where f;,g; are n-simplices over B, supp(f) = s with |s| = n + 2, and
supp(g™) = ¢ = {to,..,tny1}, where to < ... < tpy1 and s Nt = (. Then there is
an n-simplex gy over B with support Ot := t \ {tx} such that g := g~ + (—1)*gy is an
n-shell over B and f — g € B, (A; B).

The next theorem gives an even simpler standard form for elements of H,,(A; B).

Theorem 1.28. If A has (n + 1)-CA for some n > 1, then
H, (A; B) = {][] : cis an n-shell over B with support n + 2} .

Now using Theorem 1.28 and Lemma 1.23, we obtain the following:

Corollary 1.29. If (n + 1)-CA (for some n > 1) holds in A, then

H,(A; B) = {[c] : cis an n-pocket in A over B with support n + 1} .

2. Type versus set homology groups in model theory

In this section, we define some amenable classes of functors that arise in model theory.
Namely given either a complete rosy theory 7" or a complete type p € S(A) in a rosy theory,
we will define both the “type homology groups” H! (T') (or H! (p)) and the “set homology
groups” H3(T) (or H:(p)). As noted, H:!(p) and the classes of p-set-functors were
already introduced in [6] and the properties of those were the motivation for Definition 1.3.
As we show below, these definitions will lead to isomorphic homology groups (Proposition
2.12).

We make the same assumptions on our underlying theory 7" as in [6]: in what follows,
we assume that 7 = 7°1 is a complete rosy theory (e.g. stable, simple, or o-minimal)
and we work in its fixed large saturated model € = €%, The reason for this is so that we
have a nice independence notion [3]. Throughout, “ | ”, “independence” or “non-forking”
will mean thorn-independence. So if 7' is simple then we assume it has elimination of
hyperimaginaries in order for non-forking independence to be equal to thorn-independence
[3]. But the assumptions are for convenience not for full generality. For example if T is
simple, then one may assume the independence is usual non-forking in ¢ while replacing
acl by bdd and so on. Moreover there are non-rosy examples having suitable independence
notions that fit in our amenable category context (see [10] and [13]).

We refer the reader to [12, 20] and to [3, 18] for general background on simple and rosy
theories, respectively.
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2.1. Type homology. We will work with x-types — that is, types with possibly infinite sets
of variables — and to avoid some technical issues, we will place an absolute bound on the
cardinality of the variable sets of the types we consider. Fix some infinite cardinal ko > |T|.
We will assume that every *-type has no more than rg free variables. We also fix a set V
of variables such that |V| > k¢ and assume that all variables in *-types come from the set
V (which is a “master set of variables.”) We work in a monster model € = €°? which is
saturated in some cardinality greater than 2/VI. We let & = | €|. As we will see in the next
section, the precise values of kg and || will not affect the homology groups.

Given a set A, strictly speaking we should write “a complete *-type of A” instead of “the
complete x-type of A” — there are different such types corresponding to different choices for
associating each element of A with a variable from V), and this distinction is crucial for our
purposes.

If X is any subset of the variable set V, 0 : X — V) is any injective function, and p(Z) is
any *-type such that T is contained in X, then we let

o.p = {p(0(T)) : p(ZT) € p}.

Definition 2.1. If A is a small subset of the monster model, then 74 is the category such
that

(1) The objects of T4 are are all the complete *-types in T" over A, including (for conve-
nience) a single distinguished type py with no free variables;

(2) Morr, (p(Z),q(7)) is the set of all injective maps o : T — 7 such that 0. (p) C q.

Note that this definition gives a notion of two types p(T) and ¢(7) being “isomorphic:”
namely, that g can be obtained from p by relabeling variables.

Definition 2.2. If A = acl(A) is a small subset of the monster model, a closed independent
type-functor based on A is a functor f : X — T4 such that:

(1) X is a downward-closed subset of P(s) for some finite s C w.

(2) Suppose w € X and u,v C w. Recall our notational convention f := f (Lum,). Let
us write T, to be the variable set of f(w). Then whenever @ realizes the type f(w) and
Ty, Gy, and @yn, denote subtuples corresponding to the variable sets [ (T,), f2(Ty),
and fUY""(T ), then

. L a,.
Auauﬂu

(3) For all non-empty « € X and any @ realizing f(u), we have (using the notation above)
a = acl (A U UiEu E{i}).
(The adjective “closed” in the definition refers to the fact that, by (3), all the types f(u)

are *-types of algebraically closed tuples.)
Let A*(T; A) denote all closed independent type-functors based on A.

Remark 2.3. It follows from the definition above and the basic properties of nonforking that
if f is a closed independent type-functor based on A and v € dom(f) is a non-empty set
of size k, then any realization @ of f(u) is the algebraic closure of an AB-independent set
{@y,...,ax}, where B is the subtuple of @ corresponding to the variables f?(Z,) and each

a; is the subtuple corresponding to the variables in ii} (Tay)-
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Definition 2.4. If A = acl(A) is a small subset of the monster model and p € S(A), then a
closed independent type-functor in p is a closed independent type-functor f : X — T, based
on A such that if X C P(s) and i € s, then f({i}) is the complete *-type of acl(AC U {b})
over A, where C' is some realization of f({)) and b is some realization of a nonforking
extension of p to AC.

Let A?(p) denote all closed independent type-functors in p.

Now using the basic independence properties of rosy theories, it is not hard to verify
amenability of the above families of functors. In particular one may consult the proof of [6,
1.19]

Proposition 2.5. The sets A*(T; A) and A*(p) are non-trivial amenable families of functors.

Definition 2.6. If A is a small algebraically closed subset of €, then we write 5,74 as an
abbreviation for S, (A*(T’; A); py) (the collection of closed n-simplices in A*(T'; A) over the
distinguished type py), B, Ta and Z,, T4 for the boundary and cycle groups, and HY (T’; A)
for the homology group H,, (AY(T; A); pg).

Similarly if p € S(A), then we use the abbreviations S, 7 (p) for S, (A%(p); pp); and
BaT(p), ZnT (p), and Hj, (p).

2.2. Set homology.

Definition 2.7. Let A be a small subset of €. By C4 we denote the category of all subsets
containing A of € of size no more that kg, where morphisms are partial elementary maps
over A (that is, fixing A pointwise).

For a functor f : X — C4 andu C v € X, we write f(u) := f¥(f(u)) C f(v).

Definition 2.8. A closed independent set-functor based on A=acl(A)is afunctor f: X —C4
such that:

(1) X is a downward-closed subset of P(s) for some finite s C w.
(2) For all non-empty u € X, we have that f(u) = acl(AUJ,c, fil}({z})) and the set
{f{gl}({z}) . i € u} is independent over f2(().
Let A*¢*(T'; A) denote all closed independent set-functors based on A.

Now we recall the following in [6].

Definition 2.9. If A = acl(A) is a small subset of the monster model and p € S(A), then a
closed independent set-functor in p is a closed independent set-functor f : X — C4 based
on A such that if X C P(s) and i € s, then f({i}) is a set of the form acl(C U {b}) where
C= f?i} (#) 2 A and b realizes some non-forking extension of p to C.

Let A*¢!(p) denote all closed independent set-functors in p.
Just as in the previous subsection, we have:

Proposition 2.10. The sets A%°*(T; A) and A*°*(p) are non-trivial amenable families of
functors.
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Definition 2.11. If A is a small subset of €, then we write S,,C 4 to denote S, (A% (T'; A); A)
(the collection of closed n-simplices in A*“*(T'; A) over A), and similarly we write B,,Ca
and Z,,C4 for the boundary and cycle groups over A, and use the notation H3¢(T'; A) for
the homology group H,, (A% (T; A); A).

If A= acl(A) and p € S(A), then we use similar abbreviations

S,.C(p) := Sp (A% (p); A), B,,C(p), Z,C(p), and H:% (p).
Proposition 2.12.

(1) For any n and any set A, H! (T; A) & H(T; A).
(2) For any n and any complete type p € S(A), H! (p) = H:(p).

Proof. The idea is that we can build a correspondence F' : SC4 — ST which maps each
set-simplex f to its “complete x-type” F'(f). Note that this will involve some non-canonical
choices: namely, which variables to use for F'(f), and in what order to enumerate the various
sets in f (since our variable set V' is indexed and thus implicitly ordered). We will write out
a proof of part (1) of the proposition, and part (2) can be proved similarly by relativizing to
p.

Let S<,,Ca and S<,, T4 denote, respectively, | J,.,, SiCa and | J,,, SiTa. We will build
a sequence of maps F;, : S<,Ca — S<,7Ta whose ‘union will be F. Given such an F},, let
F, : C<nCa — C<,, T4 be its natural extension to the class of all set-k-chains over A for
k<n.

