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Model theory of difference fields and applications
to algebraic dynamics

Zoé Chatzidakis

Abstract. This short paper describes some applications of model theory to problems in algebraic

dynamics.
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1. Introduction

A few years ago, Hrushovski noticed that the model theory of difference fields could give a

new proof of a result of M. Baker on algebraic dynamics. Baker’s result deals with endo-

morphisms of P1 defined over a function field K, and shows that under certain conditions,

the endomorphism of P1 is isomorphic (over some algebraic extension ofK) to one defined

over the constant field k of K. He answered thus a question of Szpiro and Tucker. Nothing

was known for varieties of higher dimension. We started working on this together, were

able to answer a question of Baker (1.7 in [1]) in case of function fields of characteristic

0, and got a descent result in some special cases: there is a bijective rational map from our

original algebraic dynamics (V, φ) to one defined over the smaller field. Because our tools

are difference fields, the maps we obtain are in general only birational isomorphisms and not

isomorphisms when the dimension of the underlying variety is > 1. These results appeared
in [4] and [5].

It turns out that another model-theoretic tool, the Canonical Base Property, a property

enjoyed by existentially closed difference fields, allows one to obtain a fairly strong result

in a more general context. Explaining what is now known is the object of section 4 of this

paper.

Section 2 recalls some of the now classical results of the model theory of difference fields,

as well as some more recent ones (e.g., 2.12). In section 3, we explain briefly the connection

between our algebraic dynamics (V, φ) (where φ is rational dominant, not necessarily a

morphism) and difference fields. In section 4, we introduce the Canonical Base Property,

some of its history, give some of its consequences, and explain briefly the strategy to show

that existentially closed fields of arbitrary characteristic enjoy it. Section 5 puts everything

together.
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2. Difference fields and their model theory

2.1. Basic definitions. A difference ring is a ring R with a distinguished endomorphism

σ. A difference field is a difference ring which is a field (note that the endomorphism will

necessarily be injective). A difference ring becomes naturally a structure of the language

L = {+,−, ·, σ, 0, 1}, where +,−, · are interpreted as the usual binary operations, 0 and

1 are the usual constants, and σ is interpreted by the endomorphism. The difference ring

is inversive if the endomorphism is onto. Every difference ring R has a unique up to R-

isorphism inversive closure, or inversive hull, i.e., an inversive difference ring containing it,

and which R-embeds into every inversive difference field containing R.

The difference polynomial ring in the variables Y = (Y1, . . . , Yn) over R, denoted

R[Y ]σ , is the polynomial ring R[σj(Yi) | 1 ≤ i ≤ n, j ≥ 0], endowed with the natural

extension of σ defined by sending σj(Yi) to σ
j+1(Yi) for each i and j.

If K is a field, then zero-sets of elements of K[Y1, . . . , Yn]σ generate the closed sets of

a topology onKn, and this topology is Noetherian. It is very similar to the Zariski topology.

I will call the closed sets of this topology σ-closed.
All these results and more can be found in Richard Cohn’s book [7].

2.2. The model theory of existentially closed difference fields. A difference fieldK is ex-
istentially closed if every finite system of difference equations with coefficients in K which

has a solution in a difference field containing K, has a solution in K. Note that an exis-

tentially closed difference field is necessarily inversive and algebraically closed. Every dif-

ference field embeds into an existentially closed one, and the existentially closed difference

fields form an elementary class, with theory usually called ACFA. These fields were first

investigated in the 90’s by Macintyre, Van den Dries and Wood, see [12]. An indepth study,

concentrating on geometric stability properties of these fields was then started by Hrushovski

and myself, later joined by Peterzil [3, 6]. I will now recall some of the classical results.

The theory ACFA expresses the following properties of the L-structureK:

–K is algebraically closed, σ ∈ Aut(K);
– IfU , V are irreducible (algebraic) varieties, withU ⊂ V ×V σ , and such thatU projects

dominantly onto V and V σ , then there is a such that (a, σ(a)) ∈ U . [Here V σ denotes the

variety obtained by applying σ to the defining equations of V .]

2.3. Notation. N denotes the set of non-negative integers. We will work in a large suffi-

ciently saturated existentially closed difference field U . If E is a field, then Ealg denotes the

(field-theoretic) algebraic closure of E. If E is a difference subfield of U , and a a tuple in U ,
thenE(a)σ denotes the difference field generated by a overE, i.e. E(a)σ=E(σi(a) | i ∈ N),
and E(a)σ±1 its inversive hull E(a)σ±1 = E(σi(a) | i ∈ Z).

2.4. Some properties of ACFA and of its models. Most of the results here appear in [13]

or in [3]. ACFA does not eliminate quantifiers, the problem coming from the fact that an

automorphism of a field E needs not extend uniquely to the algebraic closure Ealg of E.

However, this is the only obstacle, and one obtains that if E is an algebraically closed differ-

ence field, then ACFA∪ qfDiag(E) is complete (Here qfDiag(E) denotes the quantifier-free
diagramme of E in the language L(E) obtained by adjoining constant symbols for the ele-

ments of E). This last result has several important consequences:

(1) Completions of ACFA are obtained by describing the action of the automorphism on
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the algebraic closure of the prime field. This implies that ACFA is decidable.

(2) If E is a difference subfield of a model U of ACFA, and a, b are tuples in U , then
tp(a/E) = tp(b/E) if and only if there is an E-isomorphism E(a)algσ → E(b)algσ

which sends a to b.

(3) IfA ⊂ U , then the model-theoretic algebraic closure acl(A) ofA is the smallest inver-

sive algebraically difference field containing A. The definable closure of A, dcl(A), is
usually much larger than the inversive difference field generated byA: it is the subfield

of acl(A) fixed by the elements of Aut(acl(A)/A) which commute with σ.

(4) Let S ⊂ Un be definable. Then there is a set W ⊂ Un+m defined by difference

equations such that the projection π on the first n coordinates defines a finite-to-one

map from W onto S.

One can also show that any completion of the theory ACFA is supersimple (of SU-rank ω),
and that it eliminates imaginaries. An important definable subset of U , is the fixed field

Fix(σ) := {a ∈ U | σ(a) = a}.

It is a pseudo-finite field, and its induced structure is that of a pure field. It is also stably

embedded, and therefore, if S ⊂ Fix(σ)n is definable in U with parameters from U , then it

is of the form S′ ∩ Fix(σ)n, where S′ is definable in the langauge of rings with parameters

from Fix(σ).
In positive characteristic p, there are other definable automorphisms, which are built up

using the definable Frobenius automorphism Frob : x 
→ xp and its powers Frobq . More

precisely, if τ = σnFrobm, where n ≥ 1, m ∈ Z, then Fix(τ) is a pseudo-finite field,

stably embedded; the induced structure is that of a pure field if n = 1, but involves the

automorphism σ if n > 1. We will also call Fix(τ) a fixed field. One has the following

result:

(1.12 in [3]) Let τ be as above, (K,σ) a model of ACFA, and consider its reduct the difference
field (K, τ). Then (K, τ) |= ACFA.

2.5. Independence and SU-rank. As the theory is supersimple, every type is ranked by

the rank SU, a rank based on forking (or non-independence). In what follows, A, B, C are

subsets of U , a is a tuple of elements of U , and E is a difference subfield of U .
Independence of A and B over C, denoted A |�CB, is characterized by the linear dis-

jointness of the fields acl(CA) and acl(CB) over acl(C). A set D definable over E has

finite SU-rank iff every tuple a∈D has finite SU-rank over E, and then

SU(D) = sup{SU(a/E) | a ∈ D}.

One shows easily the following:

• SU(a/E) = 0 if and only if a ∈ acl(E).

• SU(a/E) ≤ 1 if and only if for every B ⊃ E, either a and B are independent over E,

or a ∈ acl(B).

• If tr.deg(E(a)σ/E) < ∞, and F is a difference field containing E, then a |�EF if

and only if tr.deg(E(a)σ/E) = tr.deg(F (a)σ/F ).

• If tr.deg(E(a)σ/E) < ∞, then SU(a/E) ≤ tr.deg(E(a)σ/E).
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• SU(a/E) < ω if and only if tr.deg(E(a)σ/E) < ∞.

If SU(a/E) < ω, then tp(a/E) can be analysed in terms of types of SU-rank 1, and so

types of SU-rank 1 determine the properties of tp(a/E). This will be explained below in the

paragraph on semi-minimal analyses. First, a few definitions:

Definition 2.6. Let T be a supersimple theory which eliminates imaginaries, U a sufficiently

saturated model of T , and S ⊂ Un, P ⊂ Um subsets which are invariant under Aut(U/A)
for some small subset A of U. E.g. S is A-definable, or is a union of realisations of types

over A.

(1) S is one-based if whenever a1,. . . ,a� ∈ S andB⊃A,C = acl(Aa1 . . . , a�)∩acl(AB),
then (a1, . . . , a�) and B are independent over C.

(2) A partial type is one-based if the set of its realisations is one-based.

(3) S is internal to P , resp. almost-internal to P , if for some finite set B, we have

S ⊂ dcl(ABP ), resp. S ⊂ acl(ABP ).

(4) (difference field context) S is qf-internal to P if for some finite set B, if a ∈ S, then
there is some tuple b of elements of P such that a is in the inversive difference field

generated by ABb.

(5) If p, q are types, we say that p is internal, almost-internal, qf-internal, to q, if the set of
realisations of p is internal, almost-internal, qf-internal, to the set of realisations of q.

The following is one of the major results in the model theory of difference fields, and is

often called the dichotomy theorem:

Theorem 2.7 ([3, 6]). Let q be a type of SU-rank 1 in a model U of ACFA. Then either
q is one-based, or it is almost internal1 to the generic type of Fix(τ), where τ = σ if the
characteristic is 0, and in positive characteristic, τ is of the form σnFrobm for some n ≥ 1,
m ∈ Z relatively prime to n. Moreover, if the characteristic is 0 and q is one-based, then q
is stable stably embedded.

So, Theorem 2.7 tells us that if a type of SU-rank 1 is not one-based, then it is almost

internal to Fix(τ) for some definable τ . The property of being one-based is very strong,

since it gives a criterion for independence. It also forbids the existence of two distinct group

laws, such as in fields. Hrushovski and Pillay ([11]) showed that stable one-based groups

of finite rank are particularly nice, and their result generalises partially to our context, as

follows:

Theorem 2.8. Let G be an algebraic group definable in a model U of ACFA, et let B be
a quantifier-free definable subgroup of G(U) which is one-based, and defined over some
E = acl(E). Let X be a quantifier-free definable subset of Bn. Then X is a Boolean
combination of cosets of E-definable subgroups of Bn.

In particular, if Y is a subvariety of Gn, then Y ∩ Bn is a finite union of translates of
quantifier-free definable subgroups of Bn.

If U has characteristic 0, the result extends to arbitrary definable group G and definable
subsetsX of Bn: they are Boolean combination of translates of definable subgroups of Bn,
and these subgroups are defined over E.

1The original formulation is: non-orthogonal to
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The following gives a useful characterization of types of SU-rank 1 which are almost-

internal to Fix(σ):

Theorem 2.9. Let U be a model of ACFA, E = acl(E) a difference subfield of U and b
a tuple in U , with SU(b/E) = 1. Then tp(b/E) is almost-internal to the generic type of
Fix(σ) if and only if

tr.deg(E(b)σ/E) = 1 and {[E(b, σ�(b)) : E(b)] | � ∈ Z} is bounded.

2.10. Some consequences of the dichotomy. The fact that definable sets which are orthog-

onal to the fixed fields are one-based, is at the core of several applications to number theory,

by Hrushovski ([9]) and by Scanlon ([17–19]). I will explain how its use gives a new proof

of the conjecture of Manin-Mumford. Recall first the

Conjecture of Manin-Mumford. Let A be an abelian variety defined over a number field
k, and let X ⊂ A be a subvariety. Then the Zariski closure of X(kalg) ∩ Tor(A)(kalg) is a
finite union of translates of abelian subvarieties of A by torsion points.

This conjecture, as well as several strengthenings (A a commutative algebraic group, k an
arbitrary field, with similar conclusions) have been proved using different methods. The one

by Hrushovski deals with an arbitrary commutative algebraic groupG defined over a number

field. One important point is that the torsion subgroup lives in the semi-abelian quotient of

the group, and he shows that the number of components of the Zariski closure ofTor(G)∩X
is bounded by the number of components of the Zariski closure of Tor(H) ∩ π(X), where
H is the quotient of G by its maximal vector subgroup, and π : G → H is the natural map.

Results of Mumford, together with a characterization by Hrushovski of one-based subgroups

of abelian varieties or of Gm, allow him to show that there is some σ ∈ Aut(Q) such that

the torsion subgroup ofG is contained in a quantifier-free definable subgroupB ofG, which

defines a one-based group in any existentially closed difference field containing (Q̄, σ). This,
together with 2.8 and a simple argument, give the result. Bounds on the complexity of

the difference equations defining B give bounds on the number of cosets involved in the

description.
The applications by Scanlon have a similar flavour.

2.11. The classical semi-minimal analysis. A standard result on supersimple theories states

that if tp(a/E) has finite SU-rank, then there are SU-rank 1 types p1, . . . , pn, and tuples

a1, . . . , an such that acl(Ea) = acl(Ea1 . . . , an), and for each i, tp(ai/Eai−1) is almost-

internal to pi. Such a sequence a1, . . . , an is called a semi-minimal analysis of tp(a/E).

It may happen that one can choose the ai’s such that each tp(ai/E) is almost-internal

to pi; in that case, notice that tp(a/E) is almost internal to the set S of realisations of the

pi’s. This is a strong condition on tp(a/E), and we will say in this case that tp(a/E) is
almost-internal [to types of rank 1].

One can refine the semi-minimal analysis a little and impose that the ai’s are in dcl(Ea),
and that the types tp(ai/acl(Eai−1)) are internal to pi, for all i. But, as mentioned above, in

the case of difference fields, the definable closure is too large to hope obtain precise results

on definable sets. After some work, and precise analysis of what internality to a fixed field
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means, one obtains the following result:

Proposition 2.12 ([5, 2.13]). Let E be an inversive difference field, a a tuple in U such that
σ(a) ∈ E(a)alg .

(1) Then there are a1, . . . , an = a ∈ E(a)σ , such that, setting Ai = E(ai−1)σ for each i
(with a0 = ∅), tp(ai/Ai) satisfies one of the following:

(i) tp(ai/Ai) is algebraic;
(ii) tp(ai/Ai) is one-based;
(iii) tp(ai/Ai) is qf-internal to Fix(τ) for some τ = Frobmσn.

(2) Furthermore, let � ≥ 1 be an integer, (U ′, σ′) a model of ACFA, and f : (E(a)σ, σ
�)→

(U ′, σ′) an embedding of difference fields. Then, if a1, . . . , an are as in (1), we have
similar results holding in U ′: tpU

′
(f(ai)/f(Ai)) is algebraic in case (i), one-based

in case (ii), and qf-internal to Fix(τ �) in case (iii).

The content of this proposition is very strong. Note that in particular it implies that

whether the tuple a is “one-based over E” depends only on its quantifier-free type over E,

not on the particular embedding of E(a)σ into a model of ACFA. This result decomposes

the extension E(a)σ/E into a tower of field extensions, each one of a certain kind.

3. Difference fields and algebraic dynamics

Definition 3.1. An algebraic dynamics defined over a field K is given by a pair (V, φ)
consisting of a (quasi-projective) variety defined over K, together with a rational dominant

map φ : V → V .

Remarks 3.2. In the literature, φ is often assumed in addition to be a morphism. Moreover,

one also often imposes that the morphism be polarized, i.e., that there is an ample vector

bundle L on V and an integer q > 1 such that φ∗L  L⊗q . These hypotheses have strong

consequences which we will discuss later.

If L is a field extension ofK, an algebraic dynamics (V, φ) gives naturally rise to one defined
over L, by viewing V as defined over L. We will constantly use this remark, and always

consider them as algebraic dynamics over a large ambient algebraically closed field U (while

they may be defined over smaller subfields).

If V is not absolutely irreducible, it may become reducible when viewed over L, and for this
reason we will always assume that our varieties are absolutely irreducible.

Definition 3.3. If (V, φ) and (W,ψ) are algebraic dynamics, a morphism (V, φ) → (W,ψ)
is a rational map f : V → W such that f ◦ φ = ψ ◦ f . It is dominant if f : V → W is

dominant.

(3.4) Let (V, φ) be as above, and consider the function field K(V ) of V . The map φ then

yields an endomorphism φ∗ of K(V ), which leaves K fixed, and is defined by f 
→ f ◦ φ,
for φ ∈ K(V ) (We view the elements of K(V ) as partial functions on V (K) taking their

values inK).

The degree of the morphism φ is deg(φ) = [K(V ) : φ∗K(V )]
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Another equivalent way of translating algebraic dynamics into the difference field context,

is the following: let a be a generic of V overK, and define an endomorphism σ ofK(a) by
letting σ be the identity onK, and setting σ(a) = φ(a). If f : (V, φ)→ (W,ψ) is a dominant

morphism, then b = f(a) will be a generic of W , and we will have σ(b) = ψ(b). Thus

dominant morphisms of algebraic dynamics correspond to inclusions of difference fields.

3.5. Applying the semi-minimal analysis. Applying 2.12, there are tuples a1, . . . , an =
a ∈ K(a), such that for each i, σ(ai) ∈ K(ai) ⊂ K(ai+1), and tp(ai/K(ai−1)) is either
algebraic, or qf-internal to Fix(τ), or one-based.

These tuples ai give rise to a fibration of (V, φ), namely, if Vi is the algebraic locus of ai
over K, φi the rational endomorphism of Vi such that σ(ai) = φi(ai) and gi : Vi → Vi−1

the rational map induced by the inclusion K(ai−1) ⊂ K(ai), we obtain

(V, φ)
gn−→ (Vn−1, φn−1)

gn−1−−−→ · · · g2−→ (V1, φ1).

Note that the fibers of these maps are not themselves algebraic dynamics: indeed, the map σ
transports the fiber f−1

n (an−1) to f
−1
n (σ(an−1)) = f−1

n (φn−1(an−1)).

3.6. Internality to the fixed field Fix(σ). Assume that tp(ai/K(ai−1)) is internal to

Fix(σ), and that K(ai) intersects the separable closure K(ai−1)
s of K(ai−1) in K(ai−1).

Then, over some L containing K(ai−1) and linearly disjoint from K(ai) over K(ai−1),
there is a tuple b such that L(ai) = L(b) and σ(b) = b. This implies that L(ai) = L(σ(ai)).
If i = 1, then we get that φ1 is a birational map, i.e., has degree 1. If i ≥ 2, we ob-

tain that φi induces a birational map between g−1
i (ai−1) and g−1

i (σ(ai−1)), and we have

deg(φi) = deg(φi−1).

3.7. Algebraic extensions. Note that if aj is algebraic overK(aj−1), then also deg(φj) =
deg(φj−1).

4. The Canonical base property

This property was originally a property of compact complex manifolds, which was isolated

(independently) by Campana and Fujiki. Work of Moosa and Pillay provided a translation

of this property in model-theoretic terms ([13] and [15]); Pillay and Ziegler ([16]) showed

that various enriched fields enjoy it. This property will be later called the Canonical Base

Property, CBP for short, by Moosa and Pillay who investigate it further in [14], and ask

several questions.

Definition 4.1. Let T be a theory which eliminates imaginaries, U a saturated model of T ,
A ⊂ U and a a tuple in U, p(x) = tp(a/A).

(1) If T is stable and p is stationary, then p is definable, that it, for every formula ϕ(x, y),
there is a formula dϕ(y) (with parameters in A) such that for every tuple b in A (of the

correct arity), U |= dϕ(b) if and only if ϕ(x, b) ∈ p. Furthermore, these definitions

define a (consistent and complete) type overU. The canonical base of p is the smallest

definably closed subset of U over which one can find parameters for all the formulas

dϕ(y) (in other words, contains the code of all sets defined by the dϕ(y)). It is denoted
by Cb(p) or Cb(a/A), and is contained in A.
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(2) If T is unstable, but simple, then the definition of canonical base is more involved,

see e.g. Wagner’s book [20], as it is defined in terms of extension base. It is easier

to define the algebraic closure of the canonical base, denoted Cb(p) or Cb(a/A): it
is the smallest algebraically closed subset B of A such that a and A are independent

over B. If T is supersimple, then Cb(p) will be contained in the algebraic closure of

finitely many realisations of p, and so will have finite SU-rank if p has. Note that this

definition also makes sense for infinite tuples, and we will often use it for the infinite

tuple enumerating the algebraic closure of a finite tuple.

Example 4.2. Consider the theory ACF of algebraically closed fields, say of characteristic

0 for simplicity, and let U be a large algebraically closed field, A ⊂ U a subfield, and a a

tuple in U. Assume that A(a) is a regular extension of A, and consider the algebraic locus

V of a over A. Then Cb(a/A) is simply the field of definition of V .

Example 4.3. Let a be a tuple in U , E a difference subfield of U . If X is a tuple of inde-

terminates of the same size as a, then one can consider the ideal I of E[X]σ of difference

polynomials which vanish at a. As in classical geometry, this ideal has a smallest (differ-

ence) field of definition, i.e., there is a unique smallest difference subfield E0 of E such that

I is generated by its intersection with E0[X]σ . Then Cb(a/E) = acl(E0).

Definition 4.4. Let T be a supersimple theory which eliminates imaginaries. We say that T
has the Canonical Base Property, or CBP, if whenever A andB are algebraically closed sets

such that SU(A/A∩B) < ω and B = Cb(A/B), then tp(B/A) is almost-internal (to types

of SU-rank 1).

4.5. Comments.

(1) Let C = A ∩ B, and a, b finite tuples such that A = acl(Ca), B = acl(Cb). Then
SU(A/C) = SU(a/C). The notion of almost-internality is by definition preserved

under passage to the algebraic closure, so there are a set D = acl(D) containing A
and independent from B over A, and tuples b1, . . . , bn with SU(bi/D) = 1, such that

acl(DB) = acl(Db1 . . . bn).

(2) The definition in the stable case deals with finite tuples a and b, assumes that Cb(a/b)
= b, and deduces that tp(b/a) is internal to types of rank 1.

(3) If tp(A/C) is one-based, then . . . by definition of one-basedness, we know that A and

B are independent over their intersection, and therefore B = C. To say it in another

fashion: if tp(a/E) is one-based, and B contains E, then Cb(a/B) ⊂ acl(Ea).

(4) Hrushovski, Palacin and Pillay give in [10] an example of an ω-stable theory of finite

rank which does not have the CBP. This example is built up from the theory ACF of

algebraically closed fields.

Theorem 4.6 (Pillay-Ziegler [16]).

(1) The theory of differentially closed fields of characteristic 0 has the CBP (version for
stable theories).

(2) The elementary theory of an existentially closed difference field of characteristic 0 has
the CBP.
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Pillay and Ziegler have some additional partial results concerning types of rank 1 in

separably closed fields, but not the full and hoped for result. Their proof uses jet spaces,

and generalises only partially to positive characteristic, because of possible inseparability

problems. In order to show that the result holds for existentially closed fields of arbitrary

characteristic, one needs to show a decomposition result:

Theorem 4.7 (1.16 in [2]). Let T be a supersimple theory, U a large model of T , A, B and
C = A∩B algebraically closed subsets of U such that SU(A/C) < ω and B = Cb(A/B).
Then there are a1, . . . , an ∈ A, types p1, . . . , pn of SU-rank 1 (maybe over some larger base
set D which is independent from AB over C), such that acl(Ca1 . . . , an) = acl(CA); and
each tp(ai/C) has a semi-minimal analysis in which all components are almost-internal to
the set of realisations of the Aut(U/C)-conjugates of pi.
Furthermore, each of the types pi is non-one-based.

From this, one shows easily that it suffices to show the CBP for types whose semi-

minimal analysis only involves one fixed non-one-based type of rank 1. In the particular

case of existentially closed difference fields of positive characteristic p, we must therefore

look at types analysable in terms of Fix(τ), for the various possible τ . When τ = σ, one
shows the following:

Lemma 4.8. Let a be a finite tuple in U , of finite SU-rank over E = acl(E), and assume
that the semi-minimal analysis of tp(a/E) only involves Fix(σ)-almost-internal types. Then
there is a tuple b ∈ E(a)σ±1 such that E(a)σ±1 is separably algebraic over E(b).

Inspection of the proof of Pillay-Ziegler then shows that there is no problem when τ = σ:
their proof goes through verbatim. Working in the reduct (U , τ) then allows to obtain the

results for all types analysable in Fix(τ). Using the dichotomy Theorem 2.7, this finishes

the proof of

Theorem 4.9 (3.5 in [2]). Existentially closed difference fields of any characteristic have
the CBP.

The CBP has several interesting consquences, which I will now list. Relative versions of

these results exist.

Theorem 4.10 (References are to [2]). Let T be a supersimple theory with the CBP, U a
saturated model, and A,B,C = A ∩ B algebraically closed subsets of U, with SU(A/C)
finite.

(1) (2.1) If B = Cb(A/B), then tp(B/C) is almost-internal.

(2) (2.2) More generally, if tp(B/A) is almost-internal, then so is tp(B/C).

(3) (2.4) There is someD = acl(D) with C ⊆ D ⊆ A such that whenever E = acl(E) is
such that tp(A/E) is almost-internal, then E ⊆ D.

(4) (2.5) If B = Cb(A/B) and D is such that tp(A/D) is almost-internal, then so is
tp(AB/D).

(5) (2.10) Let a1, a2, b1, b2 be tuples of finite SU-rank, S a set of types of SU-rank 1 and
assume that

– tp(b2) is almost-internal to types in S ,
– acl(b1) ∩ acl(b2) = acl(∅),
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– a1 |�b1b2 and a2 |�b2b1,

– a2 ∈ acl(a1b1b2).

Then there is e ⊂ dcl(a2b2) such that tp(a2/e) is almost-internal to types in S and
e |�b2. In particular, if tp(a2/b2) is hereditarily orthogonal to all types in S , then
a2 ∈ acl(eb2).

4.11. Comments. Here is an easy consequence of item (1): assume that tp(A/C) is not
almost-internal, has finite SU-rank, and that A ∩ B = C. Then A and B are independent

over C.

Item (4) answers a question of Moosa and Pillay ([14]).

Item (5) is a descent result, and is (together with 2.12) the main ingredient of the applications

to algebraic dynamics by Hrushovski and myself. After some work, and use of Proposition

2.12, one refines the descent result 4.10(5) to obtain the following:

Theorem 4.12 (4.11 in [2]). Let K1,K2 be fields intersecting in k, for i = 1, 2, and with
algebraic closures intersecting in kalg , let Vi be an absolutely irreducible variety and φi :
Vi → Vi a dominant rational map defined over Ki. Assume that K2 is a regular extension
of k, and that there is an integer r ≥ 1 and a dominant rational map f : V1 → V2 such that
f ◦ φ1 = φ

(r)
2 ◦ f . Then there is a variety V0 and a dominant rational map φ0 : V0 → V0,

all defined over k, a dominant map g : V2 → V0 such that g ◦ φ2 = φ0 ◦ g, and deg(φ0) =
deg(φ2).

5. Applications of the CBP to algebraic dynamics

The original result of Matthew Baker. Let k be a field, C a curve over k, andK = k(C).
Let φ : P1 → P1 be defined over K, and of degree d ≥ 2. One can define a logarithmic

height function on the points of P1(K), called the Weil height, and which I will denote by h.
For details, please see [1]. If K = k(t), then the Weil height of a point P ∈ P(K) is simply

the minimal degree of polynomials needed to represent the point P . One then defines the

canonical height ĥ(P ) as:

ĥ(P ) = lim
n→∞

h(φ(n)(P ))/dn.

[Here φ(n) denotes the iteration n times of the map φ.] One verifies that ĥ(φ(P )) = dĥ(P );

moreover, there is a constant C > 0, such that for any point P , one has |ĥ(P )−h(P )| < C.

Clearly, any preperiodic point P (i.e., such that for some integersm > n one has φ(m)(P ) =

φ(n)(P )) must have ĥ(P ) = 0. Baker’s theorem shows that these are the only ones, unless,

over some finite extension ofK one has (P1, φ)  (P1, ψ) for some ψ defined over k:

Theorem 5.1 ([1]). Let k ⊂ K and φ be as above. Assume that for no finite algebraic
extension of K ′, there is an M ∈ PGL2(K

′) such that M−1φM is defined over k. Then a
point P ∈ P1(K) satisfies ĥ(P ) = 0 if and only if it is preperiodic.

He shows moreover that there is a positive ε which bounds below the canonical height of

non-preperiodic points of P1(K).
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5.2. The analogue for higher dimensional varieties. The setting: Let V be a quasi-projec-

tive variety defined over K, φ : V → V a dominant rational map of degree d ≥ 2. Once
fixed an embedding of V into projective space, the Weil heights of points of V (K) exist as
before. (But to obtain the canonical height, additional conditions are necessary.) We assume

that for someN , the points P ∈ V (K) such that all φ(n)(P ), n ≥ 0, have height≤ N , form

a Zariski dense subset of V .

The hope: (V, φ) is isomorphic to some (W,ψ) defined over k.

5.3. The observation which makes things work. The following observation, due to Szpiro,

is what allows model theory to play a role, since it gives a certain configuration which one

can exploit.

Given some integer N , the points of V (K) which have Weil height ≤ N , form what we

will call a limited set, i.e., there is some algebraic set U defined over k, a constructible map

π : U → V (defined overK), such that π(U(k)) contains all points of V (K) of Weil height

≤ N , and π is injective on U(k) (see e.g. section 3 of [4]). Consider the following sets:

V0 = π(U(k)); Vn =
⋂

0≤j≤n

φ−(j)(V0).

So, a point P will be in Vn if and only if each of P , φ(P ), . . . , φ(n)(P ) has Weil height

≤ N .

The map φ induces a (partially defined) constructible map φ∗ onU . Namely, ifQ ∈ U(k),
and φπ(Q) ∈ V0, then φ∗(Q) is defined by πφ∗(Q) = φπ(Q). Assume that for the number

N above, the sets Vn are Zariski dense in V . We now look at Un, the Zariski closure of

π−1(Vn)∩U(k). These sets form a decreasing chain of Zariski closed infinite subsets of U ,

which must therefore stabilise at some integer n. Let Ũ ⊂ Un be the union of all irreducible

components W of Un such that π(W (k)) is Zariski dense in V . Then, the constructible φ∗

induces a permutation of the irreducible components of Ũ of maximal dimension, and for

some r ≥ 1, the constructible map (φ∗)(r) yields a rational dominant endomap ψ of some

irreducible component W of Ũ of maximal dimension. Note that π(W (k)) is still Zariski
dense in V , but that π sends (W,ψ) to (V, φ(r)). It turns out that this is sufficient to obtain

some results, using Theorem 4.12.

Theorem 5.4 ([5, 3.2], [2, 4.12]). With assumption as in 5.2, let U be a model of ACFA
containingK, and a a generic point of V overK satisfying σ(a) = φ(a).

(1) Assume that the semi-minimal analysis of tp(a/K) does not involve Fix(σ). Then
there is a bijective morphism g : (V, φ) → (V0, φ0) for some (V0, φ0) defined over k.
In characteristic 0, this g is a birational isomorphism.

(2) In the general case, there is a dominant rational map (V, φ)→ (V, φ0) where (V, φ0)
is defined over k, and deg(φ) = deg(φ0).

Sketch of Proof. I will use (the proof of) 4.11 in [2], and follow its notation. By the above

discussion 5.3, we know that there is some algebraic dynamics (V1, φ1) defined over k, and
which dominates (V, φ(r)) for some r ≥ 1. Let U be a model of ACFA containing K, let a2
be a generic of V satisfying σ(a2) = φ(a2). Applying 4.11 of [2] (with K1 = k, K2 = K
and (V2, φ2) = (V, φ)), there is a3 ∈ K(a2) such that σ(a3) ∈ k(a3). If V0 is the algebraic

locus of a3 over k, and φ0 ∈ k(V0) is such that φ0(a3) = σ(a3), then deg(φ) = deg(φ0),
and there is a rational dominant map (V, φ)→ (V0, φ0). This gives (2).
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The proof of 4.11 in [2] shows that tp(a2/K(a3)σ±1) is almost-internal to Fix(σ).
Hence, in case (1), it must be algebraic. Thus K(a2) is a finite algebraic extension of

K(a3). Let α ∈ K(a2) be defined by K(α) = K(a2) ∩ K(a3)
s, so that K(a2)/K(α)

is purely inseparable.

Now, recall from the proof of 4.11 that there is some generic a1 of V1 over K, such

that a2 ∈ K(a1). Then k(a1) and K(a3) are linearly disjoint over k(a3), and because

K(α)/K(a3) is separable and K(a2) ⊂ K(a1), it follows that K(α) = K(β) for some

β ∈ k(a1). Then β ∈ k(a3)
s. As σ(a2) ∈ K(a2), we have σ(α) ∈ K(α), hence σ(β) ∈ k(β).

Let Ṽ be the algebraic locus of β over k, and φ̃ ∈ k(Ṽ ) such that σ(β) = φ̃(β), g the ratio-

nal map V → Ṽ such that g(a2) = β. Then g is generically bijective, and sends (V, φ) to
(Ṽ , φ̃). In characteristic 0, we may take α = a2, and g is then birational. This finishes the

proof of (1).

5.5. Comments. The fact that we work with function fields only tells us about the generic

behaviour of the algebraic dynamics, and does not allow us to show full isomorphisms, only

birational isomorphisms.

Remark 5.6. If in addition to the hypotheses of 5.2, one assumes that the map φ is a po-

larised morphism with associated constant q > 1, then the conclusion of 5.4(1) holds, so

that we get the full result. This follows from an observation made without proof in [4]. The

proof I sketch below is due to Hrushovski.

Proof. First, note that the hypotheses imply, by a result of Fakhruddin [8], that we may as-

sume that V ⊂ PN for some N , and that the morphism φ on V is the restriction to V of a

morphism ψ : PN → PN . Suppose that the conclusion of 5.4(1) does not hold, and let U be

a model of ACFA containing K.

Let g : (V, φ) → (V0, φ0) be given by 5.4, with deg(φ) = deg(φ0), let a = a2 ∈ U
be a generic of V satisfying σ(a2) = φ(a2) and let a3 = g(a2) (a generic of V0 satisfying

σ(a3) = φ0(a3)). Equality of the degrees of φ and φ0 implies that the restriction of φ
to S = g−1(a3) is an isomorphism. The variety S′ = φ(S) equals Sσ , and therefore

deg(S′) = deg(S). We will show the following:

If S is a subvariety of V , and deg(S) = deg(φ(S)) (as subvarieties of PN ), then the
degree of the map φ restricted to S is qdim(S).

Let r = dim(S), and let L1, . . . , Lr be generic hyperplanes. Then deg(S′) = S′ · L1 ·
· · · · Lr, and also equals |S′ ∩ L1 ∩ · · · ∩ Lr|, the number of points of S′ ∩ L1 ∩ · · · ∩ Lr

counted with multiplicities. Pulling back by φ, we get

deg(S) = deg(S′) deg(φ|S) = |φ−1(S′) ∩ φ−1(L1) ∩ · · · ∩ φ−1(Lr)|
= S · qL1 · · · qLr = qr deg(S)

(here we use φ∗Li = qLi). As deg(S) = deg(S′), the restriction of φ to S has degree qr.

As φ|S is birational and therefore of degree 1, we must have r = 0. This implies that S
is finite, i.e., that a2 is algebraic over K(a3), and we conclude as in 5.4(1).

Acknowledements. The author thanks MSRI for its support during the spring 2014.
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Abstract. The most recent wave of applications of logic to operator algebras is a young and rapidly

developing field. This is a snapshot of the current state of the art.
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Borel reducibility, ultraproducts.

1. Introduction

The connection between logic and operator algebras in the past century was sparse albeit

fruitful. Dramatic progress has brought set theory and operator algebras closer together over

the last decade. A number of long-standing problems in the theory of C*-algebras were

solved by using set-theoretic methods, and solutions to some of them were even shown to

be independent from ZFC. There is much to be said about these developments (as witnessed

in three almost disjoint recent survey papers [30, 45, 96]), but that is not what this paper is

about. New applications of logic to operator algebras are being found at such a pace that

any survey is bound to become obsolete within a couple of years. Instead of presenting an

encyclopaedic survey, I shall proceed to describe the current developments (many of them

from the unpublished joint work, [33, 34]) and outline some possible directions of research.

The choice of the material reflects my interests and no attempt at completeness has been

made. Several results proved by operator algebraists without using logic that have logical

content are also included.

‘Logic’ in the title refers to model theory and (mostly descriptive) set theory, with a dash

of recursion theory in a crucial place.

2. Operator algebras

Let B(H) denote the Banach algebra of bounded linear operators on a complex Hilbert space

H equipped with the operation * of taking the adjoint. A C*-algebra is a Banach algebra

with involution which is *-isomorphic to a subalgebra of B(H) for some H . Notably, all

algebraic isomorphisms between C*-algebras are isometries. All C*-algebras considered

here will be unital, unless otherwise specified. A von Neumann algebra is a unital subalgebra
of B(H) which is closed in the weak operator topology. An algebra isomorphic to a von

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Neumann algebra is called a W*-algebra. Standard terminology from operator theory is

imported into operator algebras, and in particular positivity of self-adjoint operators plays an

important role.

I only have something to say about those von Neumann algebras that have a trace. A

normalized trace (on a von Neumann algebra or a unital C*-algebra) is a unital positive

functional such that τ(ab) = τ(ba) for all a and b. We shall only consider unital algebras

and normalized traces. A trace on a von Neumann algebra is automatically continuous in the

weak operator topology. A tracial infinite-dimensional von Neumann algebra with a trivial

center is a II1 factor. The terminology comes from von Neumann’s type classification, in

which the unique In factor is Mn(C); we shall not consider other types of factors.
If τ is a trace on an operator algebra A then the �2-norm ‖a‖2 = τ(a∗a)1/2 turns A into

a pre-Hilbert space. The algebraA is represented on this space by the left multiplication; this

is the GNS representation corresponding to τ . If A is a C*-algebra, then the weak closure

of the image of A is a tracial von Neumann algebra. If A is simple and infinite-dimensional,

this algebra is a II1 factor. A GNS representation can be associated to an arbitrary positive

unital functional (state).
The category of abelian C*-algebras is equivalent to the category of locally compact

Hausdorff spaces and the category of abelian von Neumann algebras with a distinguished

trace is equivalent to the category of measure algebras. Because of this, these two subjects

are considered to be noncommutative (or quantized) topology and measure theory, respec-

tively.

There is only one (obvious, spatial) way to define the tensor product of von Neumann

algebras. A C*-algebra A is nuclear if for every C*-algebra B there is a unique C*-norm

on the algebraic tensor product of A and B. The importance of this notion is evident from

a variety of its equivalent characterizations (see [11]), one of them being Banach-algebraic

amenability. Although by a result of Junge and Pisier (see [11]) there is finite subset F �
B(H) such that no nuclear C*-algebra includes F , these algebras are ubiquitous in a number

of applications.

For more on C*-algebras and von Neumann algebras see [8, 11, 55].

2.1. Intertwining. A metric structure is a complete metric space (A, d) equipped with

functions f : An → A and predicates p : An → R, all of which are assumed to be uniformly

continuous on d-bounded sets. Consider two separable complete metric structures A and B.

Assume we have partial isometric homomorphisms Φn : Fn → Gn, Ψn : Gn → Fn+1 for

n ∈ N such that Fn ⊆ Fn+1 ⊆ A and Gn ⊆ Gn+1 ⊆ B for n ∈ N and
⋃

n Fn and
⋃

n Gn

are dense in A and B respectively. Furthermore assume that in the following diagram

F1 F2 F3 F4
. . . A

G1 G2 G3 G4
. . . B

Φ1 Φ2 Φ3 Φ4Ψ1 Ψ2 Ψ3

the n-th triangle commutes up to 2−n. ThenΦ:
⋃

n Fn → B defined byΦ(a) = limn Φn(a)
and Ψ:

⋃
n Gn → A defined by Ψ(b) = limn Ψn(b) are well-defined isometric homomor-

phisms. Their continuous extensions to A and B are respectively an isomorphism from A
onto B and vice versa.
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Variations of this method for constructing isomorphisms between C*-algebras comprise

Elliott’s intertwining argument. In Elliott’s program for classification of separable, nuclear,

unital and simple C*-algebras maps Φn and Ψn are obtained by lifting morphism between

the K-theoretic invariants (so-called Elliott invariants) of A and B. The first result along

these lines was the Elliott–Bratteli classification of separable AF algebras (i.e., direct limits

of finite-dimensional C*-algebras) by the ordered K0. Remarkably, for A and B belonging

to a rather large class of nuclear C*-algebras this method shows that any morphism between

Elliott invariants lifts to a morphism between the algebras. Elliott conjectured that the sep-

arable, nuclear, unital and simple algebras are classified by K-theoretic invariant known as

the Elliott invariant. This bold conjecture was partially confirmed in many instances. See

[77] for more on the early history of this fascinating subject.

Examples of separable, nuclear, unital and simple C*-algebras that limit the extent of

Elliott’s classification program were given in [78] and [90]. Algebras defined in [90] have

a remarkable additional property. Not only do the nonisomorphic algebras A and B have

the same Elliott invariant, but in addition they cannot be distinguished by any homotopy-

invariant continuous functor. We shall return to these examples in §4.3. The revised Elliott

program is still one of the core subjects in the study of C*-algebras (see [25]).

2.2. Strongly self-absorbing (s.s.a.) algebras. An infinite-dimensional C*-algebra isUHF
(uniformly hyperfinite) if it is an infinite tensor product of full matrix algebras Mn(C). If
A is UHF, then every two unital copies of Mn(C) in it are unitarily conjugate and therefore

every endomormphism of A is a point-norm limit of inner automorphisms. The generalized
natural number of A has as its ‘divisors’ all n such that Mn(C) embeds unitally into A.

Glimm proved that this is a complete isomorphism invariant for the separable UHF algebras.

IfA is UHF then it has a unique trace τ . The tracial von Neumann algebra corresponding

to the τ -GNS representation of A (§2) is the hyperfinite II1 factor, R, and it does not depend

on the choice of A. It is the only injective II1 factor and it has played a key role in the

classification of injective factors [19].

Two *-homomorphisms Φ and Ψ from A into B are approximately unitarily equivalent
if there is a net of inner automorphisms αλ, for λ ∈ Λ, of B such that

limλ αλ ◦ Φ(a) = Ψ(a)

for all a ∈ A (convergence is taken in the operator norm for C*-algebras and in the �2-
norm for tracial von Neumann algebras). If A ⊗ B ∼= A we say that A is B-absorbing and

if A ⊗ A ∼= A then we say that A is self-absorbing. Here and in what follows, we will

often be providing two definitions at once, one for von Neumann algebras and another for

C*-algebras. The difference comes in the interpretation of ⊗, either as the von Neumann

(spatial) tensor product ⊗̄ or as the C*-algebra minimal (spatial) tensor product ⊗. McDuff
factors are the R-absorbing II1 factors. A separable C*-algebraD is strongly self-absorbing
(s.s.a.) [92] if there is an isomorphism Φ: D → D ⊗D and map id⊗1D : D → D ⊗D is

approximately unitarily equivalent toΦ. The definition of strongly self-absorbing is modified

to II1 factors following the convention stated above, by replacing ‖ · ‖ with ‖ · ‖2 and ⊗ with

⊗̄.
The hyperfinite factor R is the only s.s.a. tracial von Neumann algebra with separable

predual (Stefaan Vaes pointed out that this was essentially proved in [19, Theorem 5.1(3)]).

A UHF algebra A is s.s.a. if and only if it is self-absorbing. However, the latter notion is

in general much stronger. For any unital C*-algebra A the infinite tensor product
⊗

N A is
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self-absorbing but not necessarily s.s.a. Every s.s.a. C*-algebra D is simple, nuclear and

unital [23].

Three s.s.a. algebras are particularly important. The Jiang–Su algebra Z is an infinite-

dimensional C*-algebra which is indistinguishable from C by its Elliott invariant. Conjec-

turally, Z-absorbing infinite-dimensional separable, nuclear, unital and simple algebras are

classifiable by their Elliott invariant. The Cuntz algebraO2 is the universal algebra generated

by two partial isometries with complementary ranges. The Cuntz algebra O∞ is the univer-

sal unital C*-algebra generated by partial isometries vn, for n ∈ N, with orthogonal ranges.

The first step in the Kirchberg–Phillips classification of purely infinite separable, nuclear,

unital and simple algebras was Kirchberg’s result that every such algebra is O∞-absorbing

and thatO2 isA-absorbing for every separable, nuclear, unital and simple algebra (see [77]).

3. Abstract classification

A Polish space is a separable, completely metrizable topological space. A subset of a Polish

space is analytic if it is a continuous image of some Polish space. Essentially all classi-

cal classification problems in mathematics (outside of subjects with a strong set-theoretic

flavour) can be modelled by an analytic equivalence relation on a Polish space. Moreover,

the space of classifying invariants is also of this form, and computation of the invariant is

usually given by a Borel measurable map. This is indeed the case with C*-algebras and the

Elliott invariant [43].

IfE andF are equivalence relations on Polish spaces,E is Borel-reducible toF,E ≤B F,
if there exists a Borel-measurable f : X → Y such that xE y if and only if f(x) E f(y). One
can interpret this as stating that the classification problem for E is not more difficult than the

classification problem for F . Following Mackey, an equivalence relation E Borel-reducible

to the equality relation on some Polish space is said to be smooth. By the Glimm–Effros
dichotomy the class of non-smooth Borel-equivalence relations has an initial object [52],

denoted E0. It is the tail equality relation on {0, 1}N. While the Glimm–Effros dichotomy

was proved by using sophisticated tools from effective descriptive set theory, the combina-

torial core of the proof can be traced back to work of Glimm and Effros on representations

of locally compact groups and separable C*-algebras. See [47, 57] for more on (invariant)

descriptive set theory.

When is an equivalence relation classifiable? Many non-smooth equivalence relations

are considered to be satisfactorily classified. An example from the operator algebras is the

Elliott–Bratteli classification of separable AF algebras by countable abelian ordered groups.

A rather generous notion is being ‘classifiable by countable structures.’ Hjorth’s theory of

turbulence [54] provides a powerful tool for proving that an orbit equivalence relation is not

classifiable by countable structures.

Sasyk and Törnquist have proved that every class of injective factors that was not already

satisfactorily classified is not classifiable by countable structures [80, 81]. By combining

results of [24, 44, 48, 71, 79], one proves that the following isomorphism relations are Borel-

equireducible.

(a) Isomorphism relation of separable C*-algebras.

(b) Isomorphism relation of Elliott–classifiable separable, nuclear, unital and simple alge-

bras.
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(c) Isometry relation of separable Banach spaces.

(d) Affine homeomorphism relation of metrizable Choquet simplices.

(e) Isometry relation of Polish spaces.

Each of these equivalence relations (as well as the isometry of a class of separable metric

structures of any given signature) is Borel-reducible to an orbit equivalence relation of a

Polish group action [24].

Being Borel-reducible to an orbit equivalence relation is, arguably, the most generous

definition of being concretely classifiable. Conjecturally, E1, the tail-equivalence relation

on [0, 1]N, is an initial object among Borel equivalence relations not Borel-reducible to an

orbit equivalence relation [58]. Notably, the isomorphism of separable Banach spaces is the

≤B-terminal object among analytic equivalence relations [46].

The answer to the question ‘When is an equivalence relation classifiable’ is frequently

of somewhat sociological nature. It is notable that the isomorphism relation of abelian unital

C*-algebras (generally considered intractable) is Borel-reducible to the isomorphism rela-

tion of Elliott-classifiable AI algebras (for which there is a satisfactory classification rela-

tion). Also, as pointed out by David Fremlin, most analysts find that normal operators are

satisfactorily classified up to conjugacy by the spectral theorem, although they are not clas-

sifiable by countable structures.

Nevertheless, the theory of Borel-reducibility is a great example of a situation in which

logic provides concrete obstructions to sweeping conjectures. For example, the classification

of countable abelian torsion free groups of rank n + 1 is strictly more complicated than the

classification of countable abelian torsion free groups of rank n for every n [89]. (Notably,

the proof of this result uses Popa superrigidity of II1 factors, [75].) This theory was recently
successfully applied to (non)classification of automorphisms of group actions on operator

algebras ([59], automorphisms of C*-algebras [60, 64] and subfactors [9].

A partial Borel-reducibility diagram of classification problems in operator algebras is

given in Figure 3.1. For an explanation of terminology see [30, §9]. I am indebted to

Marcin Sabok for pointing out that the isomorphism of countable structures of any signature

is Borel-reducible to the isomorphism relation of separable AF algebras [15].

Borel-reduction of equivalence relations as defined above does not take into the account

the functorial nature of the classification of C*-algebras. Some preliminary results on Borel

functorial classification were obtained by Lupini.

4. Model-theoretic methods

Until recently there was not much interaction between model theory and operator alge-

bras (although model theory was fruitfully applied to the geometry of Banach spaces, (see

[53]). Recent emergence of the logic of metric structures [5], originally introduced only for

bounded metric structures, created new opportunities for such interactions. It was modified

to allow operator algebras in [36].

4.1. Logic of metric structures. Model theory can roughly be described as the study of

axiomatizable classes of structures and sets definable in them. Axiomatizable properties

can be expressed in syntactic terms, but they are also characterized by preservation under

ultraproduts and ultraroots (see §6). A category C is axiomatizable if there exists a first-



20 Ilijas Farah

isomorphism
of Banach
spaces

Borel
relations
are encircled

bi-emb.

of AF

Cuntz
semigroups

EKσ

isometry of
Polish spaces

conjugacy
of unitary
operators

RN/c0 RN/�q , q ≥ 1
Irr(A),A

non-type I

E1
homeomorphism of
cpct metric spaces

Louveau
–Velickovic

von Neumann
factors

RN/�1

ctble
graphs

AF algebras

E0

isometry
of cpct
metric spaces

orbit equivalence relations

countable structures

smooth

Figure 3.1.

order theory T such that the category M(C) of all models of T is equivalent to the original

category.

Classical model theory deals with discrete structures, and its variant suitable for metric

structures as defined in §2.1 was introduced in [5]. In this logic interpretations of formu-

las are real-valued, propositional connectives are real-valued functions, and quantifiers are

supx and infx. Each function and predicate symbol is equipped with a modulus of uniform

continuity. This modulus is a part of the language. If the diameter of the metric structures

is fixed, then every formula has its own modulus of uniform continuity, respected in all

relevant metric structures. Formulas form a real vector space equipped with a seminorm,

‖φ(x̄)‖ = | supφ(ā)A| where the supremum is taken over all metric structures A of the

given language and all tuples ā in A of the appropriate type. Formulas are usually required

to have range in [0,∞) (or [0, 1] in the bounded case) but allowing negative values results in
equivalent logic; see also [4]. The theory of a model is the kernel of the functional φ 
→ φA,
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where φ ranges over all sentences (i.e., formulas with no free variables) of the language. This

kernel uniquely defines the functional, which can alternatively be identified with the theory.

The weak*-topology on this space is also known as the logic topology. If the language is

countable then the space of formulas is separable and the spaces of theories and types (see

§4.4) are equipped with compact metric topology.

Two metric structures are elementarily equivalent if their theories coincide. A formula is

existential if it is of the form inf x̄ φ(x̄) for some quantifier-free formula φ(x̄). The existential
theory of A is Th∃(A) = {ψ ∈ Th(A) : ψ is existential}.

There are several equivalent ways to adapt the logic of metric structures to operator

algebras and to unbounded metric structures in general [3, 36]. Axiomatizability is defined

via equivalence of categories as above, but modelM(A) associated with A has more (albeit

artificial) structure. It is equipped with domains of quantification, bounded subsets of A
on which all functions and predicates are uniformly continuous (with a fixed modulus of

uniform continuity) and over which quantification is allowed. It is the existence of category

M(C), and not its particular choice, that matters.

In the simplest version of M(A) quantification is allowed only over the (operator norm)

n-balls of the algebra. The notion of sorts over which one can quantify corresponds to those
functors from the model category into metric spaces with uniformly continuous functions

that commute with ultraproducts (see [36, 2]). For example, M(A) can be taken to con-

sist of all matrix algebras Mn(A) for n ∈ N, as well as completely positive, contractive

maps between them and finite-dimensional algebras. This is important because nuclearity is

equivalently characterized as the CPAP, the completely positive approximation property (see
[11] and [12]).

C*-algebras are axiomatized as Banach algebras with an involution that satisfy the C*-
equality, ‖aa∗‖ = ‖a‖2, by the Gelfand–Naimark and Segal (GNS mentioned earlier) theo-

rem. Abelian C*-algebras are obviously axiomatized by supx,y ‖xy − yx‖ and non-abelian

C*-algebras are slightly less obviously axiomatized by inf‖x‖≤1 |1 − ‖x‖| + ‖x2‖ (a C*-

algebra is nonabelian if and only if it contains a nilpotent element).

The proof that the tracial von Neumann algebras with a distinguished trace are also ax-

iomatizable ([36], first proved in [6]) goes deeper and uses Kaplansky’s Density Theorem.

Again, quantification is allowed over the (operator norm) unit ball and the metric is the �2
metric ‖a‖2 = τ(a∗a)1/2. The operator norm is not continuous with respect to the �2 metric

and it therefore cannot be added to II1 factors as a predicate.

There are elementarily equivalent but nonisomorphic separable unital AF algebras. This

is proved by using descriptive set theory. The association A 
→ Th(A) is Borel, and hence

the relation of elementary equivalence is smooth (§3). The category of AF algebras is equiv-

alent to the category of their ordered K0 groups. By the Borel version of this result and the

fact that the isomorphism of dimension groups is not smooth the conclusion follows.

The following proposition is taken from [34].

Proposition 4.1.

(1) For every separable, nuclear, unital and simple C*-algebra there exists an elementar-
ily equivalent, separable, non-nuclear, C*-algebra.

(2) The reduced group C*-algebra of the free group with infinitely many generators
C∗r(F∞) is not elementarily equivalent to a nuclear C*-algebra.

Instead of providing a genuine obstruction, this proposition precipitated some of the most

interesting progress in the field.
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Here is a simple but amusing observation. The Kadison–Kastler distance between subal-
gebras of B(H) is the Hausdorff (norm) distance between their unit balls. For every sentence

φ the map A 
→ φA is continuous with respect to this metric. Therefore the negation of an

axiomatizable property is stable under small perturbations of an algebra (see [18] and refer-

ences thereof for more on perturbations of C*-algebras).

4.2. Elementary submodels. If A is a submodel of B, it is said to be an elementary
submodel if φA = φB � An for every n and every n-ary formula φ. The Downwards

Löwenheim–Skolem theorem implies that every model has a separable elementary sub-

model. Its C*-algebraic variant is known as ‘Blackadar’s method’ and is used to provide

separable examples from known nonseparable examples (see [8, II.8.5] and [72]).

Proposition 4.2. Assume A is a C*-algebra and B is its elementary submodel. Then B is a
C*-algebra with the following properties.

(1) Every trace of B extends to a trace of A.

(2) Every ideal of B is of the form I ∩B for some ideal I of A.

(3) Every character of B extends to a character of A.

(4) If A is nuclear so is B.

In particular, B is monotracial and/or simple if and only if A has these properties. It

should be noted that neither of these properties is axiomatizable, because neither of them is

preserved under taking ultrapowers (see [76] for the nonaxiomatizability of having a unique

trace and §6 for the ultrapowers).

A drastic example of a property that does not persist to elementary submodels is given in

Theorem 8.1.

4.3. Intertwining again. We return to Elliott’s intertwining argument (§2.1):

A1 A2 A3 A4
. . . A = limn An

B1 B2 B3 B4
. . . B = limn Bn

Φ1 Φ2 Φ3 Φ4Ψ1 Ψ2 Ψ3

If the maps Φn are expected to converge to an isomorphism, it is necessary that they approx-

imate elementary maps. For a formula φ(x̄) and a tuple ā in the domain of Φn one must

have φ(ā)A = limn φ(Φn(ā))
B . Even more elementarily, the algebras A and B ought to

be elementarily equivalent (no pun intended). Every known counterexample to Elliott’s pro-

gram involves separable, nuclear, unital and simple algebras with the same Elliott invariant,

but different theories. For example, the radius of comparison was used in [91] to distinguish

between continuum many nonisomorphis separable, nuclear, unital and simple algebras with

the same Elliott invariant, and it can be read off from the theory of an algebra [34].

This motivates an outrageous conjecture, that the following question has a positive an-

swer.

Question 4.3. Assume that separable, nuclear, unital and simple algebras A and B have
the same Elliott invariant and are elementarily equivalent. Are A andB necessarily isomor-
phic?
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Since being Z-stable is axiomatizable (see §6.1), the revised Elliott conjecture that all

Z-stable separable, nuclear, unital and simple algebras are classified by their Elliott invari-

ant is a special case of a positive answer to Question 4.3. All known nuclear C*-algebras

belong to the so-called bootstrap class, obtained by closing the class of type I algebras under
operations known to preserve nuclearity (see [8]). An (expected) negative answer to Ques-

tion 4.3 would require new examples of separable, nuclear, unital and simple algebras. Can

model-theoretic methods provide such examples?

4.4. Omitting types. Let Fn be the set of formulas whose free variables are included in

{x1, . . . , xn}. An n-type is a subset t of Fn such that for every finite t0 � t and for every

ε > 0 there are a C*-algebra A and n-tuple ā in the unit ball of A such that |φ(ā)| < ε for
all φ ∈ t0. By applying functional calculus one sees that this definition is equivalent to the

apparently more general standard definition ([5]) in which types consist of arbitrary closed

conditions. An n-type t is realized by n-tuple ā in the unit ball of A if φ(ā)A = 0 for all φ
in t. It is omitted in A if it is not realized by any n-tuple in A1. Łoś’s theorem implies that

every type is realized in an ultraproduct; we shall return to this in §6.0.1 but presently we are

concerned with omitting types.

The omitting types theorem of classical (‘discrete’) model theory [67] provides a simple

condition for omitting a type in a model of a given theory. A predicate p is definable if

for every ε > 0 there exists a formula φ(x̄) which up to ε approximates the value of p.
A type is definable if the distance function to its realization in a saturated model (§6.0.1,

§7.1) is definable. By the omitting types theorem of [5] a type is omissible if and only if it

is not definable, with the additional stipulation that it be complete (i.e., maximal under the

inclusion). While a definable type is never omissible even if it is incomplete, Ben Yaacov

has isolated types that are neither definable nor omissible. His example was simplified by T.

Bice.

Theorem 4.4 ([39]).

(1) There is a theory T in a separable language such that the set of types omissible in
some model of T is a complete Σ1

2 set.

(2) There are a complete theoryT in a separable language and a countable setP of types
such that for every finite P0 � P there exists a model M of T that omits all types in
P0, but no model of T omits all types in P.

Therefore the question of whether a type is omissible in a model of a given metric theory

is by (1) far from being Borel or even analytic and therefore intractable, and by (2) separately

omissible types over a complete theory are not necessarily jointly omissible. Both results

stand in stark contrast to the situation in classical model theory.

The idea that the omitting types theorem can be used in the study of C*-algebras emerged

independently in [14] and [83]. A sequence tn, for n ∈ N, of m-types is uniform if there

are formulas φj(x̄) for j ∈ N with the same modulus of uniform continuity such that tn =
{φj(x̄) ≥ 2−n : j ∈ N} for every n. In this situation, the interpretation of the infinitary

formula φ(x̄) = infj φj(x̄) is uniformly continuous in every model (with a fixed modulus of

uniform continuity) and moreover supx̄ φ(x̄)
A = 0 if and only if A omits all tn.

Nuclearity, simplicity, as well as many other important non-axiomatizable properties of

C*-algebras (including nuclear dimension or decomposition rank ≤ n; see [99]) are char-

acterized by omitting a uniform sequence of types. The classical theory of omitting types
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applies to such types unchanged: a uniform sequence of types is omissible in a model of a

complete theory T if and only if none of the types is isolated [39]. As an extra, this charac-

terization shows that one can find a separable elementary submodel of a nonnuclear algebra

that is itself nonnuclear by assuring that it includes a tuple that realizes the relevant type

4.5. Strongly self-absorbing algebras II. These algebras have remarkable model-theoretic

properties. Every s.s.a. algebraD is a prime model of its theory (it elementarily embeds into

every other model of its theory) and every unital morphism of D into another model of its

theory is elementary (§4.2).

Proposition 4.5. If D and E are s.s.a. algebras then the following are equivalent.

(1) E is D-absorbing: E ⊗D ∼= E.

(2) D is isomorphic to a subalgebra of E.

(3) Th∃(D) ⊆ Th∃(E).

The implications from (1) to (2) and from (2) to (3) are always true, but both converses

fail in general. S.s.a. algebras are as rare as they are important and the following diagram

represents all known s.s.a. algebras, given in the order defined by either clause of Proposition

4.5.

O2

O∞⊗ UHF

O∞ UHF

Z

Finding an s.s.a. algebra other than the ones in the diagram would refute the revised

Elliott program.

5. Tracial von Neumann algebras

Many of the pathologies that plague (or enrich, depending on the point of view) the theory

of C*-algebras are not present in von Neumann algebras.

By a result of McDuff, the relative commutant of a II1 factor in its ultrapower is trivial,

nontrivial and abelian, or the factor tensorially absorbsR (see Proposition 6.1). Each of these

three classes is nonempty, and there is presently no other known method for distinguishing

theories of II1 factors (see [37]).

The hyperfinite II1 factorR is a canonical object and every embedding ofR into a model

of its theory is elementary (§4.5). However, there are embeddings between models of the

theory of R that are not elementary (i.e., the theory of R is not model-complete), and in

particular this theory does not allow the elimination of quantifiers [31, 51]. This may be an

indication that we do not have the right language for the theory of II1 factors. The obstruction

for the elimination of quantifiers extracted in [31] from [56] is removed by adding a predicate

for the unitary conjugacy relation. As this is a definable relation, adding such predicate
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affects only syntactical structure of the language. It is not clear whether adding finitely, or

even countably, many such predicates could make the theory of R model-complete. This

may suggest that the theory of R is as complicated as the first-order arithmetic or ZFC.

Given a II1 factor M and a projection p in M , are M and its corner pMp elementar-

ily equivalent? By the Keisler–Shelah theorem, this is equivalent to asking whether these

algebras have isomorphic ultrapowers. A positive answer would imply that all free group

factors L(Fn), for n ≥ 2, are elementarily equivalent, giving a ‘poor man’s’ solution to the

well-known problem whether the free group factors are isomorphic (see [22]). On the other

hand, a negative answer would provide a continuum of distinct theories of II1 factors that are

corners of L(F2). A deeper analysis of the model theory of II1 factors is likely to involve

Voiculescu’s free probability.

In recent years theories of C*-algebras and von Neumann algebras are increasingly con-

sidered as inseparable. Some of the most exciting progress on understanding tracial C*-

algebras was initiated in [68]. We shall return to this in §6.1, but see also [12].

6. Massive algebras I: Ultraproducts

We now consider algebras that are rarely nuclear and never separable, but are nevertheless

indispensable tools in the study of separable nuclear algebras.

Ultraproducts emerged independently in logic and in functional analysis (more precisely,

in the theory of II1 factors) in the 1950’s (see the introduction to [88]). If (An, dn), for
n ∈ N, are bounded metric structures of the same signature and U is an ultrafilter on N, then
the ultraproduct

∏
U An is defined as follows. On the product structure

∏
n An consider the

quasi-metric

dU ((an), (bn)) = limn→U dn(an, bn).

Since every function symbol f has a fixed modulus of uniform continuity, it defines a uni-

formly continuous function on the quotient metric structure
∏

n An/ ∼dU . This structure is

the ultraproduct of An, for n ∈ N, associated to the ultrafilter U . It is denoted by∏U An.

In the not necessarily bounded case one replaces
∏

n An with {(an) ∈
∏

n An : an
belong to the same domain of quantification}. With our conventions, in the operator algebra

case this is the �∞-product usually denoted
∏

n An. The nontrivial fact that an ultrapower of

tracial von Neumann algebras is a tracial von Neumann algebra is an immediate consequence

of the axiomatizability.

The usefulness of ultraproducts draws its strength largely from two basic principles. The

first one is Łoś’s theorem, stating that for any formula φ(x̄) we have

φ(ā)
∏
U An = limn→U φ(ān)

An .

This in particular implies that the diagonal embedding of A into its ultrapower is elementary

(§4.2), and therefore the theory is preserved by taking ultrapowers. The second principle

will be discussed in §6.0.1.

This may be a good place to note two results in abstract model theory that carry over to

the metric case [5]. A category K with an appropriately defined ultraproduct construction

is closed under the elementary equivalence if and only if it is closed under isomorphisms,

ultraproducts, and ultraroots (i.e., AU ∈ K implies A ∈ K). By the Keisler–Shelah theorem,

two models are elementarily equivalent if and only if they have isomorphic ultrapowers.

Both results require considering ultrafilters on arbitrarily large sets (see [86]).
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The fact that it is easier to prove that an ultraproduct of C*-algebras is a C*-algebras

than that an ultraproduct of tracial von Neumann algebras is a tracial von Neumann algebra

is reflected in the fact that it is easier to prove that the C*-algebras are axiomatizable than

that the tracial von Neumann algebras are axiomatizable.

All ultrafilters considered here concentrate on N and are nonprincipal. It is not possible

to construct such an ultrafilter in ZF alone, as a (rather weak) form of the Axiom of Choice

is required for its construction. However, results about separable C*-algebras and separably

acting II1 factors proved using ultrafilters can be proved without appealing to the Axiom of

Choice, by standard absoluteness arguments.

An ultrapower of an infinite-dimensional, simple, unital C*-algebra is by Łoś’s theorem

unital. It is, however, nonseparable, not nuclear, and it is simple only under exceptional

circumstances. This shows that none of these three properties is axiomatizable (cf. Proposi-

tion 4.1). Nevertheless, separable, nuclear, unital and simple C*-algebras can be constructed

by using the Henkin construction and omitting types theorem ([39], see §4.4).

6.0.1. Countable saturation. We define the second important property of massive alge-

bras. If a type (see §4.4) is allowed to contain formulas with parameters from an algebra A
we say that it is a type over A.

An algebra A is countably saturated if every countable type t(x̄) over A is realized in

A if and only if it is consistent. (These algebras are sometimes said to be ℵ1-saturated. The
latter terminology is more conveniently extended to higher cardinalities.) Every ultrapower

associated to a nonprincipal ultrafilter onN is countably saturated. A weakening of countable

saturation suffices for many purposes (see §7), and we shall return to full saturation in §7.1.

6.1. Relative commutants. In the theory of operator algebras even more important than

the ultrapower itself is the relative commutant of the algebra inside the ultrapower,

A′ ∩AU = {b ∈ AU : ab = ba for all a ∈ A}.

The current prominence of ultrapowers as a tool for studying separable algebras can be traced

back to McDuff ([70]) and the following proposition (generalized to s.s.a. algebras in [92]).

Proposition 6.1. IfD is strongly self-absorbing and A is separable, then A isD-absorbing
if and only if D embeds into A′ ∩AU .

The nontrivial, converse, implication uses the following (a lemma in model theory that I

learned from Wilhelm Winter) proved using the intertwining argument.

Lemma 6.2. If A ⊆ B are separable metric structures and BU has a sequence of isometric
automorphisms αn such that limn αn(a) = a for all a ∈ A and limn dist(αn(b), A) = 0
for all b ∈ B, then A and B are isometrically isomorphic.

Noting that all nonprincipal ultrafilters on N ‘look the same’ and in particular that the

choice of U in Proposition 6.1 is irrelevant as long as it is a nonprincipal ultrafilter on N, one
may ask the following.

Question 6.3. If M is a separable metric structure, does the isomorphism type of MU (and
M ′ ∩MU , if M is a Banach algebra) depend on U at all?

If M is a Hilbert space or a measure algebra, then a simple argument (using Maharam’s

theorem in the latter case) gives a negative answer. Also, Continuum Hypothesis (CH) im-
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plies negative answer to both questions for an arbitrary separable M (see §7.1). Therefore,

the question is whether CH can be removed from this proof.

Question 6.3 for relative commutants was asked by McDuff [70] and Kirchberg ([61]) in

the case of McDuff factors and C*-algebras, respectively. In [49] it was proved that, under

some additional assumptions onM , CH is equivalent to the positive answer to either of these

questions! This was achieved by using only results from classical (‘discrete’) model theory.

By using the logic of metric structures and Shelah’s non-structure theory, the full result was

proved in [35] and [41].

Theorem 6.4. Assume CH fails. If M is a separable C*-algebra or a McDuff factor with
a separable predual, then M has22

ℵ0 nonisomorphic ultrapowers and 22
ℵ0 nonisomorphic

relative commutants associated to nonprincipal ultrafilters on N.

Let’s zoom out a bit. A complete first-order theoryT has the order property if there exist
n ≥ 1 and a 2n-ary formula φ(x̄, ȳ) such that for every m there is a model M of T which

has a ‘φ-chain’ of length at least m. A φ-chain is a sequence x̄i, ȳi, for i ≤ m, such that

φ(x̄i, ȳj) = 0 if i ≤ j and φ(x̄i, ȳj) = 1 if i > j.

This is the metric version of one of the important non-structural properties of theories in

Shelah’s stability theory ([85] and [35]). The theory of any infinite-dimensional C*-algebra

and of any II1 factor has the order property. This is proved by continuous functional calculus

and by utilizing noncommutativity, respectively. However, the theories of abelian tracial

von Neumann algebras do not have the order property, essentially by applying Maharam’s

theorem on measure algebras.

Theorem 6.5. Suppose that A is a separable structure in a separable language.

(1) If the theory of A does not have the order property then all of its ultrapowers associ-
ated to nonprincipal ultrafilters on N are isomorphic.

(2) If the theory of A has the order property then the following are equivalent:

(a) A has fewer than 22
ℵ0 nonisomorphic ultrapowers associated with nonprincipal

ultrafilters on N.
(b) all ultrapowers ofA associated to nonprincipal ultrafilters on N are isomorphic.
(c) the Continuum Hypothesis holds.

6.2. Model theory of the relative commutant. The notion of a relative commutant does

not seem to have a useful generalization in the abstract model theory and its model-theoretic

properties are still poorly understood.

While the structure of relative commutants of II1 factors in their ultrapowers provides

the only known method for distinguishing their theories, every infinite-dimensional separa-

ble C*-algebra has a nontrivial relative commutant in its ultrapower ([61], also [35]). The

relative commutant of the Calkin algebra (§7) in its ultrapower is trivial [61] and the relative

commutant of B(H) may or may not be trivial, depending on the choice of the ultrafilter

[40].

It is not difficult to see that the existential theory of A′ ∩AU depends only on the theory

of A. However, a result of [61] implies that there is a separable C*-algebra A elementarily
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equivalent to O2 such that A′ ∩ AU and O2 ∩ OU2 have different ∀∃-theories. (An ∀∃-
sentence is one of the form supx̄ inf ȳ φ(x̄, ȳ) where φ is quantifier-free.) In the following all

ultrafilters are nonprincipal ultrafilters on N.

Proposition 6.6. Assume A is a separable C*-algebra.

(1) For all U and V , the algebras A′ ∩AU and A′ ∩AV are elementarily equivalent.

(2) For every separable C ⊆ A′ ∩AU we have Th∃(A′ ∩ C ′ ∩AU ) = Th∃(A′ ∩AU ).

(3) IfD is a separable unital subalgebra of A′ ∩AU then there are ℵ1 commuting copies
of D inside A′ ∩AU .

An entertaining proof of (1) can be given by using basic set theory. Collapse 2ℵ0 to ℵ1
without adding reals. Then U and V are still ultrafilters on N and one can use saturation

to find an isomorphism between the ultrapowers that sends A to itself. The theories of two

algebras are unchanged, and therefore by absoluteness the result follows. Clause (3) is an

immediate consequence of (2) and it is a minor strengthening of a result in [61].

When A is not Z-stable, the relative commutant of A can have characters even if it is

simple ([62]). In the case when algebra A is nuclear and Z-stable, A′ ∩ AU inherits some

properties from A. For example, each of the traces on A′ ∩ AU extends to a trace on AU by

[68] (cf. Proposition 4.2). The relative commutants of s.s.a. algebras are well-understood;

the following was proved in [33].

Proposition 6.7. If D is a s.s.a. algebra and U is a nonprincipal ultrafilter on N, then
D′ ∩DU is an elementary submodel of DU . Moreover, CH implies that these two algebras
are isomorphic.

6.3. Expansions and traces. If a metric structureA is expanded by adding a new predicate

τ , its ultrapower AU expands to the ultrapower of the expanded structure (A, τ)U which still

satisfies Łoś’s theorem and is countably saturated.

If A is a unital tracial C*-algebra then its traces form a weak*-compact convex subset

T (A) of the dual unit ball. For τ ∈ T (A) denote the tracial von Neumann algebra associated

with the τ -GNS representation (§2) by Nτ . If A is simple and infinite-dimensional and τ
is an extremal trace then Nτ is a factor, and if A is in addition nuclear and separable then

Nτ is isomorphic to the hyperfinite factor R. This is because A is nuclear if and only if its

weak closure in every representation is an injective von Neumann algebra, and R is the only

injective II1 factor with a separable predual. The following was proved in [68] and improved

to the present form in [62].

Proposition 6.8. If A is separable and τ ∈ T (A), then the quotient map from A′ ∩ AU to
N ′

τ ∩ (Nτ )
U is surjective.

If b ∈ AU is such that its image is in the commutant of N ′
τ , then by countable saturation

one finds a positive element c of norm 1 such that τ(c)=0 and c(anb−ban)=(anb−ban)c=0
for all an in a fixed countable dense subset ofA. The fact that the type of such c is consistent
follows from the fact that the image of b is in N ′

τ . Then (1− c)b(1− c) is in A′ ∩AU and it

has the same image under the quotient map as b.
Proposition 6.8 precipitated remarkable progress on understanding tracial C*-algebras,

the most recent results of which are [69] and [82].
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7. Massive algebras II: Coronas

Another class of massive C*-algebras (with no analogue in von Neumann algebras) has spe-

cial relevance to the study of separable algebras. If A is a non-unital C*-algebra, the multi-
plier algebra ofA,M(A), is the noncommutative analogue of the Čech–Stone compactifica-

tion of a locally compact Hausdroff space. It is the surjectively universal unital algebra con-

taining A as an essential ideal. The corona (or outer multiplier) algebra of A is the quotient

M(A)/A. Some examples of coronas are the Calkin algebra Q(H) (the corona of the alge-
bra of compact operators) and the asymptotic sequence algebra �∞(A)/c0(A) for a unital

A. The latter algebra, as well as the associated central sequence algebra A′ ∩ �∞(A)/c0(A)
are sometimes used in classification of C*-algebras instead of the metamathematically heav-

ier ultrapowers and the corresponding relative commutants. While Łoś’s theorem miserably

fails for the asymptotic sequence algebra, all coronas and corresponding relative commu-

tants share some properties of countably saturated algebras. The simplest of these properties

is being SAW*: for any two orthogonal separable subalgebras A and B of a corona there

exists a positive element c such that ca = a for all a ∈ A and cb = 0 for all b ∈ B.

7.0.1. Quantifier-free saturation. An algebraC is quantifier-free saturated if every count-
able type over C consisting only of quantifier-free formulas is consistent if and only if it is

realized in C. An algebra C is countably degree-1 saturated if every countable type over C
consisting only of formulas of the form ‖p‖, where p is a *-polynomial of degree 1, is con-

sistent if and only if it is realized in C. A dummy variable argument shows that the degree-2

saturation is equivalent to quantifier-free saturation. By refining an argument introduced by

Higson, the following was proved in [32].

Theorem 7.1. If A is a corona of a separable non-unital C*-algebra, or a relative commu-
tant of a separable subalgebra of such corona, then A is countably degree-1 saturated.

A very interesting class of countable degree-1 saturated C*-algebras was isolated in [94].

7.0.2. A sampler of properties of countable degree-1 saturated algebras. Assume C is

countably degree-1 saturated (the results below also apply to tracial von Neumann algebras,

and in this case (1), (3) and (5) do not even require countable degree-1 saturation).

(1) C has SAW* as well as every other known countable separation property [32].

(2) A separable algebra A is isomorphic to a unital subalgebra of C if and only if Th∃(A)
⊆ Th∃(C).

(3) A representation of a group Γ in A is a homomorphism π : Γ→ (GL(A), ·). It is uni-
tarizable if there is an invertible h ∈ A such that h−1π(g)h is a unitary for all g ∈ Γ.
Conjecturally unitarizability of all uniformly bounded representations of a group Γ on

B(H) is equivalent to the amenability of Γ (see [74]). If Γ is a countable amenable

group, then every uniformly bounded representation π of Γ in C is unitarizable [17].

(4) C is not isomorphic to the tensor product of two infinite-dimensional algebras ([26] for

the ultraproducts of II1 factors and [50] for the general result). Therefore an ultrapower

or a corona is never isomorphic to a nontrivial tensor product and the separability

assumption is needed in Proposition 6.1.

(5) (‘Discontinuous functional calculus.’) If a is a normal operator, then by the continuous
functional calculus for every continuous complex-valued function g on the spectrum,
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sp(a), of a the naturally defined g(a) belongs to the abelian algebra generated by a.

Proposition 7.2. Assume C is countably degree-1 saturated andB ⊆ {a}′∩C is separable,
U ⊆ sp(a) is open, and g : U → C is a bounded continuous function. Then there exists
c ∈ C ∩ C∗(B, a)′ such that for every f ∈ C0(sp(a)) we have

cf(a) = (gf)(a).

If moreover g is real-valued then c can be chosen to be self-adjoint.

The ‘Second Splitting Lemma’ ([10, Lemma 7.3]) is a special case of the above when C
is the Calkin algebra, a = h0 is self-adjoint, and the range of g is {0, 1}.

7.0.3. Failure of saturation. While the asymptotic sequence algebras, as well as some

abelian coronas, are fully countably saturated [42], this is not true for sufficiently noncom-

mutative coronas. By a K-theoretic argument N. C. Phillips constructed two unital embed-

dings of the CAR algebra into the Calkin algebra Q(H) that are approximately unitarily

equivalent, but not conjugate by a unitary ([32, §4]). This gives a countable quantifier-

free type over Q(H) that is consistent but not realized. Even coronas of separable abelian

C*-algebras provide a range of different saturation properties (see [42]).

7.1. Automorphisms. A metric model A is saturated if every type over A whose cardinal-

ity is smaller than the density character χ(A) of A (i.e., the smallest cardinality of a dense

subset) which is consistent is realized in A. The Continuum Hypothesis (CH) implies that

all countably saturated models of cardinality 2ℵ0 are saturated. A transfinite back-and-forth

argument shows that any two elementarily equivalent saturated models of the same density

character are isomorphic and that a saturated modelA has 2χ(A) automorphisms. By a count-

ing argument, most of these automorphisms are outer and moreover nontrivial when ‘trivial

automorphism’ is defined in any reasonable way; see [20] for a (lengthy) discussion. This

explains the effectiveness of CH as a tool for resolving problems of a certain form. A deeper

explanation is given in Woodin’s celebrated Σ2
1-absoluteness theorem (see [100]).

By the above, CH implies that an ultrapower AU of a separable, infinite-dimensional

algebra has automorphisms that do not lift to automorphisms of �∞(A). Much deeper is

a complementary series of results of Shelah, to the effect that if ZFC is consistent then

so is the assertion that any isomorphism between ultraproducts of models with the strong

independence property lifts to an isomorphism of the products of these models [87]. No

continuous version of this result is known. One difficulty in taming ultrapowers is that the

ultrafilter is not a definable object; in particular Shelah’s results apply only to a carefully

constructed ultrafilter in a specific model of ZFC.

Motivated by work on extension theory and a very concrete question about the unilat-

eral shift, in [10] it was asked whether the Calkin algebra has outer automorphisms. Since

the Calkin algebra is not countably saturated (§7.0.3) it took some time before such an au-

tomorphism was constructed using CH [73]. This is one of the most complicated known

CH constructions, involving an intricate use of EE-theory to extend isomorphisms of direct

limits of separable subalgebras. A simpler proof was given in [28, §1], and the method was

further refined in [20]. Instead of following the usual back-and-forth construction in which

isomorphisms between separable subalgebras are recursively extended, one uses CH to em-

bed the first derived limit of an inverse system of abelian groups into the outer automorphism

group.
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Forcing axioms imply that the Calkin algebra has only inner automorphisms [28]. Con-

jecturally, for every non-unital separable C*-algebra the assertion that its corona has only

(appropriately defined) ‘trivial’ automorphisms is independent of ZFC (see [20]). Even the

abelian case of this conjecture is wide open [42].

The ‘very concrete question’ of Brown–Douglas–Fillmore alluded to two paragraphs ago

is still wide open: Is there an automorphism of Q(H) that sends the image of the unilateral

shift ṡ to its adjoint? Fredholm index obstruction shows that such an automorphism cannot

be inner. Since the nonexistence of outer automorphisms of Q(H) is relatively consistent

with ZFC, so is a negative answer to the BDF question. Every known automorphism α of

Q(H) in every model of ZFC has the property that its restriction to any separable subalgebra

is implemented by a unitary. Both ṡ and ṡ∗ are unitaries with full spectrum and no nontrivial

roots. It is, however, not even known whether ṡ and ṡ∗ have the same (parameter-free) type

in Q(H); a positive answer would provide a strong motivation for the question of whether

Q(H) is countably homogeneous.

7.2. Gaps. A gap in a semilattice B is a pair A, B such that a ∧ b = 0 for all a ∈ A and

all b ∈ B but there is no c such that c ∧ a = a and c ∧ b = 0 for all a ∈ A and b ∈ B.
There are no countable gaps in a countably saturated Boolean algebra such as P(N)/Fin,
the quotient of P(N) over the ideal Fin of finite sets. In 1908 Hausdorff constructed a gap

in P(N)/Fin with both of its sides of cardinality ℵ1. Later Luzin constructed a family of

ℵ1 orthogonal elements in P(N)/Fin such that any two of its disjoint uncountable subsets

form a gap. It should be emphasized that both results were proved without using CH or any

other additional set-theoretic axioms.

Hausdorff’s and Luzin’s results show that P(N)/Fin is not more than countably sat-

urated. In particular, if the Continuum Hypothesis fails then the obvious back-and-forth

method for constructing automorphisms of P(N)/Fin runs into difficulties after the first

ℵ1 stages. In one form or another, gaps were used as an obstruction to the existence of

morphisms in several consistency results in analysis, notably as obstructions to extending a

partial isomorphism ([84, §V], [21, 28]).

Two subalgebras A and B of an ambient algebra C form a gap if ab = 0 for all a ∈ A
and b ∈ B, but there is no positive element c such that ca = a and cb = 0 for all a ∈ A and

all b ∈ B. The gap structure of P(N)/Fin can be imported into the Calkin algebra, but the

gap structure of the latter is also much richer [101].

However, the failure of higher saturation in coronas is also manifested in a genuinely

noncommutative fashion. A countable family of commuting operators in a corona of a sep-

arable algebra can be lifted to a family of commuting operators if and only if this is true for

each one of its finite subsets.

Proposition 7.3. In M2(�∞/c0) there exists a family of ℵ1 orthogonal projections such
that none of its uncountable subsets can be lifted to a commuting family of projections in
M2(�∞).

This was stated in [45] for the Calkin algebra in place of (barely noncommutative)

M2(�∞/c0), but the proof given there clearly gives the stronger result. The combinato-

rial essence for the proof of Proposition 7.3 echoes Luzin’s original idea. One recursively

constructs projections pγ in M2(�∞) so that pγpγ′ is compact but ‖[pγ , pγ′ ]‖ > 1/4 for all

γ �= γ′. Then the image this family in the corona is as required, as a counting argument

shows that no uncountable subfamily can be simultaneously diagonalized.
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Recall that every uniformly bounded representation of a countable amenable group in

a countably degree-1 saturated algebra is unitarizable (Proposition 7.2). This is false for

uncountable groups. This was proved in [17] and improved to the present form in [93] using

Luzin’s gap.

Proposition 7.4. There is a uniformly bounded representation π of
⊕
ℵ1

Z/2Z on
M2(�∞/c0) such that the restriction of π to a subgroup is unitarizable if and only if the
subgroup is countable.

The construction of Kadison–Kastler-near, but not isomorphic, nonseparable algebras in

[16] involves what at the hindsight can be considered as a gap. It is not known whether there

is a separable example (see [18] for several partial positive results).

8. Nonseparable algebras

Not surprisingly, the theory of nonseparable algebras hides surprises and problems not pres-

ent in the separable case; see [95].

8.1. Nonseparable UHF algebras. Uniformly hyperfinite (UHF) algebras are defined as

tensor products of full matrix algebras (§2.2). However, there are two other natural ways

to define uniformly hyperfinite: as (i) an inductive limit of a net of full matrix algebras,

or (ii) as an algebra in which every finite subset can be arbitrarily well approximated by

a full matrix subalgebra. These three notions, given in the order of decreasing strength,

coincide in the separable unital case. Dixmier asked whether separability is needed for this

conclusion. The answer is that in every uncountable density character, UHF and (i) differ,

but that one needs an algebra of density character ℵ2 in order to distinguish between (i) and

(ii) [38]. An extension of methods of [38] resulted in a nuclear, simple C*-algebra that has

irreducible representations on both separable and nonseparable Hilbert space [27]. This is in

contrast with the transitivity of the space of irreducible representations of a separable simple

C*-algebra [63].

8.2. Representation theory. Representation theory of separable algebras has deeply af-

fected development of the classical descriptive set theory, as evident from the terminology

of both subjects (terms ‘smooth’ and ‘analytic’ have the same, albeit nonstandard in other

areas of mathematics, meaning). Extension of the work of Glimm and Effros on represen-

tation theory combined with methods from logic initiated the abstract classification theory

(§3). The representation theory of nonseparable algebras was largely abandoned because

some of the central problems proved to be intractable (see the introduction to [1]). One

of these stumbling blocks, Naimark’s problem, was partially solved in [1] (see also [96]).

By using a strengthening of CH (Jensen’s ♦ℵ1 principle) and a deep result on representa-

tion theory of separable C*-algebras (an extension of [63] mentioned above), Akemann and

Weaver constructed a C*-algebra that has a unique (up to spatial equivalence) irreducible

representation on a Hilbert space, but is not isomorphic to the algebra of compact operators

on any Hilbert space. An extension of [1] shows that ♦ℵ1 implies the existence of a sim-

ple C*-algebra with exactlym inequivalent irreducible representations. By a classical result

of Glimm (closely related to the Glimm–Effros dichotomy), a simple separable C*-algebra

with two inequivalent representations has 2ℵ0 inequivalent representations. It is not known
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whether a counterexample to Naimark’s problem can be found in ZFC alone or by using an

axiom other than ♦ℵ1 (such as ♦κ for κ > ℵ1). The fact that every forcing notion that adds

a new real number destroys all ground-model examples is a bit of an annoying teaser.

Cyclic representations of C*-algebras are, via the GNS construction (§2), in a natural bi-

jective correspondence with their states (i.e., positive unital functionals). Pure (i.e., extremal)

states are noncommutative versions of ultrafilters. The space of nonprincipal ultrafilters on

N, (along with the associated quotient structure P(N)/Fin) is arguably the most important

set-theoretically malleable object known to man. The study of pure states on B(H) (i.e.,
‘quantized ultrafilters’) has already produced some surprising results ([2, 7]; also see [66]).

8.3. Amenable operator algebras. A prominent open problem in the theory of operator

algebras is whether every algebra of operators on a Hilbert space which is amenable is iso-

morphic to a C*-algebra. By using Proposition 7.4, one obtains the following [17, 93]).

Theorem 8.1. There exists a nonseparable amenable subalgebra of M2(�∞) which is not
isomorphic to a C*-algebra. None of its nonseparable amenable subalgebras is isomorphic
to a C*-algebras, yet it is an inductive limit of separable subalgebras (even elementary
submodels) each of which is isomorphic to a C*-algebra. Moreover, for every ε > 0 such an
algebra can be found in an ε-Kadison–Kastler neighbourhood of a C*-algebra.

The question whether there exists a separable counterexample remains open; see [65].

9. Concluding remarks

The most recent wave of applications of logic to operator algebras started by work of Nik

Weaver and his coauthors, in which several long-standing problems were solved by using ad-

ditional set-theoretic axioms (see [96]). Although we now know that the answers to some of

those problems (such as the existence of outer automorphisms of the Calkin algebra) are in-

dependent from ZFC, statements of many prominent open problems in operator algebras are

absolute between models of ZFC and therefore unlikely to be independent (see the appendix

to [29] for a discussion).

Nevertheless, operator algebras do mix very well with logic. Jon Barwise said “As lo-

gicians, we do our subject a disservice by convincing others that the logic is first-order and

then convincing them that almost none of the concepts of modern mathematics can really

be captured in first-order logic.” Remarkably, some of the deepest results on the structure

of C*-algebras have equivalent formulation in the language of (metric) first-order logic (this

applies e.g., to [97] and [98]).

In many of the developments presented here methods from logic were blended with

highly nontrivial operator-algebraic methods. Good examples are the proof that the the-

ory of R does not allow elimination of quantifiers [51] the key component of which comes

from [13], the already mentioned use of [56], and blending of ♦ℵ1 with the transitivity of

pure state space of separable simple algebras [63] in [1].

Finally, some results in pure logic were motivated by work on operator algebras. Exam-

ples are Theorem 6.5, which is new even for discrete structures, and negative and positive

results on omitting types (§4.4).
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Abstract. We introduce the concept of an amenable class of functors and define homology groups for

such classes. Amenable classes of functors arise naturally in model theory from considering types of

independent systems of elements. Basic lemmas for computing these homology groups are established,

and we discuss connections with type amalgamation properties.
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This paper abstracts the model theoretic results from [6] to a more general category-theoretic

context. Namely, we introduce the concept of an amenable class of functors. It is a class

of functors from a family of finite sets which is closed under subsets into a fixed image

category satisfying a short list of axioms. We show that most of the general results proved

in [6] hold in the broader amenable context. In addition we give some fundamental lemmas

and examples which supplement the results of [6].

In Section 1, we introduce the notion of an amenable class of functors into a fixed cate-

gory and we define the homology groups Hn(A, B) for an amenable class A and an object

B in the image category. Model theory provides the best examples of amenable classes of

functors, as described in [6].

In Section 2, given a rosy structure, we introduce the notion of the type homology groups,

in contrast to the set homology groups defined in [6]. We show that the two homology groups

are isomorphic.

Section 3 supplies some basic sufficient conditions for triviality of the homology groups

and gives some additional examples of homology groups from model theory.

In Section 4 we outline some ongoing investigations related to our homology theory.

1. Simplicial homology in a category

In this section, we generalize the homology groups for rosy theories defined in [6] to a

more general category-theoretic setting. Then we aim to provide a general framework for

homology group computations. This section uses model theory only as a source of examples.
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1.1. Basic definitions and facts. Throughout this section, C denotes a category. If s is a

set, then we consider the power set P(s) of s to be a category with a single inclusion map

ιu,v : u→ v between any pair of subsets u and v with u ⊆ v. A subset X ⊆ P(s) is called
downward-closed if whenever u ⊆ v ∈ X , then u ∈ X . In this case we consider X to be

a full subcategory of P(s). An example of a downward-closed collection that we will use

often below is P−(s) := P(s) \ {s}. We use ω for the set of natural numbers.

We are interested in a family of functors f : X → C for downward-closed subsets

X ⊆ P(s) for various finite subset sets s of the set of natural numbers. For u ⊆ v ∈ X ,

we shall write fu
v := f(ιu,v) ∈ MorC(f(u), f(v)). Before specifying the desirable closure

properties of the collection A of such functors, we need some auxiliary definitions.

Definition 1.1.
(1) Let X be a downward closed subset of P(s) and let t ∈ X . The symbol X|t denotes

the set {u ∈ P(s \ t) | t ∪ u ∈ X} ⊆ X .

(2) For s, t, and X as above, let f : X → C be a functor. Then the localization of f at t
is the functor f |t : X|t → C such that

f |t(u) = f(t ∪ u)

and whenever u ⊆ v ∈ X|t,
(f |t)uv = fu∪t

v∪t .

(3) Let X ⊂ P(s) and Y ⊂ P(t) be downward closed subsets, where s and t are finite
sets of natural numbers. Let f : X → C and g : Y → C be functors.

We say that f and g are isomorphic if there is an order-preserving bijection σ : s → t
with Y = {σ(u) : u ∈ X} and a family of isomorphisms 〈hu : f(u) → g(σ(u)) : u ∈ X〉
in C such that for any u ⊆ v ∈ X , the following diagram commutes:

f(u)
hu−−−−→ g(σ(u))⏐⏐�fu

v

⏐⏐�g
σ(u)

σ(v)

f(v)
hv−−−−→ g(σ(v))

In the definition if σ is an arbitrary bijection, then f and g are said to be weakly isomor-
phic.

Remark 1.2. IfX is a downward closed subset of P(s) and t ∈ X , thenX|t is a downward
closed subset of P(s \ t). Moreover X|t does not depend on the choice of s.

Definition 1.3. Let A be a non-empty set of functors f : X → C such that X ⊆ P(ω) is
finite and downward closed and C is a fixed category (called the image category of A). We

say that A is amenable if it satisfies all of the following properties:

(1) (Invariance under weak isomorphisms) If f : X → C is inA and g : Y → C is weakly
isomorphic to f , then g ∈ A.

(2) (Closure under restrictions and unions) If X ⊆ P(s) is downward-closed and f :
X → C is a functor, then f ∈ A if and only if for every u ∈ X , we have that

f � P(u) ∈ A.
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(3) (Closure under localizations) Suppose that f : X → C is in A for some X ⊆ P(s)
and t ∈ X . Then f |t : X|t → C is also in A.

(4) (Extensions of localizations are localizations of extensions) Suppose that f : X → C is
inA and t ∈ X ⊆ P(s) is such thatX|t = X∩P(s\ t). Suppose that the localization
f |t : X ∩ P(s \ t) → C has an extension g : Z → C in A for some Z ⊆ P(s \ t).
Then there is a map g0 : Z0 → C inA such that Z0 = {u∪v : u ∈ Z, v ⊆ t}, f ⊆ g0,
and g0|t = g.

Remark 1.4. Model theory supplies the best examples of the amenable collection of func-

tors. For example, as in [6] we could take C to be all boundedly (or algebraically) closed

subsets of the monster model of a first-order theory, and let A be all functors which are

“independence-preserving” (in Hrushovski’s terminology [11]) and such that every face f(u)
is the bounded (or algebraic) closure of its vertices; then A is amenable. We may further

restrict A by requiring, for instance, that all the “vertices” f({i}) of functors f ∈ A real-

ize the same type, or by placing further restrictions on “edges” f({i, j}) and other higher-

dimensional faces. We can also take C to be a category of types of the closed subsets of the

model. These examples will be explained more precisely in Section 2.

Definition 1.5. Suppose that f : X → C is a functor from a downward-closed collection X
of sets and B ∈ Ob(C). If f(∅) = B then we say that f is over B. Let AB denote the set of

all functors f ∈ A that are over B.

Remark 1.6. It is easy to see that condition (2) in Definition 1.3 is equivalent to the con-

junction of the following two conditions:

(1) (Closure under restrictions) If f : X → C is in A and Y ⊆ X with Y downward-

closed, then f � Y is also in A.
(2) (Closure under unions) Suppose that f : X → C and g : Y → C are both in A and

that f � X ∩ Y = g � X ∩ Y . Then the union f ∪ g : X ∪ Y → C is also in A.

For instance, if these two conditions are true and f : X → C is a functor from a

downward-closed set X such that f � P(u) ∈ A for every u ∈ X , then if u1, . . . , un

are maximal sets in X , we can use closure under unions (n − 1) times to see that f ∈ A
(since it is the union of the functors f � P(ui)).

For the remainder of this section, we fix a category C and a non-empty amenable
collection A of functors mapping into C. As we mentioned in the above remark, every

functor in A can be described as the union of functors whose domains are P(s) for various
finite sets s. Such functors will play a central role in this paper.

Definition 1.7. Let n ≥ 0 be a natural number. A (regular) n-simplex in C is a functor

f : P(s) → C for some set s ⊆ ω with |s| = n + 1. The set s is called the support of f , or
supp(f).

Let Sn(A;B) denote the collection of all regular n-simplices in AB . Then let S(A;B)
:=

⋃
n Sn(A;B) and S(A) := ⋃

B∈Ob(C) S(A;B).

Let Cn(A;B) denote the free abelian group generated by Sn(A;B); its elements are

called n-chains inAB , or n-chains over B. Similarly, we define C(A;B) :=
⋃

n Cn(A;B)
and C(A) := ⋃

B∈Ob(C) C(A;B). The support of a chain c is the union of the supports of

all the simplices that appear in c with a non-zero coefficient.
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The adjective “regular” in the definition above is to emphasize that none of our simplices

are “degenerate:” their domains must be strictly linearly ordered. It is more usual to allow

for degenerate simplices, but for our purposes, this extra generality does not seem to be

useful. Since all of our simplices will be regular, we will omit the word “regular” in what

follows.

Now the rest of the development of the homology theory in this section will be exactly the

same as the particular case of model theory described in the first section of [6]. The proofs

are exactly the same and the reader will notice that the list of axioms for amenable family

of functors singles out basic technical properties which enable the arguments in section 1

of [6] work. For the sake of completeness, we list here the all the definitions, lemmas, and

theorems we will need for later sections but without giving proofs.

We begin with the notion of boundary operators used to define homology groups in our

context.

Definition 1.8. If n ≥ 1 and 0 ≤ i ≤ n, then the ith boundary operator ∂i
n : Cn(A;B) →

Cn−1(A;B) is defined so that if f is an n-simplex with support s = {s0 < · · · < sn}, then

∂i
n(f) = f � P(s \ {si})

and extended linearly to a group map on all of Cn(A;B).
If n ≥ 1 and 0 ≤ i ≤ n, then the boundary map ∂n : Cn(A;B) → Cn−1(A;B) is

defined by the rule

∂n(c) =
∑

0≤i≤n

(−1)i∂i
n(c).

We write ∂i and ∂ for ∂i
n and ∂n, respectively, if n is clear from context.

Definition 1.9. The kernel of ∂n is denotedZn(A;B), and its elements are called (n-)cycles.
The image of ∂n+1 inCn(A;B) is denotedBn(A;B). The elements ofBn(A;B) are called
(n-)boundaries.

It can be shown (by the usual combinatorial argument) that Bn(A;B) ⊆ Zn(A;B), or
more briefly, “∂n ◦∂n+1 = 0.” Therefore we can define simplicial homology groups relative

to A:

Definition 1.10. The nth (simplicial) homology group of A over B is

Hn(A;B) = Zn(A;B)/Bn(A;B).

There are two natural candidates for the definition of the boundary of a 0-simplex. One

possibility is to define ∂0(f) = 0 for all f ∈ S0(A;B). Another possibility is to ex-

tend the definition of an n-simplex to n = −1; namely a (−1)-simplex f is an object

f(∅) in C. Then the definition of a boundary operator extends naturally to the operator

∂0 : f ∈ S0(A;B) 
→ B.
As we show in Lemma 3.1, computing the group H0 in a specific context using the

first definition gives H0
∼= Z while using the second definition we get H0 = 0. Thus,

the difference between the approaches is parallel to that between the homology and reduced

homology groups in algebraic topology [1].

Next we define the amalgamation properties. We use the convention that n denotes the

set {0, 1, . . . , n− 1}.
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Definition 1.11. Let A be an amenable family of functors into a category C and let n ≥ 1.

(1) A has n-amalgamation if for any functor f : P−(n)→ C, f ∈ A, there is an (n− 1)-
simplex g ⊇ f such that g ∈ A.

(2) A has n-complete amalgamation or n-CA if A has k-amalgamation for every k with

1 ≤ k ≤ n.

(3) A has strong 2-amalgamation if whenever f : P(s)→ C, g : P(t)→ C are simplices

in A and f � P(s ∩ t) = g � P(s ∩ t), then f ∪ g can be extended to a simplex

h : P(s ∪ t)→ C in A.
(4) A has n-uniqueness if for any functor f : P−(n) → C in A and any two (n − 1)-

simplices g1 and g2 in A extending f , there is a natural isomorphism F : g1 → g2
such that F � dom(f) is the identity.

Remark 1.12.

(1) There is a mismatch that n-amalgamation refers to the existence of (n − 1)-simplex

extending its boundary. But this numbering is coherent with historical developments

of amalgamation theory in model theory and homology theory in algebraic topology.

(2) The definition of n-amalgamation can be naturally extended to n = 0: A has 0-
amalgamation if it contains a functor f : {∅} → C. This holds in any amenable family

of functors.

Definition 1.13. We say that an amenable family of functors A is non-trivial if A has 1-

amalgamation, and satisfies the strong 2-amalgamation property.

The following remark is immediate from the definitions.

Remark 1.14. Any non-trivial amenable collection of functorsA contains an n-simplex for

each n ≥ 1.

Everywhere below, we only deal with non-trivial amenable families of functors.

1.2. Computing homology groups. As in [6] we introduce special kinds of n-chains which
are useful for computing homology groups.

Definition 1.15. If n ≥ 1, an n-shell is an n-chain c of the form

±
∑

0≤i≤n+1

(−1)ifi,

where f0, . . . , fn+1 are n-simplices such that whenever 0 ≤ i < j ≤ n + 1, we have

∂ifj = ∂j−1fi.

Definition 1.16. If n ≥ 1, and n-fan is an n-chain of the form

±
∑

i∈{0,..,k̂,...,n+1}

(−1)ifi

for some k ≤ n + 1, where the fi are n-simplices such that whenever 0 ≤ i < j ≤ n, we
have ∂ifj = ∂j−1fi. In other words, an n-fan is an n-shell missing one term.
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If c is an n-fan, then ∂c is an (n − 1)-shell; and A has n-amalgamation if and only if

every (n−2)-shell inA is the boundary of an (n−1)-simplex inA. AndA has n-uniqueness
if and only if every (n− 2)-shell in A is the boundary of at most one (n− 1)-simplex in A
up to isomorphism.

As mentioned earlier, we now state without proofs a series of lemmas and theorems

analogous to those in [6], Section 1. In particular, we state two “prism lemmas” (1.25 and

1.27) and a result that every element of a homology group is the equivalence class of a shell

(Theorem 1.28).

Lemma 1.17. If n ≥ 2 andA has n-CA, then every (n−1)-cycle is a sum of (n−1)-shells.
Namely, for each c ∈ Zn−1(A;B), c =

∑
i αifi, there is a finite collection of (n− 1)-shells

ci ∈ Zn−1(A;B) such that c =
∑

i(−1)nαici.
Moreover, if S is the support of the chain c and m is any element not in S, then we can

choose
∑

i αici so that its support is S ∪ {m}.
Corollary 1.18. Assume A has n-CA for some n ≥ 2. Then Hn−1(A;B) is generated by

{[c] : c is an (n− 1)-shell over B}.

In particular, if any (n− 1)-shell over B is a boundary, then so is any (n− 1)-cycle.

Corollary 1.19. If A has n-CA for some n ≥ 3, then Hn−2(A;B) = 0.

Corollary 1.18 will be strengthened to Theorem 1.28.

Definition 1.20. If n ≥ 1, an n-pocket is an n-cycle of the form f − g, where f and g are

n-simplices with support S (where S is an (n+ 1)-element set).

Lemma 1.21. Suppose that f, g ∈ Sn(A) are isomorphic functors such that ∂nf = ∂ng.
Then the n-pocket f − g is a boundary.

Lemma 1.22. Suppose that n ≥ 1 and A has (n+ 1)-amalgamation. Then for any n-fan

g = ±
∑

i∈{0,...,k̂,...,n+1}

(−1)ifi

there is some n-simplex fk and some (n+ 1)-simplex f such that g + (−1)kfk = ∂f .

The next lemma says that n-pockets are equal to n-shells, “up to a boundary.”

Lemma 1.23. Assume that A has the (n + 1)-amalgamation property for some n ≥ 1.
For any B ∈ C, any n-shell in AB with support n + 2 is equivalent, up to a boundary in
Bn(A;B), to an n-pocket inAB with support n+1. Conversely, any n-pocket with support
n+ 1 is equivalent, up to a boundary, to an n-shell with support n+ 2.

From Corollary 1.18 and Lemma 1.23 we derive the following:

Corollary 1.24. If A has 3-amalgamation, then H2(A;B) is generated by equivalence
classes of 2-pockets.

Lemma 1.25 (Prism lemma). Let n ≥ 1. Suppose that A has (n + 1)-amalgamation. Let
f − f ′ be an n-pocket in AB with support s, where |s| = n + 1. Let t be an (n + 1)-
element set disjoint from s. Then given n-simplex g in AB with the domain P(t), there is an
n-simplex g′ such that g−g′ forms an n-pocket inAB and is equivalent, modulo Bn(A;B),
to the pocket f − f ′. We may choose g′ first and then find g to have the same conclusion.
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Corollary 1.26. Let n ≥ 1. Suppose A has (n+ 1)-CA. The group Hn(A;B) is generated
by equivalence classes n-shells with support n+ 2.

We have a shell version of the prism lemma as well:

Lemma 1.27 (Prism lemma, shell version). Let A satisfy (n + 1)-amalgamation for some
n ≥ 1. Suppose that an n-shell f :=

∑
0≤i≤n+1(−1)ifi and an n-fan

g− :=
∑

i∈{0,...,k̂,...,n+1}

(−1)igi

are given, where fi, gi are n-simplices over B, supp(f) = s with |s| = n + 2, and
supp(g−) = t = {t0, ..., tn+1}, where t0 < ... < tn+1 and s ∩ t = ∅. Then there is
an n-simplex gk over B with support ∂kt := t \ {tk} such that g := g− + (−1)kgk is an
n-shell over B and f − g ∈ Bn(A;B).

The next theorem gives an even simpler standard form for elements of Hn(A;B).

Theorem 1.28. If A has (n+ 1)-CA for some n ≥ 1, then

Hn(A;B) = {[c] : c is an n-shell over B with support n+ 2} .

Now using Theorem 1.28 and Lemma 1.23, we obtain the following:

Corollary 1.29. If (n+ 1)-CA (for some n ≥ 1) holds in A, then

Hn(A;B) = {[c] : c is an n-pocket in A over B with support n+ 1} .

2. Type versus set homology groups in model theory

In this section, we define some amenable classes of functors that arise in model theory.

Namely given either a complete rosy theory T or a complete type p ∈ S(A) in a rosy theory,
we will define both the “type homology groups” Ht

n(T ) (or H
t
n(p)) and the “set homology

groups” Hset
n (T ) (or Hset

n (p)). As noted, Hset
n (p) and the classes of p-set-functors were

already introduced in [6] and the properties of those were the motivation for Definition 1.3.

As we show below, these definitions will lead to isomorphic homology groups (Proposition

2.12).

We make the same assumptions on our underlying theory T as in [6]: in what follows,
we assume that T = T eq is a complete rosy theory (e.g. stable, simple, or o-minimal)

and we work in its fixed large saturated model C = Ceq. The reason for this is so that we

have a nice independence notion [3]. Throughout, “ |�”, “independence” or “non-forking”

will mean thorn-independence. So if T is simple then we assume it has elimination of

hyperimaginaries in order for non-forking independence to be equal to thorn-independence

[3]. But the assumptions are for convenience not for full generality. For example if T is

simple, then one may assume the independence is usual non-forking in Cheq while replacing

acl by bdd and so on. Moreover there are non-rosy examples having suitable independence

notions that fit in our amenable category context (see [10] and [13]).

We refer the reader to [12, 20] and to [3, 18] for general background on simple and rosy

theories, respectively.
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2.1. Type homology. We will work with ∗-types – that is, types with possibly infinite sets

of variables – and to avoid some technical issues, we will place an absolute bound on the

cardinality of the variable sets of the types we consider. Fix some infinite cardinal κ0 ≥ |T |.
We will assume that every ∗-type has no more than κ0 free variables. We also fix a set V
of variables such that |V| > κ0 and assume that all variables in ∗-types come from the set

V (which is a “master set of variables.”) We work in a monster model C = Ceq which is

saturated in some cardinality greater than 2|V|. We let κ̄ = |C |. As we will see in the next

section, the precise values of κ0 and |V| will not affect the homology groups.

Given a setA, strictly speaking we should write “a complete ∗-type ofA” instead of “the
complete ∗-type of A” – there are different such types corresponding to different choices for

associating each element of A with a variable from V , and this distinction is crucial for our

purposes.

IfX is any subset of the variable set V , σ : X → V is any injective function, and p(x) is
any ∗-type such that x is contained in X , then we let

σ∗p = {ϕ(σ(x)) : ϕ(x) ∈ p} .

Definition 2.1. If A is a small subset of the monster model, then TA is the category such

that

(1) The objects of TA are are all the complete ∗-types in T over A, including (for conve-

nience) a single distinguished type p∅ with no free variables;

(2) MorTA(p(x), q(y)) is the set of all injective maps σ : x→ y such that σ∗(p) ⊆ q.

Note that this definition gives a notion of two types p(x) and q(y) being “isomorphic:”

namely, that q can be obtained from p by relabeling variables.

Definition 2.2. If A = acl(A) is a small subset of the monster model, a closed independent
type-functor based on A is a functor f : X → TA such that:

(1) X is a downward-closed subset of P(s) for some finite s ⊆ ω.

(2) Suppose w ∈ X and u, v ⊆ w. Recall our notational convention fu
w := f(ιu,w). Let

us write xw to be the variable set of f(w). Then whenever a realizes the type f(w) and
au, av , and au∩v denote subtuples corresponding to the variable sets fu

w(xu), f
v
w(xv),

and fu∩v
w (xu∩v), then

au �
A ∪ au∩v

av.

(3) For all non-empty u ∈ X and any a realizing f(u), we have (using the notation above)
a = acl

(
A ∪⋃

i∈u a{i}
)
.

(The adjective “closed” in the definition refers to the fact that, by (3), all the types f(u)
are ∗-types of algebraically closed tuples.)

Let At(T ;A) denote all closed independent type-functors based on A.

Remark 2.3. It follows from the definition above and the basic properties of nonforking that

if f is a closed independent type-functor based on A and u ∈ dom(f) is a non-empty set

of size k, then any realization a of f(u) is the algebraic closure of an AB-independent set

{a1, . . . , ak}, where B is the subtuple of a corresponding to the variables f∅u(x∅) and each

ai is the subtuple corresponding to the variables in f
{i}
u (x{i}).
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Definition 2.4. If A = acl(A) is a small subset of the monster model and p ∈ S(A), then a

closed independent type-functor in p is a closed independent type-functor f : X → TA based

on A such that ifX ⊆ P(s) and i ∈ s, then f({i}) is the complete ∗-type of acl(AC ∪ {b})
over A, where C is some realization of f(∅) and b is some realization of a nonforking

extension of p to AC.

Let At(p) denote all closed independent type-functors in p.

Now using the basic independence properties of rosy theories, it is not hard to verify

amenability of the above families of functors. In particular one may consult the proof of [6,

1.19]

Proposition 2.5. The setsAt(T ;A) andAt(p) are non-trivial amenable families of functors.

Definition 2.6. If A is a small algebraically closed subset of C, then we write SnTA as an

abbreviation for Sn(At(T ;A); p∅) (the collection of closed n-simplices inAt(T ;A) over the
distinguished type p∅), BnTA and ZnTA for the boundary and cycle groups, and Ht

n(T ;A)
for the homology group Hn(At(T ;A); p∅).

Similarly if p ∈ S(A), then we use the abbreviations SnT (p) for Sn(At(p); p∅); and
BnT (p), ZnT (p), and Ht

n(p).

2.2. Set homology.

Definition 2.7. Let A be a small subset of C. By CA we denote the category of all subsets

containing A of C of size no more that κ0, where morphisms are partial elementary maps

over A (that is, fixing A pointwise).

For a functor f : X → CA and u ⊆ v ∈ X , we write fu
v (u) := fu

v (f(u)) ⊆ f(v).

Definition 2.8. A closed independent set-functor based onA=acl(A) is a functor f :X→CA
such that:

(1) X is a downward-closed subset of P(s) for some finite s ⊆ ω.

(2) For all non-empty u ∈ X , we have that f(u) = acl(A ∪⋃
i∈u f

{i}
u ({i})) and the set

{f{i}u ({i}) : i ∈ u} is independent over f∅u(∅).

Let Aset(T ;A) denote all closed independent set-functors based on A.

Now we recall the following in [6].

Definition 2.9. If A = acl(A) is a small subset of the monster model and p ∈ S(A), then a

closed independent set-functor in p is a closed independent set-functor f : X → CA based

on A such that if X ⊆ P(s) and i ∈ s, then f({i}) is a set of the form acl(C ∪ {b}) where
C = f∅{i}(∅) ⊇ A and b realizes some non-forking extension of p to C.

Let Aset(p) denote all closed independent set-functors in p.

Just as in the previous subsection, we have:

Proposition 2.10. The sets Aset(T ;A) and Aset(p) are non-trivial amenable families of
functors.
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Definition 2.11. IfA is a small subset of C, then we write SnCA to denote Sn(Aset(T ;A);A)
(the collection of closed n-simplices in Aset(T ;A) over A), and similarly we write BnCA
and ZnCA for the boundary and cycle groups over A, and use the notation Hset

n (T ;A) for
the homology group Hn(Aset(T ;A);A).

If A = acl(A) and p ∈ S(A), then we use similar abbreviations

SnC(p) := Sn(Aset(p);A), BnC(p), ZnC(p), and Hset
n (p).

Proposition 2.12.

(1) For any n and any set A, Ht
n(T ;A)

∼= Hset
n (T ;A).

(2) For any n and any complete type p ∈ S(A), Ht
n(p)

∼= Hset
n (p).

Proof. The idea is that we can build a correspondence F : SCA → STA which maps each

set-simplex f to its “complete ∗-type” F (f). Note that this will involve some non-canonical

choices: namely, which variables to use for F (f), and in what order to enumerate the various

sets in f (since our variable set V is indexed and thus implicitly ordered). We will write out

a proof of part (1) of the proposition, and part (2) can be proved similarly by relativizing to

p.
Let S≤nCA and S≤nTA denote, respectively,

⋃
i≤n SiCA and

⋃
i≤n SiTA. We will build

a sequence of maps Fn : S≤nCA → S≤nTA whose union will be F . Given such an Fn, let

Fn : C≤nCA → C≤nTA be its natural extension to the class of all set-k-chains over A for

k ≤ n.

Claim 2.13. There are maps Fn : S≤nCA → S≤nTA such that:

(1) Fn+1 is an extension of Fn;

(2) If f ∈ S≤nCA and dom(f) = P(s), then dom(Fn(f)) = P(s) and [Fn(f)] (s) is a
complete ∗-type of f(s) over A;

(3) For any k ≤ n, any f ∈ SkCA, and any i ≤ k, Fn(∂
if) = ∂i [Fn(f)]; and

(4) Fn is surjective, and in fact for every g ∈ SkTA (where 0 ≤ k ≤ n), there are more
than 2|V| simplices f ∈ SkCA such that Fn(f) = g.

Proof. We prove the claim by induction on n. The case where n = 0 is simple: only

conditions (2) and (4) are relevant, and note that we can insure (4) because the monster

model C is (2|V|)+-saturated and there are at most 2|V| elements of S0TA. So suppose that

n > 0 and we have F0, . . . , Fn satisfying all these properties, and we want to build Fn+1.

We build Fn+1 as a union of a chain of partial maps from S≤n+1CA to S≤n+1TA extending

Fn (that is, functions whose domains are subsets of S≤n+1CA).
Subclaim 2.14. Suppose that F : X → S≤n+1TA is a function on a set X ⊆ S≤n+1CA of
size at most (2|V|)+ and that F satisfies (1) through (3). Then for any simplex g ∈ Sn+1TA,
there is an extension F0 of F satisfying (1) through (3) such that | dom(F0)| ≤ (2|V|)+ and:

(∗) There are (2|V|)+ distinct f ∈ Sn+1CA such that F ′(f) = g.

Proof. Let ∂g = g0−g1+. . .+(−1)ngn (where gi = ∂ig), and let P(s) be the domain of g.
By induction, each gi is the image under Fn of (2|V|)+ different n-simplices in CA; let 〈f j

i :

j < (2|V|)+〉 be a sequence of distinct simplices such that for every j < (2|V|)+, Fn(f
j
i ) =
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gi. By saturation of the monster model, for each j < (2|V|)+ we can pick an (n+1)-simplex

fj ∈ CA with domain P(s) such that ∂fj = f j
0−f j

1 +. . .+(−1)nf j
n and tp(fj(s))= g(s).

Then the fj are all distinct, so we can let F0=F ∪ {(fj , g) :j<(2|V|)+}.

Now by the subclaim, we can use transfinite induction to build a partial map F ′ :
S≤n+1CA → S≤n+1TA satisfying (1) through (4) (also using the fact that there only (at

most) 2|V| different simplices in Sn+1TA and the fact that the union of a chain of partial

maps from S≤n+1CA to S≤n+1TA satisfying conditions (2) and (3) will still satisfy these

conditions).

Finally, we can extend F ′ to a function on all of S≤n+1CA by a second transfinite in-

duction, extending F ′ to each f : P(s) → CA in CA one at a time; to ensure that properties

(2) and (3) hold, we just have to pick Fn+1(f) to be some (n + 1)-simplex with the same

domain P(s) whose n-faces are as specified by Fn and such that [Fn+1(f)] (s) is a complete

∗-type of f(s) over A.

Now let F =
⋃

n<ω Fn. By property (3) above, it follows that for any chain c ∈ CCA,
we have F (∂c) = ∂

[
F (c)

]
. Hence F maps ZnCA into ZnTA and BnCA into BnTA, and

so F induces group homomorphisms ϕn : Hset
n (T ;A) → Ht

n(T ;A). Verifying that ϕn

is injective amounts to checking that whenever F (c) ∈ BnTA, the set-chain c is in BnCA,
but this is staightforward: if, say, F (c) = ∂c′, then we can pick a set-simplex ĉ “realizing”
c′ such that ∂ĉ = c. Finally, condition (4) implies that ϕn is surjective, so Hset

n (T ;A) ∼=
Ht

n(T ;A).

Remark 2.15. Since Proposition 2.12 is true for any choices of κ0, V , and the monster

model C as long as |T | ≤ κ0 < |V| and 2|V| ≤ |C |, it follows that our homology groups

(with the restriction of the set A) do not depend on the choices of κ0, |V|, or the monster

model.

Without specifying a base set A, one could also define Cn(T ) to be the direct sum⊕
i<κ̄ CnCAi where {Ai|i < κ̄} is the collection of all small subsets of C, and similarly

Zn(T ), Bn(T ), and Hn(T ) := Zn(T )/Bn(T ). Then the boundary operator ∂ sends n-
chains to (n−1)-chains componentwise. Hence it followsHn(T ) =

⊕
i<κ̄ Hn(T ;Ai). This

means the homology groups defined without specifying a base set depends on the choice of

monster model, and so this approach would not give invariants for the theory T .

2.3. An alternate definition of the set homology groups. In our definition of the set ho-

mology groupsHset
n (T ;A) andHset

n (p) (where p ∈ S(A)), we have been assuming that the

base set A is fixed pointwise by all of the elementary maps in a set-simplex – this is built

into our definition of CA. It will turn out that we get an equivalent definition of the homol-

ogy groups if we allow the base set to be “moved” by the images of the inclusion maps in a

set-simplex, as we will show in this subsection.

Definition 2.16.

(1) A set-n-simplex weakly over A is a set-n-simplex f : P(s) → C(= C∅) such that

f(∅) = A.

(2) If p ∈ S(A), then a set-n-simplex f : P(s)→ C is weakly of type p if f(∅) = A, and

for every i ∈ s,

f({i}) = acl
(
f∅{i}(A) ∪ {ai}

)
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for some ai such that tp(ai/f
∅
{i}(A)) is a conjugate of p.

Let S′nCA be the collection of all set-n-simplices weakly over A. Note that the boundary

operator ∂ takes an n-simplex weakly over A to a chain of (n − 1)-simplices weakly over

A, and so we can define “weak set homology groups over A,” which we denote H ′
n(T ;A).

Similarly, we can define H ′
n(p), the “weak set homology groups of p,” from chains of set-

simplices that are weakly of type p.

Proposition 2.17.

(1) For any n and any A ∈ C, H ′
n(T ;A)

∼= Hset
n (T ;A).

(2) For any n and any complete type p ∈ S(A), H ′
n(p)

∼= Hset
n (p).

Proof. As usual, the two parts have identical proofs, and we only prove the second part.

We will identify S′0CA as a big single complex as follows. Due to our cardinality assump-

tion, for each n < ω, there are κ̄-many 0-simplices in S′0CA having the common domain

P({n}). Then we consider the following domain set D0 = {∅} ∪ {{(n, i)}| n < ω, i < κ̄}.
Now as said we identify S′0CA as a single functor F ′0 from D0 to C such that F ′0(∅) = A,
and F ′0({(n, i)}) = (f ′)ni ({n}) where (f ′)ni ∈ S′0CA is the corresponding 0-simplex with

((f ′)ni )
∅
{n} = (F ′0)

∅
{(n,i)}. Similarly we consider S0CA as a functor F0 from D0 to CA such

that F0(∅) = A, and F0({(n, i)}) = fn
i ({n}) ≡ (f ′)ni ({n}) where fn

i ∈ S0CA is the

corresponding 0-simplex over A with (fn
i )
∅
{n} = (F0)

∅
{(n,i)}. Now F ′0 and F0 are naturally

isomorphic by η0 with η0∅ =the identity map of A, and suitable η0{(n,i)} sending (f ′)ni ({n})
to fn

i ({n}).
Now for S′1CA, note that for each pair (f ′)n0

i0
, (f ′)n1

i1
with n0 < n1, there are κ̄-many

1-simplices f ′j in S′1CA having the common domain P({n0, n1}) with ∂0f ′j = (f ′)n1
i1

and

∂1f ′j = (f ′)n0
i0
. Hence we now put the domain set

D1 = D0 ∪ {{(n0, i0), (n1, i1), j}| n0 < n1 < ω; i0, i1, j < κ̄}.

Then we identify S′1CA as a functor F ′1 from D1 to C such that F ′1 � D0 = F ′01, and
F ′1({(n0, i0), (n1, i1), j}) corresponds jth 1-simplex having (f ′)n0

i0
, (f ′)n1

i1
as 0-faces. Sim-

ilarly we try to identify S′1CA as a functor F1 from D1 to CA, extending F0. But to make F ′1
and F1 isomorphic, we need extra care when defining F1. For each j < κ̄ and a set a′j =

f ′j({n0, n1}) of corresponding 1-simplex f ′j , assign an embedding η1j = η1{(n0,i0),(n1,i1),j}
sending a′j to aj , extending the inverse of (f

′
j)
∅
{n0,n1}. Then we define

F1({(n0, i0), (n1, i1), j})=a′j and (F1)
{(nk,ik)}
{(n0,i0),(n1,i1),j}=η1j ◦ (f ′j)

{nk}
{n0,n1} ◦ (η

0
{(nk,ik)})

−1.

Now then clearly η1 with η1 � D0 = η0 is an isomorphism between F ′1 and F1.

By iterating this argument we can respectively identify S′nCA and SnCA, as functors

F ′n and Fn having the same domain Dn extending D1. Moreover we can also construct an

isomorphism ηn, extending η1, between F ′n and Fn. Note that each x ∈ Dn − Dn−1 cor-

responds an n-simplex f ′ ∈ S′nC, and ηnx corresponds an n-simplex over A f ∈ SnC. This
correspondence f ′ 
→ f induces a bijection from C ′nCA to CnCA, mapping c′ 
→ c, which
indeed is an isomorphism of the two groups. Notice that by the construction, if an n-shell c′

is the boundary of some (n+1)-simplex f ′, then c is the boundary of f . In general, it follows
(∂d)′ = ∂d′ (*). Thus this correspondence also induces an isomorphism between Z ′n(T ;A)
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and Zn(T ;A). Moreover it follows from (*) that the correspondence sends B′n(T ;A) to
Bn(T ;A): Let c′=∂d′ ∈ B′n(T ;A). Then by (*), we have c=∂d ∈ Bn(T ;A). Conversely
for c′ ∈ Z ′n(T ;A), assume c = ∂e ∈ Bn(T ;A). Now for e′, again by (*), ∂e′ = c′. Hence
we have c′ ∈ B′n(T ;A).

3. Basic facts and examples

From now on, we will usually drop the superscripts t and set from Ht
n(p) and Hset

n (p)
defined in Section 2, since these groups are isomorphic, and use “Hn(p)” to refer to the

isomorphism class of these two groups. In computing the groups below, we generally use

Hset
n (p) rather than Ht

n(p).

3.1. Computing H0. In this subsection, we observe thatH0 does not give any information,

since it is always isomorphic to Z, if ∂0(f) = 0 for any 0-simplex f ; or is trivial if ∂0(f) is
defined to be f(∅):

Lemma 3.1.

(1) If ∂0(f) = 0, then for any complete type p over an algebraically closed set A,
H0(p) ∼= Z and for any small subset A of C, H0(T ;A) ∼= Z.

(2) If ∂0(f) = f(∅), then both groups in (1) are trivial.

Proof. Both parts of the lemma can be proved by essentially the same argument, so we only

write out the proof for the group H0(p) in (1).
For the proof we will define an augmentation map ε as in topology. Since we can add

parameters to the language for A, we can assume that A = ∅.
Define ε : C0C(p) → Z by ε(c) =

∑
i ni for a 0-chain c =

∑
i nifi of type p. Then

ε is a homomorphism such that ε(b) = 0 for any 0-boundary b (since ε(∂f) = 0 for any

1-simplex f ). Thus ε induces a homomorphism ε∗ : H0(p) → Z. Note that any 0-chain
c is in Z0(p), so clearly ε∗ is onto. We claim that ε∗ is one-to-one, i.e. ker ε∗ = B0(p).
Given a 0-chain c =

∑
i∈I nifi such that ε∗(c) =

∑
i∈I ni = 0, we shall show c is a

boundary. Pick some natural number m greater than every ki where dom fi = P({ki}).
Let ai = acl(ai) = fi({ki}). Then choose a realizing p such that a |�{ai : i ∈ I}.
Now let gi be a closed 1-simplex of p such that dom gi = P({ki,m}), gi({ki}) = ai, and
gi({m}) = a. Then ∂gi = cm − fi, where cm is the 0-simplex such that cm(∅) = ∅ and
cm({m}) = a. Then c + ∂(

∑
i nigi) =

∑
i nifi +

∑
i ni(cm − fi) = (

∑
i ni)cm = 0.

Hence c is a 0-boundary, and H0(p) ∼= Z.

3.2. Amalgamation properties. The amalgamation properties in Definition 1.11 can be

specialized to the context of model theory, yielding the usual notion of n-amalgamation (as

in [11]).

Definition 3.2.

(1) If A is a small subset of C, then T has the n-amalgamation property over (based on,
resp.) A if for every (n−2)-shell c over (based on, resp.) A, there is an (n−1)-simplex

f such that c = ∂f .
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(2) A complete type p has the n-amalgamation if any closed functor f : P−(n)→ CA in

p can be extended to an (n− 1)-simplex.

(3) Similarly, “n-uniqueness” over A, based on A, or of the type p can be defined and so

can be the notion of “n-CA”.

Remark 3.3.

(1) Amalgamation properties based on A is equivalent to amalgamation properties over
all B ⊇ A, which implies n-amalgamation for any type p. A stable theory has 4-
amalgamation over any model M , as noted in [2]. However, it need not have 4-
amalgamation based on M . For suppose that T is a stable theory in which there is

a definable groupoid G which has unboundedly many connected components, each of

which is not almost retractable (see [4]). Then ifM |= T , a is the name of a connected

component of G which does not intersectM (noting that these are equivalence classes

which live in T eq), and B = acl(Ma), then T does not have 4-amalgamation over the

set B.

(2) Similarly, if p has n-amalgamation, then so does any non-forking extension, but the

converse need not hold even in a stable theory; see Remark 1.8 of [6].

(3) As is well known, if T is simple then T has 3-CA; and if T is stable, then T has

2-uniqueness by stationarity. A non-simple rosy theory cannot have 3-amalgamation

[16] but it may have n-amalgamation for all n ≥ 4 (e.g. the theory of dense linear

ordering).

Now we can restate Corollary 1.28 as:

Fact 3.4. Assume T has n-CA based on A = acl(A) for n ≥ 2. Then

Hn−1(T ;A) = {[c]| c is an (n− 1)-shell over A with support n+ 1}.

and
Hn−1(p) = {[c]| c is an (n− 1)-shell of p with support n+ 1}.

So it follows:

Fact 3.5. Suppose n ≥ 3.

(1) If T has n-CA based on A = acl(A), then Hn−2(T ;A) = 0.

(2) If p ∈ S(A) (where A = acl(A)) has n-CA, then Hn−2(p) = 0.

However, the converse of the above fact is false in general: the theory of the random

tetrahedron-free hypergraph does not have 4-amalgamation, but all of its homology groups

are trivial ([6, 1.32]).

Fact 3.6. If T is simple, then H1(T ;A) = 0 and H1(p) = 0 for any strong type p in T .

The fact above is extended to any rosy theory in [14].

3.3. More examples. Homology groups of some examples are already given in [6, Section

1.2]. There H2(p) of a strong type p in a stable theory is computed too. In this subsection,
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we compute some homology groups for o-minimal examples.

Example 3.7. Let p be the unique 1-type over ∅ in the theory Tdlo of dense linear ordering

(without end points). Due to weak elimination of imaginaries it is a strong type. We show

thatHn(p) = 0 for every n ≥ 1, even though it does not have 3-amalgamation. It is not hard

to see that p has n-amalgamation for all n �= 3. Now we claim that, just like in Claim 1.33

in [5], any n-cycle is a sum of n-shells. The proof will be similar, and we use the same

notation. We want to construct the edges hij . The trick this time is to take a∗ greater than all
the points of the form a′ = gij({k}). Then given any edge {b, c} = gij({k, �}), where either
b < c or c < b, pick a > b, c. Then since tp(a′a∗) = tp(ba) = tp(ca), the construction of

hij on this level is compatible. For the rest of the construction, use n-amalgamation.

Due to the claim and (n + 2)-amalgamation, all of the groups Hn(p) are 0 for n �= 1.
Furthermore, H1(p) = 0 because any 1-shell is the boundary of a 2-fan (choose a point

greater than all the vertices of all the terms in the 1-shell).

Example 3.8. In [14], it is shown that for any strong type p in Ceq of a rosy theory, if it is a

Lascar type too then H1(p) = 0. But the reason for the triviality of H1(p) can be arbitrarily

complicated. Here we argue that if p is a complete 1-type over A = acl(A) in the home sort

of an o-minimal theory then H1(p) = 0 due to a rather simple reason. Now fix such a p in

an o-minimal theory.

Lemma 3.9. Assume p is non-algebraic. Then there is a type q(x, y) ∈ S(A) such that:

(1) whenever (a, b) |= q(x, y), then a and b are A-independent, and each realizes p; and

(2) for any pair (a, b) of A-independent realizations of p, there is a third realization c of
p such that c is A-independent from ab and both (a, c) and (b, c) realize q.

Proof. Recall that since T is o-minimal, any A-definable unary function f(x) is either even-
tually increasing (that is, there is some point c such that if c < x < y then f(x) < f(y),
eventually decreasing, or eventually constant. If f is eventually constant with eventual value

d, then d ∈ dcl(A).
We say an A-definable function f(x1, . . . , xn) bounded within p if for any realizations

c1, . . . , cn |= p, there is d realizing p such that d > f(c1, . . . , cn). We call a pair of realiza-

tions (a, b) of p an extreme pair if whenever f(x) is bounded within p, then b > f(a).
First note that by the compactness theorem, for any a realizing p, there is a b realizing

p such that (a, b) is an extreme pair. Also, if b ∈ dcl(aA) = acl(aA), then there is an

A-definable function f : p(C) → p(C) such that b = f(a), so since there is no maximal

realization c of p (because such a realization c would be in dcl(A) and we are assuming

that p is non-algebraic), it follows that (a, b) is not an extreme pair. So any extreme pair is

algebraically independent over A and hence thorn-independent (see [18]).

Claim 3.10. Any two extreme pairs have the same type over A.

Proof. It is enough to check that if (a, b) and (a, c) are two extreme pairs, then tp(b/Aa) =
tp(c/Aa). By o-minimality, any Aa-definable set X is a finite union of intervals, and the

endpoints {d1, . . . , dn} of these intervals lie in dcl(Aa). So di = f(a) for someA-definable
function f , and as we already observed b, c �= di. Hence it suffices to see b > di iff c > di.
Now by the definition of an extreme pair,

∀x |= p ∃y |= p [y > f(x)]⇒ b > f(a) = di.
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Also,

∃x |= p ∀y |= p [y ≤ f(x)]⇒ ∀x |= p ∀y |= p [y ≤ f(x)]

because any two realizations of p are conjugate under an automorphism in Aut(C/A)
which permutes p(C), and so

∃x |= p ∀y |= p [y ≤ f(x)]⇒ b ≤ f(a) = di.

The same reasoning applies with c in place of b, so

b > di = f(a)⇔ ∀x |= p ∃y |= p [y > f(x)]

⇔ c > f(a) = di.

Let q(x, y) = tp(a′, b′/A) for some extreme pair. Condition (2) of the definition of weak

3-amalgamation can be ensured by picking c |= p so that c > g(a, b) for any A-definable

function g(y, z) bounded within p, which is possible by the compactness theorem.

The two conditions in Lemma 3.9 clearly mean that p has weak 3-amalgamation defined

in [14]. Because of this or direct observation it follows H1(p) = 0.

4. Work in progress

Here we summarize some work in progress concerning our homology groups.

In [6] the following was conjectured: Let T be stable having (n + 1)-CA (over any

algebraically closed set), and p ∈ S(A) with A = acl(A). Then for every n ≥ 1,

Hn(p) ∼= Γn(p) := Aut( ˜a0...an−1/

n−1⋃
i=0

{a0...an−1}� {ai}),

where a denotes acl(aA); Aut(C/B) denotes the group of elementary permutations of the

set C fixing B pointwise; {a0, ..., an} is A-independent, ai |= p; and

˜a0...an−1 := a0...an−1 ∩ dcl(
n−1⋃
i=0

{a0...an}� {ai}).

In [6], the conjecture is proved when n = 1, 2. We plan to publish a proof for all n in the

forthcoming preprint [8]. We may call this the Hurewicz correspondence since the result

connects the homology groups to something analogous to a homotopy group, as in algebraic

topology. To accomplish this, we needed to generalize the notion of groupoids to higher di-

mensions, and the vertex groups of the higher groupoids should be isomorphic to the groups

Γn(p) defined above. We could not find suitable generalization in the literature fit in our

needs, so in [7] we define n-ary polygroupoids. A 2-ary polygroupoid is just an ordinary

groupoid. In an n-ary polgroupoid, the “morphisms” live in fibers above ordered n-tuples
of objects, and there is a sort of n-ary composition rule on these morphisms. Composition

is only possible under certain compatibility conditions, and there are axioms generalizing

invertibility and associativity for ordinary groupoids. In [7], we show that in any stable
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first-order theory that has k-uniqueness for all k ≤ n but fails (n + 1)-uniqueness, there is
an n-ary polygroupoid (definable in a mild extension of the language) which witnesses the

failure of (n+ 1)-uniqueness.
In [14], as mentioned above it is proved that H1(p) = 0 for any strong type p in a rosy

theory as long as p is a Lascar type too; so any 1-shell in p is the boundary of a 2-chain.

However, in contrast to the case of simple theories, we construct a series of types in rosy

examples showing that there is no uniform bound for the minimal lengths of the 2-chains in

the types having 1-shell boundaries. For this and its own research interests, in [14] and [17],

all the possible 2-chains having the same 1-shell boundary are classified in a non-trivial

amenable collection of functors. In this classification, the following results are obtained,

among others: Any 2-chain with a 1-shell boundary is equivalent (preserving the boundary)

to either an NR-type or an RN-type 2-chain with a support of size 3. Combinatorial and

algebraic criteria determining the two types are given. A planar 2-chain is equivalent to a

Lascar 2-chain.

In [4] and [5], from the failure of 3-uniqueness of a strong type p in a stable theory, a way
of constructing canonical relatively definable groupiods is introduced. The profinite limit of

vertex groups of the groupoids will be the automorphism group Γ2(p), and this seems to

play a role in our setting analogous to that of a fundamental group; however, unlike π1(X)
in topology, Γ2(p) is always abelian, since Γ2(p) ∼= H2(p). But in [15], a different canonical
“fundamental" group for the type p is constructed which seems to give more information:

this new group need not be abelian, and the group Γ2(p) is in the center of the new group.

In [6, 2.29], given an arbitrary profinite group G, only a brief sketch is given how to

build a type pG in a stable theory TG such that H2(pG) ∼= G. In [9], a more detailed proof

is supplied.

Sustretov has recently found connections between 4-amalgamation and Galois cohomol-

ogy in the preprint [19]. It would be very interesting to know if his work could be related to

the computation of the homology groups discussed in this article.
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Abstract. We discuss several situations involving valued fields for which the model-theoretic notion
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1. Introduction

After the groundbreaking work of Ax-Kochen [2] and Eršov [25] in the sixties and of Denef

[16] in the eighties, a wide array of applications of model theory of valued fields is now

flourishing, ranging over topics as diverse as counting subgroups, the Langlands program

and singularity theory. In all these applications the concept of definability in first order logic

is central. In this survey, we shall focus on three such applications, each using the notion of

definability in the context of valued fields in an essential way.

We start by presenting several transfer theorems for p-adic integrals. Such results al-

low to transfer statements over Qp to statements over Fp((t)) and vice versa. A first result,

obtained in collaboration with R. Cluckers deals with identities between integrals with pa-

rameters. In work with R. Cluckers and T. Hales it was shown how it can used for the

integrals occuring in the fundamental lemma. We shall also present more recent results

obtained by R. Cluckers, J. Gordon and I. Halupczok on transfering local integrability or

uniform boundedeness statements and some of their applications to p-adic harmonic anal-

ysis. In the next section, we shall explain how by working in a definable setting one can

deduce global bounds from local bounds on differentials, despite the totally disconnected

nature of non-archimedean valued fields and present some diophantine applications. This is

recent joint work with R. Cluckers and G. Comte. The last section is about the topology of

non-archimedean spaces. We shall present our work with E. Hrushovski on stable comple-

tion of algebraic varieties over a valued field, a model-theoretic analogue of the Berkovich

analytification. A fundamental statement is that the stable completion of an algebraic vari-

ety is pro-definable. We shall explain how using this approach one can prove new tameness

results for the topology of Berkovich spaces.

The present overview is far from being exhaustive, for instance it completely leaves out

important work of Hrushovski and Kazhdan on motivic integration [29, 30], and some of its

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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recent applications [32, 35].

2. Definability and integration

2.1. Definable sets. A language L is a set consisting of symbols for constants (= 0-ary
functions), n-ary functions and n-ary relations. Basic examples are the ring language

{0, 1,+,−,×,=}, the order language {<,=}, or the ordered abelian group language

{<, 0,+,−,=}.
An L-structure consists of a set M together with interpretations for symbols in L. One

requires that = is interpreted by equality in M . A subset of Mn is said to be definable if it

is of the form

{(a1, · · · , an) ∈Mn : ϕ(a1, · · · , an) holds }
with ϕ a first-order formula in L with n-free variables. When the formula ϕ involves pa-

rameters running over some A ⊂ M , one says the subset is A-definable. A map between

A-definable sets is said to be A-definable if its graph is. In this way one defines the category
DefA of A-definable sets. All these notions extend naturally to many-sorted languages.

2.2. p-adic integrals. In his breakthrough paper [16] on the rationality of the Poincaré

series associated to the p-adic points on a variety, Denef proved the following general ratio-

nality result for p-adic integrals:

Theorem 2.3. Let X be a definable subset of Qn
p and g : X → Qp be a bounded definable

function. Then the integral ∫
X

|g|s|dx|

is a rational function of p−s.

Here definability refers to the ring language with parameters in Qp (or, which amounts

to the same here, any standard valued ring language, for instance Lk,Γ considered in 4.8).

The proof relies on Macintyre’s quantifier elimination theorem [36] for Qp.

For X a definable subset of Qn
p , denote by Cp(X) the Q-algebra generated by functions

of the form |g| and val(g) with g : X → Qp definable. In the paper [17] in which he

extended his rationality result to the setting of integrals with parameters, Denef proved the

following result about stability under integration for functions in Cp.

Theorem 2.4. Let X be a definable subset of Qn
p . Let ϕ ∈ Cp(X × Qm

p ). Assume for any
x ∈ X , the function ϕx : λ 
→ ϕ(x, λ) is integrable. Then the function x 
→

∫
Qm

p
ϕx|dλ|

belongs to Cp(X).

In [18], Denef proved a general cell decomposition theorem for Qp-definable sets, pro-

viding direct proofs of Theorems 2.3 and 2.4 and also of Macintyre’s quantifier elimination

theorem. The natural question of uniformity in p in Denef’s Theorem 2.3 has been addressed

by Pas in [39] and by Macintyre in [37]. In the paper [39] a three sorted language has been

introduced, nowadays called the Denef-Pas language LDP. In this language, there are three

sorts of variables:

• variables running over the valued field for which the language is the ring language
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• variables running over the residue field sort for which the language is the ring language

• variables running over the value group sort for which the language is the language of

ordered groups.

and two additional symbols ac and val from the valued field sort to the residue field and

value group sort, respectively. For Qp or k((t)) the angular component map ac is interpreted
as the first non zero coefficient in the p-adic, resp. t-adic, expansion and val as the valuation.
In this setting, Pas proved a cell decomposition theorem which is uniform in p in [39]. In

particular, this provides a new elementary proof of the following version of the classical

result of Ax-Kochen-Eršov.

Theorem 2.5. Let ϕ be a sentence (that is, a formula with no free variable) in the language
LDP. For all but finitely prime numbers p, ϕ is satisfied in Fp((t)) if and only if it is satisfied
in Qp.

2.6. Motivic integrals. In the series of papers [10] and [11] in collaboration with Raf

Cluckers we have developed a general framework for motivic integration on definable sets

in the Denef-Pas language. More precisely let k be a field of characteristic zero and set

K = k((t)). We consider K as a structure for the Denef-Pas language. For any definable

subset S ofKm (or more generally ofKm× kn×Zr), we define in [10] an algebra C(S) of
“constructible motivic functions” on S. For such functions one defines inductively the no-

tion of being integrable and the value of the integral, using the cell decomposition theorem

of Pas [39], and one proves an analogue of Theorem 2.4 in this context. Working in a relative

setting is essential here. One of the main advantage of working in the definable setting over

previous constructions as those in [19] or [20], is that there is no need anymore to consider

completions of Grothendieck rings. Also, we are able to state and prove Fubini and change

of variables theorems in full generality, and to deal with integrals with parameters. For more

detailed, though accessible, presentations of this theory, we refer to the introduction of [10]

and to the paper [12].

2.7. Transfer theorems for constructible motivic functions. Let F be a number field

with ring of integers O. Let CO denote the collection of triples (F, ι,�), where F is non-

archimedean local field, ι : O → F a ring homomorphism and � a uniformizer in F . We

denote by kF the residue field of F and by qF the cardinality of kF . For M > 0, we denote
by CO,M the subcollection of triples (F, ι,�) with F of residue characteristic > M .

Assume now k = F, and fix a definable subset S of Kn. For some M large enough,

for any (F, ι,�) in CO,M one may consider the specialization SF of S in Fn obtained by

specializing the formulas defining S using ι and sending t to �. Similarly, for M large

enough, a function ϕ in C(S) may be specialized to a function on SF which we shall denote

by ϕF .

In [11], we prove the following:

Theorem 2.8. Let ψ ∈ C(S ×Km) and ψ′ ∈ C(S ×Km′). Then, there exists M > 0 such
that, for every F1 and F2 in CO,M such that kF1  kF2 ,∫

Fm
1

(ψF1
)x|dλ| =

∫
Fm′

1

(ψ′F1
)x|dλ′|
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for every x ∈ SF1
if and only if∫

Fm
2

(ψF2)x|dλ| =
∫
Fm′

2

(ψ′F2
)x|dλ′|

for every x ∈ SF2 .

In particular, when F = Q, we get that, for almost all p, the identity∫
Qm

p

(ψQp)x|dλ| =
∫
Qm′

p

(ψ′Qp
)x|dλ′|

holds for every x ∈ SQp
if and only if∫

Fp((t))
m

(ψFp((t)))x|dλ| =
∫
Fp((t))

m′
(ψ′Fp((t))

)x|dλ′|

holds for every x ∈ SFp((t)). Note that Theorem 2.5 can be viewed as a special case of

Theorem 2.8 whenm = m′ = 0 and S is the definable subset ofK0 defined by the sentence

ϕ.
In work with Cluckers and Hales [12] we have shown that Theorem 2.8 applies in par-

ticular to the integrals occurring in the fundamental lemma, both in the unweighted and

weighted case. This is performed by representing all the data entering into the fundamental

lemma within the general framework of identities of motivic integrals of constructible func-

tions. This provides alternative proofs of results of Waldspurger in [46] and [47] and is of

special interest in view of Ngô’s proof of the fundamental lemma over local fields of positive

characteristic [38]. One advantage of our approach is that it may be applied quite directly to

other versions of the fundamental lemma, as in [50].

Another important property of motivic constructible functions is that they satisfy strong

uniform boundedness statements, as proved by Cluckers, Gordon, Halupczok in the appendix

B of [44]:

Theorem 2.9. Let S be a definable set and let ϕ ∈ C(S × Zn).

(1) There exist integers a and b, M , such that for every F in CO,M , if there exists a set-
theoretical function α : Zn → R such that |ϕF (s, λ)|R ≤ α(λ) on SF × Zn, then
|ϕF (s, λ)|R ≤ q

a+b||λ||
F on SF × Zn, with ||λ|| = ∑

i |λi|.
(2) Given integers a and b, there existsM , such that whether the bound

|ϕF (s, λ)|R ≤ q
a+b||λ||
F

holds or not on the whole of SF × Zn depends only on kF , for F in CO,M .

In the same paper they show this result may be applied to provide uniform bounds for

orbitals integrals that are used in an essential way in the paper [44].

2.10. Transfer theorems for exponential constructible motivic functions. In [11], we

extend the construction of algebras constructible motivic functions C(S), to take in account

motivic versions of exponential functions, by constructing the algebra Cexp(S) of exponen-
tial constructible motivic functions on S for any definable set S. The formalism developed

in [10] for C(S) carries over to Cexp(S).
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Given an non-archimedean field F , one denotes by DF the set of additive characters on

F that are trivial on the maximal ideal and nontrivial on the valuation ring. Now, given ϕ in

Cexp(S), for any F in CO,M and any character θ in DF , one may specialize ϕ to a function

ϕF,θ on SF .

In this setting, Theorem 2.8 may be generalized as follows:

Theorem 2.11. Let ψ ∈ Cexp(S×Km) and ψ′ ∈ Cexp(S×Km′). Then, there existsM > 0
such that, for every F1 and F2 in CO,M such that kF1  kF2 ,∫

Fm
1

(ψF1,θ)x|dλ| =
∫
Fm′

1

(ψ′F1,θ)x|dλ
′|

for every x ∈ SF1 and any θ ∈ DF1 if and only if∫
Fm

1

(ψF1,θ)x|dλ| =
∫
Fm′

1

(ψ′F1,θ)x|dλ
′|

for every x ∈ SF1 and any θ ∈ DF1 .

In the paper [13], Cluckers, Gordon, Halupczok prove the following remarkable transfer

theorem for (local) integrability and boundedness:

Theorem 2.12. Let S be a definable subset ofKm and let ϕ ∈ Cexp(S). There existsM > 0
such that, for fields F in CO,M , the validity of the statement that ϕF,θ is (locally) integrable,
resp. (locally) bounded, for all θ ∈ DF depends only on the isomorphism class of kF .

Using Theorem 2.12, Cluckers, Gordon, Halupczok have been able in [14] to transfer

Harish-Chandra’s theorems on local integrability of characters of irreducible admissible rep-

resentations of connected reductive p-adic groups from characteristic zero to (large) positive

characteristic. An important ingredient in their approach is the definability of the Moy-

Prasad filration subgroups, which they have proved in a number of important special cases.

3. Definability and non-archimedean diophantine geometry

3.1. Lipschitz functions. A C1-function on an interval in R which has bounded derivative

is automatically Lipschitz continuous. It is well known that such a result cannot hold for

general C1-functions over the p-adics since Qp is total disconnectedness. However, under

some definability conditions it is still possible to get results of this kind, as we shall explain

now.

Let K be a field endowed with a discrete valuation for which it is complete. In this

section, by definable we shall mean definable in the ring language LK with parameters inK
(in this case definable sets are also called semi-algebraic sets), or in the analytic language

Lan
K which is obtained by adding to LK a symbol for each restricted power series f in

K{x1, . . . , xm}, for m ≥ 1. Such a symbol is interpreted as the function Km → K which

is zero outside Om
K and given by x 
→ f(x) for x ∈ Om

K . In this case definable sets are also

called subanalytic sets.

Let X be a subset of Km. We say a function f : X → K is C-Lipschitz if for every x
and y in X , |f(x)− f(y)| ≤ C|x− y|. We say it is locally C-Lipschitz if for each point x0

in X , the restriction of f to some neighborhood of x0 is C-Lipschitz.

In the paper [7] with Cluckers and Comte we prove the following:
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Theorem 3.2. Let X be a definable subset of Qm
p and let f : X → Qp be a definable map.

Assume f is locally C-Lipschitz. Then there exists a finite partition of X into definable sets
Xi and C ′ such that the restriction of f to each Xi is C ′-Lipschitz.

This statement is a p-adic analogue of a theorem of Kurdyka for real subanalytic sets

[34]. In [9] Cluckers and Halupczok proved that it is in fact always possible to take C ′ = C.

3.3. A p-adic analogue of the Yomdin-Gromov lemma. A very efficient tool in diophan-

tine geometry is the so-called determinant method which was developed by Bombieri and

Pila in the influential paper [6] about the number of integral points of bounded height on

affine algebraic and transcendental plane curves. Basically, the method consists in using a

determinant of a suitable set of monomials evaluated at the integral points, in order to con-

struct a family of auxiliary polynomials vanishing at all integral points on the curve within

a small enough box. Building on the estimates in [6] for algebraic curves, Pila proved in

[40] bounds on the number of integral (resp. rational) points of bounded height on affine

(resp. projective) algebraic varieties of any dimension, improving on previous results by S.

D. Cohen using the large sieve method [15].

In [41], Pila and Wilkie proved a general estimate for the number of rational points on

the transcendental part of sets definable in an o-minimal structure; this has been used in a

spectacular way by Pila to provide an unconditional proof of some cases of the André-Oort

Conjecture [42]. Lying at the heart of Pila and Wilkie’s approach is the possibility of having

uniform - in terms of number of parametrizations and in terms of bounds on the partial

derivatives - Ck-parametrizations. These parametrizations are provided by an o-minimal

version of Gromov’s algebraic parametrization Lemma [26], itself a refinement of a previous

result of Yomdin [48],[49]. Such Ck-parametrizations enter the determinant method via

Taylor approximation.

In the work [8] with Cluckers and Comte we provide a version of the Yomdin-Gromov

lemma and the Pila-Wilkie theorem valid over Qp. At first sight one may have doubts such

a statement could exist, since there seem there is no way for a global Taylor formula to

make sense in this framework. However Theorem 3.2 which provides a version of first-order

Taylor approximation, piecewise globally, in the definable p-adic setting is an encouraging

sign. In [8], instead of generalizing this result to higher order, we show directly the existence

of uniform Ck-parametrizations that do satisfy Taylor approximation, which is enough for

our purpose.

Our p-adic analogue of the Yomdin-Gromov lemma is the following statement:

Theorem 3.4. Let n ≥ 0, m ≥ 0 and r ≥ 0 be integers and let X ⊂ Zn
p be a sub-

analytic set of dimension m. Then there exists a finite collection of subanalytic functions
gi : Pi ⊂ Zm

p → X such that the union of the gi(Pi) equals X , the gi have Cr norm
bounded by 1, and the gi may be approximated by Taylor polynomials of degree r − 1 with
remainder of order r, globally on Pi.

For the precise definition of the Cr norm and of approximation by Taylor polynomials

of certain degree and with certain error we refer to [8].

3.5. A p-adic analogue of the Pila-Wilkie theorem. For X a subset of Qn
p and T > 1 a

real number, writeX(Q, T ) for the set consisting of points (x1, · · · , xn) inX∩Qn such that

one can write xi as ai/bi where ai and bi �= 0 are integers with |ai|R ≤ T and |bi|R ≤ T .
For X a subset of Qn

p , write Xalg for the subset of X consisting of points x such that
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there exists an algebraic curve C ⊂ An
Qp

such that C(Qp) ∩X is locally at x of dimension

1.
We prove in [8] the following p-adic analogue of the Pila-Wilkie theorem:

Theorem 3.6. Let X ⊂ Qn
p be a subanalytic set of dimension m with m < n. Let

ε > 0 be given. Then there exist an integer C = C(ε,X) > 0 and a semialgebraic set
W = W (ε,X) ⊂ Qn

p such thatW ∩X lies inside Xalg, and such that for each T , one has

#(X \W )(Q, T ) ≤ CT ε.

3.7. Results over C[[t]]. In the paper [8] we also obtain results when K = C((t)). For

instance a version of Theorem 3.2 still holds over C((t)) (with C ′ = C), if one replaces “a

finite partition ofX” by “a partition parametrized by Cr, for some r”. For this to make sense

one has to enlarge the language to have (higher) angular components maps à la Denef-Pas,

see [8] for more details. Similarly, a version of Theorem 3.4 over C((t)) is also proved in [8].
We end this section by stating a diophantine application of this result.

For each positive integer r one denotes by C[t]<r the set of complex polynomials of

degree < r. When A is a subset of C((t))n, one denotes by Ar the set A ∩ (C[t]<r)
n and by

nr(A) the dimension of the Zariski closure of Ar in (C[t]<r)
n  Cnr.

Let X be an algebraic subvariety of An
C((t)) of dimension m. One can prove that for any

r > 0, nr(X) ≤ rm. When X is linear this “trivial” estimate is the best possible. However,

we prove in [8] that as soon as X has degree d ≥ 2, the following non-trivial bound holds:

Theorem 3.8. Let X be an irreducible subvariety of An
C((t)) of dimension m and degree

d ≥ 2. Then, for every positive integer r, one has

nr(X) ≤ r(m− 1) +
⌈ r
d

⌉
.

This result is a geometric analogue of a result of Pila in [40] on the number of integral

(resp. rational) points of bounded height on affine (resp. projective) algebraic varieties of

any dimension. Pila’s proof proceeds by reducing to the case of curves which was considered

by Bombieri and Pila in [6].

4. Definability and topology

In this section we present a model-theoretic approach to proving topological tameness prop-

erties in non-archimedean geometry which we developed in collaboration with Ehud Hru-

shovski [31].

4.1. o-minimality. It is by now quite well known that o-minimal geometry provides an

efficient framework for the study of topology arising from an ordered structure, in particular

in the context of ordered fields. Let us recall that an infinite structure M which is totally

ordered by a binary relation < is said to be o-minimal if every definable subset X ⊂ M ,

with parameters inM , is a finite union of intervals and points. Sets definable in a o-minimal

structure have nice topological properties. For instance, for o-minimal expansions of the field

R of real numbers, and n ∈ N, definable subsets of Rn have a finite number of connected

components which furthermore are definable, they are locally contractible and triangulable;
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in particular they have the homotopy type of a finite simplicial complex. Classical examples

of subsets of Rn definable in a o-minimal structure include semi-algebraic sets, subanalytic

sets, or sets definable in the language of ordered rings with an exponential function. Another

class of examples of o-minimal structures, playing an important role in our work, is provided

by divisible ordered abelian groups Γ. In this last setting definable subsets of Γn essentially

correspond to piecewise linear sets. An important feature of this model-theoretic framework

for tameness is that it is particularly well adapted to proving uniformity statements for the

topology of definable sets varying in definable families, for instance finiteness of homotopy

types occuring in a given such family.

4.2. Valued fields. By a valued field we mean a field K, together with a surjective mul-

tiplicative map val : K× → Γ, with Γ = (Γ, 0,+, <) an ordered abelian group such that

val(x + y) ≥ min(val(x), val(y)). We extend val to a map val : K → Γ∞, with Γ∞ the

disjoint union of Γ with a distinguished element ∞ which is larger than any element of Γ
and absorbing for the addition. We shall denote by OK the valuation ring ofK and byMK

the maximal ideal ofK.

4.3. Berkovich spaces. Let K be a valued field such that Γ is a subgroup of (R,+). Then
x 
→ |x| = e− val(x) defines an absolute value | · | : K → R≥0. One says K is ultrametric if

it is complete for this norm.

In [3], Berkovich introduced a general notion of analytic spaces over an ultrametric field

K. In particular, for any algebraic variety V overK one may consider its Berkovich analyti-

fication V an. In case V is affine with ring of regular functions K[V ], let us define V an as a

topological space. As a set V an is the set of multiplicative seminorms on K[V ] extending
the absolute value on K. There is a natural embedding V an ⊂ RK[V ] and one endows V an

with the topology induced by the product topology on RK[V ]. For an arbitrary algebraic va-

riety V over K, one defines V an by glueing. This construction is functorial: any morphism

of algebraic variety f : V → W gives rise to a morphism fan : V an → W an. Note that

V (K) may be naturally identified with a subset of V an. When V is affine, this is done by

assigning to a point a in V (K) the seminorm f 
→ |f(a)|.

4.4. Some previously known topological properties of Berkovich spaces. Already in [3]

Berkovich proved that general analytic spaces (including analytifications of algebraic vari-

eties) have excellent general topological properties, in particular they are locally compact

and locally path-connected.

More recently, in his paper [4], Berkovich proved that the general fibre of any polystable

formal scheme admits a strong deformation retraction to a finite polyhedron, and using de

Jong’s results on alterations he deduced that any smooth analytic space is locally contractible.

On the other hand, Ducros proved in [21] that semi-algebraic subsets of V an, i.e. subsets

which are Zariski locally boolean combinations of subsets defined by inequalities |f | �� λ|g|
with f , g in K[V ] and λ ∈ R≥0, where ��∈ {<,>,≤,≥}, have only a finite number of

connected components, each of them semi-algebraic.

Another statement with an o-minimal flavour us the following. Let X be a compact

analytic space and let f be an analytic function on X . For every ε ≥ 0, let Xε denote

the set of points x in X such that |f(x)| ≥ ε. According to Abbes and Saito under the

assumption that f is invertible [1] and to Poineau in general [43], there is a finite partition of

R≥0 into intervals such that on each of these intervals the natural map π0(Xε′) → π0(Xε)
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is a bijection whenever ε ≤ ε′.

4.5. Statement of results. The results recalled in 4.4 provide rather strong evidence that

there should exist general tameness results for the topology of non-archimedean spaces,

quite analogous to the ones available in the o-minimal world. In the paper [31], we prove the

following general statements on the topology of analytifications of algebraic varieties:

Theorem 4.6. Let K be an ultrametric1 field. Let V be a quasi-projective variety over K
and let X be a semi-algebraic subset of V an.

(1) There exists a strong homotopy retraction h : [0, 1]×X → X onto a closed subset of
X which is homeomorphic to a compact finite polyhedral complex.

(2) The space X is locally contractible (one may drop the assumption V quasi-projective
here).

(3) Let f : V → W be a morphism of algebraic varieties over K. Then the set of
homotopy types of fibers of the map fan|X : X →W an is finite.

(4) Let f : V → A1
K a morphism. For every ε ≥ 0, let Xε denote the set of points x in

X such that |f(x)| ≥ 0. Then there exists a finite partition of R≥0 into intervals such
that the natural map Xε′ ↪→ Xε is a homotopy equivalence whenever ε ≤ ε′ belong
to the same interval.

4.7. Model-theoretic preliminaries. We shall deal with a complete theory T having quan-

tifier elimination and work in a fixed universe U, by which we mean a large very saturated

and homogeneous model. All models M (and parameter sets A) we shall consider will be

small substructures (resp. subsets) of U.
If A is a small subset of U, the definable closure dcl(A) is the set of all elements c in U

such that there exists a formula ϕ(x) with one free variable and parameters in A such that

c is the only element of U such that ϕ(c) holds. If X is a C-definable set and C ⊂ A, we
write X(A) for X(U) ∩ dcl(A).

A basic notion we shall use is that of a definable type. Let assume for simplicity of

notation that there is only one sort. Let B be a set of parameters. Let c = (c1, · · · , cn) be
a finite tuple of elements of U. The set of all B-formulas satisfied by c in some model of

T containing the ci’s is denoted by tp(c/B) and called the type of c over B. Such a set

of formulas is called an n-type over B. In the special case where all ci’s already belong to

B one says the type is realized (over B). Let A ⊂ M . We say an n-type p over M is A-

definable if for every formula ϕ(x1, · · · , xn, y1, · · · , ym) without parameters, there exists

a formula ϕp(y1, · · · , ym) with parameters in A, such that for any (b1, · · · , bm) in Mm,

ϕ(x1, · · · , xn, b1, · · · , bm) belongs to p if and only if ϕp(b1, · · · , bm) holds in M . The

mapping ϕ 
→ ϕp is called a defining scheme for p. If p is such an A-definable type overM ,

for any model M ′ containingM one can extend p to an A-definable type over M ′, by using
the same defining scheme. Thus, we will not care about a specificM anymore when dealing

A-definable types. Note that a realized type over A is always A-definable. These definitions

extend naturally to many-sorted languages.

Let X be a C-definable set with C ⊂ A. We say that an A-definable type p is on

X if the formula expressing that x ∈ X belongs to the type p. We denote by SX,def (A)
the set of A-definable types on X and set SX,def = ∪ASX,def (A). Any C-definable map

1In fact the completeness hypothesis on K plays no role here.
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f : X → Y between C-definable sets induces a natural push-forward maps

f∗ : SX,def (A)→ SY,def (A) and f∗ : SX,def → SY,def .

4.8. The language. Classically, to study valued fields one considers a 3-sorted language

Lk,Γ (or one of its variants) with sorts VF, Γ and k for the valued field, value group and

residue field sorts, with respectively the ring, ordered abelian group and ring language, and

additional symbols for the valuation val and the map Res : VF2 → k sending (x, y) to the

residue of xy−1 if val(x) ≥ val(y) and y �= 0 and to 0 otherwise. We consider ACVF,
the theory of algebraically closed fields with non trivial valuation such that val is surjective
in this language. This theory become complete once the characteristic of the valued field

and of its residue field are both fixed. It is a classical result of A. Robinson that ACVF
admits quantifier elimination. Note that this result has already nice consequences in non-

archimedean geometry. For instance in the paper of Ducros [23] it is used to give an alternate

proof of the Bieri-Groves theorem [5].

We shall use an expansion LG of this language introduced by Haskell, Hrushovski and

Macpherson in [27]. It has additional sorts Sn and Tn for n ≥ 1, coding respectively

n-dimensional lattices over the valuation ring, and elements in the reduction modulo the

maximal ideal of such lattices. The main result of [27] is that ACVF has elimination of

imaginaries in the language LG (which was not the case in the original language Lk,Γ). A

theory T is said to have elimination of imaginaries in a given language if all quotients of

definable sets by definable equivalence relations are representable by definable sets. It is

also proved in [27] that ACVF still has elimination of quantifiers in LG .
One should note that expanding the language from Lk,Γ to LG does not create new de-

finable sets in the sorts VF, Γ and k. If V is an algebraic variety over a valued field, we

may define definable subsets of V by requiring that their intersection with any affine open is

a definable set.

Given a valued field F , a in F and α in val(F ), resp. α in val(F×), one denotes by

B(a, α) and Bo(a, α) respectively the closed and open ball of center a and valuative ra-

dius α. They are definable sets defined respectively by the formulas val(x − a) ≥ α and

val(x− a) > α. If B is a ball defined over a model K of ACVF, the type expressing that

x ∈ B and x /∈ B′ for every K-definable ball B′ strictly contained in B is a K-definable

type, called the generic type of B, and denoted by pB .

Remark 4.9. Note that the set of all closed balls for K running over all models of ACVF
(contained in U) is definable in LG (without parameters). Indeed, it suffices to prove that

the set of all closed balls of finite valuative radius is definable in LG , and this follows

from the following observation: given a, a′ in K and b, b′ in K×, the balls B(a, val(b))
and B(a′, val(b′)) are equal if and only if the two-dimensional OK-lattices generated by

((b, 0), (a, b)) and by ((b′, 0), (a′, b′)) are equal. More precisely, there exists a definable set

D in LG such that for any A ⊂ U, D(A) is in natural bijection with the set of A-definable

closed balls.

4.10. Stably dominated types. In [28], Haskell, Hrushovski and Macpherson introduced

within a general model-theoretic framework the notion of stably dominated types. Roughly

speaking, a stably dominated type is a definable type which is “controlled by its stable part”.

In ACVF, stable domination is equivalent to being orthogonal to Γ in the following sense.

LetX be a C-definable set and let p ∈ SX,def (A), for C ⊂ A. We shall say that p is orthog-
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onal to Γ if for every modelM ofACVF containingA, every tuple c such that p = tp(c/M),

and every M -definable map f : X → Γ∞, f(c) ∈ val(M). We denote by X̂(A) the set of

A-definable types on X that are orthogonal to Γ and by X̂ the union of all the sets X̂(A),

for A ⊂ U. We call X̂ the stable completion of X .

Examples 4.11.

1. Realized types are stably dominated, i.e. for any definable set X there is a natural

inclusion ι : X → X̂ .

2. A type over Γn
∞ is stably dominated if and only it is realized, i.e. ι : Γn

∞ → Γ̂n
∞ is a

bijection.

3. The generic type of a ball is stably dominated if and only if the ball is closed.

It follows from Remark 4.9 and Example 4.11 (3) that, given a valued field F , there is a

natural bijection ϑ between Â1
F and a definable set D, inducing, for any A ⊂ U, a bijection

between Â1
F (A) and D(A). This is a special case of Theorem 4.14, but before going any

further, we should introduce the notion of a pro-definable set. One defines the category

ProDefC of pro-definable sets over C as the category of pro-objects in the category of C-

definable sets indexed by a small directed partially ordered set. Thus, if X = (Xi)i∈I and

Y = (Yj)i∈J are two such pro-objects

HomProDefC (X,Y ) = lim←−
j

lim−→
i

HomDefC (Xi, Yj).

Elements of HomProDefC (X,Y ) will be called C-pro-definable morphisms between X and

Y . By a result of Kamensky [33], the functor of “taking U-points” induces an equivalence of
categories between the category ProDefC and the sub-category of the category of sets whose

objects and morphisms are inverse limits of U-points of definable sets indexed by a small

directed partially ordered set. By pro-definable, we mean pro-definable over some C. We

shall thus freely identify a pro-definable set X = (Xi)i∈I with the set X(U) = lim←−i Xi(U).

For any set B with C ⊂ B ⊂ U, we set X(B) = X(U) ∩ dcl(B) = lim←−i Xi(B).

Definition 4.12. Let X be a pro-definable set.

(1) X is called strict pro-definable if it can be written as a pro-definable set with surjective

transition morphisms.

(2) X is called iso-definable if it is in pro-definable bijection with a definable set.

(3) Y ⊂ X is called relatively definable if there exists i ∈ I and a definable subset W of

Xi such that Y = π−1
i (W ), with πi the canonical projection X → Xi.

Theorem 4.13. Let X be a B-definable set. Then X̂ may be canonically endowed with the
structure of a strict B-pro-definable set. In particular, there exists a strict B-pro-definable
set E such that for any B ⊂ A, there is a canonical identification X̂(A) = D(A).

For curves we have the following stronger statement:

Theorem 4.14. Let C be an algebraic curve over a valued fieldK and letX be a definable
subset of C. Then X̂ is iso-definable.
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For C = P̂1 the result follows from the description of Â1 in terms of closed balls given

above. The proof in the general case uses Riemann-Roch and Theorem 4.13.

Remark 4.15. The previous statement is optimal since one can show that, forX a definable

subset of Kn, X̂ is iso-definable if and only the dimension of the Zariski closure of X is

≤ 1.

Lemma-Definition 4.16. Let f : X → Y be a map between B-definable sets. Then the

map f∗ : SX,def → SY,def restricts to a B-pro-definable map f̂ : X̂ → Ŷ . In this way we

have a functor from the category of B-definable sets to the category of B-pro-definable sets.

Let X be a definable subset. If Y is a definable subset of X , then Ŷ is a relatively

definable subset of X̂ . The set of realized types in X̂ , which can be identified with X(U) is
iso-definable and relatively definable in X̂ . Its points are called simple points of X̂ .

4.17. V̂ as a topological space. We endow Ân with the coarsest topology such that for

every polynomial F ∈ U[x1, · · · , xn], the map v̂al ◦F : Ân → Γ∞ is continuous, where

the topology on Γ∞ is the order topology. For any definable subset X of An, we endow X̂
with the induced topology. If V is an algebraic variety over a valued field K, we define the

topology on V̂ by gluing: it is the unique topology inducing the previous topology on Û for

U an affine open in V . If X is a definable subset of V , we endow the relatively definable

subset X̂ with the induced topology.

We have the following basic properties:

Proposition 4.18. Let V be an algebraic variety defined over a valued field K. Then:

(1) The topology on V̂ is pro-definable in the following sense: there exists a small set
I , and for each i ∈ I , a K-definable family Ui = (Ui,b)b∈U of relatively definable
subsets of V̂ , such that the sets Ui,b, for b ∈ U and i ∈ I generate the topology on V̂ .

(2) The topology on V̂ is Hausdorff.

(3) The subset of simple points is dense in V̂ .

(4) The induced topology on the set of simple points is the valuation topology.

In general, we shall call pro-definable sets with a pro-definable topology, pro-definable

spaces.

More generally, consider the map π : V × Am → V × Γm
∞ which is the identity on the

V factor and val on the remaining ones. It induces a map π̂ : ̂V × Am → ̂V × Γm
∞ and we

endow ̂V × Γm
∞ with the direct image topology, making it a pro-definable space. One shows

that the canonical map ̂V × Γm
∞ → V̂ × Γ̂m

∞ = V̂ × Γm
∞ is an homeomorphism.

4.19. Definable compactness. The usual notion of compactness is not well suited to the

present setting as shown by the following example. LetK be a valued field with val(K×)=Q.
Fix ε ∈ val(U×) such that 0 < ε < α for every positive α in Q. Let C be set defined by the

formula 0 ≤ val(x) ≤ 1. For α ∈ Q ∩ [0, 1] let Uα be defined by α− ε < val(x) < α+ ε.

The family of open sets Ûα is a cover of Ĉ with no finite subcover.

To remidy this we shall introduce the notion of definable compactness for pro-definable

spaces. Let us note that the definition we gave of a definable type still makes sense on

pro-definable set.
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Definition 4.20. Let X be a pro-definable space.

(1) Let p be a definable type on X . We say a ∈ X is a limit of p if for every relatively

definable neighborhoodW of a, the formula expressing x ∈W belongs to p.

(2) We say X is definably compact if every definable type on X has a limit.

Note that if X is Hausdorff, limits are unique when they exist.

Let V be a closed subvariety of Am. A subset X ⊂ V is said to be bounded in V if

it is contained in a product of closed balls. For an arbitrary variety V , a definable subset

X ⊂ V is said to be bounded, if one may write V = ∪ni=1Vi with Vi open and affine and

X = ∪ni=1Xi, with Xi bounded in Vi. A subset of V × Γm
∞ will be said to be bounded if

its preimage in V × Am is. Finally, a pro-definable subset X ⊂ V̂ × Γm
∞ will be said to be

bounded if there exists a bounded definable subset W of V × Γm
∞ such that X ⊂ Ŵ .

Theorem 4.21. Let X be a pro-definable subset of V̂ × Γm
∞. Then X is definably compact

if and only if it is closed and bounded.

Corollary 4.22. A variety V over a valued field is complete if and only if V̂ is definably
compact.

4.23. Γ-internality. We shall now define an important class of subsets of V̂ × Γm
∞ which

“look like o-minimal sets”.

Definition 4.24. A subset Z of V̂ ×Γm
∞ is said to be Γ-internal if it is iso-definable and there

is a definable subset D of some Γn
∞ and a surjective pro-definable map D → Z.

The iso-definability condition is crucial here, and cannot be replaced by just requiring

pro-definability. This definition is purely definable and does not say anything a priori about

the topology of Z. The following embedding result shows that being Γ-internal imposes

strong restrictions on the topology:

Theorem 4.25. Let Z be a Γ-internal subset of V̂ × Γm
∞. Then there exists an injective

continuous definable map f : Z ↪→ Γn
∞ for some n. If Z is definably compact, such an f is

an homeomorphism.

If V and Z are defined over some set of parameters A, one cannot in general expect such

an f to be defined, because it should be respect the Galois action. However the following

holds:

Proposition 4.26. Assume V andZ are defined over some set of parametersA in theVF and
Γ sorts. Then there exists a finite A-definable set w and an injective continuous A-definable
map f : Z ↪→ Γw

∞.

4.27. Paths and definable connectedness. The mapping [0,∞] → P̂1 sending t to the

generic type of the ball B(0, t) may be seen as a path connecting 0 and the generic type pO
of the closed unit ball. Similarly the mapping [0,∞] → P̂1 sending t to the generic type of

the ball B(1, t) connects 1 and pO. By composing these paths one connects the point 0 and

1. However a technical issue occurs here. Since multiplication is not part of the structure

Γ∞, there is no way to identify the space obtained by gluing two copies of [0,∞] at 0 with

an interval. We are thus led to consider generalized intervals, that is spaces obtained by
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concatening a finite number of closed intevals in Γ∞ either with the order from Γ∞ or with

the reverse order.

We denote by I = [iI , eI ] such a generalized interval. A path γ : I → V̂ × Γm
∞ is a

continuous (pro)-definable map.

Let V be an algebraic variety over some valued field. We say a strict pro-definable subset

Z of V̂ is definably connected if it contains no clopen strict pro-definable subsets other than

∅ and Z. We say that Z is definably path connected if for any two points a and b of Z there

exists a definable path in Z connecting a and b. Clearly definable path connectedness implies

definable connectedness. When V is quasi-projective and Z = X̂ withX a definable subset

of V , the reverse implication will eventually follow from Theorem 4.32.

We have the following GAGA type theorem:

Theorem 4.28. Let V be an algebraic variety over some valued field. Then V̂ is definably
connected if and only if V is geometrically connected.

4.29. Strong retractions for curves. Let I = [iI , eI ] be a generalized interval. A contin-

uous pro-definable map H : I × X̂ → Ŷ is called a definable homotopy between the maps

Hi = H|{iI}×X̂ and He = H|{eI}×X̂ , viewed as maps X̂ → Ŷ . A definable homotopy

H : I × X̂ → X̂ is called a strong deformation retraction onto the set Σ ⊂ X̂ if Hi = IdX̂ ,

H(t, x) = x for every t ∈ I and every x ∈ Σ and He(X̂) = Σ.

There is a canonical strong deformation retraction of P̂1 onto the point pO which is

described as follows. Using the two standards affine charts, one may write each point of P̂1

as pB(a,α) with a ∈ P1(U) and α ≥ 0. The homotopy is given by taking I = [∞, 0] (thus
iI = ∞ and eI = 0) and setting ψ(t, pB(a,α)) = pB(a,min(t,α)).

More generally, given any finite subsetD in P1(U), let CD be the image of I× (D∪pO)
underψ. The setCD is a closed Γ-internal subset of P̂1. Set γ(a)=max{t ∈ I;ψ(t, a)∈CD}.
Then ψD : I× P̂1 → P̂1 sending (t, a) to ψ(max(γ(a), t), a) is a strong deformation retrac-

tion of P̂1 onto CD.

Theorem 4.30. Let C be an algebraic curve over a valued field K. There exists a strong
deformation retraction, defined overK,H : [0,∞]× Ĉ → Ĉ onto a Γ-internal subset of Ĉ.

Let us sketch the proof. A standard outward path on Â1 at x = pB(a,α) is given by

t 
→ pB(a,t) for t ∈ (β, α] for some β < α. Now if g : C → A1 is finite, with C a curve,

by an outward path starting at x ∈ Ĉ, we mean a continuous definable lifting of a standard

outward path starting at g(x). One proves that for any x ∈ Ĉ there exists at least one outward

path starting at x and one says that x is branching if there is more than one outward path

starting at x. A key lemma states that the number of such branching points is finite. For the

proof of the theorem we may assume C is projective and consider f : C → P1 finite and

generically étale. One considers a finite set D ⊂ P1, defined over K, such that f is étale

above the complement of D and CD contains all the branching points, with respect to the

restriction of g over both standards affine charts. One concludes the proof by showing that

ψD lifts to the strong deformation retraction we are looking for.

4.31. The main theorem. We may now state the main result from [31]:
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Theorem 4.32. Let K be a valued field and A = (K,G) with G a subset of Γ containing
val(K). Let V a quasi-projective variety defined over K, X an A-definable subset of V .
Assume given finitely many A-definable functions ξi : X → Γ∞ and an action of a finite
algebraic group overK on V leavingX globally invariant. Then there exists anA-definable
strong deformation H : I × X̂ → X̂ onto a Γ-internal subset Υ of X̂ such that:

(1) The set Υ embeds homeomorphically into Γw
∞ for some finite A-definable set.

(2) H respects the functions ξi and is equivariant with respect to the group action.

The structure of the proof goes as follows. One uses induction on the dimension of V .

One start by reducing to the case where X = V is projective equidimensional. One fixes

an hypersurface D0 ⊂ V containing the singular locus of V and such that there exists an

equivariant étale morphism V \D0 → An. Some further geometric considerations allow to

reduce to the case when there is a morphism u : V → U = Pn−1, whose restriction to D0

is finite, and a Zariski dense open subset U0 of U such that, setting V0 = u−1(U0), u|V0

factorizes as q ◦ f with f : V0 → E0 = U0 × P1 a finite morphism and q : E0 → U0 the

projection.

Over U0 the situation is that of a relative curve. Performing the curve construction in this

relative setting provides a strong deformation retraction

Hcurves : [0,∞]× ̂V0 ∪D0 −→ ̂V0 ∪D0

fixing pointwise D̂0 and with image a relatively Γ-internal set Υcurves. By using the induc-

tion hypothesis (note that even if one starts with V without group action and no ξi’s, they
are needed at this stage of this induction), one constructs a definable homotopy I × Û → Û
whose restriction lifts to a strong deformation retraction

Hbase : I ×Υcurves −→ Υcurves.

A third homotopy, which we call “inflation” is used to get out of of the complement of
̂V0 ∪D0. On Ân one may consider the standard homotopy given by “increasing the polyra-

dius”. Using an appopriate stopping time function one gets another homotopy which we may

lift, via the étale map V \D0 → An, to an homotopy

Hinf : [0,∞]× V̂ −→ ̂V0 ∪D0

fixing pointwise D̂0.

After composing these three homotopies, one gets an homotopy H ′ : I ′ × V̂ → V̂ that

almost does the job, except that because of the use of inflation, we cannot insure that the

points of the image of H ′ are all kept pointwise fixed by H ′ for all time values. To remedy

this issue, we have to construct a fourth homotopy, HΓ whose construction lies purely in

the tropical Γ-internal world, so that the composition H = HΓ ◦ H ′ finally satisfies the

conclusion of the theorem.

4.33. Back to Berkovich spaces. A type p = tp(c/A) is said to be almost orthogonal to Γ
is Γ(Ac) = Γ(A).

Let F be a valued field with val(F×) ⊂ R. We consider the structure F = (F,R), where
R belongs to the Γ-sort. Let V be a variety defined over F and X an F-definable subset of
V .
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One defines BX(F) as the set of types over F lying on X and almost orthogonal to Γ.
Similarly as for the Berkovich analytification and the stable completion, one endows BX(F)
with a topology coming from the topology on R. When F is complete, BV (F) and V an are

canonically homeomorphic.

By a result of Kaplansky, there exists a unique field Fmax, up to F-automorphism, which

is a maximally complete algebraically closed non trivially valued field containing F , and has

value group R and residue field the algebraic closure of the residue field of F .

The following proposition provides the link allowing to deduce the results about Berkovich

spaces stated in Theorem 4.6 from Theorem 4.32 and its relative variants.

Proposition 4.34. Let X be an F-definable subset of some F -variety. Restriction of types
induces a continuous, surjective and closed map π : X̂(Fmax)→ BX(F).

(1) Let f : X̂ → Ŷ be a continuous F-pro-definable map, with Y an F-definable subset
of some F -variety. Then there exists a unique continuous map f̃ : BX(F) → BY (F)
such that π ◦ f = f̃ ◦ π.

(2) LetH : I×X̂ → X̂ be a definable strong deformation retraction. Then H̃ : I(R∞)×
BX(F)→ BX(F) is a strong deformation retraction.

(3) BX(F) is compact if and only if X̂ is definably compact.
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Computability theoretic classifications for classes
of structures
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Abstract. In this paper, we survey recent work in the study of classes of structures from the viewpoint

of computability theory. We consider different ways of classifying classes of structures in terms of

their global properties, and see how those affect the structures inside the class. On one extreme, we

have the classes that are Σ-small. These are the classes which realize only countably many ∃-types,
and are characterized by having tame computability theoretic behavior. On the opposite end, we look

at various notions of completeness for classes which imply that all possible behaviors occur among

their structures. We introduce a new notion of completeness, that of being on top for effective-bi-

interpretability, which is stronger and more structurally oriented than the previously proposed notions.
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Keywords. Sigma small classes, back-and-forth relations, rice relations, low property, bf-ordinal,

effective-bi-interpretability.

1. Introduction

In this paper, we survey recent work on the study of classes of structures from the viewpoint

of computability theory. By classes of structures we mean classes like the one of fields or of

p-groups or of linear orderings. Our general objective is to consider global properties of the

classes and derive properties about their individual structures.

Computable structure theory is an area inside computability theory and logic that is con-

cerned with the computable aspects of mathematical objects and constructions. In particular,

we are interested in the interplay between structure and complexity, or in other words, in

understanding how the algebraic properties of a structure interact with its computational

properties. For instance, we ask questions like the following: What kind of information can

be encoded into an isomorphism type of a structure? How difficult is it to represent a certain

structure? How difficult is it to recognize it?

When we consider classes of structures, there are two ends of the spectrum. On the

one end are the classes which have some global property restricting the behavior of their

structures. On the other end are the classes which are complete in the sense that they allow

all possible behaviors to happen. Let us say a bit more about these two extremes.

Tame classes. In Section 2, we will review some concepts we will need later. One notion

of simplicity is that of a class having a bound on the Scott rank of its structures. These

classes are not necessarily that simple from a computational viewpoint, and much less from

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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the viewpoint of Borel equivalence relations. However, for natural classes this bound tends

to be quite low, which makes them easier to analyze. The Scott rank of a structure is related

to the number of Turing jumps necessary to fully understand it, and hence, the lower the

Scott rank, the more manageable the structure.

A second notion of simplicity, one we believe is the most relevant to computability the-

ory, is that of Σ-smallness, or actually effective Σ-smallness. This notion is studied in Sec-

tion 3. The author started studying such classes in [46],1 although the term “Σ-small” is

new.

Definition 1.1. A class of structures K is Σ-small if it realizes countably many ∃-types, that
is, if the set

{∃-tpA(ā) : A ∈ K, ā ∈ A<ω}
is countable, where

∃-tpA(ā) = {ϕ : ϕ(x̄) is a first order existential formula with A |= ϕ(ā)}.
We remark that knowing the ∃-type of ā is equivalent to knowing what finite sub-

structures we can find in A extending ā. This is not entirely correct when L is infinite,

where we need to consider sub-structures which only mention only a finite number of the

symbols in L. Another remark is that the types above are without parameters.

We start Section 3 by developing the effective version of this notion. The effectiveness

assumption is not that strong, as it holds of all the examples we have analyzed. A large list of

examples can be found in Subsection 3.1. We then study the role of Σ-small classes in many

topics that have been widely studied in computable structure theory: Richter’s extendibility

condition, jumps of structures, the low property, the categoricity property and the Turing

ordinal. As more evidence towards its naturalness, we will see in Theorems 3.14 and 3.15

how Σ-smallness induces a strong dichotomy on classes.

Complete classes. In Section 4, we review various ways of mapping structures from one

class into another. For each of these reducibilities we have classes that are on top in the

sense that all other classes can be reduced to it. We start with the well-known notion of Borel

reducibility, and then move on to effective reducibility and Turing-computable reducibility,

and to classes that are complete in the sense of Hirschfeldt, Khoussainov, Shore and Slinko.

In Section 5, we develop a new and stronger notion of reducibility based on the idea of

effective-bi-interpretability between structures. We do not know that much about this new

notion, but we do show that it preservers even more computational properties than all the

previous reducibilities.

Properties on a cone. There are many properties in computability theory which tend to

behave nicely when we have a nice natural class of structures, but that do not in general.

One can often build strange and unnatural classes of structures where these nice behaviors

do not occur. In this paper, we are interested in properties that hold of natural classes. Since

we cannot quantify over “all natural classes,” we often use the technical device of considering

properties on a cone.
When we have a computability theoretic property P , we can often consider its relativiza-

tion PX for a given oracle X ∈ 2ω . We then consider the properties relatively-P , which

1In [46] we used the phrase “K has a computable 1-back-and-forth structure” for what we now say “K is

effectively Σ-small.”
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means that PX holds for all X , and P on a cone, which means that there is a Z ∈ 2ω such

that PX holds for all X ≥T Z. When we have a proof that a natural property P holds (or

does not hold) when applied to a natural object, this proof almost always relativizes. Thus,

we have a proof of relatively-P , and in particular, of P on a cone. So, if our objects are

natural, we should not care whether we are using P , relatively-P , or P on a cone. However,

due to the unnatural examples, many results can only be proved in general if we consider

the properties on a cone. Such results usually call for a further analysis of its degree of

effectiveness – we will not concentrate on this here.

Disclaimer. This paper does not pretend to be exhaustive. What it attempts is to convey

the author’s viewpoint, unifying many ideas that have been floating around for a while. The

choice of topics and how much attention they receive is purely motivated by the author’s

taste, the author’s own work, and the new ideas the author wants to develop.

Background and notation. We only consider countable structures throughout, so “struc-

ture” means “countable structure.” We only consider relational languages, as we do not lose

any generality for our purposes. The languages we consider are all computable: that is, if L
consists of relations Ri for i ∈ I , where I ⊆ ω and Ri has arity a(i), the function a : I → ω
is computable. (This only matters when L is infinite.)

A presentation of a structure A, or a copy of A, is just a structure B isomorphic to A
whose domain is a subset of ω. This allows us to use everything we know about computable

functions on ω to study B. Given a presentation A = (A;RAi , i ∈ I), with A ⊆ ω, we let

D(A) = A⊕
⊕
i∈I
RAi ⊆ ω �

⊔
i∈I
ωa(i).

Via standard coding, we then think of D(A) as a subset of ω, or equivalently a sequence

in 2ω . Note that D(A) is essentially the atomic diagram of A. When we say that the

presentation A computes X , or is computable in Y , we mean that D(A) computes X or is

computable in Y . By a class ofL-structureswemean a setK of presentations ofL-structures
which is closed under isomorphism. We often think of K and of {D(A) : A ∈ K} ⊆ 2ω as

the same thing, and hence treat K as a class of reals.

We will often consider the infinity language Lω1,ω , where countably infinite conjunc-

tions and disjunctions are allowed, and its computable version, where these conjunctions

and disjunctions must be computable. See [1, Sections 6 and 7]. We use Σin
α to denote the

infinitary Σα formulas and Σc
α to denote the computably infinitary Σα formulas. For the

Scott rank of a structure A we use the following definition: SR(A) is the least α such that

every automorphism orbit in A is Σin
α -definable without parameters. There are various defi-

nitions of Scott rank in the literature that give slightly different values (see [1, Section 6.7]).

The reason we prefer ours is that it matches better with other complexity measures used in

computability theory and descriptive set theory (see [43]).

2. Axiomatization and the isomorphism problem

The first measure of the complexity for a class is in terms of its complexity as a set of reals.

This is directly connected with the complexity of the class in terms of its axiomatizations:
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Theorem 2.1 (Lopez-Escobar [37]). Let K ⊆ 2ω be a class of presentations of structures
closed under isomorphisms. Then K is Σ0

α in the Borel hierarchy if and only if K is axiom-
atizable by an infinitary Σin

α sentence.

The lightface version of this theorem is also true: K is lightface Σ0
α if and only if it is

axiomatizable by a computably infinitary Σc
α formula [61].

Not all nice classes of structures are Lω1,ω-axiomatizable, or equivalently Borel, as for

instance the class of ordinals, which is Π1
1-complete. We, however, are mostly interested

in Lω1,ω-axiomatizable classes. Most of the natural classes we consider are actually Πc
2-

axiomatizable, so we will sometimes make this assumption when we prove general results.

The second measure of complexity is the difficulty in telling apart different structures in

K. This is captured by the set

{〈D(A), D(B)〉 : A,B ∈ K,A ∼= B} ⊆ (2ω)2,

usually called the isomorphism problem for K. For a Borel class of structures, this set isΣ1
1.

For some classes, like linear orderings, this problem is Σ1
1-complete. For other classes, this

problem is quite simple, like Q-vector spaces for which it is Π0
3-complete. If we assume

ZFC+∀X (X� exists), then non-Borel isomorphism problem must be Σ1
1-complete. This

follows from Wadge’s theorem (see [52, Lemma 7D.3]), as every set that is not Π1
1, is Σ

1
1-

hard.

Theorem 2.2 ([6, Corollary 7.14]). Let K be an Lω1,ω-axiomatizable class. The following
are equivalent:

(1) The isomorphism problem for K is Borel.

(2) K has bounded Scott rank.

When we say that K has bounded Scott rank we mean {SR(A) : A ∈ K} has a supre-

mum β < ω1. For example, the classes of Q-vector spaces and of algebraically closed fields

have bound 2 on their Scott ranks. The classes of equivalence structures and of torsion free

abelian groups of finite rank have bound 3.

A simple remark is that if K has countably many structures (up to isomorphism, of

course), it has bounded Scott rank. It follows from the model-theoretic Martin’s conjecture

that ifK has a first order axiomatization and countably many structures, then ω+ω is a bound

for the Scott ranks of the structures in K (see [22] for the statement of Martin’s conjecture).

For more on how high this bound can be see [40, 57].

3. Σ-Small classes of structures

In this section, we see how the notion of Σ-small class connects with a lot of well-known

concepts in computable structure theory.

Before looking at examples among familiar classes, let us introduce the effective version

of this definition. If K is a natural class of structures and it is Σ-small, we have a natural

countable collection of ∃-types. It is then reasonable to expect that one can list, compare

and manipulate these types. An effectively Σ-small class is one where we can do this com-

putably:
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Definition 3.1. A Σ-small class K is effectively Σ-small if there is a computable list {pi :
i ∈ ω} of computable ∃-types listing all the ∃-types realized in K without repetitions, where

the operations of erasing and permuting variables are computable, and deciding inclusion of

∃-types is also computable.2

3.1. Examples. All the classes of structures below are Σ-small. It is worth remarking that

most of the examples mentioned below have been attractive to computability theorists for a

long time because they enjoy nice computability properties other classes do not.

Vector spaces (over a fixed computable field F ). If K has only countably many structures,

it is clearly Σ-small. Proving that F -vector spaces are effectively Σ-small requires

understanding their ∃-types, which is not hard to do.
Algebraically closed fields. Same as above.

Differentially closed fields of characteristic 0 (DCF0). They are Σ-small because they are

ω-stable. The class of models of an ω-stable theory is always Σ-small, as even using

countably many parameters and full first-order types, there are still countably many

types. It has not been verified whether DCF0 is effectively Σ-small or not.

Abelian p-groups. That Abelian p-groups are effectively Σ-small follows from work of

Khisamiev [32].

Equivalence structures. We refer the reader to [46, Section 4.2] for an analysis of the

∃-types on equivalence structures.

Trees (as partial orderings). By ‘trees’ we mean downward closed subsets of ω<ω . That

they are effectivelyΣ-small in the language of partial orderings follows from Richter’s

work [56]. Let us remark that a key tool in her proof is Kruskal’s theorem [35] on the

well-quasi-ordering of finite trees.

Trees of finite height (as graphs). The proof is like the case above using Kruskal’s theorem

for finite trees of a fixed height.

Linear orderings. All an ∃-type can say about a tuple ā = 〈a0, ..., ak−1〉 is the order among

the elements of the tuple and, for each n ∈ ω and each i, j < |ā|, whether there are
at least n elements between ai and aj . Thus, existential types are determined by the

number of elements between the elements of the tuple, and hence there are countably

many of them. One can also use this to prove they are effectively Σ-small.

Linear orderings with an added relation for adjacency. When we add the adjacency re-

lation, the ∃-types get a bit more complicated, but they are still effective and countable

(see [46, Section 4.1]).

Boolean algebras. All an ∃-type can say about a tuple is howmany elements are below each

Boolean combination of the elements of the tuple. These are, again, not that difficult

to analyze.

2The exact list of properties that are required for a class to be effectively Σ-small is currently work in progress,

and so far they are motivated from what we see in applications.
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Boolean algebras with an added relation that identifies atoms. What makes Boolean al-

gebras particularly interesting is that they remain Σ-small even if we add to them any

Σin
<ω relation. For instance, we can add all of the relations used by Knight and Sob [36]

(atom, atomless, infinite, atomic, 1-atomic, atominf, ∼-inf, Int(ω + η), infatomicless,

1-atomless, and nomaxatomless) and they remain effectively Σ-small. An in-depth

analysis of the Σin
n -types of Boolean algebras was done by Harris and Montalbán in

[29]. The fact that there are countably many of them uses key ideas from work of

Flum and Ziegler [21].

Generalized Boolean algebras. These are distributive lattices with 0 and where every inter-
val [a, b] is a Boolean algebra. They are usually known in Russia as Ershov algebras.

That they are effectively Σ-small follows from work of Khisamiev [32].

3.2. Richter’s computable extendibility condition. In her Ph.D. thesis3 [55], Linda Richter

introduced the computable extendibility condition in order to show that there are structures

that do not have Turing degree as defined by Jockusch. (A structure A has Turing degree x
if x computes a copy of A, and every copy of A computes x.)

Definition 3.2 ([56, Section 3]). A structure A has the computable extendibility condition if
each ∃-type realized in A is computable. A structure A has the c.e. extendibility condition if
each ∃-type realized in A is c.e.

Richter’s original definition was not in terms of types but in terms of finite structures

extending a fixed tuple. As we mentioned right after Definition 1.1, these formulations are

equivalent. The c.e. extendibility condition was not considered by Richter, but we include it

here because it makes Theorem 3.3 below more rounded. In Russia, structures with the c.e.

extendibility condition are said to be locally constructivizable.
Of course, if K is effectively Σ-small, then every structure A in K satisfies the com-

putable extendibility condition. On the other hand, if every structure in K satisfies the c.e.

extendibility condition, then K is Σ-small, because there are only countably many c.e. sets.

Furthermore, the proofs in the literature that linear orderings, Boolean algebras and trees

(as posets) in [55, 56] and p-groups and generalized Boolean algebras in [32] satisfy the

computable extendibility condition are essentially proofs that these classes are effectively

Σ-small.

The reason Richter introduced this notion is to prove the following theorem and its corol-

lary below.

Theorem 3.3 (Essentially Richter). Let A be any structure. The following are equivalent:

(1) A has the c.e. extendibility condition.

(2) Every set X ⊆ ω which is c.e. in every presentation of A is already c.e.

Proof. That (1) implies (2) is essentially the same proof as [56, Theorem 3.1]. For the other

direction, notice that every ∃-type realized in A is c.e. in every presentation of A. �

Corollary 3.4. IfA has the c.e. extendibility condition and has Turing degree x, then x = 0.

We can read Theorem 3.3 as saying that structures in an effectively Σ-small class cannot

directly encode any non-trivial information. In a sense, Σ-smallness is not only a sufficient,

3directed by Carl Jockusch
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but also a necessary condition for this to be the case. The following theorem shows that if K
is not Σ-small, quite the opposite happens: every real is coded by some structure in K in a

left-c.e. way. We recall that X ∈ 2ω is left-c.e. in A ∈ 2ω if the set {σ ∈ 2<ω : σ ≤lex X}
is c.e. in A, or equivalently, if there is an A-computable approximation to X from the left.

Theorem 3.5 ([46], Theorem 3.1). LetK be an Lω1,ω-axiomatizable class of structures. The
following are equivalent:

(1) K is not Σ-small.

(2) Relative to every oracle on a cone, the following holds: For every Y ∈ 2ω , there is a
structure A ∈ K such that Y is left-c.e. in every copy of A.

Part (2) of the theorem can be strengthened by changing “left-c.e.” to just “c.e.” in most

cases. However, an example where left-c.e.ness is required is constructed in [45, Section

2.2].

3.3. Complete sets of r.i.c.e. relations. Another advantage of Σ-small classes is that they

have nice structural jumps. We will see below how, when we have a Σ-small class K, we

usually have a nice and simple set of relations that give us all the structural information about

the jump of the structures in K. Understanding these complete sets of relations is usually

very useful in applications.

Before talking about the jump, we need a notion of c.e.-ness among the relations on a

structure. We will then look at complete relations among these and use them to define the

jump of a structure. An equivalent notion of jump for a structure was originally defined by

I. Soskov [4], although he used a very different format. The definition we use here is in the

spirit of that introduced in [44] (see [47, Definition 1.2] for more historical remarks).

Definition 3.6. A relation R ⊆ A<ω is relatively intrinsically computably enumerable
(r.i.c.e.) if, on every copy (B, RB) of (A, R), we have that RB (viewed as a subset of ω<ω)
is c.e. in D(B).
Example 3.7. Over a Q-vector space, the relation of linear dependence is r.i.c.e.; Over a

ring, the relation that holds of (r0, ..., rk) if the polynomial r0 + r1x+ ...+ rkx
k has a root

is r.i.c.e.