Claim 2.13. There are maps F, : S<,Ca — S<y,Ta such that:

(1) F,+1 is an extension of F,;

2) If f € S<nCa and dom(f) = P(s), then dom(F,(f)) = P(s) and [F,(f)] (s) is a
complete x-type of f(s) over A;

(3) Foranyk <mn, any f € SxCa, and any i < k, F,,(0'f) = 9* [F,.(f)]; and

(4) F, is surjective, and in fact for every g € SiTa (Where 0 < k < n), there are more
than 2! simplices f € SpCa such that F,,(f) = g.

Proof. We prove the claim by induction on n. The case where n = 0 is simple: only
conditions (2) and (4) are relevant, and note that we can insure (4) because the monster
model € is (2/V)T-saturated and there are at most 2/”! elements of Sy74. So suppose that
n > 0 and we have Fy, ..., F, satisfying all these properties, and we want to build F,, ;.
We build F;,41 as a union of a chain of partial maps from S<,,1C4 to S<,,4174 extending
F,, (that is, functions whose domains are subsets of S<,1CA).

Subclaim 2.14. Suppose that F' : X — S<p417T4 is a function on a set X C S<p41Ca of
size at most (2IV1)T and that F satisfies (1) through (3). Then for any simplex g € Sy, 11Ta,
there is an extension Fy of F satisfying (1) through (3) such that | dom(Fp)| < (2VW*+ and:

(%) There are (2IV))* distinct f € Sy, 41Ca such that F'(f) = g.

Proof. Letdg = go—g1+...+(—1)"g, (Where g; = 8"g), and let P(s) be the domain of g.
By induction, each g; is the image under F}, of (2/V)* different n-simplices in C4; let ( 1
§ < (2V1)*) be a sequence of distinct simplices such that for every j < (2Vh*, F,(f7) =
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g;. By saturation of the monster model, for each j < (2/V!)* we can pick an (n+1)-simplex
f; € Ca with domain P(s) such that Of; = f5 — f{ +...+(=1)"f7 and tp(f;(s)) = g(s).
Then the f; are all distinct, so we can let oy =F U {(f;,g):j<(2V)*}. O

Now by the subclaim, we can use transfinite induction to build a partial map F’ :
S<nt+1€a — S<pt17a satistying (1) through (4) (also using the fact that there only (at
most) 2IVI different simplices in S,,4+174 and the fact that the union of a chain of partial
maps from S<,+1Ca to S<,417T4 satisfying conditions (2) and (3) will still satisfy these
conditions).

Finally, we can extend F’ to a function on all of S<,+1C4 by a second transfinite in-
duction, extending F” to each f : P(s) — C4 in C4 one at a time; to ensure that properties
(2) and (3) hold, we just have to pick F},11(f) to be some (n + 1)-simplex with the same
domain P(s) whose n-faces are as specified by F;, and such that [F},1(f)] (s) is a complete
x-type of f(s) over A. O

Now let F' = J,, ., F'n. By property (3) above, it follows that for any chain ¢ € CCy,
we have F(0c) = 9 [F(c)]. Hence F maps Z,C4 into Z, T4 and B,C, into B, T4, and
so F' induces group homomorphisms ¢,, : H:¢(T; A) — HL(T;A). Verifying that ¢,
is injective amounts to checking that whenever F'(c) € B, T4, the set-chain ¢ is in B,,C4,

T3

but this is staightforward: if, say, F'(¢) = 9¢, then we can pick a set-simplex ¢ “realizing”
' such that &¢ = c. Finally, condition (4) implies that ¢,, is surjective, so H3¢(T; A) =
H! (T; A). O

Remark 2.15. Since Proposition 2.12 is true for any choices of kg, V, and the monster
model € as long as |T| < ko < [V| and 2/¥! < | €], it follows that our homology groups
(with the restriction of the set A) do not depend on the choices of kg, ||, or the monster
model.

Without specifying a base set A, one could also define C,,(T") to be the direct sum
@, CnCa, where {A;]i < R} is the collection of all small subsets of €, and similarly
Zn(T), Bp(T), and H,(T) := Z,(T)/Bn(T). Then the boundary operator 0 sends n-
chains to (n—1)-chains componentwise. Hence it follows H,,(T') = @, Hn(T; A;). This
means the homology groups defined without specifying a base set depends on the choice of
monster model, and so this approach would not give invariants for the theory 7T'.

2.3. An alternate definition of the set homology groups. In our definition of the set ho-
mology groups H:°(T; A) and H:% (p) (where p € S(A)), we have been assuming that the
base set A is fixed pointwise by all of the elementary maps in a set-simplex — this is built
into our definition of C4. It will turn out that we get an equivalent definition of the homol-
ogy groups if we allow the base set to be “moved” by the images of the inclusion maps in a
set-simplex, as we will show in this subsection.

Definition 2.16.
(1) A set-n-simplex weakly over A is a set-n-simplex f : P(s) — C(= Cy) such that
f(0) = A

(2) If p € S(A), then a set-n-simplex f : P(s) — C is weakly of type p if f()) = A, and
for every i € s,

JUY) = act (fy(4) U {ai})
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for some a; such that tp(ai/f{@i} (A)) is a conjugate of p.

Let S),C 4 be the collection of all set-n-simplices weakly over A. Note that the boundary
operator 0 takes an n-simplex weakly over A to a chain of (n — 1)-simplices weakly over
A, and so we can define “weak set homology groups over A,” which we denote H/ (T’; A).
Similarly, we can define H],(p), the “weak set homology groups of p,” from chains of set-
simplices that are weakly of type p.

Proposition 2.17.

(1) Foranynandany A € C, H) (T; A) = H:*(T; A).
(2) For any n and any complete type p € S(A), H (p) = H:% (p).

Proof. As usual, the two parts have identical proofs, and we only prove the second part.

We will identify S(C 4 as a big single complex as follows. Due to our cardinality assump-
tion, for each n < w, there are -many 0-simplices in S)C4 having the common domain
P({n}). Then we consider the following domain set Dy = {0} U {{(n,i)}| n < w,i < k}.
Now as said we identify S{Ca as a single functor F{| from Dy to C such that F{() = A,
and Fj({(n,9)}) = (f")({n}) where (f')? € S{C4 is the corresponding 0-simplex with

((f’)?)?n} = (Fé)?(n i)y~ Similarly we consider SoC4 as a functor Fy from Dy to C4 such
that Fo(0) = A, and Fy({(n,9)}) = f*({n}) = (f)*({n}) where fI* € SoC4 is the

corresponding 0-simplex over A with ( ff)?n} = (Fo)?(n i)y Now F{ and Fj are naturally

isomorphic by 1° with 7§ =the identity map of A, and suitable n?(m)} sending (f')*({n})
to fi'({n}).

Now for S7C4, note that for each pair (f')i", (f');"* with ng < ni, there are K-many
L-simplices f; in S7C4 having the common domain P({ng,n1}) with 9°f; = (f'){"" and
ot f; = (f");.. Hence we now put the domain set

Dy = Do U {{(no,0), (n1,1),7} no < n1 < w;io, i1,J < K}

Then we identify S{C4 as a functor Fy from D; to C such that F{ | Dy = Fj;, and
F{({(n0,70), (n1,%1),j}) corresponds jth 1-simplex having (f');", (f')"' as O-faces. Sim-
ilarly we try to identify S7C4 as a functor F; from D; to C4, extending Fp. But to make F}
and F isomorphic, we need extra care when defining F}. For each 7 < K and a set a;» =
fi({no, n1}) of corresponding 1-simplex [/, assign an embedding 7; = nh
0

{no,n1}*

n0,i0),(n1,41),5}

sending a’; to a;, extending the inverse of (f}) Then we define

Fi({(no,i0), (n1,i1), 7}) =aj and (Fy) {0 =plo ()8 o (i)

Now then clearly n' with n' | Dy = 7" is an isomorphism between F} and F}.