This definition gives a notion of c.e.-ness that we can use to define other standard con-

cepts from computability theory on the subsets of A<ω .

Definition 3.8. A relation R ⊆ A<ω is relatively intrinsically (r.i.) computable if it and its

complement are both r.i.c.e. R is r.i. computable in Q ⊆ A<ω if R is r.i. computable in

(A, Q). A partial function f : A<ω ⇀ A<ω is partial r.i. computable if its graph is a r.i.c.e.

subset of (A<ω)2.

Remark 3.9. The use of subsets ofA<ω not only allows us to consider sequences of subsets

of An for all n uniformly, but essentially all finite objects that can be built over A. For

instance, given Q ⊆ (A<ω)2, let us define R ⊆ A<ω by b̄ ∈ R iff |b̄| = 〈n,m〉 for some

n,m ∈ ω and ((b0, ...., bn−1), (bn, ..., bn+m−1)) ∈ Q. We then have that Q is r.i.c.e. (as in

Definition 3.6 but for subsets of (A<ω)2) if and only if R is r.i.c.e. In a similar way, we can

code subsets of (A<ω)<ω by subsets of A<ω . Given R,Q ⊆ A<ω , we define R ⊕ Q by

b̄ ∈ R ⊕ Q if either |b̄| = 2n and b̄ �n ∈ R or |b̄| = 2n + 1 and b̄ �n ∈ Q. We can also



86 Antonio Montalbán

encode a set X ⊆ ω by a set 	X ⊂ A<ω by letting b̄ ∈ 	X if and only if |b̄| ∈ X . With a bit

more work, we can encode any subset of HF (A) (the hereditarily finite extension of A) as

a subset of A<ω (see [47, Section]).

R.i.c.e. relations can be characterized in a purely syntactic way, without referring to

the different copies of the structure, using Σc
1 formulas. Recall that a Σc formula is just a

computable disjunction of ∃-formulas over a finite set of free variables.

Theorem 3.10 (Ash, Knight, Manasse, Slaman [2]; Chisholm [10]). Let A be a structure,
and R ⊆ A<ω a relation on it. The following are equivalent:

(1) R is r.i.c.e.

(2) R is uniformly definable by Σc
1 formulas with parameters from A. That is, there is a

tuple ā ∈ A<ω and a computable sequence of Σc
1 formulas ϕi(x1, ..., x|ā|, y1, ..., yi),

for i ∈ ω, such that
(∀b̄ ∈ A<ω) b̄ ∈ R ⇐⇒ A |= ϕ|b̄|(ā, b̄).

Definition 3.11. A relation R ⊆ A<ω is r.i.c.e. complete in A if it is r.i.c.e. and every other

r.i.c.e. relation Q ⊆ A<ω is r.i. computable from R.

R.i.c.e. complete relations always exist. For instance, we can consider the analog of

Kleene’s predicate K: If we let ϕi,j(y1, ..., yj) be the ith Σc
1 formula of arity j, then the

relation 	KA ⊆ A<ω × ω defined by

(b̄, i) ∈ 	KA ⇐⇒ A |= ϕi,|b̄|(b̄)
is r.i.c.e. complete.

Definition 3.12 ([47]). We define the jump of A to be the structure A′ = (A, 	KA). Given a
class K, we let K′ = {A′ : A ∈ K}.

If X ⊆ ω is a c.e. set, then 	X ⊆ A<ω (as in Remark 3.9) is clearly r.i.c.e. It follows

that 	0′ must be r.i. computable in every r.i.c.e. complete relation. On some structures, like

(ω; 0, 1,+), 	0′ is r.i.c.e. complete, but this is always not the case. If A is a linear ordering,

then co-Adj ⊕ 	0′ is r.i.c.e. complete, where co-Adj is the complement of the adjacency

relation. For most linear orderings co-Adj is not r.i. computable from 	0′.

Definition 3.13. We say that R is structurally r.i.c.e. complete if R⊕ 	0′ is r.i.c.e. complete.

We then say that (A, R) is a structural jump of A.

So, for a linear ordering L, (L, co-Adj) is a structural jump.

The author showed in [46] that if K is Σ-small, there is a countable sequence of Σin
1

formulas which define a structurally complete r.i.c.e. relation in all the structures inK relative

to every oracle on a cone.

Theorem 3.14 ([46]). Let K be effectively Σ-small, and let {pi : i ∈ ω} be a computable
list of all the ∃-types realized in K. Then, the Σc

1 formulas

ϕi ≡
∨

{ψ : ψ is an ∃-formula, and ψ �∈ pi},

for i ∈ ω define a structurally r.i.c.e. complete relation on all structures in K.
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In most natural examples, we can find simpler structurally r.i.c.e. complete relations than

the one given by Theorem 3.14. For instance, on Q-vector spaces and algebraically closed

fields, the relations of linear dependence and algebraic dependence are structurally r.i.c.e.

complete, and on Boolean algebras, the not-atom relation is structurally r.i.c.e. complete.

It is also shown in [46] that this is not the case when K is not Σ-small: there is no

sequence of formulas which works for all structures simultaneously.

Theorem 3.15. IfK is notΣ-small, there is no computable sequence ofΣc
1-formulas defining

a structurally r.i.c.e. complete relation simultaneously on all structures in K.

3.4. The low property. The low property has been studied for various classes in the last

couple of decades. Only recently has it been looked at a general setting.

Definition 3.16. A class K has the low property if every low presentation A ∈ K has a

computable copy.

We recall that a set X ⊆ ω is low if X ′ is computable from 0′. A presentation A is low
if D(A) is.

Jockusch and Soare [30] proved that the class of linear orderings does not have the low

property, that is, that there is a low linear ordering without a computable copy. Downey and

Jockusch [13] proved that the class of Boolean algebras has the low property. In that paper,

they asked the following question, that is still open despite the efforts of various researches:

Question 1. Does every lown Boolean algebras have a computable copy?

Some partial results are known. Thurber [59] proved that Boolean algebras have the low2

property and Knight and Stob [36] the low4 property. The low5 property is still open. Harris

andMontalbán showed that the difficulty at level 5 is not just that it needs one more jump, but

a qualitatively new behavior: to show this behavioral difference is essential, they produced a

low5 Boolean algebra not 0
(7)-isomorphic to any computable one – for n = 1, 2, 3, 4, it was

known that every lown Boolean algebra is 0(n+2)-isomorphic to a computable one.

Let us review some of the other examples. The class of equivalence structures does not

have the low property. However, the class of equivalence structures with infinitely many infi-

nite equivalence classes has the low property, as it follows from [7, Lemmas 2.2.(c) and 2.3].

Even if linear orderings do not have the low property, some sub-classes do. For instance,

the class of all linear orderings where all elements have successor and predecessors does.

More examples can be found in [3, 18, 19]. The class of linear orderings with only finitely

many descending sequences (up to equivalence) was proved to have the lown property for

all n by Kach and Montalbán [33] (where two sequences are equivalent if they determine

the same cut). It is open whether scattered linear orderings have the low property. The class

of ordinals not only has the low property, but the lowα-property for all computable ordinals

α. Classes that have the lowα-property for all α < ωCK1 are said to satisfy hyperarithmetic-
is-recursive, that is, every hyperarithmetic structure in the class has a computable copy. We

will get back to these classes in Theorem 3.26.

All the examples of classes with the low property we know are Σ-small. This happens

for a reason:

Theorem 3.17. LetK be aΠin
2 -class. IfK has the low property on a cone, thenK isΣ-small.

Sketch of the proof. It follows from the author’s construction in [46, Lemma 2.9 and Theo-

rem 3.1] that if K is not Σ-small, there is an oracle relative to which the following happens:
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For every X ∈ 2ω and Y c.e. in X , there is a structure A in K computable from X and

such that Y is left-c.e. in every copy of A. All we need to do now is observe that there

is a set that is c.e. over a low set but not left-c.e. For instance, Chaitin’s Ω relativized to

low 1-random real R is c.e. in R and, since it is 2-random, is not of c.e. degree. Thus

{σ ∈ 2<ω : σ ≤lex ΩR} is c.e. in R but not left-c.e (because left-c.e. sets have c.e. de-

gree). �

3.5. Listable classes. The author started looking at this property with the intention of char-

acterizing the low property.

Definition 3.18. A class K is listable if there exists a Turing functional which, for every

oracle X , produces an X-computable sequence of structures listing all the X-computable

structures in K (allowing repetitions).

This definition appeared first in [49], but the underlying idea of considering classes

whose computable models can be listed computably is much older. However, the unifor-

mity in Definition 3.18 is needed to get the consequences we want. Nurtazin [54], almost

four decades ago, gave a sufficient condition for a class of structures to be listable which

includes the classes of linear orderings, Boolean algebras, equivalence structures, Abelian

p-groups, and algebraic fields of characteristic p. Nurtazin’s result says that, if there exists
a computable structure in the class such that any other structure can be embedded into it,

and such that any subset of that structure generates a structure in the class, then the class is

listable (see [24, Theorem 5.1]). Nurtazin’s condition is not a necessary condition for a class

to be listable, and for many of the cases we are interested in, it is too strong.

The more general way of proving that a class is listable is by a priority argument, where

one monitors all computable functions and tries to list the ones that code structures in the

class. In [49], the author developed a game, G∞(K), that captures the combinatorial argu-

ment behind these constructions. This game is played by two players, C and D. Along the

game, player C builds an infinite list of structures in K via finite approximations, adding a

new element to each structure in each move. Player D, however, builds only one structure

and he is allowed to wait and only add elements to his structure when he thinks it is worth

it. Player C’s goal is to get one of his structures to be isomorphic to D’s structure (i.e. “to

copy”), while D’s goal is to diagonalize. See [49] for a more detailed definition and for other

related games. The classes K for which C has a winning strategy are said to be ∞-copyable.
The connection between listability, the low property, and the games was unexpected.

Theorem 3.19 ([49]). Let K be a Πin
2 class of structures. The following are equivalent:

(1) K has the low property on a cone.

(2) K is Σ-small and K′ is listable on a cone.

(3) K is Σ-small and K′ is ∞-copyable.

3.6. Computable categoricity. The objective of this subsection is to argue that computable

categoricity is easier to analyze on Σ-small classes.

The notion of computable categoricity has been studied intensively for the past few

decades. A feature of computable structure theory is that computational properties of pre-

sentations need not be invariant under isomorphism, and instead they are invariant under

computable isomorphisms. In other words, a structure can have two isomorphic computable
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presentations which have different computational properties. For instance, there are com-

putable presentations of the countable, infinite-dimensional Q-vector space, Q∞, where

all the finite-dimensional subspaces are computable, and computable presentations of Q∞

where no finite-dimensional subspace is computable (see [12]). The computably categorical

structures are exactly the ones where this does not happen:

Definition 3.20. A computable structure A is computably categorical if between any two

computable copies of A there is a computable isomorphism.

There are many results classifying the computably categorical structures within certain

classes. A linear order is computably categorical if and only if it has finitely many adja-

cencies (Dzgoev and Goncharov [23]); a Boolean algebra is computably categorical if and

only if it has finitely many atoms (Goncharov, and independently La Roche [39]); a Q-

vector space is computably categorical if and only if it has finite dimension; a p-group is

computably categorical if and only if it can be written in one of the following forms: (i)

(Z(p∞))� ⊕ G for � ∈ ω ∪ {∞} and G finite, or (ii) (Z(p∞))n ⊕ (Zpk)
∞ ⊕ G where G is

finite, and n, k ∈ ω (Goncharov [26] and Smith [58]); a tree of finite height is computably

categorical if and only if it is of finite type (Lempp, McCoy, R. Miller, and Solomon [38]);

and so on.

There are also many classes where computably categoricity is quite difficult to describe.

Indeed, it was recently proved by Downey, Kach, Lempp, Lewis, Montalbán and Turetsky

[14] that the index set of computable categorical structures is Π1
1-complete. The relativized

notion is, however, much better behaved and usually easier to characterize (recall the notions

of “relatively P ” and “P on a cone” from Section 1). A nice characterization of the relatively

computably categorical structures was given by Goncharov [25]: they are exactly the atomic

models, over a finite set of parameters, where all the types are generated by ∃-formulas, and

there is a c.e. listing of those formulas. The author [43] has recently found that there is an

even nicer characterization of the structures which are computably categorical on a cone.

They are exactly the ones that have a Σin
3 Scott sentence. The classes where we have the

best hope of characterizing computable categoricity are the ones where the three notions of

computable categoricity – plain, relative, and on a cone – coincide.

Definition 3.21. We say thatK has the categoricity property if every computably categorical

structure in K is relatively computably categorical.

Q-vectors spaces, algebraically closed fields, Boolean algebras, linear orderings, equiv-

alence structures, trees (as posets), ordered abelian groups, and p-groups all have the cate-
goricity property.

Conjecture 1. Every Σ-small Πin
2 -class K satisfies the categoricity property on a cone.

One thing we know is that Σ-small Πin
2 -classes always contain structures which are cat-

egorical on a cone [43].

3.7. The back-and-forth ordinal. It is not hard to observe that Σc
2 types over a structureA

are equivalent to ∃-types over A′, and Σc
3-types to ∃-types over A′′. One can use this to get,

for instance, that a structure isΔ0
2-categorical on a cone if and only if it is A′ is computably

categorical on a cone; or that a a class K has the low2 property on a cone if and only if both

K and K′ have the low property on a cone. Thus, understanding K′ can be helpful for the

understanding of these higher-level properties. If we have an effectively Σ-small classK, we
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have a nice and uniform notion of jump among the structures in K (Theorem 3.14). We then

want to know if K′ is effectively Σ-small. If it is, we can then consider K′′ and ask if it is

Σ-small.

Definition 3.22. K is Σin
α -small if it realizes countably many Σin

α types.

The effective notion of Σin
n -smallness is considered in [46, 48] under the name “effective

n-back-and-forth structure.” We omit the definition here. In [46], we proved that on Σin
n -

small classes have nice Σc
n-complete relations and that no set can be coded in the (n − 1)st

jump of their structures. An opposite behaviour happens, on a cone, for structures that are

not Σin
n -small. Thus, for a class K, there is a qualitative jump in behavior from the α’s at

which K is Σin
α -small to the ones where it is not.

Definition 3.23. The bf-ordinal of a class of structures K is the least α ∈ ω1 + 1 such that

K is not Σin
α -small, and we let it be ∞ if there is no such α.

The notion of bf-ordinal is quite close to the notion of “Turing-ordinal” introduced by

Jockusch and Soare [31].

Definition 3.24. A structure A has βth jump Turing degree x if the βth jump of every copy

of A computes x, and x computes the βth jump of some copy of A.

A class K has Turing-ordinal τ if for all β < τ , whenever a structure in K has βth-jump

Turing degree, it is 0(β), while for all x ≥T 0(τ), there is a structure in K with τ th-jump

Truing degree x.

Theorem 3.25. LetK be a Πin
2 -class with bf-ordinal τ < ω1, and suppose that it has Turing

ordinal on a cone. Then, on a cone, K has Turing ordinal either τ or τ + 1.

Sketch of the proof. This sketches assumes familiarity with either [46, Proof of theorem 3.1]

or [48, Section 5]. Since for all γ < τ ,K is Σin
γ -small, on a cone the greatest lower bound of

each degree spectrum of structures inK is 0(γ). On the other hand, sinceK is not Σin
τ -small,

there is a perfect tree T of ∃-types over the language Lτ as in [46, Proof of theorem 3.1] and

also [48, Section 5]. Let us relativize to that tree, and hence assume T is computable. For

every X above 0′, there is a 1-generic G such that G ⊕ 0′ ≡T G
′ ≡T X . Then, there is a

structure Aτ ∈ K computable in G realizing the ∃-type T [G] (by [46, Lemma 2.9]). So X
computes the jump of some copy of Aτ . On the other hand, G is left-c.e. in every copy of

Aτ . So, the jump of every copy of A′
τ computes G and 0′, and hence X . It follows that A

has τ + 1-jump degree X .

Thus, the Turing ordinal on a cone of K is at least τ and at most τ + 1. �

It is not hard to see that the bf-ordinal of K is ∞ if and only if it has countably many

structures. If K is an Lω1,ω-axiomatizable class, it follows from Morley’s proof [51] that,

for every α < ω1, the number of Σin
α types it realizes is either countable or continuum.

Therefore, the bf-ordinal ofK is less than ω1 if and only ifK has continuum many countable

models. In the remaining case, when the bf-ordinal of K is ω1, K must then have ℵ1 many

countable models. Vaught’s conjecture [60] claims that this last case never occurs. Thus,

if K is Lω1,ω-axiomatizable and its bf-ordinal is ω1, we say that K is a counterexample to
Vaught’s conjecture.

We actually do not know any example of a Πin
α -class K whose bf-ordinal is greater than

α + ω unless it is ∞. The closest example we know is the class of Boolean algebras which

is ∀2 and has bf-ordinal ω.
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Question 2. Is there a Πin
2 class K with 2ℵ0 many models whose bf-ordinal is greater than

ω?

Let us remark that question 2 asks about a strengthening of Vaught’s conjecture in the

opposite direction as Martin’s conjecture. Martin’s model-theoretic conjecture is about com-

plete first order theories which have less than 2ℵ0 many countable models, and implies that

they all have bounded Scott rank by at most ω+ω. Wagner had proposed a strengthening of

Martin’s conjecture which included theories with 2ℵ0 many countable models, which turned

out to be false (Gao [22]).

The author found the following connection between these examples and the iterates of the

low-property mentioned above. Recall thatK satisfies “hyperarithmetic-is-recursive” if it has

the lowα property for all α < ωCK1 , which is equivalent to saying that every hyperarithmetic

structure in K has a computable copy.

Theorem 3.26 (ZFC+∀X (X� exists)). Let K be an Lω1,ω-axiomatizable class with un-
countably many models. The following are equivalent:

(1) K is a counterexample to Vaught’s conjecture.

(2) K satisfies hyperarithmetic-is-recursive relative to all oracles on a cone.

The proof in [48] used projective determinacy, but this was then improved to ∀X (X�

exists) in [41]. Furthermore, in [41] the result above is extended to all analytic equivalence

classesE: E has ℵ1 equivalence classes if and only if it satisfies hyperarithmetic-is-recursive

on a cone non-trivially.

The main theorem of [48] is actually stronger than Theorem 3.26. AssumingΣ1
2-determi-

nacy and relative to all oracles on a cone,K has the low-for-ω1 property, that is, if a structure
in K has a presentation that is low-for-ω1, then it has a computable copy. (We recall that X
is low-for-ω1 if ω

X
1 = ωCK1 .)

4. Comparing the complexity of classes

Reducibilities between classes allow us to classify structures in one class in terms of struc-

tures in another class. With this in mind, Friedman and Stanley [20] defined the notion of

Borel reducibility. Since then, the study of Borel reducibility on arbitrary Borel and analytic

equivalence relations has been extremely active in descriptive set theory. We concentrate

here on the isomorphism relation.

Definition 4.1 (H. Friedman and L. Stanley [20]). A class of structures K is Borel reducible
to a class S, and we write K ≤B S, if there is a Borel function f : 2ω → 2ω that maps

presentations of structures inK to structures in S and preserves isomorphism. That is, for all

A ∈ K, f(D(A)) = D(B) for some B ∈ S, and if Ã ∈ K with f(D(Ã)) = D(B̃), then

A ∼= Ã ⇐⇒ B ∼= B̃.
(Recall that D(A) is the atomic diagram of A coded as a subset of ω.)

A classK is on top for Borel reducibility if for every languageL, the class ofL-structures
is Borel-reducible to K.4

4In the literature these classes are sometimes called Borel complete, but we want to avoid that notation here.



92 Antonio Montalbán

They first observed that it is enough to use the language with only one binary relation (i.e.

directed graphs) in the definition above. Then, they built Borel reductions to show that the

classes of trees, linear orderings, 2-step nilpotent groups and fields are all on top for Borel

reducibility. Camerlo and Gao [9] added Boolean algebras to that list. Friedman and Stanley

observed that if a class is on top, then its isomorphism problem must beΣ1
1-complete, giving

them a whole range of examples which are not on top for Borel reducibility. Torsion abelian

groups are an interesting class: their isomorphism problem is Σ1
1-complete, but they are not

on top for Borel reducibility [20, Theorem 5]. (The reason is that their isomorphism problem

can be reduced to countable subsets of ordinals via de Ulm invariants in a constructible way,

and hence E0 does not reduce to it.) Whether torsion-free abelian groups are on top was

stated as an open question then and remains so. Since then, Downey and Montalbán showed

that their isomorphism problem is Σ1
1-complete, using ideas of Hjorth [27]. It is also open if

abelian groups are on top.

In this paper, we are interested in effective versions of this reducibility.

4.1. Effective reducibility. One way of effectivizing the notion of Borel reducibility is by

considering computable reductions that act on indices of computable structures. There has

been some recent interest on this reducibility which has turned out to be much more inter-

esting than expected [11, 16, 17, 42].

Definition 4.2. We say that a class of structures K is effectively reducible to a class S if

there is a computable function f : ω → ω which maps indices of computable structures in

K to indices of computable structures in S preserving isomorphism. A class of structures K
is said to be on top for effective reducibility if for any computable language L, the class of
L-structures effectively reduces to it.

(One could also consider hyperarithmetic reductions, but the author has recently shown

that, on a cone, being on top for effective reducibility is equivalent to being on top for

hyperarithmetic reducibility [42, Theorem 1.6], and hence does not make a difference for

natural classes.)

E. Fokina, S. Friedman, V. Harizanov, J. Knight, C. MaCoy and A. Montalbán [17] gave

proofs that linear orderings, trees, fields, p-groups and torsion-free abelian groups are all on

top. Note that this is different from the Borel-reducibility case where p-groups are not on

top, and where it is open if abelian groups are.

It is not hard to see that if a class is on top, its isomorphism-index-set,

E(K) = {〈n,m〉 ∈ ω2 : n andm are indices

for isomorphic computable structures in K},
must be Σ1

1-complete. Thus, Q-vector spaces, equivalence structures, torsion-free abelian

groups of finite rank, etc. cannot be on top because they have arithmetic isomorphism prob-

lems. So far, this is the only way we know to produce examples of classes which are not on

top.

Definition 4.3. A class K is intermediate for effective reducibility if it is not on top for

effective reducibility, and its isomorphism-index-set is not hyperarithmetic.

The reason is that when we say that K is Σ1
1-complete we mean that there is a continuous reduction from any Σ1

1
subset of 2ω to the isomorphism problem ofK as a set, and not as an equivalence relation. Reductions that preserve

equivalence relations are quite different.
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No specific example of an intermediate class is known. Becker [5], and independently

Knight and Montalbán [unpublished], showed that such a class of structures exists under

the assumption that Vaught’s conjecture fails (relative to some oracle). The question now is

whether such examples can be built without using a counterexample to Vaught’s conjecture:

Question 3. Are the following statements equivalent?

• Vaught’s conjecture.

• No Lω1,ω-axiomatizable class of structures is intermediate for effective reducibility,

relative to every oracle on a cone.

Recent work by the author [42] gives a partial reversal, showing that the second statement

follows from a strengthening of Vaught’s conjecture (which might turn out to be equivalent

to Vaught’s conjecture too).

4.2. Turing-computable reducibility. The notion of Turing computable reducibility be-

tween classes of structures was introduced by Calvert, Cummins, Knight and S. Miller [8].

It is defined exactly as Borel reducibility (Definition 4.1) except that the function f is re-

quired to be a computable operator.

Definition 4.4. A class K is Turing computable reducible (tc-reducible) to S, and we write

K ≤tc S, if there is a Turing operator Φ such that for every presentation A ∈ K, ΦD(A) is

the characteristic function of D(B) for some B ∈ S in a way that, if also ΦD(Ã) = D(B̃),
then

A ∼= Ã ⇐⇒ B ∼= B̃.
So, instead of working on indices, these operators act on the atomic diagrams given as re-

als. This makes more of a difference than it seems. It is not hard to see that tc-reducibility im-

plies effective reducibility. This implication does not reverse, as tc-reducibility also implies

Borel-reducibility, which is not implied by effective-reducibility (e.g. abelian p-groups).
A class K is then on top for tc-reducibility if for every computable language L, the class

of L-structures tc-reduces to K. All the reducibilities produced in [20] are not just Borel but

also effective, showing that trees, linear orderings, nilpotent groups and fields are actually

on top for tc-reducibility. However, the fact that tc-reduction is finer than Borel reduction

allows it to get finer comparabilities between certain classes of structures. For instance, any

two classes of structures with countably infinitely many models are Borel-equivalent – this

is not the case for tc-reductions, and an interesting structure can be found among these (see

[34]). There are even classes of finite structures that are not trivial under tc-reducibility. But

the most interesting fact about tc-reducibility is that it preserves the back-and-forth structure:

Theorem 4.5 (Pull Back theorem). (Knight, S. Miller and Vanden Boom [34]) Let Φ be a
Turing computable embedding from K to S. Then, for every Πc

α-formula ϕ, there is a Πc
α

formula ϕ∗ such that for all A ∈ K,

A |= ϕ∗ ⇐⇒ Φ(A) |= ϕ
(where Φ(A) is the presentation B such that ΦD(A) = D(B)). It follows that if A ≤α Ã,
then Φ(A) ≤α Φ(B) (where ≤α is the α-back-and-forth relation as in [1, Chapter 15]).

This theorem allowed Knight, S. Miller and Vanden Boom to characterize the classes K
such that K ≤tc S for certain fixed classes S, like Q-vector spaces.
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4.3. Completeness for degree spectrum. A stronger notion of completeness was analyzed

by Hirschfeldt, Khoussainov, Shore and Slinko [28]. The idea is that these complete classes

of structures contains structures exhibiting all the possible computability theoretic behaviors

that structures can have. Their objective was to show that certain nice classes of structures

are indeed complete in this sense. Their definition is rather cumbersome, but we include it

here for completeness.

Definition 4.6 ([28], Definition 1.21). A class of structures K is complete with respect to
degree spectra of nontrivial structures, effective dimensions, expansion by constants, and
degree spectra of relations (which we will write as HKSS-complete) if for every non-trivial

structure G over a computable language L, there is a structure A ∈ K with the following

properties:

(1) DgSp(A) = DgSp(G).
(2) If G is computably presentable, then the following holds:

(i) For any degree d, A has the same d-computable dimension as G.
(ii) If x ∈ G, there is an a ∈ A such that (A, a) has the same computable dimension

as (G, x).
(iii) If S ⊆ G, there exists U ⊆ A such that DgSpA(U) = DgSpG(S) and if S is

intrinsically c.e., then so is U .

We recall that the degree spectrum of a structure A is

DgSp(A) = {X ∈ 2ω : X computes a copy of A}.

They did not talk about a reducibility, but their notion can be easily be made into a

reduction.

They showed that undirected graphs, partial orderings, lattices, integral domains of arbi-

trary characteristic (and in particular rings), commutative semigroups, and 2-step nilpotent

groups are all HKSS-complete. Σ-small classes cannot be HKSS-complete. This is because

the degree spectrum of a structure in a Σ-small class can never be the upper cone over a base

which is higher than the complexity of all the ∃-types realized in the structure.
We suspect that if a nice class is not on top for tc-reducibility, it should not be HKSS-

complete either.

5. Complete classes for effective-bi-interpretability

In this section, we introduce a notion of completeness much stronger than the ones above.

This new notion is more structural, as its definition does not involve presentations of struc-

tures. Its main attraction is that it preserves a whole range of computational properties. The

notion as defined here is new, although it is composed of a few already-well-known concepts.

In [28], one can already see the idea of having interpretations which are somewhat effective.

However, the properties they require use presentations and are not as clean cut or as general

as the one here.

We start by introducing the notion of effective-bi-interpretability which is a variation of

the classical model theoretic notion of bi-interpretability.
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5.1. Effective-bi-interpretability. Before looking at effective-bi-interpretability, let us con-

sider effective-interpretability in just one direction. Informally, a structure A is effectively-
interpretable in a structure B if there is an interpretation of A in B as in model theory, but

where the domain of the interpretation is allowed to be a subset of B<ω , and where all sets in
the interpretation are required to be uniformly r.i. computable, except for the domain which

is allowed to be uniformly r.i.c.e.5

Before giving the formal definition, we need to review one more concept. A relation R
on A<ω is said to be uniformly r.i.c.e. if there is a c.e. operatorW such that for every copy

(B, RB) or (A, R), RB = WD(B). These are exactly the Σc
1-definable relations without

parameters. We can then extend this definition and define uniformly r.i. computable in the

obvious way.

Definition 5.1. Let A be an L-structure, and B be any structure. Let us assume that L is a

relational language L = {P0, P1, P2, ...} where Pi has arity a(i); so A = (A;PA0 , P
A
1 , ...)

and PAi ⊆ Aa(i).
We say that A is effectively-interpretable in B if, in B, there is
• a uniformly r.i.c.e. set DBA ⊆ B<ω (the domain of the interpretation),

• a uniformly r.i. computable relation η ⊆ B<ω ×B<ω which is an equivalence relation

on DBA (interpreting equality),

• a uniformly r.i. computable sequence of relations Ri ⊆ (B<ω)a(i), closed under the

equivalence η within DBA (interpreting the relations Pi),

• and a function fBA : DBA → A which induces an isomorphism:

(DBA/η;R0, R1, ...) ∼= (A;PA0 , P
A
1 , ...).

Let us clarify that: The sets Ri do not need to be subsets of (D
B
A)

a(i), and, when we refer to

the structure (DBA/η;R0, R1, ...), we of course mean

(DBA/η; (R0 ∩ (DBA)
a(0))/η, (R1 ∩ (DBA)

a(1))/η, . . .).

By uniformly r.i. computable sequence we mean that
⊕

iRi∈I is uniformly r.i. computable.

If we add parameters, this notion is equivalent to that of Σ-definability introduced by

Ershov [15] and widely studied in Russia. Ershov’s definition is quite different in format:

it uses HF (B) instead of B<ω , and ∃-definable sets with parameters instead of uniformly

r.i.c.e. ones. (It is known that r.i.c.e. subsets of B<ω are equivalent to Σ-definable (with

parameters) subsets of HF (B); see [47, Section 4].) Another well-known notion is that of

Σ-equivalence between two structures, which just means that the structures are Σ-definable
in each other. This is, indeed, quite a strong notion of equivalence, but the one we consider

below is stronger, as we also require the composition of the isomorphisms to be computable

in the respective structures. Here is the formal definition:

Definition 5.2. Two structures A and B are effectively-bi-interpretable if there are effective-
interpretations of each structure in the other as in Definition 5.1 such that the compositions

fAB ◦ f̃BA : D
(DBA)
B → B and fBA ◦ f̃AB : D

(DAB )
A → A

5We remark that this definition is slightly different from what the author called effective-interpretability in [50,

Definition 1.7], as we now allow the domain to be a subset of B<ω rather than Bn for some n, and we do not allow
parameters in the definitions.
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are uniformly r.i. computable in B and A respectively. (Here f̃BA : (DBA)
<ω → A<ω is the

obvious extension of fBA : DBA → A.)

In the next lemma, we see how effective-bi-interpretability preserves most computability

theoretic properties.

Lemma 5.3. Let A and B be effectively-bi-interpretable.

(1) A and B have the same degree spectrum.

(2) A is computably categorical if and only if B is.

(3) A and B have the same computable dimension.

(4) A is rigid if and only if B is.

(5) A and B have the same Scott rank.

(6) For every ā ∈ A<ω , there is a b̄ ∈ B<ω such that (A, ā) and (B, b̄) have the same
computable dimension, and vice-versa.

(7) For every R ⊆ A<ω , there is a Q ⊆ B<ω which has the same degree spectrum, and
vice-versa.

(8) A has the c.e. extendibility condition if and only if B does.

(9) The index sets of A and B are Turing equivalent, assuming A and B are infinite struc-
tures.

(10) The jumps of A and B are effectively-bi-interpretable.

(Of course, items 2-10 assume A and B are computable.)

Sketch of the proof. Throughout this proof, assume that A is the presentation that is coded

inside B<ω , i.e. with domainDBA, and B̃ is the copy of B coded insideA<ω , i.e. with domain

DAB = D
DBA
B . We let f be the isomorphism from B̃ to B.

For part 1, just observe that via theΣ-interpretation, given a copy of B, we can enumerate

a copy of A, and hence compute one.

For part 2, we need the following observation: Let B1 and B2 be copies of B, and let

A1 and A2 be the presentations of A coded inside B<ω1 and B<ω2 respectively. The point we

need to make here is that ifA1 andA2 are computably isomorphic, then so are B1 and B2: A

computable isomorphism between A1 and A2 induces a computable isomorphism between

B̃1 and B̃2, which each are computably-isomorphic to B1 and B2 respectively. Thus, if A is

computably categorical, so is B. For 3, we have that if B has k non-computably isomorphic

copies B1, ...,Bk, then the respective structuresA1, ...,Ak cannot be computably isomorphic

either. So the effective dimension of A is at least that of B, and hence, by symmetry, they

must be equal.

For part 4, suppose B is not rigid. Let h be a nontrivial automorphism of B. It then

induces an automorphism of B<ω , which then induces an automorphism g of A, which then

induces an automorphism h1 of B̃. Since f is invariant, we have h ◦ f = f ◦ h1 and, since h
is nontrivial, h1 is not trivial either. It follows that the automorphism g ofA cannot be trivial

either.

For part 5, suppose that SR(A) = α, that is, that every automorphism orbit in A is

Σin
α definable. Take a tuple b̄ ∈ B<ω; we will show its orbit is also Σin

α definable. Let

c̄ ∈ B̃<ω ⊆ B<ω be such that f(c̄) = b̄. The orbit of c̄ is Σin
α definable inside A, and since
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A is Σc
1-definable in B, the orbit of c̄ is also Σin

α definable in B. Since f is Σc
1-definable in

B, the orbit of b̄ is also Σin
α definable. It follows that SR(B) ≤ α, and, by symmetry, that

SR(B) = α.
For part 6, think of ā as a tuple in (DB

A)
<ω ⊆ B<ω and call it b̄. It is not hard to show

that (A, ā) and (B, b̄) are effectively-bi-interpretable.
For part 7, think of R as a subset of (DB

A)
<ω ⊆ B<ω and call it Q. Clearly, for every

copy of B, R and Q have the same degree. Conversely, for each copy of A, if we look at

the copy of B inside and then at the one of A inside it, we get that R and Q have the same

degree too.

For part 8, all we have to notice is that each ∃-type in A is 1-1 reducible to a Σc
1-type in

B, and vice-versa.
For part 9, given an index of a structure that we want to know if it is isomorphic to B, we

can produce an index for the structure that is then supposed to be isomorphic to A. If it is

not, then we know the original structure was not isomorphic to B. If it is, we need to check

that the bi-interpretability does produce an isomorphism, which 0′′ can check. One has to

notice that all index sets compute 0′′, as their domain must be infinite.

Last, for part 10, it is not hard to interpret the complete r.i.c.e. relations from one structure

into the other by interpreting Σc
1-formulas in one by Σc

1 formulas in the other. �

5.2. Reduction via effective-bi-interpretability. As we mentioned before, uniform r.i.c.e.

sets are Σc
1 definable. So, an effective-bi-interpretation is given by a list of Σc

1 formulas

defining all the relations involved. When we fix these formulas, we obtain a map from one

kind of structure into another (which might not always define a bi-interpretation). We can

use this to define a reducibility between classes:

Definition 5.4. A class K is reducible to S via effective-bi-interpretability if there are Σc
1

formulas such that for every A ∈ K, there is a B ∈ S such that A and B are effectively-

bi-interpretable using those formulas. A class K is on top for effective-bi-interpretability if
for every computable language L, the class of L-structures is reducible toK via effective-bi-

interpretability.

Not much is known about this definition. Classes that are Σ-small are not on top for

effective-bi-interpretability for the same reason they are not HKSS-complete. Classes that

have bounded Scott rank cannot be on top because effective-bi-interpretability preserves

Scott ranks. Using the interpretations defined by Hirschfeldt, Khoussainov, Shore and Slinko

[28], we get the following: undirected graphs, partial orderings, and lattices are on top

for effective-bi-interpretability; if we add a finite set of constants to the languages of in-

tegral domains, commutative semigroups, or 2-step nilpotent groups, they become on top

for effective-bi-interpretability too. A recent result by R. Miller, J. Park, B. Poonen, H.

Schoutens, and A. Shlapentokh [53] shows that fields are on top for effective-bi-interpretability.
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Abstract. We survey some recent results in Ramsey theory. We indicate their connections with topo-

logical dynamics. On the foundational side, we describe an abstract approach to finite Ramsey theory.

We give one new application of the abstract approach through which we make a connection with the

theme of duality in Ramsey theory. We finish with some open problems.
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1. Ramsey theory and topological dynamics

Recent years have seen a renewed interest in Ramsey theory that lead to advances both in

proving new concrete Ramsey results and in developing the foundational aspects of the the-

ory. To a large extent this interest in Ramsey theory was sparked by the discovery of its close

connections with topological dynamics and especially with the notion of extreme amenabil-

ity and related to it problem of computing universal minimal flows of topological groups. A

topological group is called extremely amenable if each continuous action of it on a compact

(always assumed Hausdorff) space has a fixed point. First such groups were discovered by

Herer and Christensen [13] using functional analytic methods. It was then shown by Veech

[40] that extremely amenable groups cannot be locally compact. It turned out, however, that

some very interesting groups are extremely amenable; for example, Gromov and Milman

[12] showed that the unitary group of a separable infinite dimensional Hilbert space, taken

with the strong operator topology and with composition as the group operation, is extremely

amenable. The proof in [12] of this theorem used probabilistic methods of concentration of

measure through the notion of Lévy group. (Lévy groups are topological groups possessing

an increasing sequence of compact subgroups with dense union and with concentration of

measure exhibited by the sequence of the normalized Haar measures on the compact sub-

groups.) Concentration of measure grew to be one of the two main methods used in proving

extreme amenability.

It was not until Pestov’s paper [27] that the second general method—Ramsey theory—

was discovered. Pestov showed that the group of all increasing bijections from Q to itself,

with pointwise convergence topology and composition as the group operation, is extremely

amenable. His proof used the classical Ramsey theorem in a way that appeared, as it turned

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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out correctly, fundamental. Pestov’s article was followed by two papers by Glasner and

Weiss [7] and [8], one of which [8] used the dual Ramsey theorem of Graham and Roth-

schild, see Theorem 3.3 below, to determine the universal minimal flow of the group of

all homeomorphisms of the Cantor set. The full and unexpectedly tight connection between

extreme amenability and Ramsey theory was then established by Kechris, Pestov, and Todor-

cevic in [15].

Theorem 1.1 below is the main result of the theory found in [15]. (Paper [25] contains

some further developments.) Recall that a topological group is non-Archimedean if it has

a basis at the identity consisting of open subgroups. A structure, which we understand in

the sense of Model Theory, is ultrahomogeneous if each isomorphism between two finite

substructures extends to an automorphism of the whole structure, and it is locally finite if

its finitely generated substructures are finite. A class F of finite structures is said to have

the Ramsey property if for any positive integer c any two structures A and B in F there

is a structure C in F such that for each coloring with c colors of all substructures of C
isomorphic to A there is a substructure B′ of C isomorphic to B such that substructures of

B′ isomorphic to A get the same color.

Theorem 1.1 (Kechris–Pestov–Todorcevic [15]). Let G be a non-Archimedean, second
countable, completely metrizable group. Then G is extremely amenable if and only if G is
isomorphic to the group of all automorphisms (taken with the pointwise convergence topol-
ogy and composition as the group operation) of a countable, ultra-homogeneous, locally
finite structure A such that

— A is linearly ordered and

— the class of all finite substructures of A has the Ramsey property.

For example, Q taken with its linear order is ultrahomogeneous, locally finite, linearly

ordered, and the class of its finite substructures consists of finite linear orders, which has

the Ramsey property by the classical theorem of Ramsey [30]. This gives back Pestov’s

theorem [27] mentioned above. More broadly, Theorem 1.1 related topological dynamics

to Ramsey theory for finite structures, the latter having been developed by Nešetřil, Rödl

[22–24], Abramson and Harrington [1], and others.

As it turned out, the connection from Theorem 1.1 suggested new Ramsey results. One,

although not the only one, way this took place was through comparisons with the concen-

tration of measure method. Given a group whose extreme amenability was proved using

concentration of measure, one could sometimes formulate a Ramsey statement that would

yield the extreme amenability, and then ask if the Ramsey statement itself held. On the other

hand, one could also ask for Ramsey statements that gave extreme amenability in situations

to which concentration of measure did not apply. We give below two examples, one on either

side.

The following theorem for finite linearly ordered metric spaces was proved by Nešetřil

[21]. In its statement by an order isometry from a linearly ordered metric space A to a

linearly ordered metric space B we understand a bijection from A to B that preserves the

metric and the linear order.

Theorem 1.2 (Nešetřil [21]). Given a positive integer c and two finite linearly ordered metric
spaces A and B, there exits a finite linearly ordered metric space C such that for each
coloring with c colors of all subspaces of C order isometric to A there exists a subspace B′
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of C order isometric to B such that all subspaces of B′ order isometric to A have the same
color.

The theorem above implies, as shown in [15], that the group of all isometries of the

separable Urysohn metric space taken with the pointwise convergence topology is extremely

amenable. Extreme amenability of this group was earlier established by Pestov in [28] with

concentration of measure methods.

To state the second theorem, also resulting from analyzing connections between Ramsey

theory, concentration of measure, and extreme amenability, consider the following notions.

Let [n] stand for the set {1, 2, . . . , n}. Given a prime number p, let (Z/p)n:l be the set of all
partial functions from [n] to Z/p whose domains have at least n− l elements, and let (Z/p)n

be the set of all functions from [n] to Z/p. A set L ⊆ (Z/p)n:l is called full if there exists
h ∈ (Z/p)n and a ⊆ [n] with n− l elements such that for each r ∈ Z/p

(r + h) � ar ∈ L

for some a ⊆ ar ⊆ [n].
We now have the following Ramsey theorem. We will come back to it in the last section

of the paper when discussing open problems.

Theorem 1.3 (Farah–Solecki [4]). Let p1, . . . , pk be prime numbers, and let c be a positive
integer. Then

∃l1∀n1 ≥ l1 · · · ∃lk∀nk ≥ lk for each coloring of
∏k
i=1(Z/p)

ni:li with c colors

there exist full sets L1 ⊆ (Z/p1)n1:l1 , . . . , Lk ⊆ (Z/pk)nk:lk with L1 ×· · ·×Lk monochro-
matic.

The proof of the above result uses Lovasz’s method for calculating the chromatic num-

bers of the Kneser graphs, see [17]. The theorem above implies that, for example, L0(φ,A)
is extremely amenable. The group L0(φ,A) is the completion of the group of all continuous

functions (with pointwise addition) from the Cantor set 2N to a finite abelian group A with

respect to convergence in φ, where φ is a diffuse submeasure on all closed-and-open subsets
of 2N. (These groups are related to the ones considered by Herer and Christensen [13].)

On the other hand, it is shown in [4] that extreme amenability of L0(φ,A) as above cannot
be proved using the concentration of measure method—such groups are not Lévy despite

possessing sequences of compact subgroups with dense unions.

There are many other examples of recently found Ramsey theorems with application to

topological dynamics; for a sample, see [14, 25], or [32].

2. Finite Ramsey theory—abstract approach

The Kechris–Pestov–Todorcevic theory lead indirectly to rethinking of the foundations of

finite Ramsey theory. In this section, we present an abstract approach to finite Ramsey theory

from [35]. This approach recovers most of the core Ramsey theory and makes it possible

to prove new results. At the same time, it reveals the formal algebraic structure underlying

finite Ramsey theorems: there exist a single type of structure, called Ramsey domain over

a normed composition space, that underlies Ramsey theorems. One formulates within this
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algebraic setting an abstract pigeonhole principle and an abstract Ramsey statement, and

proves, as the main theorem, that the pigeonhole principle implies the Ramsey statement.

This abstract Ramsey theorem, which we state at the end of this section as Theorem 2.1,

gives particular Ramsey theorems as instances, or iterative instances, for particular Ramsey

domains.

We outline the general approach in this section. For details and proofs the reader should

consult [35]. We give one new concrete application in the next section, which will allow

us to illustrate the abstract notions in a concrete situation and also to discuss the theme of

duality in Ramsey theory. We ask the reader to consult [35, 36], and [42] for more con-

crete applications. Let us only mention here that the following theorems can be obtained as

particular instances of the abstract approach to Ramsey theory, see [35, 36], and [42]:

— the classical Ramsey theorem, see [20];

— the Hales–Jewett theorem, see [20];

— the Graham–Rothschild theorem, [9], see also [20];

— the versions of the two results directly above for partial rigid surjections due to Voigt,

[41], see also [20];

— a self-dual Ramsey theorem, [35];

— the Milliken Ramsey theorem for finite trees, [18], see also [31];

— a common generalization of Deuber’s and Jasiński’s Ramsey theorems for finite trees,

[2, 14];

— Spencer’s generalization of the Graham–Rothschild theorem and the Ramsey theorem

for affine subspaces, [38];

— dual Ramsey theorem for trees, [36].

2.1. Normed composition spaces. The algebraic structure is initially defined at the level

of points and it is lifted later to the level of sets. We describe first the point level structure.

Let A and X be sets. Assume we are given a partial function from A×A to A,

(a, b) → a · b ∈ A,

and a partial function from A×X to X ,

(a, x) → a . x ∈ X,

such that for a, b ∈ A and x ∈ X if a . (b . x) and (a · b) . x are both defined, then

a . (b . x) = (a · b) . x.

The above equation is just the usual action condition. We assume we also have a function

∂ : X → X and a function | · | : X → L, where L is equipped with a partial order ≤. The

operations · and . are called a multiplication and an action (of A on X), respectively. We

call ∂ a truncation and | · | a norm.

A structure (A,X, . , ·, ∂, | · |) as above is called a normed composition space if the

following conditions hold for a ∈ A and x, y ∈ X:
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(i) if a . x and a . ∂x are defined, then

∂(a . x) = a . ∂x;

(ii) |∂x| ≤ |x|;
(iii) if |x| ≤ |y| and a . y is defined, then a . x is defined and |a . x| ≤ |a . y|.

The conditions above record the interactions between pairs of objects among . , ∂, and
| · |. So the action is done by homomorphisms with respect to the truncation, by (i), the

truncation does not increase the norm, by (ii), and the action respects the norm, by (iii).

We isolate one notion that will turn out to be useful later on. Given a, b ∈ A, we say that
b extends a if for each x for which a . x is defined, b . x is defined as well and is equal to

a . x.
For t ∈ N, we write ∂t for the t-th iteration of ∂. For a subset P of X , we write

∂P = {∂x : x ∈ P}.

2.2. Ramsey domains. Here we lift the algebraic structure from points to subsets of A and

X . Let F and P be families of non-empty subsets of A and X , respectively. Assume we

have a partial function from F × F to F ,

(F,G) → F •G ∈ F ,

with the property that if F •G is defined, then it is given point-wise, that is, f · g is defined
for all f ∈ F and g ∈ G and

F •G = {f · g : f ∈ F, g ∈ G}.

Assume we also have a partial function from F × P to P ,

(F, P ) → F •P ∈ P,

such that if F •P is defined, then f . x is defined for all f ∈ F and x ∈ P and

F •P = {f . x : f ∈ F, x ∈ P}.

The structure (F ,P, • , •) as above is called a Ramsey domain over the normed com-

position space (A,X, . , ·, ∂, | · |) if the following conditions hold:
(a) if F,G ∈ F , P ∈ P , and F • (G •P ) is defined, then so is (F •G) •P ;
(b) if P ∈ P , then ∂P ∈ P;

(c) if F ∈ F , P ∈ P , and F • ∂P is defined, then there is G ∈ F such that G •P is

defined and for each f ∈ F there is g ∈ G extending f .

The following two conditions on Ramsey domains are crucial in running inductive argu-

ments. A Ramsey domain is called vanishing if for each P ∈ P there is t ∈ N such that

the set ∂tP has one element. It is called linear if for each P ∈ P , the set {|x| : x ∈ P}
is a linearly ordered subset of L. The first one of these conditions makes it possible to start

inductive arguments, the second one is used to organize induction.
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2.3. Ramsey theorem. Using the structure described earlier, we state here the abstract

Ramsey theorem—Theorem 2.1. The theorem will say that an appropriate pigeonhole prin-

ciple implies an appropriate Ramsey condition. The following statement is our Ramsey

condition for a Ramsey domain (F ,P, • , •).
(R) Given a positive integer c, for each P ∈ P , there is an F ∈ F such that F •P is

defined, and for every coloring with c colors of F •P there is an f ∈ F such that

f . P is monochromatic.

For P ⊆ X and y ∈ X , put

Py = {x ∈ P : ∂x = y}.

For F ⊆ A and a ∈ A, let
Fa = {f ∈ F : f extends a}.

The following criterion is our pigeonhole principle, which we called local pigeonhole

principle in [35] and denoted it there by (LP). We keep this notation here.

(LP) Given a positive integer c, for all P ∈ P and y ∈ ∂P , there are F ∈ F and a ∈ A such

that F •P is defined, a . y is defined, and for every coloring with c colors of Fa . Py
there is an f ∈ Fa such that f . Py is monochromatic.

The following is the abstract Ramsey theorem.

Theorem 2.1 (Solecki [36]). Let (F ,P, • , •) be a linear, vanishing Ramsey domain over a
normed composition space. Assume that each set in P is finite. Then (LP) implies (R).

3. Duality and the dual Ramsey theorem for trees

In this section, we touch on the theme of duality. In Ramsey theory for finite structures,

Abramson–Harrington, Nešetřil–Rödl’s theorem [1, 24] has a dual counterpart due to Prömel

[29]. This duality was made precise and shown to extend to proofs in [33] and [34]. In the

unstructured Ramsey theory, the classical theorem of Ramsey [30] has a dual counterpart due

to Graham and Rothschild [9]. We will extend here this last instance of duality to trees and

we will relate it to the concept of Galois connection. This new concrete Ramsey result will

also allow us to give an illustration of the abstract notions presented in the previous section.

3.1. The context for duality among trees–Galois connections. Let (S,�S) and (T,�T )
be two partial orders. A pair (f, e) is called a Galois connection if f : T → S, e : S → T ,
and

e ◦ f �T idT and f ◦ e �S idS , (3.1)

that is, e(f(w)) �T w and v �S f(e(v)) for all w ∈ T and v ∈ S. Usually the functions e
and f in a Galois connection are assumed to be monotone. It is crucial for us, however, to

use the more relaxed notion given above. Galois connections in their abstract form were first

defined by Ore in [26]; for a comprehensive treatment see [5]. As already noticed by Ore,

of particular importance are Galois connections fulfilling a strengthening of (3.1) consisting

of assuming that equality holds in one of the two inequalities in (3.1). (Ore called such
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connections perfect.) Since the situation we consider, when the partial orders are trees, is

asymmetric, only one of these strengthenings is interesting—the one with equality holding

in the second formula in (3.1), in which case (3.1) becomes

e ◦ f �T idT and f ◦ e = idS . (3.2)

Galois connections with (3.2) are sometimes called embedding–projection pairs, and are

important in denotational semantics of programming languages, see for example [3].

3.2. The notion of rigid surjection and the dual Ramsey theorem for trees. By a tree
we understand a finite, partially ordered set with a smallest element, called root, and such

that the set of predecessors of each element is linearly ordered. So below, all trees are non-
empty and finite. Maximal elements of the tree order are called leaves. We always denote

the tree order on T by �T .

Each tree T carries a binary function ∧T that assigns to each v, w ∈ T the largest with

respect to �T element v∧T w of T that is a predecessor of both v and w. By convention, we
regard every node of a tree as one of its own predecessors and as one of its own successors.

For a tree T and v ∈ T , let imT (v) be the set of all immediate successors of v, and
we do not regard v as one of them. A tree T is called ordered if for each v ∈ T we have a

fixed linear order on imT (v). Such an assignment of linear orders defines the lexicographic

linear order ≤T on all the nodes of T by stipulating that v ≤T w if v is a predecessor of w
and, in case v is not a predecessor of w and w is not a predecessor of v, that v ≤T w if the

predecessor of v in imT (v ∧ w) is less than or equal to the predecessor of w in imT (v ∧ w)
in the given order on imT (v ∧ w).

Let S and T be ordered trees. A function e : S → T is called a morphism if the follow-

ing conditions hold:

(i) e(v ∧S w) = e(v) ∧T e(w), for all v, w ∈ S;
(ii) e is monotone between ≤S and ≤T , that is, v ≤S w implies e(v) ≤T e(w), for all

v, w ∈ S;
(iii) e maps the root of S to the root of T .

Now we give the definition of functions appearing in the dual Ramsey theorem for trees.

Let S, T be ordered trees. A function f : T → S is called a rigid surjection provided there

exists a morphism e : S → T such that equation (3.2) holds. It is not difficult to see that

in this situation f determines e uniquely, so the definition above could be stated without

invoking e.
Here is the dual Ramsey theorem for trees.

Theorem 3.1 (Solecki [37]). Let c be a positive integer. Let S, T be ordered trees. There
exists an ordered tree U such that for each coloring with c colors of all rigid surjections from
U to S there is a rigid surjection g0 : U → T such that

{f ◦ g0 : f : T → S a rigid surjection}
is monochromatic.

Ramsey theorems for trees proved so far were usually stated in terms of injective mor-

phisms e; see [36] for a survey. (An exception here is the dual Ramsey theorem of Graham–

Rothschild, which we discuss below.) Each such injective morphism e is an element of a
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unique pair (f, e) with the pair fulfilling (3.2) and with f being a surjective morphism. In

this situation, when both e and f are morphisms, e determines f and f determines e. So

Ramsey theorems formulated in terms of e can be equivalently stated in terms of pairs (f, e)
or in terms of f . One could call the formulation in terms of f dual. Now, it turns out, that on
the dual side, surjective morphisms f are part of a much richer family of functions—rigid

surjections; one abandons the assumption that f is a morphism and obtains a Ramsey theo-

rem for this larger class of functions. In fact, the statement for the larger class easily implies

the statements for morphisms. We discuss it briefly below.

An injective morphism between ordered trees is called an embedding. An image of a

tree S under an embedding from S to T is called a copy of S in T . The following theorem

is due to Leeb, see [10].

Theorem 3.2 (Leeb). Given a positive integer c and ordered trees S and T , there is an
ordered tree U such that for each coloring with c colors of all copies of S in U there is a
copy T ′ of T in U such that all copies of S in T ′ get the same color.

An embedding uniquely determines a copy which is the image of the embedding, but

also vice versa, a copy uniquely determines an embedding of which it is the image. So

the theorem above can be restated in terms of embeddings and can be easily seen to be a

particular case of Theorem 3.1 by viewing an embedding e as an element of pairs (f, e)
fulfilling (3.2).

Theorem 3.1 also generalizes the dual Ramsey theorem of Graham–Rothschild, as we

indicate below. A k-partition of a setX is a family of k non-empty pairwise disjoint subsets

of X whose union is X . A k-partition P is an k-subpartition of an l-partition Q if each

element of P is the union of some elements of Q. Form ∈ N, let [m] be the set {1, . . . ,m}.
The following is the dual Ramsey theorem of Graham and Rothschild [9]. (We come back

to it in the last section of the paper.)

Theorem 3.3 (Graham–Rothschild [9]). Let c be a positive integer. For each k, l, there
exists m such that for each coloring with c colors of all k-partitions of [m] there exists an
l-partition Q of [m] such that all k-subpartitions of Q get the same color.

If P a k-partition of [m], then we can write P = {p1, . . . , pk} with min pi < min pi+1,

for 1 ≤ i < k, and define fP : [m] → [k] by

fP(x) = the unique i such that x ∈ pi.

Note that [m], for m ∈ N, is an ordered tree if we take [m] with its natural order relation

and with the unique trivial ordering of the immediate successors of each vertex. If [m] is
treated as a tree, fP : [m] → [k] is a rigid surjection. This observation leads to a restatement

of the Graham–Rothschild theorem in terms of rigid surjections. This restatement follows

easily from Theorem 3.1 by considering ordered trees S = [k] and T = [l] and viewing the

resulting tree U with its linear order ≤U only (and forgetting its tree order �U ).

3.3. Description of algebraic structures for the dual Ramsey theorem for trees. We

describe here concrete examples of the general structures defined in Section 2 that are used

to prove Theorem 3.1. For technical reasons, we consider only a restricted class of rigid

surjections. One proves Theorem 3.1 for this restricted class and then derives the full version

of the theorem from the restricted one. For ordered trees S, T , a rigid surjection f : T → S
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is called sealed if f−1(v) = {w}, where v is ≤S-largest in S and w is ≤T -largest in T . For
w ∈ T , let

Tw = {v ∈ T : v ≤T w},
and for f : T → S and v ∈ S, let

fv = f � T e(v),

where e : S → T is the unique morphism with (f, e) fulfilling (3.2).
Now we define a normed composition space. Let L be a family of ordered trees such that

for T ∈ L and w ∈ T , we have Tw ∈ L. We will specify L later. The sets A and X will be

equal to each other, as will be the operations . and ·. We let A = X be the set of all sealed

rigid surjections g : T2 → T1 for T1, T2 ∈ L. Let f, g ∈ A = X . We let g · f = g . f be

defined precisely when f : T y → S and g : V → T for some ordered trees S, T, V ∈ L and

a vertex y in T . We let

g · f = g . f = f ◦ gy.
For f ∈ X whose image is a tree S define ∂f as follows. If S consists only of its root,

let

∂f = f.

If S has a vertex that is not a root, let v be the second ≤S-largest vertex in S, and let

∂f = fv.

Consider L as a partial order with the partial order relation given by requiring that T1 be
less than T2 if and only if there exists w ∈ T2 with T1 = Tw2 . For f ∈ X , let

|f | = (domain of f) ∈ L.
It is easy to check that the structure (A,X, . , ·, ∂, | · |) defined above is a normed com-

position space.

Now we define a Ramsey domain over this normed composition space. To specify L,
fix a family T of ordered trees such that each ordered tree has an isomorphic copy in T and

such that T1 ∩ T2 = ∅, for T1, T2 ∈ T , and let

L = {Tw : T ∈ T , w ∈ T}.
We consider non-empty setsK ⊆ A = X for which there exist ordered trees T1, T2 such that
each element of K has its domain included in T2 and its image equal to T1. We require that

T2 ∈ T . Since the trees in T are pairwise disjoint, each element of K determines T2. We

define d(K) = T2 and r(K) = T1. Now, let F consist of all such sets K with r(K) ∈ T ,

and let P consist of all such sets K with r(K) ∈ L. For F1, F2, F ∈ F and P ∈ P , let

F1 •F2 and F •P be defined precisely when d(F2) = r(F1) and d(P ) = r(F ), respectivly.
In these cases, we let

F1 • F2 = F1 · F2 and F •P = F . P.

Again one checks that the structure defined above is a Ramsey domain that is linear and

vanishing. Condition (R) for it gives the statement of the dual Ramsey theorem for trees

(for sealed surjections); condition (LP) for it is proved using a version of the Hales–Jewett

theorem, but we will not describe this argument here. For all the proofs the reader may

consult [37].
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4. Further developments and problems

We present below two groups of problems. Both of them aim at extending, in two different

ways, the point of view from Section 2 beyond its original context. The first problem has

to do with unifying the approach to finite Ramsey theory of [35], which was described in

Section 2, with Todorcevic’s infinite Ramsey theory of [39]. Issues in the second group

center around proving certain analogous or finding a better understanding of Theorems 1.1,

1.3 and 3.3 presented earlier.

First, there exists a general approach to infinite Ramsey theory given by Todorcevic in

[39] that incorporates earlier work of Nash-Williams, Ellentuck, and Carlson, among others.

Roughly speaking, this is a theory of finding infinite sequences (xn) such that the set of all

infinite sequences formed from (xn) by, for example, amalgamating or taking subsequences

or acting by a semigroup, is monochromatic. The question arises whether one can view

the approach to finite Ramsey theory outlined in Section 2 as a starting point, or as the

underlying layer, of the infinite Ramsey theory. For example, given a normed composition

space (A,X, . , ·, ∂, | · |) as in Section 2, it is natural to consider the space of sequences

lim←−(X, ∂) = {(xn) ∈ XN : xn = ∂xn+1 for each n ∈ N}

with the induced partial action of A. It seems plausible that Todorcevic’s theory can be

recovered in spaces of the form lim←−(X, ∂), which would unify the two approaches.

Second, there exist certain Ramsey statements that point to a possible relationship of

Ramsey theory with combinatorial tools coming from algebraic topology as in [17] or from

fixed point theorems in convex analysis. (A similar view is expressed by Gromov in [11,

Introduction to Section 1].) We may recall that Theorem 1.3 is proved using methods that

originated with Lovasz’s proof of Kneser’s conjecture, which is done with the aid of in-

sights coming from algebraic topology around the Lefschetz fixed point theorem. Below,

we describe two other purely Ramsey theoretic statements with some intriguing additional

features. Both of them merit attention in their own right. It would also be very interesting to

see if the combinatorial methods stemming from algebraic topology as in [17] can be incor-

porated into the approach outlined in Section 2 to shed light on these or similar statements.

Moore [19] carried out an analysis, analogous to the Kechris–Pestov–Todorcevic [15]

analysis described in Section 1, of amenability among non-Archimedean groups. As a by-

product, he uncovered a Ramsey statement relevant to amenability of well known Thomp-

son’s group F . This is the group, under composition, of all piecewise linear increasing

homeomorphisms of the interval [0, 1] whose non-differentiability points are dyadic ratio-

nals and whose slopes are integer powers of 2. Moore found a Ramsey statement equivalent

to amenability of F (establishing which is a major problem concerning this group). This

Ramsey statement has a new feature—it involves convex combinations. We reproduce it

below.

By a binary tree we understand an ordered tree T , as in Section 3.2, with the property

that for each vertex v ∈ T the set of its immediate successors imT (v) has size 0 or 2. For
n ∈ N, n > 0, let Tn denote the set of all binary trees with n leaves. Given a sequence of

binary trees 	U = (U1, . . . , Um) such that the number of leaves in all of them totals n and

given a tree T in Tm, let T (	U) be the tree in Tn that results from T by attaching Ui to the

i-th leaf of T , where the leaves of T are numbered according to the linear order ≤T on T .
The root of Ui is identified with the i-th leave of T in the resulting tree. Here is the Ramsey

statement formulated by Moore.



Ramsey theory: foundations and connections with dynamics 113

For every m there exists n ≥ m such that for each coloring c : Tn → {0, 1} there exist
non-negative numbers α	U , where Ū ranges over all m-tuples 	U = (U1, . . . , Um) of binary
trees with a total of n leaves, such that

∑
	U α	U = 1 and∑

	U

α	Uc(T (
	U))

is constant as T varies over Tm.

Theorem 4.1 (Moore [19]). The above Ramsey statement is equivalent to amenability of
Thompson’s group F .

More broadly, Moore’s analysis of amenability parallel to the analysis of extreme amena-

bility for non-Archimedean groups lead him to a general class of Ramsey statements phrased

in terms of convex combinations. At this point, no statements of this form appear to be

known that do not follow from ordinary Ramsey statements.

There is another Ramsey statement that seems to fit here. It was formulated by Kechris,

Sokić and Todorcevic [16], and was motivated by the desire to give a Ramsey theoretic proof

of the theorem of Giordano–Pestov [6] that the group of all measure preserving transforma-

tions of the interval [0, 1]with Lebesgue measure, taken with the weak topology, is extremely

amenable. The original proof in [6] used concentration of measure. What appears to be a mi-

nor modification of the Graham–Rothschild theorem, Theorem 3.3 above, yields a Ramsey

statement that would imply Giordano–Pestov’s result. The statement, which was formulated

in [16] and which we reproduce below, is not known to be true.

We say that a partition Q of a finite set X is homogeneous if any two sets in Q contain

the same number of elements of X .

Given a positive integer c, for each k and l there exists m such that for each coloring
with c colors of all homogeneous k-partitions of [m] there exists a homogeneous l-partition
Q of [m] such that all homogeneous k-subpartitions of Q get the same color.
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[31] M. Sokić, Bounds on trees, Discrete Math. 311 (2011), 398–407.

[32] , Ramsey property, ultrametric spaces, finite posets, and universal minimal
flows, Israel J. Math. 194 (2013), 609–640.

[33] S. Solecki, A Ramsey theorem for structures with both relations and functions, J. Com-

bin. Theory, Ser. A 117 (2010), 704–714.

[34] , Direct Ramsey theorem for structures involving relations and functions, J.
Combin. Theory, Ser. A 119 (2012), 440–449.

[35] , Abstract approach to finite Ramsey theory and a self-dual Ramsey theorem,
Adv. Math. 248 (2013), 1156–1198.

[36] , Abstract approach to Ramsey theory and Ramsey theorems for finite trees, in
Asymptotic Geometric Analysis, Fields Institute Communications, Springer, 2013, pp.

313–340.

[37] , Dual Ramsey theorem for trees, preprint 2014.

[38] J. Spencer, Ramsey’s theorem for spaces, Trans. Amer. Math. Soc. 249 (1979), 363–

371.

[39] S. Todorcevic, Introduction to Ramsey Spaces, Annals of Mathematics Studies, 174,
Princeton University Press, 2010.

[40] W. Veech, Topological dynamics, Bull. Amer. Math. Soc. 83 (1977), 775–830.

[41] B. Voigt, The partition problem for finite Abelian groups, J. Combin. Theory, Ser. A 28
(1980), 257–271.

[42] M. Zhao, A self-dual Ramsey theorem for parameter systems, preprint 2013.

Department of Mathematics, University of Illinois, 1409 W. Green St., Urbana, IL 61801, USA

E-mail: ssolecki@math.uiuc.edu









On finite-dimensional Hopf algebras
Dedicado a Biblioco 34

Nicolás Andruskiewitsch

Abstract. This is a survey on the state-of-the-art of the classification of finite-dimensional complex

Hopf algebras. This general question is addressed through the consideration of different classes of such

Hopf algebras. Pointed Hopf algebras constitute the class best understood; the classification of those

with abelian group is expected to be completed soon and there is substantial progress in the non-abelian

case.
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1. Introduction

Hopf algebras were introduced in the 1950’s from three different perspectives: algebraic

groups in positive characteristic, cohomology rings of Lie groups, and group objects in the

category of von Neumann algebras. The study of non-commutative non-cocommutative

Hopf algebras started in the 1960’s. The fundamental breakthrough is Drinfeld’s report

[25]. Among many contributions and ideas, a systematic construction of solutions of the

quantum Yang-Baxter equation (qYBE) was presented. Let V be a vector space. The qYBE

is equivalent to the braid equation:

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c), c ∈ GL(V ⊗ V ). (1.1)

If c satisfies (1.1), then (V, c) is called a braided vector space; this is a down-to-the-earth

version of a braided tensor category [54]. Drinfeld introduced the notion of quasi-triangular

Hopf algebra, meaning a pair (H,R)whereH is a Hopf algebra andR ∈ H⊗H is invertible

and satisfies the approppriate conditions, so that everyH-module V becomes a braided vec-

tor space, with c given by the action of R composed with the usual flip. Furthermore, every

finite-dimensional Hopf algebra H gives rise to a quasi-triangular Hopf algebra, namely the

Drinfeld doubleD(H) = H⊗H∗ as vector space. IfH is not finite-dimensional, some pre-

cautions have to be taken to constructD(H), or else one considers Yetter-Drinfeld modules,

see §2.2. In conclusion, every Hopf algebra is a source of solutions of the braid equation.

Essential examples of quasi-triangular Hopf algebras are the quantum groups Uq(g) [25, 53]
and the finite-dimensional variations uq(g) [59, 60].

In the approach to the classification of Hopf algebras exposed in this report, braided

vector spaces and braided tensor categories play a decisive role; and the finite quantum

groups are the main actors in one of the classes that splits off.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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By space limitations, there is a selection of the topics and references included. Par-

ticularly, we deal with finite-dimensional Hopf algebras over an algebraically closed field

of characteristic zero with special emphasis on description of examples and classifications.

Interesting results on Hopf algebras either infinite-dimensional, or over other fields, un-

fortunately can not be reported. There is no account of the many deep results on tensor

categories, see [30]. Various basic fundamental results are not explicitly cited, we refer to

[1, 62, 66, 75, 79, 83] for them; classifications of Hopf algebras of fixed dimensions are not

evoked, see [21, 71, 86].

2. Preliminaries

Let θ ∈ N and I = Iθ = {1, 2, . . . , θ}. The base field is C. If X is a set, then |X| is its
cardinal and CX is the vector space with basis (xi)i∈X . Let G be a group: we denote by

IrrG the set of isomorphism classes of irreducible representations of G and by Ĝ the subset

of those of dimension 1; by Gx the centralizer of x ∈ G; and by OG
x its conjugacy class.

More generally we denote by IrrC the set of isomorphism classes of simple objects in an

abelian category C. The group of n-th roots of 1 in C is denoted Gn; also G∞ =
⋃
n≥1 Gn.

The group presented by (xi)i∈I with relations (rj)j∈J is denoted 〈(xi)i∈I |(rj)j∈J〉. The

notation for Hopf algebras is standard: Δ, ε, S , denote respectively the comultiplication,

the counit, the antipode (always assumed bijective, what happens in the finite-dimensional

case). We use Sweedler’s notation: Δ(x) = x(1) ⊗ x(2). Similarly, if C is a coalgebra and

V is a left comodule with structure map δ : V → C ⊗ V , then δ(v) = v(−1) ⊗ v(0). IfD,E
are subspaces of C, thenD ∧E = {c ∈ C : Δ(c) ∈ D ⊗C +C ⊗E}; also ∧0D = D and

∧n+1D = (∧nD) ∧D for n > 0.

2.1. Basic constructions and results. The first examples of finite-dimensional Hopf alge-

bras are the group algebra CG of a finite group G and its dual, the algebra of functions CG.
Indeed, the dual of a finite-dimensional Hopf algebra is again a Hopf algebra by transpos-

ing operations. By analogy with groups, several authors explored the notion of extension of

Hopf algebras at various levels of generality; in the finite-dimensional context, every exten-

sion C → A → C → B → C can be described as C with underlying vector space A ⊗ B,
via a heavy machinery of actions, coactions and non-abelian cocycles, but actual examples

are rarely found in this way (extensions from a different perspective are in [9]). Relevant

exceptions are the so-called abelian extensions [56] (rediscovered by Takeuchi and Majid):

here the input is a matched pair of groups (F,G)with mutual actions �, � (or equivalently, an
exact factorization of a finite group). The actions give rise to a Hopf algebra CG#CF . The
multiplication and comultiplication can be further modified by compatible cocycles (σ, κ),
producing to the abelian extension C → CG → CGκ#σCF → CF → C. Here (σ, κ) turns
out to be a 2-cocycle in the total complex associated to a double complex built from the

matched pair; the relevant H2 is computed via the so-called Kac exact sequence.

It is natural to approach Hopf algebras by considering algebra or coalgebra invariants.

There is no preference in the finite-dimensional setting but coalgebras and comodules are

locally finite, so we privilege the coalgebra ones to lay down general methods. The basic

coalgebra invariants of a Hopf algebra H are:

◦ The group G(H) = {g ∈ H − 0 : Δ(g) = x⊗ g} of group-like elements of H .
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◦ The space of skew-primitive elements Pg,h(H), g, h ∈ G(H); P(H) := P1,1(H).

◦ The coradical H0, that is the sum of all simple subcoalgebras.

◦ The coradical filtration H0 ⊂ H1 ⊂ . . . , where Hn = ∧nH0; then H =
⋃
n≥0Hn.

2.2. Modules. The category HM of left modules over a Hopf algebra H is monoidal with

tensor product defined by the comultiplication; ditto for the category HM of left comod-

ules, with tensor product defined by the multiplication. Here are two ways to deform Hopf

algebras without altering one of these categories.

• Let F ∈ H⊗H be invertible such that (1⊗F )(id⊗Δ)(F ) = (F⊗1)(Δ⊗id)(F ) and
(id⊗ε)(F ) = (ε ⊗ id)(F ) = 1. Then HF (the same algebra with comultiplication

ΔF := FΔF−1) is again a Hopf algebra, named the twisting of H by F [26]. The

monoidal categoriesHM andHF M are equivalent. IfH andK are finite-dimensional

Hopf algebras with HM and KM equivalent as monoidal categories, then there exists

F with K � HF as Hopf algebras (Schauenburg, Etingof-Gelaki). Examples of

twistings not mentioned elsewhere in this report are in [31, 65].

• Given a linear map σ : H⊗H → Cwith analogous conditions, there is a Hopf algebra

Hσ (same coalgebra, multiplication twisted by σ) such that the monoidal categories
HM and HσM are equivalent [24].

A Yetter-Drinfeld module M over H is left H-module and left H-comodule with the

compatibility δ(h.m) = h(1)m(−1)S(h(3)) ⊗ h(2) ·m(0), for all m ∈ M and h ∈ H . The

category H
HYD of Yetter-Drinfeld modules is braided monoidal. That is, for everyM,N ∈

H
HYD, there is a natural isomorphism c : M ⊗ N → N ⊗ M given by c(m ⊗ n) =
m(−1) · n ⊗ m(0), m ∈ M , n ∈ N . When H is finite-dimensional, the category H

HYD is

equivalent, as a braided monoidal category, to D(H)M.

The definition of Hopf algebra makes sense in any braided monoidal category. Hopf

algebras in H
HYD are interesting because of the following facts–discovered by Radford and

interpreted categorically by Majid, see [62, 75]:

� If R is a Hopf algebra in H
HYD, then R#H := R ⊗ H with semidirect product and

coproduct is a Hopf algebra, named the bosonization of R by H .

� Let π, ι be Hopf algebra maps as in K
π

�� �� H

ι
��

with πι = idH . Then R = Hcoπ :=

{x ∈ K : (id⊗π)Δ(x) = 1⊗ x} is a Hopf algebra in H
HYD andK � R#H .

For instance, if V ∈ H
HYD, then the tensor algebra T (V ) is a Hopf algebra in H

HYD, by

requiring V ↪→ P(T (V )). If c : V ⊗ V → V ⊗ V satisfies c = −τ , τ the usual flip, then

the exterior algebra Λ(V ) is a Hopf algebra in H
HYD.

There is a braided adjoint action of a Hopf algebra R in H
HYD on itself, see e.g. [12,

(1.26)]. If x ∈ P(R) and y ∈ R, then adc(x)(y) = xy −mult c(x⊗ y).

2.2.1. Triangular Hopf algebras. A quasitriangular Hopf algebra (H,R) is triangular if
the braiding induced by R is a symmetry: cV⊗W cW⊗V = idW⊗V for all V,W ∈ HM. A

finite-dimensional triangular Hopf algebra is a twisting of a bosonization Λ(V )#CG, where
G is a finite group and V ∈ G

GYD has c = −τ [6]. This lead eventually to the classification

of triangular finite-dimensional Hopf algebras [29]; previous work on the semisimple case

culminated in [28].
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2.3. Semisimple Hopf algebras. The algebra of functions CG on a finite groupG admits a

Haar measure, i.e., a linear function ∫ : CG → C invariant under left and right translations,

namely ∫ = sum of all elements in the standard basis of CG. This is adapted as follows: a

right integral on a Hopf algebraH is a linear function ∫ : H → Cwhich is invariant under the

left regular coaction: analogously there is the notion of left integral. The notion has various

applications. Assume that H is finite-dimensional. Then an integral in H is an integral on

H∗; the subspace of left integrals in H has dimension one, and there is a generalization of

Maschke’s theorem for finite groups: H is semisimple if and only if ε(Λ) �= 0 for any integral
0 �= Λ ∈ H . This characterization of semisimple Hopf algebras, valid in any characteristic,

is one of several, some valid only in characteristic 0. See [79]. Semisimple Hopf algebras

can be obtained as follows:

� A finite-dimensional Hopf algebra H is semisimple if and only if it is cosemisimple

(that is, H∗ is semisimple).

� Given an extension C → K → H → L → C, H is semisimple iff K and L are.

Notice that there are semisimple extensions that are not abelian [40, 69, 74].

� If H is semisimple, then so are HF and Hσ , for any twist F and cocycle σ. If G is

a finite simple group, then any twisting of CG is a simple Hopf algebra (i.e., not a

non-trivial extension) [73], but the converse is not true [37].

� A bosonization R#H is semisimple iff R and H are.

To my knowledge, all examples of semisimple Hopf algebras arise from group algebras by

the preceding constructions; this was proved in [68, 70] in low dimensions and in [32] for di-

mensions paqb, pqr, where p, q and r are primes. See [1, Question 2.6]. An analogous ques-

tion in terms of fusion categories: is any semisimple Hopf algebra weakly group-theoretical?

See [32, Question 2].

There are only finitely many isomorphism classes of semisimple Hopf algebras in each

dimension [81], but this fails in general [13, 20].

Conjecture 2.1 (Kaplansky). Let H be a semisimple Hopf algebra. The dimension of every
V ∈ IrrHM divides the dimension of H .

The answer is affirmative for iterated extensions of group algebras and duals of group

algebras [67] and notably for semisimple quasitriangular Hopf algebras [27].

3. Lifting methods

3.1. Nichols algebras. Nichols algebras are a special kind of Hopf algebras in braided ten-

sor categories. We are mainly interested in Nichols algebras in the braided category H
HYD,

where H is a Hopf algebra, see page 3. In fact, there is a functor V !→ B(V ) from H
HYD to

the category of Hopf algebras in H
HYD. Their first appearence is in the precursor [72]; they

were rediscovered in [85] as part of a “quantum differential calculus", and in [61] to present

the positive part of Uq(g). See also [76, 78].
There are several, unrelated at the first glance, alternative definitions. Let V ∈ H

HYD.

The first definition uses the representation of the braid group Bn in n strands on V ⊗n, given
by ςi !→ id⊗c⊗ id, c in (i, i+ 1) tensorands; here recall that

Bn = 〈ς1, . . . , ςn−1|ςiςj = ςjςi, |i− j| > 1, ςiςjςi = ςjςiςj , |i− j| = 1〉.
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Let M : Sn → Bn be the Matsumoto section and let Qn : V ⊗n → V ⊗n be the quantum

symmetrizer, Qn =
∑

s∈SnM(s) : V ⊗n → V ⊗n. Then define

Jn(V ) = kerQn, J(V ) = ⊕n≥2J
n(V ), B(V ) = T (V )/J(V ). (3.1)

Hence B(V ) = ⊕n≥0B
n(V ) is a graded Hopf algebra in H

HYD with B0(V ) = C,
B1(V ) � V ; by (3.1) the algebra structure depends only on c. To explain the second defini-
tion, let us observe that the tensor algebra T (V ) is a Hopf algebra in H

HYD with comultipli-

cation determined byΔ(v) = v⊗1+1⊗v for v ∈ V . Then J(V ) coincides with the largest
homogeneous ideal of T (V ) generated by elements of degree ≥ 2 that is also a coideal. Let

now T = ⊕n≥0T
n be a graded Hopf algebra in HHYD with T 0 = C. Consider the conditions

T 1 generates T as an algebra, (3.2)

T 1 = P(T ). (3.3)

These requirements are dual to each other: if T has finite-dimensional homogeneous com-

ponents and R = ⊕n≥0R
n is the graded dual of T , i.e., Rn = (Tn)∗, then T satisfies (3.2)

if and only if R satisfies (3.3). These conditions determine B(V ) up to isomorphisms, as

the unique graded connected Hopf algebra T in H
HYD that satisfies T 1 � V , (3.2) and (3.3).

There are still other characterizations of J(V ), e.g. as the radical of a suitable homogeneous

bilinear form on T (V ), or as the common kernel of some suitable skew-derivations. See [15]

for more details.

Despite all these different definitions, Nichols algebras are extremely difficult to deal

with, e.g. to present by generators and relations, or to determine when a Nichols algebra has

finite dimension or finite Gelfand-Kirillov dimension. It is not even known a priori whether

the ideal J(V ) is finitely generated, except in a few specific cases. For instance, if c is
a symmetry, that is c2 = id, or satisfies a Hecke condition with generic parameter, then

B(V ) is quadratic. By the efforts of various authors, we have some understanding of finite-

dimensional Nichols algebras of braided vector spaces either of diagonal or of rack type, see

§3.5, 3.6.

3.2. Hopf algebras with the (dual) Chevalley property. We now explain how Nichols

algebras enter into our approach to the classification of Hopf algebras. Recall that a Hopf

algebra has the dual Chevalley property if the tensor product of two simple comodules is

semisimple, or equivalently if its coradical is a (cosemisimple) Hopf subalgebra. For in-

stance, a pointed Hopf algebra, one whose simple comodules have all dimension one, has

the dual Chevalley property and its coradical is a group algebra. Also, a copointed Hopf alge-
bra (one whose coradical is the algebra of functions on a finite group) has the dual Chevalley

property. The Lifting Method is formulated in this context [13]. Let H be a Hopf algebra

with the dual Chevalley property and setK := H0. Under this assumption, the graded coal-

gebra grH = ⊕n∈N0 gr
nH associated to the coradical filtration becomes a Hopf algebra

and considering the homogeneous projection π as in R = Hcoπ �
� �� grH

π
�� K��

we

see that grH � R#K. The subalgebra of coinvariants R is a graded Hopf algebra in K
KYD

that inherits the grading with R0 = C; it satisfies (3.3) since the grading comes from the

coradical filtration. Let R′ be the subalgebra of R generated by V := R1; then R′ � B(V ).
The braided vector space V is a basic invariant of H called its infinitesimal braiding. Let us
fix then a semisimple Hopf algebra K. To classify all finite-dimensional Hopf algebras H
with H0 � K as Hopf algebras, we have to address the following questions.
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(a) Determine those V ∈ K
KYD such thatB(V ) is finite-dimensional, and give an efficient

defining set of relations of these.

(b) Investigate whether any finite-dimensional graded Hopf algebra R in K
KYD satisfying

R0 = C and P (R) = R1, is a Nichols algebra.

(c) Compute all Hopf algebras H such that grH � B(V )#K, V as in (a).

Since the Nichols algebra B(V ) depends as an algebra (and as a coalgebra) only on the

braiding c, it is convenient to restate Question (a) as follows:

(a1) Determine those braided vector spaces (V,c) in a suitable class such that dimB(V )<∞,
and give an efficient defining set of relations of these.

(a2) For those V as in (a1), find in how many ways, if any, they can be realized as Yetter-

Drinfeld modules overK.

For instance, ifK = CΓ, Γ a finite abelian group, then the suitable class is that of braided

vector spaces of diagonal type. In this context, Question (a2) amounts to solve systems of

equations in Γ. The answer to (a) is instrumental to attack (b) and (c). Question (b) can be

rephrased in two equivalent statements:

(b1) Investigate whether any finite-dimensional graded Hopf algebra T in K
KYD with

T 0 = C and generated as algebra by T 1, is a Nichols algebra.

(b2) Investigate whether any finite-dimensional Hopf algebraH withH0 = K is generated

as algebra byH1.

We believe that the answer to (b) is affirmative at least when K is a group algebra. In

other words, by the reformulation (b2):

Conjecture 3.1 ([14]). Every finite-dimensional pointed Hopf algebra is generated by group-
like and skew-primitive elements.

As we shall see in §3.7, the complete answer to (a) is needed in the approach proposed

in [14] to attack Conjecture 3.1. It is plausible that the answer of (b2) is affirmative for every

semisimple Hopf algebraK. Question (c), known as lifting of the relations, also requires the
knowledge of the generators of J(V ), see §3.8.

3.3. Generalized lifting method. Before starting with the analysis of the various questions

in §3.2, we discuss a possible approach to more general Hopf algebras [5]. LetH be a Hopf

algebra; we consider the following invariants of H:

◦ The Hopf coradical H[0] is the subalgebra generated by H0.

◦ The standard filtration H[0] ⊂ H[1] ⊂ . . . , H[n] = ∧n+1H[0]; then H =
⋃
n≥0H[n].

If H has the dual Chevalley property, then H[n] = Hn for all n ∈ N0. In general, H[0]

is a Hopf subalgebra of H with coradical H0 and we may consider the graded Hopf algebra

grH = ⊕n≥0H[n]/H[n−1]. As before, if π : grH → H[0] is the homogeneous projec-

tion, then R = (grH)coπ is a Hopf algebra in
H[0]

H[0]
YD and grH ∼= R#H[0]. Furthermore,

R = ⊕n≥0R
n with grading inherited from grH . This discussion raises the following ques-

tions.
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(A) Let C be a finite-dimensional cosemisimple coalgebra and S : C → C a bijective

anti-coalgebra map. Classify all finite-dimensional Hopf algebras L generated by C,
such that S|C = S.

(B) Given L as in the previous item, classify all finite-dimensional connected graded Hopf

algebras R in L
LYD.

(C) Given L and R as in previous items, classify all deformations or liftings, that is, clas-

sify all Hopf algebras H such that grH ∼= R#L.
Question (A) is largely open, except for the remarkable [82, Theorem 1.5]: if H is a

Hopf algebra generated by an S-invariant 4-dimensional simple subcoalgebra C, such that

1 < ord(S2|
C
) <∞, thenH is a Hopf algebra quotient of the quantized algebra of functions

on SL2 at a root of unity ω. Nichols algebras enter into the picture in Question (B); if

V = R1, then B(V ) is a subquotient of R. Question (C) is completely open, as it depends

on the previous Questions.

3.4. Generalized root systems and Weyl groupoids. Here we expose two important no-

tions introduced in [51].

Let θ ∈ N and I = Iθ. A basic datum of type I is a pair (X , ρ), where X �= ∅ is

a set and ρ : I → SX is a map such that ρ2i = id for all i ∈ I. Let Qρ be the quiver

{σxi := (x, i, ρi(x)) : i ∈ I, x ∈ X} over X , with t(σxi ) = x, s(σ
x
i ) = ρi(x) (here t means

target, smeans source). Let F (Qρ) be the free groupoid over Qρ; in any quotient of F (Qρ),
we denote

σxi1σi2 · · ·σit = σxi1σ
ρi1 (x)
i2

· · ·σρit−1
···ρi1 (x)

it
; (3.4)

i.e., the implicit superscripts are those allowing compositions.

3.4.1. Coxeter groupoids. A Coxeter datum is a triple (X , ρ,M), where (X , ρ) is a basic
datum of type I andM = (mx)x∈X is a family of Coxeter matrices mx = (mx

ij)i,j∈I with

s((σxi σj)
mx

ij ) = x, i, j ∈ I, x ∈ X . (3.5)

TheCoxeter groupoidW(X , ρ,M) associated to (X , ρ,M) [51, Definition 1] is the groupoid
presented by generators Qρ with relations

(σxi σj)
mx

ij = idx, i, j ∈ I, x ∈ X . (3.6)

3.4.2. Generalized root system. A generalized root system (GRS for short) is a collec-

tion R := (X , ρ, C,Δ), where C = (Cx)x∈X is a family of generalized Cartan matrices

Cx = (cxij)i,j∈I, cf. [57], and Δ = (Δx)x∈X is a family of subsets Δx ⊂ ZI. We need

the following notation: Let {αi}i∈I be the canonical basis of ZI and define sxi ∈ GL(ZI) by
sxi (αj) = αj − cxijαi, i, j ∈ I, x ∈ X . The collection should satisfy the following axioms:

cxij = c
ρi(x)
ij for all x ∈ X , i, j ∈ I. (3.7)

Δx = Δx
+ ∪Δx

−, Δx
± := ±(Δx ∩ NI

0) ⊂ ±NI
0; (3.8)

Δx ∩ Zαi = {±αi}; (3.9)

sxi (Δ
x) = Δρi(x); (3.10)
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(ρiρj)
mx

ij (x) = (x), mx
ij := |Δx ∩ (N0αi + N0αj)|, (3.11)

for all x ∈ X , i �= j ∈ I. We call Δx
+, respectively Δx

−, the set of positive, respec-
tively negative, roots. Let G = X ×GLθ(Z)× X , ςxi = (x, sxi , ρi(x)), i ∈ I, x ∈ X , and
W = W(X , ρ, C) the subgroupoid of G generated by all the ςxi , i.e., by the image of the mor-

phism of quiversQρ → G, σxi !→ ςxi . There is a Coxeter matrixmx = (mx
ij)i,j∈I, wherem

x
ij

is the smallest natural number such that (ςxi ςj)
mx

ij = idx. Then M = (mx)x∈X fits into a

Coxeter datum (X , ρ,M), and there is an isomorphism of groupoids W(X , ρ,M) � W =
W(X , ρ, C) [51]; this is called theWeyl groupoid of R. If w ∈ W(x, y), then w(Δx) = Δy ,

by (3.10). The sets of real roots at x ∈ X are (Δre)x =
⋃
y∈X {w(αi) : i ∈ I, w ∈ W(y, x)};

correspondingly the imaginary roots are (Δim)x = Δx − (Δre)x. Assume that W is con-

nected. Then the following conditions are equivalent [22, Lemma 2.11]:

• Δx is finite for some x ∈ X ,

• Δx is finite for all x ∈ X ,

• (Δre)x is finite for all x ∈ X ,

• W is finite.

If these hold, then all roots are real [22]; we say that R is finite. We now discuss two

examples of GRS, central for the subsequent discussion.

Example 3.2 ([2]). Let k be a field of characteristic � ≥ 0, θ ∈ N, p ∈ Gθ
2 and

A = (aij) ∈ kθ×θ. We assume � �= 2 for simplicity. Let h = k2θ−rkA. Let g(A,p) be
the Kac-Moody Lie superalgebra over k defined as in [57]; it is generated by h, ei and fi,
i ∈ I, and the parity is given by |ei| = |fi| = pi, i ∈ I, |h| = 0, h ∈ h. Let ΔA,p be the root

system of g(A,p). We make the following technical assumptions:

ajk = 0 =⇒ akj = 0, j �= k; (3.12)

ad fi is locally nilpotent in g(A,p), i ∈ I. (3.13)

The matrix A is admissible if (3.13) holds [80]. Let CA,p = (cA,pij )i,j∈I be given by

cA,pij := −min{m ∈ N0 : (ad fi)
m+1fj = 0}, i �= j ∈ I, cA,pii := 2. (3.14)

We need the following elements of k:

if pi = 0, dm = maij +

(
m

2

)
aii; (3.15)

if pi = 1; dm =

{
k aii, m = 2k,
k aii + aij , m = 2k + 1;

(3.16)

νj,0 = 1, νj,n =
n∏
t=1

(−1)pi((t−1)pi+pj)dt; (3.17)

μj,0 = 0, μj,n = (−1)pipjn

(
n∏
t=2

(−1)pi((t−1)pi+pj)dt

)
aji. (3.18)
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With the help of these scalars, we define a reflection ri(A,p) = (riA, rip), where

rip = (pj)j∈I, with pj = pj − cA,pij pi, and riA = (ajk)j,k∈I, with

ajk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−cA,pik μj,−cA,p
ij
aii + μj,−cA,p

ij
aik

−cA,pik νj,−cA,p
ij
aji + νj,−cA,p

ij
ajk, j, k �= i;

cA,pik aii − aik, j = i �= k;
−μj,−cA,p

ij
aii − νj,−cA,p

ij
aji, j �= k = i;

aii, j = k = i.

(3.19)

Theorem 3.3. There is an isomorphism TA,pi : g(ri(A,p)) → g(A,p) of Lie superalgebras
given (for an approppriate basis (hi) of h) by

TA,pi (ej) =

{
(ad ei)

−cA,p
ij (ej), i �= j ∈ I,

fi, j = i

TA,pi (fj) =

{
(ad fi)

−cA,p
ij fj , j ∈ I, j �= i,

(−1)piei, j = i,

TA,pi (hj) =

⎧⎪⎨
⎪⎩
μj,−cA,p

ij
hi + νj,−cA,p

ij
hj , i �= j ∈ I

−hi, j = i,

hj , θ + 1 ≤ j ≤ 2θ − rkA.

(3.20)

Assume that dim g(A,p) <∞; then (3.12) and (3.13) hold. Let

X ={ri1 · · · rin(A,p) |n ∈ N0, i1, . . . , in ∈ I}.

Then (X , r, C,Δ), where C = (C(B,q))(B,q)∈X and Δ = (Δ(B,q))(B,q)∈X , is a finite GRS,
an invariant of g(A,p).

Example 3.4. Let H be a Hopf algebra, assumed semisimple for easiness. LetM ∈ H
HYD

be finite-dimensional, with a fixed decompositionM =M1⊕· · ·⊕Mθ,whereM1, . . . ,Mθ ∈
IrrHHYD. Then T (M) and B(M) are Zθ-graded, by deg x = αi for all x ∈ Mi, i ∈ Iθ.
Recall that Zθ≥0 =

∑
i∈Iθ Z≥0αi.

Theorem 3.5 ([46, 48]). If dimB(M) <∞, thenM has a finite GRS.

We discuss the main ideas of the proof. Let i ∈ I = Iθ. We defineM ′
i = V

∗
i ,

cMij = − sup{h ∈ N0 : adhc (Mi)(Mj) �= 0 inB(M)}, i �= j, cMii = 2;

M ′
j = ad−cijc (Mi)(Mj), ρi(M) =M ′

1 ⊕ · · · ⊕M ′
θ.

Then dimB(M) = dimB(ρi(M)) and CM = (cMij )i,j∈I is a generalized Cartan matrix

[12]. Also, M ′
j is irreducible [12, 3.8], [46, 7.2]. Let X be the set of objects in H

HYD with

fixed decomposition (up to isomorphism) of the form

{ρi1 · · · ρin(M) |n ∈ N0, i1, . . . , in ∈ I}.

Then (X , ρ, C), where C = (CN )N∈X , satisfies (3.7). Next we need:
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• [46, Theorem 4.5]; [42] There exists a totally ordered index set (L,≤) and families

(Wl)l∈L in IrrHHYD, (βl)l∈L such that B(M) � ⊗l∈LB(Wl) as Zθ-graded objects

in H
HYD, where deg x = βl for all x ∈Wl, l ∈ L.

Let ΔM
± = {±βl : l ∈ L}, ΔM = ΔM

+ ∪ ΔM
− , Δ = (ΔN )N∈X (M). Then R =

(X , ρ, C,Δ) is a finite GRS.

Theorem 3.6 ([23]). The classification of all finite GRS is known.

The proof is a combinatorial tour-de-force and requires computer calculations. It is pos-

sible to recover from this result the classification of the finite-dimensional contragredient Lie

superalgebras in arbitrary characteristic [2]. However, the list of [23] is substantially larger

than the classifications of the alluded Lie superalgebras or the braidings of diagonal type

with finite-dimensional Nichols algebra.

3.5. Nichols algebras of diagonal type. LetG be a finite group. We denote GGYD = H
HYD

for H = CG. SoM ∈ G
GYD is a left G-module with a G-gradingM = ⊕g∈GMg such that

t ·Mg =Mtgt−1 , for all g, t ∈ G. IfM,N ∈ G
GYD, then the braiding c :M ⊗N → N ⊗M

is given by c(m ⊗ n) = g · n ⊗ m, m ∈ Mg , n ∈ N , g ∈ G. Now assume that G = Γ
is a finite abelian group. Then everyM ∈ Γ

ΓYD is a Γ-graded Γ-module, hence of the form

M = ⊕g∈Γ,χ∈Γ̂M
χ
g , where M

χ
g is the χ-isotypic component of Mg . So Γ

ΓYD is just the

category of Γ × Γ̂-graded modules, with the braiding c : M ⊗ N → N ⊗ M given by

c(m⊗ n) = χ(g)n⊗m,m ∈Mη
g , n ∈ Nχ

t , g, t ∈ G, χ, η ∈ Γ̂. Let θ ∈ N, I = Iθ.

Definition 3.7. Let q = (qij)i,j∈I be a matrix with entries in C×. A braided vector space

(V, c) is of diagonal type with matrix q if V has a basis (xi)i∈I with

c(xi ⊗ xj) = qijxj ⊗ xi, i, j ∈ I. (3.21)

Thus, every finite-dimensional V ∈ Γ
ΓYD is a braided vector space of diagonal type.

Question (a), more precisely (a1), has a complete answer in this setting. First we can assume

that qii �= 1 for i ∈ I, as otherwise dimB(V ) = ∞. Also, let q′ = (q′ij)i,j∈I ∈ (C×)I×I and

V ′ a braided vector space with matrix q′. If qii = q′ii and qijqji = q
′
ijq

′
ji for all j �= i ∈ Iθ,

thenB(V ) � B(V ′) as braided vector spaces.

Theorem 3.8 ([44]). The classification of all braided vector spaces of diagonal type with
finite-dimensional Nichols algebra is known.

The proof relies on the Weyl groupoid introduced in [43], a particular case of Theorem

3.5. Another fundamental ingredient is the following result, generalized at various levels in

[42, 46, 48].

Theorem 3.9 ([58]). Let V be a braided vector space of diagonal type. Every Hopf algebra
quotient of T (V ) has a PBW basis.

The classification in Theorem 3.8 can be organized as follows:

� For most of the matrices q = (qij)i,j∈Iθ in the list of [44] there is a field k and a pair

(A,p) as in Example 3.2 such that dim g(A,p) <∞, and g(A,p) has the same GRS

as the Nichols algebra corresponding to q [2].

� Besides these, there are 12 (yet) unidentified examples.
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We believe that Theorem 3.8 can be proved from Theorem 3.6, via Example 3.2.

Theorem 3.10 ([18, 19]). An efficient set of defining relations of each finite-dimensional
Nichols algebra of a braided vector space of diagonal type is known.

The proof uses most technical tools available in the theory of Nichols algebras; of interest

in its own is the introduction of the notion of convex order in Weyl groupoids. As for other

classifications above, it is not possible to state precisely the list of relations. We just mention

different types of relations that appear.

◦ Quantum Serre relations, i.e., adc(xi)
1−aij (xj) for suitable i �= j.

◦ Powers of root vectors, i.e., x
Nβ

β , where the xβ’s are part of the PBW basis.

◦ More exotic relations; they involve 2, 3, or at most 4 i’s in I.

3.6. Nichols algebras of rack type. We now consider Nichols algebras of objects in GGYD,

where G is a finite not necessarily abelian group. The category G
GYD is semisimple and the

simple objects are parametrized by pairs (O, ρ), where O is a conjugacy class in G and

ρ ∈ IrrGx, for a fixed x ∈ O; the corresponding simple Yetter-Drinfeld module M(O, ρ)
is IndGGx ρ as a module. The braiding c is described in terms of the conjugation in O. To

describe the related suitable class, we recall that a rack is a set X �= ∅ with a map � :
X ×X → X satisfying

◦ ϕx := x � is a bijection for every x ∈ X .

◦ x � (y � z) = (x � y) � (x � z) for all x, y, z ∈ X (self-distributivity).

For instance, a conjugacy class O in G with the operation x � y = xyx−1, x, y ∈ O is

a rack; actually we only consider racks realizable as conjugacy classes. LetX be a rack and

X = (Xk)k∈I a decomposition of X , i.e., a disjoint family of subracks with Xl � Xk = Xk

for all k, l ∈ I .
Definition 3.11. [10] A 2-cocycle of degree n = (nk)k∈I , associated to X, is a family

q = (qk)k∈I of maps qk : X ×Xk → GL(nk,C) such that

qk(i, j � h)qk(j, h) = qk(i � j, i � h)qk(i, h), i, j ∈ X, h ∈ Xk, k ∈ I. (3.22)

Given such q, let V = ⊕k∈ICXk ⊗ Cnk and let cq ∈ GL(V ⊗ V ) be given by

cq(xiv ⊗ xjw) = xi�jqk(i, j)(w)⊗ xiv, i ∈ Xl, j ∈ Xk, v ∈ Cnl , w ∈ Cnk .

Then (V, cq) is a braided vector space called of rack type; its Nichols algebra is denoted

B(X,q). If X = (X), then we say that q is principal.

Every finite-dimensional V ∈ G
GYD is a braided vector space of rack type [10, Theorem

4.14]. Question (a1) in this setting has partial answers in three different lines: computation

of some finite-dimensional Nichols algebras, Nichols algebras of reducible Yetter-Drinfeld

modules and collapsing of racks.

3.6.1. Finite-dimensional Nichols algebras of rack type. The algorithm to compute a

Nichols algebra B(V ) is as follows: compute the space Ji(V ) = kerQi of relations of

degree i, for i = 2, 3, . . . ,m; then compute the m-th partial Nichols algebra B̂m(V ) =
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T (V )/〈⊕2≤i≤mJi(V )〉, say with a computer program. If lucky enough to get dim B̂m(V ) <
∞, then check whether it is a Nichols algebra, e.g. via skew-derivations; otherwise go to

m+ 1. The description of J2(V ) = ker(id+c) is not difficult [38] but for higher degrees it
turns out to be very complicated. We list all known examples of finite-dimensional Nichols

algebras B(X,q) with X indecomposable and q principal and abelian (n1 = 1).

Example 3.12. Let Om
d be the conjugacy class of d-cycles in Sm,m ≥ 3. We start with the

rack of transpositions in Sm and the cocycles −1, χ that arise from the ρ ∈ Irr S(12)m with

ρ(12) = −1, see [64, (5.5), (5.9)]. Let V be a vector space with basis (xij)(ij)∈Om
2

and

consider the relations

x2ij = 0, (ij) ∈ Om
2 ; (3.23)

xijxkl + xklxij = 0, (ij), (kl) ∈ Om
2 , |{i, j, k, l}| = 4; (3.24)

xijxkl − xklxij = 0, (ij), (kl) ∈ Om
2 , |{i, j, k, l}| = 4; (3.25)

xijxik + xjkxij + xikxjk = 0, (ij), (ik), (jk) ∈ Om
2 , |{i, j, k}| = 3; (3.26)

xijxik − xjkxij − xikxjk = 0, (ij), (ik), (jk) ∈ Om
2 , |{i, j, k}| = 3. (3.27)

The quadratic algebras Bm := B̂2(Om
2 ,−1) = T (V )/〈(3.23), (3.24), (3.26)〉 and Em :=

B̂2(Om
2 , χ) = T (V )/〈(3.23), (3.25), (3.27)〉 were considered in [64], [36] respectively; Em

are named the Fomin-Kirillov algebras. It is known that

◦ The Nichols algebrasB(Om
2 ,−1) andB(Om

2 , χ) are twist-equivalent, hence have the
same Hilbert series. Ditto for the algebras Bm and Em [84].

◦ If 3 ≤ m ≤ 5, then Bm = B(Om
2 ,−1) and Em = B(Om

2 , χ) are finite-dimensional

[36, 38, 64] (form = 5 part of this was done by Graña). In fact

dimB3 = 12, dimB4 = 576, dimB5 = 8294400.

But form ≥ 6, it is not knownwhether the Nichols algebrasB(Om
2 ,−1) andB(Om

2 , χ)
have finite dimension or are quadratic.

Example 3.13 ([10]). The Nichols algebra B(O4
4,−1) is quadratic, has the same Hilbert

series as B(O4
2,−1) and is generated by (xσ)σ∈O4

4
with defining relations

x2σ = 0, (3.28)

xσxσ−1 + xσ−1xσ = 0, (3.29)

xσxκ + xνxσ + xκxν = 0, σκ = νσ, κ �= σ �= ν ∈ O4
4. (3.30)

Example 3.14 ([41]). Let A be a finite abelian group and g ∈ AutA. The affine rack (A, g)
is the setAwith product a�b = g(b)+(id−g)(a), a, b ∈ A. Let p ∈ N be a prime, q = pv(q)

a power of p, A = Fq and g the multiplication by N ∈ F×q ; let Xq,N = (A, g). Assume that

q = 3, 4, 5, or 7, with N = 2, ω ∈ F4 − F2, 2 or 3, respectively. Then dimB(Xq,N ,−1) =
qϕ(q)(q − 1)q−2, ϕ being the Euler function, and J(Xq,N ,−1) = 〈J2 + Jv(q)(q−1)〉, where
J2 is generated by

x2i , always (3.31)

xixj + x−i+2jxi + xjx−i+2j , for q = 3, (3.32)
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xixj + x(ω+1)i+ωjxi + xjx(ω+1)i+ωj, for q = 4, (3.33)

xixj + x−i+2jxi + x3i−2jx−i+2j + xjx3i−2j , for q = 5, (3.34)

xixj + x−2i+3jxi + xjx−2i+3j , for q = 7, (3.35)

with i, j ∈ Fq; and Jv(q)(q−1) is generated by
∑
h

Th(V )J2T v(q)(q−1)−h−2(V ) and

(xωx1x0)
2 + (x1x0xω)

2 + (x0xωx1)
2, for q = 4, (3.36)

(x1x0)
2 + (x0x1)

2, for q = 5, (3.37)

(x2x1x0)
2 + (x1x0x2)

2 + (x0x2x1)
2, for q = 7. (3.38)

Of course X3,2 = O3
2; also dimB(X4,ω,−1) = 72. By duality, we get

dimB(X5,3,−1) = dimB(X5,2,−1) = 1280,

dimB(X7,5,−1) = dimB(X7,3,−1) = 326592.

Example 3.15 ([45]). There is another finite-dimensional Nichols algebra associated toX4,ω

with a cocycle q with values ±ξ, where 1 �= ξ ∈ G3. Concretely, dimB(X4,ω,q) = 5184
and B(X4,ω,q) can be presented by generators (xi)i∈F4 with defining relations

x30 = x31 = x3ω = x3ω2 = 0,

ξ2x0x1 + ξx1xω − xωx0 = 0, ξ2x0xω + ξxωxω2 − xω2x0 = 0,

ξx0xω2 − ξ2x1x0 + xω2x1 = 0, ξx1xω2 + ξ2xωx1 + xω2xω = 0,

x20x1xωx
2
1 + x0x1xωx

2
1x0 + x1xωx

2
1x

2
0 + xωx

2
1x

2
0x1 + x

2
1x

2
0x1xω + x1x

2
0x1xωx1

+x1xωx1x
2
0xω + xωx1x0x1x0xω + xωx

2
1x0xωx0 = 0.

3.6.2. Nichols algebras of decomposable Yetter-Drinfeld modules over groups. The ide-

as of Example 3.4 in the context of decomposable Yetter-Drinfeld modules over groups were

pushed further in a series of papers culminating with a remarkable classification result [50].

Consider the groups

Γn = 〈a, b, ν|ba = νab, νa = aν−1, νb = bν, νn = 1〉, n ≥ 2; (3.39)

T = 〈ζ, χ1, χ2|ζχ1 = χ1ζ, ζχ2 = χ2ζ, χ1χ2χ1 = χ2χ1χ2, χ31 = χ32〉. (3.40)

◦ [47] Let G be a suitable quotient of Γ2. Then there exist V1,W1 ∈ IrrGGYD such that

dimV1 = dimW1 = 2 and dimB(V1 ⊕W1) = 64 = 26.

◦ [50] Let G be a suitable quotient of Γ3. Then there exist V2, V3, V4, W2,W3,W4 ∈
IrrGGYD such that dimV2 = 1, dimV3 = dimV4 = 2, dimW2 = dimW3 =
dimW4 = 3 and dimB(V2 ⊕ W2) = dimB(V3 ⊕ W3) = 10368 = 2734,
dimB(V4 ⊕W4) = 2304 = 218.

◦ [49] Let G be a suitable quotient of Γ4. Then there exist V5,W5 ∈ IrrGGYD such that

dimV5 = 2, dimW5 = 4 and dimB(V5 ⊕W5) = 262144 = 218.

◦ [49] Let G be a suitable quotient of T . Then there exist V6,W6 ∈ IrrGGYD such that

dimV6 = 1, dimW6 = 4 and dimB(V6 ⊕W6) = 80621568 = 21239.
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Theorem 3.16 ([50]). Let G be a non-abelian group and V,W ∈ IrrGGYD such that G is
generated by the support of V ⊕W . Assume that c2|V⊗W �= id and that dimB(V ⊕W ) <∞.
Then V ⊕W is one of Vi ⊕Wi, i ∈ I6, above, and correspondingly G is a quotient of either
Γn, 2 ≤ n ≤ 4, or T .

3.6.3. Collapsing racks. Implicit in Question (a1) in the setting of racks is the need to

compute all non-principal 2-cocycles for a fixed rack X . Notably, there exist criteria that

dispense of this computation. To state them and explain their significance, we need some

terminology. All racks below are finite.

◦ A rack X is abelian when x � y = y, for all x, y ∈ X .

◦ A rack is indecomposable when it is not a disjoint union of two proper subracks.

◦ A rack X with |X| > 1 is simple when for any projection of racks π : X → Y , either
π is an isomorphism or Y has only one element.

Theorem 3.17 ([10, 3.9, 3.12], [55]). Every simple rack is isomorphic to one of:

(1) Affine racks (Ftp, T ), where p is a prime, t ∈ N, and T is the companion matrix of a
monic irreducible polynomial f ∈ Fp[X] of degree t, f �= X, X− 1.

(2) Non-trivial (twisted) conjugacy classes in simple groups.

(3) Twisted conjugacy classes of type (G, u), where G = Lt, with L a simple non-
abelian group and 1 < t ∈ N; and u ∈ Aut(Lt) acts by u(�1, �2, . . . , �t) =
(θ(�t), �1, �2, . . . , �t−1), where θ ∈ Aut(L).

Definition 3.18 ([7, 3.5]). We say that a finite rack X is of type D when there are a decom-

posable subrack Y = R
∐
S, r ∈ R and s ∈ S such that r � (s � (r � s)) �= s.

Also, X is of type F [4] if there are a disjoint family of subracks (Ra)a∈I4 and a family

(ra)a∈I4 with ra ∈ Ra, such that Ra � Rb = Rb, ra � rb �= rb, for all a �= b ∈ I4.

An indecomposable rack X collapses when dimB(X,q) = ∞ for every finite faithful
2-cocycle q (see [7] for the definition of faithful).

Theorem 3.19 ([7, 3.6]; [4, 2.8]). If a rack is of type D or F, then it collapses.

The proofs use results on Nichols algebras from [12, 23, 46].

If a rack projects onto a rack of type D (or F), then it is also of type D (or F), hence it

collapses by Theorem 3.19. Since every indecomposable rack X , |X| > 1, projects onto a

simple rack, it is natural to ask for the determination of all simple racks of type D or F. A

rack is cthulhu if it is neither of type D nor F; it is sober if every subrack is either abelian or
indecomposable [4]. Sober implies cthulhu.

◦ Letm ≥ 5. Let O be either OSm
σ , if σ ∈ Sm −Am, or else OAm

σ if σ ∈ Am. The type

of σ is formed by the lengths of the cycles in its decomposition.

� [7, 4.2] If the type of σ is (32), (22, 3), (1n, 3), (24), (12, 22), (2, 3), (23), or (1n, 2),
then O is cthulhu. If the type of σ is (1, 22), then O is sober.

� [33] Let p ∈ N be a prime. Assume the type of σ is (p). If p = 5, 7 or not of the form

(rk − 1)/(r− 1), r a prime power, then O is sober; otherwise O is of type D. Assume

the type of σ is (1, p). If p = 5 or not of the form (rk − 1)/(r − 1), r a prime power,

then O is sober; otherwise O is of type D.
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Table 3.1. Classes in sporadic simple groups not of type D

Group Classes Group Classes

T 2A Co3 23A, 23B

M11 8A, 8B, 11A, 11B J1 15A, 15B, 19A, 19B, 19C

M12 11A, 11B J2 2A, 3A

M22 11A, 11B J3 5A, 5B, 19A, 19B

M23 23A, 23B J4 29A, 43A, 43B, 43C

M24 23A, 23B Ly 37A, 37B, 67A, 67B, 67C

Ru 29A, 29B O′N 31A, 31B

Suz 3A Fi23 2A

HS 11A, 11B Fi22 2A, 22A, 22B

McL 11A, 11B Fi′24 29A, 29B

Co1 3A B 2A, 46A, 46B, 47A, 47B

Co2 2A, 23A, 23B

� [7, 4.1] For all other types, O is of type D, hence it collapses.

◦ [4] Let n ≥ 2 and q be a prime power. Let x ∈ PSLn(q) not semisimple and

O = OPSLn(q)
x . The type of a unipotent element are the sizes of its Jordan blocks.

� Assume x is unipotent. If x is either of type (2) and q is even or not a square, or of

type (3) and q = 2, then O is sober. If x is either of type (2, 1) and q is even, or of
type (2, 1, 1) and q = 2 then O is cthulhu. If x is of type (2, 1, 1) and q > 2 is even,

then O is not of type D, but it is open if it is of type F.

� Otherwise, O is either of type D or of type F, hence it collapses.

◦ [8, 35] LetO be a conjugacy class in a sporadic simple groupG. IfO appears in Table

3.1, thenO is not of type D. IfG =M is the Monster andO is one of 32A, 32B, 41A,

46A, 46B, 47A, 47B, 59A, 59B, 69A, 69B, 71A, 71B, 87A, 87B, 92A, 92B, 94A,

94B, then it is open whether O is of type D. Otherwise, O is of type D.

3.7. Generation in degree one. Here is the scheme of proof proposed in [14] to attack

Conjecture 3.1: Let T be a finite-dimensional graded Hopf algebra in K
KYD with T 0 = C

and generated as algebra by T 1. We have a commutative diagram of Hopf algebra maps

T
π �� �� B(V )

T (V )
p

�� �� . To show that π is injective, take a generator r (or a family of

generators) of J(V ) such that r ∈ P(T (V )) and consider the Yetter-Drinfeld submodule

U = Cr ⊕ V of T (V ); if dimB(U) = ∞, then p(r) = 0. Then p factorizes through

T (V )/J1(V ), where J1(V ) is the ideal generated by primitive generators of J(V ), and so

on.

The Conjecture has been verified in all known examples in characteristic 0 (it is false in

positive characteristic or for infinite-dimensional Hopf algebras).

Theorem 3.20. A finite-dimensional pointed Hopf algebraH is generated by group-like and
skew-primitive elements if either of the following holds:
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� [19] The infinitesimal braiding is of diagonal type, e. g. G(H) is abelian.

� [11, 38]. The infinitesimal braiding of H is any of (Om
2 ,−1), (Om

2 , χ) (m = 3, 4, 5),
(X4,ω,−1), (X5,2,−1), (X5,3,−1), (X7,3,−1), (X7,5,−1).

3.8. Liftings. We address here Question (c) in §3.2. LetX be a finite rack and q : X×X →
G∞ a 2-cocycle. A Hopf algebra H is a lifting of (X, q) if H0 is a Hopf subalgebra, H is

generated by H1 and its infinitesimal braiding is a realization of (CX, cq). See [39] for

liftings in the setting of copointed Hopf algebras.

We start discussing realizations of braided vector spaces as Yetter-Drinfeld modules. Let

θ ∈ N and I = Iθ. First, a YD-datum of diagonal type is a collection

D = ((qij)i,j∈I, G, (gi)i∈I, (χi)i∈I), (3.41)

where qij ∈ G∞, qii �= 1, i, j ∈ I; G is a finite group; gi ∈ Z(G); χi ∈ Ĝ, i ∈ I; such that

qij := χj(gi), i, j ∈ I. Let (V, c) be the braided vector space of diagonal type with matrix

(qij) in the basis (xi)i∈Iθ . Then V ∈ G
GYD by declaring xi ∈ V χi

gi , i ∈ I. More generally, a

YD-datum of rack type [11, 64] is a collection

D = (X, q,G, ·, g, χ), (3.42)

whereX is a finite rack; q : X×X → G∞ is a 2-cocycle;G is a finite group; · is an action of
G onX; g : X → G is equivariant with respect to the conjugation inG; and χ = (χi)i∈X is

a family of 1-cocycles χi : G→ C× (that is, χi(ht) = χi(t)χt·i(h), for all i ∈ X , h, t ∈ G)
such that gi · j = i � j and χi(gj) = qij for all i, j ∈ X . Let (V, c) = (CX, cq) be the

associated braided vector space. Then V becomes an object in G
GYD by δ(xi) = gi⊗xi and

t · xi = χi(t)xt·i, t ∈ G, i ∈ X .

Second, letD be a YD-datum of either diagonal or rack type and V ∈ G
GYD as above; let

T (V ) := T (V )#CG. The desired liftings are quotients of T (V ); write ai in these quotients
instead of xi to distinguish them from the elements in B(V )#CG. Let G be a minimal set

of generators of J(V ), assumed homogeneous both for the N- and the G-grading. Roughly
speaking, the deformations will be defined by replacing the relations r = 0 by r = φr,
r ∈ G, where φr ∈ T (V ) belongs to a lower term of the coradical filtration, and the ideal

Jφ(V ) generated by φr, r ∈ G, is a Hopf ideal. The problem is to describe the φr’s and
to check that T (V )/Jφ(V ) has the right dimension. If r ∈ P(T (V )) has G-degree g, then
φr = λ(1 − g) for some λ ∈ C; depending on the action of G on r, it may happen that λ
should be 0. In some cases, all r ∈ G are primitive, so all deformations can be described; see

[13] for quantum linear spaces (their liftings can also be presented as Ore extensions [20])

and the Examples 3.21 and 3.22. But in most cases, not all r ∈ G are primitive and some

recursive construction of the deformations is needed. This was achieved in [15] for diagonal

braidings of Cartan type An, with explicit formulae, and in [16] for diagonal braidings of

finite Cartan type, with recursive formulae. Later it was observed that the so obtained liftings

are cocycle deformations of B(V )#CG, see e.g. [63]. This led to the strategy in [3]: pick

an adapted stratification G = G0 ∪ G1 ∪ · · · ∪ GN [3, 5.1]; then construct recursively the

deformations of T (V )/〈G0 ∪ G1 ∪ · · · ∪ Gk−1〉 by determining the cleft extensions of the

deformations in the previous step and applying the theory of Hopf bi-Galois extensions [77].

In the Examples below, χi = χ ∈ Ĝ for all i ∈ X by [11, 3.3 (d)].
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Example 3.21 ([11, 39]). Let D = (O3
2,−1, G, ·, g, χ) be a YD-datum. Let λ ∈ C2 be such

that

λ1 = λ2 = 0, if χ2 �= ε; (3.43)

λ1 = 0, if g212 = 1; λ2 = 0, if g12g13 = 1. (3.44)

Let u = u(D, λ) be the quotient of T (V ) by the relations

a212 = λ1(1− g212), (3.45)

a12a13 + a23a12 + a13a23 = λ2(1− g12g13). (3.46)

Then u is a pointed Hopf algebra, a cocycle deformation of gr u � B(V )#CG and

dim u = 12|G|; u(D, λ) � u(D, λ′) iff λ = cλ′ for some c ∈ C×. Conversely, any

lifting of (O3
2,−1) is isomorphic to u(D, λ) for some YD-datum D = (O3

2,−1, G, ·, g, χ)
and λ ∈ C2 satisfying (3.43), (3.44).

Example 3.22 ([11]). Let D = (O4
2,−1, G, ·, g, χ) be a YD-datum. Let λ ∈ C3 be such

that

λi = 0, i ∈ I3, if χ2 �= ε; (3.47)

λ1 = 0, if g212 = 1; λ2 = 0, if g12g34 = 1; λ3 = 0, if g12g13 = 1. (3.48)

Let u = u(D, λ) be the quotient of T (V ) by the relations

a212 = λ1(1− g212), (3.49)

a12a34 + a34a12 = λ2(1− g12g34), (3.50)

a12a13 + a23a12 + a13a23 = λ3(1− g12g13). (3.51)

Then u is a pointed Hopf algebra, a cocycle deformation ofB(V )#CG and dim u = 576|G|;
u(D, λ) � u(D, λ′) iff λ = cλ′ for some c ∈ C×. Conversely, any lifting of (O4

2,−1) is
isomorphic to u(D, λ) for some YD-datum D = (O4

2,−1, G, ·, g, χ) and λ ∈ C3 satisfying

(3.47), (3.48).

Example 3.23 ([39]). Let D = (X4,ω,−1, G, ·, g, χ) be a YD-datum. Let λ ∈ C3 be such

that

λ1 = λ2 = 0, if χ2 �= ε; λ3 = 0, if χ6 �= ε; (3.52)

λ1 = 0, if g20 = 1, λ2 = 0, if g0g1 = 1, λ3 = 0, if g30g
3
1 = 1. (3.53)

Let u = u(D, λ) be the quotient of T (V ) by the relations

x20 = λ1(1− g20), (3.54)

x0x1 + xωx0 + x1xω = λ2(1− g0g1) (3.55)

(xωx1x0)
2 + (x1x0xω)

2 + (x0xωx1)
2 = ζ6 − λ3(1− g30g31), where (3.56)

ζ6 = λ2(xωx1x0xω + x1x0xωx1 + x0xωx1x0)− λ32(g0g1 − g30g31)
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+λ21g
2
0

(
g21+ω(xωx3 + x0xω) + g1g1+ω(xωx1 + x1x3) + g

2
1(x1x0 + x0x3)

)
−2λ21g

2
0(x0x3 − xωx3 − x1xω + x1x0)− 2λ21g

2
ω(xωx3 − x1x3 + x0xω − x0x1)

−2λ21g
2
1(xωx1 + x1x3 + x1xω − x0x3 + x0x1)

+λ2λ1(g
2
ωx0x3 + g

2
1xωx3 + g

2
0x1x3) + λ

2
2g0g1(xωx1 + x1x0 + x0xω − λ1)

−λ2λ21(3g30g1+ω − 2g0g
3
1 − g20g2ω − 2g30g1 + g

2
ω − g21 + g20)

−λ2(λ1 − λ2)
(
λ1 g

2
0(g

2
1+ω + g1g1+ω + g21 + 2g0g

3
1) + xωx1 + x1x0 + x0xω

)
.

Then u is a pointed Hopf algebra, a cocycle deformation of gr u � B(V )#CG and

dim u = 72|G|; u(D, λ) � u(D, λ′) iff λ = cλ′ for some c ∈ C×. Conversely, any lift-

ing of (X4,ω,−1) is isomorphic to u(D, λ) for some YD-datum D = (X4,ω,−1, G, ·, g, χ)
and λ ∈ C3 satisfying (3.52), (3.53).

Example 3.24 ([39]). Let D = (X5,2,−1, G, ·, g, χ) be a YD-datum. Let λ ∈ C3 be such

that

λ1 = λ2 = 0, if χ2 �= ε; λ3 = 0, if χ4 �= ε; (3.57)

λ1 = 0, if g20 = 1, λ2 = 0, if g0g1 = 1, λ3 = 0, if g20g1g2 = 1. (3.58)

Let u = u(D, λ) be the quotient of T (V ) by the relations

x20 = λ1(1− g20), (3.59)

x0x1 + x2x0 + x3x2 + x1x3 = λ2(1− g0g1), (3.60)

(x1x0)
2 + (x0x1)

2 = ζ4 − λ3(1− g20g1g2), where (3.61)

ζ4 = λ2 (x1x0 + x0x1) + λ1 g
2
1(x3x0 + x2x3)− λ1 g20(x2x4 + x1x2) + λ2λ1 g20(1− g1g2).

Then u is a pointed Hopf algebra, a cocycle deformation of gr u � B(V )#CG and

dim u = 1280|G|; u(D, λ) � u(D, λ′) iff λ = cλ′ for some c ∈ C×. Conversely, any lifting

of (X5,2,−1) is isomorphic to u(D, λ) for some YD-datum D = (X5,2,−1, G, ·, g, χ) and
λ ∈ C3 satisfying (3.57), (3.58).

Example 3.25 ([39]). Let D = (X5,3,−1, G, ·, g, χ) be a YD-datum. Let λ ∈ C3 be such

that

λ1 = λ2 = 0, if χ2 �= ε; λ3 = 0, if χ4 �= ε; (3.62)

λ1 = 0, if g20 = 1, λ2 = 0, if g1g0 = 1, λ3 = 0, if g20g1g3 = 1. (3.63)

Let u = u(D, λ) be the quotient of T (V ) by the relations

x20 = λ1(1− g20), (3.64)

x1x0 + x0x2 + x2x3 + x3x1 = λ2(1− g1g0) (3.65)

x0x2x3x1 + x1x4x3x0 = ζ ′4 − λ3(1− g20g1g3), where (3.66)

ζ ′4=λ2 (x0x1+x1x0)−λ1 g21(x3x2+x0x3)−λ1 g20(x3x4+x1x3)+λ1λ2(g21+g20−2g20g1g3).
Then u is a pointed Hopf algebra, a cocycle deformation of gr u � B(V )#CG and

dim u = 1280|G|; u(D, λ) � u(D, λ′) iff λ = cλ′ for some c ∈ C×. Conversely, any lifting

of (X5,3,−1) is isomorphic to u(D, λ) for some YD-datum D = (X5,3,−1, G, ·, g, χ) and
λ ∈ C3 satisfying (3.62), (3.63).
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4. Pointed Hopf algebras

4.1. Pointed Hopf algebras with abelian group. Here is a classification from [16]. Let

D = ((qij)i,j∈Iθ ,Γ, (gi)i∈Iθ , (χi)i∈Iθ ) be a YD-datum of diagonal type as in (3.41) with

Γ a finite abelian group and let V ∈ Γ
ΓYD be the corresponding realization. We say that

D is a Cartan datum if there is a Cartan matrix (of finite type) a = (aij)i,j∈Iθ such that

qijqji = q
aij

ii , i �= j ∈ Iθ.
Let Φ be the root system associated to a, α1, . . . , αθ a choice of simple roots, X the set

of connected components of the Dynkin diagram of Φ and set i ∼ j whenever αi, αj belong
to the same J ∈ X . We consider two classes of parameters:

◦ λ = (λij)i<j∈Iθ,
i 
∼j

is a family in {0, 1} with λij = 0 when gigj = 1 or χiχj �= ε.
◦ μ = (μα)α∈Φ+ is a family in C with μα = 0 when suppα ⊂ J , J ∈ X , and gNJ

α = 1
or χNJ

α �= ε. Here NJ = ord qii for an arbitrary i ∈ J .
We attach a family (uα(μ))α∈Φ+ in CΓ to the parameter μ , defined recursively on the

length of α, starting by uαi
(μ) = μαi

(1 − gNi
i ). From all these data we define a Hopf

algebra u(D, λ, μ) as the quotient of T (V ) = T (V )#CΓ by the relations

gaig
−1 = χi(g)ai, (4.1)

adc(ai)
1−aij (aj) = 0, i �= j, i ∼ j, (4.2)

adc(ai)(aj) = λij(1− gigj), i < j, i � j, (4.3)

aNJ
α = uα(μ). (4.4)

Theorem 4.1. The Hopf algebra u(D, λ, μ) is pointed,G(u(D, λ, μ)) � Γanddim u(D, λ, μ)
=
∏
J∈X N

|Φ+
J |

J |Γ|. LetH be a pointed finite-dimensional Hopf algebra and set Γ = G(H).
Assume that the prime divisors of |Γ| are > 7. Then there exists a Cartan datum D and pa-
rameters λ and μ such thatH � u(D, λ, μ). It is known when two Hopf algebras u(D, λ, μ)
and u(D′, λ′, μ′) are isomorphic.

The proof offered in [16] relies on [14, 43, 59, 60]. Some comments: the hypothesis on

|Γ| forces the infinitesimal braiding V of H to be of Cartan type, and the relations of B(V )
to be just quantum Serre and powers of root vectors. The quantum Serre relations are not

deformed in the liftings, except those linking different components of the Dynkin diagram;

the powers of the root vectors are deformed to the uα(μ) that belong to the coradical. All

this can fail without the hypothesis, see [52] for examples in rank 2.

4.2. Pointed Hopf algebras with non-abelian group. We present some classification re-

sults of pointed Hopf algebras with non-abelian group. We say that a finite groupG collapses
whenever any finite-dimensional pointed Hopf algebra H with G(H) � G is isomorphic to

CG.

• [7, 8] Let G be either Am, m ≥ 5, or a sporadic simple group, different from Fi22,
the Baby Monster B or the MonsterM . Then G collapses.

The proof uses §3.6.3; the remaining Yetter-Drinfeld modules are discarded consider-

ing abelian subracks of the supporting conjugacy class and the list in [44].
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• [12] Let V = M(O3
2, sgn) and let D be the corresponding YD-datum. Let H be a

finite-dimensional pointed Hopf algebra with G(H) � S3. Then H is isomorphic

either to CS3, or to u(D, 0) = B(V )#CS3, or to u(D, (0, 1)), cf. Example 3.21.

• [38] Let H �� CS4 be a finite-dimensional pointed Hopf algebra with G(H) � S4.
Let V1 = M(O4

2, sgn⊗ id), V2 = M(O4
2, sgn⊗ sgn), W = M(O4

4, sgn⊗ id), with
corresponding data D1, D2 and D3. Then H is isomorphic to one of

u(D1, (0, μ)), μ ∈ C2; u(D2, t), t ∈ {0, 1}; u(D3, λ), λ ∈ C2.

Here u(D1, (0, μ)) is as in Example 3.22; u(D2, t) is the quotient of T (V2) by the

relations a212 = 0, a12a34−a34a12 = 0, a12a23−a13a12−a23a13 = t(1−g(12)g(23))
and u(D3, λ) is the quotient of T (W ) by the relations

a2(1234) = λ1(1− g(13)g(24)); a(1234)a(1432) + a(1432)a(1234) = 0;

a(1234)a(1243) + a(1243)a(1423) + a(1423)a(1234) = λ2(1− g(12)g(13)).

Clearly u(D1, 0) = B(V1)#CS4, u(D2, 0) = B(V2)#CS4, u(D3, 0) = B(W )#CS4.
Also u(D1, (0, μ)) � u(D1, (0, ν)) iff μ = cν for some c ∈ C×, and u(D3, λ) �
u(D3, κ) iff λ = cκ for some c ∈ C×.

• [7, 38] Let H be a finite-dimensional pointed Hopf algebra with G(H) � S5, but
H �� CS5. It is not known whether dimB(O5

2,3, sgn⊗ε) < ∞. Let D1, D2 be

the data corresponding to V1 = M(O5
2, sgn⊗ id), V2 = M(O5

2, sgn⊗ sgn). If the

infinitesimal braiding of H is not M(O5
2,3, sgn⊗ε), then H is isomorphic to one of

u(D1, (0, μ)), μ ∈ C2 (defined as in Example 3.22), or B(V2)#CS5, or u(D2, 1)
(defined as above).

• [7] Let m > 6. Let H �� CSm be a finite-dimensional pointed Hopf algebra with

G(H) � Sm. Then the infinitesimal braiding of H is V = M(O, ρ), where the

type of σ is (1m−2, 2) and ρ = ρ1 ⊗ sgn, ρ1 = sgn or ε; it is an open question

whether dimB(V ) < ∞, see Example 3.12. If m = 6, there are two more Nichols

algebras with unknown dimension corresponding to the class of type (23), but they are
conjugated to those of type (14, 2) by the outer automorphism of S6.

• [34] Let m ≥ 12, m = 4h with h ∈ N. Let G = Dm be the dihedral group of order

2m. Then there are infinitely many finite-dimensional Nichols algebras in G
GYD; all

of them are exterior algebras as braided Hopf algebras. Let H be a finite-dimensional

pointed Hopf algebra with G(H) � Dm, but H �� CDm. Then H is a lifting of an

exterior algebra, and there infinitely many such liftings.

4.2.1. Copointed Hopf algebras. We say that a semisimple Hopf algebra K collapses if
any finite-dimensional Hopf algebra H with H0 � K is isomorphic to K. Thus, if G col-

lapses, then CG and (CG)F collapse, for any twist F . Next we state the classification of the
finite-dimensional copointed Hopf algebras over S3 [17]. Let V = M(O3

2, sgn) as a Yetter-

Drinfeld module over CS3 . Let λ ∈ CO
3
2 be such that

∑
(ij)∈O3

2

λij = 0. Let v = v(V, λ)

be the quotient of T (V )#CS3 by the relations a(13)a(23) + a(12)a(13) + a(23)a(12) = 0,
a(23)a(13) + a(13)a(12) + a(12)a(23) = 0, a2(ij) =

∑
g∈S3(λij − λg−1(ij)g)δg , for (ij) ∈ O3

2 .

Then v is a Hopf algebra of dimension 72 and gr v � B(V )#CS3 . Any finite-dimensional



On finite-dimensional Hopf algebras 137

copointed Hopf algebra H with H0 � CS3 is isomorphic to v(V, λ) for some λ as above;

v(V, λ) � v(V, λ′) iff λ and λ′ are conjugated under C× ×Aut S3.
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Excision, descent, and singularity in algebraic
K-theory

Guillermo Cortiñas

Abstract. Algebraic K-theory is a homology theory that behaves very well on sufficiently nice ob-

jects such as stable C∗-algebras or smooth algebraic varieties, and very badly in singular situations.

This survey explains how to exploit this to detect singularity phenomena using K-theory and cyclic

homology.
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1. Introduction

A homology theory of rings associates groupsHn(R) (n ∈ Z) depending covariantly on the
ringR. We say thatH is (polynomially) homotopy invariant if the mapHn(R) → Hn(R[t])
is an isomorphism. A homology theory also associates groupsHn(R : I) to every two-sided
ideal I � R, which fit into a long exact sequence

Hn+1(R/I) → Hn(R : I) → Hn(R) → Hn(R/I).

We say that H is nilinvariant if H∗(R : I) = 0 when I is nilpotent. The homology the-

ory is said to satisfy excision if whenever f : R → S is a ring homomorphism sending an

ideal I � R isomorphically onto an ideal of S, the map H∗(R : I) → H∗(S : f(I)) is an
isomorphism. Similarly, a cohomology theory of algebraic varieties over a field (schemes

of finite type) associates groups Hn(X : Y ) with every closed immersion Y → X , de-

pending contravariantly on (X : Y ). In particular if X̃ is the blowup of X along Y
and Ỹ is the exceptional fiber, we have a map H∗(X : Y ) → H∗(X̃ : Ỹ ); this map

is an isomorphism whenever H satisfies cdh-descent. For example, Quillen’s algebraic
K-theory K is a (co)homology theory of rings and schemes which has none of the afore-

mentioned properties. For another example, Weibel’s homotopy algebraic K-theory KH
is also defined for rings and schemes, and satisfies all of them. There is a natural map

Kn(R) → KHn(R) which is an isomorphism when R is Kn-regular; this means that the

mapKn(R) → Kn(R[t1, . . . , tp]) is an isomorphism for all p. For instance Noetherian reg-
ular rings such as rings of polynomial functions on smooth varieties, and stable C∗-algebras
such as the algebra K of compact operators, are Kn-regular for all n. In general the map

K → KH is part of a long exact sequence

KHn+1(R) → Knil
n (R) → Kn(R) → KHn(R).

Proceedings of International Congress of Mathematicians, 2014, Seoul



144 Guillermo Cortiñas

In this article we survey a series of results that help describe the groups Knil
∗ in terms of

cyclic homology, and explain how this description has helped make significant progress in

several long standing problems, ranging from the comparison of algebraic and topological

K-theory of topological algebras to the relation betweenK-regularity and nonsingularity of

algebraic varieties.

The article is organized as follows. In Section 2 we recall (from Goodwillie’s paper [29]

and from [6]) two key properties of the Chern character ch∗ : K∗(R) → HN∗(R) to neg-

ative cyclic homology of Q-algebras. They can be summarized by saying that infinitesimal
K-theory is nilinvariant and satisfies excision (Theorem 2.4); the infinitesimal K-groups fit

into a long exact sequence

HNn+1(R) → K inf
n (R) → Kn(R)

chn−→ HNn(R).

In Section 3 we explain how the results of the previous one were used in [15] to compare

the algebraic and the topological K-theory of a stable locally convex algebra L. The main

result reviewed in this section is Theorem 3.2, which says that for such L, KH∗(L) =
Ktop
∗ (L) and Knil

n (L) = HCn−1(L) is cyclic homology. In Section 4 we recall the notions

of descent and Mayer-Vietories properties. We review Thomason’s theorems that K-theory

satisfies Nisnevich descent and has the Mayer-Vietoris property for blow-ups along regularly

embedded closed subschemes (Theorem 4.1), and their analogues for cyclic homology and

infinitesimalK-theory of schemes of finite type over a field of characteristic zero (Theorem

4.2). In Section 5 we review Haesemeyer’s theorem on cdh-descent and its generalization

(Theorems 5.1 and 5.2) and derive from them a long exact sequence (Theorem 5.3)

KHn+1(X) → FHC
n−1(X) → Kn(X) → KHn(X), (1.1)

for every scheme X of finite type over a field of characteristic zero. Up to extension, the

groups FHC
∗ (X) are computed from the cyclic homology groups of X and of an array of

smooth schemes that appear in its desingularization process. In Section 6 we show how these

results were used to prove Weibel’s dimension conjecture for schemes of finite type over a

field of characteristic zero (Theorem 6.3). In Section 7 we begin by explaining how the se-

quence 1.1 can be used to compute the obstruction toKn-regularity (Proposition 7.1). Then

we review several results on K-regularity, including that Vorst’s regularity conjecture and

Gubeladze’s nilpotence conjecture hold for algebras and coefficient rings containing a field

of characteristic zero (Theorems 7.3 and 7.8), and the answer to Bass’ question on whether

Kn(R) = Kn(R[t]) implies thatKn(R) = Kn(R[t1, t2]) (Theorem 7.5). Versions of some

of these results in characteristic p > 0 are reviewed in Section 8. They are based on the good
properties of the Bökstedt-Hsiang-Madsen cyclotomic trace tr : K → TC, which takes

values in topological cyclic homology [3]. Theorems of McCarthy and Geisser-Hesselholt (

8.1 and 8.2) say that tr computes the obstruction groups to nilinvariance and excision up to

p-adic completion. The results of Geisser-Hesselholt extending Haesemeyer’s theorem (The-

orem 8.4) and proving Weibel’s dimension conjecture (Theorem 8.5) and Vorst’s regularity

conjecture (Theorem 8.6) over a perfect field of characteristic p > 0 which admits strong

resolution of singularities are reviewed, as well as the solution of Gubeladze’s nilpotence

conjecture over a field of charactristic p (Theorem 8.8).
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2. The obstructions to excision and nilinvariance

Quillen’s algebraic K-theory associates groups Kn(R) (n ∈ Z) to each associative, not

necessarily unital ring R. These groups are defined as the stable homotopy groups of

a functorial spectrum K(R). If I � R is an ideal, the relative K-theory spectrum is

K(R : I) = hofiber(K(R) → K(R/I)). The spectrum K(R : I) is defined so as to fit

into a homotopy fibration sequence

K(R : I) → K(R) → K(R/I).

Thus taking homotopy groups we obtain a long exact sequence

Kn+1(R/I) → Kn(R : I) → Kn(R) → Kn(R/I).

Observe that the failure of the map K∗(R) → K∗(R/I) to be an isomorphism is measured

by the relative groups K∗(R : I). If I is nilpotent, the groups Kn(R : I) vanish for n ≤ 0.
Thus Kn(R) → Kn(R/I) is an isomorphism for n ≤ 0; because of this, we say that K-

theory is nilinvariant in nonpositive degrees. For n ≥ 1 the groups Kn(R : I) may be

nonzero for nilpotent I; if R is a Q-algebra they are Q-vector spaces ([49, Consequence

1.4]). For general R, the groups Kn(R : I) ⊗ Q are computed by means of the Chern

character [29]

ch : K∗(R) → HN∗(R⊗Q). (2.1)

Negative cyclic homology is connected with cyclic and periodic cyclic homology by means

of Connes’ SBI-sequence

HPn+1(R)
S→ HCn−1(R)

B→ HNn(R)
I→ HPn(R). (2.2)

Theorem 2.1 (Goodwillie, [28, Theorem II.5.1], [29, Main Theorem]). Let R be a ring and
I � R a nilpotent ideal. Then

HPn(R⊗Q : I ⊗Q) = 0,

and the Chern character induces an isomorphism

Kn(R : I)⊗Q ∼= HNn(R⊗Q : I ⊗Q) ∼= HCn−1(R⊗Q : I ⊗Q).

In particular,Kn(R : I)⊗Q ∼= Kn(R⊗Q : I ⊗Q).

Remark 2.2. Goodwillie states his results for unital R; the nonunital case follows from the

unital case (see [5, Lemma 6.1], e.g.).

If I � R is an ideal and f : R → S is a ring homomorphism such that f(I) � S is an

ideal and f : I → f(I) is bijective, we put

K(R,S : I) = hofiber(K(R : I) → K(S : f(I))).

The groups Kn(R,S : I) are zero for n ≤ −1. Thus for n ≤ 0 the groups Kn(R : I)
depend only on I and not on the ideal embedding I � R. Because of this, we say that

K-theory satisfies excision (or that it is excisive) in nonpositive degrees. If R is aQ-algebra,

the groups Kn(R,S : I) are Q-vector spaces ([49, Consequence 1.5]). For general R, the
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groups Kn(R,S : I) ⊗ Q are again computed by means of the Chern character; this is

the content of Theorem 2.3 below. First let us recall the Cuntz-Quillen excision theorem

[18, Theorem 5.3], which says thatHP satisfies excision in the category of Q-algebras; this

means that if in the situation just described f is a Q-algebra homomorphism, then

HP∗(R,S : I) = 0. (2.3)

It follows that the B-map in the SBI sequence (2.2) induces an isomorphism

HC∗−1(R,S : I) ∼= HN∗(R,S : I).

Theorem 2.3 ([6, Theorem 0.1]). Let I � R be an ideal and let f : R → S be a ring
homomorphism. Assume that f(I) � S is an ideal and that f : I → f(I) is bijective. Then
the Chern character induces an isomorphism

K∗(R,S : I)⊗Q ∼= HN∗(R⊗Q, S ⊗Q : I ⊗Q)
∼= HC∗−1(R⊗Q, S ⊗Q : I ⊗Q).

In particular,K∗(R,S : I)⊗Q ∼= K∗(R⊗Q, S ⊗Q : I ⊗Q).

In the case of Q-algebras Theorem 2.3 confirmed a conjecture formulated in the mid

1980’s by Geller-Reid-Weibel ([24, 25]). Its proof combines the techniques developed by

Cuntz-Quillen to prove their excision theorem with those used by Suslin-Wodzicki to char-

acterize those nonunital rings I such thatK∗(−,− : I)⊗Q = 0 [44, Theorem A].

In the applications considered in the next sections, all the rings involved are Q-algebras.

In this case we will find it useful to formulate the results above in terms of infinitesimal

K-theory. The Chern character (2.1) comes from a map of spectra K → HN ; infinitesimal
K-theory is the homotopy fiber of this map:

K inf(R) = hofiber(K(R) → HN(R)).

In terms ofK inf , Theorems 2.1 and 2.3 can be expressed as follows.

Theorem 2.4. InfinitesimalK-theory of Q-algebras is nilinvariant and satisfies excision.

3. Kinf -regularity and algebraic K-theory of topological algebras.

Let A be a ring and F : Rings → Ab a functor. We say that A is F -regular if the map

induced by the canonical inclusion

F (A) → F (A[t1, . . . , tn])

is an isomorphism for all n ≥ 1. The functor F is called invariant under polynomial ho-
motopy (homotopy invariant, for short) on a subcategory C ⊂ Rings if every ring A ∈ C
is F -regular. A homology theory of rings is a covariant functor E from rings to spec-

tra; we write En(R) = πnE(R) for the stable homotopy group. If E is a homology

theory of rings, we call a ring E-regular if it is En-regular for all n. We call E homo-
topy invariant if each En is homotopy invariant. There is a well-known procedure E →
EH , the homotopization procedure that transforms E to a homotopy invariant homology
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theory EH . This construction comes with a natural map E(A) → EH(A) and setting

Enil(A) = hofiber(E(A) → EH(A)) one obtains a long exact sequence

EHn+1(A) → Enil
n (A) → En(A) → EHn(A). (3.1)

If A is Em-regular for all m ≤ n, then Em(A) → EHm(A) is an isomorphism for m ≤ n
and is onto for m = n + 1. Applying this procedure to Quillen’s K-theory yields Weibel’s

homotopy K-theory KH [50]. The following theorem summarizes two key properties of

KH .

Theorem 3.1 (Weibel, [50, Theorems 2.1 and 2.3]). Homotopy algebraic K-theory KH is
nilinvariant and satisfies excision.

If A is a Q-algebra, then A is HP -regular (e.g. by [28, Corollary II.4.4] or by [38,

Equation 3.13]). Geller and Weibel showed in [26, Theorem 4.1] that if A is a Q-algebra

then HNH∗(A) ∼= HP∗(A), and (3.1) identifies with Connes’ SBI-sequence (2.2). If A is

a Q-algebra, set

Kninf(A) = K inf,nil(A).

The homotopization procedure preserves fibration sequences. Hence we have a homotopy

commutative diagram whose rows and columns are homotopy fibration sequences:

Kninf(A) ��

��

K inf(A)

��

�� K infH(A)

��
Knil(A) ��

��

K(A)

��

�� KH(A)

��
HC(A)[−1] �� HN(A) �� HP (A).

(3.2)

By the discussion above,

A K inf − regular ⇒ Knil
∗ (A)

∼=−→ HC∗−1(A). (3.3)

A locally convex algebra is a complete locally convex C-vector space L equipped with a

jointly continuous, associative multiplication L⊗CL→ L. The following theorem concerns

the K-theory of a large class of stable locally convex algebras. It computes the obstruction

for the mapK → Ktop to be an isomorphism. HereKtop
∗ (L) = kklc∗ (C, L) is the covariant

part of Cuntz’ bivariantK-theory for locally convex algebras [17]. As expected of a bivariant

K-theory of complex topological algebras, it is periodic of period two:

kklc∗ (L,M) = kklc∗+2(L,M). (3.4)

Thus there are only two covariant topologicalK-groups,Ktop
0 andKtop

1 .

Let B = B(�2(N)) be the C∗-algebra of bounded operators in an infinite dimensional,

separable Hilbert space. An ideal I � B is a Fréchet operator ideal if it carries a complete

metrizable locally convex topology such that the inclusion I → B is continuous.

Theorem 3.2 ([15, Theorems 6.2.1 and 6.3.1]). Let L be a locally convex C-algebra and let
I be a Fréchet operator ideal. Write ⊗̂ for the projective tensor product. Then:
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(i) L⊗̂I isK inf -regular.

(ii) KH∗(L⊗̂I) = Ktop
∗ (L⊗̂I).

(iii) For each n ∈ Z, there is a natural 6-term exact sequence of abelian groups as follows:

Ktop
1 (L⊗̂I) �� HC2n−1(L⊗̂I) �� K2n(L⊗̂I)

��
K2n−1(L⊗̂I)

��

HC2n−2(L⊗̂I)�� Ktop
0 (L⊗̂I).��

Sketch of the proof of Theorem 3.2. Call a Banach ideal I � B harmonic if it contains an

operator whose sequence of singular values is the harmonic sequence {1/n}. Results of

Cuntz-Thom [19, Theorems 4.2.1 and 5.1.2] imply that if H is a homology theory which

satisfies excision and I � B is harmonic, then H(−⊗̂I) is invariant under C∞ homotopies,

also called diffotopies. It is shown in [15, Theorem 6.16] that if in additionH is nilinvariant,

then H(−⊗̂I) is diffotopy invariant for any Fréchet ideal I . In particular this applies to

K inf and KH by Theorems 2.4 and 3.1. Part i) of the theorem follows from the fact that

K inf(−⊗̂I) is diffotopy invariant, using the argument of [42, Theorem 3.4]. By [15, Lemma

3.2.1], K inf -regular Q-algebras are Kn-regular for n ≤ 0. Hence we have KHn(L⊗̂I) =
Kn(L⊗̂I) for n ≤ 0. Cuntz and Thom proved in [19, Theorem 6.2.1] that K0(L⊗̂I) =
Ktop

0 (L⊗̂I) when I is harmonic; by the argument of [15, Theorem 6.16], this extends to

all Fréchet ideals. Summing upKH(−⊗̂I) is an excisive and diffotopy invariant homology

theory in LocAlg which agrees withKtop(−⊗̂I) in dimension 0. A standard argument now

shows that they must agree in all dimensions ([16, Abschnitt 6]). This proves ii). Part iii)

follows from what we have already done, using (3.3), (3.4), and diagram (3.2).

The following theorem can be proved using Theorem 3.2.

Theorem 3.3 ([15, Theorem 8.3.3]). Let K � B be the ideal of compact operators and let L
be a Fréchet algebra whose topology is generated by a countable family of submultiplicative
seminorms and which has a uniformly bounded, one-sided approximate unit. Then the map

K∗(L⊗̂K) → Ktop
∗ (L⊗̂K)

is an isomorphism.

The particular case of the theorem above when L is a Banach algebra with a one-sided

approximate unit confirms a conjecture formulated by Karoubi in [37]. Wodzicki announced

a proof of the latter case in [54, Theorem 1]; he told us he has also proved the general

case of Theorem 3.3. The proof of Theorem 3.3 given in [15] consists of showing that

HC∗(L⊗̂K) = 0, and then using Theorem 3.2. For a different proof see [7, Theorem

12.1.1]. Karoubi also proved that if A is a C∗-algebra and ⊗˜ is the spatial tensor product,

then the comparison map

K∗(A⊗˜K) → Ktop
∗ (A⊗˜K) (3.5)

is an isomorphism for ∗ ≤ 0, and conjectured that it is also an isomorphism for ∗ ≥ 1. This
conjecture was proved by Suslin-Wodzicki ([44, Theorem 10.9]). We remark that the analog

of Theorem 3.2 for A⊗˜K also holds. Indeed a theorem of Higson ([42, Theorem 20]) says

that A⊗˜K is K-regular, so KH∗(A⊗˜K) = Ktop
∗ (A⊗˜K), since (3.5) is an isomorphism; a
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similar argument as that of [42, Theorem 20] shows that A⊗˜K is also K inf -regular. Finally

it is not hard to see that HC∗(A⊗˜K) = 0 (the argument is similar to that of [15, Lemma

8.2.3]).

Remark 3.4. No nonzero commutative unitalQ-algebra isK inf -regular. Indeed [15, Propo-

sition 3.3.1] says that if a unital algebra R is K inf
n -regular for some n ≥ 1, then every

element a ∈ R can be written as a finite linear combination

a =
m∑
i=1

bi(xiyi − yixi)ci (bi, ci, xi, yi ∈ R).

4. Mayer-Vietoris sequences and descent

Fix a field k. Let Sch/k be the category of schemes essentially of finite type over Spec(k).
A k-scheme is an object of Sch/k. A cohomology theory (also called presheaf of spectra) is
a functor (Sch/k)op → Spt. Let

Y ′ ��

��

X ′

p

��
Y

i
�� X

(4.1)

be a cartesian square in Sch/k. A cohomology theory E of k-schemes is said to have the

Mayer-Vietoris property with respect to (4.1) if it sends (4.1) to a homotopy cartesian dia-

gram of spectra. This implies that we have a long exact sequence of Mayer-Vietoris type:

En+1(Y
′) → En(X) → En(Y )⊕ En(X ′) → En(Y

′).

In the sequence above, we have used subscript notation; we will switch to superscripts when

needed, following the usual convention E∗ = E−∗.
We consider classes of cartesian squares in Sch/k which are closed under isomorphism.

We call such a class a cd-structure. Each such class generates a Grothendieck topology on

Sch/k. We shall consider the following cd-structures; note that each of them is contained in

the next one:

• The cd-structure of elementary Zariski squares. A square (4.1) is an elementary

Zariski square if i and p are open immersions and X = Y ′ ∪ X ′. We write zar
for the Grothendieck topology generated by this structure.

• The cd-structure of elementaryNisnevich squares. A square (4.1) is an elementary Nis-

nevich square if i is an open embedding, p is étale, and p : (X ′ \ Y ′)red → (X \ Y )red
is an isomorphism. HereXred is the reduced scheme. We remark that in the particular

case when p is an open immersion, the latter condition is equivalent to the condition

that Y ′ ∪X ′ = X; thus every elementary Zariski square is an elementary Nisnevich

square. We write nis for the Nisnevich topology.

• Voevodsky’s combined cd-structure. It consists of the elementary Nisnevich squares

and the abstract blow-up squares. A square (4.1) is an abstract blow-up if p is proper,
i is a closed embedding and p : (X ′ \ Y ′) → (X \ Y ) is an isomorphism. We write

cdh for the corresponding topology.
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Let c be one of the above cd-structures on Sch/k and let t be the Grothendieck topol-

ogy it generates. A cohomology theory E of k-schemes satisfies descent with respect

to t if it has the Mayer-Vietoris property for every square in c. There is a construction

(E, t) !→ Ht(−, E) which given a topology t and a cohomology theory E produces a coho-

mology theory Ht(−, E) which satisfies t-descent, and a natural transformation ([36])

E → Ht(−, E). (4.2)

The case when t comes from a cd-structure was studied in depth by Voevodsky, who obtained
several key results in his fundamental article [47]. Using Voevodsky’s results, one can show

that if t comes from a cd-structure which meets some technical conditions [8, Theorem 3.4],

which are satisfied in all the examples we consider here, then E satisfies t-descent if and
only if the map (4.2) is a global weak equivalence; this means that

E∗(X) → H−∗t (X,E)

is an isomorphism for all X .

A cohomology theory of schemes E which satisfies Zariski descent is determined by its

value on affine schemes, and

E(R) := E(SpecR) (4.3)

is a homology theory of commutative rings which satisfies Zariski descent. Each of the

homology theories of rings considered in the previous sections extends to a cohomology

theory of schemes which satisfies Zariski descent so that (4.3) holds. Moreover, we have the

following landmark results of Thomason. Recall that a closed immersion is regular if it is
locally defined by a regular sequence. A closed subscheme Y ⊂ X is of pure codimension
when all its irreducible components have the same codimension. The square (4.1) is a regular
blow-up if i is a regular closed immersion of pure codimension and p is the blow-up along i.

Theorem 4.1 (Thomason, [45, Theorem 10.8], [46, Théorème 2.1]). K-theory of schemes
satisfies Nisnevich descent and has the Mayer-Vietoris property for regular blow-up squares.

Thomason defined theK-theory of a quasi-compact and separated schemeX in terms of

the complicial category of perfect complexes of quasi-coherent sheaves; the main technical

tool for proving Theorem 4.1 is the Thomason-Waldhausen localization theorem ([45, The-

orems 1.8.2 and 1.9.8]) which roughly says that K-theory maps sequences of complicial

categories which induce exact sequences of derived categories into homotopy fibration se-

quences of spectra. Weibel introduced cyclic homology of schemes as the hyperhomology

of the sheafified Connes’ complex [52]. He and Geller showed in [27, Theorem 4.8] that

HC satisfies Nisnevich descent. Keller proved a version of the Thomason-Waldhausen lo-

calization theorem for cyclic homology [40, Theorem 2.4] and showed [39, Section 5.2] that

for quasi-compact separated schemes the cyclic homology of schemes introduced by Weibel

in [52] admits a categorical description analogous to that of K-theory. The proof given in

[8] of the following theorem uses the latter result of Keller and the argument of Thomason’s

proof of Theorem 4.1.

Theorem 4.2 ([27, Theorem 4.8], [8, Theorems 2.9 and 2.10]). Cyclic, negative cyclic and
periodic cyclic homology satisfy Nisnevich descent and have the Mayer-Vietoris property for
regular blow-ups.
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Corollary 4.3. LetE ∈ {HC,HN,HP,K} and letX ∈ Sch/k. Assume thatX is smooth.
Then the map E∗(X) → H−∗

cdh(X,E) is an isomorphism.

Proof. By [8, Corollary 3.9], any cohomology theory on Sch/k which satisfies Nisnevich

descent and has the Mayer-Vietoris property for regular blow-ups also satisfies this.

A homology theory of k-schemesE is invariant under infinitesimal thickenings ifE∗(X)
→ E∗(Xred) is an isomorphism for all X . An abstract blow-up square is a finite blow-up if

p is a finite morphism. If E satisfies Zariski descent then E is invariant under infinitesimal

thickenings (resp. has the Mayer-Vietoris property for finite blow-ups) if and only if the

associated homology of commutative algebras (4.3) is nilinvariant (resp. satisfies excision).

The Chern character (2.1) extends to schemes. If X ∈ Sch/k and k is of characteristic

zero it is given by a map of spectra ch : K(X) → HN(X); infinitesimal K-theory is

defined asK inf(X) = hofiber(K(X) → HN(X)).
The following is an immediate corollary of Theorems 2.4, 4.1 and 4.2.

Corollary 4.4 ([8, Theorems 4.3 and 4.4]). Let k be a field of characteristic zero. Then
the infinitesimal K-theory of k-schemes is invariant under infinitesimal thickenings, satifies
Nisnevich descent, and has the Mayer-Vietoris property for regular blow-ups and for finite
blow-ups.

5. Haesemeyer’s theorem

In this section k is a field of characteristic zero. If E is a cohomology theory of k-schemes,

we write FE(X) = hofiber(E(X) → Hcdh(X,E)). Thus we have a homotopy fibration

sequence

FE(X) → E(X) → Hcdh(X,E). (5.1)

Both Hcdh(X,−) and F−(X) preserve homotopy fibration sequences; this fact is used in

diagram 5.2 below.

Theorem 5.1 (Haesemeyer, [34, Theorem 6.4]). Let k be a field of characteristic zero and
X ∈ Sch/k. ThenKH(X)

∼−→ Hcdh(X,K).

It follows from the theorem above that for E = K and X = SpecA, the sequence (5.1)
is equivalent to the middle row of diagram (3.2). For X ∈ Sch/k we have a homotopy

commutative diagram whose rows and columns are homotopy fibration sequences:

FKinf

(X) ��

��

K inf(X)

��

�� Hcdh(X,K
inf)

��
FK(X) ��

��

K(X)

��

�� KH(X)

��
FHN (X) �� HN(X) �� Hcdh(X,HN).

(5.2)

Theorem 5.1 implies that KH satisfies cdh-descent. On the other hand we know from

[50, Theorem 1.2] that it is also homotopy invariant, that is, it sends the projectionX×A1→X
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to an isomorphismKH∗(X) ∼= KH∗(X ×A1). For the proof of Theorem 5.1, Haesemayer

first showed that KH has the Mayer-Vietoris property for regular blow-ups ([34, Theorem

3.6]). In almost all the rest of the proof, the only other properties of KH that are used are

excision and invariance under infinitesimal thickenings. Homotopy invariance is used only

once, in [34, Proposition 3.7]. It was found later that homotopy invariance is not needed;

this led to the following generalization of Haesemeyer’s theorem.

Theorem 5.2 ([8, Theorem 3.12]). Let k be a field of characteristic zero and let E be a
cohomology theory of k-schemes. Assume that E satisfies excision, is invariant under in-
finitesimal thickenings, satisfies Nisnevich descent, and has the Mayer-Vietoris property for
regular blow-ups. Then E satisfies cdh-descent.

By Corollary 4.4, Theorem 5.2 applies toK inf . It follows that FKinf

∗ (X) = 0 in diagram
(5.2), and therefore we have a weak equivalence

FK(X)
∼−→ FHN (X).

By Cuntz-Quillen’s theorem (2.3) and by Theorems 2.1 and 4.2, HP also satisfies the hy-

pothesis of Theorem 5.2. It follows from this and the SBI-sequence that there is a weak

equivalence

FHC(X)[−1]
∼−→ FHN (X).

Summing up, we have proved the following.

Theorem 5.3 ([14, Theorem 1.6], see also [8, Corollary 3.13 and Theorem 4.6]). Let k be a
field of characteristic zero and X ∈ Sch/k. Then there is a homotopy fibration sequence

FHC(X)[−1] → K(X) → KH(X).

Theorems 5.1 and 5.3 together say that the obstruction to cdh-descent in algebraic K-

theory is measured by FHC . By Corollary 4.3 and Hironaka’s desingularization theorem

[35] the groups FHC
∗ (X) can be computed in terms of the cyclic homology ofX and of the

cyclic homology of a finite array (called a hyperresolution) of smooth schemes that appear

in the desingularization process. In this sense we can say that the fiber ofK(X) → KH(X)
can be computed in terms of cyclic homology. Note that this represents a lot of progress

from our starting point. Indeed regarding KH as K-theory made homotopic lead us to a

map Knil
∗ → HC∗−1 (see (3.2)) that is never an isomorphism in the commutative case (see

Remark 3.4); regarding it instead as a version of K-theory with cdh-descent lead us to a

character Knil
∗ = FK

∗ → FHC
∗−1 which is always an isomorphism. Haesemeyer’s theorem

made all the difference.

Theorems 5.1 and 5.3 are powerful tools for studying theK-theory of singular schemes.

In the next sections we review a number of results whose proofs used these tools.

Remark 5.4. Building on work of Ayoub and ideas of Voevodsky, Cisinski proved in [4,

Théorème 3.9] that KH satisfies cdh-descent in the category of Noetherian schemes of

finite dimension. Since the latter category includes the schemes of finite type over a field

of any characteristic, Cisinki’s result is far more general than Haesemeyer’s Theorem 5.1.

However, Cisinski’s proof relies heavily on homotopy invariance, and therefore no analog of

Theorem 5.2 can be derived from his argument. A version of Theorem 5.2 for schemes of

finite type over a perfect field which admits strong resolution of singularities, due to Geisser-

Hesselholt, is given in Theorem 8.4 below.
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6. Weibel’s dimension conjecture

Conjecture 6.1 (Weibel’s dimension conjecture [51, Questions 2.9]). LetX be a Noetherian
scheme of dimension d. ThenKm(X) = 0 form < −d and X isK−d-regular.

The KH-version of the conjecture for schemes over a field of characteristic zero was

settled by Haesemeyer:

Theorem 6.2 (Haesemeyer, [34, Theorem 7.1]). Let k be a field of characteristic zero and
let X ∈ Sch/k. ThenKHm(X) = 0 form < − dimX .

Proof. By Theorem 5.1 and [34, Theorem 2.8] there is a spectral sequence

Ep,q2 = Hp
cdh(X, aK−q) ⇒ KH−p−q(X).

TheE2-term is the cohomology of the cdh sheaf associated to theK-theory groups. We have

aK−q = 0 for q > 0 by Hironaka’s desingularization theorem and the fact that negative K-

theory vanishes on smooth schemes. By a result of Suslin-Voevodsky [43, Theorem 5.13], if

n > d = dimX then Hn
cdh(X,S) = 0 for every cdh sheaf S; thus Ep,q2 = 0 if either p > d

or q > 0. The theorem is immediate from this.

Theorem 6.3 ([8, Theorem 6.2]). Weibel’s conjecture holds for schemes essentially of finite
type over a field of characteristic zero.

The vanishing part of Theorem 6.3 can be proved using Theorems 5.3 and 6.2 and a

similar spectral sequence argument; the regularity part requires more work (see [8, Section

6]).

7. Singularity and the obstruction to K-regularity

Let F : Rings → Ab be a functor from rings to abelian groups. If A is a ring, then the

inclusion A ⊂ A[t] is split by evaluation at zero. Hence for
NF (A) = coker(F (A) → F (A[t]))

we have a direct sum decomposition

F (A[t]) = F (A)⊕NF (A).
Similarly,

F (A[t1, t2]) = F (A)⊕NF (A)⊕NF (A)⊕N2F (A),

whereN2F = N(NF ). Iterating this process one obtains an expression forF (A[t1, . . . , tn])
in terms of F (A) and of the groups N jF (A) for j ≥ 1. Hence A is F -regular if and only if

N jF (A) = 0 for all j ≥ 1.
Kassel proved ([38, Example 3.3]) that if A is a unital associative Q-algebra, then

NHCn(A) = HHn(A)⊗ tQ[t]. (7.1)

Here HH is Hochschild homology; it is related to cyclic homology by Connes’ SBI-
sequence

HCn−1(A)
B→ HHn(A)

I→ HCn(A)
S→ HCn−2(A).
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For example if A is commutative, then HH0(A) = A and

HH1(A) = Ω1
A (7.2)

is the module of absolute Kähler 1-differential forms. Using (7.1), (7.2), and the Künneth

formula for Hochschild homology [53, Proposition 9.4.1], we obtain

N2HCn(A) =NHHn(A)⊗ tQ[t]

=HHn(A)⊗Q[t]⊗Q[t]⊕HHn−1(A)⊗ Ω1
Q[t] ⊗Q[t].

(7.3)

Iterating this process one obtains a formula forN jHCn(A) for all j in terms ofHHn−p(A)
(p ≤ j) (see [9, Formula 1.5]). Like cyclic homology, Hochschild homology is defined for

schemes (see [52]) and has all the properties stated for cyclic homology in Theorem 4.2 and

Corollary 4.3 ([8, Theorem 2.9]). Formulas (7.1) and (7.3) generalize to schemes. Moreover

if k is a field of characteristic zero andX ∈ Sch/k, then for V = tQ[t] and dV = Ω1
Q[t], we

have ([9, Lemma 3.2 and Corollary 3.3]

NFHC
n (X) =FHH

n (X)⊗ V,
N2FHC

n (X) =
(FHH

n (X)⊗ V ⊗ V )⊕ (FHH
n−1(X)⊗ V ⊗ dV ).

In view of Theorem 5.3 and of the fact that KH is homotopy invariant, we obtain the fol-

lowing formulas:

NKn(X) =FHH
n−1(X)⊗ V

N2Kn(X) =
(FHH

n−1(X)⊗ V ⊗ V )⊕ (FHH
n−2(X)⊗ V ⊗ dV ).

Of course we can iterate this to produce formulas for N jKn(X) in terms of FHH
n−p(X)

(p ≤ j − 1). Summing up, we obtain the following.

Proposition 7.1. Let k be a field of characteristic zero, let X ∈ Sch/k and let n ∈ Z. Then
X isKn-regular if and only if FHH

m (X) = 0 for allm ≤ n− 1.

In view of (5.1), the equivalent conditions of the proposition are also equivalent to the

assertion that the map

HHm(X) → H−mcdh (X,HH)

is an isomorphism for m ≤ n − 1 and a surjection for m = n. By [14, Proposition 2.1 and

Theorem 2.2], H∗cdh(X,HH) decomposes as follows:

H−mcdh (X,HH) =
⊕
i≥0

Hi−m
cdh (X, aΩi).

Here H∗
cdh(X, aΩ

i) is the cohomology of the cdh-sheaf associated to Kähler i-differential
forms. Summing up,K-regularity questions translate into comparing Hochschild homology

with cdh cohomology of differential forms. This point of view has been useful for solving

the following old questions aboutK-regularity.

Conjecture 7.2 (Vorst’s regularity conjecture [48]). Let R be a commutative unital ring of
dimension d, essentially of finite type over a field k. IfR isKd+1-regular thenR is a regular
ring.
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For d = 0, the conjecture is trivial; the case d = 1 was proved by Vorst [48, Theorem

3.6]. Recall that a commutative unital ring R is regular in codimension d if the local ring Rp

is regular for each prime p of codimension d. A Noetherian ring of dimension d is regular if
and only if it is regular in codimension d.

Theorem 7.3 ([14, Theorem 0.1]). Let R be a commutative unital ring which is essentially
of finite type over a field k of characteristic zero. Assume that R is Kn-regular. Then R is
regular in codimension < n. In particular, if R isKdimR+1-regular, then it is regular.

Question 7.4 (Bass’ question [1, Question (V I)n]). Does NKn(R) = 0 imply N2Kn(R)
= 0?

Theorem 7.5 ([9, Corollary 6.7], [10, Theorem 4.1]).

a) For any field F algebraic over Q, the 2-dimensional normal algebra

R = F [x, y, z]/(z2 + y3 + x10 + x7y)

has NK0(R) = 0 but N2K0(R) �= 0.

b) SupposeR is essentially of finite type over a field of infinite transcendence degree over
Q. Then NKn(R) = 0 implies that R isKn-regular.

The proof in loc.cit. of the theorem above employs the method described in the paragraph

after Proposition 7.1. Gubeladze gave a different proof of part b) in [33, Theorem 1].

The next conjecture concerns abelian monoids; we shall use multiplicative notation. An

abelian monoid is called cancellative if ac = bc implies a = b, and torsion-free if an = bn

with n ∈ Z≥1 implies a = b. An element u ∈ M is called a unit if it has an inverse in

M . If k is a commutative ring and M a commutative monoid, then the monoid k-algebra
k[M ] is the set of finitely supported functions M → k equipped with pointwise addition

and convolution product. Any element of k[M ] can be written uniquely as a finite k-linear
combination

∑
a λaχa where χa is the characteristic function χa(b) = δa,b. Each integer

c ≥ 2 defines a k-algebra homomorphism

θc : k[M ] → k[M ], θc(χa) = χac .

The map θc is called the dilation of ratio c. If F : Rings → Ab is a functor and

c = (c1, c2, . . . ) is a sequence of integers ci ≥ 2, then we have an inductive system

{θcn : F (k[M ]) → F (k[M ]) : n ≥ 1}. We write

F (k[M ])c = colim
θcn

F (k[M ])

for its colimit.

Conjecture 7.6 (Gubeladze’s nilpotence conjecture, [30, Conjecture 2.1]). Let k be a com-
mutative ring, M an abelian monoid and c = (c1, c2, . . . ) a sequence of integers ci ≥ 2.
Assume that k is regular Noetherian and thatM is cancellative and torsion-free and has no
non-trivial units. Then

K∗(k[M ])c = K∗(k).

Remark 7.7. Under the conditions of the conjecture, the map k[M ] → k is a polynomial

homotopy equivalence (see the proof of [13, Corollary 8.4]). Thus Gubeladze’s conjecture

is a homotopy invariance statement.
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Theorem 7.8 (Gubeladze, [31, Theorem 1.2], [32, Theorem 1]). Conjecture 7.6 holds if k
contains a field of characteristic zero.

Gubeladze’s proof uses relies on Theorem 2.3 and on his previous work on special cases

of the conjecture. A different proof, using Theorem 5.2, was given in [11, Corollary 6.10]

for the particular case when k is a field. The general case when k is a regular ring containing
a field (of any characteristic) was proved in [13, Theorem 0.2]; this is discussed in Section 8.

8. A glimpse at characteristic p > 0.

We have seen in Section 2 that the obstructions to nilinvariance and excision with rational

coefficients are computed by the Chern character to negative cyclic homology. To compute

these obstructions in the p-adically complete case for a prime p, one has to replace the Chern
character by the cyclotomic trace of Bökstedt-Hsiang-Madsen [3]

tr : K(R) → TC(R),

which takes values in topological cyclic homology.

Theorem 8.1 (McCarthy, [41, Main Theorem]). Let R be a unital ring, I � R a nilpotent
ideal and p > 0 a prime. Then tr : K(R : I) → TC(R : I) becomes a weak equivalence
after p-completion.

The topological cyclic homology spectrum TC is the homotopy limit of a pro-spectrum

TCn; the following theorem is formulated in terms of the latter pro-spectrum. It implies that

K(R,S : I) → TC(R,S : I) becomes a weak equivalence after p-completion.

Theorem 8.2 (Geisser-Hesselholt [21, Theorem 1]). Let f : R→ S be a homomorphism of
unital associative rings, let I � R be a two-sided ideal and assume that f : I → f(I) is
an isomorphism onto a two-sided ideal of S. Then the map induced by the cyclotomic trace
map

Kq(R,S : I,Z/pν) → TCnq (R,S : I,Z/pν)

is an isomorphism of pro-abelian groups, for all integers q, all primes p, and all positive
integers ν.

Remark 8.3. In their recent article [20], Dundas and Kittang have shown that Goodwillie’s

global cyclotomic trace K → T C induces an integral isomorphism K∗(R,S : I) →
T C∗(R,S : I).

The following is a version of Theorem 5.2 for perfect fields which admit strong resolution
of singularities. This means that for every integral scheme X separated and of finite type

over k, there exists a sequence of blow-ups

Xr → Xr−1 → · · · → X1 → X0 = X

such that the reduced schemeXred
r is smooth over k; the center Yi of the blow-upXi+1 → Xi

is connected and smooth over k; the closed embedding of Yi inXi is normally flat; and Yi is
nowhere dense in Xi.
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Theorem 8.4 (Geisser-Hesselholt, [22, Theorem 1.1]). Let k be an infinite perfect field such
that strong resolution of singularities holds over k, and let {Fn(−)} be a presheaf of pro-
spectra on the category of schemes essentially of finite type over k. Assume that {Fn(−)}
takes infinitesimal thickenings to weak equivalences and finite abstract blow-up squares to
homotopy cartesian squares. Assume further that each Fn(−) takes elementary Nisnevich
squares and squares associated with blow-ups along regular embeddings to homotopy carte-
sian squares. Then the canonical map defines a weak equivalence of pro-spectra

{Fn(X)} ∼−→ {H·
cdh(X,F

n(−))}

for every scheme X essentially of finite type over k.

By Theorems 3.1, 8.1, and 8.2, the theorem above applies to KH and to the fiber of

the cyclotomic trace. Using this, Geisser and Hesselholt obtained the following result about

Weibel’s dimension conjecture.

Theorem 8.5 (Geisser-Hesselholt, [22, Theorem A]). Let k be an infinite perfect field of
characteristic p > 0 such that strong resolution of singularities holds over k, and letX be a
d-dimensional scheme essentially of finite type over k. ThenKq(X) vanishes for q < −d.

Geisser and Hesselholt also obtained the following result about Vorst’s conjecture.

Theorem 8.6 (Geisser-Hesselholt, [23, Theorem A]). Let k be an infinite perfect field of
characteristic p > 0 such that strong resolution of singularities holds over k. Let R be a
localization of a d-dimensional commutative k-algebra of finite type and suppose that R is
Kd+1-regular. Then R is a regular ring.

If we restrict our attention to toric varieties, the assumption that the ground field ad-

mits strong resolution of singularities can be dropped. The Bierstone-Milman theorem

[2, Thm. 1.1] provides a chacteristic-free resolution of singularities for such varieties that

is sufficient to prove the following toric version of Haesemeyer’s theorem.

Theorem 8.7 ([12, Theorem 1.1]). Assume k is an infinite field and let G be a cohomology
theory on Sch/k. If G satisfies the Mayer-Vietoris property for Zariski covers, finite ab-
stract blow-up squares, and blow-ups along regularly embedded closed subschemes, then G
satisfies the Mayer-Vietoris property for all abstract blow-up squares of toric k-varieties.

Theorems 8.2 and 8.7 were used to prove the following.

Theorem 8.8 ([13, Theorem 0.2]). Gubeladze’s conjecture 7.6 holds if k contains a field of
characteristic p > 0.

As we saw in Theorem 7.8, the case when k ⊃ Q of the theorem above had already been

proved by Gubeladze in [32]. A different proof of Gubeladze’s theorem, using Theorem 8.7,

was also given in [13, Theorem 7.5].
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1. Introduction

Recall that a subgroup N of a group G is normal in G if it is closed under conjugation. A

simple group is a nontrivial group in which the only normal subgroups are the group itself

and the identity subgroup. The first step in understanding groups is to understand the simple

groups. This is much too hard for general groups and so one wants to focus on special types

of groups. The classification of simple Lie groups turned out to have a beautiful theory (and

has been amazingly fruitful). The classification of simple affine algebraic groups turns out

to have essentially the same description albeit with a more difficult proof.

The classification of finite simple groups is one of the most amazing theorems in math-

ematics. See [55] for a very nice history. It is probably the longest and most complicated

single proof in mathematics and involved contributions by many different mathematicians.

Perhaps the most significant breakthrough came in John Thompson’s series of papers on N-

groups [56]. This built upon the earlier groundbreaking work of Feit and Thompson proving

that all groups of odd order are solvable (recall that a finite group is solvable if and only if

for K a normal subgroup of H with K < H < G and H/K simple, then H/K is cyclic of

prime order – this is equivalent to saying the derived series of G terminates in the identity

subgroup). Thompson classified all finite simple groups such that the normalizer of any non-

trivial prime power order subgroup is solvable. In particular, he classified all the minimal

finite simple groups.

Much of the structure of the proof of the classification was based on the strategy used

in the Thompson papers. In the early 1970’s, Gorenstein realized that based on Thompson’s

ideas (and others) a proof of the classification was feasible. As Gorenstein has remarked,

Aschbacher came along and started proving one amazing result after another and as a result
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sped up the process significantly. Although the result was announced in the early 1980’s,

it was only completed with the publication of the books of Aschbacher and Smith in 2004

[6]. The original proof is scattered throughout the literature and there is a second generation

proof that is being worked on. See the article [3] for a summary of the ideas. This second

generation proof is being published by the AMS. Several volumes (plus some preliminary

material and the two Aschbacher-Smith volumes) have already been published.

One major advantage of the second generation proof is that one wants to prove that

there is no minimal counterexample to the theorem. Thus, one can assume that all proper

subgroups of a possible counterexample only involve the known simple groups. This allows

one to prove properties of simple groups and use them in the proof.

Indeed, there are other approaches being worked as on well – including one by

Meiefrankenfeld et al (see [49]). Also, recently an approach using fusion systems which

allows more topological tools to be used has been intensively studied and shown to be a

useful way of thinking. Some parts of the classification have been recast in this language.

The tools and techniques in the proof are an amazing array of deep and clever ideas.

Results about generators and relations, representation theory, amalgamated products and

local subgroup structure are just a few of the ideas involved in the proof. One key result

which finally settled a problem which many thought might not be resolved for quite a while

was obtained by Bombieri [8] following work of Thompson. Bombieri used elimination

theory to show that groups of Ree type are actually Ree groups.

The classification allows one to reduce many problems to questions of simple groups.

Some of these reduction theorems could have been proved much earlier but there was not

much point as the state of knowledge about arbitrary finite simple groups was quite limited

before Thompson came on the scene.

There has also been some thought that with the completion of the classification, finite

group theory does not have much of a future. To the contrary, with the tools we now have,

one can prove some beautiful results in group theory and in other areas as well. When

Richard Brauer was asked whether the classification of finite simple groups would be the

end of finite group theory, he answered that it was only the beginning.

Recall that the classification of finite simple groups essentially says:

Theorem 1.1. Let G be a finite simple group. Then one of the following holds:

(1) G is cyclic of prime order;

(2) G is an alternating group of degree n ≥ 5;

(3) G is one of 26 sporadic groups; or

(4) G is a finite group of Lie type.

The 26 sporadic groups are a fascinating subject and there have been thousands of pages
written about them (and some amazing computations). The smallest of these is the Mathieu

group of degree 11 and order 7920 while the largest is the Monster of order approximately

8× 1053 and has some very interesting connections with modular functions. The first five of

these groups were constructed by Mathieu during latter part of the nineteenth century. The

remaining sporadic groups were exhibited in the 1960’s and 70’s.

The simple algebraic groups over an algebraically closed field k of characteristic p are
classified (up to isogeny) by the irreducible Dynkin diagrams. The ones of types A, B, C

and D correspond to classical groups (i.e. linear, orthogonal and symplectic groups) while

the groups of type G2, F4 and En, n = 6, 7, 8 are called exceptional groups. If F is an
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endomorphism of a simple algebraic group X such that the fixed set G := XF is finite,

then G is close to being a finite simple (with just a few exceptions, the derived group of G
modulo its center is simple). The simplest example is to let F be the q-Frobenius map on k
(i.e. it is the map x → xq for q = pe). Then F is an automorphism of k and we can extend

this to matrices and so to any group of matrices that is invariant under F . For example, if

X = SLn(k) and F is the q-Frobenius, then XF = SLn(q) and this modulo its center (of

order gcd(n, q − 1)) is simple for n ≥ 3 or n = 2 and q ≥ 4. If the Dynkin diagram has

graph automorphisms, then we get more examples. For example if we take F = στ on

X := SLn(k), n ≥ 3 where σ is the q-Frobenius and τ is a graph automorphism (which

we can take as transpose inverse), then XF = SUn(q), the special unitary group. Again,

almost always this is simple modulo its center (of order gcd(n, q+1)). If p > 3, it turns out
that these are the only such endomorphisms (note these maps are actually bijections but the

inverses are not morphisms in the category of algebraic groups).

In characteristic 2 for the algebraic groups of type B2 and F4 and in characteristic 3 for

the groupG2, one gets more exotic endomorphisms. This gives the complete list of the finite

simple groups of Lie type. Special cases of these constructions were observed but Chevalley,

Steinberg and Ree proved the general cases.

See the wonderful book [17] for many more properties of the finite simple groups. One

crucial fact about the classification of finite simple groups is not just that gives the full list

but that the typical finite simple group is of Lie type and this often allows one to use the

theory of algebraic groups and its rich structure to deduce results about finite simple groups.

We give some examples of results which use the classification below.

2. Using the classification

The classification of finite simple groups has had many consequences in different areas of

mathematics. Many problems in number theory and algebraic geometry can be translated to

problems in group theory and very often these involve permutation groups. Typically, one

reduces the problem first to transitive groups and then to primitive permutation groups (recall

we say that a group G acts primitively on a set S of cardinality larger than 1 if G preserves

no nontrivial equivalence relation on S – this is equivalent toG being transitive on S and the

stabilizer of a point being a maximal subgroup; these are the simple objects in the category

of G-sets).
Note that even if one is trying to prove a result about a known simple group, often one

needs to know about subgroups. The classification of simple groups is typically needed for

this.

There is a very useful theorem that describes the structure of finite primitive permutation

groups due to Aschbacher, O’Nan and Scott [4]. See also [21, 45]. We will not state the

theorem but just note that finite primitive permutation groups have a very restricted structure.

In particular:

Theorem 2.1. If G is a finite primitive permutation group, then either G has a unique min-
imal normal subgroup or G has exactly 2 minimal normal subgroups which are isomorphic
and act regularly on the set.

The Aschbacher-O’Nan-Scott theorem reduces the study of primitive permutation groups

to questions about (almost) simple groups and irreducible faithful representations of finite
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groups (and the cohomology of such).

Aschbacher [1] gives a very nice description of the subgroups of the classical (almost)

simple groups. Basically, the result says that any subgroup of a classical group either pre-

serves some natural structure on the space or is almost simple (modulo the center). Similarly,

Liebeck and Seitz [47] give a description of the maximal subgroups of the finite exceptional

groups of Lie type. The maximal subgroups of symmetric and alternating groups are de-

scribed in [46].

Linear representations of finite groups (both complex and over finite fields) also come

into various applications. Fortunately, there have been major advances in recent years in

both cases. In particular, the Deligne-Lusztig theory has played an important role in many

applications.

There is a beautiful paper of Larsen and Pink [42] (see also an earlier related paper by

Nori [51]) which asserts in particular that there are only finitely many sporadic groups which

have a linear representation of fixed dimension. This can be used as a replacement for the

classification for certain types of asymptotic results.

3. Coverings of Riemann Surfaces

Zariski in his thesis answered a conjecture of Enrique and proved:

Theorem 3.1. LetX be a generic Riemann surface of genus g > 6. Let n > 1 be a positive
integer. There are no solvable rational maps f : X → Y of degree n.

If f : X → Y is a nonconstant map of Riemann surfaces, let Mon(f) denote the

monodromy group of f (i.e the Galois group of the Galois closure of the field extension

C(X)/C(Y )). A solvable map is one whose monodromy group is solvable.

One needs to define generic appropriately (basically, it means that the set of Riemann

surfaces of genus g which admit a degree n solvable map to another Riemann surface is

contained in a proper closed subvariety of the moduli space of genus g Riemann surfaces).

Note that any Riemann surface of genus g ≤ 6 admits a map of degree at most 4 to P1 and

in particular a solvable map and so g > 6 is necessary in the theorem.

In fact, Zariski’s proof was mostly about finite primitive solvable groups. In [31], the

hypothesis of n being fixed was removed (for n > 1, one obtains a proper subvariety but in

fact the countable union of these subvarieties is again contained in a proper subvariety).

Using the classification of finite simple groups, one can extend Zariski’s result consider-

ably. The following is proved in a series of papers [27, 31, 35]:

Theorem 3.2. Let X be a generic Riemann surface of genus g > 3. Suppose that there
exists an indecomposable map f of degree n from X to another Riemann surface Y . Then
Y = P1 and one of the following holds:

(1) The monodromy group of f is Sn with n ≥ (g + 2)/2; or

(2) The monodromy group of f is An with n > 2g.

The indecomposable case is the critical case to consider (any generic map is a compo-

sition of an indecomposable map and a rational function on P1). The key fact about primi-

tive permutation groups that is required is the classification of primitive permutation groups



Simple Groups 167

containing an element that fixes at least 1/2 the points (a problem that was considered ex-

tensively already in the late 1800’s).

It is a classical result that the first case in the previous theorem could arise. It was only

relatively recently [48] that it was shown the second case can occur as well. There is a

similar result for g = 3 [27]. The possibilities for g ≤ 2 have not been worked out. Note that
for g = 0, we just saying that f is a rational function. However, we do have the following

theorem that is a result of the work of a dozen or so authors. This project was completed in

[15].

Theorem 3.3. Let g be a positive integer with X and Y Riemann surfaces with X of genus
g. Suppose that f : X → Y is a rational map. Let S be any simple composition factor of
the monodromy group of f . Then there exists a positive integer N(g) such that one of the
following holds:

(1) S is cyclic of prime order;

(2) S is an alternating group; or

(3) |S| < N(g).

Of course, the first two cases do occur. If g = 0 then essentially the complete list of

possible composition factors of monodromy groups of rational functions has been worked

out (indeed, Frohardt, Guralnick and Magaard are working on a project to describe all inde-

composable rational functions of degree n whose monodromy groups are not alternating or

symmetric groups of degree n).

4. Division Algebras

One of the earliest consequences of the classification of finite simple groups was pointed out

by Fein, Kantor and Schacher [12]. Recall that a number field is a finite extension of the

rational field.

Theorem 4.1. Let L/K be a finite nontrivial extension of number fields. There are infinitely
many non-isomorphic finite dimensional division algebrasD with centerK such that L⊗D
is a full matrix ring over L

The Brauer group Br(L) of a field is the set of equivalence classes of finite dimensional

central division algebras over L (with the multiplication coming from tensor product). The

theorem says that the relative Brauer group Br(L|K) is infinite (Br(L|K) is the kernel of

the natural map from Br(K) → Br(L) given by extension of scalars). If L/K is Galois this

follows easily from the description of division algebras over a number field. In the general

case, it turns out [12] that one has the following equivalences:

Theorem 4.2. The following are equivalent:

(1) Br(L|K) is infinite for any nontrivial extension of number fields;

(2) Br(L|K) is nonzero for any nontrivial extension of number fields;

(3) If G is a finite group acting transitively on a set S of cardinality n > 1, then there
exists an element x ∈ G of prime power order not fixing any points of S.
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Another equivalent condition is that the image of the norm map from L∗ to K∗ has

infinite index. The fact there always exists a fixed point free element in a finite transitive

group of degree n > 1, is quite elementary (going back to Jordan) but the only known proof

to date of the existence of an element of prime power order with no fixed points depends on

the classification of finite simple groups.

A proof of a more general result (again with a number theoretic consequence) is given in

[19]. We state the number theoretic result.

Theorem 4.3. Let L/K be a degree n ≥ 1 extension of number fields. Assume that the
Galois group of the Galois closure of L/K is Sn. If L′/K is an extension of number fields
(of any degree) and Br(L|K) is commensurable with Br(L′|K), then L′ and L are K-
conjugate fields.

Recall that two subgroups of a group are said to be commensurable if their intersection

has finite index in each subgroup.

An easy corollary of the previous result also gives:

Corollary 4.4. Let L/K be a degree n ≥ 1 extension of number fields. Assume that the
Galois group of the Galois closure of L/K is Sn. If L′/K is an extension of number fields
(of any degree) and the set of degree 1 primes of K with respect to L and L′ are the same
(up to a finite set), then L′ and L areK-conjugate fields.

We say that a prime P of K (i.e. a prime ideal of the ring OK of algebraic integers of

K) is a degree 1 prime with respect to L, if some prime ideal of OL laying over P has the

same residue field as P . For n = 1, the result follows from the Cebatorev density theorem

and the elementary fact that for any finite transitive group there is a fixed point free element

For n = 2, this was a question posed by Fried and Jarden.

5. Polynomials

Here are a few results about polynomials. It seems surprising that the classification of simple

groups is required to prove some of these results. See [34] for the first result.

Theorem 5.1. Let F be a field of characteristic p and f ∈ F [x] of degree n. Assume that f
is indecomposable over F but decomposes over some extension field. Then one of:

(1) p = 11, n = 55; or

(2) p = 7, n = 21; or

(3) n = pa > p.

In characteristic zero, this is classical and does not require the classification (or more

generally if gcd(n, p) = 1). In [39], the polynomials themselves are actually classified. This

involved some interesting curve theory as well as the group theory. There are many examples

of such polynomials in the final case. The fact that there are two exceptions suggests that

there cannot be a simple proof of the result.

If f ∈ F [x] is a separable polynomial of degree n with F a finite field of size q, then f
is called exceptional if f is bijective over the field of size qa for some large a (all we need
is that qa > n4). There is another (geometric) description of exceptionality over any field.
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Moreover, one can also extend the definition to morphisms between varieties. This idea goes

back to the thesis of Dickson in the 1890’s.

The following result is obtained in [33, 39] following earlier work in [14].

Theorem 5.2. Let F be a finite field of characteristic p. Let f ∈ F [x] be exceptional and
indecomposable of degree n with n not a power of p.

(1) If p > 3, then f is has prime degree and is either a Dickson polynomial or essentially
a power of x;

(2) if p ≤ 3, then one of the following holds:

(a) f is a Dickson polynomial of prime degree;
(b) f is a power of x; or
(c) n = pa(pa − 1)/2 with a > 1, a odd.

Moreover, all such f are known.

Recall that the Dickson polynomials satisfyDn,a(x+a/x) = x
n+a/xn and have mon-

odromy group the dihedral group of order 2n. They are generalizations of certain Chebyshev
polynomials.

The previous theorem requires a nontrivial reduction to the monodromy group, a difficult

group theory problem and then a quite interesting determination of which group theoretic

solutions actually led to solutions of the original problem (and then to use that information

to actually classify the polynomials). The monodromy groups occurring in the last case when

p ≤ 3 are PSL2(p
a).

Here is another result which asserts that many polynomials over finite fields either are

bijective or miss quite a lot of points [38].

Theorem 5.3. Suppose that f(x) ∈ Fq[x] of degree n prime to p. Then for any a, f is either
bijective on Fqa or |f(Fqa)| ≤ (5/6)qa +O(qa/2).

If the assumption that n is coprime to the characteristic is dropped, then one can construct

examples where f is close to being surjective (the 5/6 needs to be replaced by 1− 1/n with

n the degree of f ).

6. Generation

Here is a group theoretic application (although these results do have some applications in

number theory). Let d(G) denote the minimal size of a generating set of G. Let P2(G)
denote the probability that a random pair of elements of G generate G. We say that two

normal subsets S1, S2 of G invariably generate G if G = 〈s1, s2〉 for any pair si ∈ Si.
Theorem 6.1. Let G be a finite simple group:

(1) d(G) ≤ 2;

(2) P2(G) → 1 as |G| → ∞
(3) for 1 �= y ∈ G, there is x ∈ G with G = 〈x, y〉.
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(4) There exist conjugacy classes C1 and C2 of G so that G can be invariably generated
by C1, C2.

Remarks
(2) only implies that (1) holds with possibly finitely many exceptions.

Thompson proved (1) forGminimal simple and showed that a finite group is solvable if and

only if every 2-generated subgroup is.
(1) was proved by Miller, Steinberg and finished (using the classification) by Aschbacher-

Guralnick.

(2) was proved in three papers by Dixon, Kantor-Lubotzky and Liebeck-Shalev.

(4) was proved by Guralnick and Malle. The property of invariable generation is quite useful

in the computation of Galois groups.

These types of generation results can give characterizations of various properties of finite

groups. We mention just one. Recall that the solvable radical R(G) of a finite groupG is the

largest normal solvable subgroup. We can characterize the elements of R(G) [32].

Theorem 6.2. Let G be a finite group. g ∈ R(G) if and only if 〈g, x〉 is solvable for all
x ∈ G.

7. Cohomology

The computation of cohomology groups (particularly of low degree) has important conse-

quences in many areas. The first result is obtained by reducing the problem to simple groups

and then proving the result for simple groups. See [22] for the first part and [24] for the

second.

Theorem 7.1. Let G be a finite group with V an absolutely irreducible faithful G-module
over a field k.

(1) dimH1(G, V ) ≤ (1/2) dimV ;

(2) dimH2(G, V ) < 20 dimV .

The 20 should be replaced by 1/2 as well, but in fact most of the time these constants can

be reduced considerably. Until 2012, the largest dimension of any H1(G, V ) with V abso-

lutely irreducible and faithful was 3. There are now examples of dimension over 10, 000, 000
(using Kazhdan-Lusztig polynomials and computations by Frank Lübeck as well as knowing

that the Lusztig conjecture holds for p sufficiently large depending on the root system). This

certainly suggests that there is no upper bound on dimH1(G, V ) with G acting absolutely

irreducibly and faithfully on V .
The previous result was used in [24] to prove the following result about profinite presen-

tations of the finite simple groups (and also gives consequences for profinite presentations

of arbitrary finite groups). Recall that a profinite presentation for a group G is a short exact

sequence:

1 → R→ F → G→ 1,

where F is a free profinite group and R is a closed normal subgroup of F . The number

of relations required is the minimal number of elements of R which generate R as a closed

normal subgroup of F .
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Corollary 7.2. Let G be a finite simple group. Then G has a profinite presentation with 2
generators and at most 20 relations.

The correct answer should be 4 (and 2 if we replace the simple group by is universal cen-

tral cover). For ordinary presentations, one can replace 20 by 50 with the possible exception
of 2G2(3

2a+1); see [23, 25].

8. Linear Groups

Even results on Lie theory sometimes require the classification.

Answering a question of Kollar-Larsen [41], it was shown in [36] that:

Theorem 8.1. Let G be a closed subgroup of GLn(C) = GL(V ), n > 2. Suppose that G
acts irreducibly on Symd(V ) for d ≥ 4. Then either G contains Sp(V ) (if dimV is even)
or SL(V ) unless n = 6 or 12.

This has applications to holomony of vector bundles of smooth projective varieties. For

n = 6, 12, sporadic groups lead to counterexamples. A similar result on subgroups of the

classical groups (in characteristic 0) which leave invariant the same subspaces in small tensor

powers was obtained by the same authors (answering a conjecture of Nick Katz).

The following results were obtained in [28, 30] answering two conjectures of Peter Neu-

mann from 1966.

Theorem 8.2. Let k be a field and G an irreducible subgroup of GL(V ).

(1) If G is finite (or compact), then the average dimension of the fixed point space of an
element of G is at most (1/2) dimV .

(2) IfG is arbitrary, there exists g ∈ G with the fixed points of g having dimension at most
(1/3) dimV .

See [30] for a proof of the first result (and generalizations and applications). See [28]

for the second (and generalizations). Note that both results are best possible (in the first case

take G to be cyclic of order 2 – in fact this is the only example where equality holds; in the

second case take G to be any irreducible subgroup of SO(3, k)).
There is a classical result of Jordan.

Theorem 8.3. There is a function f on the natural numbers such that ifG is a finite subgroup
of GLn(C), then G contains an abelian normal subgroup of index at most f(n).

The estimates for f(n) have been rather large. Using the classification, Weisfeiler, in

unpublished work before his death, immensely improved the bounds. Finally, Collins [9]

showed that for n ≥ 71, one could take f(n) = (n+ 1)! (and of course this is best possible

since Sn+1 has an irreducible representation of dimension n).
If C is replaced by an algebraically closed field of characteristic p, then of course there

can be arbitrarily large finite subgroups with tiny abelian normal subgroups (e.g. SLn(p
q)).

However, one can prove an analog. This is done by Larsen and Pink [42] without the classi-

fication. Collins [10] proves essentially the best possible analog (using the classification).
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9. Mashke’s Theorem

Maschke’s Theorem says that all finite dimensional representations of a finite group in char-

acteristic 0 are completely reducible. The same is true for (rational) representations of Lie

groups. Of course, this fails for positive characteristic (both for finite groups and for simple

algebraic groups). However, we can recover some version of this. There are asymptotic

versions of the following theorem which can be proved without the classification.

Theorem 9.1. Let p be a prime and G a finite subgroup of GL(V ) with p the characteristic
of V . If dimV ≤ p − 2, then V is completely reducible if and only if G has no nontrivial
normal p-subgroup.

See [20] for the proof. Note that the p−2 is sharp sinceAp has indecomposable modules

of dimensional p−1 which are not irreducible. The result depends upon essentially reducing
to the case of simple groups and showing that in most cases, one only needs to consider finite

groups of Lie type in the same characteristic as V . We then apply a result of Jantzen [40].

The result is also valid for algebraic groups.

10. Word Maps and Waring’s Problem

Suppose that w is a nontrivial word in a free group of rank r. Then w defines a map from

Gr → G. Let w(G) denote this image. Some particular interesting examples are powers and

the commutator word. This can be viewed as an analog of Waring’s problem: determine k
so that every positive integer is a sum a k dth powers.

The best result along this lines is a result of Larsen, Shalev and Tiep [43]:

Theorem 10.1. If G is a finite simple group and |G| ≥ Nw, then G = w(G)w(G).

Of course, w may vanish on G. Even if w does not vanish, one has examples where

many copies of w(G) are required. Of course, power words are not surjective if the power
is not relatively prime to the order of |G|. For some words, we do have G = w(G) with no

exceptions.

Theorem 10.2. Let w = x−1y−1xy or xnyn where n = paqb for primes p and q. If G is a
finite simple group, then G = w(G).

The case of the commutator word was conjectured by Ore [52] and follows by the work

in [11, 44, 52]. Special cases for the second case were proved in various papers. See [26] for

the complete result.

11. Galois Groups

The question of whether every finite group is the Galois group of a Galois extension of Q is

still very open. There is been quite a lot of progress (using methods from algebraic geometry)

in showing that many groups close to being simple are Galois groups. Even in that case, there

are only very partial results (there are better results if one works over cyclotomic extensions).

See [50] for a survey. Rigidity has proved to be a useful tool. More recently, other methods

involving more serious algebraic geometry have been used.
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Serre noted the following interesting invariant of the inverse Galois problem (which per-

haps seems less likely to be true but is equivalent): every finite group is the Galois group of a

totally real Galois extension ofQ (recall that a number field is totally real if every embedding

into C is contained in R – for Galois extensions, it just amounts to being a subfield of R).