By iterating this argument we can respectively identify S/,C4 and S,Ca4, as functors

F! and F,, having the same domain D,, extending D;. Moreover we can also construct an
isomorphism 7", extending n', between F and F,,. Note that each x € D,, — D,,_; cor-
responds an n-simplex f’ € S/C, and " corresponds an n-simplex over A f € S,,C. This
correspondence f’ — f induces a bijection from C!,C4 to C,,C4, mapping ¢’ — ¢, which
indeed is an isomorphism of the two groups. Notice that by the construction, if an n-shell ¢/
is the boundary of some (n-+1)-simplex f’, then ¢ is the boundary of f. In general, it follows

(0d)" = 0d' (*). Thus this correspondence also induces an isomorphism between Z/, (T'; A)
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and Z,(T; A). Moreover it follows from (*) that the correspondence sends B/, (T; A) to
B, (T;A): Let ¢/ =9d' € B}, (T; A). Then by (*), we have c=09d € B,,(T; A). Conversely
for ¢ € Z! (T; A), assume ¢ = Je € B,,(T; A). Now for €, again by (*), de’ = ¢. Hence
we have ¢ € B/, (T; A). O

3. Basic facts and examples

From now on, we will usually drop the superscripts ¢ and set from HY(p) and H2¢(p)
defined in Section 2, since these groups are isomorphic, and use “H,(p)” to refer to the
isomorphism class of these two groups. In computing the groups below, we generally use
H:%(p) rather than H (p).

3.1. Computing Hy. Inthis subsection, we observe that H, does not give any information,
since it is always isomorphic to Z, if 9y(f) = 0 for any O-simplex f; or is trivial if Jp(f) is
defined to be f(0):

Lemma 3.1.

(1) If Oo(f) = O, then for any complete type p over an algebraically closed set A,
Hy(p) = Z and for any small subset A of €, Hy(T; A) = Z.

(2) If 0o(f) = f(0), then both groups in (1) are trivial.

Proof. Both parts of the lemma can be proved by essentially the same argument, so we only
write out the proof for the group Hy(p) in (1).

For the proof we will define an augmentation map € as in topology. Since we can add
parameters to the language for A, we can assume that A = ().

Define € : CoC(p) — Z by €(c) = >, n; for a O-chain ¢ = ). n, f; of type p. Then
€ is a homomorphism such that €(b) = 0 for any 0-boundary b (since €(0f) = 0 for any
1-simplex f). Thus e induces a homomorphism €, : Hy(p) — Z. Note that any 0-chain
¢ is in Zy(p), so clearly ¢, is onto. We claim that ¢, is one-to-one, i.e. kere, = By(p).
Given a O-chain ¢ = ), ; n;f; such that e,(c) = > ,.;n; = 0, we shall show c is a
boundary. Pick some natural number m greater than every k; where dom f; = P({k;}).
Let a; = acl(a;) = fi({k;}). Then choose a realizing p such that a | {a; : i € I}.
Now let g; be a closed 1-simplex of p such that dom g; = P({k;,m}), g:({k:}) = a;, and
gi({m}) = a. Then dg; = ¢, — fi, where ¢,, is the O-simplex such that ¢,, () = @ and
en({m}) = a. Then e+ O(3, mygs) = 3 mifs + 3 nilem — fi) = (5, ni)em = 0.
Hence c is a 0-boundary, and Hy(p) = Z. O

3.2. Amalgamation properties. The amalgamation properties in Definition 1.11 can be
specialized to the context of model theory, yielding the usual notion of n-amalgamation (as
in [11]).

Definition 3.2.

(1) If A is a small subset of &, then T has the n-amalgamation property over (based on,
resp.) A if for every (n—2)-shell c over (based on, resp.) A, there is an (n—1)-simplex
f suchthat c = 0f.
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A complete type p has the n-amalgamation if any closed functor f : P~ (n) — C4 in
p can be extended to an (n — 1)-simplex.

Similarly, “n-uniqueness” over A, based on A, or of the type p can be defined and so
can be the notion of “n-CA”.

Remark 3.3.

ey

@

3)

Amalgamation properties based on A is equivalent to amalgamation properties over
all B O A, which implies n-amalgamation for any type p. A stable theory has 4-
amalgamation over any model M, as noted in [2]. However, it need not have 4-
amalgamation based on M. For suppose that 7" is a stable theory in which there is
a definable groupoid G which has unboundedly many connected components, each of
which is not almost retractable (see [4]). Then if M |= T, a is the name of a connected
component of G which does not intersect M (noting that these are equivalence classes
which live in 7€), and B = acl(Ma), then T does not have 4-amalgamation over the
set B.

Similarly, if p has n-amalgamation, then so does any non-forking extension, but the
converse need not hold even in a stable theory; see Remark 1.8 of [6].

As is well known, if T is simple then 7" has 3-CA; and if T is stable, then T" has
2-uniqueness by stationarity. A non-simple rosy theory cannot have 3-amalgamation
[16] but it may have n-amalgamation for all n > 4 (e.g. the theory of dense linear
ordering).

Now we can restate Corollary 1.28 as:

Fact 3.4. Assume T has n-CA based on A = acl(A) for n > 2. Then

and

H,_1(T;A) = {[c]| cis an (n — 1)-shell over A with support n + 1}.

H,_1(p) = {[d]| cis an (n — 1)-shell of p with support n + 1}.

So it follows:

Fact 3.5. Suppose n > 3.

ey
@)

If T has n-CA based on A = acl(A), then H,,_»(T; A) = 0.
Ifp € S(A) (where A = acl(A)) has n-CA, then H,,_2(p) = 0.

However, the converse of the above fact is false in general: the theory of the random
tetrahedron-free hypergraph does not have 4-amalgamation, but all of its homology groups
are trivial ([6, 1.32]).

Fact 3.6. If T is simple, then H,(T; A) = 0 and H1(p) = 0 for any strong type p in T.

The fact above is extended to any rosy theory in [14].

3.3. More examples. Homology groups of some examples are already given in [6, Section
1.2]. There Hs(p) of a strong type p in a stable theory is computed too. In this subsection,
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we compute some homology groups for o-minimal examples.

Example 3.7. Let p be the unique 1-type over ) in the theory Ty, of dense linear ordering
(without end points). Due to weak elimination of imaginaries it is a strong type. We show
that H,,(p) = 0 for every n > 1, even though it does not have 3-amalgamation. It is not hard
to see that p has n-amalgamation for all n # 3. Now we claim that, just like in Claim 1.33
in [5], any n-cycle is a sum of n-shells. The proof will be similar, and we use the same
notation. We want to construct the edges h;;. The trick this time is to take a* greater than all
the points of the form o’ = g¢;;({k}). Then given any edge {b, c} = g¢,;({k, £}), where either
b < corec <b,pick a > b, c. Then since tp(a’a*) = tp(ba) = tp(ca), the construction of
h;; on this level is compatible. For the rest of the construction, use n-amalgamation.

Due to the claim and (n + 2)-amalgamation, all of the groups H,(p) are 0 for n # 1.
Furthermore, H;(p) = 0 because any l-shell is the boundary of a 2-fan (choose a point
greater than all the vertices of all the terms in the 1-shell).

Example 3.8. In [14], it is shown that for any strong type p in €% of a rosy theory, if it is a
Lascar type too then H;(p) = 0. But the reason for the triviality of H;(p) can be arbitrarily
complicated. Here we argue that if p is a complete 1-type over A = acl(A) in the home sort
of an o-minimal theory then H;(p) = 0 due to a rather simple reason. Now fix such a p in
an o-minimal theory.

Lemma 3.9. Assume p is non-algebraic. Then there is a type q(x,y) € S(A) such that:

(1) whenever (a,b) = q(x,y), then a and b are A-independent, and each realizes p; and

(2) for any pair (a,b) of A-independent realizations of p, there is a third realization c of
p such that ¢ is A-independent from ab and both (a, ¢) and (b, ¢) realize q.

Proof. Recall that since 7' is o-minimal, any A-definable unary function f(z) is either even-
tually increasing (that is, there is some point ¢ such that if ¢ < & < y then f(z) < f(y),
eventually decreasing, or eventually constant. If f is eventually constant with eventual value
d, then d € dcl(A).

We say an A-definable function f(x1,...,x,) bounded within p if for any realizations
C1,...,Cn = D, there is d realizing p such that d > f(cq,. .., c,). We call a pair of realiza-
tions (a, b) of p an extreme pair if whenever f(z) is bounded within p, then b > f(a).

First note that by the compactness theorem, for any « realizing p, there is a b realizing
p such that (a,b) is an extreme pair. Also, if b € dcl(aA) = acl(aA), then there is an
A-definable function f : p(€) — p(€) such that b = f(a), so since there is no maximal
realization ¢ of p (because such a realization ¢ would be in dcl(A) and we are assuming
that p is non-algebraic), it follows that (a, b) is not an extreme pair. So any extreme pair is
algebraically independent over A and hence thorn-independent (see [18]).

Claim 3.10. Any two extreme pairs have the same type over A.