12. Lattices

Quillen [54] studied the poset Ap(G) of elementary abelian p-subgroups of a finite group

G. He proved that if if G has a nontrivial normal p-subgroup, then Ap(G) is contractible
and conjectured that a strong converse held (involving the cohomology of the associated

simplicial complex). This conjecture is still open. In [5], the best results to date have been

obtained proving Quillen’s conjecture for p > 5 as long as certain unitary groups are not

involved in the group.

Pálfy and Pudlák asked whether every finite lattice embeds in the subgroup lattice of

some finite group. Certainly this is false but to date no particular lattice has been ruled out.

Aschbacher reduced the question to a more complicated question about simple group. There

has been significant progress on this. See [2, 53] for more details on the motivation for the

question.

While the knowledge of maximal subgroups of finite groups is relatively well understood

(but a full classification would require knowing the dimensions of the irreducible represen-

tations of the finite quasi-simple groups and this does not seem within reach at the moment).

More generally, one would like more information about the entire subgroup structure.

13. Prime Power Index

Recall that if G is a finite solvable group, then every maximal subgroup has prime power

index (this is an easy exercise). Upon learning of this result as a graduate student, the author

immediately made the conjecture that this characterized solvable groups (by a theorem of

Philip Hall, it is true if the every maximal subgroup index a prime or the square of a prime).

Bob Steinberg pointed out that the simple group SL(3, 2) provided a counterexample (the

maximal subgroups all have index either 7 or 8). Years later, the next result was obtained

(and has been used many many times). See [18]. This is another example where there is one

special case. This suggests that the classification really is required.

Theorem 13.1. Let G be a finite group and suppose that every maximal subgroup of G has
prime power index in G. Then either G is solvable or G has a solvable normal subgroup
with G/N ∼= SL(3, 2).

14. Beauville Surfaces

A Beauville surface, first defined by F. Catanese, is a rigid compact complex surface of the

form (C1 × C2)/G where C1 and C2 are curves of genus at least 2 and G is a finite group

acting freely on C1 × C2. In [7], it was shown that all sufficiently large alternating groups

admit a Beauville structure and conjectured that all finite simple groups admit Beauville
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structures (with the exception of A5 which does not).

This was proved in [16] with finitely many possible exceptions. An independent proof

giving full result was obtained in [29] (and also in [13]). The methods involve showing that

for many triples of conjugacy classes C1, C2, C3 we can find xi ∈ Ci with x1x2x3 = 1 with
the xi generating the simple group.
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1. Introduction

The Khovanov-Lauda-Rouquier algebras, introduced by Khovanov-Lauda [27, 28] and

Rouquier [32, 33], are a family of Z-graded algebras that provide a fundamental framework

for 2-representation theory and quantum affine Schur-Weyl duality.
Let Hk(ζ) be the finite Hecke algebra with ζ a primitive n-th root of unity and let

Uq(A
(1)
n−1) be the quantum affine algebra of type A

(1)
n−1. In [29], Lascoux-Leclerc-Thibon

discovered a recursive algorithm of computing Kashiwara’s lower global basis(=Lusztig’s

canonical basis) ([25, 30]) and conjectured that the coefficient polynomials, when evalu-

ated at q = 1, give the composition multiplicities of simple Hk(ζ)-modules inside Specht

modules.

In [2], Ariki came up with a proof of the Lascoux-Leclerc-Thibon conjecture using the

idea of categorification. More precisely, let Λ be a dominant integral weight associated

with the affine Cartan datum of type A
(1)
n−1 and let HΛ

k (ζ) be the corresponding cyclotomic

Hecke algebra. Let proj (HΛ
k (ζ)) denote the category of finitely generated projectiveH

Λ
k (ζ)-

modules and let K(proj (HΛ
k (ζ))) be the Grothendieck group of proj (HΛ

k (ζ)). Then Ariki

proved
∞⊕
k=0

K(proj (HΛ
k (ζ)))C

∼= V (Λ),

where V (Λ) is the integrable highest weight module over A
(1)
n−1. Moreover, he showed

that the isomorphism classes of projective indecomposable modules correspond to the lower

global basis of V (Λ) at q = 1, from which the Lascoux-Leclerc-Thibon conjecture follows.

The idea of categorification, which was originated from [7], can be explained as follows.

In the classical representation theory, we study the properties of an algebra A that are re-

flected on various vector spaces V . That is, we investigate various algebra homomorphisms
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φ : A → End(V ). We identify A with a category having a single object and its elements

as morphisms. Similarly, we consider End(V ) as a category with V as its object and linear

operators on V as morphisms. Then the classical representation theory can be understood as

the study of functors from a category to another, whence the 1-representation theory.
We now categorify the classical representation theory. Let A =

⊕
α∈QAα be a graded

algebra and let V =
⊕

λ∈P Vλ be a graded A-module, where Q and P are appropriate

abelian groups. We construct 2-categories A andB whose objects are certain categories Aα

(α ∈ Q) and Bλ (λ ∈ P ) such that⊕
α∈Q

K(Aα) ∼= A,
⊕
λ∈P

K(Bλ) ∼= V.

We now investigate the properties of 2-functors R : A → B. That is, by categorifying the

classical representation theory, we obtain the 2-representation theory, the study of 2-functors
from a 2-category to another.

So far, one of the most interesting developments in 2-representation theory is the one

via Khovanov-Lauda-Rouquier algebras. The Khovanov-Lauda-Rouquier algebras cate-

gorify the negative half of quantum groups associated with all symmetrizable Cartan da-

tum [27, 28, 32, 33]. Moreover, the cyclotomic Khovanov-Lauda-Rouquier algebras give

a categorification of all integrable highest weight modules [16]. Hence Khovanov-Lauda-

Rouquier’s and Kang-Kashiwara’s categorification theorems provide a vast generalization of

Ariki’s categorification theorem. (See also [38].)

When the Cartan datum is symmetric, as was conjectured by Khovanov-Lauda [28],

Varagnolo-Vasserot proved that the isomorphism classes of simple modules (respectively,

projective indecomposable modules) correspond to upper global basis(=dual canonical ba-

sis) (respectively, lower global basis) [36]. However, when the Cartan datum is not sym-

metric, the above statements do not hold in general. It is a very interesting problem to

characterize the perfect basis and dual perfect basis that correspond to simple modules and

projective indecomposable modules, respectively.

On the other hand, the Khovanov-Lauda-Rouquier algebras can be viewed as a huge

generalization of affine Hecke algebras in the context of Schur-Weyl duality. The Schur-

Weyl duality, established by Schur and others (see, for example, [34, 35]), reveals a deep

connection between the representation theories of symmetric groups and general linear Lie

algebras. Let V = Cn be the vector representation of the general linear Lie algebra gln
and consider the k-fold tensor product of V . Then gln acts on V ⊗k by comultiplication and

the symmetric group Σk acts on V ⊗k (from the right) by place permutation. Clearly, these

actions commute with each other. The Schur-Weyl duality states that there exists a surjective

algebra homomorphism

φk : CΣk −→ Endgln(V
⊗k),

where Endgln(V
⊗k) denotes the centralizer algebra of V ⊗k under the gln-action. Moreover,

φk is an isomorphism whenever k ≤ n.
The Schur-Weyl duality can be rephrased as follows. There is a functor F from the

category of finite dimensional Σk-modules to the category of finite dimensional polynomial

representations of gln given by

M !−→ V ⊗k ⊗CΣk
M,

whereM is a finite dimensional Σk-module. The functor F is called the Schur-Weyl duality
functor and it defines an equivalence of categories whenever k ≤ n.
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In [14], Jimbo extended the Schur-Weyl duality to the quantum setting: Σk is replaced

by the finite Hecke algebra Hk and gln is replaced by the quantum group Uq(gln). Then

he obtained the quantum Schur-Weyl duality functor from the category of finite dimensional

Hk-modules to the category of finite dimensional polynomial representations of Uq(gln),
which also defines an equivalence of categories whenever k ≤ n.

In [4, 5, 10], Chari-Pressley, Cherednik and Ginzburg-Reshetikhin-Vasserot constructed

a quantum affine Schur-Weyl duality functor which relates the category of finite dimensional

representations of affine Hecke algebraHaff
k and the category of finite dimensional integrable

U ′q(A
(1)
n−1)-modules. The main ingredients of their constructions are (i) the fundamental

representation V ( 1), (ii) the R-matrices on the tensor products of V ( 1) satisfying the

Yang-Baxter equation, (iii) the intertwiners in Haff
k satisfying the braid relations.

Using Khovanov-Lauda-Rouquier algebras, one can construct quantum affine Schur-

Weyl duality functors in much more generality. In [17], Kang, Kashiwara and Kim con-

structed such a functor which relates the category of finite dimensional modules over sym-

metric Khovanov-Lauda-Rouquuier algebras and the category of finite dimensional inte-

grable modules over all quantum affine algebras. Roughly speaking, the basic idea can

be explained as follows. Using a family of good modules and R-matrices, we determine a

quiver Γ and construct a symmetric Khovanov-Lauda-Rouquier algebra RΓ(β) (β ∈ Q+).

We then construct a (U ′q(g), R
Γ(β))-bimodule V̂ ⊗β , a completed tensor power arising from

good modules, and define the quantum affine Schur-Weyl duality functor F by

M !→ V̂ ⊗β ⊗RΓ(β)M,

whereM is an RΓ(β)-module.

Various choices of quantum affine algebras and good modules would give rise to vari-

ous quantum affine Schur-Weyl duality functors. We believe that our general approach will

generate a great deal of exciting developments in the forthcoming years.

2. Quantum groups

We begin with a brief recollection of representation theory of quantum groups.

Let I be a finite index set. An integral matrix A = (aij)i,j∈I is called a symmetrizable
Cartan matrix if (i) aii = 2 for all i ∈ I , (ii) aij ≤ 0 for i �= j, (iii) aij = 0 if and only

if aji = 0, (iv) there exists a diagonal matrix D = diag(di ∈ Z>0 | i ∈ I) such that DA is

symmetric.

A Cartan datum consists of :

(1) a symmetrizable Cartan matrix A = (aij)i,j∈I ,

(2) a free abelian group P of finite rank, the weight latice,

(3) Π = {αi ∈ P | i ∈ I}, the set of simple roots,
(4) P∨ := Hom(P,Z), the dual weight lattice,

(5) Π∨ = {hi ∈ P∨ | i ∈ I}, the set of simple coroots
satisfying the following properties

i) 〈hi, αj〉 = aij for all i, j ∈ I ,
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ii) Π is linearly independent,

iii) for each i ∈ I , there exists an element Λj ∈ P such that

〈hi,Λj〉 = δij for all i, j ∈ I.
The Λi’s (i ∈ I) are called the fundamental weights.

We denote by

P+ := {Λ ∈ P | 〈hi,Λ〉 ≥ 0 for all i ∈ I}
the set of dominant integral weights. The free abelian group Q :=

⊕
i∈I Zαi is called the

root lattice. Set Q+ =
∑

i∈I Z≥0αi. For β =
∑
kiαi ∈ Q+, we define its height to be

|β| :=∑ ki.
SinceA is symmetrizable, there exists a symmetric bilinear form ( , ) on h∗ := Q⊗ZP

∨

satisfying

(αi, αj) = diaij , 〈hi, λ〉 = 2(αi, λ)

(αi, αi)
for all λ ∈ h∗, i, j ∈ I.

Let q be an indeterminate and set qi = q
di (i ∈ I). Form,n ∈ Z≥0, we define

[n]i :=
qni − q−ni
qi − q−1

i

, [n]i! :=
n∏
k=1

[k]i.

We write e
(k)
i := eki

/
[k]i!, f

(k)
i := fki

/
[k]i! (k ∈ Z≥0, i ∈ I) for the divided powers.

Definition 2.1. The quantum group Uq(g) corresponding to a Cartan datum (A,P,Π, P∨,
Π∨) is the associative algebra over Q(q) generated by the elements ei, fi (i ∈ I), qh

(h ∈ P∨) with defining relations
q0 = 1, qhqh

′
= qh+h

′
(h, h′ ∈ P∨),

qheiq
−h = q〈h,αi〉ei, qhfiq

−h = q−〈h,αi〉fi (h ∈ P∨, i ∈ I),

eifj − fjei = δijKi −K−1
i

qi − q−1
i

(Ki = q
dihi , i ∈ I),

1−aij∑
k=0

(−1)ke
(1−aij−k)
i eje

(k)
i = 0 (i �= j),

1−aij∑
k=0

(−1)kf
(1−aij−k)
i fjf

(k)
i = 0 (i �= j).

(2.1)

Let U0
q (g) be the subalgebra of Uq(g) generated by q

h (h ∈ P∨) and let U+
q (g) (respec-

tively, U−q (g)) be the subalgebra of Uq(g) generated by ei (respectively, fi) for all i ∈ I .
Then the algebra Uq(g) has the triangular decomposition

Uq(g) ∼= U−q (g)⊗ U0
q (g)⊗ U+

q (g).

LetA = Z[q, q−1]. We define the integral form UA(g) of Uq(g) to be theA-subalgebra

of Uq(g) generated by e
(k)
i , f

(k)
i , qh (i ∈ I, h ∈ P∨, k ∈ Z≥0). Let U0

A(g) be the A-

subalgebra of Uq(g) generated by qh (h ∈ P∨) and let U+
A(g) (respectively, U−A(g)) be the
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A-subalgebra of Uq(g) generated by e
(k)
i (respectively, f

(k)
i ) (i ∈ I, k ∈ Z≥0). Then we

have

UA(g) ∼= U−A(g)⊗ U0
A(g)⊗ U+

A(g).

A Uq(g)-module V is called a highest weight module with highest weight Λ ∈ P if there

exists a nonzero vector vΛ in V , called the highest weight vector, such that

(i) ei vΛ = 0 for all i ∈ I ,
(ii) qh vΛ = q〈h,Λ〉vΛ for all h ∈ P∨,
(iii) V = Uq(g) vΛ.

For each Λ ∈ P , there exists a unique irreducible highest weight module V (Λ) with
highest weight Λ. The integral form of V (Λ) is defined to be

VA(Λ) := UA(g) vΛ,

where vΛ is the highest weight vector.

Consider the anti-involution φ : Uq(g) → Uq(g) defined by

qh !→ qh, ei !→ fi, fi !→ ei (h ∈ P∨, i ∈ I).

Then there exists a unique non-degenerate symmetric bilinear form ( , ) on V (Λ) satisfying

(vΛ, vΛ) = 1, (xu, v) = (u, φ(x) v) for all x ∈ Uq(g), u, v ∈ V (Λ). (2.2)

The dual of VA(Λ) is defined to be

VA(Λ)∨ := {v ∈ V (Λ) | (u, v) ∈ A for all u ∈ VA(Λ)}.

Note that VA(Λ)∨λ = HomA(VA(Λ)λ,A) for all λ ∈ P .
The Category Oint consists of Uq(g)-modulesM such that

i) M =
⊕

μ∈P Mμ, whereMμ := {m ∈M | qhm = q〈h,μ〉m for all h ∈ P∨},
ii) ei, fi (i ∈ I) are locally nilpotent onM ,

iii) there exist finitely many elements λ1, . . . , λs ∈ P such that

wt(M) := {μ ∈ P | Mμ �= 0} ⊂
s⋃

j=1

(λj −Q+).

The following properties of the category Oint are well-known. (See, for example, [11,

15, 31].)

Proposition 2.2.

(a) The category Oint is semisimple.

(b) The Uq(g)-module V (Λ) with Λ ∈ P+ belongs to Oint.

(c) Every simple object in Oint has the form V (Λ) for some Λ ∈ P+.



184 Seok-Jin Kang

3. Khovanov-Lauda-Rouquier algebras

Let k be a field and let (A,P,Π, P∨,Π∨) be a Cartan datum.

For each i �= j, set
Sij := {(p, q) ∈ Z≥0 × Z≥0 | (αi, αi)p+ (αj , αj)q = −2(αi, αj)}.

Define a family of polynomials Q = (Qij)i,j∈I in k[u, v] by

Qij(u, v) :=

{
0 if i = j,∑

(p,q)∈Sij
ti,j;p,qu

pvq if i �= j (3.1)

for some ti,j;p,q ∈ k such that ti,j;p,q = tj,i;q,p and ti,j;−aij ,0 ∈ k×. In particular,

Qii(u, v) = 0, Qij(u, v) = Qji(v, u) (i �= j).
The symmetric group Sn = 〈s1, s2, . . . , sn−1〉 acts on In by place permutation, where

si denotes the transposition (i, i+ 1).

Definition 3.1. The Khovanov-Lauda-Rouquier algebra R(n) of degree n ≥ 0 associated

with (A,Q) is the associative algebra over k generated by the elements e(ν) (ν ∈ In), xk
(1 ≤ k ≤ n), τl (1 ≤ l ≤ n− 1) with defining relations

e(ν)e(ν′) = δν,ν′e(ν),
∑
ν∈In

e(ν) = 1,

xkxl = xlxk, xke(ν) = e(ν)xk,

τle(ν) = e(sl(ν))τl, τkτl = τlτk if |k − l| > 1,

τ2ke(ν) = Qνk,νk+1
(xk, xk+1)e(ν),

(τkxl − xsk(l)τk)e(ν) =

⎧⎪⎨
⎪⎩

−e(ν) if l = k, νk = νk+1,

e(ν) if l = k + 1, νk = νk+1,

0 otherwise,

(τk+1τkτk+1 − τkτk+1τk)e(ν)

=

⎧⎨
⎩
Qνk,νk+1

(xk, xk+1)−Qνk,νk+1
(xk+2, xk+1)

xk − xk+2
e(ν) if νk = νk+2,

0 otherwise.

(3.2)

The algebra R(n) has a Z-grading by assigning the degrees as follows:

deg e(ν) = 0, degxke(ν) = (ανk , ανk), deg τle(ν) = −(ανl , ανl+1
).

We denote by q the degree-shift functor defined by

(qM)k =Mk−1,

where M =
⊕

k∈ZMk is a graded R(n)-module. Also there is an algebra involution ψ :
R(n) → R(n) given by

e(ν) !→ e(ν′), xk !→ xn−k+1,

τle(ν) !→
{
−τn−l e(ν′) if νl = νl+1,

τn−l e(ν′) if νl �= νl+1,

(3.3)
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where ν = (ν1, ν2, . . . , νn) and ν
′ = (νn, . . . , ν2, ν1).

By the embedding R(m) ⊗ R(n) ↪→ R(m + n), we may consider R(m) ⊗ R(n) as a
subalgebra of R(m+ n). For an R(m)-moduleM and an R(n)-module N , we define their

convolution productM ◦N by

M ◦N := R(m+ n)⊗R(m)⊗R(n) (M ⊗N). (3.4)

SinceR(m+n) is free overR(m)⊗R(n) ([27, Proposition 2.16]), the bifunctor (M,N) !→
M ◦N is exact inM and N .

For n ≥ 0 and β ∈ Q+ with |β| = n, set

Iβ := {ν = (ν1, . . . , νn) | αν1 + · · ·+ ανn = β}, e(β) :=
∑
ν∈Iβ

e(ν).

Then e(β) is a central idempotent in R(n). We also define

e(β, αi) :=
∑

ν∈Iβ+αi

νn+1=i

e(ν), e(αi, β) :=
∑

ν∈Iβ+αi

ν1=i

e(ν).

The algebra

R(β) := R(n)e(β)

is called the Khovanov-Lauda-Rouquier algebra at β.
For a k-agebraR, we denote by mod(R) (respectively, proj(R) and rep(R)) the category

of R-modules (respectively, the category of finitely generated projective R-modules and the

category of finite dimensional R-modules).

If R is a graded k-algebra, we will use Mod(R) (respectively, Proj(R) and Rep(R)) for
the category of graded R-modules (respectively, the category of finitely generated projective

graded R-modules and the category of finite dimensional graded R-modules).

For each i ∈ I , define the functors
Ei : Mod (R(β + αi)) −→ Mod (R(β)),

Fi : Mod (R(β)) −→ Mod (R(β + αi))
(3.5)

by
Ei(N) = e(β, αi)R(β + αi)⊗R(β+αi) N,

Fi(M) = R(β + αi) e(β, αi)⊗R(β)M
(3.6)

forM ∈ Mod (R(β)), N ∈ Mod (R(β + αi)).
By [27, Proposition 2.16], the functors Ei and Fi are exact and send finitely generated

projective modules to finitely generated projective modules. Hence (3.5) restricts to the

functors
Ei : Proj (R(β + αi)) −→ Proj (R(β)),

Fi : Proj (R(β)) −→ Proj (R(β + αi)).
(3.7)

For 1 ≤ k < n, set bk := τkxk+1 and b
′
k := xk+1τk. Let w0 = si1 · · · sir be the longest

element in Sn and set

b(n) := bi1 · · · bir , b′(n) := b′ir · · · b′i1 .



186 Seok-Jin Kang

For each n ≥ 0, we define the divided powers by

E
(n)
i := b′(n)Eni , F

(n)
i := Fni b(n).

In [27] and [32], Khovanov-Lauda and Rouquier proved the following categorification the-
orem.

Theorem 3.2 ([27, 32]). There exists anA-algebra isomorphism

U−A(g)
∼−→ K(Proj(R)) given by f (n)i !−→ [F

(n)
i ] (i ∈ I, n ≥ 0),

whereK(Proj(R)) :=
⊕

β∈Q+
K(Proj(R(β))).

Thus we have constructed a 2-category R such that the objects are the categories

Proj (R(β)) (β ∈ Q+) and the categories Hom (ProjR(α), ProjR(β)) consist of the mono-

mials Fi1 · · ·Fir (ik ∈ I, r ≥ 0) of functors satisfying

αi1 + · · ·+ αir =

{
α− β if α ≥ β,
β − α if β ≥ α.

The morphisms inHom (ProjR(α), ProjR(β)) are the natural transformations generated by

xi : Fi → Fi, τij : FiFj → FjFi (i, j ∈ I) satisfying the relations
τij ◦ τji = Qij(Fj xi, xjFi),

τjkFi ◦ Fj τik ◦ τijFk − Fk τij ◦ τikFj ◦ Fi τjk

=

⎧⎨
⎩

Qij(xiFj , Fj xi)Fi − FiQij(Fj xi, xjFi)

xiFjFi − FiFj xi Fi if i = k,

0 otherwise,

τij ◦ xiFj − Fj xi ◦ τij = δij ,
τij ◦ Fi xj − xjFi ◦ τij = −δij .

It is straightforward to verify that R satisfies all the axioms for 2-categories [32, 33].

For the later use, we define a functor Fi : Mod (R(β)) −→ Mod (R(β + αi)) by

Fi(M) := R(β + αi) e(αi, β)⊗R(β)M for i ∈ I, M ∈ Mod (R(β)).

The properties of the functors Ei, Fi and Fi (i ∈ I) are given in the following proposition.
Proposition 3.3 ([16]).

(a) We have an exact sequence in Mod (R(β))

0 −→ FiEiM −→ EiFiM −→ q−(αi,αi)M ⊗ k[ti] −→ 0

which is functorial inM ∈ Mod (R(β)).

(b) There exist natural isomorphisms

EiFj
∼−→ FjEi, EiFj

∼−→ FjEi if i �= j,
EiFi

∼−→ q−(αi,αi)FiEi ⊕ 1⊗ k[ti] if i = j,

where ti is an indeterminate of degree (αi, αi) and

1⊗ k[ti] : Mod (R(β)) → Mod (R(β))

is the degree-shift functor sendingM toM ⊗ k[ti] forM ∈ Mod (R(β)) (β ∈ Q+).
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4. Cyclotomic categorification theorem

Let Λ ∈ P+ and let

aΛ(x1) :=
∑
ν∈Iβ

x
〈hν1

,Λ〉
1 e(ν) ∈ R(β).

Then the cyclotomic Khovanov-Lauda-Rouquier algebra RΛ(β) (β ∈ Q+) is defined to be

the quotient algebra

RΛ(β) := R(β)
/
R(β)aΛ(x1)R(β). (4.1)

We would like to show that the cyclotomic Khovanov-Lauda-Rouquier algebras provide a

categorification of irreducible highest weight Uq(g)-modules in the category Oint.

For each i ∈ I , define the functors
EΛ
i : Mod(RΛ(β + αi)) −→ Mod(RΛ(β)),

FΛ
i : Mod(RΛ(β)) −→ Mod(RΛ(β + αi))

(4.2)

by

EΛ
i (N) = e(β, αi)R

Λ (β + αi)⊗RΛ(β+αi) N,

FΛ
i (M) = RΛ(β + αi) e(β, αi)⊗RΛ(β)M

(4.3)

for M ∈ Mod(RΛ(β)), N ∈ Mod(RΛ(β + αi)). However, since RΛ(β + αi) is not

free over RΛ(β), there is no guarantee that EΛ
i and FΛ

i send finitely generated projec-

tive modules to finitely generated projective modules. To prove this, we need to show that

RΛ(β + αi) e(β, αi) is a projective right R
Λ(β)-module.

Let
FΛ := RΛ(β + αi) e(β, αi)

=
R(β + αi) e(β, αi)

R(β + αi) aΛ(x1)R(β + αi) e(β, αi)
,

K0 := R(β + αi) e(β, αi)⊗R(β) R
Λ(β)

=
R(β + αi) e(β, αi)

R(β + αi) aΛ(x1)R(β) e(β, αi)
,

K1 := R(β + αi) e(αi, β)⊗R(β) R
Λ(β)

=
R(β + αi) e(αi, β)

R(β + αi) aΛ(x2)R1(β) e(αi, β)
,

where R1(β) is the subalgebra of R(β + αi) generated by e(αi, ν) (ν ∈ Iβ), xk (2 ≤ k ≤
n + 1), τl (2 ≤ l ≤ n). Then FΛ, K0 and K1 can be regarded as (R(β + αi), R

Λ(β))-
bimodules.

Let ti be an indeterminate of degree (αi, αi). Then k[ti] acts on R(β + αi) e(αi, β) and
K1 from the right by ti = x1e(αi, β). On the other hand, k[ti] acts onK0 and F

Λ from the

right by ti = xn+1e(β, αi). Hence all of them have a structure of (R(β+αi), R(β)⊗k[ti])-
bimodules. Moreover, FΛ,K0 andK1 are in fact (R(β + αi), R

Λ(β)⊗ k[ti])-bimodules.

In [27], it was shown that K0 and K1 are finitely generated projective right (RΛ(β) ⊗
k[ti])-modules. Let π : K0 → FΛ be the canonical projection and let P : K1 → K0 be the

right multiplication by aΛ(x1) τ1 · · · τn.
The following theorem is one of the main results in [16].
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Theorem 4.1 ([16]). The sequence

0 −→ K1
P−→ K0

π−→ FΛ −→ 0 (4.4)

is exact as (R(β + αi, R
Λ(β)⊗ k[ti])-bimodules.

Hence we get a projective resolution of FΛ of length 1 as a right RΛ(β)[ti]-module. By

the following lemma, we conclude that FΛ is a finitely generated projective right RΛ(β)-
module.

Lemma 4.2 ([16]). Let R be a ring and let f(t) be a monic polynomial in R[t] with coeffi-

cients in the center of R.
If an R[t]-moduleM is annihilated by f(t) and has projective dimension ≤ 1, thenM

is projective as an R-module.

Thus we obtain the following important theorem.

Theorem 4.3 ([16]).

(a) RΛ(β + αi) e(β, αi) is a projective right RΛ(β)-module.

(b) e(β, αi)R
Λ(β + αi) is a projective left RΛ-module.

(c) The functors EΛ
i and FΛ

i are exact.

(d) The functors EΛ
i and FΛ

i send finitely generated projective modules to finitely gener-
ated projective modules.

Corollary 4.4 ([16]).

For all i ∈ I and β ∈ Q+, we have an exact sequence of R(β + αi)-modules

0 −→ q(αi,2Λ−β)FiM −→ FiM −→ FΛ
i M −→ 0

which is functorial inM ∈ ModRΛ(β).

To complete the construction of cyclotomic categorification, it remains to show that the

adjoint pair (FΛ
i , E

Λ
i ) gives an sl2-categorification introduced by Chuang-Rouquier [6].

Theorem 4.5 ([16]).

(a) For i �= j, there exists a natural isomorphism

q−(αi,αj)FΛ
j E

Λ
i

∼−→ EΛ
i F

Λ
j .

(b) Let λ = Λ− β (β ∈ Q+).

(i) If 〈hi,Λ〉 ≥ 0, there exists a natural isomorphism

q−2
i F

Λ
i E

Λ
i ⊕

〈hi,Λ〉−1⊕
k=0

q2ki 1
∼−→ EΛ

i F
Λ
i .
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(ii) If 〈hi,Λ〉 ≤ 0, there exists a natural isomorphism

q−2
i F

Λ
i E

Λ
i

∼−→ EΛ
i F

Λ
i ⊕

−〈hi,λ〉−1⊕
k=0

q2k−2
i 1.

Proof. We will give a very rough sketch of the proof. The assertion (a) can be proved in a

straightforward manner.

To prove (b), note that Theorem 4.1 and Corollary 4.4 yield the following commutative

diagram.

0

��

0

��

q−2
i M

0 �� q(αi|2Λ−β)FiEiM

��

�� q−2
i FiEiM

��

��

ε

		

q−2
i F

Λ
i E

Λ
i M

��

�� 0

0 �� q(αi|2Λ−β)EiFiM

��

�� EiFiM

��

�� EΛ
i F

Λ
i M

�� 0

q(αi|2Λ−2β)k[ti]⊗M

��

�� k[ti]⊗M

��
0 0

LetA : q2(αi,Λ−β)k[ti]⊗RΛ(β) −→ k[ti]⊗RΛ(β) be theRΛ(β)-bilinear map given by

chasing the diagram. By a detailed analysis of the above commutative diagram at the kernel

level, the Snake Lemma gives the following exact sequence of RΛ(β)-bimodules

0 −→ KerA −→ q−2
i F

Λ
i E

Λ
i R

Λ(β) −→ EΛ
i F

Λ
i R

Λ(β) −→ CokerA −→ 0.

If 〈hi, λ〉 ≥ 0, we have KerA = 0,
⊕a−1

k=0 k t
k
i ⊗ RΛ(β)

∼−→ CokerA, and if 〈hi, λ〉 ≤ 0,

then CokerA = 0, Ker(A) = q2(αi|Λ−β)⊕a−1
k=0 k t

k
i ⊗RΛ(β), from which our assertion(b)

follows.

Set
K(Proj (RΛ)) :=

⊕
β∈Q+

K(ProjRΛ(β)),

K(Rep (RΛ)) :=
⊕
β∈Q+

K(RepRΛ(β)).

We define the endomorphisms Ei and Fi onK(Proj (RΛ)) by

Ei = [q
1−〈hi,Λ−β〉
i EΛ

i ] : K(ProjRΛ(β + αi)) −→ K(ProjRΛ(β)),

Fi = [FΛ
i ] : K(ProjRΛ(β)) −→ K(ProjRΛ(β + αi)).
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On the other hand, we define Ei and Fi onK(Rep (RΛ)) by

Ei = [EΛ
i ] : K(RepRΛ(β + αi)) −→ K(RepRΛ(β)),

Fi = [q
1−〈hi,Λ−β〉
i FΛ

i ] : K(RepRΛ(β)) −→ K(RepRΛ(β + αi)).

Let Ki be the endomorphism onK(ProjRΛ(β)) andK(RepRΛ(β)) given by the multi-

plication by q
〈hi,Λ−β〉
i for each β ∈ Q+. Then we have

[Ei,Fj ] = δij
Ki − K−1

i

qi − q−1
i

for i, j ∈ I.

Therefore, we obtain the cyclotomic categrification theorem for irreducible highest

weight Uq(g)-modules in the category Oint.

Theorem 4.6 ([16]). For each Λ ∈ P+, there exist UA(g)-module isomorphisms

K(ProjRΛ)
∼−→ VA(Λ) and K(RepRΛ)

∼−→ VA(Λ)∨.

Therefore, for each Λ ∈ P+, we have constructed a 2-category RΛ consisting of

Proj (RΛ(β)) (β ∈ Q+), which gives an integrable 2-representationR
Λ ofR in the sense of

[32, 33]. (See also [38].)

Remark 4.7. There are several generalizations of Khovanov-Lauda-Rouquier algebras and

categorification theorems. In [19, 22, 24], the Khovanov-Lauda-Rouquier algebras associ-

ated with Borcherds-Cartan data have been defined and their properties have been investi-

gated including geometric realization, categorification and the connection with crystal bases.

In [8, 9, 13, 20, 21, 23, 37], various versions of Khovanov-Lauda-Rouquier super-algebras
have been introduced and the corresponding super-categorifications have been constructed.

5. Quantum affine algebras and R-matrices

In this section, we briefly review the finite dimensional representation theory of quantum

affine algebras and the properties of R-matrices (see, for example, [1, 3, 4, 26]).

Let (A,P,Π, P∨,Π∨) be a Cartan datum of affine type with I = {0, 1, . . . , n} the index

set of simple roots. Let 0 ∈ I be the leftmost vertex in the affine Dynkin diagrams given

in [15, Chapter 4]. Set I0 = I \ {0}. Take relatively prime positive integers cj’s and dj’s
(j ∈ I) such that ∑

j∈I
cjaji = 0,

∑
j∈I
aijdj = 0 for all i ∈ I.

Then the weight lattice can be written as

P =
⊕
i∈I

ZΛi ⊕ Zδ,

where δ :=
∑

i∈I diαi ∈ P . We also define c :=
∑

i∈I cihi ∈ P∨.
We denote by g the affine Kac-Moody algebra associated with (A,P, P∨,Π,Π∨) and let

g0 be the finite dimensional simple Lie algebra inside g generated by ei, fi, hi (i ∈ I0). We

will writeW andW0 for the Weyl group of g and g0, respectively.
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Let Uq(g) be the corresponding quantum group and let U ′q(g) be the subalgebra of Uq(g)

generated by ei, fi, K
±1
i (i ∈ I). The algebra U ′q(g) will be called the quantum affine

algebra.
Set Pcl := P

/
Zδ and let cl : P → Pcl be the canonical projection. Then we have

Pcl =
⊕
i∈I

Zcl(Λi) and P∨cl := HomZ(Pcl,Z) =
⊕
i∈I

Zhi.

A U ′q(g)-module V is integrable if

(i) V =
⊕

λ∈Pcl
Vλ, where Vλ = {v ∈ V | Kiv = q

〈hi,λ〉
i v for all i ∈ I},

(ii) ei, fi (i ∈ I) are locally nilpotent on V .
We denote by Cint the category of finite dimensional integrable U ′q(g)-modules.

LetM be an integrable U ′q(g)-module. A weight vector v ∈ Mλ (λ ∈ Pcl) is called an

extremal weight vector if there exists a family of nonzero vectors {vwλ | w ∈W} such that

vsiλ =

{
f
(〈hi,λ〉)
i vλ if 〈hi, λ〉 ≥ 0,

e
(−〈hi,λ〉)
i vλ if 〈hi, λ〉 ≤ 0.

Let P 0
cl := {λ ∈ Pcl | 〈c, λ〉 = 0} and set

 i := Λi − ciΛ0 for i ∈ I0.

Then there exists a unique finite dimensional integrable U ′q(g)-module V ( i) satisfying the
following properties:

(i) all the weights of V ( i) are contained in the convex hull ofW0 cl( i).

(ii) dimV ( i)cl(�i) = 1,

(iii) for each μ ∈W0 cl( i), there exists an extremal weight vector of weight μ,

(iv) V ( i) is generated by V ( i)cl(�i) as a U
′
q(g)-module.

TheU ′q(g)-module V ( i) is called the fundamental representation of weight i (i ∈ I0).
LetM be a U ′q(g)-module. An involution onM is called a bar involution if a v = a v for

all a ∈ U ′q(g), v ∈ M, where ei = ei, fi = fi, Ki = K
−1
i (i ∈ I). A finite U ′q(g)-crystal

B is simple if (i) wt(B) ⊂ P 0
cl , (ii) there exists λ ∈ wt(B) such that #(Bλ) = 1, (iii) the

weight of every extremal vector of B is contained inW0 λ.
A finite dimensional integrable U ′q(g)-moduleM is good if

(i) M has a bar involution,

(ii) M has a crystal basis with simple crystal,

(iii) M has a lower global basis.

For example, all the fundamental representations V ( i) (i ∈ I0) are good. Every good

module is irreducible. For any good module M , there exists an extremal weight vector v
of weight λ such that wt(U ′q(g)v) ⊂ λ −∑i∈I0 Z≥0cl(αi). Such λ is called a dominant
extremal weight and v is called a dominant extremal weight vector.
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Take k = C(q) ⊂ ⋃M>0 C((q1/m)). LetMaff = k[z, z−1]⊗kM be the affinization of

M . For v ∈M and k ∈ Z, the action of U ′q(g) onMaff is given by

ei(z
k ⊗ v) =

{
zk+1 ⊗ e0v if i = 0,

zk ⊗ eiv if i �= 0,

fi(z
k ⊗ v) =

{
zk−1 ⊗ f0v if i = 0,

zk ⊗ fiv if i �= 0,

K±1
i (zk ⊗ v) = q±〈hi,wt(v)〉

i (zk ⊗ v) (i ∈ I).

We define a U ′q(g)-module automorphism zM :Maff →Maff of weight δ by

zk ⊗ v !→ zk+1 ⊗ v (v ∈M, k ∈ Z).

LetM1,M2 be good U
′
q(g)-modules and let u1, u2 be dominant extremal weight vectors

of M1 and M2, respectively. Set z1 = zM1
and z2 = zM2

. Then there exists a unique

U ′q(g)-module homomorphism

Rnorm
M1,M2

(z1, z2) : (M1)aff ⊗ (M2)aff −→ k(z1, z2)⊗k[z±1
1 ,z±1

2 ] (M2)aff ⊗ (M1)aff

satisfying
Rnorm
M1,M2

(u1 ⊗ u2) = u2 ⊗ u1,
Rnorm
M1,M2

◦ z1 = z1 ◦Rnorm
M1,M2

,

Rnorm
M1,M2

◦ z2 = z2 ◦Rnorm
M1,M2

.

The homomorphism Rnorm
M1,M2

is called the normalized R-matrix ofM1 andM2.

Note that ImRnorm
M1,M2

⊂ k(z2
/
z1) ⊗k[(z2/z1)±1] (M2)aff ⊗ (M1)aff. We denote by

dM1,M2(u) ∈ k[u] the monic polynomial of the smallest degree such that

Im
(
dM1,M2

(z2
/
z1)R

norm
M1,M2

) ⊂ (M2)aff ⊗ (M1)aff.

The polynomial dM1,M2(u) is called the denominator of R
norm
M1,M2

.

The normalizedR-matrix satisfies the Yang-Baxter equation. That is, for U ′q(g)-modules

M1,M2,M3, we have

(Rnorm
M2,M3

⊗ 1) ◦ (1⊗Rnorm
M1,M3

) ◦ (Rnorm
M1,M2

⊗ 1)

= (1⊗Rnorm
M1,M2

) ◦ (Rnorm
M1,M3

⊗ 1) ◦ (1⊗Rnorm
M2,M3

).

6. Quantum affine Schur-Weyl duality functor

Let {Vs | s ∈ S} be a family of good modules and let vs be a dominant extremal weight vec-

tor in Vs with weight λs (s ∈ S). Take an index set J endowed with the maps X : J → k×

and s : J → S . For each i, j ∈ J , let
Rnorm
Vs(i),Vs(j)

(zi, zj) : (Vs(i))aff ⊗ (Vs(j))aff

−→ k(zi, zj)⊗k[z±1
i ,z±1

j ] (Vs(j))aff ⊗ (Vs(i))aff
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be the normalized R-matrix sending vs(i) ⊗ vs(j) to vs(j) ⊗ vs(i).
Let dVs(i),Vs(j)

(zj/zi) be the denominator of Rnorm
Vs(i),Vs(j)

(zi, zj). We define a quiver ΓJ

as follows.

(i) We take J to be the set of vertices.

(ii) We put dij many arrows from i to j, where dij the order of zero of dVs(i),Vs(j)
(zj/zi)

at zj/zi = X(j)/X(i).

Define the Cartan matrix AJ = (aJij)i,j∈J by

aJij =

{
2 if i = j,

−dij − dji if i �= j. (6.1)

Thus we obtain a symmetric Cartan datum (AJ , P, P∨,Π,Π∨) associated with ΓJ .
Set

QJ
ij(u, v) :=

{
0 if i = j,

(u− v)dij (v − u)dji if i �= j. (6.2)

We will denote by RJ(β) (β ∈ Q+) the Khovanov-Lauda-Rouquier algebra associated with
(AJ ,QJ).

For each ν = (ν1, . . . , νn) ∈ Jβ , let ÔTn,X(ν) = k[[X1 − X(ν1), . . . , Xn − X(νn)]]
be the completion of OTn,X(ν) at X(ν) := (X(ν1), . . . , X(νn)) and set

Vν := (Vs(ν1))aff ⊗ · · · ⊗ (Vs(νn))aff,

where Xk = zVs(νk)
(k = 1, . . . , n).

We define

V̂ν := ÔTn,X(ν) ⊗k[X±1
1 ,...,X±1

n ] Vν and V̂ ⊗β :=
⊕
ν∈Jβ

V̂ν e(ν).

The following proposition is one of the main results of [17].

Proposition 6.1 ([17]). The space V̂ ⊗β is a (U ′q(g), R
J(β))-bimodule.

Hence we obtain a functor

Fβ : mod (RJ(β)) −→ modU ′q(g)

defined by

M !−→ V̂ ⊗β ⊗RJ (β)M for M ∈ mod (RJ(β)).

Write mod (RJ) :=
⊕

β∈Q+
mod (RJ(β)) and set

F =
⊕
β∈Q+

Fβ : mod (RJ) −→ modU ′q(g).

The functor F is called the quantum affine Schur-Weyl duality functor. The basic properties
of F are summarized in the following theorem.
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Theorem 6.2 ([17]).

(a) The functor F restricts to
F : rep (RJ) −→ Cint,

where rep (RJ) :=
⊕

β∈Q+
rep (RJ(β)) and Cint denotes the category of finite dimen-

sional integrable U ′q(g)-modules.

(b) For each i ∈ J , let S(αi) := ku(i) be the 1-dimensional graded simple RJ(1)-
module defined by

e(j) u(i) = δij u(i), x1 u(i) = 0.

Then we have
F(S(αi)) ∼= (Vs(i))X(i),

where (Vs(i))X(i) is the evaluation module of Vs(i) at zi = X(i).

(c) F is a tensor functor; i.e., there exists a canonical U ′q(g)-module isomorphisms

F(RJ(0)) ∼= k, F(M ◦N) ∼= F(M)⊗ F(N)

forM ∈ rep (RJ(m)), N ∈ rep (RJ(n)).

(d) If the quiver ΓJ is of type An (n ≥ 1), Dn (n ≥ 4), E6, E7, E8, then F is exact.

7. The Categories TN and CN

Take k = C(q). Let g = A
(1)
N−1 be the affine Kac-Moody algebra of type A

(1)
N−1 and let

V = V ( 1) be the fundamental representation of U ′q(A
(1)
N−1) of weight  1.

Set S = {V }, J = Z and let X : Z → k× be the map given by j !→ q2j (j ∈ Z).
Then the normalized R-matrix Rnorm

V,V : Vz1 ⊗ Vz2 −→ Vz2 ⊗ Vz1 has the denominator

dV,V (z2/z1) = z2/z1 − q2. Hence we have

dij =

{
1 if j = i+ 1,

0 otehrwise,

which yields the quiver ΓJ of type A∞. Take PJ =
⊕

k∈Z Z εk to be the weight lattice and

let QJ =
⊕

k∈Z Z (εk − εk+1) be the root lattice. There is a bilinear form on PJ given by

(εa, εb) = δab.
For a ≤ b, let l = b − a + 1 and let L(a, b) := ku(a, b) be the 1-dimensional graded

simple RJ(εa − εb+1)-module defined by

xs u(a, b) = 0, τt u(a, b) = 0 (1 ≤ s ≤ l, 1 ≤ t ≤ l − 1),

e(ν)u(a, b) =

{
u(a, b) if ν = (a, a+ 1, . . . , b),

0 otherwise.

Then we have

F(L(a, b)) ∼=
{
V ( l)(−q)a+b if 0 ≤ l ≤ N,
0 if l > N,
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where F : mod (RJ(l)) −→ modU ′q(g) is the quantum affine Schur-Weyl duality functor.

Recall that Rep (RJ(l)) is the category of finite dimensional graded RJ(l)-modules. Set

R :=
⊕

l≥0 Rep (R
J(l)) and let S be the Smallest Serre subcategory of R such that

(i) S contains L(a, a+N) for all a ∈ Z,

(ii) X ◦ Y, Y ◦X ∈ S for all X ∈ R, Y ∈ S .

Take the quotient category R/S and let Q : R → R/S be the canonical projection

functor. Then we have:

Proposition 7.1 ([17]).

(a) The functor F factors through R/S . That is, there is a canonical functor FS :

R/S −→ modU ′q(g) such that the following diagram is commutative.

R

Q

��

F �� modU ′q(g)

R/S
FS

		

(b) The functor FS sends a simple object in R/S to a simple object in modU ′q(g).

Let La := L(a, a+N − 1) and ua := u(a, a+N − 1) ∈ La (a ∈ Z). Then F(La) is
isomorphic to the trivial representation of U ′q(g). Let S : PJ → PJ (εa !→ εa+N−1) be an
automorphism on PJ and let B be the bilinear form on PJ given by

B(x, y) := −
∑
k>0

(Skx, y) for all x, y ∈ PJ .

We define a new tensor product ! on R/S by

X ! Y := qB(α,β)X ◦ Y for X ∈ (R/S)α, Y ∈ (R/S)β .
Then there exists an isomorphism R(a)(X) : La ! X

∼−→ X ! La which is functorial in

X ∈ R/S . Moreover, the isomorphisms

Ra(Lb) : La ! Lb
∼−→ Lb ! La and Rb(La) : Lb ! La

∼−→ La ! Lb

are inverses to each other. One can verify that {La, Ra(Lb) | a, b ∈ Z} forms a commuting

family of central objects in (R/S, !) (see [17, Appendix A.6]).
Let T ′

N := (R/S)[L�−1
a | a ∈ Z] be the localization ofR/S by this commuting family

and define

TN := (R/S)[La ∼= 1 | a ∈ Z].

We denote by P : R/S → TN the canonical functor.
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Theorem 7.2 ([17]).

(a) The category TN is a rigid tensor category ; i.e., every object in TN has a right dual
and a left dual.

(b) The functor FS factors through TN . That is, there exists a canonical functor FN :
TN −→ modU ′q(g) such that the following diagram is commutative.

R

Q

��

F �� modU ′q(g)

R/S P
��

FS

		

TN

FN

��

(c) The functorFN is exact and sends a simple object in TN to a simple object in modU ′q(g).

Let CN be the smallest full subcategory of Cint consisting of U ′q(g)-modules M such

that every composition factor of M appears as a composition factor of a tensor product of

modules of the form V ( 1)q2j (j ∈ Z). Thus CN is an abelian category containing all

U ′q(g)-modules V ( i)(−q)i+2a−1 for 1 ≤ i ≤ N − 1 and a ∈ Z. Moreover, CN is stable

under taking submodules, quotients, extensions and tensor products. Hence FN restricts to

an exact functor

FN : TN −→ CN .
Let Irr (TN ) (respectively, Irr (CN )) denote the set of isomorphism classes of simple

objects in TN (respectively, in CN ). Define an equivalence relation on Irr (TN ) by setting

X ∼ Y if and only if X
∼→ qmY for somem ∈ Z. Set

Irr (TN )|q=1 := Irr (TN )
/ ∼ .

Theorem 7.3 ([17]).

(a) The functor FN induces a bijection between Irr (TN )|q=1 and Irr (CN ).

(b) The exact functor FN induces a ring isomorphism

φN : K(TN )|q=1
∼−→ K(CN ).

Therefore, the category TN provides a graded lifting of CN as a rigid tensor category.

8. The category CQ

In this section, we deal with affine Kac-Moody algebras g of type A
(1)
n (n ≥ 1), D

(1)
n

(n ≥ 4), E
(1)
6 , E

(1)
7 , E

(1)
8 . Let I = {0, 1, . . . , n} be the index set for the simple roots of

g and set I0 = I \ {0}. We denote by g0 the finite dimensional simple Lie subalgebra of g
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generated by ei, fi, hi (i ∈ I0). Thus g0 is of type An (n ≥ 1), Dn (n ≥ 4), E6, E7, E8,

respectively.

Let Q be the Dynkin quiver associated with g0. A function ξ : I0 → Z is called a height
function if ξj = ξi − 1 whenever we have an arrow i→ j.

Set

Î0 := {(i, p) ∈ I0 × Z | p− ξi ∈ 2Z}.
The repetition quiver Q̂ is defined as follows.

(i) We take Î0 to be the set of vertices.

(ii) The arrows are given by

(i, p) → (j, p+ 1), (j, q) → (i, q + 1)

for all arrows i→ j and p, q ∈ Z such that p− ξi ∈ Z, q − ξj ∈ Z.

For all i ∈ I0, let si(Q) be the quiver obtained fromQ by reversing the arrows that touch

i. A reduced expression w = si1 · · · sil ∈ W0 is said to be adapted to Q if ik is the source

of sik−1
· · · si1(Q) for all 1 ≤ k ≤ l. It is known that there is a unique Coxeter element

τ ∈W0 which is adaped to Q.
Set Δ̂ := Δ+ × Z, where Δ+ is the set of positive roots of g0. For each i ∈ I0, let

B(i) := {j ∈ I0 | there is a path from j to i} and define γi :=
∑

j∈B(i) αj . We define a

bijection φ : Î0 → Δ̂ inductively as follows.

(1) We begin with φ(i, ξi) := (γi, 0).

(2) If φ(i, p) = (β, j) is given, then we define

• φ(i, p− 2) := (τ(β), j) if τ(β) ∈ Δ+,

• φ(i, p− 2) := (−τ(β), j − 1) if τ(β) ∈ Δ−,

• φ(i, p+ 2) := (τ−1(β), j) if τ−1(β) ∈ Δ+,

• φ(i, p+ 2) := (−τ−1(β), j + 1) if τ−1(β) ∈ Δ−.

Let w0 be the longest element ofW0 and fix a reduced expression w0 = si1 · · · sil which
is adapted to Q. Set

J := {(i, p) ∈ Î0 | φ(i, p) ∈ Π0 × {0}},
where Π0 denotes the set of simple roots of g0. Take the maps X : J → k× and s : J →
{V ( i) | i ∈ I0} defined by

X(i, p) = (−q)p+h, s(i, p) = V ( i) for (i, p) ∈ J,
where h is the Coxeter number of g0.

Theorem 8.1 ([18]). For any (i, p), (j, r) ∈ J , assume that the normalized R-matrix
Rnorm
V (�i),V (�j)

(z)

has a pole at z = (−q)r−p of order at most 1. Then the following statements hold.
(a) The Cartan matrix AJ associated with (J,X, s) is of type g0.
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(b) There exists a quiver isomorphism

Qrev ∼−→ ΓJ , k !→ φ−1(αk, 0) (k ∈ I0),

where Qrev is the reverse quiver of Q.

(c) The functor F : rep (RJ) → Cint is exact and

F(S(αk)) ∼= V ( i)(−q)p+h ,

where φ(i, p) = (αk, 0).

Remark 8.2. When g is of type A
(1)
n (n ≥ 1) or D

(1)
n (n ≥ 4), then the condition in

Theorem 8.1 is satisfied. We conjecture that the same is true of g = E
(1)
6 , E

(1)
7 , E

(1)
8 .

We now bring out the main subject of our interest in this section. Let CQ be the smallest

abelian full subcategory of Cint such that

(i) CQ is stable under taking submodules, subquotients, direct sums and tensor products,

(ii) CQ contains all U ′q(g)-modules of the form V (β)z
/
(z−1)l V (β)z (β ∈ Δ+, l ≥ 1).

Here, V (β) = V ( i)(−q)p+h such that φ(i, p) = (β, 0).

Let Nilrep (RJ(β)) be the category of finite dimensional ungraded RJ(β)-modules such

that all xk’s act nilpotently and set

Nilrep (RJ) :=
⊕
β∈Q+

Nilrep (RJ(β)).

Note that every module in Nilrep (RJ) can be obtained by taking submodules, subquotients,

direct sums and convolution products of P (αk)
/
(xl1) (k ∈ I0, l ≥ 0), where P (αk) is the

projective cover of S(αk). Thus we obtain a well-defined functor

F : Nilrep (RJ) −→ CQ,

which satisfies the following properties.

Theorem 8.3 ([17, 18]).

(a) F is an exact tensor functor.

(b) F sends a simple object in Nilrep (RJ) to a simple object in CQ.

It is straightforward to verify that F is a faithful functor. Since CQ is the smallest abelian

full subcategory of Cint satisfying the conditions (i) and (ii) given above, we conjecture that

F is full and defines an equivalence of categories.

Remark 8.4. Note that our general approach to quantum affine Schur-Weyl duality applies

to all quantum affine algebras and any choice of good modules. Thus we expect there are

a lot more exciting developments to come. It is an interesting question whether our general

construction can shed a new light on the hidden connection between quantum affine algebras

and cluster algebras (cf. [12]).
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Model theory and algebraic geometry in groups,
non-standard actions and algorithmic problems

Olga Kharlampovich and Alexei Myasnikov

Abstract. We discuss the modern theory of equations in groups, algebraic geometry and model the-

ory in free and hyperbolic groups, as well as group actions on Λ-trees. One of our main tools is a

combinatorial process that combines and generalizes a number of known results and algorithms, such

as the Makanin-Razborov process for solving equations in groups, Rauzy-Veech induction in dynam-

ical systems, classification of basic group actions in group theory and topology, and elimination and

parametrization theorems in classical algebraic geometry. The development of algebraic geometry

comes together with advances in the theory of fully residually free and fully residually hyperbolic

groups, which are coordinate groups of irreducible algebraic varieties. We describe finitely generated

groups elementarily equivalent to a free non-abelian group (another classification is given by Sela) and

show that the first-order theory of a free or a torsion-free hyperbolic group is decidable (solution to

Tarski’s problems from 1940’s). Furthermore, for such groups we give an algorithm for elimination

of quantifiers to boolean combinations of ∀∃-formulas. We also provide a description of definable

sets in a torsion-free hyperbolic group (in particular, in a free group) and demonstrate that only cyclic

subgroups and the whole group are definable in these groups (this solves Malcev’s problem of 1965).

In the group actions section we describe all finitely presented groups acting freely on Λ-trees (solution
to Alperin’s and Bass problem of 1990). At the end we outline some related open problems.

Mathematics Subject Classification (2010). Primary 20E05; Secondary 20A15, 20F67.

Keywords. Free group, model theory, group actions.

1. Fundamental questions in model-theoretic algebra

In this section we consider some fundamental model-theoretic questions that should be asked

about a given algebraic structure (a group, a ring, etc.), or a class of structures, to understand

its principal algebraic and logical properties. These questions include: elementary clas-

sification and decidability of the theory (Tarski’s type questions), description of definable

sets (Malcev’s problems), quantifier elimination (to some set of formulas), elementary em-

beddings and model completeness (Robinson’s questions), types of elements and stability,

natural axioms of the theory, models of the universal theory and related algebraic geometry,

Fraisse limits and existentially closed structures. Addressing these questions could be a hard

task, but many interesting results appeared along this way.

The language L of group theory consists of multiplication ·, inversion −1, and a constant

symbol 1 for the identity in the group. For a given groupG one may add all elements ofG as

constants to the language L, thus obtaining a language LG. If G is generated by a finite set

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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A it suffices to include only elements of A into the language. By φ(p1, . . . , pn) we denote
a first-order formula in the language L (or LG) whose free variables are contained in the set

{p1, . . . , pn}. We will also use tuple notation φ(P ) where P = (p1, . . . , pn) for variables.
Each first-order formula can be represented as

φ(P ) = ∃x1∀y1 . . . ∃xn∀ynφ0(P,X, Y ),
where φ0(P,X, Y ) has no quantifiers. A formula without free variables is called a sentence.

The first order theory Th(G) of a group G is the set of all first-order sentences in L (or in

LG) that are true in G. Th(G) is all the information about G describable in first-order logic.

Groups G and H are elementarily equivalent if Th(G) = Th(H). Similarly one defines

the first order theory of a ring, or a field (the language in this case consists of addition,

multiplication, zero and identity elements), or an arbitrary structure.

Let K be a class of groups (or rings). Elementary classification for K is a problem to

describe (in algebraic terms) elementarily equivalent groups inK, while decidability problem
for K asks to describe groups G in K with decidable Th(G). The class K could be the class

of all groups, or all finitely generated groups, or some other interesting class of groups.

A subset S ⊆ Gn is definable in a group (ring, structure) G if there exists a first-order

formula φ(P ) in LG such that S is precisely the set of all tuples P in Gn for which φ(P )
holds inG. We say that S is definable without parameters if it is defined by a formula φ ∈ L.
Malcev’s type problems concern with description of all definable sets in a given group G, or
some of them, say definable subgroups.

By quantifier elimination we understand quantifier elimination to some set of formulas
E, called the eliminating set. In this case for every formula φ(P ) of a language L (or LG)
there exists a formula φ∗(P ), which is a boolean combination of formulas from E, such that
φ is equivalent to φ∗ in G. A quantifier elimination is computable (effective) if the function

φ→ φ∗ is computable. If formulas from the setE are simple enough a quantifier elimination

to E gives a powerful tool to study Th(G). We do not discuss much of model completeness,

or Fraisse limits, or existentially closed groups in a class K, in this paper, so we refer for

definitions to [28].

We discuss below several examples in algebra where the elementary theories were stud-

ied and the principle questions addressed.

Example 1.1. Tarski himself showed for the field C of complex numbers and its first-order

theory Th(C) that Th(C) = Th(F ) if and only if F is an algebraically closed field of char-

acteristic 0; Th(C) is decidable; definable sets are precisely the constructible sets (boolean

combinations of algebraic sets). The axioms of the theory state that the characteristic is 0,

and every equation has a solution. Types of elements are described. This led to the devel-

opment of the theory of algebraically closed fields. This theory admits elimination of quan-

tifiers, namely, every formula is logically equivalent (in the theory of algebraically closed

fields) to a boolean combination of quantifier-free formulas. Th(C) is stable, ℵ1-categorical

and model complete. All fields are models of the ∀-theory of C.
Example 1.2. Tarski showed, by the method of quantifier elimination, that the first-order

theory of the real numbers R under addition and multiplication is decidable. While this

result appeared only in 1948, it dates back to 1930. This is a very interesting result, because

Church proved in 1936 that Peano arithmetic (the theory of natural numbers) is not decidable.

The theory of real closed fields was developed by Artin and Schreier after Artin’s solution

to 17th Hilbert Problem. Th(R) is decidable; Th(R) = Th(F ) if and only if F is a real
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closed field; Th(R) is not stable (one can define an order in R), intervals and their boolean

combinations are definable sets.

A real closed field is an ordered field of characteristic 0, where every odd degree poly-

nomial has a root and every element or its negative is a square (axioms of ∀-theory). There
are many types (2ω1 ). Models of the ∀-theory are formal real fields. There is quantifier

elimination to quantifier free formulas and formulas ∃t(x = t2).

Example 1.3. We briefly state some well-known results on elementary theories of abelian

groups: elementary theory of an abelian group A has quantifier elimination to positive prim-

itive formulas, i.e., formulas of the type ∃x1 . . . ∃xnφ, where φ is a conjunction of positive

atomic formulas (equations in the case of groups); this quantifier elimination is effective if

and only if A has decidable index problem; the theory of A is stable; all abelian torsion-

free groups are universally equivalent; definable subsets are boolean combinations of cosets;

there is a precise elementary classification of all abelian groups in terms of some invari-

ants; Fraisse limits in the class of finitely generated torsion-free abelian groups are Q-vector

spaces of countable dimension.

2. Results in free and hyperbolic groups

Around 1945 A. Tarski put forward two problems on elementary theories of free groups that

served as a motivation for much of the research in group theory and logic for the last sixty

years. A joint effort of mathematicians of several generations culminated in the following

theorems, solving these Tarski’s conjectures. Denote by Fn a free group of rank n.

Theorem 2.1 ([33]-[38], [71]-[73]). Th(Fn) = Th(Fm), for allm,n > 1.

Theorem 2.2 ([33]-[39]). The elementary theory Th(F ) of a free group F even with con-
stants from F in the language is decidable.

In the 60s Malcev was a leader of the very active Novosobirsk school studying similar

questions. Malcev himself proved that the elementary theory of the class of all finite groups

is undecidable, Ershov proved the undecidability of the theories of symmetric and finite

simple groups, and also obtained axioms and the decidability of the first-order theory of the

field of p-adic numbers Qp. The results of Ershov, Romanovskii and Noskov imply that the

elementary theory of a finitely generated virtually solvable group is decidable if and only if

the group is virtually abelian.

The following questions were asked by Malcev ([32], Problem 1.19) for a free non

abelian group F : “Describe definable sets in F ; describe definable subgroups in F ; is the
commutator subgroup [F, F ] of F definable in F ?”

Before answering these questions we consider some examples.

Example 2.3. Let W (P,A) = 1 be an equation (with constants) in a group G. Then the

algebraic set VG(W ) = {g ∈ Gn |W (g,A) = 1} is definable in G.
Let w(x1, . . . , xn) ∈ F (X) be a group word. Then the set

w[G] = {g ∈ G | g = w(h1, . . . , hn) for some h1, . . . , hn ∈ G}
is called a verbal set and is defined in G by the formula

φ(p) = ∃y1 . . . ∃yn(p = w(y1, . . . , yn)).
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So w[G] = {g ∈ G | G |= φ(g)}. In particular, the set of all commutators is definable in G.

Example 2.4. Another example of definable set is the set of all bases in F2 = F2(a, b). This
is based on Nielsen’s theorem that states that elements g, h ∈ F2 form a basis if and only

if [g, h] is conjugated either to [a, b] or [b, a]. Hence the set of bases in F2 is defined by the

following formula

φ(p1, p2) = ∃z([p1, p2] = z−1[a, b]z ∨ [p1, p2] = z
−1[b, a]z).

Therefore the set of primitive elements of F2 is definable.

Example 2.5. The center and the centralizer of a finite subset are definable in any group

G. In particular, maximal cyclic subgroups are definable in a free group or a torsion-free

hyperbolic group (in the language with constants), and, therefore, all cyclic subgroups are

definable.

For a word w(x1, . . . , xn) ∈ F (X) the subgroup w(G) in a group G generated by the

verbal set w[G] is called the verbal subgroup ofG defined by w. The verbal subgroup w(G)
has finite width if there is a number k such that every element in w(G) is a product of at

most k values of the word w in G or their inverses. A verbal subgroup w(G) of finite width
is definable in G (without parameters).

The commutator subgroup [G,G] is the verbal subgroup of G defined by the word

[x1, x2]. Malcev asked about the commutator subgroup of F because if the commutator

subgroup were definable the same formula in the free groups of different rank, this would

imply that free groups of different ranks are not elementarily equivalent. In the case of

abelian, nilpotent and solvable groups the situation is different than in a free group. Let Am
be a free abelian group of rank m. The verbal subgroup A2

m has width 1 in Am, hence it

is definable. Am/A
2
m is a vector space of dimension m over the field Z2 of two elements.

Using definability of A2
m one can write a sentence Dm (without parameters) stating that the

dimension of the space Am/A
2
m is precisely m. Therefore two free abelian groups of finite

rank are elementarily equivalent if and only if they are isomorphic (therefore have the same

rank).

Let G be a finitely generated free nilpotent group of rank m and class c. The com-

mutator subgroup [G,G] has finite width, hence it is definable in G. So the abelianization

G/[G,G] � Am is interpretable in G. Again, one can write down a sentence stating that

the rank of the abelianization of G is precisely m. Two free nilpotent groups of finite rank

are elementarily equivalent if and only if they are isomorphic. Similarly, two free solvable

groups of finite rank are elementarily equivalent iff they are isomorphic.

Proper verbal subgroups in non-abelian free group F have infinite width [68]. The same

is true for arbitrary non-elementary hyperbolic groups [59].

Theorem 2.6 ([38, 73]). Every formula in the theory of F is equivalent to the boolean
combination of ∀∃-formulas.

Every definable subset of F is defined by some boolean combination of formulas

∃X∀Y (∨ki=1(Ui(P,X, Y ) = 1 ∧ Vi(P,X, Y ) �= 1)), (2.1)

where X,Y, P are tuples of variables.

Theorem 2.7 ([74]). Every formula in the theory of a non-elementary torsion-free hyper-
bolic group G is equivalent to a boolean combination of ∀∃-formulas. The theory is stable.
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Theorem 2.8 ([41]). Let Γ be a torsion free hyperbolic group. There exists an algorithm,
given a first-order formula φ to find a boolean combination of ∀∃-formulas that define the
same set as φ over Γ.

The elementary theory of a torsion-free hyperbolic group is decidable.

Notice that in the language LG every finite system of equations in a free group is equiv-

alent to one equation (this is Malcev’s result) and every finite disjunction of equations is

equivalent to one equation (this is attributed to Gurevich). The same is true in a torsion-free

hyperbolic group [40].

For a free and for a torsion-free hyperbolic groupG a more precise result about quantifier

elimination holds.

Theorem 2.9 ([40]). Every definable set over G (in particular, over F ) in the languige LG
is defined by some boolean combination of formulas

∃X∀Y (U(P,X) = 1 ∧ V (P,X, Y ) �= 1), (2.2)

where X,Y, P are tuples of variables.

The following theorem gives a solution to Malcev’s problem, it describes definable sub-

groups in a torsion-free hyperbolic group.

Theorem 2.10 ([40]). Proper non-cyclic subgroups of a torsion free hyperbolic group (in
particular, of a free group F ) are not definable.

In the same paper [40] we prove that the set of primitive elements of F is not definable

if rank(F ) > 2.
The definition of a sub-multi pattern used in the theorem below is technical. It is Defini-

tion 6 in [40].

Theorem 2.11 ([40]). For every definable set P ⊆ Fm in a free group F , either P or its
complement ¬P is a sub-multipattern.

This theorem implies Bestvina and Feighn’s conjecture that every definable set in F is

either negligible or co-negligible (Definition 15 in [40].)

Negligible subsets in that sense are also negligible in a sense of complexity theory. Recall

that in complexity theory T ⊆ F (X) is called generic if

ρn(T ) =
|T ∩Bn(X)|

|Bn(X)| → 1, as n→ ∞,

where Bn(X) is the ball of radius n in the Cayley graph of F (X). A set is called negligible

is its complement is generic.

3. Equations, algebraic geometry, and universal theory

The work of mathematicians on the Tarski conjectures was rather fruitful - several areas of

group theory were developed along the way. It was clear from the beginning that one needs

a precise description of solution sets of systems of equations over free groups and a robust
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theory of finitely generated groups which satisfy the same universal (existential) formulas

as a free non-abelian group. Basics of algebraic (or Diophantine) geometry over groups had

been outlined by Baumslag, Miasnikov and Remeslennikov in [6], while the fundamentals

of the elimination theory and the theory of fully residually free groups appeared in the works

[33, 34]. Those two papers contain results that became fundamental for the proofs of the

above theorems.

3.1. Milestones in the theory of equations in free groups. The first general results on

equations in groups appeared in the 1960’s [51]. Lyndon introduced an axiomatic theory

of length functions and initiated the study of fully residually free groups. He proved [50]

that the completion FZ[t] of a free group F by the polynomial ring Z[t] is discriminated by

F . This is, actually, a Fraisse model in the appropriate category. Notice, that the class of

limit groups has joint embedding property and it is closed under taking subgroups, but it is

not closed under amalgamation, so the standard Fraisse theorem does not apply. However,

replacing arbitrary embeddings with ∃1-embeddings (i.e., discriminating embeddings) one

can reproduce the Fraisse construction and get similar results. If we further restrict the class

of ∃1-embeddings allowing only free products and centralizer extensions then the Fraisse

models in this category will be all isomorphic to FZ[t].
Malcev [56] described solutions of the equation zxyx−1y−1z−1 = aba−1b−1 in a free

group. The description uses the group of automorphisms of the coordinate group of the

equation, and the minimal solutions relative to these automorphisms - a very powerful idea,

that nowadays is inseparable from the modern approach to equations.

Merzljakov proved [55] a remarkable theorem that any two nonabelian free groups of fi-

nite rank have the same positive theory, and also showed that positive formulas in free groups

have definable Skolem functions, thus giving quantifier elimination of positive formulas in

free groups to existential formulas. Recall that the positive theory of a group consists of all

positive (without negations in their normal forms) sentences that are true in this group.

In the 1980’s new crucial concepts were introduced. Makanin proved [52] the algorith-

mic decidability of the Diophantine problem over free groups, and showed that both the

universal theory and the positive theory of a free group are algorithmically decidable. He

created an extremely powerful technique (the Makanin elimination process) to deal with

equations over free groups.

Shortly afterwards, Razborov described the solution set of an arbitrary system of equa-

tions over a free group in terms of what is known now as Makanin-Razborov diagrams

[66, 67].

Solution sets of arbitrary quadratic equations over free groups were described in [15] and

[23]. These equations came to group theory from topology and their role in group theory was

not altogether clear then. Now they form one of the corner-stones of the theory of equations

in groups, due to their relations to JSJ-decompositions of groups and NTQ systems.

3.2. Basic notions of algebraic geometry over groups. Following [6] and [35] we intro-

duce here some basic notions of algebraic geometry over groups.

Let G be a group generated by a finite set A, F (X) be a free group with basis X =
{x1, x2, . . . xn}, define G[X] = G ∗ F (X). If S ⊂ G[X] then the expression S = 1 is

called a system of equations over G. As an element of the free product, the left side of every

equation in S = 1 can be written as a product of some elements from X ∪X−1 (which are

called variables) and some elements from A (constants). To emphasize this we sometimes
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write S(X,A) = 1.
A solution of the system S(X,A)=1 over a groupG is a tuple of elements g1,. . . ,gn ∈ G

such that after replacement of each xi by gi the left hand side of every equation in S = 1
turns into the trivial element of G. To study equations over a given fixed group G it is con-

venient to consider the category of G-groups, i.e., groups which contain the group G as a

distinguished subgroup. If H and K are G-groups then a homomorphism φ : H → K is a

G- homomorphism if gφ = g for every g ∈ G, in this event we write φ : H →G K. In this

category morphisms are G-homomorphisms; subgroups are G-subgroups, etc. A solution

of the system S = 1 over G can be described as a G-homomorphism φ : G[X] −→ G
such that φ(S) = 1. Denote by ncl(S) the normal closure of S in G[X], and by GS the

quotient group G[X]/ncl(S). Then every solution of S(X,A) = 1 in G corresponds to a

G-homomorphism GS → G, and vice versa. By VG(S) we denote the set of all solutions in
G of the system S = 1, it is called the algebraic set defined by S. The algebraic set VG(S)
uniquely corresponds to the normal subgroup

R(S) = {T (x) ∈ G[X] | ∀A ∈ Gn(S(A) = 1 → T (A) = 1}

of the group G[X]. Notice that if VG(S) = ∅, then R(S) = G[X]. The subgroup R(S)
contains S, and it is called the radical of S. The quotient group

GR(S) = G[X]/R(S)

is the coordinate group of the system S(X,A) = 1. Again, every solution of S(X) = 1 in

G can be described as a G-homomorphism GR(S) → G.
A group G is called a CSA group if every maximal abelian subgroup M of G is mal-

normal, i.e., Mg ∩M = 1 for any g ∈ G −M. The abbreviation CSA means conjugacy

separability for maximal abelian subgroups. The class of CSA-groups is quite substantial.

It includes all abelian groups, all torsion-free hyperbolic groups, all groups acting freely on

Λ-trees and many one-relator groups (see, for example, [22].

We can define a Zariski topology on Gn by taking algebraic sets in Gn as a sub-basis for

the closed sets of this topology.

A group G is called equationally Noetherian if every system S(X) = 1 with coeffi-

cients from G is equivalent over G to a finite subsystem S0 = 1, where S0 ⊂ S, i.e.,
VG(S) = VG(S0). It is known that linear groups (in particular, fully residually free groups)

are equationally Noetherian (see [6, 9, 21]). Torsion-free hyperbolic groups are also equa-

tionally Noetherian [71]. If G is equationally Noetherian then the Zariski topology on Gn

is Noetherian for every n, i.e., every proper descending chain of closed sets in Gn is finite.

This implies that every algebraic set V in Gn is a finite union of irreducible subsets (called

irreducible components of V ), and such decomposition of V is unique. Recall that a closed

subset V is irreducible if it is not a union of two proper closed subsets.

3.3. Fully residually free groups (limit groups) and Γ-limit groups. Finitely generated

fully residually free groups (limit groups) play a crucial role in the theory of equations and

first-order formulas over a free group. Recall that a group G is called fully residually free
(or freely discriminated, or ω-residually free) if for any finite subset of non-trivial elements

g1, . . . , gn ∈ G there exists a homomorphism φ ofG into a free group F , such that φ(gi) �= 1
for i = 1, . . . , n. These groups are torsion-free, have the CSA property, each of their abelian

subgroup is finitely generated, they are finitely presented [34] and linear.
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Below, let Γ be a torsion-free hyperbolic group. A groupG is fully residually Γ if for any

finite set of non-trivial elements g1, . . . , gn ∈ G there exists a Γ-homomorphism φ from G
to Γ such that φ(gi) �= 1 for i = 1, . . . , n. The following result appears for general algebras

in [18]. We will formulate it for fully residually Γ groups.

Proposition 3.1. Let G be a finitely generated Γ-group (containing a distinguished copy of
Γ). Then the following conditions are equivalent:

(1) G is fully residually Γ;

(2) G is universally equivalent to Γ (in the language with constants);

(3) G is the coordinate group of an irreducible algebraic set over Γ;

(4) G is a Γ- limit group;

(5) G embeds into an ultrapower of Γ with Γ embeddded diagonally.

3.4. Structure and embedding. Let Γ be a torsion-free hyperbolic group. An iterated
centralizer extension of Γ can be obtained from Γ by a chain of HNN-extensions of a very

specific type, so-called extensions of centralizers: Γ = G0 < G1 < . . . < Gn where

Gi+1 = 〈Gi, ti | [CGi(ui), ti] = 1〉 (extension of the centralizer CGi(ui), where ui ∈ Gi).
Theorem 3.2 ([34, 35]). Given an irreducible system S = 1 over F one can effectively
embed the coordinate group FR(S) into FZ[t] i.e., one can find n ∈ N and an embedding
FR(S) → Gn into an iterated centralizer extension Gn of F . The analogous result is true
for a torsion-free hyperbolic group Γ in place of F [41, 42].

Since every subgroup of a free group is free, this implies that every finitely generated

fully residually free group is finitely presented (this is not true for fully residually Γ groups).

This allows one to study the coordinate groups of irreducible systems of equations via

their splittings into graphs of groups. This also provides a complete description of limit

groups (Γ-limit groups) and gives a lot of information about their algebraic structure. In

particular, limit groups act freely on Zn-trees with lexicographic order, and all limit groups

(strict Γ-limit groups), except for abelian and surface groups, have a non-trivial cyclic JSJ-

decomposition.

Let K be an HNN-extension of a group G with associated subgroups A and B. K is

called a separated HNN-extension if for any g ∈ G, Ag ∩B = 1.

Corollary 3.3 ([42]). Let G be a Γ-limit group. There exists a group H isomorphic to G
that can be obtained from a finite family Γ1, . . . ,Γm of finitely generated subgroups of Γ and
free abelian groups of finite rank by a finite sequence τ = (τ1, . . . , τk) of operations of the
following type: free products, free products with abelian amalgamated subgroups (at least
one of which is a maximal abelian subgroup in its factor), free extensions of centralizers,
and separated HNN-extensions with abelian associated subgroups (at least one of which is
maximal).

If G is given as the coordinate group of a finite system of equations over Γ or as a
subgroup of an iterated centralizer extension of Γ (by a finite set of generators), then there
is an algorithm to find a sequence τ as above, as well as the required family of subgroups
Γ1, . . . ,Γm of Γ (given by their finite generating sets), and an isomorphism between G and
H .

Therefore if G is given as a subgroup of an iterated centralizer extension, we can find its

representation as a coordinate group of a finite system of equations.
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3.5. NTQ systems and groups. Elimination process (EP) is a symbolic rewriting process

of a certain type that transforms formal systems of equations in groups or semigroups. Elim-

ination processes proved to be crucial in solving various problems in groups: finding solu-

tions of equations, finding non-trivial abelian splittings and JSJ decompositions, describing

algebraic structure of the coordinate groups of irreducible systems of equations over a given

group, classifying groups acting freely on Λ-trees, etc. They may differ a lot from one an-

other, but they always have some common features. Most of these common features can be

traced back to the original Makanin-Razborov process [66, 67], but there is a crucial one that

appear first in 1996 in the paper [34], were it was used to obtain an effective description of

solutions of equations in free (and fully residually free ) groups in a particularly nice form.

In general, this new feature can be described as an algorithm to reduce a given system of

group equations over a group G (which is either free or has a free length function or is close

in some sense to a free group) to a finite number of systems of equations in the triangular
quasi-quadratic form (an analog of Gauss elimination process in the non-commutative set-

ting). At the level of algebraic geometry this algorithm finds all irreducible components of

a given algebraic set over G, in particular it embeds the coordinate group of a given system

of equations in G into a finite direct product of NTQ groups (later Sela referred to NTQ

groups as ω-residually free towers [71]). While at the level of groups the algorithm gives

an embedding of a finitely generated residually G group into a finite direct product of fully

residually G groups. Of course, this algorithm does not work for arbitrary groups G, but it
does for quite a few of them (see, for example,[10, 11, 41, 44]).

Now we give formal definitions and describe some results.

Triangular quasi-quadratic (TQ) system is a finite system that has the following form

S1 (X1, X2, . . . , Xn, A) = 1,

S2 (X2, . . . , Xn, A) = 1,

...

Sn (Xn, A) = 1

where either Si = 1 is quadratic in variables Xi, or Si = 1 is a system [xj , xk] = 1 and, in

addition, equations [x, u] = 1 for all x, xj , xk ∈ Xi and some u ∈ FR(Si+1,...,Sn) or Si is
empty.

A TQ system above is non-degenerate (NTQ) if for every i, Si(Xi, . . . , Xn, A) = 1 has
a solution in the coordinate group Gi = FR(Si+1,...,Sn), where Gn = F (or Gn = Γ).

We proved in [33] (see also [35]) that NTQ systems define irreducible algebraic sets and,
therefore, their coordinate groups, where the radical is computed in a non-abelian free group

F (A) (respectively, with the radical computed in a free product of Γ(A) and a free group),

that are called NTQ groups, are fully residually free (resp., fully residually Γ).
We represented a solution set of a system of equations canonically as a union of solutions

of a finite family of NTQ groups.

Theorem 3.4 ([34, 35]). One can effectively construct EP that starts on an arbitrary system

S(X,A) = 1

over F and results in finitely many NTQ systems

U1(Y1, A) = 1, . . . , Um(Ym, A) = 1
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such that
VF (S) = P1(V (U1)) ∪ . . . ∪ Pm(V (Um))

for some word mappings P1, . . . , Pm. (Pi maps a tuple Ȳi ∈ V (Ui) to a tuple X̄ ∈ VF (S).
One can think about Pi as an A-homomorphism from FR(S)into FR(Ui), then any solution
ψ : FR(Ui) → F pre-composed with Pi gives a solution φ : FR(S) → F ).

Similarly one can effectively describe a solution set of a a system over a torsion-free

hyperbolic group Γ [44].

Our elimination process can be viewed as a non-commutative analog of the classical

elimination process in algebraic geometry.

A Hom-diagram is a finite rooted directed tree with groups assigned to its vertices and

homomorphisms assigned to the edges. Here all groups, except, maybe, the one in the

root, are fully residually Γ, (given by a finite presentation relatively to a finite number of

finitely generated subgroups of Γ) arrows pointing down (except the last one) correspond to

fixed epimorphisms (defined effectively in terms of generators) with non-trivial kernels, and

loops correspond to automorphisms of the coordinate groups. A family of homomorphisms

encoded in a path from the root to the leaf of this tree (each homomorphism in the family is

a composition of a sequence of automorphisms and fixed epimorphisms assigned to edges)

is called a fundamental sequence of homomorphisms.

ΓR(S)



 �� ��
ΓR(S1)

σ1



�� ��

ΓR(S2) · · · ΓR(Sn)

ΓR(S21) · · · ΓR(S2m)

�� ��

σ2m



· · ·

· · · ΓR(Slk)

��
Γ ∗ F (T ) ∗H1 ∗ . . . Hs

��
Γ

where H1, . . . , Hs are isomorphic to finitely generated subgroups of Γ, the arrows pointing
to the leaf correspond to embeddings of H1, . . . , Hs into Γ and arbitrary specializations of

free variables from T .

Theorem 3.5 ([34, 35, 41]). All solutions of the system of equations S = 1 in Γ can be
effectively represented as homomorphisms from ΓR(S) into Γ encoded into a finite canonical
Hom-diagram.
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Therefore the solution set of the system S = 1 consists of a finite number of fundamental

sequences. And each fundamental sequence “factors through” one of the NTQ systems

from Theorem 3.4 (or the analogous theorem for Γ). If S = 1 over Γ is irreducible, or,

equivalently, G = ΓR(S) is fully residually Γ, then, obviously, one of the fundamental

sequences discriminates G. This gives the following result.

Theorem 3.6 ([34, 35, 41]). A finitely generated fully residually Γ group G is a subgroup of
the coordinate group of an NTQ system. There is an algorithm to construct this embedding.
There is an algorithm to construct an abelian JSJ decomposition of G.

This corresponds to the extension theorems in the classical theory of elimination for

polynomials.

Since NTQ groups are fully residually Γ, fundamental sequences corresponding to dif-

ferent NTQ groups discriminate fully residually Γ groups which are coordinate groups of

irreducible components of system S(X,A) = 1. This implies

Theorem 3.7 ([34, 35, 41]). There is an algorithm to find irreducible components for a
system of equations S(X,A) = 1 over Γ. Equivalently, there is an algorithm to find maximal
limit quotients of the coordinate group of S(X,A) = 1.

3.6. Subgroups of limit groups.

Theorem 3.8. Let G be a limit group.

(1) All finitely generated subgroups of G are quasi-isometrically embedded,

(2) Given a finite set of elements of G we can find a finite presentation of a subgroup
generated by this set,

(3) All the classcal algorithmic problems for subgroups ofG are decidable (see [38, §8]).

4. Groups elementarily equivalent to non-abelian free groups

If an NTQ group, with the radical computed in a non-abelian free group, does not contain

non-cyclic abelian groups we call it regular NTQ group. We have shown in [34] that regular

NTQ groups are hyperbolic.

Theorem 4.1 ([38]). Regular NTQ groups are exactly the finitely generated models of the
elementary theory of a non-abelian free group.

Sela also gave a description of finitely generated models of the elementary theory of a

non-abelian free group in terms of hyperbolic ω-residually free towers ([73], Theorem 7).

However, it was not quite correct, the definition of a hyperbolic ω-residually free tower given
in [73] had to be changed. It was partially corrected in [63] and completely corrected in [64].

5. Group actions

We investigate non-Archimedean group actions, length functions and infinite words using the

same elimination process that we use for solving equations in a free group. In [50] Lyndon
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introduced real-valued length functions as a tool to carry over Nielsen cancelation theory

from free groups to a more general setting. Some results in this direction were obtained in

[3, 25–27, 65]. In [12] Chiswell described a crucial construction which shows that a group

with a real-valued length function has an action on an R-tree, and vice versa. Later, Morgan

and Shalen realized that a similar construction and results hold for an arbitrary group with

a Lyndon length function which takes values in an arbitrary ordered abelian group Λ (see

[61]). In particular, they introduced Λ-trees as a natural generalization of R-trees which they
studied in relation with Thurston’s Geometrization Program. Thus, actions on Λ-trees and
Lyndon length functions with values in Λ are two equivalent languages describing the same

class of groups. In the case when the action is free (the stabilizer of every point is trivial) we

call groups in this class Λ-free. We refer to the book [13] for a detailed discussion on the

subject.

One of the major events in combinatorial group theory in 1970’s was the development

of Bass-Serre theory. We refer to the book [76], where Serre laid down fundamentals of the

theory of groups acting freely on simplicial trees. In particular, Bass-Serre theory makes it

possible to extract information about the structure of a group from its action on a simplicial

tree. Alperin and Bass [2] developed the initial framework of the theory of group actions

on Λ-trees and stated the fundamental research goals: find the group theoretic information

carried by an action (by isometries) on a Λ-tree; generalize Bass-Serre theory to actions on

arbitrary Λ-trees.
A joint effort of several researchers culminated in a description of finitely generated

groups acting freely on R-trees [8, 20], which is now known as Rips’ theorem: a finitely

generated group acts freely on an R-tree if and only if it is a free product of free abelian

groups and surface groups (with an exception of non-orientable surfaces of genus 1, 2, and
3). The key ingredient of this theory is the so-called “Rips machine”, the idea of which

comes from Makanin’s algorithm for solving equations in free groups (see [52]). The Rips

machine appears in applications as a general tool that takes a sequence of isometric actions

of a group G on some “negatively curved spaces” and produces an isometric action of G
on an R-tree as the Gromov-Hausdorff limit of the sequence of spaces. Free actions on

R-trees cover all Archimedean actions, since every group acting freely on a Λ-tree for an

Archimedean ordered abelian group Λ also acts freely on an R-tree.
In the non-Archimedean case there were only partial results for particular choices of Λ.

First of all, in [4] Bass studied finitely generated groups acting freely on Λ0 ⊕ Z-trees with
respect to the right lexicographic order on Λ0 ⊕ Z, where Λ0 is any ordered abelian group.

In this case it was shown that the group acting freely on a Λ0 ⊕ Z-tree splits into a graph

of groups with Λ0-free vertex groups and maximal abelian edge groups. Next, Guirardel

(see [24]) obtained the structure of finitely generated groups acting freely on Rn-trees (with
the lexicographic order). In [46] the authors described the class of finitely generated groups

acting freely and regularly on Zn-trees in terms of HNN-extensions of a very particular type.

The action is regular if all branch points are in the same orbit. The importance of regular

actions becomes clear from the results of [48], where we proved that a finitely generated

group acting freely on a Zn-tree is a subgroup of a finitely generated group acting freely and
regularly on a Zm-tree for m � n, and the paper [14], where is was shown that a group

acting freely on a Λ-tree (for arbitrary Λ) can always be embedded in a length-preserving

way into a group acting freely and regularly on a Λ-tree (for the same Λ).
In [45] we gave a partial solution (for finitely presented groups) of the following main

problem of the Alperin-Bass program.
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Problem. Describe finitely presented (finitely generated) Λ-free groups for an arbitrary or-

dered abelian group Λ.

We proved the following results.

Theorem 5.1. Any finitely presented regular Λ-free group G can be represented as a union
of a finite series of groups

G1 < G2 < · · · < Gn = G,

where

(1) G1 is a free group,

(2) Gi+1 is obtained from Gi by finitely many HNN-extensions in which associated sub-
groups are maximal abelian, finitely generated, and the associated isomorphisms pre-
serve the length induced from Gi.

Theorem 5.2. Any finitely presented Λ-free group can be isometrically embedded into a
finitely presented regular Λ-free group.

Theorem 5.3. Any finitely presented Λ-free group G is Rn-free for an appropriate n ∈ N,
where Rn is ordered lexicographically.

Theorem 5.4. Let G be a finitely presented group with a free Lyndon length function l :
G→ Λ. Then the subgroup Λ0 generated by l(G) in Λ is finitely generated.

The following result automatically follows from Theorem 5.1 and Theorem 5.2 by simple

application of Bass-Serre Theory.

Theorem 5.5. Any finitely presented Λ-free group G can be obtained from free groups by a
finite sequence of amalgamated free products and HNN extensions along maximal abelian
subgroups, which are free abelian groups of finite rank.

The following result concerns abelian subgroups ofΛ-free groups. ForΛ = Zn it follows
from the main structural result for Zn-free groups and [47], for Λ = Rn it was proved in

[24]. The statement 1) below answers Question 2 (page 250) from [13] in the affirmative for

finitely presented Λ-free groups.

Theorem 5.6. Let G be a finitely presented Λ-free group. Then:

(1) every abelian subgroup of G is a free abelian group of finite rank, which is uniformly
bounded from above by the rank of the abelianization of G.

(2) G has only finitely many conjugacy classes of maximal non-cyclic abelian subgroups,

(3) G has a finite classifying space and the cohomological dimension of G is at most
max{2, r} where r is the maximal rank of an abelian subgroup of G.

Theorem 5.7. Every finitely presented Λ-free group is hyperbolic relative to its non-cyclic
abelian subgroups.

This follows from the structural Theorem 5.1 and the Combination Theorem for rela-

tively hyperbolic groups [16].

The following results answers affirmatively the strongest form of the Problem (GO3)

from the Magnus list of open problems [5], in the case of finitely presented groups.
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Corollary 5.8. Every finitely presented Λ-free group is biautomatic.

Proof. This follows from Theorem 5.7 and Rebbechi’s result [70].

Definition 5.9. A hierarchy for a group G is a way to repeatedly build it starting with trivial

groups by repeatedly taking amalgamated products A ∗C B andHNN extensions A∗Ct=D

whose vertex groups have shorter length hierarchies. The hierarchy is quasi convex if the

amalgamated subgroup C is a finitely generated subgroups that embeds by a quasi-isometric

embedding, and if C is malnormal in A ∗c B or A∗Ct=D .

Theorem 5.10. Every finitely presented Λ-free group G has a quasi-convex hierarchy with
abelian edge groups.

Theorem 5.11 ([78]). Suppose G is toral relatively hyperbolic and has a malnormal quasi
convex hierarchy. Then G is virtually special (therefore has a finite index subgroup that is a
subgroup of a right angled Artin group (RAAG)).

As a corollary one gets the following result.

Corollary 5.12. Every finitely presented Λ-free groupG is locally undistorted, that is, every
finitely generated subgroup of G is quasi-isometrically embedded into G.

Corollary 5.13. Every finitely presented Λ-free group G is virtually special, that is, some
subgroup of finite index in G embeds into a right-angled Artin group.

The following result answers in the affirmative to Question 3 (page 250) from [13] in the

case of finitely presented groups.

Theorem 5.14. Every finitely presented Λ-free group is right orderable.

The following addresses Chiswell’s question whether Λ-free groups are orderable or not.

Theorem 5.15. Every finitely presented Λ-free group is virtually orderable, that is, it con-
tains an orderable subgroup of finite index.

Since right-angled Artin groups are linear and the class of linear groups is closed under

finite extension we get the following

Theorem 5.16. Every finitely presented Λ-free group is linear.

Since every linear group is residually finite we get the following.

Corollary 5.17. Every finitely presented Λ-free group is residually finite.

Corollary 5.18. Let G be a finitely presented Λ-free group. Then the following algorithmic
problems are decidable in G:

• the Word and Conjugacy Problems;,

• the Diophantine Problem (decidability of arbitrary equations in G).

Indeed, decidability of equations follows from [16]. Results of Dahmani and Groves [17]

imply the following two corollaries.

Corollary 5.19. Let G be a finitely presented Λ-free group. Then:
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• G has a non-trivial abelian splitting and one can find such a splitting effectively,

• G has a non-trivial abelian JSJ-decomposition and one can find such a decomposition
effectively.

Corollary 5.20. The isomorphism problem is decidable in the class of finitely presented
groups that act freely on Λ-trees.

Theorem 5.21. The subgroup membership problem is decidable in every finitely presented
Λ-free group.

6. Open problems

6.1. Free, torsion-free hyperbolic, and toral relatively hyperbolic groups. The Dio-

phantine problem in free groups is decidable, though the time complexity of the original

Makanin’s algorithm [52] is not primitive recursive [31]. Recent improvements on the time

complexity of this problem allows one to put forward the following.

Problem 6.1. Is it true that the Diophantine problem in a free group is in NP (hence NP-

complete)?

Affirmative solution to this problem would put solving equations in free groups, as well

as some other rather complex algorithms in groups, into the realm of reasonable computa-

tions.

As we have mentioned in the previous sections the Tarski and Malcev’s problems are

now solved for torsion-free hyperbolic groups, as well as effective quantifier elimination to

boolean combinations of ∀∃-formulas. Elementary embeddings in the elementary theories

of free and torsion-free hyperbolic groups were studied and described in [63, 64]. However,

some principal model-theoretic questions (see Section 1) for free groups are still open. In

particular, the following one is of crucial interest.

Problem 6.2.

1) Describe a natural system of axioms for the elementary theory of a free non-abelian

group.

2) Describe a natural system of axioms for the elementary theory of a torsion-free hyper-

bolic group.

Problem 6.3. Describe existentially closed groups in the elementary theory of a free non-

abelian (non-elementary torsion-free hyperbolic) group.

Problem 6.4. Solve principal model-theoretic questions for toral relatively hyperbolic

groups.

6.2. Free products. Decidability of equations and description of algebraic sets in a free

product of group A ∗B was solved in [10].

Recently it was announced in [75] that if Hi and Gi are groups such that Th(Gi) =
Th(Hi), i = 1, 2, then Th(H1 ∗H2) = Th(G1 ∗G2).

It seems it is a good time now to study elementary theories of free products.
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Problem 6.5. Address the principle model-theoretic problems for free products of groups

“modulo the factors”.

In particular, the following concrete problems are of prime interest.

Problem 6.6 (Decidability of the elementary theory). Prove that if Th(A) and Th(B) are
decidable then Th(A ∗B) is also decidable.
Problem 6.7. Let G be a group and A a free factor of G. Prove that if Th(G) is decidable
then Th(A) is also decidable.

To attack this problem one may use the elimination process developed in [10].

Finally, we suggest to study model theory of toral relatively hyperbolic groups. This

is much more general class then torsion-free hyperbolic or limit groups, nevertheless, we

believe that the methods developed for the groups above should suffice to address the larger

class as well.

Problem 6.8. Solve principal model-theoretic questions for toral relatively hyperbolic groups.

Perhaps, a good start would be to address the following (easier) problem.

Problem 6.9. Solve principal model-theoretic questions for limit groups.

6.3. Right angled Artin groups. Right angled Artin groups play an increasingly important

part in modern geometric and combinatorial group theory due to results of Wise [78], Agol

[1] etc. Recall that a RAAGG is a group given by a presentation of the form<a1,. . . ,ar|R >,
where R is a subset of the set {[ai, aj ]|i, j = 1, . . . , r}.

Casals-Ruiz and Kazachkov [11] obtained an algorithmic description of the solution set

of a system of equations in RAAGs.

It is time now to develop algebraic geometry and model theory over RAAGS. Alge-

braic geometry over RAAGs is different from algebraic geometry over relatively hyperbolic

groups. New types of “splittings” occur, and new “universal” splittings should be defined.

Notice that it follows from [19] that the universal theory of any RAAG is decidable. We

formulate here the following Tarski type questions.

Problem 6.10. Princilal model-theoretic questions for RAAGs. Let A be a right angled

Artin group.

(1) Describe when two RAAGs are elementary equivalent.

(2) Is the elementary theory Th(A) decidable?

(3) Describe a natural system of axioms for Th(A).

(4) Which finitely generated groups are elementary equivalent to A?

It is known that two RAAGs defined by graphs Γ and Δ are isomorphic iff the graphs

Γ and Δ are isomorphic [30]. This gives an easy classification of RAAGs up to isomor-

phism. However, according to our philosophy, to study algebraic properties of RAAGs, in

particular, algebraic geometry and model theory of RAAGs, one need to look at all groups

which are fully residually RAAGs. This requires a good understanding of finitely generated

subgroups of RAAGs. Notice that the class S of all finitely generated subgroups of RAAGs

is very large, as Wise’s theorem reveals. For example, limit groups are virtually subgroups
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of RAAG, as well as one-relator groups with torsion. We know already that RAAGs contain

a lot of interesting groups as their subgroups. But we do not know yet if the class is so large

that it gets out of hand. Solution to the following problem will clarify the situation.

Problem 6.11. Is the isomorphism problem for finitely generated quasi-convex subgroups

of RAAGs decidable?

6.4. Pro-finite groups. Solutions to Tarsky’s problems for free groups inspires us to pose

the following problem.

Problem 6.12. Study the principal model-theoretic questions for free pro-p-groups of finite

rank.

Notice that two finitely generated pro-p-groups are elementarily equivalent if and only

if they are isomorphic [58]. The same is true for two finitely generated pro-finite groups

[29], though in this case the argument is based on hard results from [62]. Observe, that

the terms γm(F̂n) of the lower central series of a free pro-p-groups F̂n of finite rank have

finite width, so they are definable in F̂n, hence the free nilpotent pro-p-groups which are

quotients F̂n/γ(F̂n) are interpretable in F̂n. That has some impact on the elementary theory

of F̂n. Finitely generated nilpotent pro-p-groups with decidable elementary theory were

described in [58], in particular, the theories of the quotients F̂n/γ(F̂n) are decidable. Now
we formulate two concrete related questions in this area.

Problem 6.13.

1) Find a set of axioms of Th(F̂n).

2) Prove that the theory Th(F̂n) is decidable.

To address these questions we believe one has to develop first the theory of equations

and algebraic geometry over F̂n. To this end we formulate several questions.

Problem 6.14. Prove that the group F̂n is equationally Noetherian.

Of course, equations in this case are the “pro-p-equations” (see [54] for definitions and

some results).

Problem 6.15. Prove that the Diophantine problem for F̂n is decidable.

6.5. Problems for free associative and Lie algebras. It is very interesting to study ele-

mentary theories of free associative and Lie algebras. It was shown in [60] that elementary

theory of a finite dimensional free associative or Lie algebra with coefficients in a field with

undecidable theory is also undecidable. So we may assume from the outset the we consider

coefficients from a nice field, say a field of two elements or an algebraically closed field of

characteristic zero.

Problem 6.16. Prove that the Diophantine problem is decidable for free associative algebras.

Problem 6.17. Are free associative finitely generated algebras equationally Noetherian?

Let A be such an algebra. If the answer is positive then the Zariski topology over An is

Noetherian for every natural number n, so one can try to develop the algebraic geometry for
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A along the same lines as for free groups. Otherwise, the treatment of associative algebras

should be quite different.

Notice, that if A is equationally Noetherian, then the free Lie algebra associated with A
is also equationally Noetherian. But whether the converse is true or not is not known. So we

pose the following question independently.

Problem 6.18. Are free Lie finitely generated algebras L equationally Noetherian?

If free associative (Lie) algebras A are equationally noetherian, then by the unification

theorem [18] finitely generated limits of A are precisely the finitely generated algebras uni-

versally equivalent to A. In this case a lot of machinery of universal algebraic geometry is

going to work. In any case the following problem is of principle interest.

Problem 6.19. Describe limits of free associative (Lie) algebras.

Unlike free groups, two free associative algebras of finite rank are elementarily equiva-

lent if and only if they are isomorphic (these, and some other relevant facts, can be found in

[60]).

The following general Tarski-type problems are of special interest.