Proof. Tt is enough to check that if (a, b) and (a, ¢) are two extreme pairs, then tp(b/Aa) =
tp(¢/Aa). By o-minimality, any Aa-definable set X is a finite union of intervals, and the
endpoints {d1, ..., d,} of these intervals lie in dcl(Aa). So d; = f(a) for some A-definable
function f, and as we already observed b, ¢ # d;. Hence it suffices to see b > d; iff ¢ > d;.
Now by the definition of an extreme pair,

VelEp JyEply > f(@)] = b> fla) =di.
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Also,

JrEpVyEprly< f@))=VolEp VyEply < f()

because any two realizations of p are conjugate under an automorphism in Aut(€/A)
which permutes p(€), and so

JrEpVyEply< f@)]=0b< fla) =d.
The same reasoning applies with ¢ in place of b, so
b>di = f(a) Ve =p Iy Eply > f(o)]
<> fla) =d;. O

Let q(z,y) = tp(a’, b’ /A) for some extreme pair. Condition (2) of the definition of weak
3-amalgamation can be ensured by picking ¢ = p so that ¢ > g(a, b) for any A-definable
function ¢(y, z) bounded within p, which is possible by the compactness theorem. O

The two conditions in Lemma 3.9 clearly mean that p has weak 3-amalgamation defined
in [14]. Because of this or direct observation it follows H; (p) = 0.

4. Work in progress

Here we summarize some work in progress concerning our homology groups.
In [6] the following was conjectured: Let T be stable having (n 4+ 1)-CA (over any
algebraically closed set), and p € S(A) with A = acl(A). Then for every n > 1,

H,(p) 2T,(p) = Aut(aoﬁ:,l/ O {ag...an—1} ~{a;}),
i=0

where @ denotes acl(aA); Aut(C/B) denotes the group of elementary permutations of the
set C fixing B pointwise; {ao, ..., a, } is A-independent, a; = p; and

n—1

ag...ap—1 := Gg--an_1 N dcl( U {ag...an} ~ {a;}).
i=0

In [6], the conjecture is proved when n = 1,2. We plan to publish a proof for all n in the
forthcoming preprint [8]. We may call this the Hurewicz correspondence since the result
connects the homology groups to something analogous to a homotopy group, as in algebraic
topology. To accomplish this, we needed to generalize the notion of groupoids to higher di-
mensions, and the vertex groups of the higher groupoids should be isomorphic to the groups
T, (p) defined above. We could not find suitable generalization in the literature fit in our
needs, so in [7] we define n-ary polygroupoids. A 2-ary polygroupoid is just an ordinary
groupoid. In an n-ary polgroupoid, the “morphisms” live in fibers above ordered n-tuples
of objects, and there is a sort of n-ary composition rule on these morphisms. Composition
is only possible under certain compatibility conditions, and there are axioms generalizing
invertibility and associativity for ordinary groupoids. In [7], we show that in any stable
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first-order theory that has k-uniqueness for all k& < n but fails (n + 1)-uniqueness, there is
an n-ary polygroupoid (definable in a mild extension of the language) which witnesses the
failure of (n + 1)-uniqueness.

In [14], as mentioned above it is proved that Hy(p) = 0 for any strong type p in a rosy
theory as long as p is a Lascar type too; so any 1-shell in p is the boundary of a 2-chain.
However, in contrast to the case of simple theories, we construct a series of types in rosy
examples showing that there is no uniform bound for the minimal lengths of the 2-chains in
the types having 1-shell boundaries. For this and its own research interests, in [14] and [17],
all the possible 2-chains having the same 1-shell boundary are classified in a non-trivial
amenable collection of functors. In this classification, the following results are obtained,
among others: Any 2-chain with a 1-shell boundary is equivalent (preserving the boundary)
to either an NR-type or an RN-type 2-chain with a support of size 3. Combinatorial and
algebraic criteria determining the two types are given. A planar 2-chain is equivalent to a
Lascar 2-chain.

In [4] and [5], from the failure of 3-uniqueness of a strong type p in a stable theory, a way
of constructing canonical relatively definable groupiods is introduced. The profinite limit of
vertex groups of the groupoids will be the automorphism group I's(p), and this seems to
play a role in our setting analogous to that of a fundamental group; however, unlike 71 (X)
in topology, I'2(p) is always abelian, since I's(p) = Hs(p). Butin [15], a different canonical
“fundamental” group for the type p is constructed which seems to give more information:
this new group need not be abelian, and the group I's(p) is in the center of the new group.

In [6, 2.29], given an arbitrary profinite group G, only a brief sketch is given how to
build a type p in a stable theory T¢; such that Hy(pg) = G. In [9], a more detailed proof
is supplied.

Sustretov has recently found connections between 4-amalgamation and Galois cohomol-
ogy in the preprint [19]. It would be very interesting to know if his work could be related to
the computation of the homology groups discussed in this article.
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Definability in non-archimedean geometry
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Abstract. We discuss several situations involving valued fields for which the model-theoretic notion
of definability plays a central role. In particular, we consider applications to p-adic integration, dio-
phantine geometry and topology of non-archimedean spaces.
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1. Introduction

After the groundbreaking work of Ax-Kochen [2] and ErSov [25] in the sixties and of Denef
[16] in the eighties, a wide array of applications of model theory of valued fields is now
flourishing, ranging over topics as diverse as counting subgroups, the Langlands program
and singularity theory. In all these applications the concept of definability in first order logic
is central. In this survey, we shall focus on three such applications, each using the notion of
definability in the context of valued fields in an essential way.

We start by presenting several transfer theorems for p-adic integrals. Such results al-
low to transfer statements over Q,, to statements over F,((¢)) and vice versa. A first result,
obtained in collaboration with R. Cluckers deals with identities between integrals with pa-
rameters. In work with R. Cluckers and T. Hales it was shown how it can used for the
integrals occuring in the fundamental lemma. We shall also present more recent results
obtained by R. Cluckers, J. Gordon and I. Halupczok on transfering local integrability or
uniform boundedeness statements and some of their applications to p-adic harmonic anal-
ysis. In the next section, we shall explain how by working in a definable setting one can
deduce global bounds from local bounds on differentials, despite the totally disconnected
nature of non-archimedean valued fields and present some diophantine applications. This is
recent joint work with R. Cluckers and G. Comte. The last section is about the topology of
non-archimedean spaces. We shall present our work with E. Hrushovski on stable comple-
tion of algebraic varieties over a valued field, a model-theoretic analogue of the Berkovich
analytification. A fundamental statement is that the stable completion of an algebraic vari-
ety is pro-definable. We shall explain how using this approach one can prove new tameness
results for the topology of Berkovich spaces.

The present overview is far from being exhaustive, for instance it completely leaves out
important work of Hrushovski and Kazhdan on motivic integration [29, 30], and some of its
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recent applications [32, 35].

2. Definability and integration

2.1. Definable sets. A language L is a set consisting of symbols for constants (= 0-ary
functions), n-ary functions and n-ary relations. Basic examples are the ring language
{0,1,+,—, x,=}, the order language {<,=}, or the ordered abelian group language
{<,0,+,—,=}.

An L-structure consists of a set M together with interpretations for symbols in £. One
requires that = is interpreted by equality in M. A subset of M™ is said to be definable if it
is of the form

{(a1, -+ ,an) € M™ : p(a1,- - ,ay)holds }

with ¢ a first-order formula in £ with n-free variables. When the formula ¢ involves pa-
rameters running over some A C M, one says the subset is A-definable. A map between
A-definable sets is said to be A-definable if its graph is. In this way one defines the category
Def 4 of A-definable sets. All these notions extend naturally to many-sorted languages.

2.2. p-adic integrals. In his breakthrough paper [16] on the rationality of the Poincaré
series associated to the p-adic points on a variety, Denef proved the following general ratio-
nality result for p-adic integrals:

Theorem 2.3. Let X be a definable subset of Q) and g : X — Q) be a bounded definable
function. Then the integral
[ lotlas]
X

Here definability refers to the ring language with parameters in QQ,, (or, which amounts
to the same here, any standard valued ring language, for instance Ly r considered in 4.8).
The proof relies on Macintyre’s quantifier elimination theorem [36] for Q,,.

For X a definable subset of Q7 denote by C,(X) the Q-algebra generated by functions
of the form |g| and val(g) with g : X — Q, definable. In the paper [17] in which he
extended his rationality result to the setting of integrals with parameters, Denef proved the
following result about stability under integration for functions in C,,.

is a rational function of p~*.

Theorem 2.4. Let X be a definable subset of Q. Let p € Cp(X x Qp'). Assume for any
x € X, the function @, : A — o(x, \) is integrable. Then the function x j@m Oz |dA|

belongs to C,,(X).

In [18], Denef proved a general cell decomposition theorem for (Q,,-definable sets, pro-
viding direct proofs of Theorems 2.3 and 2.4 and also of Macintyre’s quantifier elimination
theorem. The natural question of uniformity in p in Denef’s Theorem 2.3 has been addressed
by Pas in [39] and by Macintyre in [37]. In the paper [39] a three sorted language has been
introduced, nowadays called the Denef-Pas language Lpp. In this language, there are three
sorts of variables:

« variables running over the valued field for which the language is the ring language
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« variables running over the residue field sort for which the language is the ring language

« variables running over the value group sort for which the language is the language of
ordered groups.

and two additional symbols ac and val from the valued field sort to the residue field and
value group sort, respectively. For Q, or k((t)) the angular component map ac is interpreted
as the first non zero coefficient in the p-adic, resp. t-adic, expansion and val as the valuation.
In this setting, Pas proved a cell decomposition theorem which is uniform in p in [39]. In
particular, this provides a new elementary proof of the following version of the classical
result of Ax-Kochen-ErSov.

Theorem 2.5. Let ¢ be a sentence (that is, a formula with no free variable) in the language
Lpp. For all but finitely prime numbers p, ¢ is satisfied in F,,((t)) if and only if it is satisfied
in Q.

2.6. Motivic integrals. In the series of papers [10] and [11] in collaboration with Raf
Cluckers we have developed a general framework for motivic integration on definable sets
in the Denef-Pas language. More precisely let k£ be a field of characteristic zero and set
K = k((t)). We consider K as a structure for the Denef-Pas language. For any definable
subset S of K™ (or more generally of K™ x k™ x Z"), we define in [10] an algebra C(S) of
“constructible motivic functions” on S. For such functions one defines inductively the no-
tion of being integrable and the value of the integral, using the cell decomposition theorem
of Pas [39], and one proves an analogue of Theorem 2.4 in this context. Working in a relative
setting is essential here. One of the main advantage of working in the definable setting over
previous constructions as those in [19] or [20], is that there is no need anymore to consider
completions of Grothendieck rings. Also, we are able to state and prove Fubini and change
of variables theorems in full generality, and to deal with integrals with parameters. For more
detailed, though accessible, presentations of this theory, we refer to the introduction of [10]
and to the paper [12].

2.7. Transfer theorems for constructible motivic functions. Let F be a number field
with ring of integers O. Let Co denote the collection of triples (F, ¢, w), where F' is non-
archimedean local field, « : O — F a ring homomorphism and t a uniformizer in F'. We
denote by k the residue field of F' and by ¢ the cardinality of kr. For M > 0, we denote
by Co,m the subcollection of triples (F, ¢, ) with F' of residue characteristic > M.
Assume now k£ = F, and fix a definable subset S of K™. For some M large enough,
for any (F,¢,w) in Co, as one may consider the specialization Sg of S in F™ obtained by
specializing the formulas defining S using ¢ and sending ¢ to w. Similarly, for M large
enough, a function ¢ in C(.S) may be specialized to a function on Sy which we shall denote

by ¢p.
In [11], we prove the following:

Theorem 2.8. Let ) € C(S x K™) and ' € C(S x K™). Then, there exists M > 0 such
that, for every F and Fy in Co pr such that kr, ~ kp,,

/ SR / UARES
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for every x € Sp, if and only if

[ wedan= [ whday
. .

forevery x € Sp,.

In particular, when F = QQ, we get that, for almost all p, the identity

[ wolan= [ g, )alax]
o o

holds for every = € Sp, if and only if

/ (6, (17 )oldN] = / (@ el
(™ Fp ()™

p

holds for every z € S, (4). Note that Theorem 2.5 can be viewed as a special case of
Theorem 2.8 when m = m’ = 0 and S is the definable subset of K defined by the sentence
®.

In work with Cluckers and Hales [12] we have shown that Theorem 2.8 applies in par-
ticular to the integrals occurring in the fundamental lemma, both in the unweighted and
weighted case. This is performed by representing all the data entering into the fundamental
lemma within the general framework of identities of motivic integrals of constructible func-
tions. This provides alternative proofs of results of Waldspurger in [46] and [47] and is of
special interest in view of Ngo6’s proof of the fundamental lemma over local fields of positive
characteristic [38]. One advantage of our approach is that it may be applied quite directly to
other versions of the fundamental lemma, as in [50].

Another important property of motivic constructible functions is that they satisfy strong
uniform boundedness statements, as proved by Cluckers, Gordon, Halupczok in the appendix
B of [44]:

Theorem 2.9. Let S be a definable set and let p € C(S x Z™).

(1) There exist integers a and b, M, such that for every F' in Co 1, if there exists a set-
theoretical function o : 7" — R such that |pp(s,\)|r < «(A) on Sp x Z™, then
lor(s, Ve < g5 on Spx zm, with ||\ = 32, [Adl-

(2) Given integers a and b, there exists M, such that whether the bound

a+b||A
lor (s, A)|r < gt

holds or not on the whole of Sy x 7" depends only on kp, for F in Co .

In the same paper they show this result may be applied to provide uniform bounds for
orbitals integrals that are used in an essential way in the paper [44].

2.10. Transfer theorems for exponential constructible motivic functions. In [11], we
extend the construction of algebras constructible motivic functions C(S), to take in account
motivic versions of exponential functions, by constructing the algebra C¢*?(.S) of exponen-
tial constructible motivic functions on .S for any definable set S. The formalism developed
in [10] for C(S) carries over to C**P(5).
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Given an non-archimedean field F', one denotes by D the set of additive characters on
F that are trivial on the maximal ideal and nontrivial on the valuation ring. Now, given ¢ in
Ce*P(S), for any F in Cp,p and any character 6 in D, one may specialize ¢ to a function
PYF,po ON S F.

In this setting, Theorem 2.8 may be generalized as follows:

Theorem 2.11. Let ) € C¥“P(Sx K™) and )’ € C¥*P(S x K™"). Then, there exists M > 0
such that, for every Fy and F5 in Co pr such that kp, ~ kp,,

| wmanddd = [ @l
Fm P

for every x € Sp, and any 6 € Dp, if and only if

| wroian = [ oy

for every x € Sg, and any 0 € Dp,.

In the paper [13], Cluckers, Gordon, Halupczok prove the following remarkable transfer
theorem for (local) integrability and boundedness:

Theorem 2.12. Let S be a definable subset of K™ and let p € C®*P(S). There exists M > 0
such that, for fields F' in Co nr, the validity of the statement that @ g is (locally) integrable,
resp. (locally) bounded, for all 0 € Dp depends only on the isomorphism class of kp.

Using Theorem 2.12, Cluckers, Gordon, Halupczok have been able in [14] to transfer
Harish-Chandra’s theorems on local integrability of characters of irreducible admissible rep-
resentations of connected reductive p-adic groups from characteristic zero to (large) positive
characteristic. An important ingredient in their approach is the definability of the Moy-
Prasad filration subgroups, which they have proved in a number of important special cases.

3. Definability and non-archimedean diophantine geometry

3.1. Lipschitz functions. A C'-function on an interval in R which has bounded derivative
is automatically Lipschitz continuous. It is well known that such a result cannot hold for
general C''-functions over the p-adics since Qp is total disconnectedness. However, under
some definability conditions it is still possible to get results of this kind, as we shall explain
now.

Let K be a field endowed with a discrete valuation for which it is complete. In this
section, by definable we shall mean definable in the ring language L x- with parameters in K
(in this case definable sets are also called semi-algebraic sets), or in the analytic language
L% which is obtained by adding to L a symbol for each restricted power series f in
K{x1,...,zmy}, for m > 1. Such a symbol is interpreted as the function K™ — K which
is zero outside OF and given by « — f(x) for x € OF. In this case definable sets are also
called subanalytic sets.

Let X be a subset of K™. We say a function f : X — K is C-Lipschitz if for every =
andy in X, |f(z) — f(y)| < C|z — y|. We say it is locally C-Lipschitz if for each point z
in X, the restriction of f to some neighborhood of x is C-Lipschitz.

In the paper [7] with Cluckers and Comte we prove the following:
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Theorem 3.2. Let X be a definable subset of Q' and let f : X — Q) be a definable map.
Assume f is locally C-Lipschitz. Then there exists a finite partition of X into definable sets
X; and C' such that the restriction of f to each X; is C'-Lipschitz.