Problem 6.20. Let A be a free associative (Lie) algebra of finite rank.

(1) Prove that if the ground field has decidable theory then the elementary theory Th(A)
algebra is also decidable.

(2) Describe a natural system of axioms for Th(A).

(3) Does the elementary theory Th(A) admit elimination of quantifiers (to boolean com-

binations of ∀∃-sentences and the theory of the ground field)?
(4) Which finitely generated algebras are elementarily equivalent to A?

6.6. Λ-free groups.

Conjecture 6.21. Every finitely generated Λ-free group is finitely presented.

This would imply that all the result mentioned in Section 5 hold also in arbitrary finitely

generated Λ-free groups.

Conjecture 6.22. Any finitely presented Λ-free groupG is Zk-free for an appropriate k ∈ N
and lexicographically ordered Zk.
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Towards the eigenvalue rigidity of Zariski-dense
subgroups
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Abstract. We discuss the notion of weak commensurability of Zariski-dense subgroups of semi-simple

algebraic groups over fields of characteristic zero, which enables one to match in a convenient way

the eigenvalues of semi-simple elements of these subgroups. The analysis of weakly commensurable

arithmetic groups has led to a resolution of some long-standing problems about isospectral locally

symmetric spaces. This work has also initiated a number of questions in the theory of algebraic groups

dealing with the characterization of absolutely almost simple simply connected algebraic groups having

the same isomorphism classes of maximal tori over the field of definition. The recent results in this

direction provide evidence to support a new conjectural form of rigidity for arbitrary Zariski-dense

subgroups in absolutely almost simple algebraic groups over fields of characteristic zero based on the

eigenvalue information (“eigenvalue rigidity”).
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Keywords. Algebraic groups, Zariski-dense subgroups, locally symmetric spaces.

1. Introduction

The purpose of my talk is two-fold. First, I would like to report on the results obtained in

a series of papers written in collaboration with G. Prasad and other co-authors. In these

papers, we introduced the notion of weak commensurability of Zariski-dense subgroups of
semi-simple algebraic groups, determined the consequences of the weak commensurability

of two S-arithmetic subgroups of absolutely almost simple algebraic groups over a field

of characteristic zero, and applied these results to the analysis of length-commensurable

isospectral locally symmetric spaces. Second, I would like to outline a variety of problems

and results in the theory of algebraic groups and related areas that this work has led to. These

problems have to do with the understanding of finite-dimensional division algebras having

the same maximal subfields, and more generally, with the characterization of absolutely

almost simple algebraic groups having the same isomorphism classes of maximal tori over

the field of definition. The results in this new direction obtained in the last several years

point to a new version of the rigidity phenomenon, some aspects of which apply not only in

the classical case of lattices but in fact to arbitrary Zariski-dense subgroups. Its distinctive

feature is that it is formulated in terms of the eigenvalues of semi-simple elements of a given

Zariski-dense subgroup, which led us to call it eigenvalue rigidity. Its investigation is very

much a work in progress, so along with available results, we will discuss several conjectures.

Overall, the possibility of having some form of rigidity for arbitrary Zariski-dense subgroups
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(which may well be free) looks quite exciting, and I would like to begin with a discussion of

what kinds of results one can or cannot expect in this generality.

In the theory of algebraic/Lie groups, the term “rigidity” in a very general sense is used

to describe a situation where, given a semi-simple algebraic group G over a field F , the
structure of a “large” subgroup Γ of G(F ) determines the group G as well as the “loca-

tion” of Γ inside G(F ). More concretely, when F is a non-discrete locally compact field,

then under appropriate assumptions, any abstract isomorphism Γ1 → Γ2 between two lat-

tices Γ1,Γ2 ⊂ G(F ) extends to a rational automorphism of G (strong rigidity), or even

any abstract representation Γ → GLn(F ) (virtually) extends to a rational representation

G → GLn (superrigidity). This implies, for example, that the entire geometry of a com-

pact hyperbolic manifold of dimension� 3 (including its volume, the Laplace spectrum, the

lengths of closed geodesics, etc.) is determined by the structure of its fundamental group.

Among the algebraic consequences of structural rigidity, the following is most relevant for

our discussion.

Let Γ = SLn(Z), where n � 3, and suppose we are given an absolutely almost simple

simply connected algebraic group G over a number field K with ring of integers O. If Γ is

(virtually) isomorphic to G(O) as an abstract group, then K = Q (and hence O = Z), and
G � SLn as algebraic groups over Q. Thus, the structure of a higher rank arithmetic group

uniquely determines the field of definition and the ambient group as an algebraic group over

this field. The results we will present suggest that one should be able to recover this data (in

a somewhat weaker form) not just from a higher rank arithmetic group, but in fact from any

finitely generated Zariski-dense subgroup if in place of structural information one uses in-

formation about the eigenvalues of elements, expressed in terms of weak commensurability.
More precisely, we will see that in this set-up the field of definition can still be recovered

uniquely (cf. Theorem 3.2), while the ambient algebraic group over this field is conjecturally

determined up to finitely many possibilities (cf. Conjecture 6.1). The finiteness is known to

hold when the field of definition is a number field, and is supported in the general case by, for

example, results on division algebras having the same maximal subfields (cf. 6.5). Moreover,

in many situations, S-arithmetic groups are unique (up to commensurability) in their weak

commensurability class (cf. Theorem 6.3(1)), and thus are eigenvalue rigid in a strong sense.

Just like structural rigidity, eigenvalue rigidity has geometric applications to isospectral lo-

cally symmetric spaces (see 2.2 and 4.4). There are other aspects of eigenvalue rigidity

dealing with questions of whether various properties of Zariski-dense subgroups (such as

discreteness, co-compactness, arithmeticity) can be characterized in terms of the eigenvalue

information (see 4.3), but here we will focus almost exclusively on the question of to what

extent the latter determines the ambient algebraic group. As we already mentioned, it is

precisely shifting the focus from the structure to eigenvalues that makes results of this kind

possible for arbitrary Zariski-dense subgroups.

Before discussing the results, we need to explain how we match the eigenvalues of el-

ements of two Zariski-dense subgroups, and on the other hand, why we care about these

eigenvalues.

2. Weak commensurability

The following definition, introduced in [40], provides a way of matching the eigenvalues of

matrices of different sizes.



Eigenvalue rigidity 249

Definition 2.1. Let F be an infinite field.

(1) Let γ1 ∈ GLn1(F ) and γ2 ∈ GLn2(F ) be semi-simple matrices, and let

λ1, . . . , λn1 and μ1, . . . , μn2

be their eigenvalues (in a fixed algebraic closure F ). We say that γ1 and γ2 are weakly
commensurable if there exist a1, . . . , an1 , b1, . . . , bn2 ∈ Z such that

λa1
1 · · ·λan1

n1 = μb11 · · ·μbn2
n2 �= 1.

(2) Let G1 ⊂ GLn1 and G2 ⊂ GLn2 be reductive algebraic groups defined over F . Two
Zariski-dense subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) are called weakly commensu-
rable if every semi-simple element γ1 ∈ Γ1 of infinite order is weakly commensurable

to some semi-simple element γ2 ∈ Γ2 of infinite order, and vice versa.

It should be noted that the definition of weak commensurability can be stated in sev-

eral different ways. First, in the above notations, semi-simple elements γ1 ∈ G1(F ) and
γ2 ∈ G2(F ) are weakly commensurable if and only if there exist maximal F -tori Ti of Gi
for i = 1, 2 such that γi ∈ Ti(F ) and for some characters χi ∈ X(Ti) (defined over F ) we
have

χ1(γ1) = χ2(γ2) �= 1.

This reformulation shows that the notion of weak commensurability (of γ1 and γ2) does not
depend on the choice of matrix realizations of G1 and G2, and is also more convenient for

technical arguments.

Second, semi-simple elements γ1 ∈ G1(F ) and γ2 ∈ G2(F ) are weakly commensurable

if and only if there exist F -rational representations

ρ1 : G1 −→ GLm1
and ρ2 : G2 −→ GLm2

such that ρ1(γ1) and ρ2(γ2) have a nontrivial common eigenvalue (these representations can
vary from one element to another).

Informally speaking, weak commensurability appears to be a rather natural way (and

perhaps even the only natural way) of matching the eigenvalues of (semi-simple) elements

of two algebraic groups that does not depend on the choice of their matrix realizations. On

the other hand, it is easy to construct examples of very different (certainly non-conjugate)

matrices that are weakly commensurable, so one needs to discuss the utility of this notion.

As we will see later, while being inconsequential for individual matrices and “small” (e.g.,

cyclic) subgroups, weak commensurability has remarkably strong consequences for “large”

subgroups (viz., Zariski-dense and particularly S-arithmetic subgroups). Now, however, we

would like to point out that the main motivation for the notion of weak commensurability in

our work came from the famous problem in differential geometry about isospectral Rieman-

nian manifolds best known as M.Kac’s [30] question Can one hear the shape of a drum?

2.2. Geometric motivation. Let M be a Riemannian manifold. In differential geometry

one considers the following sets of data associated withM :

• E(M) - spectrum of the Beltrami-Laplace operator;
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• L(M) - (weak) length spectrum, i.e. the collection of lengths of all closed geodesics

inM .

Then one asks whether two Riemannian manifoldsM1 andM2 are necessarily isometric if

(1) E(M1) = E(M2) (i.e.,M1 andM2 are isospectral);

(2) L(M1) = L(M2) (i.e.,M1 andM2 are iso-length spectral)?

When asking a question of this kind, one of course needs to specialize the class of manifolds

being considered, and in our work we focused on locally symmetric spaces of semi-simple

groups having nonpositive curvature (recall that these are endowed with the standard Rie-

mannian structure coming from the Killing form); this class includes such geometrically

important spaces as hyperbolic manifolds and, in particular, Riemann surfaces. It is impor-

tant to point out that for compact locally symmetric spaces, questions (1) and (2) are related,
viz.

E(M1) = E(M2) ⇒ L(M1) = L(M2), (S)

but both have a negative answer. Counter-examples for (arithmetically defined) Riemann

surfaces were given by Vigneras [53], and then a more general group-theoretic construction

was offered by Sunada [50]. Both constructions always produce pairs of commensurable
locally symmetric spaces. We recall that Riemannian manifolds M1 and M2 are called

commensurable if they admit a common finite-sheeted coverM , i.e. if there is a diagram:

M
θ1

��

θ2

��

M1 M2

in whichM is a Riemannian manifold and θ1, θ2 are finite-sheeted locally isometric cover-

ing maps. This suggests that one should probably settle for a weaker version of the ques-

tion, viz. whether M1 and M2 are necessarily commensurable given the fact that they are

isospectral or iso-length-spectral. While this modified question still has a negative answer

in the general case [35], our work, based on the analysis of weakly commensurable groups,

shows that the answer is in the affirmative for many (arithmetically defined) locally symmet-

ric spaces - cf. Theorem 4.5 (previously such results were available only for arithmetically

defined Riemann surfaces [47] and hyperbolic 3-manifolds [12]). In fact, our results give the

commensurability of pairs of locally symmetric spaces that satisfy the following condition:

(3) Q · L(M1) = Q · L(M2).

This condition, called length commensurability, is conceivably much weaker than conditions

(1) and (2), but surprisingly in most situations it has many of the same consequences. Its real

advantage over (1) and (2) is that it is invariant under passing to commensurable manifolds.

The main point here is that the length-commensurability of finite volume locally sym-

metric spaces implies the weak commensurability of their fundamental groups. To give a

precise statement, we need to fix some notations. Let G be an absolutely simple adjoint real

algebraic group, let G = G(R) be the group of R-points, considered as a real Lie group, and
let X = K\G, where K is a maximal compact subgroup of G, be the associated symmetric

space endowed with the Riemannian metric coming from the Killing form on the Lie algebra

of G. Furthermore, given a torsion-free discrete subgroup Γ of G, we let XΓ = X/Γ denote
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the corresponding locally symmetric space; we say that XΓ is arithmetically defined if the

subgroup Γ is arithmetic1. Finally, given two simple real algebraic groups Gi (i = 1, 2), we
will denote the symmetric spaces of the groups Gi = Gi(R) byXi, and the locally symmetric

spaces obtained as quotients by torsion-free discrete subgroups Γi of Gi by XΓi .

Theorem 2.3 ([43], Corollary 2.8). LetXΓ1
andXΓ2

be two locally symmetric spaces having
finite volume, of absolutely simple real algebraic groups G1 and G2. If XΓ1 and XΓ2 are
length-commensurable, then Γ1 and Γ2 are weakly commensurable.

While this result is straightforward for Riemann surfaces (see [43, 2.1]), its proof in the

general case relies on the formula for the length of a closed geodesic cγ in XΓ corresponding

to a nontrivial semi-simple element γ ∈ Γ as a function of the logarithms of eigenvalues

of γ in the adjoint representation - see [40, Proposition 8.5(ii)] (note that this formula also

explains why we care about the eigenvalues of semi-simple elements of discrete subgroups).

So, to prove the weak commensurability of Γ1 and Γ2, we need to sort out the logarithms

appearing in this formula, which requires transcendental number theory. More precisely, for

rank one locally symmetric spaces of dimension > 2, we use the famous result of Gel’fond

and Schneider that settled Hilbert’s seventh problem - cf. [4]. In all other cases, our argument

assumes the truth of Schanuel’s conjecture (cf. [3]). This means that while all of our results

on weak commensurability are, of course, unconditional, their geometric consequences are

conditional (at least for locally symmetric spaces of rank > 1).
Since the locally symmetric spaces XΓ1 and XΓ2 are commensurable if and only if the

subgroups Γ1 and Γ2 are commensurable as groups up to an isomorphism between G1 and

G2 (see 3.4 below for the details of this notion), we see that in order to prove the commen-

surability of length-commensurable (in particular, isospectral or iso-length spectral) locally

symmetric space, we need to answer the following question:

(C) When does the weak commensurability of Γ1 and Γ2 imply their commensurability?

3. First signs of eigenvalue rigidity

Before providing a rather definitive answer to Question (C) for S-arithmetic subgroups (see

§4), we would like to present a few results demonstrating that weak commensurability cap-

tures some important characteristics in the case of arbitrary Zariski-dense subgroups. So,

let G1 and G2 be absolutely almost simple algebraic groups over a field F of characteristic
zero, and let Γi ⊂ Gi(F ) be a finitely generated Zariski-dense subgroup for i = 1, 2.

Theorem 3.1 ([40], Theorem 1). If Γ1 and Γ2 are weakly commensurable, then either G1

and G2 are of the same Killing-Cartan type, or one of them is of type B� and the other of
type C� for some � � 3.

This result is already interesting because, in principle, Γ1 and Γ2 may very well be free

groups, hence carry no structural information about the ambient algebraic groups. Note

that what we really prove is that G1 and G2 have the same order of the Weyl group - it

1We recall that combining the celebrated results of Margulis [36] on the arithmeticity of higher rank irreducible

lattices and of Corlette [15] and Gromov-Shoen [27], one obtains that a finite volume locally symmetric space XΓ

of a simple real algebraic group is automatically arithmetically defined unless X is either the real hyperbolic space

Hn or the complex hyperbolic space Hn
C
.
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is known that this number uniquely determines the Killing-Cartan type of the group except

for the ambiguity involving types B� and C�. As shown by Theorem 4.2 below, Zariski-

dense, and even S-arthmetic, subgroups in groups of types B� and C� can indeed be weakly

commensurable.

Now, given a Zariski-dense subgroup Γ ⊂ G(F ), whereG is a semi-simple F -group, we
let KΓ denote the trace field of Γ, i.e. the subfield of F generated by the traces tr(Ad γ) of
all elements γ ∈ Γ in the adjoint representation on the corresponding Lie algebra g = L(G).
By a result of Vinberg [51], the field K = KΓ is the minimal field of definition of Ad Γ.
This means that K is the minimal subfield of F such that all transformations in Ad Γ can

be simultaneously represented by matrices over K in a suitable basis of g. If such a basis is

chosen, then the Zariski closure of Ad Γ in GL(g) is a semi-simple algebraicK-group G. It

is an F/K-form of the adjoint group G, and we will call it the algebraic hull of Ad Γ.

Theorem 3.2 ([40], Theorem 2). Keep the notations and conventions introduced prior to
Theorem 3.1. If Γ1 and Γ2 are weakly commensurable, thenKΓ1 = KΓ2 .

Now letK be the common trace field of two weakly commensurable Zariski-dense sub-

groups Γ1 and Γ2 as above, and let Gi be the algebraic hull of Ad Γi for i = 1, 2. We denote

by Li the minimal Galois extension of K over which Gi becomes an inner form of a split

group.

Proposition 3.3 (cf. [44], Lemma 5.2). In the above notations, L1 = L2.

(We would like to mention the following useful consequence of this proposition: Let G1

and G2 be absolutely almost simple groups over a field F of characteristic zero, and let Ei
be the minimal Galois extension of F over which Gi becomes an inner form. If there exist
finitely generated Zariski-dense subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) that are weakly
commensurable, then E1 = E2. Indeed, Ei = FLi in the above notations.)

3.4. S-arithmetic subgroups. We will now specialize to the case of S-arithmetic sub-

groups. We recall that if G is an absolutely almost simple algebraic group over a field F
of characteristic zero, then Zariski-dense S-arithmetic subgroups of G(F ) can be described

in terms of triples (G,K, S), whereK is a number field contained in F , G is a F/K-form of

the adjoint groupG, and S is a finite set of places ofK containing all archimedean ones; the

subgroups corresponding to such triples are called (G,K, S)-arithmetic. We refer to [40, §1]

and [43, 3.3] for the details of this description, and only indicate here that for a (G,K, S)-
arithmetic Zariski-dense subgroup Γ, the field K coincides with the trace field KΓ, and the

group G with the algebraic hull of Ad Γ.
Furthermore, given two absolutely almost simple F -groups G1 and G2, we say that the

subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) are commensurable up to an F -isomorphism
between the adjoint groups G1 and G2 if there exists an F -isomorphism σ : G1 → G2 such

that the subgroups σ(π1(Γ1)) and π2(Γ2) are commensurable as subgroups of G2(F ) in the
usual sense (i.e., their intersection is of finite index in each of them), where πi : Gi → Gi is
the canonical isogeny for i = 1, 2. (This notion of commensurability is precisely what we

need for geometric applications, cf. §2.)

The following result shows that the description of S-arithmetic subgroups of absolutely

almost simple groups in terms of triples is very convenient in the analysis of their commen-

surability.
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Theorem 3.5. Let G1 and G2 be absolutely almost simple algebraic groups defined over
a field F of characteristic zero, and for i = 1, 2, let Γi be a Zariski-dense (Gi,Ki, Si)-
arithmetic subgroup of Gi(F ). Then

(1) Γ1 and Γ2 are commensurable up to an F -isomorphism between G1 and G2 if and
only ifK1 = K2, S1 = S2, and G1 and G2 areK-isomorphic;

(2) if Γ1 and Γ2 are weakly commensurable, thenK1 = K2 and S1 = S2.

Thus, the study of the commensurability classes of weakly commensurable Zariski-dense

S-arithmetic subgroups is equivalent to the study ofK-forms G involved in their description.

This leads to a complete resolution of question (C) for S-arithmetic subgroups that we will

present in the next section.

4. Results for S-arithmetic groups and geometric consequences

The following two theorems summarize the main results dealing with the weak commensu-

rability of S-arithmetic subgroups.

Theorem 4.1 (cf. Prasad-Rapinchuk [40, 43]). Let G1 and G2 be absolutely almost simple
algebraic groups over a field F of characteristic zero, and let Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F )
be Zarsiki-dense S-arithmetic subgroups.

(1) Assume that G1 and G2 are of the same Killing-Cartan type, which is different from
An, D2n+1 (n > 1), and E6. If Γ1 and Γ2 are weakly commensurable, then they are
commensurable.

(2) In all cases, S-arithmetic subgroups Γ2 ⊂ G2(F ) weakly commensurable to a given
S-arithmetic subgroup Γ1 ⊂ G1(F ) form finitely many commensurability classes.

(3) If Γ1 and Γ2 as above are weakly commensurable, then Γ1 contains unipotent elements
if and only if Γ2 does.

(4) (arithmeticity theorem) Let now F be a locally compact field of characteristic zero,
and Γ1 ⊂ G2(F ) be an S-arithmetic lattice. If Γ2 ⊂ G2(F ) is a lattice weakly
commensurable to Γ1, then Γ2 is also S-arithmetic.

(In this theorem, “commensurability” means “commensurability up to anF -isomorphism

between G1 and G2” as defined in 3.4.)

An interesting feature of this theorem is that for groups of type Dn, the answer to Ques-

tion (C) is different depending on whether n is even or odd. Assertion (1) for type D2n with

n > 2 was originally proved in [41]. The case of type D4 (including triality forms) was

handled by Garibaldi [21] by a different method which applies to all groups of type D2n. On

the other hand, for each of the exceptional types An (n > 1), D2n+1 (n > 1), and E6 one

can construct weakly commensurable, but not commensurable, Zariski-dense S-arithmetic

subgroups (see [40, §9])2.

According to Theorem 3.1, to complete the investigation of weak commensurability for

S-arithmetic subgroups, it remains to consider the case where one group is of type B� and
the other of type C� for some � � 3.

2Note that these are precisely the types for which the multiplication by (−1) considered as an automorphism of

the corresponding root system is not in the Weyl group.
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Theorem 4.2 (Garibaldi-Rapinchuk [22]). Let G1 and G2 be absolutely almost simple al-
gebraic groups over a field F of characteristic zero having Killing-Cartan types B� and
C� (� � 3), respectively, and let Γi be a Zariski-dense (Gi,K, S)-arithmetic subgroup of
Gi(F ). Then Γ1 and Γ2 are weakly commensurable if and only if G1 and G2 are twins, i.e.

• G1 and G2 are both split over all nonarchimedean places ofK;

• G1 and G2 are simultaneously either split or anisotropic over all archimedean
valuations ofK.

In §5, we will review some of the techniques involved in the proof of Theorems 4.1 and

4.2. But from a very general perspective, the essence of the argument is to obtain information

about the algebraic hull G of an S-arithmetic group Γ that is weakly commensurable to a

given S-arithmetic group – recall that according to Theorem 3.5, G uniquely determines Γ
up to commensurability. So, to establish assertion (1) of Theorem 4.1, we prove that the

algebraic hull G is itself unique when the type if different from An, D2n+1 (n > 1), and
E6. Furthermore, for assertion (2), we prove that there are only finitely many possibilities

for the G’s. In §§6-7 we will indicate that the latter property is expected to hold not only

for S-arithmetic, but in fact for arbitrary finitely generated Zariski-dense subgroups (see

Conjecture 6.2). This phenomenon, if confirmed, would be a rather strong form of eigenvalue

rigidity. We will now, however, briefly discuss a few other questions that one can ask in the

context of weak commensurability.

4.3. Some other aspects of eigenvalue rigidity. First, it is easy to construct examples

showing that a Zariski-dense subgroup weakly commensurable to a rank-one arithmetic

subgroup need not be arithmetic (see [40, Remark 5.5]); in other words, assertion (4) of

Theorem 4.1 fails if we drop the assumption that Γ2 is a lattice. So, it would be extremely

interesting to determine if a Zariski-dense subgroup weakly commensurable to a higher rank
S-arithmetic subgroup is itself S-arithmetic (see Problem 10.1 in [43] and the subsequent

discussion). This can potentially provide a new characterization of higher rank S-arithmetic

subgroups involving weak commensurability (i.e., ultimately the eigenvalue information).

Second, one can ask if weak commensurability can be used to characterize the discrete-

ness of Zariski-dense subgroups. More precisely, let G1 and G2 be connected absolutely

almost simple algebraic groups over a nondiscrete locally compact field F , and let Γi be a
finitely generated Zariski-dense subgroup of Gi(F ) for i = 1, 2. Assume that Γ1 and Γ2 are

weakly commensurable. Does the discreteness of Γ1 imply the discreteness of Γ2? (Problem

10.2 in [43]). An affirmative answer to this question was given in [40, Proposition 5.6] for

the case where F is a nonarchimedean local field, but the case F = R or C remains open.

Third, one can also ask if weak commensurability preserves cocompactness of lattices.

Namely, let again G1 and G2 be connected absolutely almost simple algebraic groups over

F = R or C, and let Γi ⊂ Gi(F ) be a lattice for i = 1, 2. Assume that Γ1 and Γ2

are weakly commensurable. Does the compactness of G1(F )/Γ1 imply the compactness of
G2(F )/Γ2? (Problem 10.3 in [43]). (We note that if G is a semi-simple algebraic group

over a nonarchimedean local field F of characteristic zero, then any lattice Γ ⊂ G(F ) is
automatically cocompact, and the problem in this case becomes vacuous.) We recall that

the cocompactness of a lattice in a semi-simple real Lie group is equivalent to the absence

of nontrivial unipotent elements in it, see [45, Corollary 11.13]. So, the above question is

equivalent to the question of whether for two weakly commensurable lattices, the existence
of nontrivial unipotent elements in one of them implies their existence in the other. The
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combination of parts (3) and (4) of Theorem 4.1 provides an affirmative answer if one of

the lattices is arithmetic. On the other hand, in this form the question itself is meaningful

for arbitrary Zariski-dense subgroups (not necessarily discrete or of finite covolume), but no

other cases have been considered so far.

4.4. Geometric applications. Combining Theorem 2.3, which reduced the length - com-

mensurability of locally symmetric spaces to the weak commensurability of their funda-

mental groups, with the analysis of weak commensurability in Theorem 4.1, we obtain the

following geometric result.

Theorem 4.5 ([40], Theorem 8.16). Let G1 and G2 be connected absolutely simple real
algebraic groups, and set Gi = Gi(R), for i = 1, 2. Then the set of arithmetically defined
locally symmetric spaces XΓ2 of G2, which are length-commensurable to a given arithmeti-
cally defined locally symmetric spaceXΓ1

of G1, is a union of finitely many commensurability
classes. It in fact consists of a single commensurability class if G1 and G2 have the same
type different from An, D2n+1, with n > 1, or E6.

This statement applies in various concrete geometric situations. For example, here is

what it yields for hyperbolic manifolds.

Corollary 4.6. LetM1 andM2 be arithmetically defined real hyperbolic d-manifolds where
d is either even or is ≡ 3(mod 4) and d > 3. IfM1 andM2 are length-commensurable (in
particular, compact and isospectral), then they are commensurable.

Previously, this was known only for d = 2 [47] and d = 3 [12]. Length-commensurability

implies commensurability also for all quaternionic hyperbolic manifolds. On the other hand,

in the case of real hyperbolic manifolds of dimension ≡ 1(mod 4) or of complex hyperbolic

manifolds, one can construct examples of arithmetically defined length-commensurable, but

not commensurable spaces. Furthermore, using Theorem 3.1 (and Proposition 3.3 to handle

the isomorphism A3 = D3), one proves that an arithmetically defined complex hyperbolic

space cannot be length-commensurable to either a real or a quaternionic arithmetically de-

fined hyperbolic space. Employing Theorem 4.2, one also proves that arithmetically defined

real and quaternionic hyperbolic spaces cannot be length-commensurable. (In fact, assum-

ing Schanuel’s conjecture in all cases, one can get rid of the arithmeticity assumption in

these two statement, see [42], particularly Remark 8.5, and the discussion after Theorem 4.8

below.)

Next, parts (3) and (4) of Theorem 4.1, in conjunction with Theorem 2.3, imply the fol-

lowing rather surprising result which has so far defied all attempts to find a purely geometric

proof.

Theorem 4.7 ([40], Theorem 8.19). Let XΓ1 and XΓ2 be locally symmetric spaces of finite
volume. Assume that one of the spaces is arithmetically defined. If the spaces are length-
commensurable, then the other space is also arithmetically defined, and the compactness of
one of the spaces implies the compactness of the other.

In fact, if one of the spaces is compact and the other is not, the length spectra L(XΓ1) and
L(XΓ2

) are quite different - see [42, Theorem 5.9]. The question of whether the arithmeticity

assumption in this theorem can be dropped boils down to one of the problems we discussed

in 4.3.

Last but not least, implication (S) from 2.2 enables us to apply the above results to

isospectral compact locally symmetric spaces. We then obtain the following.
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Theorem 4.8 ([40], §10). Let XΓ1
and XΓ2

be compact locally symmetric spaces, and as-
sume that they are isospectral.

(1) If XΓ1 is arithmetically defined, then XΓ2 is also arithmetically defined.

(2) G1 = G2 =: G, hence XΓ1 and XΓ2 have the same universal cover.

(3) If at least one of the subgroups Γ1 and Γ2 is arithmetic, then unless G is of type An
(n > 1), D2n+1 (n > 1) and E6, the spaces XΓ1 and XΓ2 commensurable.

We note that part (2) was proved in [40] (with the help of a result of Sai-Kee Yeung

[55]) under the assumption that at least one of the groups Γ1 or Γ2 is arithmetic. Sup-

pose now that both Γ1 and Γ2 are nonarithmetic. Then each space Xi (i = 1, 2) is ei-

ther the real hyperbolic space Hni or the complex hyperbolic space Hni

C for some ni � 2,
and the corresponding real adjoint algebraic group Gi is, respectively, either PSO(ni, 1) or
PSU(ni, 1) in the standard notations. It follows from Theorem 3.1 that the isospectrality,

hence length-commensurability, of XΓ1
and XΓ2

implies that either G1 and G2 must be of

the same Cartan-Killing type, or one of them is of type B� and the other of type C� for some

� � 3. In our situation, this can happen only if either G1 = G2 or (after a possible switch)

G1 = PSO(5, 1) andG2 = PSU(3, 1) (of common type D3 = A3). In the latter case, XΓ1 is

5-dimensional, and XΓ2 is 6-dimensional. But according to Weyl’s Law (see, for example,

[24]) isospectral Riemannian manifolds are always of the same dimension. So, in this case

XΓ1 and XΓ2 cannot be isospectral3, leaving us with the only option G1 = G2, as required.

5. Generic elements. Isogeny Theorem

In this section, we would like to discuss two ingredients involved in the proofs of Theorems

4.1 and 4.2: the existence of generic elements in Zariski-dense subgroups and the Isogeny

Theorem.

5.1. Generic elements. First, we need to recall the notion of a generic K-torus. Let G be

a connected semi-simple algebraic group defined over an infinite field K. Fix a maximal

K-torus T of G, and, as usual, let Φ = Φ(G, T ) denote the corresponding root system,

and letW (G, T ) be its Weyl group. Furthermore, we let KT denote the (minimal) splitting

field of T in a fixed algebraic closure K of K. Then the natural action of the Galois group

Gal(KT /K) on the character group X(T ) of T induces an injective homomorphism

θT : Gal(KT /K) → Aut(Φ(G, T )).

We say that T is generic (overK) if

θT (Gal(KT /K)) ⊃W (G, T ). (5.1)

For example, any maximal K-torus of G = SLn,K is of the form T = R
(1)
E/K(Gm,E) for

some n-dimensional commutative étaleK-algebra E. Then such a torus is generic overK if

and only if E is a separable field extension ofK and the Galois group of the normal closure

L of E overK is isomorphic to the symmetric group Sn.

3In fact, it follows from the remark made after Proposition 3.3 that in this case XΓ1 and XΓ2 cannot even be

length-commensurable as G1 is an inner form of a split group over R, and G2 is an outer form.
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Definition 5.2. LetG be a connected semi-simple algebraic group defined over a fieldK. A

regular semi-simple element g ∈ G(K) is called generic (over K) if the torus T = ZG(g)
◦

is generic (overK) as defined above (note that T is aK-torus, cf. [7, 9.1]).

Generic elements play a crucial role in our work, but they have also been used in a

variety of other problems, including the study of the rigidity of actions (cf. [32, 37]) and the

Auslander problem [1].

Theorem 5.3 (cf. [39], Theorem 3). Let G be a connected absolutely almost simple alge-
braic group over a finitely generated field K of characteristic zero, and let Γ ⊂ G(K) be
a Zariski-dense subgroup. Then Γ contains a regular generic element (over K) of infinite
order.

Basically, our proof (which in fact applies to all connected semi-simple groups) shows

that given a finitely generated Zariski-dense subgroup Γ ⊂ G(K), one can produce a fi-

nite system of congruences (defined in terms of suitable valuations of K) such that the set

of elements γ ∈ Γ satisfying this system of congruences consists entirely of generic ele-

ments (and additionally this set is in fact a coset of a finite index subgroup in Γ, in particu-

lar, it is Zariski-dense in G). Recently, Gorodnik-Nevo [26], Jouve-Kowalski-Zywina [29],

and Lubotzky-Rosenzweig [34] have developed different quantitative ways of showing that

generic elements exist in abundance (in fact, these results demonstrate that “most” elements

in Γ are generic). More precisely, the result of [26] gives the asymptotics of the number of

generic elements of a given height in an arithmetic group, while the results of [34], general-

izing earlier results of [29], are formulated in terms of random walks on groups and apply to

arbitrary Zariski-dense subgroups in not necessarily connected semi-simple groups. These

papers introduce several new ideas and techniques, but at the same time employ some ele-

ments of the argument from [39]. We also note that the proof of Theorems 4.1 and 4.2 uses

not only Theorem 5.3 itself but also its different variants that provide generic elements with

additional properties, e.g. having prescribed local behavior.

5.4. The Isogeny Theorem and its consequences. An important step in the proofs of The-

orems 4.1 and 4.2 is the passage from the weak commensurability of two semi-simple ele-

ments to an isogeny, and in most cases even to an isomorphism, of the tori containing these

elements. This is done with the help of the following technical statement which we called the

Isogeny Theorem. After the theorem, we give a (less technical) corollary that, to a significant

degree, reduces the analysis of weak commensurability to the investigation of absolutely al-

most simple algebraic groups having the same isomorphism/isogeny classes of maximal tori

over the base field; this problem, together with some variations, will be discussed in the

concluding §§6-7. We recall that aK-torus T is called (K-)irreducible if it does not contain
any properK-subtori; note that a maximalK-torus of an absolutely almost simple algebraic

K-group which is generic overK, is automaticallyK-irreducible.

Theorem 5.5 ([40], Theorem 4.2). Let G1 and G2 be two connected absolutely almost
simple algebraic groups defined over an infinite field K, and let Li be the minimal Galois
extension of K over which Gi becomes an inner form of a split group. Suppose that for
i = 1, 2, we are given a semi-simple element γi ∈ Gi(K) contained in a maximal K-torus
Ti of Gi. Assume that

(i) G1 and G2 are either of the same Killing-Cartan type, or one of them is of type Bn
and the other is of type Cn;
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(ii) γ1 has infinite order;

(iii) T1 isK-irreducible; and

(iv) γ1 and γ2 are weakly commensurable.

Then:

(1) there exists a K-isogeny π : T2 → T1 which carries γm2
2 to γm1

1 for some integers
m1,m2 � 1;

(2) if L1 = L2 =: L and θT1(Gal(LT1/L)) ⊃W (G1, T1), then

π∗ : X(T1)⊗Z Q → X(T2)⊗Z Q

has the property that π∗(Q · Φ(G1, T1)) = Q · Φ(G2, T2). Moreover, if G1 and G2

are of the same Killing-Cartan type different from B2 = C2, F4 or G2, then a suitable
rational multiple of π∗ maps Φ(G1, T1) onto Φ(G2, T2), and if G1 is of type Bn and
G2 is of type Cn, with n > 2, then a suitable rational multiple λ of π∗ takes the long
roots in Φ(G1, T1) to the short roots in Φ(G2, T2), while 2λ takes the short roots in
Φ(G1, T1) to the long roots in Φ(G2, T2).

It follows that in the situations where π∗ can be, and has been, scaled so that π∗(Φ(G1, T1))

= Φ(G2, T2), it induces K-isomorphisms π̃ : T̃2 → T̃1 and π : T 2 → T 1 between the cor-

responding tori in the simply connected and adjoint groups G̃i and Gi, respectively, that
extend toK-isomorphisms G̃2 → G̃1 and G2 → G1.

Furthermore, if G1 and G2 are absolutely almost simple algebraic groups over a fieldK
of characteristic zero and Γ1 ⊂ G1(K) and Γ2 ⊂ G2(K) are weakly commensurable finitely

generated Zariski-dense subgroups, then we already know that either G1 and G2 have the

same type or one of them is of type B� and the other of type C� for some � � 3 (Theorem 3.1),

and L1 = L2 (remark after Proposition 3.3). Thus, the important assumptions in Theorem

5.5 are satisfied automatically, and its application yields the following.

Corollary 5.6. In the above situation, every generic maximal K-torus T1 of G1 whose
intersection with Γ1 contains an element of infinite order, is K-isogenous, and if both G1

and G2 are either simply connected or adjoint of the same type different from B2 = C2, F4

and G2, evenK-isomorphic, to a generic maximalK-torus T2 ofG2 whose intersection with
Γ2 contains an element of infinite order, and vice versa.

If finitely generated Zariski-dense subgroups Γ1 ⊂ G1(F ) and Γ2 ⊂ G2(F ) are weakly
commensurable, then by Theorem 3.2, they have a common trace field KΓ1 = KΓ2 =: K,

which is finitely generated. Then Theorem 5.3 and its variants guarantee the existence in

Γ1 and Γ2 of elements that are generic over K and its suitable finite extensions, and satisfy

some additional conditions. Applying Theorem 5.5 and/or Corollary 5.6, we obtain that the

algebraic hulls G1 and G2 of Γ1 and Γ2, respectively, share large families of maximalK-tori.

In the case where Γ1 and Γ2 are S-arithmetic, this information about the common maximal

tori turns out to be sufficient to prove Theorems 4.1 and 4.2. In the final two sections we will

discuss the implementation of this approach for arbitrary Zariski-dense subgroups.
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6. Arbitrary Zariski-dense subgroups

As we already explained, the results for arithmetic groups were obtained by analyzing the

algebraic hulls of arithmetic groups which are weakly commensurable to a given one. While

general Zariski-dense subgroups are not determined up to commensurability by their alge-

braic hull (even if they are lattices, cf. [52]), the latter remains an important invariant. At the

same time, the results in the arithmetic case as well as some very recent results over general

fields concerning simple algebraic groups with the same maximal tori and division algebras

with the same maximal subfields, which we will discuss in the rest of this article, have led

us to believe that the algebraic hull itself is almost determined by the presence of a Zariski-

dense subgroup weakly commensurable to a given one in all situations. More precisely, we

would like to propose the following Finiteness Conjecture.

Conjecture 6.1. LetG1 andG2 be absolutely simple (adjoint) algebraic groups over a field
F of characteristic zero, and let Γ1 ⊂ G1(F ) be a finitely generated Zariski-dense subgroup
with trace fieldKΓ1 = K. Then there exists a finite collection G

(2)
1 , . . . ,G

(2)
r of F/K-forms

of G2 such that if Γ2 ⊂ G2(F ) is a finitely generated Zariski-dense subgroup that is weakly
commensurable to Γ1, then it is conjugate to a subgroup of one of the G

(2)
i (K)’s (⊂ G2(F )).

We already know that two weakly commensurable finitely generated Zariski-dense sub-

groups have the same trace field (Theorem 3.2). The above conjecture takes this result much

farther by claiming that a finitely generated Zariski-dense subgroup weakly commensurable

to a given one can exist only in finitely many simple algebraic groups over this field. (For

example, ifG0 = SOn(q0), where q0 is a nondegenerate quadratic form of dimension n � 3,
n �= 4, over a finitely generated fieldK of characteristic zero, and Γ0 ⊂ G0(K) is a finitely
generated Zariski-dense subgroup with trace fieldK, then according to the conjecture, there

should exists a finite collection q1, . . . , qr of nondegenerate n-dimensional quadratic forms

overK such that ifG(K) forG = SOn(q), with q a nondegenerate n-dimensional quadratic

form over K, contains a finitely generated Zariski-dense subgroup that is weakly commen-

surable to Γ0, then q must be similar to one of the qi’s, i = 1, . . . , r.)
Based on our results for S-arithmetic groups (cf., for example, Theorem 4.1(1)) and the

results concerning division algebras algebras of exponent two having the same maximal sub-

fields (see Corollary 6.8 and Theorem 7.10), one expects that in some situations one should

be able to show that actually r = 1, which informally means that the ambient algebraic

group is uniquely determined by the eigenvalue information of semi-simple elements in a

finitely generated Zariski-dense subgroup.

Conjecture 6.1 is known to be true if K is a number field even when Γ1 is not S-
arithmetic (cf. [44, Theorem 5.1]) and also over general fields when G1 is of type A1. We

recall that given a connected absolutely almost simple real algebraic subgroup of SLn such

that G = G(R) is noncompact and is not locally isomorphic to SL2(R) and a lattice Γ in G,
then there exists a number fieldK ⊂ R such that Γ can be conjugated into SLn(K), cf. [45,
7.67 and 7.68]. Combining these results, we conclude that Conjecture 6.1 is true when Γ1

is a lattice in the group of real points of an absolutely almost simple real algebraic group.

More evidence supporting this conjecture comes from the investigation of another natural

problem in the theory of algebraic group — namely, characterizing absolutely almost simple

algebraic K-groups having the same isomorphism/isogeny classes of maximal K-tori. The

connection between the two is based on the Isogeny Theorem 5.5 and Corollary 5.6. While

these two problems are not equivalent, their investigation usually involves many common
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elements. To comment on these common aspects, we will temporarily shift the focus to the

second problem. We will later see how the finiteness statements in the context of both prob-

lems fit into some more general conjectures about algebraic groups with reductive reduction

- see Conjectures 7.5 and 7.8.

6.2. Simple algebraic groups over number fields with the same maximal tori. The tools

used to prove Theorems 4.1 and 4.2 can be used to characterize absolutely almost simple al-

gebraic groups over number fields having the same isomorphism/isogeny classes of maximal

tori. We give the statements of these results below in order to demonstrate their complete

similarity to the corresponding results concerning weak commensurability.

Theorem 6.3 (cf. [40], Theorem 7.5).

(1) Let G1 and G2 be connected absolutely almost simple algebraic groups defined over
a number field K, and let Li be the smallest Galois extension of K over which Gi
becomes an inner form of a split group. If G1 and G2 have the same K-isogeny
classes of maximal K-tori, then either G1 and G2 are of the same Killing-Cartan
type, or one of them is of type Bn and the other is of type Cn, and moreover, L1 = L2.

(2) Fix an absolutely almost simpleK-groupG. Then the set of isomorphism classes of all
absolutely almost simpleK-groupsG′ having the sameK-isogeny classes of maximal
K-tori is finite.

(3) Fix an absolutely almost simple simply connected K-group G whose Killing-Cartan
type is different from An, D2n+1 (n > 1) or E6. Then any K-form G′ of G (in other
words, any absolutely almost simple simply connected K-group G′ of the same type
as G) that has the same K-isogeny classes of maximal K-tori as G, is isomorphic to
G.

The construction described in [40, §9] shows that the types excluded in (3) are honest

exceptions, i.e., for each of those types one can construct non-isomorphic absolutely almost

simple simply connected K-groups G1 and G2 of this type over a number field K that have

the same isomorphism classes of maximalK-tori.

The case whereG1 andG2 are of types B� and C�, respectively, is treated in the following
theorem.

Theorem 6.4 ([22], Theorem 1.4). Let G1 and G2 be absolutely almost simple algebraic
groups over a number fieldK of types B� and C�, respectively, for some � � 3.

(1) The groups G1 and G2 have the same isogeny classes of maximal K-tori if and only
if they are twins.

(2) The groups G1 and G2 have the same isomorphism classes of maximal K-tori if and
only if they are twins, G1 is adjoint, and G2 is simply connected.

We note that some aspects of the general problem of characterizing absolutely almost

simple algebraic groups over local and global fields having the same isomorphism classes

of maximal tori were considered in [20] and [31]. Another direction of research, which

has already generated a number of results (cf. [5], [6] [21], [33], [41]) is the investigation

of local-global principles for embedding tori into absolutely almost simple algebraic groups

as maximal tori (in particular, for embedding of commutative étale algebras with involutive
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automorphisms into simple algebras with involution); some number-theoretic applications

of these results can be found, for example, in [17].

In order to get a better idea of what kind of results can be obtained over general fields, it

is helpful to consider first the related problem of characterizing finite-dimensional division

algebras having the same maximal subfields, which is somewhat reminiscent of Amitsur’s fa-

mous theorem about central simple algebras having the same generic splitting fields (cf. [2],
[25]).

6.5. Division algebras with the same maximal subfields. Let D1 and D2 be central divi-

sion algebras of the same degree n over a field K. We say that D1 and D2 have the same
maximal subfields if a degree n field extension L/K admits aK-embedding L ↪→ D1 if and

only if it admits a K-embedding L ↪→ D2. We also let Br(K) denote the Brauer group of

K, and for a (finite-dimensional) central simple K-algebra A, we let [A] ∈ Br(K) denote
the corresponding Brauer class.

Definition 6.6. LetD be a central divisionK-algebra of degree n. The genus ofD is defined

to be

gen(D) = { [D′] |D′is a central divisionK-algebra with the same maximal subfields as D}.

Two basic questions about the genus are:

(I) When does gen(D) reduce to a single element? (Then D is uniquely determined by

its maximal subfields.)

(II) What can one say about the size of gen(D) in the general case? In particular, when
is gen(D) finite?

We note that since the opposite algebra Dop has the same maximal subfields as D, the

genus gen(D) can reduce to one element only if D � Dop, i.e. if [D] has exponent 2 in

Br(K). If K is a global field, then any central division algebra over K of exponent 2 is

a quaternion algebra and furthermore it follows from the theorem of Albert-Hasse-Brauer-

Noether (ABHN) that for any quaternion division K-algebra D we have |gen(D)| = 1.
Another consequence of (AHBN) is that gen(D) is finite for any central division algebraD
over a global fieldK (see [9, 3.6]).

On the other hand, a construction proposed by M. Rost, M. Schacher, A. Wadsworth,

and others (cf. [23, Example 2.1]), enables one to produce quaternion algebras over infinitely

generated fields with nontrivial, and even infinite (see [38]), genus. So, both questions be-

come nontrivial over fields more general than global fields, and the following two theorems,

obtained jointly with V. Chernousov and I. Rapinchuk [8], [9], [46], contain some recent

results in that direction.

The first theorem expands the variety of examples where the genus is trivial. We will say

that a field F satisfies property (∗) if for any central division F -algebraD of exponent 2, the

genus gen(D) reduces to a single element.

Theorem 6.7 (Stability theorem, [9, 46]). If a field k of characteristic �= 2 satisfies (∗), then
so does the field of rational functions k(x).

(The stability property in characteristic 2 has not been investigated yet.)
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Corollary 6.8. Let k be either a finite field of characteristic �= 2 or a number field, and let
K = k(x1, . . . , xt) be a finitely generated purely transcendental extension of k. Then for
any central divisionK-algebra of exponent 2, we have |gen(D)| = 1.

The second theorem establishes the finiteness of the genus over finitely generated fields.

Theorem 6.9. LetD be a central division algebra of degree n over a finitely generated field
K of characteristic not dividing n. Then the genus gen(D) is finite.

Both theorems are based on an analysis of the ramification properties of division algebras

in the genus. More precisely, given a discrete valuation v ofK, we let OK,v andKv denote

the corresponding valuation ring and residue field, respectively. Fix an integer n > 1 (which
will later be either the degree or the exponent of D), and suppose that V is a set of discrete

valuations ofK that satisfy the following three conditions:

(A) For any a ∈ K×, the set V (a) := {v ∈ V | v(a) �= 0} is finite;

(B) There exists a finite subset V ′ ⊂ V such that the field of fractions of

O =
⋂

v∈V \V ′
OK,v,

coincides withK;

(C) For any v ∈ V , the characteristic of the residue fieldKv is prime to n.

(We note that if K is finitely generated, which will be the case in most of our applications,

then (B) automatically follows from (A).) Due to (C), we can define for each v ∈ V the

corresponding residue map

ρv : nBr(K) −→ Hom(G(v) , Z/nZ), (R)

where nBr(K) is the n-torsion in the Brauer group and G(v) is the absolute Galois group of

Kv (cf., for example, [48, §10] or [49, Ch.II, Appendix]). A class [A] ∈ nBr(K) (or a finite-
dimensional central simpleK-algebra A representing this class) is said to be unramified at v
if ρv([A]) = 1, and ramified otherwise. We let RamV (A) denote the set of all v ∈ V where

A is ramified; one shows that this set is always finite. We also define the unramified part of

nBr(K) with respect to V to be

nBr(K)V =
⋂
v∈V

Ker ρv.

Then one shows [9, Theorem 2.2] that if nBr(K)V is finite, then for a central division algebra

K-algebra D of degree n one has

|gen(D)| � |nBr(K)V | · ϕ(n)r, with r = |RamV (D)|. (U)

Thus, to prove Theorem 6.9, one needs to show that for a finitely generated field K whose

characteristic is prime to a given integer n > 1, there exists a set V of discrete valuations

of K satisfying the above conditions (A)-(C) and such that the unramified Brauer group

nBr(K)V is finite. This was first done by an explicit construction based on an analysis of

the standard exact sequence for the Brauer group of a curve; this approach enables one to
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give some explicit estimations on the size of the unramified Brauer group, hence of the genus,

cf. [9, §4], [10]. Subsequently, a more general argument was pointed out to us J.-L. Colliot-

Thélène (cf. [8]). More precisely, suppose our finitely generated field K is realized as the

field of rational functions on a regular integral scheme X of finite type over Spec A, where
A is either a finite field or the ring of S-integers in a number field for some finite set S of

its places, with n invertible in A, and let V be the set of discrete valuations of K associated

with the divisors on X . Then the finiteness of nBr(K)V follows from Deligne’s finiteness

theorem for the étale cohomology of constructible sheaves [16] and Gabber’s purity theorem

[19]. The proof of Theorem 6.7 relies on the fact that if V is the set of all geometric places

of the field of rational functions k(x) (i.e., those that are trivial on k), where k is a field of

characteristic �= 2, then 2Br(k(x))V reduces to 2Br(k) (cf. [25, Corollary 6.4.6]).

7. The genus of a simple algebraic group. Groups with reductive reduction.

In this concluding section, we will describe the ongoing project (cf. [11]) of obtaining the

analogs of results from 6.5 for arbitrary absolutely almost simple algebraic groups, and con-

nect this activity back to the Finiteness Conjecture 6.1. First, we need to extend Definition

6.6.

Definition 7.1. Let G be an absolutely almost simple simply connected algebraic group

over a field K. The (K-)genus genK(G) (or simply gen(G) if this does not lead to any

confusion) of G is the collection of K-isomorphism classes of K-forms G′ of G that have

the sameK-isomorphism classes of maximalK-tori as G.

One can alternatively define the genus using “K-isogeny classes” of maximal tori in

place of “K-isomorphism classes.” While the exact relationship between these notions of

genus has not been investigated, the Isogeny Theorem 5.5 and subsequent remarks strongly

suggest that they should lead to the same qualitative results in most cases. On the other hand,

A.S. Merkurjev proposed a different (in a way, more functorial) definition of the genus of

an absolutely almost simple algebraic K-group G as the set of K-isomorphism classes of

K-forms G′ of G that have the same isomorphism/isogeny classes of maximal tori not only

overK, but also over any field extension F/K. The results of Izboldin, Vishik and Karpenko

indicate a connection between this genus for the spinor group G = Spinn(q) of a quadratic
form q and the motive of the projective quadric q = 0 in the category of Chow motives, so it

makes sense to call this genus motivic (see [9, Remark 5.6] for more details). In this article,

however, we will only use the notion of genus given in Definition 7.1.

Building on Theorem 6.9, it is natural to make the following conjecture.

Conjecture 7.2. Let G be an absolutely almost simple simply connected algebraic group
over a finitely generated fieldK of good characteristic4. Then genK(G) is finite.

This conjecture is true over global fields (Theorem 6.3) and also for inner forms of type

A� in the general case (see Theorem 7.6 below). While Conjecture 7.2 does not automatically

imply our main Conjecture 6.1, we will now outline an approach that can potentially lead

4For each type, the following characteristics are defined to be bad: type A� - all primes dividing (� + 1), and
also p = 2 for outer forms; types B�, C�, D� - p = 2, and also p = 3 for 3,6D4; for type E6 - p = 2, 3, 5; for types
E7, E8 - p = 2, 3, 5, 7; for types F4, G2 - p = 2, 3. All other characteristics for a given type are good.
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to the proof of both conjectures, and also have some other implications. The considerations

in 6.5 were based on an analysis of the ramification properties of central simple algebras at

discrete valuations of the center. An adequate replacement of the notion of an unramified

algebra for arbitrary absolutely almost simple groups is the notion of a group with reductive
reduction. LetG be a connected absolutely almost simple simply connected algebraic group

over a field K. Given a discrete valuation v of K, we let Kv denote the corresponding

completion with valuation ring Ov , valuation ideal pv , and residue field Kv = Ov/pv . One
says that G has reductive reduction at v if there exists a reductive group scheme G over Ov

with generic fiber G ⊗K Kv . Then the reduction G ⊗Ov Kv modulo pv will be denoted

G(v). A crucial point in the proof of the estimate (U) in 6.5, which reduces the finiteness

of the genus gen(D) to the finiteness of the unramified Brauer group, was the fact that if

D′ ∈ gen(D), and χ = ρv([D]), χ′ = ρv([D′]), where ρv is the residue map at v (cf. (R)
in 6.5), then Ker χ = Ker χ′. In particular, if D is unramified at v then so is D′ (thus,
the property of being unramified is determined by maximal subfields). We have been able to

prove the following analog of the latter fact for arbitrary absolutely almost simple groups.

Theorem 7.3 ([11]). Assume that the residue field Kv is finitely generated and that G has
reductive reduction at v. Then any G′ ∈ genK(G) also has reductive reduction at v. Fur-
thermore, the reduction G′(v) lies in the genus genKv

(G(v)).

Assume now that the fieldK is equipped with a set V of discrete valuations that satisfies

the following two conditions

(A′) for any a ∈ K×, the set V (a) := {v ∈ V | v(a) �= 0} is finite;

(B′) for any v ∈ V , the residue fieldK(v)
is finitely generated.

Corollary 7.4. If K and V satisfy conditions (A′) and (B′), then for any absolutely almost
simple simply connected algebraicK-group G, there exists a finite subset V0 ⊂ V (depend-
ing on G) such that every G′ ∈ genK(G) has reductive reduction at all v ∈ V \ V0.

The other ingredient of the proof of the finiteness of gen(D) in 6.5 was the finiteness of
the unramified Brauer group n Br(K)V for a suitable set V of discrete valuations ofK. One

can expect the following general statement to be valid for the same sets V of valuations as in

6.5. Let again X be a regular integral scheme of finite type over Spec A, where A is either

a finite field or the ring of S-integers in a number field for some finite set S of its places, let

K be the field of rational functions on X , and let V be the set of discrete valuations of K
associated with the prime divisors on X (obviously, V satisfies conditions (A′) and (B′)).

Conjecture 7.5. LetK and V be as above, and let G be an absolutely almost simple simply
connected algebraic K-group such that char K is good for G. Then for any finite subset
V0 ⊂ V , the set of K-isomorphism classes of (inner) K-forms G′ of G that have reductive
reduction at all v ∈ V \ V0, is finite.

Over a number field K, the assertion of Conjecture 7.5 is an easy consequence of the

finiteness results for Galois cohomology, cf. [49, Ch. III, 4.6]. (Interestingly, there are ab-

solutely almost simple nonsplit algebraic groups over Q that have reductive reduction at all

primes, see [28], [14], but there are no Q-defined abelian varieties with smooth reduction at

all primes [18].) At the time of this writing, our knowledge about the conjecture is limited

to the following two theorems.
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Theorem 7.6 (cf. [9], Theorem 5.3). Conjectures 7.2 and 7.5 (for inner forms) are true for
G = SL1,A where A is a central simpleK-algebra.

Assume that char K �= 2 and let μ2 = {±1}. Then for any discrete valuation v of K
such that char Kv �= 2 and any i � 1, one can define the residue map in Galois cohomology

ρiv : H
i(K,μ2) → Hi−1(Kv, μ2)

extending (R) in 6.5 to all dimensions (see, for example, [13, 3.3] or [25, 6.8] for the details).

Then for any set V of discrete valuations of K such that char Kv �= 2 for all v ∈ V , one
defines the unramified part Hi(K,μ2)V to be

⋂
v∈V Ker ρiv (of course, H2(K,μ2)V =

2 Br(K)V ).

Theorem 7.7 ([11]). Let K be a finitely generated field of characteristic �= 2, and let V
be a set of discrete valuations of K as in Conjecture 7.5 such that char Kv �= 2 for all
v ∈ V . Assume that for any finite subset V0 ⊂ V , the unramified cohomology groups
Hi(K,μ2)V \V0

are finite for all i � 1. Then for any n � 5, the set of K-isomorphism
classes of the spinor groups Spinn(q), where q is a nondegenerate n-dimensional quadratic
form, that have reductive reduction at all v ∈ V , is finite.

Now, our Finiteness Conjecture 6.1 would be a consequence of Conjecture 7.5 and the

following.

Conjecture 7.8. Let K and V be as in Conjecture 7.5, and assume that char K = 0.
Furthermore, let G1 and G2 be absolutely almost simple algebraic groups defined over a
field F ⊃ K, and let Γ1 ⊂ G1(F ) be a Zariski-dense subgroup with trace field KΓ = K.
Then there exists a finite subset V0 ⊂ V (depending on Γ1) such that if Γ2 ⊂ G2(F ) is
weakly commensurable to Γ1, then the (simply connected cover of the) algebraic hull G2 of
Γ2 has reductive reduction at all v ∈ V \ V0.

At this point, Conjecture 7.8 has been established for groups of type A1 using the strong

approximation theorem of Weisfeiler [54]. It seems that the same method should also be

applicable in the general case.

The potential implications of Conjecture 7.5 reach beyond eigenvalue rigidity, e.g., it

would also imply the finiteness of the Tate-Shafarevich set in some situations. More pre-

cisely, letK and V be as in Conjecture 7.5, and let G be an absolutely almost simple simply

connectedK-group. Consider the Tate-Shafarevich set

X(G) := Ker

(
H1(K,G) −→

∏
v∈V

H1(Kv, G)

)

for the corresponding adjoint group G. We can pick a finite subset V0 ⊂ V so that G has

reductive reduction at all v ∈ V \ V0. Now, let ξ ∈ X(G), and let G′ = ξG be the

corresponding twisted group. Then G′ � G over Kv for all v ∈ V , and in particular, G′

has reductive reduction at all v ∈ V \ V0. Assuming Conjecture 7.5, we would have that the

groups ξG for ξ ∈ X(G) form finitely many K-isomorphism classes; in other words, the

image ofX(G) under the canonical mapH1(K,G)
λ−→ H1(K,AutG) is finite. But since

G � IntG is of finite index in AutG, the map λ has finite fibers, so we obtain the finiteness
ofX(G). In particular, Theorem 7.6 yields the following.
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Corollary 7.9. Let K and V be as in Conjecture 7.5, and let A be a central simple K-
algebra of degree n not divisible by char K. Then for G = PSL1,A, the Tate-Shafarevich
setX(G) is finite.

Finally, we would to point out that the techniques involved in Theorem 7.3 are instru-

mental not only for proving the finiteness of genK(G), but also for its quantitative analysis.
For example, they give yet another instance where a K-form is uniquely determined by its

maximalK-tori.

Theorem 7.10. Let K = k(x), where k is a global field of characteristic �= 2. For any
K-group G of type G2, the genus genK(G) reduces to a single element.

One expects a similar statement to hold over such a field K also for groups of types B�,
C� (� � 2) and F4 (maybe under some additional assumptions).
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1. Introduction

Frobenius splitting has inspired a vast arsenal of techniques in commutative algebra, alge-

braic geometry, and representation theory. A great many papers and books exist on the topic,

with related techniques developed by different camps of researchers, often in language im-

penetrable to others. Only in the most recent years have many of the most elegant ideas

coalesced into a simple and coherent story. I assume that my duty is to summarize some of

the state of the art.

The story of Frobenius splitting begins in the 1970’s with Hochster and Roberts’ cele-

brated proof of the Cohen-Macaulayness of rings of invariants [41]. The term “Frobenius

splitting” was coined a decade later in the exceptionally beautiful paper of Mehta and Ra-

manathan [65], which jump-started an entire industry devoted to better understanding (e.g.,

singularities and vanishing of cohomology for) naturally occurring varieties (such as Schu-

bert varieties) in the representation theory of algebraic groups. On the commutative algebra

side, Hochster and Roberts’ legacy eventually spawned the theory of tight closure [44]. By

the nineties, tight closure was being used to define “characteristic p analogs” of important

notions in the minimal model program, a process still evolving today.

The last few years have witnessed the continued expansion of Frobenius splitting tech-

niques into further reaches of mathematics; new applications have been found, for example,

to Fomin and Zelevinsky’s cluster algebras, and there is hope that some of these tools might

be used to make progress towards the minimal model program in prime characteristic. Our

understanding of test ideals—originally defined by Hochster and Huneke as a technical com-

ponent of the theory of tight closure—has crystalized: now test ideals can be viewed as an

instance of compatible splitting in the language of Mehta and Ramanathan, as a prime char-

acteristic analog of multiplier ideals or within the broader context of Kawamata’s centers

of log canonicity, or as annihilators of certain important Artinian modules with Frobenius

action. This triumvirate of perspectives on test ideals as major components of three quite
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different areas—algebro-geometric representation theory, birational geometry, and commu-

tative algebra, respectively—bespeaks the depth and importance of Frobenius splitting.

In this talk, I begin in the local setting, reviewing the definition of Frobenius splitting and

the closely related but slightly stronger notion of F-regularity due to Hochster and Huneke.

This notion ultimately to “characteristic p analogs” of rational, log canonical, log terminal,

and DuBois singularities. In a recent application, a large class of cluster algebras (locally
acyclic cluster algebras) are shown to have canonical singularities [6].

In the global setting, I’ll summarize the recent progress on unraveling the geometry of

Frobenius split and globally F-regular varieties. These varieties (which are also defined in

characteristic zero by “reduction to characteristic p”) are important because of the wealth of

vanishing theorems about them and because they are characteristic p analogs of some central

players in the birational classification of algebraic varieties.

We now understand that global splittings of Frobenius for projective varieties are the

same as local splittings “at the vertex of the cone” with respect to any polarization of the

variety. This means that the local commutative algebraic theory of Hochster-Roberts-Huneke

is equivalent to the global projective theory of Mehta-Ramanathan, despite the fact that the

theories developed almost independently during the end of the twentieth century (witness

the remarkable disjointness of the monographs [48] and [20]).

A culminating idea is Karl Schwede’s recent insight that the test ideal can be viewed as

one ideal in a lattice of ideals (which he calls uniformly F-compatible) that are special with

respect to the Frobenius map. Such a lattice of ideals had already been intensely studied in

commutative algebra as annihilators of “modules with Frobenius action,” but Schwede’s dual

insight gave rise to a simpler and more elegant definition of test ideals which immediately

tied them to Mehta and Ramanathan’s compatibly split ideals, as well as to Kawamata’s the-

ory of log canonical centers. In the last part of my talk, I will explain this new development,

as well as an asymptotic theory of test ideals which leads to a simple proof of a theorem on

the behavior of symbolic powers of ideals in any polynomial ring.

This paper should be viewed as an extended abstract for my ICM lecture; it is grossly in-

adequate as a serious survey of this ever expanding field. Having recently written a compre-

hensive exposition on this topic for MSRI based on a mini-course for the opening workshop

for last year’s Program in Commutative Algebra, I refer readers who prefer a more leisurely

development of the ideas in the main cases there. There are also many other excellent sur-

veys on recent developments, including [83] or [14], both of which contain a more technical

and extensive survey of test ideals. Older surveys such as [91] explain more about reduction

to characteristic p and the connections between singularities in the minimal model program

and characteristic p techniques. Other possible surveys of interest include Huneke’s lectures
on Tight Closure [48] and Brion-Kumar’s text on Mehta-Ramanathan’s Frobenius splitting

[20]. There are also many topics that I simply won’t have time to touch, including connec-

tions with Hilbert-Kunz multiplicities (see [49]) or the difficult arithmetic issues arising in

the work on F-pure thresholds (see [5] or [70]).

2. The Frobenius map for rings

Let R be any commutative ring of prime characteristic p. The Frobenius map (or p-th power
map) is a ring homomorphism:

F : R→ R; r !→ rp.
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Viewing the second copy of R as an R-module via Frobenius, the Frobenius map is also an

R-module map. A nice notation for this map is F : R → F∗R, which is consistent with the

notation for sheaves.

The ringR is said to be F-finite if the Frobenius map is finite. This is a mild assumption;

for example, the class of F-finite rings is closed under localization, surjective image, com-

pletion at a maximal ideal, and finite extensions. In particular, finitely generated algebras

over a perfect field are F -finite.
A basic fact due to Kunz [57] is that an F-finite ring R is regular if and only if F∗R is

a locally free R-module.1 Frobenius splitting can be viewed as a weakened version of this

freeness:

Definition 2.1. A reduced ring R of characteristic p is Frobenius split (or F-split) if the
Frobenius map F : R→ F∗R splits (in the category of R-modules).

An F-finite regular ring is Frobenius split by Kunz’s theorem. Any direct summand of

a Frobenius split ring is Frobenius split itself. So Veronese subrings of polynomial rings

are Frobenius split but not regular. So is the ring of invariants of a finite group acting on a

polynomial ring over a field whose characteristic does not divide the order of the group.

The first systematic use of Frobenius splitting is in [41, 42], although Hochster and

Roberts defined a different notion called F-purity which they proved equivalent to Frobe-

nius splitting in the F-finite case (and possibly always).

2.1. Notation. For a reduced ring R, the Frobenius map F : R → F∗R is equivalent to

the the inclusion of Rp-modules Rp ↪→ R. This in turn is equivalent to the inclusion of R-
modulesR ↪→ R1/p, whereR1/p is the subring of p-th roots of elements ofR in an algebraic

closure of the total field of fractions of R.

2.2. F-regularity. A refinement of Frobenius splitting is the notion of F-regularity, which

is defined via iterates of Frobenius:

F e : R→ R r !→ rp
e

.

Again, we denote this map by R → F e∗R to emphasize that we view the second copy of R
as an R-module via iterates of Frobenius.

Definition 2.2 ([43]). An F-finite ring R is strongly F-regular2 if for every element f ∈ R
not in any minimal prime of R, there exists e ∈ N such that the R-module map R → F e∗R
sending 1 to f ∈ F e∗R splits. Put differently, this means that R is reduced, and for all f not

in any minimal prime, there exists e ∈ N and φ ∈ HomR(R
1/pe , R) such that φ(f1/p

e

) = 1.

An F-regular ring is not free over Rp
e

(unless it is regular), but it will have many sum-

mands isomorphic toRp
e

. Indeed, every non-zero element ofRwill generate anRp
e

-module

direct summand of R for sufficiently large e. It is easy to see that regular rings are F-regular,
and that F-regular rings are Frobenius split. Furthermore, direct summands of F-regular rings

are F-regular. F-regular rings have many nice properties:

1More generally, even if R is not F-finite, Kunz shows that an excellent ring of characteristic p > 0 is regular if

and only if its Frobenius map is flat. F-finite rings are always excellent [58].

2Hochster and Huneke introduced three flavors of F-regularity, all conjectured to be equivalent. The equivalence

is known, for example, for graded rings [61] and for rings with isolated non-Q-Gorenstein points [63]. In recent

years, the adjective “strongly” is sometimes dropped from this term, at least in some corners of the literature.
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Theorem 2.3.
(1) F-regular rings are Cohen-Macaulay and normal [43];

(2) F-regular rings are pseudo-rational3 [90].

Corollary 2.4 (The Hochster-Roberts Theorem [41]). Fix any ground field k. Let G be a
linearly reductive algebraic group over k acting on a regular Noetherian k-algebra S. Then
the ring of invariants

SG := {f ∈ S | f ◦ g = f for all g ∈ G}
is Cohen-Macaulay.

The proof in characteristic p is immediate: the linear reductivity implies that SG is a di-
rect summand of the regular ring S, hence it is F-regular, and therefore Cohen-Macaulay, by

the theorem above. The characteristic zero statement is proved by reduction to characteristic

p. Later, Boutot gave a different proof in the characteristic zero case, which does not use

reduction to characteristic p, although it still exploits the philosophy of “splitting” [18].

2.3. Recent application to cluster algebras. Fomin and Zelevinsky introduced cluster al-
gebras as a way to understand total positivity in a variety of contexts [26]. Fix a purely

transcendental field F = k(x1, . . . , xn) of dimension n over some ground field k. A cluster

algebra is a k-subalgebra A of F generated by a distinguished collection of rational func-

tions which come together in overlapping groups of algebraically independent generators

for F over k called clusters. The clusters are not arbitrary, but are related to one another by

a sequence of mutations (defined via specific combinatorial rules). Each cluster is indexed

by a skew-symmetrizable matrix (or a quiver in a simplified setting) which are related to

one another by a corresponding sequence of mutations. See [26, 27] and especially [7] for

details.

Many of the motivating examples of cluster algebras are famously well-behaved rings, in-

cluding for example, (localizations of) the Plucker homogeneous coordinate rings for Grass-

mannians and other rings from combinatorial representation theory. However, a number of

pathological examples also satisfy the definition and there is a sense that the “right class” of

cluster algebras is yet to be identified.

The acyclic cluster algebras form one well-understood and well-behaved class, but this

class is far too restrictive to be of major importance in its own right [7]. Greg Muller recently

introduced the locally acyclic cluster algebras, a much wider class which simultaneously

rules out all of the pathological examples while being flexible enough to include nearly all

of the interesting ones [68]. By definition, a cluster algebra is locally acyclic if its spectrum
admits a “cluster cover” by acyclic cluster algebras—that is, a cover by affine open sets Spec

Ay , where y is a product of cluster variables such that Ay has a naturally induced cluster

algebra structure which is acyclic. See [68].

Theorem 2.5 ([6]). Every locally acyclic cluster algebra over a field of prime characteristic
is strongly F-regular.

It follows that every locally acyclic cluster algebra over a field of characteristic zero has

rational singularities [90], and hence canonical singularities (since they are always Goren-

stein) [23]. The theorem applies to a wide range of cluster algebras, including for example,

3Pseudorationality is a characteristic-free notion introduced in [60] which agrees with rational singularities in

characteristic zero.
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cluster algebras of Grassmannians, cluster algebras of marked surfaces with at least two

marked points on the boundary [68, Theorem 10.6], as well as cluster algebras of double

Bruhat cells and more generally, positroid cells [69].

2.3.1. The Laurent Phenomenon and upper cluster algebras. By the Laurent Phenom-
enon, each cluster variable is a Laurent polynomial in every other cluster [7]. This implies

that a cluster algebra A is contained in its upper cluster algebra

U :=
⋂

clusters x⊂A

k[x±1
1 , x

±1
2 , ..., x

±1
n ] ⊂ F .

For locally acyclic cluster algebras, A = U , but the inclusion is strict in general [7, 68].

If k[x±1
1 , x

±1
2 , ..., x

±1
n ] is the Laurent ring in some cluster, there is a Frobenius splitting

defined by

φ (λxa1
1 x

a2
2 · · ·xan

n ) =

{
φ(λ)x

a1/p
1 x

a2/p
2 · · ·xan/p

n if a1, a2, ..., an ∈ pZ
0 otherwise

(where φ : F∗k → k is any fixed splitting of the ground field). This induces a Frobenius

splitting of the function field F . It is shown in [6] that all clusters induces the same splitting
of F . Thus there is a canonical cluster splitting on any upper cluster algebra. This is closely

related to the fact that the cluster log forms

dx1 ∧ dx2 ∧ · · · ∧ dxn
x1 · · ·xn

do not depend on the choice of cluster (up to sign),4 since a Frobenius splitting is a section

of the sheaf OX((1− p)KX). See Section 4.2.

2.4. F-signature. A numerical refinement of F-regularity called the F-signature sharpens

the classification of F-singularities by measuring the growth rate of the rank of a maximal

free summand of the R-module F e∗R as e goes to infinity. This was first studied in [96].
Fix a local F-finite domain R. For each natural number e, we can decompose the R

module F e∗R as a direct sum of indecomposable modules, and count the number of sum-

mands that are isomorphic to R. Let ae denote the rank of a maximal free summand of the

R-module F e∗R. [Note that if R is Frobenius split then ae ≥ 1, and if R is regular then

ae = pde where d is the rank of the free module F∗R over R.] For an F-regular ring, we

expect many summands of F e∗R isomorphic to R, so we expect ae to grow with e.

Definition 2.6. The F-signature of R is

s(R) = lim
e→∞

ae
pde
,

where d = [K : Kp] for K the fraction field of R. This limit was recently shown to exist

[101].

The F-signature is one if and only if R is regular, as proved by Huneke and Leuschke,

who also coined the term “F-signature” [50]. The F-signature is positive if and only if R

4This observation also appears in the unpublished work of Allen Knutson and David Speyer.
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is F-regular [3]. Thus each F-regular ring has an F-signature strictly between zero and one;

we can think of F-signature as a measurement of how close an F-regular ring is to being

regular. For example, the rational double points xy = zn+1 have F-signature 1/(n+1) [50],
reflecting the fact that the singularity is “worse” for larger n. Formulas for the F-signature

of toric varieties are worked out in Von Korff’s PhD thesis [102].

Tucker vastly generalizes and simplifies much of the literature on F-signature in [101], to

which we refer for a nice exposition. The state of the art on F-signature can be found in the

recent papers of Blickle, Schwede and Tucker [16] and [17], which include generalizations

of F-signature to pairs (and triples). The F-signature is closely related to the Hilbert-Kunz

multiplicity, a subject pioneered by Paul Monsky [67]; see Huneke’s survey [49] or Brenner’s

paper [19]. No known examples of non-rational F-signatures are known (though some expect

that they exist).

2.5. Characteristic zero definitions. Let k denote any field of characteristic 0, and let R
be a finitely generated k-algebra. Fix a presentation

R ∼= k[x1, . . . , xn]/(f1, . . . , fr).

Let A be the Z-subalgebra of k generated by all coefficients of the polynomials f1, . . . , fr,
and set

RA = A[x1, . . . , xn]/(f1, . . . , fr).

Since A is a finitely generated Z-algebra, the residue field of A at each of its maximal ideals

is finite. The map Spec RA → Spec A can be viewed as a “family of models” for R. The
closed fibers of this map are characteristic p schemes (of varying p) whereas the k−valued

points reproduce R.

Definition 2.7. The ring R is said to have dense Frobenius split type (or dense F-regular
type) if there is a dense set of maximal ideals μ in SpecA such thatA/μ⊗ARA is Frobenius

split (or F-regular).5

Definition 2.7 does not depend on the presentation of R, nor on the choice of A. See

[47].

Example 2.8.

(1) The ring C[x, y, z]/(y2 − xz) has dense F-regular type. As a matter of fact, taking

A = Z, the closed fibers of the family are the rings Fp[x, y, z]/(y2 − xz), which are

F-regular for every prime number p.

(2) The ring C[x, y, z]/(x3 + y3 + z3) has dense Frobenius split type, but not dense F-

regular type, nor open Frobenius split type. Indeed, Fp[x, y, z]/(x3 + y3 + z3) is

Frobenius split if and only if p ≡ 1(mod 3), so that there is an infinite set of prime

numbers p for which the “reduction mod p” is Frobenius split. On the other hand, for

every p ≥ 5 and every e, one can show that there is no map sending x1/p
e

to 1. So

this ring is not dense F-regular type.

5We can also define open Frobenius split (F-regular) type to be when A/μ⊗A RA is F-split (F-regular) for an

open set of maximal ideals μ in Spec A. It is expected that dense and open F-regular type are equivalent; this is

known in Gorenstein rings and related settings; see [90] and [36].
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2.6. Connections with the singularities in the minimal model program. Frobenius split-

ting and F-regularity in characteristic zero are closely related to a number of important issues

arising independently in algebraic geometry, including log canonical and log terminal singu-

larities, positivity, and multiplier ideals.

Theorem 2.9. Let R be a finitely generated domain over a field of characteristic zero. Then

(1) If R is Gorenstein, then R has dense F-regular type if and only if R has rational
singularities [32, 66, 90].

(2) IfR isQ-Gorenstein, thenR has dense F-regular type if and only ifR has log terminal
singularities [36].

(3) If R is Q-Gorenstein and has dense Frobenius split type, then R has log canonical
singularities [36].

All three statements can also be made for “pairs;” see Section 3.2.

There are related notions which can be defined in terms of local cohomology modules:

F-injectivity means that Frobenius acts injectively on the local cohomology modules of a

local ring with support in the maximal ideal, while F-rationality means that these local co-

homology modules have no nontrivial proper submodules stable under Frobenius. F-rational

type is equivalent to rational singularities [90], [32], [66]. F-injective type implies DuBois

singularities [76].

The converse of Theorem 2.6 (3) is conjectured to hold in general as well. This long-

standing open question related to an important conjecture linking the F-pure threshold and

the log canonical threshold; see Section 5.4.

3. The global theory

Let X denote a scheme of prime characteristic p. The Frobenius map F : X → X is

the identity map on the underlying topological space of X , while the corresponding map of

sheaves OX → F∗OX is the p-th power map locally on sections.

Consistent with the terminology for rings, we say that a schemeX is F-finite if the quasi-
coherent sheaf F∗OX is coherent. Our main interest is when X is a variety over a perfect

field k of characteristic p; such a variety is always F-finite. Note that the Frobenius map is

rarely a map of varieties, since it is not linear over the ground field k (unless k = Fp).
Kunz’s Theorem implies that an F-finite scheme X is regular if and only if the coherent

OX -module F∗OX is locally free. A scheme X is locally Frobenius split if the map OX →
F∗OX splits locally in a neighborhood of each point, or equivalently, if all stalks OX,p are

Frobenius split. Likewise, we sayX is locally F-regular if all stalks are F-regular. A locally

F-regular scheme is normal, Cohen-Macaulay and pseudo-rational by Theorem 2.3.

It is much stronger, of course, to require a global splitting of the Frobenius map:

Definition 3.1. Let X be an F-finite scheme of prime characteristic.

(1) X is Frobenius split if the Frobenius map OX → F∗OX splits as a map of OX -

modules [65];

(2) X is globally F-regular if for all effective Cartier divisorsD, there is an e such that the
composition

OX → F e∗OX ↪→ F e∗OX(D)
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splits as a map of OX -modules [93].

Globally F-regular varieties are Frobenius split in a strong sense: there are typicallymany
splittings of Frobenius. Indeed, consider any effective divisor D on a globally F-regular

variety X . A splitting of (2) above is a map F e∗OX(D)
φ→ OX , which can be restricted to

F e∗OX to induce a splitting ofOX → F e∗OX as well. So we have a splitting of the (iterated)

Frobenius OX → F e∗OX which factors through F e∗OX(D)—that is, a Frobenius splitting
along D [73, 74]. A strongly F-regular variety is Frobenius split (for some iterate) along

every effective divisor.

Frobenius split varieties satisfy strong vanishing theorems:

Theorem 3.2. LetX be a Frobenius split projective scheme over an F-finite field, and let L
be an invertible sheaf.

(1) If Hi(X,Ln) = 0 for n) 0, then Hi(X,L) = 0 [65].

(2) In particular, if L is ample, then Hi(X,L) vanishes for all i > 0.

(3) In particular, ifX is Cohen-Macaulay and L is ample, thenHi(X,ω⊗L) = 0 for all
i > 0 by Serre duality.

(4) IfX is globally F-regular and L is nef, thenHi(X,L) vanishes for all L and all i > 0
[93].

Thus it is worthwhile to have criteria for Frobenius splitting and globally F-regularity.

One useful criterion is essentially due to Hochster and Roberts, although the interpretation

here is from [91, 4.10.2]:

Proposition 3.3. A projective variety X is Frobenius split if and only if the induced map
HdimX(X,ωX) → HdimX(X,F ∗ωX) is injective.

Example 3.4. It follows that a variety with trivial canonical bundle (such as an elliptic curve,
or in higher dimension, an abelian variety or a Calabi-Yau) is Frobenius split if and only if

it is ordinary. The study of ordinarity for Abelian varieties is a difficult problem in number

theory; see e.g. [64].

The only smooth projective curve that is globally F-regular is P1; this follows by applying

Theorem 3.2 (4) to the canonical bundle. In higher dimension as well, global F-regularity

is a type of positivity. Indeed, Mehta and Ramanathan pointed out that a Frobenius splitting

can be viewed as a special kind of pluri-anticanonical form:

Lemma 3.5. Let X be a normal projective variety over a perfect field. Then we have

HomOX
(F e∗OX ,OX) ∼= F e∗ω1−pe

X .

So we expect that globally F-regular schemes will admit many effective divisors in the

linear systems |(1 − pe)KX |. Indeed, this property essentially characterizes globally F-

regular varieties:

Theorem 3.6 ([82, 93]). If X is a globally F-regular projective variety of characteristic p,
then X is log Fano.
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By log Fano we mean a normal projective variety which admits an effective Q-divisor

Δ such that −KX −Δ is ample, and the pair (X,Δ) has (at worst) Kawamata log terminal

singularities.6

The proof of Theorem 3.6 constructs the Q-divisor Δ as follows: Fix an ample divisor

D. A splitting of Frobenius along D is a map F e∗OX(D) → OX , which in turn can be

viewed as a global section of HomOX
(F e∗OX(D),OX) ∼= ω1−pe

X (−D). This gives rise to
an effective divisor D′ in the linear system |(1 − pe)KX − D|, and we set Δ = 1

pe−1D
′.

Note that the construction very much depends on the characteristic, p.
The converse of Theorem 3.6 fails because of irregularities in small characteristic. For

example, the cubic hypersurface defined by x3 + y3 + z3 + w3 in P3 is Fano in every

characteristic p �= 3, but not globally F-regular nor even Frobenius split in characteristic

two. However, it is globally F-regular for all characteristics p ≥ 5.

Theorem 3.7 ([82, 93]). IfX is a log Fano variety of characteristic zero, thenX has globally
F-regular type.

The converse to Theorem 3.7 is open. IfX has globally F-regular type, then in each char-

acteristic p model, the proof of Theorem 3.6 constructs a “witness” divisor Δp establishing

that the pair (Xp,Δp) is log Fano. But Δp depends on p and there is no a priori reason that

there must be some divisorΔ on the characteristic zero variety which reduces mod p toΔp.

Conjecture 3.8. A projective globally F-regular type variety (of characteristic zero) is log
Fano.

Conjecture 3.8 has been proved for surfaces [30] as well as for Q-factorial Mori Dream

spaces [29]. This raises the question: are globally F-regular type varieties (of characteristic

zero) Mori Dream Spaces? Moreover, since log Fano spaces (of characteristic zero) are Mori

Dream spaces by [9, Cor 1.3.2], the answer is necessarily yes if Conjecture 3.8 is true. What

about in characteristic p?

Question 3.9. Assume that X is globally F-regular. Is it true that the Picard group of X is
finitely generated? Is it true that the Cox ring of X is always finitely generated?

Similar issues arise regarding the geometry of Frobenius split varieties:

Theorem 3.10 ([82]). If X is a normal Frobenius split projective variety of characteristic
p, then X is log Calabi-Yau.

By log Calabi-Yau we mean thatX admits an effectiveQ-divisor such that (X,Δ) is log
canonical7 andKX +Δ is Q-linearly equivalent to the trivial divisor.

Again, the converse fails because of irregularities in small characteristic. However, we

do expect an analog of Theorem 3.7 to hold.

Conjecture 3.11 ([82]). If X is a log Calabi-Yau variety of characteristic zero, then X has
Frobenius split type.

Conjecture 3.11 is known in dimension two [30] and for Mori Dream spaces [29].

6Kawamata log terminal singularity is usually defined in characteristic 0 using a resolution of singularities, but

it can be defined in any characteristic as follows. A pair (X,Δ) consisting of a normal variety with an effective

Q-divisor is Kawamata log terminal if KX +Δ is Q-Cartier, and for all birational proper maps π : Y → X with

Y normal, choosing KY so that π∗KY = KX , each coefficient of π∗(KX +Δ)−KY is strictly less than 1.

7We define log canonical in characteristic p similarly to how we defined klt singularities.
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3.1. Local versus global splitting. Despite developing separately, the local and global the-

ories are completely equivalent. Indeed, a projective variety is Frobenius split or globally

F-regular if and only if “its affine cone” has that property:

Theorem 3.12 ([82, 93]). LetX be any projective scheme over a perfect field. The following
are equivalent:

(1) X is Frobenius split;

(2) the ring SL =
⊕

n∈NH
0(X,Ln) is Frobenius split for all invertible L;

(3) the section ring SL =
⊕

n∈NH
0(X,Ln) is Frobenius split for some ample invertible

L.
Likewise, a projective varietyX is globally F-regular if and only if some (equivalently, every)
section ring SL with respect to an ample invertible sheaf L is F-regular.

Example 3.13. Grassmannians of any dimension and characteristic are globally F-regular.

Indeed, the homogeneous coordinate ring for the Plücker embedding of any Grassmannian is

F-regular [45]. More generally, all Schubert varieties are globally F-regular [59]. A normal

projective toric variety (of any characteristic) is globally F-regular, since a section ring given

by a torus invariant ample divisor will be generated by monomials, hence F-regular [95].

3.2. Pairs. During the last decade, a theory of “F-singularities of pairs” has flourished,

inspired by the rich theory of pairs developed in birational geometry [54]. The idea to create

tight closure theory for pairs was a major breakthrough, pioneered by Nobuo Hara and Kei-

ichi Watanabe in [36]. Once defined, the theory of tight closure theory for pairs—including

F-regularity, F-splitting and test ideals— rapidly developed in a long series of technical

papers by the Japanese school of tight closure, including Hara, Watanabe, Takagi, Yoshida

and others.

By pair in this context, we have in mind a normal irreducible scheme X of finite type

over a perfect field, together with either a Q-divisor Δ (or an ideal sheaf a raised to some

fractional exponent.8) In the geometric setting, an additional assumption—namely that

KX + Δ is Q-Cartier—is usually imposed, because a standard technique involves pulling

back to different birational models. One possible advantage to the algebra set-up is that it is

not necessary to assume that KX +Δ is Q-Cartier for the definitions, although alternatives

have also been proposed directly in the world of birational geometry as well; see [25]. See

also [80].

Definition 3.14. Let X be a normal F-finite variety, and Δ an effective Q-divisor on X .

(1) The pair (X,Δ) is sharply Frobenius split (respectively locally sharply Frobenius

split) if there exists an e ∈ N such that the natural map

OX → F p
e

∗ OX(*(pe − 1)Δ+)
splits as an map of sheaves of OX -modules (respectively, splits locally at each stalk).

(2) The pair (X,Δ) is globally (respectively, locally) F-regular if for all effective divisors
D, there exists an e ∈ N such that the natural map

OX → F p
e

∗ OX(*(pe − 1)Δ++D)

8There are even triples (X,Δ, at) incorporating aspects of both variants.
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splits as an map of sheaves of OX -modules (respectively, splits locally at each stalk).

Remark 3.15. A slightly different definition of Frobenius splitting for a pair (X,Δ) was
first given by Hara and Watanabe [36]. The variant here, which fits better into our context,

was introduced by Karl Schwede [77].

Theorem 3.16 ([36]). Let (X,Δ) be a pair where X is a normal variety of prime charac-
teristic and Δ is a Q-divisor such thatKX +Δ is Q-Cartier.

(1) If (X,Δ) is a locally F-regular pair, then (X,Δ) is Kawamata log terminal.

(2) If (X,Δ) is a locally sharply Frobenius split pair, then (X,Δ) is log canonical.

Similarly, there are global versions: Theorem 3.7 and 3.10 also hold for “pairs.” See

[82]. In characteristic zero, the converse of (1) holds, as does its global analog. The local

and global converses of (2) are conjectured; this appears to be a difficult problem with deep

connections to arithmetic.

We can think of F-regularity as a “characteristic p analog” of Kawamata log terminal

singularities, and (at least conjecturally) Frobenius splitting as a “characteristic p analog” of
log canonical singularities. The analogy runs deep: F-pure thresholds become “characteristic

p analogs” of log canonical thresholds [99], test ideals become “characteristic p analogs” of
multiplier ideals [33, 94], centers of sharp F-purity become “characteristic p analogs” of

log canonicity [78], F-injectivity becomes a “characteristic p analog” of Dubois singularities
[76].

3.2.1. Possible applications to the minimal model program in characteristic p. Re-

cently, attention has turned to solving the minimal model program in prime characteristic,

where a big obstruction is the failure of vanishing theorems. There is hope that the Frobenius

splitting and tight-closure inspired definitions will help overcome this difficulty. For exam-

ple, it is not even known in characteristic p whether klt singularities are Cohen-Macaulay,

even when resolution of singularities is assumed [55]. Perhaps F-regularity is the “right”

class of singularities to consider in prime characteristic instead? As another example, the

test ideal is better than the multiplier ideal at capturing some of the subtleties in prime char-

acteristic, for example, under pull back under wildly ramified mappings [84]. The world

of F-singularities is beginning to get implemented in the minimal model program (see e.g.

[31]), but the final outcome of this endeavor is not yet clear. Another place where Frobenius

techniques have been helpful is in effective generation of adjoint bundles; this goes back to

[92] which is reproved in dual format in [81], and generalized recently in [72]. See also [53].

4. The test ideal

The test ideal is a distinguished ideal reflecting the Frobenius properties of a prime char-

acteristic ring. Test ideals can be defined very generally for pairs on more or less arbitrary

Noetherian schemes of characteristic p. However, the theory becomes most transparent in

two special cases, the “classical commutative algebra case” and the “classical algebraic ge-

ometry case.”

The test ideal is a “characteristic p analog” of the multiplier ideal in characteristic zero.

This was first proved in the absolute case in [94] and (independently) [33]; the proofs were

later adapted to the relative case when test ideals of pairs were introduced [35, 37].
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In the classical commutative algebra case, the scheme is the spectrum of a local ring

R and we are interested in the “absolute” test ideal. In this case, the test ideal τ(R) is

essentially Hochster and Huneke’s test ideal for tight closure.9 The test ideal can be viewed

as just one (the smallest) ideal in a lattice of ideals special with respect to the Frobenius map.

The idea of viewing the test ideal as one ideal in a special lattice given by Frobenius has

been around for some time. For example, the test ideal of a Gorenstein ring (R,m) is the
annihilator of the maximal proper submodule of the injective hull of the residue field of R
stable under any action of Frobenius [62, 89, 90]. But Karl Schwede recently dualized this

point of view, leading to a more accessible and elegant theory which ties the test ideal in

with Mehta and Ramanathan’s theory of compatibly split ideals.

4.1. Schwede’s definition of the test ideal. Let R be an F-finite reduced ring of character-

istic p.

Definition 4.1. Fix any R-linear map ϕ : R1/pe → R. An ideal J of R is called ϕ-
compatible if ϕ(J1/pe) ⊆ J . That is, J is ϕ-compatible if there is a commutative diagram

R1/pe ϕ ��

����

R

����
(R/J)1/p

e �� R/J,

where the vertical arrows are the natural surjections, showing that ϕ descends to a map

(R/J)1/p
e → R/J .

Definition 4.2 ([78]). An ideal J in an F-finite ring is uniformly F -compatible if it is

compatible with respect to every R-linear map R1/pe → R, for all e. The test ideal is the
smallest uniformly compatible ideal not contained in any minimal prime.

It is a non-obvious fact that there exists a smallest such ideal. This is essentially due to

Hochster and Huneke in their proof the existence of “completely stable test elements” [43].

For a summary of the proof in this context, see [83].

The test ideal behaves well under localization. In addition, it is easy to see that a ring

R is F-regular if and only if its test ideal is trivial. Thus the test ideal defines the locus of

non-F-regular points of Spec R.
The set of uniformly F compatibly ideals forms a lattice closed under sum and intersec-

tion. If R is Frobenius split, all these ideals are radical as well. This lattice has been studied

before: it is the precisely the lattice of F-ideals discussed in [89] and [90], as well as the

lattice of annihilators of F(E)-modules of [62], in their respective contexts. If we restrict to

just one ϕ which happens to be a Frobenius splitting of R, this is the lattice of compatibly

split ideals of Mehta and Ramanathan [65].

Remark 4.3 (For experts in tight closure theory). The test ideal defined here is the “big” test

ideal in the tight closure terminology.10 If R is complete local, for example, the test ideal

9Our terminology differs slightly from the tight closure literature, where our test ideal would be called the “big

test ideal” for “non-finitistic tight closure.”

10Of course, all versions of test ideals in the tight closure theory are conjectured to be equal, and are known to be

equal in many cases, including Q-Gorenstein [4] and graded [61] cases.
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we define here is the same as the annihilator of the non-finitistic tight closure of zero in the

injective hull of the residue field of R [62]. See [78] for a proof.

Experts in tight closure can easily see how the definition of the test ideal here relates to

the one in the literature, and why there is a unique smallest uniformly F -compatible ideal,

at least in the Gorenstein local case. Let (R,m) be a Gorenstein local domain of dimension

d. As is well-known, the test ideal is the annihilator of the tight closure of zero in Hd
m(R).

In [89] and [90], the Frobenius stable submodules of Hd
m(R) (including the tight closure of

zero) are analyzed and their annihilators in R are dubbed “F-ideals;” there it is shown (also

using Hochster and Huneke’s test elements!) that there is a unique largest proper Frobenius

stable submodule of Hd
m(R), hence a unique smallest non-zero F-ideal, namely test ideal

of R. The uniformly F -compatible ideals are precisely the F-ideals—that is, annihilators of

submodules of the top local cohomology module Hd
m(R) stable under Frobenius. This is

not hard to check using Lemma 4.4; SeF -compatiblee [78] or [24, Thm 4.1]. In the non-

Gorenstein case the uniformly F -compatible ideals are the annihilators of theF(E)-modules

of [62]; see [78].

The lattice of uniformly F -compatible ideals is especially nice in a Frobenius split ring.

For a fixed splitting ϕ of Frobenius, the set of ϕ-compatibly split ideals is finite. See [56, 75,
85], or [24] for a related dual result.

It follows from the definitions that ifR is Frobenius split and J is uniformly F-compatible,

then the quotient R/J is Frobenius split. This is an analog of the fact that a log canonical

center of a log canonical scheme is itself log canonical. Indeed, Schwede calls the prime uni-

formly F-compatible ideals centers of F-purity and shows that these can be viewed as “char-
acteristic p analogs” of Kawamata’s centers of log canonicity [78]. [All of these statements

have corresponding versions for pairs; see the references for exact statements.] Schwede also

shows that these centers of F-purity satisfy an analog of Kawamata’s subadjunction [52]; see

[75]. For a local ring, there is a maximal proper uniformly F-compatible ideal—this is the

splitting prime of Aberbach and Enescu [1].

4.2. Trace of Frobenius. An elementary but powerful observation is that often uniform

F-compatibility can be checked by checking compatibility with just one morphism. The

following is a simple consequence of the fact that the canonical module of a local Gorenstein

ring is cyclic:

Lemma 4.4. If R is an F-finite Gorenstein local ring, then HomR(R
1/p, R) is a cyclic

R1/p-module.

It is easy to check that composing the generator (e times) forHomR(F∗R,R) gives a gen-
erator forHomR(F

e
∗R,R). So an ideal J in a local Gorenstein ring is uniformly F-compatible

if and only if it is compatible with a R1/p-module generator Ψ for HomR(R
1/p,R).

For any F-finite11 ring R, we can dualize the Frobenius map R→ F∗R into ωR:

HomR(F∗R,ωR) −→ HomR(R,ωR)

which produces an R-module map

F∗ωR → ωR,

11F-finite rings always admit a canonical module [28, 13.6].
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called the trace of Frobenius.12 For smooth projective varieties, this is called the Cartier map.

If R is local and Gorenstein, this trace map Ψe generates HomR(F
e
∗R,R). See the surveys

[14], [84] or [20], for more on the trace map.

Remark 4.5. Blickle’s Cartier algebras give another point of view [10]. An R-module map

F e∗R → R is an additive map R
φ−→ R satisfying φ(rp

e

x) = rφ(x) for any r, x ∈ R
[11]. The Cartier algebra13 C(R) is the subalgebra of HomZ(R,R) generated by all p−e-
linear maps (as we range over all e). Clearly R is a module over C(R), and clearly its

C(R)-submodules are precisely the uniformly F-compatible ideals. The trace map can also

be easily interpreted in this language: in the Gorenstein local case, the trace Ψe of Lemma

4.4 is literally the composition of Ψ with itself e-times, so that Ψ generates C(R) as an

R-algebra. Generalizations of uniformly F -compatible ideals also come up in the work of

Blickle (e.g. [10]) under the name of Cartier-submodules and crystals; see the survey [14].

5. Test ideals for pairs

Let R be an F-finite ring, and let a be an ideal of R. For each non-negative real number t,
we associate an ideal

t ∈ R≥0 � τ(R, at).

In the classical commutative algebra case, a = R, and all τ(R, at) produce the same ideal,

the “absolute test ideal” τ(R). With the introduction of tight closure for pairs, test ideals

for pairs naturally followed [37], but the original definition was quite technical. Schwede’s

definition is much nicer:

Definition 5.1 ([78]). Let R be a reduced F-finite ring and let a be an ideal of R. The test
ideal τ(R, at) is defined to be the smallest ideal J not contained in any minimal prime that

satisfies

ϕ((a�t(p
e−1)�J)1/p

e

) ⊆ J
for all ϕ ∈ HomR(R

1/pe , R) (ranging over all e ≥ 1).

The existence of such a smallest nonzero ideal is a non-trivial statement; again, the cru-

cial point due to Hochster and Huneke in their proof of the existence of completely stable

test elements. See [35, 83].

Just as multiplier ideals of pairs are particularly appealing to work with when the ambient

scheme is regular, the same is true of test ideals. Although it is not obvious, the following

characterization of test ideals below (from [12]) is equivalent to Schwede’s in this more

restrictive setting.

5.1. Test ideals in regular ambient rings. Let R be an F-finite regular domain, and a any

ideal of R. For each R-linear map φ : F e∗R→ R, we consider the image of a under φ.

12This map is only as canonical as the choice of ωR, so the “the” is slightly misleading. Of course in geometric

situations where the canonical module is defined by differential forms, there is a canonical choice.

13Here we assume that R is reduced and of dimension greater than zero. In general, the definition of Cartier

algebra is slightly more technical, but it reduces to this under very mild conditions. See [10].
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Ranging over all φ ∈ HomR(F
e
∗R,R), we get an ideal

a[1/p
e] :=

∑
φ∈HomR(F e∗R,R)

φ(a).

Lemma 5.2. For any ideal a in a Frobenius split ring R, we have

a[1/p
e] ⊂ (ap)[1/p

e+1].

The lemma implies that given a rational number t = n/pe whose denominator is a power

of p, there is an increasing sequence of ideals:

(an)[1/p
e] ⊂ (anp)[1/p

e+1] ⊂ (anp
2

)[1/p
e+2] ⊂ · · · (5.1)

which must eventually stabilize by the Noetherian property of the ring.

Definition 5.3 ([12]). Let R be an F-finite regular ring of characteristic p and let a be an

ideal of R. For each t ∈ R≥0, we define

τ(R, at) :=
⋃
e∈N

(a�tp
e�)[

1
pe ].