This statement is a p-adic analogue of a theorem of Kurdyka for real subanalytic sets
[34]. In [9] Cluckers and Halupczok proved that it is in fact always possible to take C' = C.

3.3. A p-adic analogue of the Yomdin-Gromov lemma. A very efficient tool in diophan-
tine geometry is the so-called determinant method which was developed by Bombieri and
Pila in the influential paper [6] about the number of integral points of bounded height on
affine algebraic and transcendental plane curves. Basically, the method consists in using a
determinant of a suitable set of monomials evaluated at the integral points, in order to con-
struct a family of auxiliary polynomials vanishing at all integral points on the curve within
a small enough box. Building on the estimates in [6] for algebraic curves, Pila proved in
[40] bounds on the number of integral (resp. rational) points of bounded height on affine
(resp. projective) algebraic varieties of any dimension, improving on previous results by S.
D. Cohen using the large sieve method [15].

In [41], Pila and Wilkie proved a general estimate for the number of rational points on
the transcendental part of sets definable in an o-minimal structure; this has been used in a
spectacular way by Pila to provide an unconditional proof of some cases of the André-Oort
Conjecture [42]. Lying at the heart of Pila and Wilkie’s approach is the possibility of having
uniform - in terms of number of parametrizations and in terms of bounds on the partial
derivatives - C'*-parametrizations. These parametrizations are provided by an o-minimal
version of Gromov’s algebraic parametrization Lemma [26], itself a refinement of a previous
result of Yomdin [48],[49]. Such Ck-parametrizations enter the determinant method via
Taylor approximation.

In the work [8] with Cluckers and Comte we provide a version of the Yomdin-Gromov
lemma and the Pila-Wilkie theorem valid over Q. At first sight one may have doubts such
a statement could exist, since there seem there is no way for a global Taylor formula to
make sense in this framework. However Theorem 3.2 which provides a version of first-order
Taylor approximation, piecewise globally, in the definable p-adic setting is an encouraging
sign. In [8], instead of generalizing this result to higher order, we show directly the existence
of uniform C*-parametrizations that do satisfy Taylor approximation, which is enough for
our purpose.

Our p-adic analogue of the Yomdin-Gromov lemma is the following statement:

Theorem 3.4. Letn > 0, m > 0and r > 0 be integers and let X C Z, be a sub-
analytic set of dimension m. Then there exists a finite collection of subanalytic functions
9i + Py C Z' — X such that the union of the 9:(P;) equals X, the g; have C" norm
bounded by 1, and the g; may be approximated by Taylor polynomials of degree r — 1 with
remainder of order r, globally on P;.

For the precise definition of the C" norm and of approximation by Taylor polynomials
of certain degree and with certain error we refer to [8].

3.5. A p-adic analogue of the Pila-Wilkie theorem. For X a subset of Q) and 7" > 1 a

real number, write X (Q, T') for the set consisting of points (x1, - - - , x,) in X NQ™ such that

one can write z; as a;/b; where a; and b; # 0 are integers with |a;|gr < T and |b;|g < T
For X a subset of Q7, write X®'& for the subset of X consisting of points z such that
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there exists an algebraic curve C' C A@p such that C'(Q,) N X is locally at 2 of dimension
1.
We prove in [8] the following p-adic analogue of the Pila-Wilkie theorem:

Theorem 3.6. Let X C Qp be a subanalytic set of dimension m with m < n. Let

e > 0 be given. Then there exist an integer C = C(e,X) > 0 and a semialgebraic set
W =W(e, X) C Q) such that W N X lies inside X*'8, and such that for each T, one has

#(X\W)(Q,T) < CT".

3.7. Results over C[t]. In the paper [8] we also obtain results when K = C((¢)). For
instance a version of Theorem 3.2 still holds over C((¢)) (with C’ = C), if one replaces “a
finite partition of X by “a partition parametrized by C", for some . For this to make sense
one has to enlarge the language to have (higher) angular components maps a la Denef-Pas,
see [8] for more details. Similarly, a version of Theorem 3.4 over C((¢)) is also proved in [8].
We end this section by stating a diophantine application of this result.

For each positive integer r one denotes by Cl[t], the set of complex polynomials of
degree < 7. When A is a subset of C((¢))", one denotes by A, the set AN (C[t]<,)™ and by
n,(A) the dimension of the Zariski closure of A, in (C[t]<,)™ ~ C"".

Let X be an algebraic subvariety of Ag« ) of dimension m. One can prove that for any
r > 0,n,.(X) <rm. When X is linear this “trivial” estimate is the best possible. However,
we prove in [8] that as soon as X has degree d > 2, the following non-trivial bound holds:

Theorem 3.8. Let X be an irreducible subvariety of Ag(( ) of dimension m and degree
d > 2. Then, for every positive integer r, one has

n(X) < r(m—1) + m
This result is a geometric analogue of a result of Pila in [40] on the number of integral
(resp. rational) points of bounded height on affine (resp. projective) algebraic varieties of
any dimension. Pila’s proof proceeds by reducing to the case of curves which was considered
by Bombieri and Pila in [6].

4. Definability and topology

In this section we present a model-theoretic approach to proving topological tameness prop-
erties in non-archimedean geometry which we developed in collaboration with Ehud Hru-
shovski [31].

4.1. o-minimality. It is by now quite well known that o-minimal geometry provides an
efficient framework for the study of topology arising from an ordered structure, in particular
in the context of ordered fields. Let us recall that an infinite structure M which is totally
ordered by a binary relation < is said to be o-minimal if every definable subset X C M,
with parameters in M, is a finite union of intervals and points. Sets definable in a o-minimal
structure have nice topological properties. For instance, for o-minimal expansions of the field
R of real numbers, and n € N, definable subsets of R™ have a finite number of connected
components which furthermore are definable, they are locally contractible and triangulable;
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in particular they have the homotopy type of a finite simplicial complex. Classical examples
of subsets of R™ definable in a o-minimal structure include semi-algebraic sets, subanalytic
sets, or sets definable in the language of ordered rings with an exponential function. Another
class of examples of o-minimal structures, playing an important role in our work, is provided
by divisible ordered abelian groups I'. In this last setting definable subsets of I'™ essentially
correspond to piecewise linear sets. An important feature of this model-theoretic framework
for tameness is that it is particularly well adapted to proving uniformity statements for the
topology of definable sets varying in definable families, for instance finiteness of homotopy
types occuring in a given such family.

4.2. Valued fields. By a valued field we mean a field K, together with a surjective mul-
tiplicative map val : K* — I, with ' = (T", 0,4, <) an ordered abelian group such that
val(z + y) > min(val(z), val(y)). We extend val to a map val : K — T', with [', the
disjoint union of I with a distinguished element co which is larger than any element of I'
and absorbing for the addition. We shall denote by O the valuation ring of K and by Mg
the maximal ideal of K.

4.3. Berkovich spaces. Let K be a valued field such that I is a subgroup of (R, +). Then
x> |2| = e~ *(®) defines an absolute value | - | : K — Rs(. One says K is ultrametric if
it is complete for this norm.

In [3], Berkovich introduced a general notion of analytic spaces over an ultrametric field
K. In particular, for any algebraic variety V' over /X one may consider its Berkovich analyti-
fication V", In case V is affine with ring of regular functions K[V, let us define V%" as a
topological space. As a set V" is the set of multiplicative seminorms on K [V] extending
the absolute value on K. There is a natural embedding V" ¢ R¥[V] and one endows V"
with the topology induced by the product topology on R IV]. For an arbitrary algebraic va-
riety V over K, one defines VV*" by glueing. This construction is functorial: any morphism
of algebraic variety f : V' — W gives rise to a morphism f¢ : V" — W™, Note that
V(K') may be naturally identified with a subset of V%", When V is affine, this is done by
assigning to a point a in V' (K) the seminorm f +— |f(a)].

4.4. Some previously known topological properties of Berkovich spaces. Already in [3]
Berkovich proved that general analytic spaces (including analytifications of algebraic vari-
eties) have excellent general topological properties, in particular they are locally compact
and locally path-connected.

More recently, in his paper [4], Berkovich proved that the general fibre of any polystable
formal scheme admits a strong deformation retraction to a finite polyhedron, and using de
Jong’s results on alterations he deduced that any smooth analytic space is locally contractible.

On the other hand, Ducros proved in [21] that semi-algebraic subsets of V%", i.e. subsets
which are Zariski locally boolean combinations of subsets defined by inequalities | f| b1 A|g]|
with f, g in K[V] and A € R>q, where e {<,>, <, >}, have only a finite number of
connected components, each of them semi-algebraic.