The sequence
�tpe�
pe could be replaced by any sequence of rational numbers (whose de-

nominators are a power of p) converging to t from above: the lemma guarantees that all give

an ascending chain of ideals stabilizing to the test ideal.

5.2. Properties of test ideals. All the properties of multiplier ideals on smooth ambient

varieties carry over to test ideals with exceptionally simple proofs in this setting [12, 97]:

Theorem 5.4. Let R be an F-finite regular ring of characteristic p, with ideals a, b. The
following properties of the test ideal hold:

(1) a ⊆ b ⇒ τ(R, at) ⊆ τ(R, bt) for all t ∈ R>0.

(2) t ≥ t′ ⇒ τ(R, at) ⊆ τ(R, at′).
(3) τ(R, (an)t) = τ(R, ant) for each positive integer n and each t ∈ R>0.

(4) LetW be a multiplicatively closed set in R, then

W−1τ(R, at) = τ(W−1R, (W−1a)t).

(5) Let a denote the integral closure of a in R. Then

τ(R, at) = τ(R, at) for all t.

(6) a ⊆ τ(R, a).
(7) For each t ∈ R>0, there exists an ε > 0 such that τ(R, at

′
) = τ(R, at) for all

t′ ∈ [t, t+ ε).

(8) (Briançon-Skoda Theorem14 ) If a can be generated by r elements, then for each inte-
ger � ≥ r we have

τ(R, a�) = aτ(R, a�−1).

14Also called Skoda’s Theorem, or “Briançon-Skoda theorem with coefficients.” See e.g. [2].
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(9) (Restriction Theorem) Let x ∈ R be a regular parameter and a mod x denote the
image of a in R/(x), then

τ(R/(x), (a mod x)t) ⊆ τ(R, at) mod x.

(10) (Subadditivity Theorem) If R is essentially of finite type over a perfect field, then
τ(R, atn) ⊆ τ(R, at)n for all t ∈ R≥0 and all n ∈ N.15

Remark 5.5. Elementary proofs of all these properties are gathered together in [97]. The

key fact used is the flatness of Frobenius. Most of these properties hold more generally,

though most require some sort of restriction on the singularities of R and the proofs are

considerably more technical. See e.g. [37, 98, 100].

5.3. Asymptotic test ideals and an application to symbolic powers. Asymptotic test

ideal can be defined analogous to the asymptotic multiplier ideal first defined in [21]. This

is quite simple and elegant in the case of a regular ambient scheme. See also [34, 100] for a

more general setting.

Definition 5.6 ([21]). A sequence of ideals {an}n∈N is called a graded sequence of ideals if

anam ⊆ an+m

for all n,m.

Graded sequences arise naturally in many contexts. For example, the sequence of base

loci of the powers of a fixed line bundle form a graded sequence of ideals on a variety. The

symbolic powers {a(n)}n∈N of any ideal a in any ring form a graded sequence.

Given any graded sequence of ideals {an}, it follows from the definition and Property

5.4(1) that

τ(R, an) = τ(R, (a
m
n )1/m) ⊆ τ(R, a1/mmn ).

In other words, the collection

{τ(R, a1/mm )}m∈N
has the property that any two ideals are dominated by a third in the collection. Since R
is noetherian, this collection must have a maximal element; this stable ideal is called the

asymptotic test ideal:

Definition 5.7. The n-th asymptotic test ideal of the graded sequence {an}n∈N is the ideal

τ∞(R, an) :=
∑
�∈N
τ(R, a

1/�
�n ),

which is equal to

τ(R, a1/mmn )

for sufficiently large and divisiblem.

By definition, it is clear that τ∞(R, an) satisfies appropriate analogs of all the properties
listed in Theorem 5.4. In particular, we have the following consequence of the subadditivity

theorem:

15More generally, the subadditivity property guarantees that for the mixed test ideal τ(atbs) defined analogously
as τ(a�sp

e�b�tp
e�)[1/p

e] for e � 0, we have τ(atbs) ⊆ τ(at)τ(bs) for all t, s ∈ R≥0.
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Corollary 5.8. For any graded sequence in an F-finite regular ringR, we have τ∞(R, anm) ⊂
(τ∞(R, an))

m for all n,m ∈ N.

As an application, we prove

Theorem 5.9 (Ein-Lazasfeld-Smith; Hochster-Huneke). Let I be an unmixed (e.g. prime)
ideal in k[x1, . . . , xd]. Then

I(dn) ⊆ In for all n ∈ N.

Proof of Theorem 5.9. The characteristic zero case follows from the prime characteristic

case by a standard argument. We consider the graded sequence of ideals {I(n)}n∈N. Ac-

cording to Theorem 5.4(3), we have I(dN) ⊆ τ∞(R, I(dN)). By Corollary 5.8, we have

τ∞(R, I(dN)) ⊆ τ∞(R, I(d))N

for all N . Hence it is enough to check that τ∞(I(d)) ⊆ I . For this, we can check at each

associated prime p of I , which means essentially that we can assume that R is local and that

I is primary to the maximal ideal; that is, we need to show that

τ∞(Rp, (I
dRp)) ⊂ IRp.

In Rp, there is a reduction of I that can be generated by dim(Rp) ≤ d elements, and hence

according to Properties 5.4(5) we may assume that I itself can be generated by d elements.

Then the Briançon-Skoda property 5.4(8) tells us

τ∞(Rp, (I
dRp)) ⊆ I.

This finishes the proof.

This theorem was first proved in [21] in characteristic zero, using asymptotic multiplier

ideals. Later Hochster and Huneke gave a tight closure proof in the characteristic p case

[46]. Takagi-Yoshida ([100]) generalized this result using test ideals. Our proof here is a

straightforward adaptation of the original multiplier ideal proof in [21].

5.4. F-pure thresholds and F-jumping exponents. Having defined test ideals of a pair,

analogs of the log canonical threshold and the jumping exponents (Cf. [22]) are the next

obvious step. For simplicity, we restrict attention to the case an an ambient regular ring; the

general case is much more technical.

Definition 5.10. Let R be an F-finite regular ring, and a an ideal.

(1) The F-pure threshold (R, a) is the supremum, over all positive t, such that τ(R, at)=R
[37];

(2) More generally, an F-jumping exponent is a real number ξ such that for all ε > 0,
τ(R, aξ−ε) is strictly larger than τ(R, aξ) [22].

Given a pair defined over a field of characteristic zero, one may “reduce mod p” and

compare the F-pure threshold that arise to the log canonical threshold. The F-pure threshold

of any characteristic p model is always less than or equal to the log canonical threshold;

also as p goes to infinity, the F-pure thresholds converge to the log canonical threshold (this
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follows from [36, 37]). In all known examples, there are in fact infinitely many p for which
the F-pure threshold equals the log canonical threshold. An open question for over fifteen

years is to show that this is always the case. If true, it follows that log canonical pairs (of

characteristic zero) have dense Frobenius split type. Mustata and Srinivas have recently

shown that this conjecture would follow from the following weak ordinarily conjecture: if
X is a projective variety over a field of characteristic zero, then the Frobenius map acts

injectively on HdimX(X,OX) for infinitely many “mod p reductions” [71] (the extension

to the singular setting is in [8]). The difficulty of these conjectures likely lies in some hard

number theory. See the survey [70].

The F-pure threshold is very difficult to compute, with a fractal-like behavior in many

cases, see [38, 39] and [40] for concrete computations of F-thresholds. See also [88]. See

[5] for a beginners guide to the subject of F-pure threshold.

Discreteness and rationality of the F-jumping exponents has been another active research

topic; it is vexing that the analogous properties for multiplier ideals are more-or-less obvious

in characteristic zero. The F-jumping exponents are shown to be discrete and rational in

the case of an ambient regular ring of finite type [12]. Since then, these results have been

generalized to the Q-Gorenstein case [15, 79]. The paper [86] gives an exceptionally well-

written account of the state of the art. See also [13, 51, 87].
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1. Introduction

The role of the projective line minus three points X = P1\{0, 1,∞} in relation to Galois

theory can be traced back to Belyi’s theorem [4] (1979):

Theorem 1.1. Every smooth projective algebraic curve defined over Q can be realised as a
ramified cover of P1, whose ramification locus is contained in {0, 1,∞}.

Belyi deduced that the absolute Galois group of Q acts faithfully on the profinite com-

pletion of the fundamental group of X , i.e., the map

Gal(Q/Q) → Aut(π̂1(X(C), b)) (1.1)

where b ∈ X(Q), is injective. In his famous proposal ‘Esquisse d’un programme’ in 1984

[21], Grothendieck suggested studying the absolute Galois group of Q via its action on

completions of fundamental groups of moduli spaces of curves Mg,n of genus g with n
ordered marked points (X being isomorphic to M0,4) and their interrelations. A few years

later, at approximately the same time, these ideas were developed in somewhat different

directions in three enormously influential papers due to Drinfeld, Ihara, and Deligne [10, 15,

26]. Ihara’s 1990 ICM talk gives a detailed account of the subject at that time [27]. However,

the problem of determining the image of the map (1.1) remains completely open to this day.

In this talk I will mainly consider the pro-unipotent completion of the fundamental group

ofX , which seems to be a more tractable object than its profinite version, and closely follow

the point of view of Deligne, and Ihara (see [27], §5).

1.1. Unipotent completion. Deligne showed [10] that the pro-unipotent completion of

π1(X) carries many extra structures corresponding to the realisations of an (at the time)

hypothetical category of mixed Tate motives over the integers. Since then, the motivic frame-

work has now been completely established due to the work of a large number of different

authors including Beilinson, Bloch, Borel, Levine, Hanamura, and Voevodsky. The defini-

tive reference is [14], §§1-2.
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1. There exists an abstract Tannakian category MT (Z) of mixed Tate motives unram-

ified over Z. It is a Q-linear subcategory of the category MT (Q) of mixed Tate

motives over Q obtained by restricting certain Ext groups. It is equivalent to the cate-

gory of representations of an affine group scheme GdR which is defined over Q and is

a semi-direct product

GdR ∼= UdR �Gm .

The subgroup UdR is pro-unipotent, and its graded Lie algebra (for the action of Gm)

is isomorphic to the free graded Lie algebra with one generator

σ3, σ5, σ7, . . .

in every odd negative degree ≤ −3. The essential reason for this is that the algebraic

K-theory of the integers K2n−1(Z) has rank 1 for n = 3, 5, 7, . . ., and rank 0 other-

wise, as shown by Borel [2, 3]. Note that the elements σ2n+1 are only well-defined

modulo commutators.

2. The pro-unipotent completion πun1 (X,
→
10,−

→
11) is the Betti realisation of an object,

called the motivic fundamental groupoid (denoted by πmot1 ), whose affine ring is a

limit of objects in the category MT (Z).

The majority of these notes will go into explaining 2 and some of the ideas behind the

following motivic analogue of Belyi’s injectivity theorem (1.1):

Theorem 1.2. GdR acts faithfully on the de Rham realisation of πmot1 (X,
→
10,−

→
11).

This theorem has an �-adic version which can be translated into classical Galois theory

([27], §5.2), and relates to some questions in the literature cited above. Unlike Belyi’s theo-

rem, which is geometric, the proof of theorem 1.2 is arithmetic and combinatorial. The main

ideas came from the theory of multiple zeta values.

1.2. Multiple zeta values. Let n1, . . . , nr be integers ≥ 1 such that nr ≥ 2. Multiple zeta

values are defined by the convergent nested sums

ζ(n1, . . . , nr) =
∑

1≤k1<...<kr

1

kn1
1 . . . knr

r
∈ R .

The quantity N = n1 + . . . + nr is known as the weight, and r the depth. Multiple zeta

values were first studied by Euler (at least in the case r = 2) and were rediscovered inde-

pendently in mathematics by Zagier and Ecalle, and in perturbative quantum field theory

by Broadhurst and Kreimer. They satisfy a vast array of algebraic relations which are not

completely understood at the time of writing.

The relationship between these numbers and the fundamental group comes via the theory

of iterated integrals, which are implicit in the work of Picard and were rediscovered by Chen

and Dyson. In general, let M be a differentiable manifold and let ω1, . . . , ωn be smooth

1-forms onM . Consider a smooth path γ : (0, 1) →M . The iterated integral of ω1, . . . , ωn
along γ is defined (when it converges) by∫

γ

ω1 . . . ωn =

∫
0<t1<...<tn<1

γ∗(ω1)(t1) . . . γ
∗(ωn)(tn) .
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Kontsevich observed that whenM=X(C) and γ(t)= t is simply the inclusion (0, 1)⊂X(R),
one has the following integral representation

ζ(n1, . . . , nr) =

∫
γ

ω1 ω0 . . . ω0︸ ︷︷ ︸
n1−1

ω1 ω0 . . . ω0︸ ︷︷ ︸
n2−1

. . . ω1 ω0 . . . ω0︸ ︷︷ ︸
nr−1

(1.2)

where ω0 = dt
t and ω1 = dt

1−t . I will explain in §2.1 that this formula allows one to interpret

multiple zeta values as periods of the pro-unipotent fundamental groupoid of X . The action

of the motivic Galois group GdR on the (de Rham version of) the latter should translate, via

Grothendieck’s period conjecture, into an action on multiple zeta values themselves. Thus

one expects multiple zeta values to be a basic example in a Galois theory of transcenden-

tal numbers ([1], §23.5); the action of the Galois group should preserve all their algebraic

relations.

Of course, Grothendieck’s period conjecture is not currently known, so there is no well-

defined group action on multiple zeta values. This can be circumvented using motivic mul-

tiple zeta values. The action of GdR on the de Rham fundamental group of X can then be

studied via its action on these objects.

1.3. Motivic periods. Let T be a neutral Tannakian category overQwith two fiber functors

ωB , ωdR : T → VecQ. Define the ring of motivic periods to be the affine ring of functions

on the scheme of tensor isomorphisms from ωdR to ωB

Pm
T = O(IsomT (ωdR, ωB)) .

Every motivic period can be constructed from an object M ∈ T , and a pair of elements

w ∈ ωdR(M), σ ∈ ωB(M)∨. Its matrix coefficient is the function

φ !→ 〈φ(w), σ〉 : IsomT (ωdR, ωB) → A1
Q

where A1
Q is the affine line over Q, and defines an element denoted [M,w, σ]m ∈ Pm

T . It is

straightforward to write down linear relations between these symbols as well as a formula

for the product of two such symbols. If, furthermore, there is an element compB,dR ∈
IsomT (ωdR, ωB)(C) we can pair with it to get a map

per : Pm
T −→ C (1.3)

called the period homomorphism. The ring Pm
T admits a left action of the group GdR =

IsomT (ωdR, ωdR), or equivalently, a left coaction

Pm
T −→ O(GdR)⊗Q Pm

T . (1.4)

Example 1.3. Let T be any category of mixed Tate motives over a number field. It contains

the Lefschetz motive L = Q(−1), which is the motive H1(P1\{0,∞}). Its de Rham coho-

mology is the Q-vector space spanned by the class [dzz ] and its Betti homology is spanned

by a small positive loop γ0 around 0. The Lefschetz motivic period is

Lm = [L, [dzz ], [γ0]] ∈ Pm
T .

Its period is per(Lm) = 2πi. It transforms, under the rational points of the de Rham Galois

group of T , by Lm !→ λLm, for any λ ∈ Q×.
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This construction can be applied to any pair of fiber functors to obtain different notions of

motivic periods. Indeed, the elements of O(GdR) can be viewed as ‘de Rham’ motivic peri-

ods, or matrix coefficients of the form [M,w, v]dR, where w ∈ ωdR(M) and v ∈ ωdR(M)∨

(called framings). Whenever the fiber functors carry extra structures (such as ‘complex con-

jugation’ on ωB or a ‘weight’ grading on ωdR), then the ring of motivic periods inherits

similar structures.

1.3.1. Motivic MZV’s. Let T = MT (Z). The Betti and de Rham realisations provide

functors ωB , ωdR, and integration defines a canonical element

compB,dR ∈ IsomT (ωdR, ωB)(C).

Since the de Rham functor ωdR is graded by the weight, the ring of motivic periods Pm
MT (Z)

is also graded.1 It contains graded subrings

Pm,+
MT (Z),R ⊂ Pm,+

MT (Z) ⊂ Pm
MT (Z)

of geometric periods (periods of motives whose weights are ≥ 0), denoted by a superscript

+, and those which are also invariant under complex conjugation (denoted by a subscript R,
since their periods lie in R as opposed to C).

Next, one has to show that the integral (1.2) defines a period of an objectM in MT (Z)
(this can be done in several ways: [14, 20, 36]. This defines a matrix coefficient [M,w, σ]m,
where w encodes the integrand, and σ the domain of integration, which we call a motivic

multiple zeta value (§2.2)

ζm(n1, . . . , nr) ∈ Pm
MT (Z) .

Its weight is n1 + . . .+ nr and its period is (1.2). Most (but not all) of the known algebraic

relations between multiple zeta values are also known to hold for their motivic versions.

Motivic multiple zeta values generate a graded subalgebra

H ⊂ Pm,+
MT (Z),R . (1.5)

The description §1.1, (1) of UdR enables one to compute the dimensions of the motivic

periods of MT (Z) in each degree by a simple counting argument:

if dN := dimQ

(Pm,+
MT (Z),R

)
N

then
∑
N≥0

dN t
N =

1

1− t2 − t3 . (1.6)

This implies a theorem proved independently by Goncharov and Terasoma [14],[36].

Theorem 1.4. The Q-vector space spanned by multiple zeta values of weight N has dimen-
sion at most dN , where the integers dN are defined in (1.6).

So far, this does not use the action of the motivic Galois group, only a bound on the size

of the motivic periods ofMT (Z). The role of P1\{0, 1,∞} is that the automorphism group

of its fundamental groupoid yields a formula for the coaction (1.4) on the motivic multiple

zeta values (§2.5). The main theorem uses this coaction in an essential way, and is inspired

by a conjecture of M. Hoffman [25].

1In the field of multiple zeta values, the ‘weight’ refers to one half of the Hodge-theoretic weight, so that Lm

has degree 1 instead of 2. I shall adopt this terminology from here on.
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Theorem 1.5. The following set of motivic MZV’s are linearly independent:

{ζm(n1, . . . , nr) for ni = {2, 3}} . (1.7)

From the enumeration (1.6) of the dimensions, we deduce that H = Pm,+
MT (Z),R, and that

(1.7) is a basis for H. From this, one immediately sees that UdR acts faithfully on H, and

theorem 1.2 follows easily. As a bonus we obtain that UdR has canonical generators σ2n+1

(defined in §3.1), and, furthermore, by applying the period map we obtain the

Corollary 1.6. Every multiple zeta value of weight N is a Q-linear combination of
ζ(n1, . . . , nr), where ni ∈ {2, 3} and n1 + . . .+ nr = N .

The point of motivic periods is that they give a mechanism for obtaining information on

the action of GdR, via the period map, from arithmetic relations between real numbers. For

theorem 1.5, the required arithmetic information comes from a formula for ζ(2,. . . ,2,3,2,. . . ,2)
proved by Zagier [38] using analytic techniques.

1.4. Transcendence of motivic periods. With hindsight, theorem 1.5 has less to do with

mixed Tate motives, or indeed P1\{0, 1,∞}, than one might think. Define a category H
whose objects are given by the following data:

1. A finite-dimensional Q-vector spaceMB equipped with an increasing filtration called

the weight, which is denoted byW .

2. A finite-dimensional Q-vector space MdR equipped with an increasing filtration W
and a decreasing filtration F (the Hodge filtration).

3. An isomorphism compB,dR : MdR ⊗ C
∼→ MB ⊗ C which respects the weight

filtrations. The vector spaceMB , equipped with W and the filtration F onMB ⊗ C
induced by compB,dR is a Q-mixed Hodge structure.

The category H is Tannakian ([10], 1.10), with two fiber functors, so it has a ring of

motivic periods Pm
H . Furthermore, the Betti and de Rham realisations define a functor

M !→ (MB ,MdR, compB,dR) : MT (Z) → H , and hence a homomorphism

Pm
MT (Z) −→ Pm

H . (1.8)

This map is known to be injective, but we do not need this fact. The main theorem 1.5 is

equivalent to saying that the images ζH(n1, . . . , nr) ∈ Pm
H of (1.7) for ni ∈ {2, 3} are

linearly independent. In this way, we could have dispensed with motives altogether and

worked with objects in Pm
H , which are elementary.2 This leads to the following philosophy

for a theory of transcendence of motivic periods inH (or another suitable category of mixed

Hodge structures). It differs from standard approaches which emphasise finding relations

between periods [28].

• Write down arithmetically interesting elements in, say Pm
H , which come from geome-

try (i.e., which are periods in the sense of [28]).

2In fact, we should never need to compute relations explicitly using ‘standard operations’ such as those described

in [28]; these are taken care of automatically by the Tannakian formalism, and the bound on the Ext groups of

MT (Z) coming from Borel’s theorems on algebraic K-theory.
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• Compute the coaction (1.4) on these motivic periods, and use it to prove algebraic

independence theorems.

Indeed, there is no reason to restrict oneself to mixed Tate objects, as the category H does

not rely on any conjectural properties of mixed motives. The role of P1\{0, 1,∞} was to

give an integral representation for the numbers (1.2) and provide a formula for the coaction.

1.4.1. Multiple modular values. Therefore, in the final part of this talk I want to propose

changing the underlying geometry altogether, and replace a punctured projective line with

(an orbifold)M = Γ\\H, where H is the upper half plane, and Γ ≤ SL2(Z) is a subgroup of
finite index. Because of Belyi’s theorem 1.1, every smooth connected projective algebraic

curve over a number field is isomorphic to an Γ\H. Therefore the (pure) motivic periods ob-

tained in this way are extremely rich3. It is reasonable to hope that the action of the Tannaka

group on the mixed motivic periods ofM should be correspondingly rich and should gener-

ate a large class of new periods suitable for applications in arithmetic and theoretical physics.

Many of these periods can be obtained as regularised iterated integrals onM = Γ\H (build-

ing on those considered by Manin in [32, 33]), and the philosophy of §1.4 concerning their

Galois action can be carried out by computing a suitable automorphism group of non-abelian

group cocyles. There still remains a considerable amount of work to put this general pro-

gramme in its proper motivic context and extract all the arithmetic consequences.

1.5. Contents. In §2, I review the motivic fundamental group of X from its Betti and de

Rham view points, define motivic multiple zeta values, and derive their Galois action from

first principles. The only novelty is a direct derivation of the infinitesimal coaction from

Ihara’s formula. In §3, I state some consequences of theorem 1.5. In §4 I explain some

results of Deligne concerning the motivic fundamental group of the projective line minus

N th roots of unity, and in §5 discuss the depth filtration on motivic multiple zeta values and

its conjectural connection with modular forms. In §6 I mention some new results on multiple

modular values for SL2(Z), which forms a bridge between multiple zeta values and modular

forms.

For reasons of space, it was unfortunately not possible to review the large recent body of

work relating to associators, double shuffle equations ([1] §25, [16], [34]) and applications to

knot theory, the Kashiwara-Vergne problem, and related topics such as deformation quanti-

zation; let alone the vast range of applications of multiple zeta values to high-energy physics

and string theory. Furthermore, there has been recent progress in p-adic aspects of multiple

zeta values, notably by H. Furusho and G. Yamashita, and work of M. Kim on integral points

and the unit equation, which is also beyond the scope of these notes.

Many technical aspects of mixed Tate motives have also been omitted. See [14], §1-2 for

the definitive reference.

2. The motivic fundamental group of P1\{0, 1,∞}

LetX = P1\{0, 1,∞}, and for now let x, y ∈ X(C). The motivic fundamental groupoid of

X (or rather, its Hodge realisation) consists of the following data:

3Grothendieck refers to SL2(Z) as ‘une machine à motifs’



Motivic periods and P1\{0, 1,∞} 301

1. (Betti). A collection of schemes πB1 (X,x, y) which are defined overQ, and which are

equipped with the structure of a groupoid:

πB1 (X,x, y)× πB1 (X, y, z) −→ πB1 (X,x, z)

for any x, y, z ∈ X(C). There is a natural homomorphism

πtop1 (X,x, y) −→ πB1 (X,x, y)(Q) (2.1)

where the fundamental groupoid on the left is given by homotopy classes of paths

relative to their endpoints. The previous map is Zariski dense.

2. (de Rham). An affine group scheme4 over Q denoted by πdR1 (X).

3. (Comparison). A canonical isomorphism of schemes over C

compB,dR : πB1 (X,x, y)×Q C
∼−→ πdR1 (X)×Q C . (2.2)

These structures are described below. Deligne has explained ([10], §15) how to replace

ordinary base points with tangential base points in various settings. Denote such a tangent

vector by
→
vx = the tangent vector v ∈ Tx(P1(C)) at the point x .

Identifying Tx(P1(C)) with C, one obtains natural tangent vectors
→
10 and −→

11 at the points
0 and 1 respectively, and a canonical path, or ‘droit chemin’

dch ∈ πtop1 (X,
→
10,−

→
11)

given by the straight line which travels from 0 to 1 in R with unit speed.

The reason for taking the above tangential base points is to ensure that the corresponding

motive (theorem 2.1) has good reduction modulo all primes p: in the setting of P1\{0, 1,∞}
there are no ordinary base points with this property.

The following theorem states that the structures 1− 3 are motivic.

Theorem 2.1. There is an ind-object (direct limit of objects)

O(πmot1 (X,
→
10,−

→
11)) ∈ Ind (MT (Z)) (2.3)

whose Betti and de Rham realisations are the affine rings O(πB1 (X,
→
10,−

→
11)), and

O(πdR1 (X)), respectively.

Proof. (Sketch) The essential idea is due to Beilinson ([18], theorem 4.1) and Wojtkowiak

[39]. Suppose, for simplicity, that M is a connected manifold and x, y ∈ M are distinct

points. Consider the submanifolds inM × . . .×M (n factors):

Ni =M
i−1 ×Δ×Mn−i−1 for i = 1, . . . , n− 1

4 It shall also be written πdR
1 (X,x, y) but does not depend on the choice of base points. The fact that there is a

canonical isomorphism πdR
1 (X,x, y) = πdR

1 (X) is equivalent to saying that there is a ‘canonical de Rham path’

between the points x and y.
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where Δ is the diagonalM ⊂ M ×M . Set N0 = {x} ×Mn−1 and Nn = Mn−1 × {y},
and let N ⊂Mn be the union of the Ni, for i = 0, . . . , n. Then

Hk(M
n, N) =

{
Q[πtop1 (M,x, y)]/In+1 if k = n

0 if k < n
(2.4)

where the first line is the nth unipotent truncation of the fundamental torsor of paths from

x to y (I is the image of the augmentation ideal in Q[πtop1 (M,x)]; see below). In the case

whenM = P1\{0, 1,∞}, the left-hand side of (2.4) defines a mixed Tate motive. The case

when x = y, or when x or y are tangential base points, is more delicate [14], §3.

The Betti and de Rham realisations can be described concretely as follows.

1. (Betti). The Betti fundamental groupoid is defined to be the pro-unipotent completion

of the ordinary topological fundamental groupoid. For simplicity, take x = y ∈ X(C).
Then there is an exact sequence

0 −→ I −→ Q[πtop1 (X(C), x)] −→ Q −→ 0

where the third map sends the homotopy class of any path γ to 1 (thus I is the aug-
mentation ideal). Then one has (Malčev, Quillen)

O(πB1 (X,x)) = lim
N→∞

(
Q[πtop1 (X,x)]/IN+1

)∨
The case when x �= y is defined in a similar way, since Q[πtop1 (X(C), x, y)] is a rank
one module over Q[πtop1 (X(C), x)].

2. (de Rham). When X = P1\{0, 1,∞}, one verifies that
O(πdR1 (X)) ∼=

⊕
n≥0

H1
dR(X)⊗n

which is isomorphic to the tensor coalgebra on the two-dimensional graded Q-vector

space H1
dR(X) ∼= Q(−1)⊕Q(−1). We can take as basis the elements

[ωi1 | . . . |ωin ] where ωik ∈ {dtt , dt
1−t}

where the bar notation denotes a tensor product ωi1 ⊗ . . . ⊗ ωin . It is a Hopf algebra
for the shuffle product and deconcatenation coproduct and is graded in degrees≥ 0 by
the degree which assigns dt

t and dt
1−t degree 1.

Denoting
→
10 and −→

11 by 0 and 1 respectively, one can write, for x, y ∈ {0, 1}
xΠ

•
y = Spec(O(π•1(X,x, y)) where • ∈ {B, dR,mot} .

It is convenient to write xΠy instead of xΠ
dR
y . It does not depend on x or y, but admits an ac-

tion of the motivic Galois group GdR which is sensitive to x and y. If R is any commutative

unitary Q-algebra,

xΠy(R) ∼= {S ∈ R〈〈x0, x1〉〉× : ΔS = S ⊗ S}
is isomorphic to the group of invertible formal power series in two non-commuting variables

x0, x1, which are group-like for the completed coproduct Δ defined by Δ(xi) = xi ⊗ 1 +
1⊗ xi. The group law is given by concatenation of series.
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2.1. Periods. The periods of the motivic fundamental groupoid of P1\{0, 1,∞} are the

coefficients of the comparison isomorphism compB,dR (2.2)with respect to theQ-structures

on the Betti and de Rham sides. Let

01
B
1 ∈ πB1 (X,

→
10,−

→
11)(Q) ⊂ O(πB1 (X,

→
10,−

→
11))

∨

denote the image of dch under the natural map (2.1). It should be viewed as a linear form

on the affine ring of the Betti π1. For all ωik ∈ {dtt , dt
1−t},

〈compB,dR([ωi1 | . . . |ωin ]), 01B1 〉 =
∫
dch

ωi1 . . . ωin (2.5)

The right-hand side is the iterated integral from 0 to 1, regularised with respect to the tangent
vectors 1 and −1 respectively, of the one-forms ωik . No regularisation is necessary in the

case when ωi1 = dt
1−t and ωin = dt

t , and in this case the right-hand side reduces to the

formula (1.2). In general, one can easily show:

Lemma 2.2. The integrals (2.5) are Z-linear combinations of MZV’s of weight n.

The Drinfeld associator is the de Rham image of dch

Z = compB,dR(01
B
1 ) ∈ 0Π1(C)

Explicitly, it is the non-commutative generating series of the integrals (2.5)

Z =
∑

ik∈{0,1}
xi1 . . . xin

∫
dch

ωi1 . . . ωin (2.6)

= 1 + ζ(2)[x1, x0] + ζ(3)([x0, [x0, x1]] + [x1, [x1, x0]]) + · · · (2.7)

It is an exponential of a Lie series.

2.2. Motivic multiple zeta values. By the previous paragraph, the affine ring of the de

Rham fundamental group is the graded Hopf algebra

O(xΠy) ∼= Q〈e0, e1〉
independently of x, y ∈ {0, 1}. Its product is the shuffle product, and its coproduct is decon-
catenation. Its basis elements can be indexed by words in {0, 1}. By a general fact about

shuffle algebras, the antipode is the map w !→ w∗ where

(a1 . . . an)
∗ = (−1)nan . . . a1

is signed reversal of words. Thus any word w in {0, 1} defines a de Rham element in

O(xΠy). The augmentation map Q〈e0, e1〉 → Q corresponds to the unit element in the

de Rham fundamental group and defines a linear form x1
dR
y ∈ O(xΠy)

∨.

Define Betti linear forms x1
B
y ∈ O(xΠ

B
y )

∨ to be the images of the paths

dch if x = 0, y = 1 ; dch−1 if y = 1, x = 0 ; cx if x = y ,

where dch is the straight path from 0 to 1, dch−1 is the reversed path from 1 to 0, and cx is

the constant (trivial) path based at x.
Out of this data we can construct the following motivic periods.
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Definition 2.3. Let x, y ∈ {0, 1} and let w be any word in {0, 1}. Let
Im(x;w; y) = [O(xΠ

mot
y ), w, x1

B
y ]

m ∈ Pm,+
MT (Z),R (2.8)

We call the elements Im motivic iterated integrals. The ‘de Rham’ motivic period is

the matrix coefficient [O(xΠ
mot
y ), w, x1

dR
y ] on MT (Z) with respect to the fiber functors

ωdR, ωdR. It defines a function onG
dR. Its restriction to the prounipotent group UdR defines

an element Iu(x;w; y) ∈ O(UdR). The latter are equivalent to objects defined by Goncharov
(which he also called motivic iterated integrals).

Definition 2.4. Define motivic (resp. unipotent) multiple zeta values by

ζ•(n1, . . . , nr) = I
•(0; 10n1−1 · · · 10nr−1; 1) , • = m, u

It is important to note that ζm(2) is non-zero, whereas ζu(2) = 0.5 We immediately

deduce from the definitions that

(i) Im(x;w;x) = δw,∅ for x ∈ {0, 1}
(ii) Im(x;w; y) = Im(y;w∗;x)

(2.9)

The first property holds because the constant path is trivial, the second follows from the

antipode formula and because dch ◦dch−1, or dch−1 ◦dch, is homotopic to a constant path.

Finally, replacing multiple zeta values with their motivic versions, we can define a motivic

version of the Drinfeld associator

Zm =
∑

i1,...,in∈{0,1}
xi1 . . . xinI

m(0; i1, . . . , in; 1) . (2.10)

It satisfies the associator equations defined by Drinfeld [15], on replacing 2πi by Lm (using

the fact that ζm(2) = −(Lm)2

24 ), and the double shuffle equations of [34].

2.3. Action of the motivic Galois group. The category MT (Z) is a Tannakian category

with respect to the de Rham fiber functor. Therefore the motivic Galois group acts on the

affine ring O(0Π1) of the de Rham realisation of the motivic fundamental torsor of path

(2.3). A slight generalisation of theorem 2.1 shows that GdR acts on the de Rham funda-

mental schemes

xΠy for all x, y ∈ {0, 1}
and furthermore, is compatible with the following structures:

• (Groupoid structure). The multiplication maps

xΠy × yΠz −→ xΠz

for all x, y, z ∈ {0, 1}.
• (Inertia). The action of UdR fixes the elements

exp(x0) in 0Π0(Q) and exp(x1) in 1Π1(Q)

5One can define a homomorphism Pm,+
MT (Z),R

→ Pu
MT (Z)

which sends ζm(n1, . . . , nr) to ζu(n1, . . . , nr)

and prove that its kernel is the ideal generated by ζm(2).
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The groupoid structure is depicted in figure 2.1.

0

0Π1

1
1Π0

0Π0 1Π1

Figure 2.1. The groupoid xΠy for x, y ∈ {0, 1}. The diagram only represents the groupoid structure;

the paths shown do not accurately depict the tangential base points.

The local monodromy map πtop1 (Gm,
→
10) → πtop1 (X,

→
10) (where we write Gm for

P1\{0,∞}), corresponding to monodromy around 0, has a motivic analogue which gives

rise to the inertial condition. Its de Rham realisation is the map

πdR1 (Gm,
→
10) → πdR1 (X,

→
10) = 0Π0

and is respected by GdR. One shows that UdR acts trivially on πdR1 (Gm,
→
10), and further-

more that the element exp(x0) ∈ 0Π0(Q) is in the image of the previous map. This gives

the first inertial condition.

Remark 2.5. It is astonishing that one obtains much useful information at all from such

symmetry considerations. Nonetheless, it is enough to show the faithfulness of the action of

GdR (below). There are further structures respected by GdR, such as compatibilities with

automorphisms of P1\{0, 1,∞}. They are not required.

2.4. Ihara action. Let A denote the group of automorphisms of the groupoid xΠy for

x, y ∈ {0, 1} which respects the structures 1, 2 described in §2.3.

Proposition 2.6. The scheme 0Π1 is an A-torsor. In particular, the action of A on 1 ∈ 0Π1

defines an isomorphism of schemes

a !→ a(1) : A −→ 0Π1 . (2.11)

The action of A on 0Π1 defines, via this isomorphism, a new group law

◦ : 0Π1 × 0Π1 → 0Π1 .

It is given explicitly on formal power series by Ihara’s formula

A(x0, x1) ◦G(x0, x1) = G(x0, Ax1A−1)A (2.12)

Proof. For the basic geometric idea, see [27], §2.3. Let a ∈ A, and write axy(ξ) for the ac-
tion of a on ξ ∈ xΠy . Write a = a01(1). Since 0Π0 is a group, a acts trivially on its identity
element, and so a00(1) = 1. Via the map 0Π1×1Π0 → 0Π0 we have a01(1)a10(1) = a00(1)
and hence a10(1) = a

−1. The inertial conditions give

a00(exp(x0)) = exp(x0) and a11(exp(x1)) = exp(x1) (2.13)

Now the composition of paths 1Π0×0Π0×0Π1 → 1Π1 gives rise to an equation 1. exp(x1).1
= exp(x1). Applying a to this gives by the second equation in (2.13)

a00(exp(x1)) = a exp(x1)a
−1 = exp(ax1a

−1) (2.14)
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which completely determines the action of A on 0Π0. Via the map 0Π0 × 0Π1 → 0Π1 we

have the equation g.1 = g, and hence

a01(g) = a00(g).a . (2.15)

Formula (2.12) follows from (2.13), (2.14), (2.15). One easily checks that a uniquely

determines a, and so (2.11) is an isomorphism (see also [14], 5.9.)

The groupoid and inertia structures are preserved by UdR, giving a morphism

ρ : UdR −→ A
(2.11)∼= 0Π1 (2.16)

such that the following diagram commutes

UdR × 0Π1 −→ 0Π1 (2.17)

ρ×id ↓ ↓id
0Π1 × 0Π1

◦−→ 0Π1

In principle this describes the action of the motivic Galois group on 0Π1. Note, however,

that the map (2.16) is mysterious and very little is known about it.

2.5. Dual formula. The coaction on motivic iterated integrals is dual to Ihara’s formula.

Dualising (2.17), we have

Δ : O(0Π1) −→ O(UdR)⊗ O(0Π1)

It is equivalent, but more convenient, to consider the infinitesimal coaction

D : O(0Π1) −→ L ⊗ O(0Π1)
(
D(x) = Δ(x)− 1⊗ x mod O(UdR)2>0

)
where L = O(UdR)>0/

(O(UdR)>0

)2
is the Lie coalgebra of indecomposables inO(UdR).

The following formula is an infinitesimal variant of a formula due to Goncharov [19], relating

to slightly different objects. In order to fill a gap in the literature, I will sketch how it follows

almost immediately from Ihara’s formula.

Proposition 2.7. Let a0, . . . , an+1 ∈ {0, 1}. The coaction D is given by

D(Im(a0; a1, . . . , an; an+1)) =
∑

0≤p<q≤n

[
Iu(ap; ap+1, . . . , aq; aq+1)

]
(2.18)

⊗ Im(a0; a1, . . . , ap, aq+1, . . . , an; an+1) .

where the square brackets on the left denote the map [ ] : O(UdR)>0 → L.
Proof. Denote the action of LieA on Lie 0Π0 by ◦0. By (2.11), LieA ∼= Lie 0Π1 is the

set of primitive elements in its (completed) universal enveloping algebra which we denote

simply by U(0Π1). By (2.13) and (2.14) we have a ◦0 x0 = 0 and a ◦0 x1 = ax1 − x1a.
The antipode on U(0Π1) is given by the signed reversal ∗. Since a ∈ U(0Π1) is primitive,

a = −a∗ and also
a ◦0 x0 = 0 and a ◦0 x1 = ax1 + x1a

∗ .
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This extends to an action on U(0Π0) via a ◦0 w1w2 = (a ◦0 w1)w2 + w1(a ◦0 w2). Now
consider the action a ◦0 · on the following words. All terms are omitted except those terms

where a or a∗ is inserted in-between the two bold letters:

a ◦0 w1x0x0w2 = · · · + 0 + · · ·
a ◦0 w1x0x1w2 = · · · + w1x0ax1w2 + · · ·
a ◦0 w1x1x0w2 = · · · + w1x1a

∗x0w2 + · · ·
a ◦0 w1x1x1w2 = · · · + w1x1ax1w2 + w1x1a

∗x1w2︸ ︷︷ ︸
0

+ · · ·

These four equations are dual to all but the first and last terms in (2.18), using the fact

that Iu(x;w;x) = 0 for x = 0, 1 (first and fourth lines), and the fact that Iu(1;w∗; 0) =
Iu(0;w; 1) (third line). A straightforward modification of the above argument taking into

account the initial and final terms (using (2.15)) shows that the action ◦1 of LieA on 0Π1 is

dual to the full expression (2.18).

Armed with this formula, we immediately deduce that for all n ≥ 2,

D ζm(n) = [ζu(n)]⊗ 1 (2.19)

where we recall that ζu(2n) = 0. One easily shows that ζu(2n+1) �= 0 for n ≥ 1. See also
[22]. Denote the map w !→ [Iu(0;w; 1)] : O(0Π1)>0 → L simply by ξ !→ [ξu]. From the

structure §1.1, 1 of GdR we have the following converse to (2.19) ([5], §3.2).

Theorem 2.8. An element ξ ∈ O(0Π1) of weight n ≥ 2 satisfies Dξ = [ξu]⊗ 1 if and only
if ξ ∈ Q ζm(n).

This theorem, combined with (2.18), provides a powerful method for proving identities

between motivic multiple zeta values. Applications are given in [6].

3. The main theorem and consequences

Theorem 1.5 is a result about linear independence. There is an analogous statement for

algebraic independence of motivic multiple zeta values.

Definition 3.1. Let X be an alphabet (a set) and let X× denote the free associative monoid

generated by X . Suppose that X has a total ordering <, and extend it to X× lexicographi-

cally. An element w ∈ X× is said to be a Lyndon word if

w < u whenever w = uv and u, v �= ∅ .
For an ordered set X , let Lyn(X) denote the set of Lyndon words in X .

Theorem 3.2. Let X3,2 = {2, 3} with the ordering 3 < 2. The set of elements

ζm(w) where w ∈ Lyn(X×
3,2) (3.1)

are algebraically independent over Q, and generate the algebra H of motivic multiple zeta
values.
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Theorem 3.2 implies that every motivic multiple zeta value is equal to a unique poly-

nomial with rational coefficients in the elements (3.1). It is often convenient to modify

this generating family by replacing ζm(3, 2, . . . , 2) (a three followed by n − 1 two’s) with

ζm(2n+ 1) (by theorem 3.6). Taking the period yields the

Corollary. Every multiple zeta value is a polynomial, with coefficients in Q, in

ζ(w) where w ∈ Lyn(X×
3,2) . (3.2)

Corollary. The category MT (Z) is generated by πmot1 (P1\{0, 1,∞},→10,−
→
11) in the fol-

lowing sense. Every mixed Tate motive over Z is isomorphic, up to a Tate twist, to a direct
sum of copies of sub-quotients of

O(πmot1 (P1\{0, 1,∞},→10,−
→
11)) .

Corollary. The periods of mixed Tate motives over Z are polynomials with rational coeffi-
cients of (2πi)−1 and (3.2).

More precisely [13], ifM ∈ MT (Z) has non-negative weights (i.e. W−1M = 0), then
the periods ofM are polynomials in (3.2) and 2πi.

3.1. Canonical generators. Recall that the unipotent zeta values ζu are elements ofO(UdR).
As a consequence of theorem 3.2:

Corollary. For every n ≥ 1 there is a canonical element σ2n+1 ∈ LieUdR(Q) which is
uniquely defined by 〈exp(σ2n+1), ζ

u(2m+ 1)〉 = δm,n, and

〈exp(σ2n+1), ζ
u(w)〉 = 0 for all w ∈ Lyn(X3,2) such that deg3w > 1 .

The elements σ2n+1 can be taken as generators in §1.1 (1). It is perhaps surprising that

one can define canonical elements of the motivic Galois group at all. These should perhaps

be taken with a pinch of salt, since there may be other natural generators for the algebra of

motivic multiple zeta values.

Corollary. There is a unique homomorphism τ : H → Q (see (1.5)) such that:

〈τ, ζm(2)〉 = − 1
24

and 〈τ, ζm(w)〉 = 0 for all w ∈ Lyn(X3,2) such that w �= 2.

Applying this map to the motivic Drinfeld associator defines a canonical (but not ex-

plicit!) rational associator:

τ(Zm) ∈ 0Π1(Q) = Q〈〈x0, x1〉〉

By acting on the canonical rational associator with elements σ2n+1, one deduces that

there exists a huge space of rational associators (which forms a torsor over GdR(Q)). Such
associators have several applications (see, for example [16]).
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3.2. Transcendence conjectures.

Conjecture 3.3. A variant of Grothendieck’s period conjecture states that

per : Pm
MT (Z) −→ C

is injective. In particular, its restriction to H is injective also.

The last statement, together with theorem 1.5, is equivalent to

Conjecture 3.4 (Hoffman). The elements ζ(n1, . . . , nr) for ni ∈ {2, 3} are a basis for the
Q-vector space spanned by multiple zeta values.

This in turn implies a conjecture due to Zagier, stating that the dimension of theQ-vector

space of multiple zeta values of weightN is equal to dN (1.6), and furthermore that the ring

of multiple zeta values is graded by the weight. Specialising further, we obtain the following

folklore

Conjecture 3.5. The numbers π, ζ(3), ζ(5), ζ(7), . . . are algebraically independent.

3.3. Idea of proof of theorem 1.5. The proof of linear independence is by induction on

the number of 3’s. In the case where there are no 3’s, one can easily show by adapting an

argument due to Euler that

ζ(2, . . . , 2︸ ︷︷ ︸
n

) =
π2n

(2n+ 1)!
.

The next interesting case is where there is one 3.

Theorem 3.6 (Zagier [38]). Let a, b ≥ 0. Then

ζ(2, . . . 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

) = 2

a+b+1∑
r=1

(−1)r(Ara,b −Bra,b) ζ(2r + 1) ζ(2, . . . , 2︸ ︷︷ ︸
a+b+1−r

)

where, for any a, b, r ∈ N, Ara,b =
(

2r
2a+2

)
, and Bra,b =

(
1− 2−2r

)(
2r

2b+1

)
.

Zagier’s proof of this theorem involves an ingenious mixture of analytic techniques. The

next step in the proof of theorem 1.5 is to lift Zagier’s theorem to the level of motivic mul-

tiple zeta values by checking its compatibility with the coaction (2.18) and using theorem

2.8. Since then, the proof of theorem 3.6 was simplified by Li [31], and Terasoma [37] has

verified that it can be deduced from associator equations. Since the associator equations are

known to hold between motivic multiple zeta values, it follows that, in principle, this part of

the proof can now be deduced directly by elementary methods (i.e., without using theorem

2.8).

From the motivic version of theorem 3.6, one can compute the action of the abelianiza-

tion of UdR on the vector space built out of the elements ζm(n1, . . . , nr), with ni = 2, 3,
graded by the number of 3’s. This action can be expressed by certain matrices constructed

out of the combinatorial formula (2.18), whose entries are linear combinations of the coef-

ficients Ara,b and B
r
a,b of theorem 3.6. The key point is that these matrices have non-zero

determinant 2-adically, and are hence invertible. At its heart, this uses the fact that the Bra,b
terms in theorem 3.6 dominate with respect to the 2-adic norm due to the factor 2−2r.
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4. Roots of unity

There are a handful of exceptional cases when one knows how to generate certain categories

of mixed Tate motives over cyclotomic fields and write down their periods. These results are

due to Deligne [11], inspired by numerical computations due to Broadhurst in 1997 relating

to computations of Feynman integrals.

Let N ≥ 2 and let μN be the group of N th roots of unity, and consider

P1\{0, μN ,∞} (4.1)

Fix a primitive N th root ζN . One can consider the corresponding motivic fundamental

groupoid (with respect to suitable tangential base points) and ask whether it generates the

categoryMT (ON [ 1N ]), whereON is the ring of integers in the fieldQ(ζN ). Goncharov has
shown that for many primes N , and in particular, for N = 5, this is false: already in weight

two, there are motivic periods of this category which cannot be expressed as motivic iterated

integrals on P1\{0, μN ,∞}.
In certain exceptional cases, Deligne has proven a stronger statement:

Theorem 4.1. For N = 2, 3, 4, 6 (resp. N = 8) the motivic fundamental group

πmot1 (P1\{0, 1,∞},→10, ζN )
(
resp. πmot1 (P1\{0,±1,∞},→10, ζ8)

)
generates the categories MT (ON [ 1N ]) for N = 2, 3, 4, 8, and MT (ON ) for N = 6.

Iterated integrals on (4.1) can be expressed in terms of cyclotomic multiple zeta values6

which are defined for (nr, εr) �= (1, 1) by the sum

ζ(n1, . . . , nr; ε1, . . . , εr) =
∑

0<k1<k2<...<kr

εk11 . . . ε
kr
r

kn1
1 . . . knr

r

where ε1, . . . , εr are roots of unity. The weight is defined as the sum of the indices

n1+. . .+nr and the depth is the increasing filtration defined by the integer r. It is customary

to use the notation

ζ(n1, . . . , nr−1, nrζN ) = ζ(n1, . . . , nr; 1, . . . , 1︸ ︷︷ ︸
r−1

, ζN ) .

One can define motivic versions relative to the canonical fiber functor ω ([14], §1.1) playing

the role of what was previously the de Rham fiber functor (the two are related by ωdR = ω⊗
Q(ζN )), and the Betti realisation functor which corresponds to the embedding Q(ζN ) ⊂ C.
Denote these motivic periods by a superscript m. Recall that Lm is the motivic Lefschetz

period of example 1.3, whose period is 2πi. Let Xodd = {1, 3, 5, . . .} with the ordering

1 > 3 > 5 . . .. Rephrased in the language of motivic periods, Deligne’s results for

N = 2, 3, 4 yield:

1. (N = 2; algebra generators). The following set of motivic periods:

{Lm} ∪ {ζm(n1, . . . , nr−1,−nr) where (nr, . . . , n1) ∈ Lyn(Xodd)}

6The conventions in [11] are opposite to the ones used here
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are algebraically independent over Q. The monomials in these quantities form a basis

for the ring of geometric motivic periods7 of MT (Z[ 12 ]).

2. (N = 3, 4; linear basis). The set of motivic periods

ζm(n1, . . . , nr−1, nrζN )(Lm)p where ni ≥ 1, p ≥ 0

are linearly independent over Q. They form a basis for the space of geometric motivic

periods of MT (ON [ 1N ]), for N = 3, 4 respectively.

By applying the period map, each case gives a statement about cyclotomic multiple zeta

values. In the case N = 2, the underlying field is still Q, and it follows from (i) that every
multiple zeta value at 2nd roots of unity (sometimes called an Euler sum) is a polynomial

with rational coefficients in

(2πi)2 and ζ(n1, . . . , nr−1,−nr) where (n1, . . . , nr) ∈ Lyn(Xodd) .

This decomposition respects the weight and depth, where the depth of (2πi)n is 1. Thus an
Euler sum of weightN and depth r can be expressed as a polynomial in the above elements,

of total weight N and total depth ≤ r.

5. Depth

The results of the previous section for N = 2, 3, 4, 6, 8 crucially use the fact that the depth

filtration is dual to the lower central series of the corresponding motivic Galois group. A

fundamental difference with the caseN = 1 is that this fact is false for P1\{0, 1,∞}, due to
a defect closely related to modular forms.

Recall that 0Π1 is a group for the Ihara action ◦. Let Lie(0Π1) denote its Lie algebra.

Its bracket is denoted by { , }. Denote the images of the canonical generators §3.1 by

σ2n+1 ∈ Lie(0Π1)(Q), for n ≥ 1. They are elements of the free graded Lie algebra on two

generators x0, x1, and we have, for example

σ3 = [x0, [x0, x1]] + [x1, [x1, x0]]

The higher σ2n+1 are of the form σ2n+1 = ad(x0)
2n(x1) plus terms of degree ≥ 2 in x1,

but are not known explicitly except for small n. By theorem 1.2, the σ2n+1 freely generate

a graded Lie subalgebra of Lie(0Π1)(Q) which we denote by g. The depth filtration D on

g is the decreasing filtration given by the degree in the letter x1. In 1993, Ihara and Takao

observed that

{σ3, σ9} − 3{σ5, σ7} =
691

144
eΔ (5.1)

where eΔ is an element with integer coefficients of depth ≥ 4 (degree ≥ 4 in x1), and the

coefficient 691 on the right-hand side is the numerator of the Bernoulli number B12. The

element eΔ is sparse:8 indeed, computations in the early days gave the impression that the

right-hand side is zero, although we now know that the σ2n+1 generate a free Lie algebra.

7recall that this is the subring of all motivic periods of the category MT (Z[ 1
2
]) which is generated by motives

M which have non-negative weights, i.e.,W−1M = 0.
8‘most’ of its coefficients are zero, see [7], §8 for a closed formula for this element.
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Relations such as (5.1) show that the structure of g is related to arithmetic, but more

importantly show that the associated depth-graded Lie algebra grD g is not free, since the

left-hand side of (5.1) vanishes in gr2D g. The depth filtration on g corresponds, dually, to the
depth filtration on motivic multiple zeta values, and (5.1) implies that motivic multiple zeta

values of depth ≤ 2 are insufficient to span the space of all (real geometric) motivic periods

ofMT (Z) in weight 12 (one needs to include elements of depth≥ 4 such as ζm(2, 2, 2, 3, 3)
in a basis). By counting dimensions, this can be interpreted as a relation, viz:

28 ζm(3, 9) + 150 ζm(5, 7) + 168 ζm(7, 5) =
5197

691
ζm(12) (5.2)

The corresponding relation for multiple zeta values was found in [17] and generalised to an

infinite family corresponding to cuspidal cohomology classes of SL2(Z). In particular, the

family of motivic multiple zeta values

ζm(2n1 + 1, . . . , 2nr + 1)ζm(2k)

cannot be a basis for H, although it has the right dimensions in each weight (1.6). The

Hoffman basis (1.7) gets around such pathologies, since, for example, its elements in weight

12 have depths between four and six.

In 1997, Broadhurst and Kreimer made exhaustive numerical computations on the depth

filtration of multiple zeta values, which led them to the following conjecture, translated into

the language of motivic multiple zeta values.

Conjecture 5.1 (Motivic version of the Broadhurst-Kreimer conjecture). Let D denote the
increasing filtration on H induced by the depth. Then∑

N,d≥0

dimQ (grDd HN ) sdtN =
1 + E(t)s

1−O(t)s+ S(t)s2 − S(t)s4
, (5.3)

where E(t) = t2

1−t2 , O(t) = t3

1−t2 , and S(t) =
t12

(1−t4)(1−t6) .

Note that equation (5.3) specializes to (1.6) on setting s equal to 1. The series E(t)
and O(t) are the generating series for the dimensions of the spaces of even and odd single

motivic zeta values. The interpretation of S(t) as the generating series for cusp forms for

SL2(Z) suggests a deeper connection with modular forms which is well understood in depth

two. By work of Zagier, and Goncharov, formula (5.3) has been confirmed in depths 2 and 3
(i.e., modulo s4).

An interpretation for conjecture (5.3) in terms of the structure of grDg, as well as a

complete conjectural description of generators and relations of grDg in terms of modular

forms for SL2(Z) was given in [7]. A deeper geometric understanding of this conjecture

would seem to require a framework which places multiple zeta values and modular forms on

an equal footing, which is the topic of §6.

6. Multiple modular values

In this final paragraph, I want suggest applying the philosophy of §1.4 to iterated integrals

on (orbifold) quotients of the upper half plane

H = {τ ∈ C : Im (τ) > 0}
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by finite index subgroups Γ ≤ SL2(Z). Iterated integrals of modular forms were first studied

by Manin [32, 33]. Here, I shall only consider the case Γ = SL2(Z).

6.1. Eichler-Shimura integrals. Denote the space of homogenous polynomials of degree

n ≥ 0 with rational coefficients by

Vn =
⊕
i+j=n

QXiY j

It admits a right action of Γ via the formula (X,Y )|γ = (aX + bY, cX + dY ), where
γ =

(
a b
c d

)
. Let f(τ) be a modular form of weight k for Γ. Define

f(τ) = (2πi)k−1f(τ)(X − τY )k−2dτ ∈ Γ(H,Ω1
H ⊗ Vk−2)

It satisfies the invariance property f(γ(τ))
∣∣
γ
= f(τ) for all γ ∈ Γ. For f a cusp form, the

classical Eichler-Shimura integral (see, e.g., [29]) is∫ ∞

0

f(τ) =
k−1∑
n=1

cnL(f, n)X
k−n−1Y n−1 (6.1)

where cn are certain explicit constants (rational multiples of a power of π) and L(f, s)
is the analytic continuation of the L-function L(f, s) =

∑
n≥1

an

ns of f , where f(τ) =∑
n≥1 anq

n and q = e2πiτ . Manin showed that if f is a Hecke eigenform, there exist

ω+
f , ω

−
f ∈ R such that ∫ ∞

0

f(τ) = ω+
f P

+
f (X,Y ) + ω−f P

−
f (X,Y )

whereP±f (X,Y ) ∈ Vk−2⊗Q are polynomials with algebraic coefficients which are invariant

(resp. anti-invariant) with respect to (X,Y ) !→ (−X,Y ).
Recall that the Eisenstein series of weight 2k, for k ≥ 2, is defined by

e2k(q) = −B2k

2k
+
∑
n≥1

σ2k−1(n)q
n , q = e2πiτ

whereB2k is the 2k
th Bernoulli number, and σ denotes the divisor function. The correspond-

ing integrals for Eisenstein series diverges. Zagier showed how to extend the definition of

the Eichler-Shimura integrals to the case e2k, giving [29]

(2k − 2)!

2
ζ(2k − 1)(X2k−2 − Y 2k−2)− (2πi)2k−1

4k(2k − 1)

∑
a+b=2k
a,b≥1

(
2k

a

)
BaBbX

a−1Y b−1

(6.2)

Manipulating this formula leads to expressions for the odd Riemann zeta values in terms

of Lambert series similar to the following formula due to Ramanujan:

ζ(3) =
7

180
π3 − 2

∑
n≥1

1

n3(e2nπ − 1)
.

It converges very rapidy. One wants to think of (6.2) as pointing towards a modular con-

struction of ζm(2k − 1).
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6.2. Regularisation. The theory of tangential base points ([10], §15) gives a general pro-

cedure for regularising iterated integrals on curves. If one applies this to the orbifold Γ\\H,

where Γ = SL2(Z), one can show that it yields the completely explicit formulae below,

which generalise Zagier’s formula for a single Eisenstein series. I shall only state the final

answer. Via the map

τ !→ q = exp(2iπτ) : H −→ {q ∈ C : 0 < |q| < 1} = D×

a natural choice of tangential base point (denoted
→
1∞) corresponds to the tangent vector 1

at q = 0. Since in this case we have explicit models H ⊂ C for a universal covering space

of Γ\\H, and C for the universal covering of D×, one can compute all regularised iterated

integrals by pulling them back to C as follows.

First, if f =
∑

n≥0 fnq
n is the Fourier expansion of f , write

f∞(τ) = (2πi)k−1f0(X − τY )k−2dτ ∈ Γ(C,Ω1
C ⊗ Vk−2) (6.3)

Define a linear operator R on the tensor coalgebra on Γ(C,Ω1
C ⊗ V ) by

R[ω1| . . . |ωn] =
n∑
i=0

(−1)n−i[ω1| . . . |ωi]x [ω∞n | . . . |ω∞i+1]

=
n∑
i=1

(−1)n−i
[
[ω1| . . . |ωi−1]x [ω∞n | . . . |ω∞i+1]

∣∣∣ωi − ω∞i ] .
where V =

⊕
k Vk and ω

∞ is the ‘residue at infinity’ of ω defined by (6.3). The regularised

iterated integral can be expressed as finite integrals

∫ →
1∞

τ

[ω1| . . . |ωn] =
n∑
i=0

∫ ∞

τ

R[ω1| . . . |ωi]
∫ 0

τ

[ω∞i+1| . . . |ω∞n ]

It takes values in Vk1−2⊗ . . .⊗Vkn−2⊗C if ω1, . . . , ωn are of weights k1, . . . kn, and hence
admits a right action of Γ. The integrals in the right factor on the right-hand side are simply

polynomials in τ and can be computed explicitly.

6.3. Cocycles. Choose a basis of Hecke normalised eigenforms fi indexed by non-commut-

ing symbols Ai, and form the generating series

I(τ ;∞) =
∑

ik,n≥0

Ai1 . . . Ain

∫ →
1∞

τ

[ωi1 | . . . |ωin ]

For every γ ∈ Γ, there exists a formal power series Cγ in the Ai such that

I(τ ;∞) = I(γ(τ);∞)|γ Cγ (6.4)

which does not depend on τ . It satisfies the cocycle relation

Cgh = Cg
∣∣
h
Ch for all g, h ∈ Γ .
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The part of the cocycle C which involves iterated integrals of cusp forms was previously

considered by Manin [32, 33]. Since the group Γ is generated by

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
,

the cocycle C is determined by CS and CT . The series CT can be computed explicitly and

its coefficients lie in Q[2πi].

Definition 6.1. Define the ring of multiple modular values with respect to the group Γ =
SL2(Z) to be the subring of C generated by the coefficients of CS .

The series CS is a kind of analogue of Drinfeld’s associator Z . Its terms of degree 1 in

theAi are precisely the Eichler-Shimura integrals (6.1) and (6.2). Setting τ = i in (6.4) gives
integrals which converge extremely fast and are very well suited to numerical computation.

6.4. Galois action. One can mimic the Betti-de Rham aspects of the theory of the motivic

fundamental group of P1\{0, 1,∞} as follows:

1. The coefficients of CS can be interpreted as certain periods of the relative unipotent

completion of Γ. This was defined by Deligne as follows. Let k be a field of charac-

teristic 0 and S a reductive algebraic group over k. Suppose that Γ is a discrete group

equipped with a Zariski dense homomorphism ρ : Γ → S(k). The completion of Γ
relative to ρ is an affine algebraic group scheme GΓ, which sits in an exact sequence

1 −→ UΓ −→ GΓ −→ S −→ 1

where UΓ is pro-unipotent. There is a natural map Γ → GΓ(k) which is Zariski dense,
and whose projection onto S(k) is the map ρ.

2. In ‘geometric’ situations, one expects the relative completion to be the Betti realisation

of something which is motivic. Indeed, Hain has shown [23, 24] that O(GΓ) carries a
mixed Hodge structure in this case. As a result, one can define Hodge-motivic periods

and try to carry out §1.4.

3. The action of the unipotent radical of the Tannaka group of mixed Hodge structures

acts via the automorphism group of a space of non-abelian cocyles of Γ with coeffi-

cients in UΓ. It is a certain semi-direct product of UΓ with a group of non-commutative

substitutions Aut(UΓ)
S . An inertia condition corresponds, in the case Γ = SL2(Z),

to the fact that CT is fixed, and there are further constraints coming from the action of

Hecke operators. The explicit expression for CT yields precise information about the

action of the Hodge-Galois group.

The following key example illustrates how multiple modular values for SL2(Z) resolve
the depth-defect for multiple zeta values as discussed in §5.

Example 6.2. On P1\{0, 1,∞} there are 212 integrals of weight 12, namely∫
dch

ωi1 . . . ωi12 where ωij ∈
{
dt

t
,
dt

1− t
}
.

However the space of multiple zeta valuesZ12 in weight 12 has dimension at most d12 = 12,
so there are a huge number of relations. Indeed, modulo products of multiple zeta values of
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lower weights, there are at most two elements of weight 12:

ζ(3, 3, 2, 2, 2) and ζ(3, 2, 3, 2, 2) (6.5)

by the corollary to theorem 3.2. They are conjectured to be algebraically independent. Note

that multiple zeta values of depths ≤ 2 (or ≤ 3 for that matter) will not suffice to span Z12

by equation (5.2).

On the other hand, we can consider the coefficients of CS corresponding to regularised

iterated integrals of Eisenstein series

∫ →
1∞

0

e2a(X,Y )e2b(X,Y ) ∈ C[X,Y ] (6.6)

If we are interested in periods modulo products, there are just two relevant cases: (2a, 2b) ∈
{(4, 10), (6, 8)}. The description 3 above enables one to extract the relevant numbers from

the coefficients of these polynomials. One finds experimentally that one obtains exactly

the elements (6.5) modulo products, and that this is consistent with the coaction on the

corresponding Hodge-motivic periods. Thus Z12 is spanned by exactly the right number of

multiple modular values (which are linear combinations of the coefficients of (6.6).

The example shows that in weight 12, there are exactly two multiple modular values

(modulo products) which are multiple zeta values, and they conjecturally satisfy no relations.

By contrast, multiple zeta values in weight 12 are hugely over-determined, and satisfy a vast

number of relations. Furthermore, the depth-defect described in §5 can be directly related to

the appearance of special values of L-functions of cusp forms amongst certain coefficients

of (6.6).

In conclusion, a rather optimistic hope is that a theory of motivic multiple modular val-

ues for congruence subgroups of SL2(Z) might provide a more natural construction of the

periods of mixed Tate motives over cyclotomic fields (and much more) than the motivic fun-

damental groupoid of the projective line minus Nth roots of unity, which suffers from the

depth defect in the case N = 1 (§5), and from absent periods in non-exceptional cases such

as N = 5 (§4).
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1. Introduction

The idea that there could be a p-adic version of the local Langlands correspondence was

originally proposed by C. Breuil, in the case of the group GL2(Qp), in his papers [11–13].

In [13], he also proposed a local-global compatibility between this (at the time conjectural)

correspondence and p-adically completed cohomology of modular curves. Since then, the

theory of p-adic Langlands has been extensively developed in the case of the group GL2

over Q; see e.g. [6, 29, 30, 32, 46, 50, 52]. Since excellent expositions of much of this

material already exist [5, 14, 15], we have decided here to describe some aspects of the

p-adic Langlands program that make sense for arbitrary groups. This has led us to focus on

completed cohomology, since this is a construction that makes sense for arbitrary groups,

and about which it is possible to establish some general results, and make some general

conjectures.

Many of these conjectures are very much motivated by the conjectural relationship with

Galois representations, and we have also tried to outline our expectations regarding this

relationship, while trying not get bogged down in the myriad technical details that would

necessarily attend a more careful discussion of this topic. Finally, we have tried to indicate

how completed cohomology may be related, by the principle of local-global compatibility,

to a still largely conjectural p-adic local Langlands correspondence for groups other than
GL2(Qp). Our focus is on drawing inferences about the possible structure of the local

correspondence by interpolating from our expectations regarding completed cohomology. In

this regard we mention also the paper [27], which somewhat literally interpolates p-adically
completed cohomology (via the Taylor–Wiles–Kisin method) in order to construct a candidate

for the p-adic local Langlands correspondence for GLn of an arbitrary p-adic field.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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We close this introduction by simply listing a number of additional important papers

[17–20] which also have the goal of extending the p-adic local Langlands correspondence,
and local-global compatibility, beyond the case of GL2(Qp). Unfortunately, lack of space

prevents us from saying more about them here.

1.1. Notation. Throughout, we fix a prime p. We also fix a finite extension L of Qp,

contained inside some given algebraic closure Qp. We let O denote the ring of integers of L,
and let  denote a uniformizer of O. The ring O, and field L, will serve as our coefficients.

As usual, A denotes the ring of adèles over Q, while Af denotes the ring of finite adèles,

and Apf denotes the ring of prime-to-p finite adèles.

2. Completed cohomology

Ideally, in the p-adic Langlands program, we would like to define spaces of p-adic automorphic

forms, to serve as p-adic analogues of spaces of classical automorphic forms in the usual

Langlands program. Unfortunately, for general reductive groups, no such definition is

currently available. For groups that are compact at infinity, we can make such a definition

(see (2.2.4) below), while for groups giving rise to Shimura varieties, we can use algebro-

geometric methods to define spaces of p-adic automorphic forms, which however seem less

representation-theoretic in nature than classical automorphic forms. Since one of our main

goals is to employ representation-theoretic methods, we are thus led to find an alternative

approach.

The approach we take here is to work with p-adically completed cohomology. This has the

advantages of being definable for arbitrary groups, and of being of a representation-theoretic

nature. For our purposes, it will thus serve as a suitable surrogate for a space of p-adic
automorphic forms. For groups that are compact at infinity, it does recover the usual notion of

p-adic automorphic forms that was already mentioned. (Its relationship to algebro-geometric

notions of p-adic automorphic forms in the Shimura variety context is less clear; P. Scholze’s

paper [53] makes fundamental progress in this — and many other! — directions, but we won’t

attempt to discuss this here.) We therefore begin our discussion of global p-adic Langlands
by recalling the basic definitions and facts related to completed cohomology, referring to [24]

and [31] for more details.

2.1. Definitions and basic properties. Let us suppose that G is a reductive linear algebraic

group over Q. We write G∞ := G(R) for the group of real-valued points of R; this is a
reductive Lie group. We let A∞ denote the R-points of the maximal Q-split torus in the

centre of G, and let K∞ denote a choice of maximal compact subgroup of G∞. For any

Lie group H , we let H◦ denote the subgroup consisting of the connected component of the

identity.

The quotient G∞/A◦∞K
◦
∞ is a symmetric space on which G∞ acts. We denote its

dimension by d. We also write l0 := rank of G∞ − rank of A∞K∞, and q0 := (d− l0)/2.
If G∞ is semisimple (so that in particular A∞ is trivial) then these quantities coincide with

the quantities denoted by the same symbols in [10] (which is why we notate them as we

do). We note that q0 is in fact an integer. (For the role played by these two quantities in our
discussion, see (2.1.6), as well as Conjectures 3.1 and 3.2, below.)
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IfKf ⊂ G(Af ) is a compact open subgroup, then we write

Y (Kf ) := G(Q)\G(A)/A◦∞K
◦
∞Kf .

The double quotient Y (Kf ) is a finite union of quotients of the symmetric spaceG◦∞/A
◦
∞K

◦
∞

by cofinite volume discrete subgroups of G∞.

2.1.1. Definitions. We fix a tame level, i.e. a compact open subgroup Kp
f ⊂ G(Apf ). If

Kp ⊂ G := G(Qp) is a compact open subgroup, then of course KpK
p
f is a compact open

subgroup of G(Af ), and so we may form the space Y (KpK
p
f ). We define the completed

(co)homology at the tame levelKp
f as follows [24]:

H̃i := lim←−
s

lim−→
Kp

Hi
(
Y (KpK

p
f ),O/ s

)
and H̃i := lim←−

Kp

Hi

(
Y (KpK

p
f ),O

)
, (2.1)

where in both limitsKp ranges over all compact open subgroups of G(Qp).

We equip each of H̃i and H̃i with its evident projective limit topology. In the case of H̃i,

each of the O/ s-modules lim−→Kp
Hi
(
Y (KpK

p
f ),O/ s

)
appearing in the projective limit

is equipped with its discrete topology, and the projective limit topology on H̃i coincides with

its  -adic topology; H̃i is complete with respect to this topology. In the case of H̃i, each

of the terms Hi

(
Y (KpK

p
f ),O

)
(which is a finitely generated O-module) appearing in the

projective limit is equipped with its  -adic topology. The topology on H̃i is then a pro-finite

topology, and so in particular H̃i is compact.

The completed cohomology and homology are related to one another in the usual way

by duality over O [24]. In particular, if we ignore O-torsion, then H̃i is the O-dual of H̃i

(equipped with its weak topology), and H̃i is the continuous O-dual of H̃i.

We can also form the limit

Hi := lim−→
Kp

lim←−
s

Hi
(
Y (KpK

p
f ),O/ s

) ∼= lim−→
Kp

Hi
(
Y (KpK

p
f ),O

)
. (2.2)

There is a natural morphism

Hi → H̃i, (2.3)

which induces an embedding

Ĥi ↪→ H̃i, (2.4)

whose source is the  -adic completion of Hi. Note that the morphism (2.3) need not be

injective: although each of the termsHi
(
Y (KpK

p
f ),O

)
in the direct limit definingHi is a

finitely generatedO-module, the limitHi is merely countably generated as anO-module, and

hence may contain divisible elements. These then become zero after we pass to the  -adic

completion to obtain the embedding (2.4). (We give an example of this in (2.2.3) below.)

We furthermore remark that the transition maps in the direct limits of (2.1) and (2.2) need

not be injective. (This is also illustrated by the example of (2.2.3).) However, ifK ′
p ⊂ Kp,

then a trace argument shows that the restriction map

Hi
(
Y (KpK

p
f ),O) → Hi

(
Y (K ′

pK
p
f ),O)

becomes injective after tensoringwithL. Thus the kernel of the natural mapHi
(
Y (KpK

p
f ),O) →

Hi consists of torsion classes.
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On the other hand, the kernel of the natural map

Hi
(
Y (KpK

p
f ),O) → H̃i (2.5)

need not consist only of torsion classes; it is possible for non-torsion classes to have infinitely

divisible image in Hi, and hence have vanishing image in Ĥi (and so also have vanishing

image in H̃i). (Again, we refer to (2.2.3) for an example of this.).

The morphism (2.4), although injective, need not be surjective. Its cokernel is naturally

identified with TpH
i+1 := lim←−s

Hi+1[ s]; in other words we have a short exact sequence

0 → Ĥi → H̃i → TpH
i+1 → 0. (2.6)

(Here we have written Hi+1[ s] to denote the submodule of  s-torsion elements in Hi+1,

and the projective limit is taken with respect to the multiplication-by- map fromHi+1[ s+1]
to Hi+1[ s]. The notation “Tp” is for Tate module.) In particular, if all the cohomology

modules Hi+1
(
Y (KpK

p
f ),O

)
are torsion free, so that Hi+1 is torsion free, then the mor-

phism (2.4) is an isomorphism.

Although the restriction maps (2.5) can have non-trivial kernels, one can recover the

cohomology at the various finite levelsKpK
p
f via the Hochschild–Serre spectral sequence

discussed in (2.1.3) below. The precise manner in which the cohomology at finite levels gets

encoded in the completed cohomology is somewhat complicated in general. For instance,

infinitely divisible torsion elements in Hi give rise to elements of TpH
i, which by the

discussion of the previous paragraph is naturally a quotient of H̃i−1. However, infinitely

divisible non-torsion elements ofHi have no obvious incarnation as elements of completed

cohomology, and the manner in which they are recovered by the Hochschild–Serre spectral

sequence can be subtle.

2.1.2. Group actions. There is a natural continuous action of G := G(Qp) on each of H̃
i

and H̃i, whose key property is encapsulated in the following result.

Theorem 2.1 ([24, 31]). TheG-action on H̃i makes it a -adically admissible representation
of G; i.e. it is  -adically complete as an O-module, and each quotient H̃i/ s (which is a
smooth representation of G over O/ s) is admissible in the usual sense (for each compact
open subgroupKp ⊂ G, the submodule ofKp-invariants is finitely generated over O).

If Kp ⊂ G is compact open, then we write O[[Kp]] := lim←−K′p
O[Kp/K

′
p], where the

projective limit is taken over all open normal subgroupsK ′
p ⊂ Kp. SinceG acts continuously

on H̃i and H̃i, it follows that for any such Kp, the Kp-action on each of these modules

may be promoted to an action of O[[Kp]]. One then has the following reformulation of the

admissibility of the G-action on H̃i.

Theorem 2.2. Each of the O[[Kp]]-modules H̃i is finitely generated.

(We remark that if this finite generation statement holds for one choice ofKp then it holds

for any such choice.)

2.1.3. Cohomology of local systems and the Hochschild–Serre spectral sequence. IfW
is a finitely generated O-module equipped with a continuous representation of an open

subgroup Kp ⊂ G, and Kp is sufficiently small, so that G(Q) acts with trivial stabilizers



Completed cohomology and the p-adic Langlands program 323

on G(A)/A◦∞K
◦
∞KpK

p
f , then, for each open subgroup K ′

p ⊂ Kp, the representation W

determines a local system W of O-modules on Y (KpK
p
f ), defined via

W := G(Q)\
((

G(Af )/A
◦
∞K

◦
∞K

p
f

)×W)/K ′
p.

Suppose thatW is furthermore torsion-free as an O-module, and letW∨ denote the O-dual

ofW , endowed with the contragredientKp-action. There is then [24, 31] a Hochschild–Serre

spectral sequence

Ei,j2 = ExtiO[[Kp]](W
∨, H̃j) =⇒ Hi+j

(
Y (KpK

p
f ),W

)
.

This gives a precise sense to the idea that p-adically completed cohomology captures all the
cohomology (with arbitrary coefficients) at finite levels. It is the realization, in the context of

completed cohomology, of the general philosophy (brought out especially in Hida’s work, e.g.

[45]) that when working with p-adic automorphic forms, by passing to infinite p-power level
one automatically encompasses automorphic forms of all possible weights. (For the precise

relationship with classical automorphic forms, see (2.1.6) below.)

In particular, if we take W = O (with the trivial Kp-action), we obtain a spectral

sequence Ei,j2 = Hi
(
Kp, H̃

j
)

=⇒ Hi+j
(
Y (KpK

p
f ),O

)
(where Hi denotes continuous

cohomology), which recovers the cohomology at the finite levelKpK
p
f from the completed

cohomology. If we take a direct limit over all Kp, we obtain a spectral sequence Ei,j2 =

lim−→Kp
Hi
(
Kp, H̃

j
)

=⇒ Hi+j , which recovers the limits Hi+j of the cohomology at finite

levels. The edge map Hi → lim−→Kp
(H̃i)Kp is induced by the morphism (2.3). As already

noted, the relationship between this spectral sequence, the morphism (2.3), and the exact

sequence (2.6) is subtle. (See the example of (2.2.3) below.)

More generally, if we writeHi(W) := lim−→K′p
Hi
(
Y (K ′

pK
p
f ),W

)
(whereK ′

p runs over

all open subgroups of the fixedKp, of whichW is a representation), then we have an edge

map Hi(W) → lim−→K′p
HomK′p(W

∨, H̃i
)
which relates the cohomology at finite levels with

coefficients in W to theW∨-isotypic parts (for open subgroupsK ′
p ofKp) of H̃

i.

2.1.4. Hecke actions. There is a finite set of primes Σ0 (containing p) such that for � �∈ Σ0,
we may factorKp

f = Kp,�
f K� whereK

p,�
f is compact open in G(Ap,�f ), andK� is a hyperspe-

cial maximal compact subgroup ofG(Q�). (In particular,G is unramified at such a prime �, so
that it admits a hyperspecial maximal compact subgroup.) We may then consider the spherical

Hecke algebra (i.e. the double coset algebra) H� := H(G(Q�)//K�,O
)
with coefficients in

O. This algebra is commutative [41, 42], and acts naturally (by continuous operators) on any

of the cohomology groups Hi
(
Y (KpK

p
f ),W) considered in (2.1.3).

If we let i range over all cohomological degrees, let Kp range over all compact open

subgroups of G, and letW range over all representations ofKp on finitely generated torsion
O-modules, then

∏
i

∏
Kp

∏
W EndHi

(
Y (KpK

p
f ),W) is a profinite ring. We fix a set of

primes Σ containing Σ0, and we define the global Hecke algebra TΣ to be the closure in

this profinite ring of the O-subalgebra generated by the image of H� for all � �∈ Σ. (The
reasons for allowing the possibility of Σ being larger than Σ0 are essentially technical; it

is not misleading to simply imagine that Σ is equal to Σ0 and is fixed once and for all, e.g.

by being taken to be as small as possible, given our fixed choice of tame level Kp
f .) By

construction, TΣ acts on each of the cohomology groups Hi
(
Y (KpK

p
f ),W) considered
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in (2.1.3) (this is obvious ifW is torsion, and follows in general by writingW as a projective

limit W ∼= lim←−s
W/ s), and also on H̃i and H̃i. (In the case of H̃i this follows from its

definition in terms of limits of cohomology groups Hi
(
Y (KpK

p
f ),O/ s

)
. It then follows

for H̃i by duality; more precisely, we can write H̃i as the projective limit over s andKp of

Hi

(
Y (KpK

p
f ),O/ s

)
, and this latter module is theO/ s-dual ofHi

(
Y (KpK

p
f ),O/ s

)
.)

These Hecke actions on H̃i and H̃i commute with the action ofG. Thus there is an action
of Hecke on the E2-terms, as well the E∞-terms, of the various Hochschild–Serre spectral

sequences considered in (2.1.3), and these are in fact spectral sequences of TΣ-modules.

The O-algebra TΣ is a complete semi-local ring, i.e. it is a product of finitely many

factors Tm, each of which is a complete local ring. (This finiteness statement is proved via

the methods of [3].) The topology on TΣ is the product of the m-adic topologies on each of

the complete local rings Tm.

2.1.5. Variants in the non-compact case, and Poincaré duality. There are some variants

of completed (co)homology which are useful in the case when the quotients Y (Kf ) are non-
compact. (We recall that the quotients Y (Kf ) are compact precisely when the semisimple

part of the group G is anisotropic, i.e. contains no torus that is split over Q.)

Namely, replacing cohomology by cohomology with compact supports, we can define

G-representations H̃i
c, H

i
c, Ĥ

i
c, and TpH

i
c, and we have Hochschild–Serre spectral sequences

for compactly supported cohomology. Similarly, we can define completed Borel–Moore

homology H̃BM
i , which is related to H̃i

c by duality over O.

There is a more subtle duality over O[[Kp]] (for a compact open subgroup Kp ⊂ G)
which relates the usual and compactly supported variants of completed cohomology. It is

most easily expressed on the homology side, where it takes the form of the Poincaré duality

spectral sequence

Ei,j2 := ExtiO[[Kp]](H̃j ,O[[Kp]]) =⇒ H̃BM
d−(i+j). (2.7)

Of course, when the quotients Y (Kf ) are compact, compactly supported and usual

cohomology coincide, as do usual and Borel–Moore homology. In general, we can relate

them by considering the Borel–Serre compactifications Y (Kf ). If we let ∂(Kf ) denote the
boundary of Y (Kf ), then we may compute the compactly supported cohomology of Y (Kf )
as the relative cohomology

Hi
c

(
Y (Kf ),O/ s

)
= Hi

(
Y (Kf ), ∂(Kf );O/ s

)
(and similarly we may compute Borel–Moore homology as relative homology), and so we

obtain the long exact sequence of the pair relating the cohomology of Y (Kf ), the compactly

supported cohomology of Y (Kf ), and the cohomology of ∂(Kf ). Passing to the various

limits, we obtain a long exact sequence

· · · → H̃i
c → H̃i → H̃i(∂) := lim←−

s

lim−→
Kp

Hi
(
∂(KpK

p
f ),O/ s

)→ H̃i+1
c → · · · .

The completed cohomology of the boundary H̃i(∂) can be computed in terms of completed

cohomology of the various Levi subgroups of G; see [24] for more details.

We also mention that there is a TΣ-action on each of the objects introduced here, and that

the various spectral sequences and long exact sequences considered here are all compatible

with these actions.
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2.1.6. The relationship to automorphic forms. We fix an isomorphism ı : Qp
∼= C. Since

L ⊂ Qp, we obtain induced embeddings O ⊂ L ↪→ C.
Suppose that V is an algebraic representation of G defined over L, and suppose further

that W is a Kp-invariant O-lattice in V, for some compact open subgroup Kp of G :=
G(Qp) ⊂ G(L). Write VC := C ⊗L V = C ⊗O W (the tensor products being taken with

respect to the embeddings induced by ı). If, for any compact open subgroupK ′
p ofKp, we

let VC denote the local system of C-vector spaces on Y (K ′
pK

p
f ) associated to VC, then we

obtain a natural isomorphism

C⊗O H
i(W) ∼= lim−→

K′p

Hi
(
Y (K ′

pK
p
f ),VC

)
=: Hi(VC).

We may compute this cohomology using the space of automorphic forms on G [39].

Precisely, write A(Kf ) for the space of automorphic forms on G(Q)\G(A)/Kf , for any

compact open subgroup Kf ⊂ G(Af ), and write A(Kp
f ) = lim−→Kp

A(KpK
p
f ), where the

direct limit is taken (as usual) over the compact open subgroups Kp ⊂ G := G(Qp). For
simplicity, suppose that A◦∞ acts on VC through some character χ (this will certainly hold if

V is absolutely irreducible), and let A(Kp
f )χ−1 denote the subspace of A(Kp

f ) on which A◦∞
acts through the character χ−1. Let G̃∞ denote the group of real points of the intersection

of the kernels of all the rational characters of G, and let g̃ and k denote the Lie algebras

of G̃∞ and K∞ respectively. Then it is proved by J. Franke in [39] that there is a natural

isomorphism

Hi(VC) ∼= Hi
(
g̃, k;A(Kp

f )χ−1 ⊗ VC
)
. (2.8)

(In the case when the the quotients Y (Kf ) are compact, this result is known as Matsushima’s
formula [49]. In the case when G = GL2 and i = 1, it is known as the Eichler–Shimura
isomorphism [54].) The action of TΣ on Hi(W) induces an action of TΣ on Hi(VC), and
the resulting systems of Hecke eigenvalues that appear in Hi(VC) (which we may think

of as being simultaneously C-valued and Qp-valued, by employing the isomorphism ı) are
automorphic, i.e. arise as systems of Hecke eigenvalues on the space of automorphic forms

A(Kp
f ).

Thus, to first approximation, we may regard the Hecke algebra TΣ (or, more precisely, the

Qp-valued points of its Spec) as being obtained by  -adically interpolating the automorphic

systems of Hecke eigenvalues that occur in Hi. However, as we already noted, the map from

Hi to Ĥi can have a non-trivial kernel. More significantly (given that the Hochschild–Serre

spectral sequence shows that, despite this possibility, the systems of Hecke eigenvalues

appearing in Hi can be recovered from the completed cohomology), the inclusion Ĥi ↪→ H̃i

can have a non-trivial cokernel TpH
i+1, which arises from infinitely divisible torsion inHi+1.

Thus SpecTΣ sees not only the systems of eigenvalues arising from classical automorphic

forms (and their  -adic interpolations), but also systems of Hecke eigenvalues arising from

torsion cohomology classes (and their  -adic interpolations). We will discuss this point

further in (3.1.3) below.

It will be helpful to say a little more about how one can use (2.8) to analyze cohomology.

To this end, we decompose the space of automorphic forms A(Kp
f )χ−1 as the direct sum

A(Kp
f )χ−1 = Acusp(K

p
f )χ−1 ⊕ AEis(K

p
f )χ−1 (2.9)

of the cuspforms and the forms which are orthogonal to the cuspforms (in A(Kp
f )χ) under

the Petersson inner product (i.e. the L2 inner product of functions on G(Q)\G(A)/A◦∞K
p
f ).



326 Matthew Emerton

We label this complement to the space of cuspforms with the subscript Eis for Eisenstein,
although its precise relationship with the space of Eisenstein series can be complicated;

see e.g. [39, 40, 47]. Note that if the quotients Y (Kf ) are compact, then A(Kp
f )χ−1 =

Acusp(K
p
f )χ−1 .

The decomposition (2.9) is a direct sum of G∞ × G-representations, and so the coho-

mology Hi
(
g̃, k;Acusp(K

p
f )χ−1 ⊗ VC

)
is a G-invariant direct summand of the cohomology

Hi
(
g̃, k;A(Kp

f )χ−1 ⊗ VC
)
, which via the isomorphism (2.8) we identify with a G-invariant

direct summand Hi
cusp(VC) of H

i(VC). It is also TΣ-invariant.

We may choose an everywhere positive element of A(Kp
f ) on whichG(A) acts via a char-

acter extending χ2, multiplication by which induces an isomorphism between Acusp(K
p
f )χ−1

and Acusp(K
p
f )χ. The Petersson (i.e. the L2) inner product between Acusp(K

p
f )χ−1 and

Acusp(K
p
f )χ, taken together with this isomorphism, thus induces a pre-Hilbert space structure

on Acusp(K
p
f )χ−1 , with respect to which the G∞ ×G-action is unitary up to a character. In

particular, we find that Acusp(K
p
f )χ−1 is semisimple as a G∞ × G-representation, and so

decomposes as a direct sum Acusp(K
p
f )χ−1 =

⊕
π∞⊗πp

π∞ ⊗ πp ⊗M(π∞ ⊗ πp), where
the direct sum is taken over (a set of isomorphism class representatives of) all the irreducible

admissible representations of G∞ ⊗ G over C on which A◦∞ acts via χ−1 (which factor

as the tensor product π∞ ⊗ πp of an irreducible admissible representation π∞ of G∞ on

which A◦∞ acts via χ−1, and an irreducible admissible smooth representation πp of G), and
M(π∞⊗πp) := HomG∞×G

(
π∞⊗πp,Acusp(K

p
f )χ−1

)
is the (finite-dimensional) multiplic-

ity space of π∞⊗πp in Acusp(K
p
f )χ−1 . Consequently, we obtain a direct sum decomposition

Hi
cusp(VC) ∼= Hi

(
g̃, k;Acusp(K

p
f )χ−1 ⊗ VC

)
∼=
⊕

π∞⊗πp

Hi(g̃, k;π∞ ⊗ VC)⊗ πp ⊗M(π∞ ⊗ πp) (2.10)

(the point here being that the (g̃, k)-cohomology depends only on the structure of π∞ ⊗ πp as
a G∞-representation, which is to say, only on π∞).

In this way, we can speak of the contribution of each of the irreducible summands π∞⊗πp
of Acusp(K

p
f )χ−1 to the cohomology Hi

cusp(VC). In the case when Hi(g̃, k;π∞ ⊗ VC) is
non-zero, so that π∞ ⊗ πp actually does contribute to cohomology, the multiplicity space

M(π∞⊗πp) is naturally a TΣ-module, and the direct sum decomposition (2.10) is compatible

with the actions of G and TΣ (where G-acts on πp, and TΣ acts onM(π∞ ⊗ πp)).
We can now explain the significance of the quantities l0 and q0 introduced above. Namely,

q0 is the lowest degree in which tempered π∞ can admit non-trivial (g̃, k)-cohomology.

Furthermore, among the tempered representations of G∞, it is precisely the fundamental
tempered representations (i.e. those which are induced from discrete series representations

of the Levi subgroup of a fundamental parabolic subgroup of G∞) which can admit non-

zero cohomology at all, and they do so precisely in degrees between q0 and q0 + l0 [10,

Ch. III, Thm. 5.1]. (This is a range of degrees of length l0 + 1 symmetric about d/2 —

which is one-half of the dimension of the quotients Y (Kf ).) A fundamental theorem of

Harish-Chandra states that, when G is semisimple, the group G∞ admits discrete series

representations precisely if l0 = 0; in this case q0 is equal to d/2, and the fundamental

tempered representations are precisely the discrete series representations. Key examples for

which l0 = 0 are given by groups G for which G∞ is compact, and (the semisimple parts of)

groups giving rise to Shimura varieties.
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One representation of G∞ ×G that always appears in A(Kp
f ) is the trivial representation

1. Thus there are induced morphisms

Hi(g̃, k;1) → Hi
(
g̃, k;A(Kp

f )1
) ∼= C⊗O H

i, (2.11)

whose sources are naturally identified with the cohomology spaces of the compact dual to the

symmetric space G◦∞/A
◦
∞K

◦
∞. If the Y (Kf ) are not compact, then 1 lies in AEis(K

p
f )1, but

it is typically not a direct summand, and so the morphisms (2.11) are typically not injective.

Nevertheless, when i is small they will be injective, and indeed (if e.g. G is split, semisimple,

and simply connected) an isomorphism, and these isomorphisms play a key role in the theory

of homological stability [9]. We discuss the interaction of these isomorphisms with the theory

of completed cohomology (in the case when G = SLN ) in (2.2.3) below.

2.1.7. Dimension theory. For any compact open subgroupKp ⊂ G, the completed group

ring O[[Kp]] is (left and right) Noetherian, and of finite injective dimension as a module

over itself; more precisely, its injective dimension is equal to dimG + 1. This allows us
to consider a (derived) duality theory for finitely generated O[[Kp]]-modules: to any such

module M we associate the Ext-modules Ei(M) := ExtiO[[Kp]](M,O[[Kp]]), for i ≥ 0
(which necessarily vanish if i > dimG + 1); these are again naturally O[[Kp]]-modules.

(We use the left O[[Kp]]-module structure on O[[Kp]] to compute the Ei, and then use the

right O[[Kp]]-module structure on O[[Kp]], converted to a left module structure by the usual

device of applying the anti-involution k !→ k−1 on Kp, to give the Ei an O[[Kp]]-module

structure.)

An important point is that Ei(M) is canonically independent of the choice ofKp (in the

sense that we may regardM as an O[[K ′
p]]-module, for any open subgroup K ′

p of Kp, but

Ei(M) is canonically independent of which choice of K ′
p we make to define it). This has

the consequence that if theKp-representation onM extends to a G-representation, then the
Ei(M) are also naturally G-representations.

The Poincaré duality spectral sequence (2.7) may thus be rewritten as

Ei,j2 = Ei(H̃j) =⇒ H̃BM
d−(i+j).

All the objects appearing in it are G-representations, and it is G-equivariant.
IfKp is p-torsion free (which will be true providedKp is sufficiently small) then the ring

O[[Kp]] is in fact Auslander regular [55]. IfKp is furthermore pro-p, then the ring O[[Kp]] is
an integral domain (in the sense that it contains no non-trivial left or right zero divisors). This

has various implications for the theory of finitely generated O[[Kp]]-modules. For example, it

is reasonable to define such a module to be torsion if every element has a non-zero annihilator

in O[[Kp]] (whereKp is chosen small enough to be pro-p and p-torsion free). More generally,

we may make the following definition.

Definition 2.3. IfM is a finitely generated O[[Kp]]-module, then the codimension cd(M)
ofM is defined to be the least value of i for which Ei(M) �= 0; the dimension dimM ofM
is defined to be dimG+ 1− cd(M).

If G is a torus, so thatKp is commutative, then dimM is precisely the dimension of the

support of the localization ofM over SpecO[[Kp]]. In general O[[Kp]] is non-commutative,

and hence doesn’t have a Spec over which we can localize a finitely generated moduleM .

Nevertheless, the quantity dimM behaves as if it were the dimension of the support ofM in
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the (non-existent) Spec of O[[Kp]]. (See e.g. [55, Prop. 3.5].) As one example, we note that

M is torsion (in the sense defined above) if and only if cd(M) ≥ 1. As another, we note that
cdEi(M) ≥ i, with equality when i = cdM . Also, we note that cdM = ∞ (so, morally,

the support ofM is empty) precisely whenM = 0.
By Theorem 2.2, completed homology is finitely generated over O[[Kp]], and so these

dimension-theoretic notions apply to it. Information about the (co)dimension of H̃i can be

obtained by analyzing the Poincaré duality spectral sequence, since the functors Ei appear
explicitly in it, and there is a tension in this spectral sequence between the top degree for

the duality of O[[Kp]]-modules (which is dimG+ 1) and the top degree for usual Poincaré
duality (which is d), which can sometimes be exploited. (See e.g. (2.2.2) below.) In making

any such analysis, it helps to have some a priori information about the (co)dimensions of the

H̃i. This is provided by the following result.

Theorem 2.4 ([23]). Suppose that G is semisimple. Then H̃i is torsion (i.e. its codimension
is positive) unless l0 = 0 and i = q0, in which case cd H̃i = 0.

We make a much more precise conjecture about the codimensions of the H̃i in Conjec-

ture 3.2 below.

2.2. Examples. We illustrate the preceding discussion with some examples.

2.2.1. GL2 of Q. If G = GL2, then the quotients Y (Kf ) are classical modular curves. In

particular, they have non-vanishing cohomology only in degrees 0 and 1, and so we consider

completed cohomology in degrees 0 and 1. Since the cohomology of a curve is torsion

free, we have H̃0 = Ĥ0 ∼= C(Δ× Z×p ,O
)
, the space of continuous O-valued functions on

the product Δ × Z×p , where Δ is a finite group that depends on the choice of tame level,

and so H̃0 (which is simply the O-dual of Ĥ0) is isomorphic to O[[Δ × Z×p ]], which is of

dimension two as a module over O[[Kp]] (for any compact openKp ⊂ GL2(Qp)). We also

have H̃1 = Ĥ1. Again, H̃1 is the O-dual of H̃1, and Theorem 2.4 shows that cd H̃1 = 0.
(Strictly speaking, we have to apply the theorem to SL2 rather than GL2, but it is then easy

to deduce the corresponding result for GL2, by considering the cup-product action of H0

on H1.)

2.2.2. SL2 of an imaginary quadratic field. Suppose thatG=ResF/Q SL2, where F is an

imaginary quadratic extension of Q. The quotients Y (Kf ) are then connected, non-compact

three-manifolds. The relevant (co)homological degrees are thus i=0, 1, and 2. Since the
Y (Kf ) are connected we see that H̃

0= H̃0=O. Theorem 2.4 implies that H̃1 has positive

codimension. A consideration of the Poincaré duality spectral sequence then shows that

H̃2=0, and that H̃1 is of codimension 1. This computation exploits both the fact that H̃0 �= 0,
and the gap between 3 (the dimension of the Y (Kf )) and 6 (the dimension of G).

Since H1 with coefficients in O of any space is  -torsion free, we see that H̃1 is  
torsion-free, and coincides with the O-dual of H̃1, while H̃

2 is  -torsion, and is naturally

identified with the Pontrjagin dual of the O-torsion submodule of H̃1 [24, Thm. 1.1]. We

conjecture that in fact H̃1 is  -torsion free (see Conjecture 3.2), and thus that H̃2 = 0.

2.2.3. SLN of Q in low degrees. We first discuss H̃0 and H̃1, before turning to a discussion

of higher degree cohomology from the point of view of homological stability.

The quotients Y (Kf ) are connected, and so H̃0 = O. If N ≥ 3, then SLN satisfies the
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congruence subgroup property. Furthermore, the groups SLN (Z�) are perfect for all values
of �. Combining these two facts, we see that if Γ(pr) denotes the usual congruence subgroup
of level pr (i.e. the kernel of the surjection SLN (Z) → SLN (Z/pr)), then H1

(
Γ(pr),O) =

O ⊗Zp Γ(pr)ab ∼= O ⊗Zp Γ(pr)/Γ(p2r). Thus, if we take the tame level to be trivial (i.e.

“level one”), then we see that the transition maps in the projective system defining H̃1 are

eventually zero, implying that H̃1 = 0. Similarly, we see that H1 = H̃1 = 0. (If we allowed
a more general tame level, then H̃1 could be non-zero, but would be finite. Since H1 and H̃1

are always torsion free, they would continue to vanish.)

We now consider cohomology in higher degree, but in the stable range, in the sense that

we now explain. (The tame level can now be taken to be arbitrary.) Borel’s result [9] on

homological stability for SLN shows that when i is sufficiently small (compared to N ), the

cohomology L⊗O Hi is independent of N ; indeed, it consists precisely of the contributions

to cohomology arising from the trivial automorphic representation, in the sense discussed

in (2.1.6). If we define Hi
stab to be the stable value of Hi, then Borel shows that

⊕
Hi

stab

(as an algebra under cup product) is isomorphic to an exterior algebra generated by a single

element in each degree i = 0, 5, 9, 13, . . . .
In fact, stability also holds for completed cohomology.

Theorem 2.5 ([25]). If i is sufficiently small compared to N , then H̃i is independent of N , is
finitely generated as an O-module, and affords the trivial representation of G.