Another statement with an o-minimal flavour us the following. Let X be a compact
analytic space and let f be an analytic function on X. For every ¢ > 0, let X, denote
the set of points z in X such that | f(z)| > e. According to Abbes and Saito under the
assumption that f is invertible [1] and to Poineau in general [43], there is a finite partition of
R>( into intervals such that on each of these intervals the natural map m(X./) — mo(Xe)
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is a bijection whenever € < ¢’

4.5. Statement of results. The results recalled in 4.4 provide rather strong evidence that
there should exist general tameness results for the topology of non-archimedean spaces,
quite analogous to the ones available in the o-minimal world. In the paper [31], we prove the
following general statements on the topology of analytifications of algebraic varieties:

Theorem 4.6. Let K be an ultrametric! field. Let V be a quasi-projective variety over K
and let X be a semi-algebraic subset of V.

(1) There exists a strong homotopy retraction h : [0,1] x X — X onto a closed subset of
X which is homeomorphic to a compact finite polyhedral complex.

(2) The space X is locally contractible (one may drop the assumption V quasi-projective
here).

(3) Let f : V. — W be a morphism of algebraic varieties over K. Then the set of
homotopy types of fibers of the map f"|x : X — W is finite.

(4) Let f : V — Al a morphism. For every e > 0, let X, denote the set of points x in
X such that | f(z)| > 0. Then there exists a finite partition of R>¢ into intervals such
that the natural map X, — X, is a homotopy equivalence whenever ¢ < &’ belong
to the same interval.

4.7. Model-theoretic preliminaries. We shall deal with a complete theory 7" having quan-
tifier elimination and work in a fixed universe U, by which we mean a large very saturated
and homogeneous model. All models M (and parameter sets A) we shall consider will be
small substructures (resp. subsets) of U.

If A is a small subset of U, the definable closure dcl(A) is the set of all elements ¢ in U
such that there exists a formula () with one free variable and parameters in A such that
¢ is the only element of U such that ¢(c) holds. If X is a C-definable set and C C A, we
write X (A) for X (U) N dcl(4).

A basic notion we shall use is that of a definable type. Let assume for simplicity of
notation that there is only one sort. Let B be a set of parameters. Let ¢ = (¢1,--- ,¢,) be
a finite tuple of elements of U. The set of all B-formulas satisfied by ¢ in some model of
T containing the ¢;’s is denoted by tp(c/B) and called the type of ¢ over B. Such a set
of formulas is called an n-type over B. In the special case where all ¢;’s already belong to
B one says the type is realized (over B). Let A C M. We say an n-type p over M is A-
definable if for every formula ¢(x1,- -+, Zn,y1,- - , Ym) Without parameters, there exists
a formula ¢, (y1,- -+, ym) with parameters in A, such that for any (bq,--- ,by,) in M™,
o(x1, -+ ,Tn, b1, -+, by,) belongs to p if and only if ¢, (b1, - ,by,) holds in M. The
mapping ¢ — ¢, is called a defining scheme for p. If p is such an A-definable type over M,
for any model M’ containing M one can extend p to an A-definable type over M’, by using
the same defining scheme. Thus, we will not care about a specific M anymore when dealing
A-definable types. Note that a realized type over A is always A-definable. These definitions
extend naturally to many-sorted languages.

Let X be a C-definable set with C' C A. We say that an A-definable type p is on
X if the formula expressing that 2 € X belongs to the type p. We denote by Sx gcf(A)
the set of A-definable types on X and set Sx gef = UaSx,der(A). Any C-definable map

!In fact the completeness hypothesis on K plays no role here.
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f X = Y between C-definable sets induces a natural push-forward maps
Js 0 Sx def(A) = Sy,def(A) and fi : Sx gef — Sy,def-

4.8. The language. Classically, to study valued fields one considers a 3-sorted language
Ly r (or one of its variants) with sorts VF, I' and k for the valued field, value group and
residue field sorts, with respectively the ring, ordered abelian group and ring language, and
additional symbols for the valuation val and the map Res : VF? — k sending (z,y) to the
residue of zy~! if val(z) > val(y) and y # 0 and to 0 otherwise. We consider ACVF,
the theory of algebraically closed fields with non trivial valuation such that val is surjective
in this language. This theory become complete once the characteristic of the valued field
and of its residue field are both fixed. It is a classical result of A. Robinson that ACVF
admits quantifier elimination. Note that this result has already nice consequences in non-
archimedean geometry. For instance in the paper of Ducros [23] it is used to give an alternate
proof of the Bieri-Groves theorem [5].

We shall use an expansion Lg of this language introduced by Haskell, Hrushovski and
Macpherson in [27]. It has additional sorts S, and T}, for n > 1, coding respectively
n-dimensional lattices over the valuation ring, and elements in the reduction modulo the
maximal ideal of such lattices. The main result of [27] is that ACVF has elimination of
imaginaries in the language £g (which was not the case in the original language Lr ). A
theory 7' is said to have elimination of imaginaries in a given language if all quotients of
definable sets by definable equivalence relations are representable by definable sets. It is
also proved in [27] that ACVF still has elimination of quantifiers in Lg.

One should note that expanding the language from L r to L£g does not create new de-
finable sets in the sorts VF, I' and k. If V' is an algebraic variety over a valued field, we
may define definable subsets of V' by requiring that their intersection with any affine open is
a definable set.

Given a valued field F, a in F' and « in val(F), resp. « in val(F'*), one denotes by
B(a,a) and B°(a, «) respectively the closed and open ball of center a and valuative ra-
dius a. They are definable sets defined respectively by the formulas val(z — a) > « and
val(x — a) > a. If B is a ball defined over a model K of ACVF, the type expressing that
x € Band x ¢ B’ for every K-definable ball B’ strictly contained in B is a K-definable
type, called the generic type of B, and denoted by pp.

Remark 4.9. Note that the set of all closed balls for K running over all models of ACVF
(contained in U) is definable in L£g (without parameters). Indeed, it suffices to prove that
the set of all closed balls of finite valuative radius is definable in Lg, and this follows
from the following observation: given a,a’ in K and b,b’ in K*, the balls B(a,val(b))
and B(a',val(b')) are equal if and only if the two-dimensional Og-lattices generated by
((b,0), (a,b)) and by ((V',0), (a’,b")) are equal. More precisely, there exists a definable set
D in Lg such that for any A C U, D(A) is in natural bijection with the set of A-definable
closed balls.

4.10. Stably dominated types. In [28], Haskell, Hrushovski and Macpherson introduced
within a general model-theoretic framework the notion of stably dominated types. Roughly
speaking, a stably dominated type is a definable type which is “controlled by its stable part”.
In ACVF, stable domination is equivalent to being orthogonal to I' in the following sense.
Let X be a C-definable set and let p € Sx gcf(A), for C C A. We shall say that p is orthog-
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onal to I if for every model M of ACVF containing A, every tuple c such that tp = tp(e/M),
and every M-definable map f : X — I', f(c) € Val(M) We denote by X(A) the set of
A-definable types on X that are orthogonal to I" and by X the union of all the sets X (A),

for A C U. We call X the stable completion of X.

Examples 4.11.

1. Realized types are stably dominated, i.e. for any definable set X there is a natural
inclusion ¢ : X — X.

2. A type over I', is stably dominated if and only it is realized, i.e. ¢ : I'h — fgz isa
bijection.

3. The generic type of a ball is stably dominated if and only if the ball is closed.

It follows from Remark 4.9 and Example 4.11 (3) that, given a valued field F, there is a
natural bijection ¥ between AL and a definable set D, inducing, for any A C U, a bijection

between AL (A) and D(A). This is a special case of Theorem 4.14, but before going any
further, we should introduce the notion of a pro-definable set. One defines the category
ProDef ¢ of pro-definable sets over C' as the category of pro-objects in the category of C-
definable sets indexed by a small directed partially ordered set. Thus, if X = (X;);c; and
Y = (Y})ies are two such pro-objects

HomProDefc X Y LﬂHomDefc (XMY])

Elements of Hompyopet,. (X, Y') will be called C-pro-definable morphisms between X and
Y. By aresult of Kamensky [33], the functor of “taking U-points” induces an equivalence of
categories between the category ProDef ¢ and the sub-category of the category of sets whose
objects and morphisms are inverse limits of U-points of definable sets indexed by a small
directed partially ordered set. By pro-definable, we mean pro-definable over some C'. We
shall thus freely identify a pro-definable set X = (X );cs with the set X (U) = (h_ml X, (U)

For any set B with C C B C U, we set X(B) = X (U) Nndcl(B LX
Definition 4.12. Let X be a pro-definable set.
(1) X is called strict pro-definable if it can be written as a pro-definable set with surjective
transition morphisms.
(2) X is called iso-definable if it is in pro-definable bijection with a definable set.
(3) Y C X is called relatively definable if there exists ¢ € I and a definable subset W of
X, such that Y = 7r; (W), with ; the canonical projection X — X;.

Theorem 4.13. Let X be a B-definable set. Then X may be canonically endowed with the
structure of a strict B-pro-definable set. In particular, there exists a strict B-pro-definable
set E such that for any B C A, there is a canonical identification X (A) = D(A).

For curves we have the following stronger statement:

Theorem 4.14. Let C be an algebraic curve over a valued field K and let X be a definable
subset of C. Then X is iso-definable.
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For C' = P! the result follows from the description of Al in terms of closed balls given
above. The proof in the general case uses Riemann-Roch and Theorem 4.13.

Remark 4.15. The previous statement is optimal since one can show that, for X a definable
subset of K™, X is iso-definable if and only the dimension of the Zariski closure of X is
<1

Lemma-Definition 4.16. Let f : X — Y be a map between B-definable sets. Then the
map f, : Sx.def — Sy,des Testricts to a B-pro-definable map f : X — Y. In this way we
have a functor from the category of B-definable sets to the category of B-pro-definable sets.

Let X be a definable subset. If Y is a definable subset of X, then Visa relatively
definable subset of X. The set of realized d types in X, which can be identified with X (U) is
iso-definable and relatively definable in X. Its points are called simple points of X.

417. V as a topological space. We endow A" with the coarsest topology such that for
every polynomial F' € Ulxy,--- ,x,], the map valoF : An — I'w is continuous, where
the topology on I' is the order topology. For any definable subset X of A, we endow X
with the induced topology. If V' is an algebraic variety over a valued field K, we define the
topology on V' by gluing: it is the unique topology inducing the previous topology on U for
U an afﬁne open in V. If X is a definable subset of V', we endow the relatively definable
subset X with the induced topology.
We have the following basic properties:

Proposition 4.18. Let V be an algebraic variety defined over a valued field K. Then:

(1) The topology on V is pro-definable in the following sense: there exists a small set
I, and for each i € I, a K-definable family U; = (U, )vev of relatively deﬁnable

subsets of V such that the sets U, p, for b € U and ¢ € I generate the topology on V.

(2) The topology on Vis Hausdorff.
(3) The subset of simple points is dense in V.
(4) The induced topology on the set of simple points is the valuation topology.

In general, we shall call pro-definable sets with a pro-definable topology, pro-definable
spaces.

More generally, consider the map 7 : V x A™ — V x I'2 which is the identity on the
V factor and val on the remaining ones. It induces a map 7 : Vx Am V/x?m and we
endow V/x?m with the direct i image topology, maklng it a pro-definable space. One shows
that the canonical map V/x?m —V x I‘m =V x I is an homeomorphism.

4.19. Definable compactness. The usual notion of compactness is not well suited to the
present setting as shown by the following example. Let K be a valued field with val(K*)=Q.
Fix ¢ € val(U*) such that 0 < e < « for every positive « in Q. Let C be set defined by the
formula 0 < val(z) < 1. For a« € Q N [0,1] let U, be defined by o — ¢ < val(z) < a + €.
The family of open sets l/]; is a cover of C' with no finite subcover.

To remidy this we shall introduce the notion of definable compactness for pro-definable
spaces. Let us note that the definition we gave of a definable type still makes sense on
pro-definable set.
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Definition 4.20. Let X be a pro-definable space.

(1) Let p be a definable type on X. We say a € X is a limit of p if for every relatively
definable neighborhood W of a, the formula expressing x € W belongs to p.

(2) We say X is definably compact if every definable type on X has a limit.

Note that if X is Hausdorff, limits are unique when they exist.

Let V be a closed subvariety of A™. A subset X C V is said to be bounded in V if
it is contained in a product of closed balls. For an arbitrary variety V, a definable subset
X C V is said to be bounded, if one may write V' = U}, V; with V; open and affine and
X = U], X;, with X; bounded in V;. A subset of V' x I'2 will be said to be bounded if
its preimage in V' x A" is. Finally, a pro-definable subset X C V x I'? will be said to be
bounded if there exists a bounded definable subset W of V' x I'} such that X C w.

Theorem 4.21. Let X be a pro-definable subset of V x I'Z. Then X is definably compact
if and only if it is closed and bounded.

Corollary 4.22. A variety V over a valued field is complete if and only if Vis definably
compact.

4.23. T'-internality. We shall now define an important class of subsets of V x I'? which
“look like o-minimal sets”.

Definition 4.24. A subset Z of V x I'2 is said to be I'-internal if it is iso-definable and there
is a definable subset D of some I'", and a surjective pro-definable map D — Z.

The iso-definability condition is crucial here, and cannot be replaced by just requiring
pro-definability. This definition is purely definable and does not say anything a priori about
the topology of Z. The following embedding result shows that being I'-internal imposes
strong restrictions on the topology:

Theorem 4.25. Let Z be a I'-internal subset of V x I'%. Then there exists an injective
continuous definable map f : Z — 'l for some n. If Z is definably compact, such an f is
an homeomorphism.

If V and Z are defined over some set of parameters A, one cannot in general expect such
an f to be defined, because it should be respect the Galois action. However the following
holds:

Proposition 4.26. Assume V and Z are defined over some set of parameters A in the VF and
I sorts. Then there exists a finite A-definable set w and an injective continuous A-definable
map f: Z —T'Y.

4.27. Paths and definable connectedness. The mapping [0, c0] — pl sending t to the
generic type of the ball B(0,¢) may be seen as a path connecting 0 and the generic type po

of the closed unit ball. Similarly the mapping [0, oo] — P! sending ¢ to the generic type of
the ball B(1,t) connects 1 and pp. By composing these paths one connects the point 0 and
1. However a technical issue occurs here. Since multiplication is not part of the structure
I'w, there is no way to identify the space obtained by gluing two copies of [0, co] at 0 with
an interval. We are thus led to consider generalized intervals, that is spaces obtained by
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concatening a finite number of closed intevals in I, either with the order from I', or with
the reverse order. R

We denote by I = [is, er] such a generalized interval. A pathy : I — V x ' is a
continuous (pro)-definable map.

Let V' be an algebraic variety over some valued field. We say a strict pro-definable subset
Z of V is definably connected if it contains no clopen strict pro-definable subsets other than
() and Z. We say that Z is definably path connected if for any two points a and b of Z there
exists a definable path in Z connecting a and b. Clearly definable path connectedness implies
definable connectedness. When V' is quasi-projective and Z = X with X a definable subset
of V, the reverse implication will eventually follow from Theorem 4.32.

We have the following GAGA type theorem:

Theorem 4.28. Let V' be an algebraic variety over some valued field. Then Vs definably
connected if and only if V' is geometrically connected.

4.29. Strong retractions for curves. Let I = [if, es] be a generalized interval. A contin-
uous pro definable map H : I x X — Y iscalled a definable homotopy between the maps
H; \{1 px% and H, = H‘{e px % viewed as maps X — Y. A definable homotopy

H:IxX — Xiscalleda strong deformation retraction onto the set X C X if H; =1dg
H(t,z) = x forevery t € I and every z € ¥ and Ho(X) = X.

There is a canonical strong deformation retraction of P! onto the point pp which is
described as follows. Using the two standards affine charts, one may write each point of P!
as Pp(a,a) With @ € P'(U) and a > 0. The homotopy is given by taking I = [00, 0] (thus
17 = oo and e; = 0) and setting w(t,pg(a)a)) = PB(a,min(t,a))-

More generally, given any finite subset D in P1(U), let Cp be the image of I x (D Upo)
under 1. The set Cp is a closed I'-internal subset of P1. Set ~v(a)=max{t € I;v(t, a) €Cp}.
Then ¢p : I X Pl - P1 sending (¢, a) to ¥ (max(y(a),t), a) is a strong deformation retrac-
tion of P! onto Ch.

Theorem 4.30. Let C' be an algebraic curve over a valued field K. There exists a strong
deformation retraction, defined over K, H : [0, 00] x C' — C onto a I'-internal subset of C.

Let us sketch the proof. A standard outward path on Al at T = Pp(q,a) 1S given by
t — Pp(a,y) fort € (8, 0] for some § < . Now if g : C — Al is finite, with C' a curve,

by an outward path starting at x € 6’, we mean a continuous definable lifting of a standard
outward p