We write H̃i
stab to denote the stable value of H̃i. F. Calegari has succeeded in computing

H̃i
stab modulo torsion, contingent on a natural non-vanishing conjecture for certain special

values of the p-adic ζ-function (a conjecture which holds automatically if p is a regular prime).

Theorem 2.6 ([22, Theorem 2.3]). Suppose either that p is a regular prime, or that appro-
priate special values of the p-adic zeta function are non-zero. Then there is an isomorphism
of graded vector spaces

⊕
i≥0 L⊗O H̃i

stab
∼= L[x2, x6, x10, . . .] (where L[x2, x6, x10, . . .]

denotes the graded ring generated by the indicated sequence of polynomial variables xi,
i ≡ 2 mod 4, with xi placed in degree i).

Note in particular that
⊕

i L⊗O H̃i
stab vanishes in all odd degrees, while

⊕
i L⊗OHi

stab

is generated by classes in odd degrees. Thus, when G = SLN , the map (2.3) is identically

zero (modulo torsion) when i lies in the stable range!
Assuming the hypotheses of the theorem, we conclude that the Borel classes (i.e. the

non-zero elements of L⊗OHi
stab) become infinitely divisible when we pull them back up the

p-power level tower. It is interesting to consider how they reappear in the Hochschild–Serre

spectral sequence. If we again ignore torsion, thenHi
(
SLN (Zp), L

)
coincides with the Lie

algebra cohomology of slN [48], which is (stably in N ) an exterior algebra on generators

in degrees 3, 5, 7, . . . . Since all of the non-zero H̃i
stab have trivial G-action, we see that we

obtain non-trivial Ext terms in odd degrees in the Hochschild–Serre spectral sequence, and

the Borel classes are recovered from these.

If we consider the short exact sequence (2.6) for non-zero even degrees, we see that Ĥi

vanishes (modulo torsion), while H̃i is non-zero. Thus the term TpH
i+1 must be non-zero;

this provides a rather compelling illustration of the manner in which torsion classes can

accumulate as we pass to the limit of the p-power level tower.

2.2.4. Groups that are compact at infinity. If G∞ (or, more generally, if the quotient

G∞/A∞) is compact, then A◦∞K
◦
∞ equalsG◦∞, and so the quotients Y (Kf ) are simply finite
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sets. Thus the only interesting degree of cohomology is i = 0. In this case the inverse limit

Y (Kp
f ) := lim←−Kp

Y (KpK
p
f ) is a pro-finite set, which is in fact a compact p-adic analytic

manifold, equipped with an analytic action of G. If Kp is taken sufficiently small (small

enough that the G(Q)-action on G(A)/G◦∞KpK
p
f is fixed-point free), then Kp acts with

trivial stabilizers on Y (KpK
p
f ), and Y (KpK

p
f ) is the disjoint union of finitely many (say n)

principal homogeneous spaces overKp.

One immediately verifies that H̃0 ∼= C(Y (Kp
f ),O

)
, the space of continuous O-valued

functions on Y (Kp
f ), while H̃0

∼= O[[Y (Kp
f )]], the space of O-valued measures on Y (Kp

f )

(which is the O-dual of C(Y (Kp
f ),O

)
). In particular, ifKp is sufficiently small, then we see

that H̃0 is free of rank n over O[[Kp]].
It is natural (e.g. in light of Gross’s definition of algebraic modular forms in this context

[42]) to define C(Y (Kp
f ),O

)
to be the space of p-adic automorphic forms on G(A) of tame

levelKp
f , and so in this case we see that completed cohomology does indeed coincide with

the natural notion of p-adic automorphic forms.

3. p-adic Langlands

We describe the manner in which we expect completed cohomology, and the Hecke algebra

acting on it, to be related to deformation rings of global Galois representations. This conjec-

tural relationship suggests various further conjectures, as we explain, as well as a relationship

to a hypothetical p-adic local Langlands correspondence.

3.1. The connection between completed cohomology and Galois representations. If π
is an automorphic representation ofG(A) for whichHi(g̃, k;π∞⊗VC) �= 0 for some algebraic

representation V of G and some degree i, then π is C-algebraic [21, Lemma 7.2.2]. Thus,

we expect that associated to π there should be a continuous representation of GQ into the

Qp-valued points of the C-group of G [21, Conj. 5.3.4]. In light of the isomorphism (2.8), we

thus expect that the systems of Hecke eigenvalues that occur inHi(V) should have associated
representations of GQ into the C-group of G. For systems of Hecke eigenvalues occurring

on torsion classes in cohomology, conjectures of Ash [2] again suggest that there should be

associated Galois representations.

These expectations have been proved correct in many cases; for example, if G is the

restriction of scalars to Q of GLn over a totally real or a CM number field. (See [44] in the

case of characteristic zero systems of eigenvalues, and [53] in the case of torsion systems of

eigenvalues. See also [43] for an overview of these results.)

Returning for a moment to the general case, one further expects that the Galois represen-

tations obtained should be odd, in the sense that complex conjugation in GQ maps to a certain

prescribed conjugacy class in the C-group of G. (See [7, Prop. 6.1] for a description of the

analogous conjugacy class in the L-group of G.)

Let m denote a maximal ideal in TΣ, write F := TΣ/m, and let F denote a chosen

algebraic closure of F. Then, by the above discussion, we believe that associated to m there

should be a continuous representation of GQ into the F-valued points of the C-group of G.

Assuming that this representation exists, we will denote it by ρm.
To be a little more precise: the representation ρm should have the property that it is unram-

ified at the primes outside Σ, and that for any � �∈ Σ, the semisimple part of ρm(Frob�) should
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be associated to the local-at-� part of the system of Hecke eigenvalues by a suitable form of

the Satake isomorphism (see [21, 42]). In general, this condition may not serve to determine

ρm uniquely; even in the case G = GLn, it determines ρm only up to semisimplification; for

other choices of G, as well as this issue, one can have the additional phenomenon that even a

representation which doesn’t factor through any parabolic subgroup of the C-group is not

determined by its pointwise conjugacy classes (“local conjugacy does not determine global

conjugacy”). We do not attempt to deal with this issue in general here; rather we simply

ignore it, and continue our discussion as if ρm were unambiguously defined.

As we observed above, we may regard Tm (or its Spec) as interpolating systems of Hecke

eigenvalues associated to classical C-algebraic automorphic forms, and/or to torsion classes

in cohomology. Since the deformations of ρm can be interpolated into a formal deformation

space, it is then reasonable to imagine that we may deform ρm to a representation of GQ into

the Tm-valued points of the C-group of G. Here again there are many caveats: firstly, if ρm
is “reducible” (i.e. factors through a proper parabolic of the C-group), then we would have
to work with some form of pseudo-character or determinant, as in [28, 53]; also, there is a
question of rationality, or “Schur index” — it may be that if we want ρm to be defined over F,
and its deformation to be defined over Tm, then we may have to extend our scalars, or else

replace the C-group by an inner twist. Again, we don’t attempt to address these issues here.

Rather, we begin with some general conjectures about dimension and vanishing that are

motivated by the preceding discussion, and then continue by discussing the relationships be-

tween completed cohomology and p-adic Hodge theory and a possible p-adic local Langlands
correspondence. Finally, we turn to a discussion of some specific examples, where we can

make our generalities more precise.

3.1.1. Conjectures on dimension and vanishing. We begin by making a somewhat vague

conjecture, which can be thought of as a rough expression of our hopes for reciprocity in

the context of global p-adic Langlands: namely (continuing with the notation introduced in

the preceding discussion), we conjecture that Tm is universal (in some suitable sense) for

parameterizing odd formal deformations of ρm whose ramification away from p is compatible

with the tame level structureKp
f (via some appropriate form of -adic local Langlands for the

group G at primes � � p which, again, we won’t attempt to formulate here; but see [36] in the

case when G = GLn). The global Euler characteristic formula for Galois cohomology lets us

compute the expected dimension of such a universal deformation ring, and this motivates in

large part the following concrete conjecture [24, §8].

Conjecture 3.1. Each local factor Tm of TΣ is Noetherian, reduced, and  -torsion free, of
Krull dimension equal to dimB + 1 − l0, where dimB denotes the dimension of a Borel
subgroup B of G.

This is known in some cases (which we will recall below). We know of no way to prove

the Noetherianness of Tm, or the statement about its Krull dimension, other than to relate the

Hecke algebra to a deformation ring of Galois representations, and then use techniques from

the theory of Galois representations to compute the dimension.

In some situations we can prove that Tm is torsion free and reduced (see e.g. the discussion

of (3.1.2) below), and it seems reasonable to conjecture these properties in general. Indeed,

these properties are closely related to the following conjecture [24, Conj. 1.5].

Conjecture 3.2. H̃i = 0 if i > q0, while cd H̃q0 = l0, and cd H̃i > l0 + q0 − i if i < q0.
Furthermore, H̃q0 is  -torsion free, and TΣ acts faithfully on H̃q0 .
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As noted in [24, Thm. 1.6], the truth of this conjecture for G and all its Levi subgroups

implies the analogous statement for H̃BM
i . Also, the vanishing conjecture for G×G implies

(via the Künneth formula) the torsion-freeness of H̃q0 .

One of the ideas behind this conjecture is that “all the interesting Hecke eigenvalues

should appear in degree q0”. This is inspired by the fact (recalled in (2.1.6)) that tempered

automorphic representations don’t contribute to cohomology in degrees below q0, so that

the Galois representations associated to the systems of Hecke eigenvalues appearing in

degrees below q0 should be “reducible” (i.e. factor through a proper parabolic subgroup

of the C-group). In a Galois deformation space with unrestricted ramification at p, the
reducible representations should form a proper closed subset, and so should be approximable

by “irreducible” Galois representations (i.e. representations which don’t factor through a

proper parabolic). Thus we don’t expect to see any systems of Hecke eigenvalues in degrees

below q0 which can’t already be observed in degree q0, and hence we expect that TΣ will act

faithfully on H̃q0 .

We also expect that H̃i should be “small” if i < q0, since the possible systems of Hecke

eigenvalues which it can carry are (or should be) constrained. However, if the H̃i are small

enough for i < q0, then the Poincaré duality spectral sequence (combined with an analysis of

the completed cohomology of the boundary, which can be treated inductively, by reducing to

the case of lower rank groups) implies the vanishing of H̃i in degrees > q0.
If we believe that TΣ acts faithfully on H̃q0 , and that TΣ has dimension dimB+ 1− l0

(as predicted by Conjecture 3.1), then conjecturing that H̃q0 has codimension l0 is morally

equivalent to conjecturing that the fibres of H̃q0 over the points of SpecTΣ are of dimension

dimG/B. This latter statement fits nicely with the fact that generic irreducible representations

ofG := G(Qp) have Gelfand–Kirillov dimension equal to dimG/B, and the analogy between
the dimension of O[[Kp]]-modules and Gelfand–Kirillov dimension [24, Remark 1.19].

Unfortunately, we don’t know how to make this idea precise, since we don’t know how to

prove (in any generality) this relationship between the Krull dimension of TΣ, the dimension

of H̃q0 , and the dimension of the fibres of the latter over points of SpecTΣ, even assuming

that TΣ acts faithfully on H̃q0 . Nevertheless, the idea that these dimensions should be related

is an important motivation for the conjecture.

We note that if TΣ acts faithfully on H̃q0 , and H̃q0 is -torsion free, then TΣ is -torsion

free. This motivates the conjecture of  -torsion freeness in Conjecture 3.1.

Conjecture 3.2 has essentially been proved by P. Scholze in many cases for which the

groupG gives rise to Shimura varieties [53, Cor. IV.2.3]. (He has non-strict inequalities rather

than strict inequalities for the codimension of the cohomology in degrees < q0.)
We mention one more example here, namely the case when G is the restriction of scalars

of SL2 from an imaginary quadratic field. In this case we have l0 = 1, and the codimension

statement of Conjecture 3.2 follows from the computation sketched in (2.2.2).

3.1.2. Localization at a non-Eisenstein system of Hecke eigenvalues. Suppose that m is

a maximal ideal in TΣ, and that the associated representation ρm (which we assume exists) is

“irreducible”, i.e. does not factor through any proper parabolic subgroup of the C-group of G.

We refer to such a m as non-Eisenstein. For any TΣ-moduleM , we writeMm := Tm ⊗TΣ
M

to denote the localization ofM at m.

As already noted, we expect that all the systems of Hecke eigenvalues appearing in

cohomological degrees< i are “reducible”, i.e. do factor through a proper parabolic subgroup ,
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and so we conjecture that, whenm is a non-Eisenstein maximal ideal,Hi
(
Y (KpK

p
f ),W)m =

0 for all i < q0 and all local systems W associated to Kp-representations W on finitely

generated O-modules (whereKp is any sufficiently small compact open subgroup of G).
We remark that if we ignore torsion, then this follows (at least morally) from Arthur’s

conjectures [1]. (Namely, the result is true for the boundary cohomology, and hence it suffices

to check it for the interior cohomology, i.e. the image of compactly supported cohomology in

the usual cohomology. However, the interior cohomology is contained in the L2-cohomology,

and now Arthur’s conjectures imply that any automorphic representation π contributing

to L2-cohomology that is non-tempered at ∞ — as must be the case for an automorphic

representation that contributes to cohomology in degree < q0 — is non-tempered at every

prime, and hence should give rise to a reducible Galois representation.) We believe that this

statement should be true for torsion cohomology as well.

Let us suppose, then, that Hi
(
Y (KpK

p),W)m = 0 for all i < q0. Just considering the

case whenW = O (the trivial representation), we find that H̃i
m = 0 for i < q0. Certainly

it should be the case that Hi
(
∂(KpK

p
f ),W)m = 0 when m is non-Eisenstein. We then

find that Hi
c

(
Y (KpK

p
f ),W)m = 0 for all i < q0 as well. Suppose now that l0 = 0, so

that q0 = d/2. Classical Poincaré duality then gives that Hi
(
Y (KpK

p
f ),W)m = 0 for

all i > q0. Presuming that Conjecture 3.2 is true, so that H̃i = 0 for i > q0 and H̃q0

is  -torsion free, a consideration of the Hochschild–Serre spectral sequence shows that

ExtiO[[Kp]](W
∨, H̃q0

m ) = 0 for all i > 0 and all representations of Kp on finitely generated

torsion freeO-modules. From this one easily deduces that (H̃q0)m is projective as anO[[Kp]]-
module.

In short, we have given a plausibility argument for the following conjecture, which refines

Conjecture 3.2 in the context of localizing at a non-Eisenstein maximal ideal.

Conjecture 3.3. Ifm is a non-Eisenstein maximal ideal in TΣ, and if l0 = 0, then (H̃i)m = 0

for i �= q0, and (H̃q0)m is a projective O[[Kp]]-module, for any sufficiently small sub-
group Kp of G. (Here sufficiently small means that G(Q) acts with trivial stabilizers on
G(A)/A◦∞K

◦
∞KpK

p
f .)

If l0 = 0, and if Conjecture 3.3 holds for some non-Eisenstein maximal ideal m, then we

see (from the Hochschild–Serre spectral sequence) that for any sufficiently smallKp (as in the

statement of the conjecture) and any representation ofKp on a finitely generated torsion free

O-moduleW , we have Hi
(
Y (KpK

p
f ),W)m = 0 if i �= q0, while Hq0

(
Y (KpK

p
f ),W)m ∼=

HomO[[Kp]](W
∨, H̃q0

m ). In particular, we see that Hq0
(
Y (KpK

p
f ),W)m is  -torsion free.

We also see that Ĥq0
m = H̃q0

m (since Hq0+1
m vanishes, and hence so does TpH

q0+1
m ), and that

Tm acts faithfully on H̃q0
m .

Presuming that Hi
(
∂(KpK

p
f ),W

)
m

= 0 (which should certainly be true when m is

non-Eisenstein), we conclude that the natural map

Hq0
c

(
Y (KpK

p
f ),W)m → Hq0

(
Y (KpK

p
f ),W)m

is an isomorphism, and thus that Hq0
(
Y (KpK

p
f ),W)m consists entirely of interior cohomol-

ogy. In particular (being torsion free) it embeds into the L2-cohomology. From this we deduce

that the image of TΣ acting on Hq0
(
Y (KpK

p
f ),W)m is reduced, and hence (considering all

possibleKp andW ) that Tm itself is reduced, as well as being  -torsion free. This provides

some evidence for the reducedness and torsion-freeness statements in Conjecture 3.1.
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We now recall some known results in the direction of Conjecture 3.3. In the case when

G = GL2, the concept of a non-Eisenstein maximal ideal is well-defined, and the above

conjecture holds [32, Cor. 5.3.19]. In the case when G = GLN , this notion is again well-

defined, and the vanishing of (H̃i)m is proved for i in the stable range in [25]. Again, if G
is a form of U(n− 1, 1) over Q, then the notion of a non-Eisenstein maximal ideal is well-

defined, and in [34] we prove vanishing of (H̃i)m for i in a range of low degrees, for certain

maximal ideals m. In particular, in the case of U(2, 1), we are able to deduce Conjecture 3.3,

provided not only that m is non-Eisenstein, but that the associated Galois representation ρm
has sufficiently large image, and is irreducible locally at p, satisfying a certain regularity

condition.

As one more example, note that if G∞/A∞ is compact (in which case certainly l0 = 0),
then Conjecture 3.3 holds. Indeed, in this case we saw in (2.2.4), for sufficiently smallKp,

that H̃0 is free over O[[Kp]], even without localizing at a non-Eisenstein maximal ideal.

If l0 �= 0, then we don’t expect that (H̃q0)m should be projective over O[[Kp]]; indeed,
this would be incompatible with Conjecture 3.2. Rather, we expect that it should be pure of

codimension l0, in the sense of [55, Def. 3.1].

3.1.3. The relationship with p-adic Hodge theory. Let us continue to suppose that l0 = 0
and that m is a non-Eisenstein maximal ideal in TΣ, and let us suppose that Conjecture 3.3

holds. As we have observed, this implies that for any (sufficiently small) compact open

subgroup Kp of G, and any representation W of Kp on a finitely generated torsion free

O-module, we have

Hi
(
Y (KpK

p
f ),W)m ∼= HomO[[Kp]](W

∨, H̃q0
m ) ∼= HomO[[Kp]]

(
(H̃q0)m,W

)
(the first isomorphism being given by the Hochschild–Serre spectral sequence, and the second

by duality).

We now suppose thatW is an O-lattice in an irreducible algebraic representation V of G
over L. Since Hi

(
Y (KpK

p
f ),W)m is  -torsion free, it is a lattice in Hi

(
Y (KpK

p
f ),V)m.

Considering the description of this cohomology in terms of automorphic forms (as in (2.1.6))

and the conjectures regarding Galois representations associated to automorphic forms [21,

Conj. 5.3.4], we infer that the Galois representations associated to the systems of Hecke

eigenvalues appearing in Hi
(
Y (KpK

p
f ),V)m should be potentially semistable locally at p,

with Hodge–Tate weights related to the highest weight of the algebraic representation V .
Since m is non-Eisenstein, it should make sense to speak of the formal deformation ring

Rρm of ρm, and we conjecture that there is a natural isomorphism Tm
∼= Rρm .We see that the

Tm-modules Hi
(
Y (KpK

p
f ),W)m (whereW ranges over the various lattices in the various

algebraic representations V ) should then be supported on the set of points of SpecRρm
corresponding to deformations of ρm that are potentially semistable at p.

The Fontaine–Mazur conjecture [38], when combined with Langlands reciprocity, should

give a precise description of the support of Hi
(
Y (KpK

p
f ),W)m, in purely Galois-theoretic

terms. Namely, any potentially semistable deformation of ρm of the appropriate Hodge–Tate

weights should be motivic, and hence should be associated to an automorphic form on the

quasi-split inner form of G. Whether this automorphic form can then be transferred to G, and

can contribute to cohomology at levelKpK
p
f , should be answered by an analysis of the local

Langlands correspondence for G.

Conversely, if we can prove directly that the support of Hi
(
Y (KpK

p
f ),W)m is as pre-

dicted by the Fontaine–Mazur–Langlands conjecture, then we can deduce this conjecture
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for deformations of ρm that are classified by SpecTm. We recall in (3.2.2) below how this

strategy is compatible with an optimistic view-point on how p-adic local Langlands might

behave. We briefly recall in (3.3.1) how this strategy was employed in [32] and [46] in the

case when G = GL2.

Let us fix a sufficiently small open subgroupKp. Since (H̃q0)m is projective overO[[Kp]]
by assumption, it is a direct summand of a finitely generated free O[[Kp]]-module, and

hence H̃q0
m is a direct summand of C(Kp,O)

⊕
n, for some n > 0. Thus L ⊗O H̃

q0
m is a

direct summand of C(Kp, L)
⊕n, the space of continuous L-valued functions on Kp. Now

the theory of Mahler expansions shows that the affine ring L[G] embeds with dense im-

age in C(Kp, L) [51, Lemma A.1]. Recall that, as a G-representation, we have L[G] ∼=⊕
V V ⊗L HomG(V, L[G]), where V runs over (a set of isomorphism class representatives

of) all irreducible representations of G. (At this point, we assume for simplicity that L
is chosen so that all the irreducible representations of G over Qp are in fact defined over

L; thus these irreducible V are in fact absolutely irreducible.) Now the inclusion of L[G]
into C(Kp, L) induces an isomorphism HomG(V, L[G]) ∼= HomKp

(
V, C(Kp, L)

)
(both are

naturally identified with V ∨, the contragredient of V ). We conclude that the natural mor-

phism
⊕

V V ⊗L HomKp

(
V, C(Kp, L)

) → C(Kp, L) is injective with dense image. This

property is clearly preserved under passing to direct sums and direct summands, and hence

the natural morphism
⊕

V V ⊗L HomKp(V, H̃
q0
m ⊗O L) → H̃q0

m ⊗O L is also injective

with dense image. Replacing V by V ∨ (which clearly changes nothing, since we are sum-

ming over all irreducible algebraic representations of G), and recalling that (by Hochschild–

Serre) HomKp(V
∨, H̃q0

m ⊗O L) ∼= Hq0
(
Y (KpK

p
f ),V

)
m
, we find that Tm acts faithfully on⊕

V H
q0
(
Y (KpK

p
f ),V

)
m
(since, as we noted above, it follows from Conjecture 3.3 that Tm

acts faithfully on H̃q0
m ).

Assuming that we can identify Tm with a deformation space of Galois representations,

and that we know that Hq0
(
Y (KpK

p
f ),V

)
m
is indeed supported on an appropriate locus of

potentially semistable deformations, the preceding analysis shows that these loci (as V varies)

are Zariski dense in SpecTm.

In forthcoming work [37], the author and V. Paškūnas will apply a more sophisticated

version of this argument to deduce additional Zariski density statements for various collections

of potentially semistable loci in global Galois deformation spaces.

Note that these density results rely crucially on the projectivity statement of Conjecture 3.3

for their proof. As we already noted, we can’t expect such a statement to be true when l0 > 0,
and (at least if G is semisimple, or, more generally, if the semisimple part of G satisfies

l0 > 0) we don’t expect the potentially semistable points to be Zariski dense in global

deformation spaces in this case. (See [26] for an elaboration on this point.) In particular, in

such contexts, we don’t expect that Ĥq0 will equal H̃q0 , and so H̃q0 , and SpecTΣ, should

receive a non-trivial contribution from torsion classes (via the term TpH
q0+1 in the exact

sequence (2.6)).

3.2. p-adic local Langlands. Until now, our discussion has been entirely global in nature.

We now turn to describing how these global considerations might be related to a possible

p-adic local Langlands correspondence.

3.2.1. The basic idea. Let us return for a moment to the direct sum decomposition (2.10).

Local-global compatibility for classical Langlands reciprocity says that if π∞ ⊗ πp is a direct
summand of Acusp(K

p
f )χ−1 which contributes to cohomology, lying in a Hecke eigenspace
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that corresponds to some p-adic Galois representation ρ, then the local factor πp and the Weil–

Deligne representation attached to ρ (which should be defined, since ρ should be potentially

semistable at p) should correspond via the local Langlands correspondence (or perhaps more

generally via the local form of Arthur’s conjectures [1], if π∞ and πp are not tempered). In

particular, the local factor at p and the local Galois representation at p should be related in a
purely local manner.

The basic idea of a p-adic local Langlands correspondence is that the same should

be true when we take into account the structure of completed cohomology. To explain

this, we continue the discussion of the preceding paragraph, and, in addition, we place

ourselves in the context introduced in (3.1.3) (in particular, we continue to assume that

the hypotheses and conclusions of Conjecture 3.3 hold). Thus, we assume that ρ is a

deformation of ρm, and that π∞ and πp are tempered, so that we have an embedding

πp ↪→ Hq0(V)m ∼= lim−→Kp
HomKp(V

∨, L ⊗O H̃
q0
m ). We may rewrite this as an embed-

ding V ∨ ⊗L πp ↪→ L⊗O H̃
q0
m and we can then take the closure of V ∨ ⊗ πp in Hq0(V)m, to

obtain a unitary Banach space representation ̂V ∨ ⊗L πp of G over L. A slightly more refined

procedure is to form the intersection (V ∨ ⊗L πp)
◦ := (V ∨ ⊗L πp) ∩ H̃q0

m (the intersection

being taken in L ⊗O H̃
q0
m ). This is a G-invariant O-lattice contained in V ∨ ⊗L πp, and

the Banach space ̂V ∨ ⊗L πp is then obtained by completing V ∨ ⊗L πp with respect to this
lattice. A natural question to ask, then, in the spirit of a local Langlands correspondence

and local-global compatibility, is whether ̂V ∨ ⊗L πp depends only on the restriction to p of
the associated Galois representation ρ. Since by assumption m is non-Eisenstein, the Galois

representation ρ should admit an essentially unique integral model ρ◦, and we could further

ask whether (V ∨ ⊗L πp)
◦ depends only on the restriction to p of ρ◦. This question goes back

to C. Breuil’s first work on the p-adic Langlands correspondence in the case when G = GL2

(see especially the introduction of [13]). It has been largely resolved in that case, but remains

open in general.

3.2.2. An optimistic scenario. The most optimistic conjecture that one might entertain

regarding a p-adic local Langlands correspondence is that for any formal deformation ring Rr
parameterizing the deformations of a representation r of the local Galois group GQp into the

F-valued points of the C-group of G, there is a profinite Rr-moduleM , finitely generated

over Rr[[Kp]] for some (and hence every) compact open subgroupKp ⊂ G, equipped with
a continuous G-action extending its Kp-module structure, which realizes the p-adic local
Langlands correspondence for the group G in the following sense: in the context of (3.2.1)

(and continuing with the notation of that discussion), the fibre over the restriction to p of ρ◦

(which is a point in SpecRr, if r is the restriction of ρm to GQp
) is isomorphic to the O-dual

of (V ∨ ⊗L πp)
◦. (Here we suppress the issue of whether Rr should be understood to be a

framed deformation ring, or a pseudo-deformation ring, or . . . .) In short,M should be a local

analogue of the completed homology space (H̃q0)m.

SinceM is finitely generated over Rr[[Kp]], for any representationW ofKp on a finitely

generated torsion free O-module, the Rr-module Homcont
Kp

(M,W )d (where d denotes the
continuous O-dual) is a finitely generated Rr-module. Another property one might require of

M is that whenW is aKp-invariant O-lattice in an irreducible algebraic G-representation

V , then Homcont
Kp

(M,W )d is supported on an appropriate locus of potentially semistable
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representations, corresponding to the fact thatHomO[[Kp]]

(
(H̃q0)m,W

)
(which is isomorphic

to Hq0
(
Y (KpK

p
f ),W

)
) is supported on a locus of potentially semistable representations in

SpecTm.

Ideally, one might ask for the support of Homcont
Kp

(M,W )d to be the full potentially

semistable locus of appropriate Hodge–Tate weights (corresponding to the highest weight

of V ) and Weil–Deligne representations (corresponding to the particular choice ofKp and

the nature of the local Langlands correspondence for G). As we indicated in (3.1.3), such a

result, combined with the local-global compatibility betweenM and (H̃q0)m, would prove
that any global Galois representation corresponding to a point of SpecTm which is potentially

semistable of appropriate Hodge–Tate weights and with an appropriate Weil–Deligne represen-

tation, in fact arises from a system of Hecke eigenvalues occurring in H̃q0
(
Y (KpK

p
f ),V

)
m
,

thus verifying the Fontaine–Mazur–Langlands conjecture for such points.

Note that a local Galois representation lies in the support of Homcont
Kp

(M,W )d precisely
if the dual to the fibre ofM at this point receives a non-zeroKp-equivariant homomorphism

fromW . In particular, the dual to the fibre at such a point contains locally algebraic vectors.

In the case of GL2, the idea of describing p-adic local Langlands for potentially semistable

representations in terms of locally algebraic vectors goes back to C. Breuil’s first work on the

subject [11, 12].

The optimistic scenario described here has been realized for the group G = GL2(Qp);
this is the theory of p-adic local Langlands for GL2(Qp) [6, 29, 30, 50] (see also [5, 14]).

Whether it can be realized for other groups, or is overly optimistic, remains to be seen.

3.3. Examples. We again illustrate our discussion with some examples.

3.3.1. GL2 of Q. As already mentioned, the theory of p-adic local Langlands for GL2(Qp)
provides a structure satisfying all the desiderata of (3.2.2). The local-global compatibility

between this structure and H̃1
m (the localization of completed cohomology at a non-Eisenstein

maximal ideal of the Hecke algebra) has been proved in [32] (see also [14, 15]), under a mild

hypothesis on the local behaviour of ρm. In particular, the strategy of (3.1.3) then applies to
prove the Fontaine–Mazur–Langlands conjecture for points of SpecTm.

Under the slightly stronger hypotheses that p is odd and ρm remains irreducible on

restriction to GQ(ζp) (the Taylor–Wiles condition) one can prove that Tm
∼= Rρm [8], [32,

Thm. 1.2.3]. Since Conjecture 3.3 holds in this context [32, Cor. 5.3.19], the method of (3.1.3)

(applied with Kp = GL2(Zp)) allows us to deduce the density of the crystalline loci in

SpecRρm ; the extension of this method to be described in [37] will allow us to deduce other

density results about various potentially semistable loci. Here is one such simple variant:

instead of considering the restriction to GL2(Zp) of the family V of algebraic representations

of GL2, we instead consider the family of representations σ ⊗ V , where σ is some fixed

supercuspidal type and V is algebraic. This allows us to show that potentially crystalline

points of (any fixed) supercuspidal type are Zariski dense in Tm (and hence in Rρm , if the
Taylor–Wiles condition is satisfied).

3.3.2. A definite quaternion algebra ramified at p. Let D be the quaternion algebra over

Q that is ramified at ∞ and p, and let G = D×. Then G∞/A∞ is compact, and so, as noted

above, Conjecture 3.3 holds. The classical Jacquet–Langlands correspondence allows us

to attach odd two-dimensional Galois representations to systems of Hecke eigenvalues. In

particular, if m is non-Eisenstein, then Tm is a quotient of Rρm .
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Assuming that p is odd and ρm satisfies the Taylor–Wiles condition, we conclude that

in fact Tm
∼= Rρm . Indeed, we saw in the preceding example that the potentially crystalline

points of supercuspidal type are Zariski dense in Rρm . Since Fontaine–Mazur–Langlands

holds in this context, they all arise from classical modular forms, and hence (by Jacquet–

Langlands) from classical automorphic forms onD×. Thus SpecTm contains a Zariski dense

set of points in SpecRρm , and so the two Specs coincide. As one interesting consequence of

this, we note that (assuming that the Taylor–Wiles condition holds) the Hecke algebras atm for

GL2 andD
× are naturally isomorphic (both being isomorphic to Rρm ). One can think of this

as a p-adic interpolation of the classical Jacquet–Langlands correspondence. It is interesting

to note that even though under the classical Jacquet–Langlands correspondence automorphic

forms onGL2 that are principal series at p don’t match with a corresponding Hecke eigenform

on D×, they are not excluded from this p-adic Jacquet–Langlands correspondence.
As another consequence, note that if we chooseKp to be the units in the maximal order

of (D ⊗Qp)
×, and apply the density argument of (3.1.3), we deduce that the representations

which are genuinely semistable at p (i.e. semistable, and not crystalline) are Zariski dense in

SpecTm, and hence in SpecRρm , provided the Taylor–Wiles condition holds.

3.3.3. Definite quaternion algebras over totally real fields. Consider the case where G is

the restriction of scalars to Q of the unitsD× in a totally definite quaternion algebraD over a

totally real field F ; and suppose that F is unramified at p, and D is split at every prime in F
above p. Put ourselves in the situation of (3.2.1), with the additional assumption that V is the

trivial representation, and πp is a tamely ramified principal series. In this case πp contains, as
a GL2(Zp ⊗Z OF )-subrepresentation, a principal series type σ, which is a representation of
GL2(OF /p) induced from a character of the Borel subgroup. In the paper [16], Breuil gave

a conjectural description of the isomorphism class of the lattice σ◦ := σ ∩ H̃0
m, purely in

terms of the restriction to p of ρ◦. Under mild assumptions on ρm, this was proved in [35].

This gives some evidence towards the possibility that (V ∨ ⊗L πp)
◦ may be of a purely local

nature.

3.3.4. Compact unitary groups. In [27], we apply Taylor–Wiles patching to pass from

completed cohomology over a unitary group that is compact at infinity to a G-representation
on a moduleM∞ over the ringR∞ obtained by adjoining a certain number of formal variables

to a local deformation ring. More precisely: for any finite extension K of Qp, any n such

that p � 2n, and any representation r : GK → GLn(Fp) that admits a potentially crystalline

lift which is potentially diagonalizable (in the sense of [4]), we can (by [33, Cor. A.7])

choose a unitary group G and Hecke maximal ideal m so that G := G(Qp) is isomorphic

to a product of copies of GLn(K), and such that the restriction of ρm to GK is equal to r.
The G-representationM∞, which is a module over Rr[[x1, . . . , xn]] for some some n ≥ 0,
is then obtained by patching the completed cohomology for G.

The module M∞ satisfies several of the desiderata of (3.2.2): it is finitely generated

over R∞[[Kp]], and the modules Homcont
Kp

(M,W )d (forKp-invariant latticesW in algebraic

representations) are supported on a union of components of the appropriate potentially

semistable loci. Many questions aboutM∞ remain open, however: whether the support of

M∞ equals the entirety of SpecR∞; whether all potentially semistable points are contained

in the support of Homcont
Kp

(M,W )d (for an appropriate choice ofW andKp); and whether

M∞ is in fact of a purely local nature.

One further property of M∞ is that it is projective in the category of profinite topo-
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logical O[[Kp]]-modules. In [37], we hope to show that M∞ is in fact of full support on

SpecRr[[x1, . . . , xn]] in many cases, and thus extend the method described in (3.1.3) to

deduce density results for potentially semistable representations in local deformation spaces.
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1. History

In this paper, we shall report on some recent progress in the theory of theta correspondence,

as well as some applications to number theory and representation theory. The use of theta

correspondence has a long history, but its status as a theory was formally initiated by R.

Howe in the influential paper [28] written in the 1970’s but only published much later. This

built upon the work of A. Weil [91] in the 1960’s which provided a representation theoretic

treatment of theta functions via his construction of the so-called Weil representations. In this

introduction, we give a brief account of the historical development since the late 1970’s; we

apologise for omitting the contributions of many people.

As a theory, theta correspondence has its own share of internal problems which needed

to be addressed, but from the onset, it was perceived mainly as a tool for constructing rep-

resentations and automorphic forms. In particular, it gives natural constructions of certain

instances of Langlands functorial lifting. In this vein, one of the first successes is Wald-

spurger’s complete and elegant description [84, 85] of the Shimura correspondence between

cuspidal representations of PGL2 and the metaplectic double cover Mp2. Another is Howe
and Piatetski Shapiro’s construction [29] of nontempered cuspidal representations onU3 and

Sp4, contradicting the naive Ramanujan-Petersson conjecture. Such construction of nontem-

pered cuspidal representations was later extended by J.S. Li [49–51] and C. Moeglin [61] to

the general setting, resulting in the construction of many interesting examples of unitary

representations and square-integrable automorphic forms.

The 1980’s saw many key developments in the theory of theta correspondence. Firstly,

motivated by Waldspurger’s work, Rallis initiated a program [76–78] aimed at determining

the cuspidality and nonvanishing of global theta liftings. This led to two important series

of work. One is the work of Piatetski-Shapiro and Rallis [73] on the doubling zeta integral,

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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which is a Rankin-Selberg integral representing the standard L-function of classical groups.

Another is the work of Kudla and Rallis [41, 42] on the Siegel-Weil formula, culminating

in their paper [43]. Combining these two series of work resulted in the Rallis inner product

formula in some instances. This characterises the nonvanishing of global theta liftings in

terms of the analytic properties of the standard L-functions. In the course of their work,

Kudla and Rallis were led to a local conjecture [44] about the nonvanishing of the local theta

correspondence. They made significant progress towards this so-called conservation relation

conjecture, proving it in many cases.

Secondly, starting with Kudla’s paper [38], the local theta correspondence over p-adic
fields was systematically investigated, culminating in Waldspurger’s proof of the so-called

Howe duality conjecture when p �= 2 [86]. This Howe duality conjecture was shown

by Howe himself [28] in the archimedean case, and for unramified groups in the nonar-

chimedean case [63]. Following this, significant understanding of the archimedean theta

correspondence was obtained in the work of Adams-Barbasch [2–4] and Moeglin [60]. In

particular, Adams-Barbasch determined the local theta correspondence over C completely

[3], and also extended the local Shimura-Waldspurger correspondence from Mp2(R) to

Mp2n(R) for general n [4]. In the p-adic case, the analogous results were conjectured but

left open. In particular, Adams [1] formulated a conjecture on the functoriality of the theta

correspondence in the language of A-packets, and D. Prasad [74, 75] formulated some pre-

cise conjectures describing the local theta correspondence in the (almost) equal rank case in

terms of the local Langlands correspondence.

Since the mid-1990’s, significant work continued to be done in classical theta correspon-

dence, such as by Roberts [79], Moeglin [62], Muić [66–69], Muić-Savin [70], S.Y. Pan [71]

and Ginzburg-Jiang-Soudry [21]. However, as many of the early pioneers turned their atten-

tion to other worthy endeavours, the field became relatively quiet compared with the flurry

of activities in the 80’s and early 90’s and many of the problems highlighted some twenty

years ago lie dormant and unresolved.

It was not until about 6 or 7 years ago that a new generation of researchers revisited these

problems and it is a pleasure and privilege to report on the recent resolution of many of these

problems here. This brings a certain degree of closure to the developments from 30 years

ago, but we shall also highlight some exciting future directions.

2. Theta correspondence

In this section, we describe the basic setup and questions in the theory of theta correspon-

dence.

2.1. Dual pairs. For simplicity, let F be a field of characteristic 0, and let E = F or an

étale quadratic F -algebra, withAut(E/F ) = 〈c〉. With ε = ±, let V be a finite-dimensional

ε-Hermitian space over E andW an −ε-Hermitian space. Then V ⊗E W inherits a natural

symplectic form over F and one has a natural map of isometry groups

U(V )×U(W ) −→ Sp(V ⊗E W ).

The images of U(V ) and U(W ) are mutual commutants of each other, and such a pair of

groups is called a reductive dual pair.
For ease of exposition, we shall henceforth focus on the case when E/F is a quadratic
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field extension, V is Hermitian and W is skew-Hermitian, so that U(V ) and U(W ) are

unitary groups.

2.2. Invariants of spaces. The spaces V and W have a natural invariant known as the

discriminant:

discV ∈ F×/NE/F (E
×) and discW ∈ δdimW · F×/NE/F (E

×)

where δ is a fixed trace zero element in E×. When F is a local field, it is convenient to

encode the discriminant in a sign ±:

ε(V ) = ωE/F (discV ) and ε(W ) = ωE/F (δ
− dimW · discW )

where ωE/F is the nontrivial quadratic character of F×/NE/F (E
×). Note that ε(W ) de-

pends on the choice of δ. Moreover, if F is nonarchimedean, Hermitian spaces are classified

by dim(V ) and ε(V ); likewise for skew-Hermitian spaces.

2.3. Weil representation. Assume that F is a local field. The symplectic group Sp(V ⊗E

W ) has a nonlinear S1-coverMp(V ⊗EW ) known as the metaplectic group. This metaplec-

tic group has a distinguished representation ωψ depending on a nontrivial additive character

ψ of F . If the embedding i can be lifted to a homomorphism

ĩ : U(V )×U(W ) −→ Mp(V ⊗E W ),

then we obtain a representation ωψ ◦ ĩ of U(V )×U(W ).
For the case of unitary groups considered here, a splitting can be specified [39] by picking

two characters χV and χW of E× such that

χV |F× = ωdimV
E/F and χW |F× = ωdimW

E/F .

Thus, U(V ) × U(W ) has a Weil representation ωV,W,ψ that depends on ψ and the splitting

data (χV , χW ), which we shall suppress from the notation.

2.4. Local theta correspondonce. We will write Irr(U(W )) for the set of equivalence

classes of irreducible smooth representations of U(W ). For π ∈ Irr(U(W )), one considers
the maximal π-isotypic quotient of ωV,W,ψ:

ωV,W,ψ � π �Θ(π)

where Θ(π) is some smooth representation of U(V ). We shall denote by θ(π) the maximal

semisimple quotient of Θ(π). The goal of local theta correspondence is to determine the

representations Θ(π) and θ(π) as much as possible. For example, the Howe duality con-
jecture states that if Θ(π) is nonzero, then it has a unique irreducible quotient, i.e. θ(π) is
irreducible.

Note that the case when E = F × F is also necessary for global applications. In this

case, the dual pair isGLm×GLn. The study of this local theta correspondence is essentially
completed in the paper [58] of A. Minguez. For example, the Howe duality conjecture was

completely resolved. Hence we shall say no more about this case in this paper.

2.5. Theta functions. We turn now to the global setting. Thus, let k be a global field with

ring of adeles A, and let K/k be a quadratic field extension. Let V and W be a Hermi-

tian and skew-Hermitian space over K, and fix a pair of Hecke characters χV and χW of
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A×K as before. For a nontrivial additive character ψ = ⊗vψv of k\A, the adelic group

U(VA)×U(WA) possesses an abstract Weil representation ωV,W,ψ = ⊗vωV,W,ψv . It was

shown by Weil that there is a natural equivariant map

θ : ωV,W,ψ −→ A(U(V )×U(W )),

where the latter space denotes the space of automorphic forms on the dual pair. This map,

called the “formation of theta functions”, gives an automorphic realisation of ωV,W,ψ .

2.6. Global theta correspondence. One may use the functions θ(φ) for φ ∈ ωV,W,ψ as

kernel functions for the transfer of automorphic forms from U(WA) to U(VA). More pre-

cisely, if f ∈ A(U(W )), we set

θ(φ, f)(g) =

∫
U(Wk)\U(WA)

θ(φ)(gh) · f(h) dh,

where dh stands for the Tamagawa measure. This integral converges if f is a cusp form.

Thus, if π ⊂ A(U(W )) is a cuspidal representation, then we obtain an equivariant map

θ : ωV,W,ψ ⊗ π −→ A(U(V )).

The image of this map is denoted by Θ(π) and is called the global theta lift of π. Observe
that one has, by definition, an equivariant map

ωV,W,ψ � π �Θ(π).

The basic questions in global theta correspondence are whether the representation Θ(π)
is cuspidal and whether it is nonzero. Note that if Θ(π) is nonzero and cuspidal, then it is

semisimple, in which case Θ(π) is a quotient of the abstract representation ⊗vΘ(πv). Thus,
if the Howe duality conjecture holds, then Θ(π) ∼= ⊗vθ(πv). In particular, the question of

“what is Θ(π)?” is essentially a local one.

3. Local developments

In this section, we discuss some recent developments concerning the local theta correspon-

dence over a nonarchimedean local field F of residual characteristic p > 0. The follow-

ing theorem, known since 1990, summarizes some basic results of Howe, Kudla, Mœglin-

Vignéras-Waldspurger and Waldspurger (see [28, 38, 63, 86]).

Theorem 3.1.

(i) For any π ∈ Irr(U(W )), the representation Θ(π) is either zero or of finite length.

(ii) If π is supercuspidal, then Θ(π) is either zero or irreducible (and thus is equal to
θ(π)). Moreover, for any irreducible supercuspidal π and π′,

Θ(π) ∼= Θ(π′) �= 0 =⇒ π ∼= π′.

(iii) If p �= 2, the Howe duality conjecture holds.
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3.1. Local problems. The main remaining problems in local theta correspondence are thus:

(a) Establish the Howe duality conjecture when the residual characteristic of F is p = 2.

(b) Determine when Θ(π) is nonzero, in terms of some basic invariants of π.

(c) WhenΘ(π) is nonzero, understand the representation θ(π) as much as possible, either

by computing some of its invariants or determining it precisely, such as in terms of the

local Langlands correspondence.

For (a), we have the following two results. The first is due to Li-Sun-Tian [52] whereas the

second is a recent result of the author and S. Takeda [19].

Theorem 3.2. The representation θ(π) is multiplicity-free.

Theorem 3.3.

(i) If π is tempered, then θ(π) is either zero or irreducible. Moreover, for any irreducible
tempered π and π′,

θ(π) ∼= θ(π′) �= 0 =⇒ π ∼= π′.
(ii) If | dimV − dimW | ≤ 1, the Howe duality conjecture holds (for any residue charac-

teristic p).

In the rest of the section, we shall focus on problems (b) and (c).

3.2. Witt towers and first occurrence. Rallis observed that it is fruitful to consider theta

correspondence in a family. Let V0 be an anisotropic Hermitian space over E, and for r ≥ 0,
let

Vr = V0 ⊕Hr

whereH is the hyperbolic plane. The collection {Vr | r ≥ 0} is called a Witt tower of spaces.

We note that any given space V is a member of a unique Witt tower of spaces {Vr}, where
V0 is the anisotropic kernel of V .

One can then consider a family of theta correspondences associated to the tower of re-

ductive dual pairs (U(W ),U(Vr)). For π ∈ Irr(U(W )), the smallest non-negative integer

r0 such thatΘVr0
,W (π) �= 0 is called the first occurrence index of π for the Witt tower {Vr}.

By [63, p. 67], such an r0 exists and r0 ≤ dimW . Moreover, ΘVr,W (π) �= 0 for all r ≥ r0.
Thus one way to rephrase problem (b) is to determine the first occurrence index of π in any

given Witt tower.

3.3. Conservation relation. Harris-Kudla-Sweet [27] and Kudla-Rallis [44] discovered

that the first occurrence indices of π for two different Witt towers {Vr} and {V ′r} are not

independent of each other. More precisely, one considers two Witt towers {Vr} and {V ′r}
such that

dimV0 ≡ dimV ′0 mod 2 but ε(V0) �= ε(V ′0).
Hence we may consider the first occurrence indices r0 for the tower {Vr} and r′0 for the

tower {V ′r}. The following is a basic theorem in the subject:

Theorem 3.4. For any π ∈ Irr(U(W )), with first occurrence indices r0 and r′0 in two related
Witt towers, we have

dimVr0 + dimV ′r′0 = 2dimW + 2.
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This theorem was called the conservation relation conjecture of Kudla-Rallis. Kudla-

Rallis [44] and Gong-Grenie [26] showed the inequality ≥ in the statement of the theorem,

and also established the reverse inequality≤ in many cases, for example for all supercuspidal

representations. A simple and completely different proof of the theorem in the supercuspidal

case was also discovered by A. Minguez [59]. Finally, a recent paper of Sun-Zhu [82]

established the theorem in full. A corollary is the following dichotomy statement:

Corollary 3.5. Let V and V ′ be two spaces in the Witt towers {Vr} and {V ′r} such that

dimV + dimV ′ = 2 · dimW.
For any π ∈ Irr(U(W )), exactly one of the theta lifts ΘV,W (π) and ΘV ′,W (π) is nonzero.

These results place some constraints on the first occurrence indices but fall short of de-

termining these indices. To go further, we need to introduce some basic invariants of π.

3.4. Local doubling zeta integral. The proof of Theorem 3.4 uses as a key tool the local

doubling zeta integral, which was discovered by Piatetski-Shapiro and Rallis [73]. Anal-

ogous to the local zeta integral in Tate’s thesis, the doubling zeta integral can be used to

define the standard γ-factors for a pair (π, χ), with π ∈ Irr(U(W )) and χ a character of

E×. Though this family of zeta integrals was discovered in the mid-1980’s, the precise

treatment and definition of the local factor γ(s, π, χ, ψ) was only carried out by Lapid-Rallis
[48] in 2003. From the γ-factors, one can then define the local L-factor L(s, π, χ) and the

local ε-factor ε(s, π, χ, ψ) following a standard procedure of Shahidi.
However, there is another way to define L(s, π, χ) and ε(s, π, χ, ψ) from a family of zeta

integrals: one could define L(s, π, χ) as the GCD of the family of zeta integrals as the data

varies. The two ways of defining these local L-factors have complementary strengths, and

one would really like them to give the same L-factors and ε-factors. This is finally proved in
a recent paper [95] of S. Yamana, thus bringing the theory of the doubling zeta integral to a

definitive conclusion.

3.5. Epsilon dichotomy. The local factors defined by the doubling zeta integral are very

useful for the study of theta correspondence. As an example, in the context of Corollary

3.5, the following result [14, 27] determines exactly which of ΘV,W (π) and ΘV ′,W (π) is
nonzero in the equal rank case.

Theorem 3.6. Assume that dimV = dimW . Let π ∈ Irr(U(W )) with central character
ωπ . Then ΘV,W (π) �= 0 if and only if

ε( 12 , π, χ
−1
V , ψ) = ωπ(−1) · χV (δ)dimW · ε(V ) · ε(W ).

3.6. Poles of local γ-factors. As another example, the location of poles of the local γ-
factors provides information on the first occurrence index.

Theorem 3.7. Suppose that V and V ′ are two spaces in two related Witt towers such that
dimV = dimV ′. Assume that l := dimW − dimV > 0. Let π be an irreducible tempered
representation of U(W ).

(i) If one of ΘV,W (π) and ΘV ′,W (π) is nonzero, then γ(s, π, χ−1
V , ψ) has a pole at s =

l+1
2 .
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(ii) Suppose that either π is supercuspidal, or l = 1 and π is square integrable. Then the
converse of (i) also holds.

Corollary 3.8. Let π be an irreducible tempered representation of U(W ). Assume that
γ(s, π, χ−1

V , ψ) is holomorphic in Re(s) ≥ 1/2. Then we have: the first occurrence indices
of π in the two Witt towers are given by:{

dimVr0 = dimVr′0 = dimW + 1 if dimW �= dimV0 mod 2,
{dimVr0 , dimVr′0} = {dimW, dimW + 2} if dimW = dimV0 mod 2.

Moreover, if dimV is the smaller of the two elements in the second case, then ε(V ) is
determined by Theorem 3.6.

Thus, one has a precise determination of the first occurrence indices in the tempered case

when the relevant local γ-factor is entire in Re(s) ≥ 1/2. If π is supercuspidal, we shall see

in a moment that one can determine the first occurrence indices precisely in general.

3.7. Prasad’s conjecture. Consider the (almost) equal rank case when dimV −dimW =0
or 1. For π ∈ Irr(U(W )), D. Prasad [74, 75] has given precise conjectures describing

ΘV,W (π) in terms of the local Langlands correspondence (LLC). We briefly recall the state-

ment of the LLC.

The LLC for unitary groups postulates that each π ∈ Irr(U(W )) is classified by two

invariants (φ, η):

(a) φ=WDE−→GLn(C) (whereWDE is theWeil-Deligne group ofE and n = dimW )

is a conjugate-dual representation ofWDE of sign (−1)n−1 (see [13]);

(b) η is a collection of signs. Namely, if we decompose φ = ⊕imiφi, with φi irreducible
and Iφ denotes the set of indices such that φi is also conjugate-dual of sign (−1)n−1,

then η = (ηi) is a collection of signs indexed by Iφ, satisfying

ε(W ) =
∏
i∈Iφ

ηmi
i . (3.1)

The LLC for quasi-split unitary groups has been proved by C. P. Mok [65], following

Arthur’s book [6] for the symplectic and orthogonal groups. The case of non-quasi-split

unitary groups is the ongoing work of several people.

If π ∈ Irr(U(W )) has L-parameter (φ, η), then Prasad’s conjecture determines the L-

parameter (θ(φ), θ(η)) of θ(π) ∈ Irr(U(V )) when it is nonzero.

Theorem 3.9. Suppose that dimV − dimW = 0 or 1. Let π ∈ Irr(U(W )) and consider
θ(π) on U(V ). Then we have:

(i) If dimV = dimW , then θ(π) is nonzero when the condition in Theorem 3.6 holds.
Moreover, θ(φ) = φ⊗ χ−1

V χW , so that Iφ = Iθ(φ) and

θ(η)i/ηi = ε(1/2, φi ⊗ χ−1
V , ψ(2 · TrE/F−)).

(ii) If dimV = dimW +1, then set θ(φ) = (φ⊗χ−1
V χW )⊕χW , so that#Iθ(φ) = #Iφ

or #Iφ + 1 depending on whether φ contains χV as a summand or not.
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(a) if φ does not contain χV , then θ(π) �= 0. Its L-parameter is given by the θ(φ)
defined above, and

θ(η)i = ηi for all i ∈ Iφ.
The extra sign in θ(η) is associated to χV and is determined by the analog of the
requirement (3.1) for the space V , so that

θ(η)χV
= ε(W ) · ε(V ).

(b) if φ contains χV (so that χV contributes to I(φ)), then θ(π) is nonzero if and
only if ε(V ) = ε(W ) · ηχV

. Its L-parameter is given by θ(φ) defined above and

θ(η)i = ηi for all i ∈ Iφ.

This resolves problem (c) completely in the (almost) equal rank case, and is shown in a

recent preprint [15] of the author with Ichino.

3.8. First occurrence of supercuspidals. Putting the above results together, we can now

determine the first occurrence of a supercuspidal representation π ∈ Irr(U(W )) in terms of

some basic invariants of π. Set

κ =

{
0, if dimW �= dimV0 mod 2;

1/2, if dimW = dimV0 mod 2,

and let l0 be defined by:

l0 + 1

2
:= max

({κ} ∪ {s0 : γ(s, π, χ−1
V , ψ) has a pole at s = s0}

)
.

Then it is known that l0 is an integer of the same parity as dimW−dimV0 and−1≤ l0≤dimW.
Moreover,

{dimVr0 , dimV ′r0} = {dimW − l0, dimW + 2 + l0}.
If l0 = 0 or −1, then the first occurrence indices were already given in Corollary 3.8. If

l0 > 0, then dimW +2+ l0 > dimW − l0, and so we need to determine which of dimVr0
and dimVr′0 is smaller. If dimV is the smaller of the two, we shall specify V by giving the

sign ε(V ):

• If dimW ≡ dimV0 mod 2, then ε(V ) is determined by Theorem 3.6.

• If dimW �= dimV0 mod 2, then ε(V ) is determined by Theorem 3.9(ii)(b).

This resolves problem (b) for supercuspidal representations. The recent work of Moeglin

[62] makes significant progress towards the general case.

4. Global developments

In this section, we survey some global developments. Hence, k is a number field with ring

of adeles A. LetK/k be a quadratic field extension, and consider a dual pair U(W )×U(V )
of unitary groups for K/k. Write [U(W )] to denote the space U(Wk)\U(WA). If π is a
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cuspidal representation ofU(W ), we have its global theta liftΘ(π) onU(V ). As in the local
case, it is useful to consider a Witt tower {Vr} and the associated global theta lifts ΘVr (π).
It was shown by Rallis that there exists a minimal r0 such that ΘVr0

(π) �= 0, in which case

it is a cuspidal representation. The subsequent global theta lifts (for r > r0) are noncuspidal
and hence nonzero.

In view of this, the main question in global theta correspondence is to determine the

nonvanishing of ΘVr (π) in terms of basic invariants of π. We may assume that ΘVk
(π) = 0

for k < r, so that ΘVr (π) is cuspidal. Write V for Vr henceforth.

4.1. Inner product. Rallis’ approach [78] to answering this question is to compute the

Petersson inner product 〈θ(φ, f), θ(φ, f)〉. The Rallis inner product formula relates this

inner product to the special L-values of π. The mechanism for the Rallis inner product

formula relies on the following see-saw diagram of dual pairs:

U(W ⊕W−)

i

U(V )×U(V )

U(W )×U(W−) U(V )Δ,

whereW− denotes the skew–Hermitian space obtained fromW by multiplying the form by

−1, so that U(W−) = U(W ). Then one has:

〈θ(φ1, f1), θ(φ2, f2)〉

=

∫
[U(V )]

(∫
[U(W )]

θ(φ1)(g1, h) · f1(g1) dg1
)

·
(∫

[U(W )]

θ(φ2)(g2, h) · f2(g2) dg2
)
dh

=

∫
[U(W )×U(W )]

(∫
[U(V )]

θ(φ1)(g1, h) · θ(φ2)(g2, h) dh
)

· f1(g1) · f2(g2) dg1 dg2 (4.1)

where in the last equality, we have formally exchanged the integrals. This inner integral (if it

converges) can be interpreted as the global theta lift of the constant function 1 of U(V )Δ to

U(W ⊕W−). The inner integral converges absolutely, so that the above exchange is valid,

if one is in the Weil’s convergent range:

r = 0 or dimV − r > dimW.

To proceed further, one would like to give a different interpretation of the inner integral.

This is the content of the so-called Siegel-Weil formula: it identifies the inner integral with

an Eisenstein series. Even inWeil’s convergent range, this Siegel-Weil formula was achieved

in a series of papers by Weil [92], Kudla-Rallis [41, 42], Ichino [34] and Yamana [93, 94],

stretching over 40 years.

4.2. The regularized theta integral. Henceforth, we shall consider life outsideWeil’s con-

vergent range, so that r > 0 and dimV − r ≤ dimW , in which case we have

0 < dimV ≤ 2 dimW and r ≤ dimW.

Consider the Weil representation Ω of U(W ⊕W−) × U(V ). We are interested in the
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theta integral

I(φ)(g) =
1

τ(U(V ))
·
∫
[U(V )]

Θ(φ)(g, h) dh.

for φ ∈ Ω and where τ(U(V )) denotes the Tamagawa number. The integral diverges, but

under the above conditions, Kudla-Rallis [43] discovered a regularization of this theta inte-

gral.

More precisely, one can find an element z of the Bernstein center ofU(Vv) at some place

v of k such thatΘ(z ·φ) is rapidly decreasing as a function on [U(V )] and hence the integral
I(z · φ) converges. One considers the (spherical) Eisenstein series E(s) associated to the

family of degenerate principal series representations induced from the maximal parabolic

subgroup of U(V ) stabilising a maximal isotropic subspace of V . At the point s = ρV =
dimV−r

2 ,

Ress=ρV E(s) = κ

is a constant function. Moreover, one has z · E(s) = Pz(s) · E(s) for some function Pz(s).
Now one sets

B(s, φ) =
1

κ · Pz(s) · τ(U(V ))
·
∫
[U(V )]

Θ(z · φ)(g, h) · E(s, h) dh.

This meromorphic function is the regularised theta integral and one is interested in its ana-

lytic behaviour at the point s = ρV .
The Laurent expansion of B(s, φ) at s = ρV has the form

B(s, φ) =
B−1(φ)

s− ρV +B0(φ) + · · · when dimV ≤ dimW ;

and

B(s, φ) =
B−2(φ)

(s− ρV )2 +
B−1(φ)

s− ρV + · · · when dimW < dimV ≤ 2 dimW .

We shall refer to these two cases as the first term range and the second term range respec-
tively. Each Laurent coefficient Bi gives a linear map

Bi : ω → A(U(W ⊕W−))

and the one which is important for the inner product formula is the residue B−1.

4.3. Siegel Eisenstein series. The purpose of the Siegel-Weil formula is to identify the

automorphic formsB−2(φ) andB−1(φ) with the analogous Laurent coefficients of a Siegel-
Eisenstein series A(s, φ) associated to φ.

More precisely, the diagonally embedded subspace WΔ ⊂ W ⊕W− is maximal iso-

tropic, so that its stabiliser inU(W ⊕W−) is a Siegel parabolic subgroup P , which has Levi
factor GL(WΔ). Let

IP (s) = Ind
U(W⊕W−)
P χV | det |s.

be the associated Siegel principal series representation. Now the Weil representation Ω can

be realised on S(W∇ ⊗ V ) (where W∇ is an isotropic complement to WΔ), and the map

φ !→ fφ with

fφ(g) = (Ω(g)φ)(0) for g ∈ U(WA ⊕W−
A )
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defines a U(W ⊕W−)-equivariant and U(V )-invariant map

Ω −→ IP (sV,W ) with sV,W := (dimV − dimW )/2.

One then sets

A(s, φ) = E(s, fφ).

Observe that in the first term range, sV,W ≤ 0, whereas in the second term range,

sV,W > 0. If s = sV,W > 0, the Laurent expansion of the Siegel-Eisenstein series A(s, φ)
there has the form

A(s, φ) =
A−1(φ)

s− sV,W +A0(φ) + · · ·

As for Bi, each Ai is a linear map Ai : Ω → A(U(W ⊕W−)).

4.4. First term identity. Assume that we are in the first term range, so that sV,W ≤ 0. Let
V ′ be the space in the same Witt tower as V such that

dimV + dimV ′ = 2dimW (so dimV ′ ≥ dimV ).

The space V ′ is called the complementary space to V with respect to W and is such that

sV ′,W ≥ 0. We shall write A′i and B
′
i for the relevant Laurent coefficients in the context of

V ′. Ikeda has defined in [35] a natural U(W ⊕W−)×U(V )-equivariant map

Ik : Ω′ −→ Ω,

where Ω′ is the Weil representation for U(V ′) × U(W ⊕W−). Then the first term identity

established in [32, 33, 35, 43, 93] is the following identity:

Theorem 4.1. Assume that we are in the first term range. Then for all φ ∈ Ω,

c ·A′−1(φ
′) = A0(φ) = 2 ·B−1(φ),

where c is an explicit constant, φ′ ∈ Ω′ is such that Ik(πKφ′) = φ and πK is the projection
onto theK-fixed space (withK a maximal compact subgroup of U(V ′A)).

4.5. Second term identity. In a recent paper [16], the regularised Siegel-Weil formula is

extended to the second term range. More precisely, we have:

Theorem 4.2 (Siegel-Weil formula). Suppose that 0 < r ≤ dimW and dimW < dimV ≤
dimW + r, so that we are in the second term range.

(i) (First term identity) For all φ ∈ Ω, one has

A−1(φ) = B−2(φ).

(ii) (Second term identity) For all φ ∈ Ω, one has

A0(φ) = B−1(φ)− c · {B′0(Ik(πKφ))} mod ImA−1.

Here, c is some explicit constant and V ′ is the complementary space to V with respect toW
(so dimV ′ < dimV here). Finally, the term {...} on the RHS is interpreted to be 0 if V ′ is
anisotropic.
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4.6. Rallis inner product formula. The Siegel-Weil formulas above and the theory of the

doubling zeta integral, as completed by Yamana [95], enable one to establish the Rallis inner

product formula. For the result in the first term range, we refer the reader to Yamana [95].

In the second term range, we have [16]:

Theorem 4.3. Suppose that

dimW < dimV ≤ 2 dimW and r ≤ dimW

so that we are either in the second term range or the convergent range, depending on whether
dimV ≤ dimW + r or not. Let π be a cuspidal representation of U(W ) and consider its
global theta lift Θ(π) to U(V ).

(i) Assume that Θ(π) is cuspidal. Then for φ1, φ2 ∈ ωψ,V,W and f1, f2 ∈ π,

〈θ(φ1, f1), θ(φ2, f2)〉

=[E : F ] ·Vals=sV,W

(
L(s+

1

2
, π × χV ) · Z∗(s, φ1 ⊗ φ2, f1, f2)

)
,

where sV,W = (dimV − dimW )/2 > 0, L(s, π × χV ) is the standard L-function of
π, and Z∗(s,−) denotes the normalized doubling zeta integral.

(ii) Assume further that for all places v of F , the local theta liftΘn,r(πv) is nonzero. Then
L(s+ 1

2 , π × χV ) is holomorphic at s = sV,W , so that

〈θ(φ1, f1), θ(φ2, f2)〉 = [E : F ] ·L(sV,W +
1

2
, π × χV ) ·Z∗(sV,W , φ1 ⊗ φ2, f1, f2).

4.7. Nonvanishing of global theta lifts. As a consequence, we have the following local-

global criterion for the nonvanishing of global theta lifts.

Theorem 4.4. Assume the same conditions on (V,W ) as in Theorem 4.3. Let π be a cuspidal
representation of U(W ) and consider its global theta lift Θ(π) to U(V ). Assume that Θ(π)
is cuspidal.

(i) If Θ(π) is nonzero, then

(a) for all places v, Θ(πv) �= 0, and
(b) L(sV,W + 1

2 , π × χV ) �= 0 i.e. nonzero holomorphic.

(ii) The converse to (i) holds ifKv = kv × kv for all archimedean places v of k.

More generally, under the conditions (a) and (b) in (i), there is a Hermitian space V ′ over
K such that

• V ′ ⊗k kv ∼= V ⊗k kv for every finite or complex place of k;

• the global theta lift Θ′(π) of π to U(V ′) is nonzero.

The reason for not having the converse to (i) in general is that, if Kv/kv = C/R, we do
not know the equivalence of the nonvanishing of the local theta correspondence and that of

the normalised doubling zeta integral on an appropriate submodule of its domain.
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5. Variations and extensions.

In this section, we want to mention some extensions of the theory of theta correspondence

which have been pursued in the last 20 years.

5.1. Exceptional theta correspondence. There is no reason to confine oneself to dual pairs

in the symplectic group. One could consider dual pairs in any connected reductive group G.
For theta correspondence, however, one also needs the analog of the Weil representation. It

turns out that the Weil representation is the “smallest" infinite-dimensional representation

of the metaplectic group. This suggests that one should consider the analogous smallest

representation of G(F ). Such a representation is called a minimal representation of G(F ).
There is a series of work devoted to the construction and classification of minimal rep-

resentations of an arbitrary G(F ). Of these, one might mention various papers of Kazhdan,

Savin and Torasso [36, 37, 80, 83]. In the global case, the automorphic realisation of the

minimal representations have been constructed, largely using residues of Eisenstein series

[22].

With the theory of minimal representations in place, one can start to consider theta corre-

spondence. While the setup is the same as classical theta correspondence, one key difference

is that one does not know the analog of the Howe duality conjecture for exceptional theta

correspondence; in particular, one does not know the analog of Theorem 3.1. For work on

exceptional theta correspondences, we may mention a series of papers by Savin and various

collaborators [25, 30, 31, 57].

5.2. Singular theta lifting of Borcherds. In his 1994 ICM address [10], Borcherds de-

scribed a singular theta lifting for classical dual pairs. In classical global theta correspon-

dence, one integrates the theta kernel against cusp forms, and there is no issue with conver-

gence. In Borcherd’s context, one is trying to lift functions which blow up exponentially at

the cusps, and Borcherds gave a regularisation of such a singular theta integral. An example

of such a function is the classical j-function on the upper half plane. This theory is so far

not representation theoretic in nature, but it allows Borcherds to construct many beautiful

examples of automorphic forms which possess infinite product expansion [11], analogous to

the classical η-function.

5.3. Arithmetic theta lifting of Kudla. Since the mid-1990’s, Kudla [40] has pursued an

arithmetic version of the theory of theta correspondence. This provides a lifting of auto-

morphic forms to classes in the arithmetic Chow group of a Shimura variety. One goal of

Kudla’s program is to establish an arithmetic version of the Rallis inner product formula in

the equal rank case, which involves the central derivative of the standard L-function instead

of the central value. This will require an arithmetic Siegel-Weil formula. A low rank exam-

ple was established in the book [45] of Kudla-Rapoport-Yang. In his PhD thesis [53, 54], Y.

F. Liu formulated such a conjectural arithmetic Rallis inner product formula in the context

of unitary groups of arbitrary rank.

5.4. Geometric theta lifting of Lysenko. The theory of theta correspondence was almost

single-handedly extended to the framework of the Geometric Langlands Program by S. Ly-

senko [55, 56]. Together with V. Lafforgue [46, 47], the theory of minimal representations

was also suitably geometrized.
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6. Local Langlands correspondence

In the rest of this report, we will discuss a number of applications of theta correspondence.

The first such application is to the local Langlands conjecture (LLC). Unlike the earlier

sections, we will no longer restrict ourselves to unitary groups.

6.1. LLC for GSp4. In [18] and [20], the local theta correspondence was used to establish

the LLC for the group GSp4(F ) and its non-split inner form, where F is a p-adic field. This
uses an extension of the theta correspondence from the setting of isometry dual pairs to the

setting of similitude dual pairs.

Let us briefly explain how theta correspondence is used in the proof. Let W be the

4-dimensional symplectic space, V the split quadratic space of dimension 6 and trivial dis-

criminant, and V ′ the anisotropic quadratic space of dimension 4 and trivial discriminant.

These quadratic spaces belong to the two different related Witt towers, and we consider the

similitude theta correspondence for GSp(W ) × GO(V ) and GSp(W ) × GO(V ′). By the

dichotomy statement in Corollary 3.5, we deduce that each π ∈ Irr(GSp(W )) has nonzero
theta lift to exactly one of GO(V ) or GO(V ′). Using this, one deduces an injection

Irr(GSp(W )) ↪→ Irr(GSO(V ))
⊔

Irr(GSO(V ′)).

Now one notes that{
GSO(V ′) ∼= (GL2(F )×D×)/{(t, t−1) : t ∈ F×}
GSO(V ) ∼= (GL4(F )× F×)/{(t, t−2) : t ∈ F×},

whereD is the quaternion division F -algebra. In particular, the LLC is known for these two

groups, so one may assign L-parameters to representations of GSp4(F ).

6.2. LLC for G2. We now describe an ongoing work of the author with G. Savin on the

LLC for the split exceptional group of type G2 using the exceptional theta correspondence.

Quite amazingly, it turns out that a similar strategy as in theGSp4 case can be implemented.

More precisely, one has the two dual pairs

G2 × PB× ⊂ EB
6 and G2 × PGSp6 ⊂ E7

where B denotes a degree 3 division F -algebra, EB
6 is an inner form of type E6 and F -

rank 2 and E7 is the split group of this type. Consider the local theta correspondence for

these two dual pairs, a key result is the following analog of dichotomy and the Howe duality

conjecture:

Theorem 6.1. Each π ∈ Irr(G2) has nonzero theta lift to exactly one of PB× or PGSp6.
Moreover, the nonzero θ(π) is irreducible. In particular, one has an injection

Irr(G2) ↪→ Irr(PB×) � Irr(PGSp6).

By the Jacquet-Langlands correspondence and the LLC for PGL3 and Sp6 (due to

Arthur), one may then hope to assign L-parameters to π ∈ Irr(G2). This theorem will

play a key role in our ongoing work to establish the full LLC for G2.
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7. Gross-Prasad conjecture

One typical application of theta correspondence is that it relates certain periods on one mem-

ber of a dual pair with certain periods on the other member. One such family of periods which

has attracted much attention recently is the Gross-Prasad (GP) periods, which was considered

by Gross and Prasad in the context of the special orthogonal groups in two papers [23, 24]

some twenty years ago. They formulated precise conjectures for the nonvanishing of the GP

periods. In a recent paper [13], these conjectures were extended to arbitrary classical groups.

For ease of exposition, we shall consider the case of unitary groups.

7.1. GP periods. Let Vn+1 be a Hermitian space of dimension n + 1 over E and Wn a

skew-Hermitian space of dimension n over E. Let Vn ⊂ Vn+1 be a nondegenerate subspace

of codimension 1, so that we have a natural inclusion U(Vn) ↪→ U(Vn+1). In particular, if

we set

Gn = U(Vn)×U(Vn+1) or U(Wn)×U(Wn)

and

Hn = U(Vn) or U(Wn),

then we have a diagonal embeddingΔ : Hn ↪→ Gn.
In the Hermitian case, one is interested in determining dimC HomΔHn(π,C) for π ∈

Irr(Gn). We shall call this the Bessel case of the GP conjecture. Indeed, what we have

described is a special case: the general Bessel case deals with a pair of Hermitian spaces

V ′ ⊂ V such that dimV/V ′ is odd.
In the skew-Hermitian case, the restriction problem requires another piece of data: a Weil

representation ωψ,χ,Wn of U(Wn), where χ is a character of E× such that χ|F× = ωE/F .
Then one is interested in determining dimC HomΔHn(π, ωψ,χ,Wn). We shall call this the

Fourier-Jacobi case (FJ) of the GP conjecture. As before, the general FJ case deals with a

pair of skew-Hermitian spaces W ′ ⊂ W such that dimW/W ′ is even. To unify notation,

we shall let ν = C or ωψ,χ,Wn
in the respective cases.

7.2. Gross-Prasad conjecture. It was shown in [5] and [81] that the above Hom spaces

have dimension at most 1. Thus the main issue is to determine when the Hom space is

nonzero. The Gross-Prasad conjecture gives an answer for this issue, formulated in the

framework of the local Langlands correspondence. It can be loosely stated as follows:

1. Given a generic L-parameter φ for Gn there is a unique η such that the representation
π(φ, η) satisfies HomΔHn(π(φ, η), ν) �= 0.

2. There is a precise recipe, in terms of local ε-factor for the distinguished character η.

In a stunning series of papers [87], [88], [89], [90], Waldspurger has established the

Bessel case of the GP conjecture for special orthogonal groups in the case of tempered

L-parameters; the case of general generic L-parameters is then dealt with by Mœglin-

Waldspurger [64]. Beuzart-Plessis [7], [8], [9] has since extended Waldspurger’s techniques

to settle the Bessel case of the GP conjecture for unitary groups in the tempered case.
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7.3. Theta correspondence. Now the Bessel and Fourier-Jacobi cases of the GP conjecture

are related by the local theta correspondence. More precisely, there is a see-saw diagram

U(Wn)×U(Wn) U(Vn+1)

U(Wn) U(Vn)×U(V1)

and the associated see-saw identity reads:

HomU(Wn)(Θψ,χ,Vn,Wn(σ)⊗ ωψ,χ,V1,Wn , π)
∼= HomU(Vn)(Θψ,χ,Vn+1,Wn(π), σ)

for π ∈ Irr(U(Wn)) and σ ∈ Irr(U(Vn)). Hence the left-hand side of the see-saw identity

concerns the Fourier-Jacobi case (FJ) whereas the right-hand side concerns the Bessel case

(B). It is thus apparent that precise knowledge of the local theta correspondence for unitary

groups of (almost) equal rank will give the precise relation of (FJ) to (B).

In particular, as a consequence of the proof of Prasad’s conjecture in Theorem 3.9, the

FJ case of the GP conjecture was verified in [15] . Hence one has:

Theorem 7.1. Assume the LLC for unitary groups. Then both the Bessel and FJ cases of the
GP conjecture hold.

8. Shimura-Waldspurger correspondence

We will conclude by returning to the Shimura-Waldspurger (SW) correspondence for Mp2,
which in some sense initiated many of the developments discussed in this paper. In particular,

we will discuss its extension to Mp2n.

8.1. Local SW correspondence. Let F be a nonarchimedean local field. Let W be the

2n-dimensional symplectic vector space, and let V + and V − be the two 2n+1-dimensional

quadratic spaces with trivial discriminant, with V + split. Then one may consider the theta

correspondence forMp(W )×O(V ε). As a consequence of Theorem 3.6, the following was

shown in [17]:

Theorem 8.1. Fix a nontrivial additive character ψ of F . The theta correspondence with
respect to ψ gives a bijection

Irrε(MpW )) ←→ Irr(SO(V +)) � Irr(SO(V −)),

where we consider genuine representations of Mp(W ) on the LHS. Assuming the LLC for
SO(V ±), one then inherits an LLC for Mp(W ). Moreover, this LLC satisfies a list of ex-
pected properties which characterise it uniquely.

When F is archimedean, the analogous theorem was obtained by Adams-Barbasch [4]

some 20 years ago, and described in Adams’ 1994 ICM talk [2].

8.2. Global SW correspondence. Now assume that we are working over a number field k.
It is natural to attempt to use the global theta correspondence to obtain a precise description
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of the automorphic discrete spectrum of Mp(WA). For readers familiar with Waldspurger’s

work [84, 85] in the case when dimW = 2, it will be apparent that there is an obstruction

to this approach: the global theta lift Θ(π) of a cuspidal representation π of Mp(WA) or
SO(VA) may be 0 and it is nonzero precisely when L(1/2, π) �= 0.

This obstruction already occurs when dimW = 2, and was not easy to overcome. Wald-

spurger had initially alluded to results of Flicker proved by the trace formula. Nowadays,

one could appeal to a result of Friedberg-Hoffstein [12], stating that if ε(1/2, π) = 1, then
there exists a quadratic Hecke character χ such that L(1/2, π × χ) �= 0. When dimW > 2,
however, the analogous analytic result does not seem to be forthcoming and may be very

hard. We are going to suggest a new approach in the higher rank case, but before that, we

would like to describe the analog of Arthur’s conjecture for Mp2n.

8.3. Arthur’s conjecture for Mp2n. For a fixed additive automorphic character ψ, one
expects that

L2
disc =

⊕
Ψ

L2
Ψ,ψ

where

Ψ =
⊕
i

Ψi =
⊕
i

Πi � Sri

is a global discrete A-parameter for Mp2n; it is also an A-parameter for SO2n+1. Here, Sri
is the ri-dimensional representation of SL2(C) and Πi is a cuspidal representation of GLni

such that {
L(s,Πi,∧2) has a pole at s = 1, if ri is odd;

L(s,Πi, Sym
2) has a pole at s = 1, if ri is even.

Moreover, we have
∑

i niri = 2n and the summands Ψi are mutually distinct.

For a given Ψ, one inherits the following additional data:

• for each v, one inherits a local A-parameter

Ψv =
⊕
i

Ψi,v =
⊕
i

Πi,v � Sri .

By the LLC for GLN , we may regard each Πi,v as an ni-dimensional representation

of the Weil-Deligne group WDkv . Hence, we may regard Ψv as a 2n-dimensional

representation ofWDkv × SL2(C).

• one has a “global component group"

AΨ =
⊕
i

Z/2Z · ai

which is a Z/2Z-vector space equipped with a distinguished basis indexed by theΨi’s.

Similarly, for each v, we have the local component group AΨv which is defined as the

component group of the centralizer of the image of Ψv , thought of as a representation

ofWDkv × SL2(C). There is a natural diagonal map

Δ : AΨ −→
∏
v

AΨv .
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• For each v, one has a local A-packet associated to Ψv and ψv:

ΠΨv,ψv = {σηv : ηv ∈ Irr(AΨv )},

consisting of unitary representations (possibly zero, possibly reducible) of Mp2n(kv)
indexed by the set of irreducible characters ofAΨv . On taking tensor products of these

local A-packets, we obtain a global A-packet

AΨ,ψ = {ση : η = ⊗vηv ∈ Irr(
∏
v

AΨv )}

consisting of abstract unitary representations ση = ⊗vσηv of Mp2n(A) indexed by

the irreducible characters η = ⊗vηv of
∏
v AΨv

.

• Arthur has attached to Ψ a quadratic character (possibly trivial) εΨ of AΨ, This char-

acter plays an important role in the multiplicity formula for the automorphic discrete

spectrum of SO2n+1. For Mp2n, we need to define a modification of εΨ.

More precisely, consider the L-parameter ΦΨ =
⊕

i ΦΨi
associated to Ψ, with

ΦΨi =

ri−1⊕
k=0

Πi · | − |(ri−1−2k)/2.

Then define ηΨ ∈ IrrAΨ by

ηΨ(ai) = ε(1/2,ΦΨi
) =

{
ε(1/2,Πi), if L(s,Πi,∧2) has a pole at s = 1;

1, if L(s,Πi, Sym
2) has a pole at s = 1.

The modified quadratic character of AΨ in the metaplectic case is

ε̃Ψ = εΨ · ηΨ.

We can now state the conjecture.

Conjecture 8.2 (Arthur Conjecture for Mp2n). There is a decomposition

L2
disc(Mp2n) =

⊕
Ψ

L2
Ψ,ψ

where the sum runs over equivalence classes of discrete A-parameters of Mp2n. For each
such Ψ,

L2
Ψ,ψ

∼=
⊕

η∈Irr(∏v AΨv ):Δ
∗(η)=ε̃Ψ

ση

8.4. A new approach. In an ongoing work, we are developing a new approach for the

Arthur conjecture described above. Namely, by results of Arthur [6], one now has a clas-

sification of the automorphic discrete spectrum of SO2r+1 for all r. Instead of trying to

construct the automorphic discrete spectrum of Mp2n by theta lifting from SO2n+1, one

could attempt to use theta liftings from SO2r+1 for r ≥ n. Let us illustrate this in the case

when dimW = 2.
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Let π be a cuspidal representation of PGL2(A) = SO(V +
A ). Then π gives rise to a near

equivalence class in the automorphic discrete spectrum of Mp2. If L(1/2, π) �= 0, this near
equivalence class can be exhausted by the global theta lifts of π and its Jacquet-Langlands

transfer to inner forms of PGL2. When L(1/2, π) = 0, we consider the A-parameter

ψ = π � S1 ⊕ 1� S2 for SO5.

This is a so-called Saito-Kurokawa A-parameter. By Arthur, ψ indexes a near equivalence

class in the automorphic discrete spectrum of SO5. In a well-known paper [72], Piatetski-

Shapiro gave a construction of the Saito-Kurokawa representations by theta lifting from

Mp2, using Waldspurger’s results as initial data. However, one can turn the table around.
Namely, taking the Saito-Kurokawa near equivalence classes as given by Arthur, one can

consider their theta lift back toMp2. By the Rallis inner product formula, such a theta lift is

nonzero if the partial L-function

LS(s,Φψ) = L
S(s, π) · ζ(s+ 1

2
) · ζ(s− 1

2
)

has a pole at s = 3/2, or equivalently if LS(3/2, π) �= 0. Now this is certainly much easier

to ensure than the nonvanishing at s = 1/2! In this way, one can construct the desired near

equivalence class forMp2 associated to π and by studying the local theta correspondence in

detail, one can recover Waldspurger’s results from 30 years ago.
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Automorphic Galois representations and the
cohomology of Shimura varieties
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Abstract. The first part of this report describes the class of representations of Galois groups of num-

ber fields that have been attached to automorphic representations. The construction is based on the

program for analyzing cohomology of Shimura varieties developed by Langlands and Kottwitz. Using

p-adic methods, the class of Galois representations obtainable in this way can be expanded slightly;

the link to cohomology remains indispensable at present. It is often possible to characterize the set of

Galois representations that can be attached to automorphic forms, using the modularity lifting meth-

ods initiated by Wiles a bit over 20 years ago. The report mentions some applications of results of

this kind. The second part of the report explains some recent results on critical values of automorphic

L-functions, emphasizing their relation to the motives whose �-adic realizations were discussed in the

first part.
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1. Introduction

Algebraic number theory has benefited immeasurably over the past four decades from the

applications of the methods and results of the Langlands program to the study of Galois

representations attached to automorphic forms. Yet Galois representations do not figure

prominently in Langlands’s original conjectures, apart from the complex Galois representa-

tions that are the object of the Artin conjecture. There seems to be no completely precise

statement in the literature of a Langlands reciprocity conjecture – a bijection between rep-

resentations of Galois groups with values in the �-adic points of reductive groups, subject to
certain natural restrictions (including a version of irreducibility), and of automorphic repre-

sentations of related reductive groups – although number theorists believe there should be

such a conjecture and have a general idea of how it should go. The best general account of

this question is still contained in the expanded version [69] of Taylor’s 2002 ICM talk.

The first objective of the present survey is to describe the results in the direction of

reciprocity obtained since the publication of [69]. Construction of the correspondence in

one direction – from automorphic representations to Galois representations – has progressed

considerably, even in directions that could not have been expected ten years ago. All of

the Galois representations associated to automorphic representations have been constructed,

either directly or by p-adic interpolation, using the cohomology of Shimura varieties. This

source of Galois representations has been or soon will be exhausted, and new methods will
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need to be invented in order to find the Galois representations attached to automorphic rep-

resentations that cannot be related in any way to cohomology of Shimura varieties, notably

the representations of Galois groups of number fields that are not totally real nor CM.

Little was known at the time of [69] regarding the converse direction, the problem of

proving that a given Galois representation ρ is attached to automorphic forms, when dim ρ >
2. Now there is a mature theory of automorphy lifting theorems, in the spirit of the results

developed by Wiles for his proof of Fermat’s Last Theorem, applying in all dimensions.

The attempt to complete this theory represents one of the most active branches of algebraic

number theory, and is largely responsible for the rapid growth of interest in the p-adic local
Langlands program.

Let K be a number field. The Galois group ΓK := Gal(Q/K) acts on the p-adic étale
cohomology of an algebraic variety or motiveM defined overK, and this action determines

the L-function L(s,M). Theoretical considerations guarantee that the p-adic Galois repre-
sentations on the cohomology of most algebraic varieties cannot be realized in the cohomol-

ogy of Shimura varieties; for example, the cohomology of a generic hypersurface cannot be

obtained in this way. Present methods, therefore, cannot prove the analytic continuation of

L(s,M) for most motives arising from geometry. When the Galois representation is attached

to an automorphic form, on the other hand, then so isL(s,M), and this implies analytic (or at

least meromorphic) continuation of the latter. Moreover, the conjectures concerned with the

values at integer points of L(s,M) (of Deligne, Beilinson, or Bloch-Kato) can be studied

with the help of automorphic forms. Everything one knows in the direction of the Birch-

Swinnerton-Dyer Conjecture, for example, has been proved by means of this connection.

There has been a great deal of activity in this direction as well, especially in connection with

the growth of the “relative” theory of automorphic forms (the relative trace formula and con-

jectures of Gan-Gross-Prasad, Ichino-Ikeda, and Sakellaridis-Venkatesh). The second part

of this paper reviews some of the recent results on special values of L-functions.
The conjectures on special values of complex L-functions are accompanied by conjec-

tures on the existence of p-adic analytic functions interpolating their normalized special

values. The article concludes with a few speculative remarks about automorphic p-adic L-
functions.

2. Automorphic forms and Galois representations

2.1. Construction of automorphic Galois representations. Class field theory classifies

abelian extensions of a number field K in terms of the the structure of the idèle class group

GL(1,K)\GL(1,AK). In doing so it also identifies 1-dimensional representations of ΓK
with continuous characters of the idèle class group. Non-abelian class field theory can be

traced back to the 1950s, when Eichler and Shimura realized that 2-dimensional �-adic Ga-
lois representations could be attached to classical cusp forms that are eigenvalues of the

Hecke algebra. A conjectural classification of n-dimensional �-adic Galois representations,
in terms of the Langlands program, was formulated in Taylor’s 2002 ICM talk (cf. [69]). We

review this conjecture quickly. For any finite set S of places of K, let ΓK,S be the Galois

group of the maximal extension of K unramified outside S. Taylor adopts the framework

of Fontaine and Mazur, who restrict their attention in [25] to continuous representations

ρ : ΓK → GL(n,Q�) satisfying the following two axioms:
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1. ρ factors through ΓK,S for some finite set S of places of K (usually containing the

primes dividing �);

2. For all primes v ofK of residue characteristic �, the restriction of ρ to a decomposition

group Gv ⊂ ΓK at v is de Rham in the sense of Fontaine.

A ρ satisfying these two conditions is either called geometric or algebraic, depend-
ing on the context. Condition (1) guarantees that, at all but finitely many primes v of

K, the restriction ρv of ρ to a decomposition group Gv is determined up to equivalence,

and up to semisimplification, by the characteristic polynomial Pv(ρ, T ) of the conjugacy

class ρ(Frobv) ∈ GL(n,Q�). One of the Fontaine-Mazur conjectures implies that there

is a number field E such that all Pv(ρ, T ) have coefficients in E; by choosing an embed-

ding ι : E ↪→ C we may thus define Pv(ρ, T ) as a polynomial of degree n in C[T ] with
non-vanishing constant term. The set of such polynomials is in bijection with the set of

(equivalence classes of) irreducible smooth representationsΠv ofGL(n,Kv) that are spher-
ical: the space of vectors in Πv that are invariant under the maximal compact subgroup

GL(n,Ov) ⊂ GL(n,Kv), where Ov is the ring of integers in Kv , is non-trivial and nec-

essarily one-dimensional. We let Πv(ρ) be the spherical representation corresponding to

Pv(ρ, T ).
An irreducible representationΠv(ρ) ofGL(n,Kv) can be attached to ρ for primes v ∈ S

as well. If v is not of residue characteristic �, the restriction of ρ toGv gives rise by a simple

procedure to an n-dimensional representation WD(ρ, v) of the Weil-Deligne group WDv

at v. The local Langlands correspondence [41, 43] is a bijection between n-dimensional

representations ofWDv and irreducible smooth representations of GL(n,Kv), and we ob-

tain Πv(ρ) using this bijection. If v divides �, condition (2) allows us to define WD(ρ, v)
by means of Fontaine’s Dpst functor. Fontaine’s construction also provides a set of Hodge-

Tate numbersHT (ρ, v) for each archimedean prime v. This datum, together with the action

of a complex conjugation cv in a decomposition group Gv when v is a real prime, defines

an n-dimensional representation ρv of the local Weil group Wv , and thus an irreducible

(gv, Uv)-module Πv(ρ), where gv is the (complexified) Lie algebra of G(Kv) and Uv is

a maximal compact subgroup of G(Kv). We let Π(ρ) denote the restricted direct product

(with respect to the GL(n,Ov)-invariant vectors at finite primes outside S) of the Πv(ρ), as
v ranges over all places ofK.

If v is an archimedean place of K, the Harish-Chandra homomorphism identifies the

center Z(gv) with the symmetric algebra of a Cartan subalgebra tv ⊂ gv . The maximal

ideals of Z(gv) are in bijection with linear maps Hom(t,C). The infinitesimal character of
an irreducible (gv, Uv)-module Πv is the character defining the action of Z(gv) on Πv; its

kernel is a maximal ideal of Z(gv), and thus determines a linear map λΠv ∈ Hom(tv,C). In
[17], Clozel defines an irreducible (gv, Uv)-module Πv to be algebraic if λΠv belongs to the

lattice in Hom(tv,C) spanned by the highest weights of finite-dimensional representations.

Denote by | • |v the v-adic absolute value, | • |A the adele norm. The following corresponds

to Conjectures 3.4 and 3.5 of [69].

Conjecture 2.1.

(1) Let ρ : ΓK → GL(n,Q�) be an irreducible geometric Galois representation. Then
the local component

Πv(ρ)

(
1− n
2

)
:= Πv(ρ)⊗ | • |

1−n
2

v ◦ det
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is algebraic at each archimedean prime v of K, and the representation Πv(ρ) of
GL(n,AK) occurs in the space of cusp forms on GL(n,K)\GL(n,AK).

(2) Conversely, let Π be a cuspidal automorphic representation of GL(n,AK). Suppose
Πv(

1−n
2 ) is algebraic for every archimedean place v of K. Then for each prime �,

there exists an irreducible geometric n-dimensional representation

ρ�,Π : ΓK → GL(n,Q�)

such that

Π

(
1− n
2

)
:= Π⊗ | • |

1−n
2

A ◦ det ∼−→ Π(ρ�,Π).

The Galois representations ρ�,Π are called automorphic.1 Quite a lot is known about

this conjecture when K is either a CM field or a totally real field, almost exclusively in

the regular case, when λΠ is the infinitesimal character of an irreducible finite-dimensional

representation of G(Kv) for all archimedean v. Let S be a finite set of primes of K, let ρ
be an n-dimensional �-adic representation of ΓK , and say that Π and ρ� correspond away

from S if Πv = Πv(ρ) for v /∈ S. The following theorem represents the current state of

knowledge regarding part (b) of Conjecture 2.1; part (a) will be treated in the next section.

In its details it may already be obsolete by the time of publication.

Theorem 2.2. Let K be a CM field or a totally real field. Let Π be a cuspidal automorphic
representation of GL(n,AK). Suppose Πv is algebraic and regular for every archimedean
place v ofK.

(a) Let S be the set of finite primes at whichΠ is ramified. If � is a rational prime, let S(�)
denote the union of S with the set of primes of K dividing �. For each prime �, there
exists a completely reducible geometric n-dimensional representation

ρ�,Π : ΓK → GL(n,Q�)

such that Π( 1−n2 ) and ρ�,Π correspond away from S(�).

(b) Suppose Π is polarized, in the following sense:

(1) IfK is a CM field,
Π∨

∼−→ Πc,

where c denotes the action of complex conjugation acting onK
(2) IfK is totally real,

Π∨
∼−→ Π⊗ ω

for some Hecke character ω of GL(1,AK).

Here ∨ denotes contragredient. Then there is a compatible family of n-dimensional
representations ρ�,Π satisfying (b) of 2.1. Moreover, ρ�,Π is de Rham, in the sense of
Fontaine, at all primes v dividing �.

1When G is a reductive algebraic group, Buzzard and Gee have conjectured a correspondence between auto-

morphic representations of G that satisfy an algebraicity condition at archimedean places and compatible systems

of �-adic representations with values in the Langlands L-group of G [9]. The relation of this conjecture with

Conjecture 2.1 is a bit subtle; two different algebraicity conditions are relevant to the conjecture.
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2.1.1. p-adic approximation. To forestall certain kinds of cognitive dissonance, we switch

from �-adic to p-adic representations in this section. Part (b) of Theorem 2.2 has been proved

over the course of several decades by a number of people. For general n-dimensional repre-

sentations, the most relevant references are [17, 41, 48] for work before the proof by Laumon

and Ngô of the Fundamental Lemma; and [16, 19, 20, 51, 56, 62, 64] for results based on the

Fundamental Lemma. I refer the reader to the discussion in [35], and take this opportunity to

insist on the centrality of Labesse’s results in [51] and earlier papers, which are inexplicably

omitted from some accounts.2

Under the polarization hypothesis of case (b), most ρp,Π are realized in the cohomol-

ogy of Shimura varieties S(G) attached to appropriate unitary groups G. Some important

representations are nevertheless missing when n is even. To complete the proof of (b), the

missing representations are constructed by p-adic approximation. One needs to show that Π
is in some sense the limit of a sequence of Πi that do satisfy the strong regularity hypothe-

sis3 For n = 2 two approximation methods had been applied: Wiles used the ideas due to

Hida, while Taylor obtained the most complete results by adapting ideas of Ribet. In the

intervening years, the theory of eigenvarieties, which originated in the work of Coleman and

Mazur, had been developed to define p-adic famiies of automorphic forms in a very general

setting. Chenevier’s thesis [14] generalized the approximation method of Wiles to attach

p-adic Galois representations of dimension n > 2 to non-ordinary Π, using eigenvarieties.

Its extension in the book [6] with Bellaïche, and the subsequent article [15] were almost

sufficient to construct the missing ρp,Π as the limit of ρp,Πi as above. The final steps in the

construction, and the proofs of most of the local properties of 2.1, were carried out in [16],

using a descent argument introduced by Blasius and Ramakrishnan in [8] and extended by

Sorensen in [65]. The remaining local properties – determination of local �-adic and p-adic
monodromy of ρp,Π were not known when [35] was written; they were obtained in most

cases in [4] and completed in [12, 13].

Part (a) of Theorem 2.2 is much more recent. The first result of this type was obtained

for GL(2) over imaginary quadratic fields by Taylor in [67], following his joint work [40]

with Soudry and the author; this was extended to general CM fields by Mok [54]. The proof

of part (a) in [38] starts with an old idea of Clozel. LetK be a CM field and letK+ ⊂ K be

the fixed field under complex conjugation. Let Gn be the unitary group of a 2n-dimensional

hermitian space over K, and assume Gn is quasi split. Then Gn, viewed by restriction of

scalars as an algebraic group over Q, contains a maximal parabolic subgroup Pn with Levi

factor isomorphic to RK/QGL(n)K . Let S(n,K) be the locally symmetric space attached

to GL(n,AK). SinceK is a CM field, S(n,K) is not an algebraic variety, and therefore its
�-adic cohomology does not carry a representation of any Galois group. If Π is a cuspidal

automorphic representation of GL(n,AK) that is polarized, then the twisted trace formula

attaches to Π a collection (an L-packet) of automorphic representations of the unitary group

G mentioned above; thus Π transfers to the cohomology of the S(G), and this is where the

Galois representation is realized (in nearly all cases).

When Π is not polarized, one uses the theory of Eisenstein series for the parabolic group

2Although complete base change from unitary groups remains to be established (the quasi-split case has recently

been treated in [55]), Labesse proved the basic properties in the case of cohomological representations, without

which the proof of Theorem 2.2 would have been impossible.

3Strictly speaking, the limits discussed here are taken relative to the Zariski topology on appropriate eigenva-

rieties, so the term “p-adic limit" would not be quite appropriate. In many cases the missing representations can

indeed be obtained as actual limits in the p-adic topology, but as far as I know these cases have not been given an

intrinsic characterization.
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Pn to attach a family E(s,Π) of automorphic representations of Gn, with s ∈ C. Up to

twisting Π by a positive integral power of the norm, we may assume E(s,Π) is regular at 0
and write E(Π) = E(0,Π). Then E(Π) is also cohomological and (for nearly all positive

integral twists) defines a non-trivial class in the cohomology of the Shimura variety S(Gn)
attached to (the unitary similitude group of) Gn. The realization in p-adic étale cohomology

of this Eisenstein class then defines a p-adic Galois representation. However, it is easy to see
that the semisimplification of this representation is a sum of abelian characters, and therefore

it cannot be used to construct the desired ρp,Π.
Some years later, Skinner (and independently Urban) revived Clozel’s idea by suggest-

ing that E(Π) might be realized as the limit in a p-adic family of a sequence of cuspidal
cohomological automorphic representations τi of Gn. One then considers the collection of

2n-dimensional representations ρp,τi . The symbol χE(Π) = limi trρp,τi then makes sense

as a Qp-valued function on ΓK,S for appropriate S, and because it is the limit of traces of

genuine representations it defines a 2n-dimensional pseudorepresentation. The latter notion
is an abstraction of the invariance properties of the character of a representation, first con-

structed in the 2-dimensional case by Wiles, then defined by Taylor in general using results

(especially results of Procesi) from invariant theory. Taylor’s theory implies that χE(Π) is

the character of a unique 2n-dimensional representation, and by varyingΠ among its abelian

twists it can be shown by elementary methods that χE(Π) breaks up as the sum of two n-
dimensional pieces, one of which is the ρp,Π of Theorem 2.2.

The hard part is to obtain E(Π) as the limit of cuspidal τi. What this means is that the

eigenvalues of Hecke operators at primes at which Π is unramified are p-adic limits of the

corresponding Hecke eigenvalues on τi. In [38] this is achieved by realizing E(Π) in a p-
adic cohomology theory that satisfies a short list of desirable properties. The most important

properties are (i) the global cohomology is computed as the hypercohomology in the (rigid)

Zariski topology of the de Rham complex and (ii) the cohomology has a weight filtration,

characterized by the eigenvalues of an appropriate Frobenius operator. The cohomology

theory chosen in [38] is a version of Berthelot’s rigid cohomology (generalizing Monsky-

Washnitzer cohomology). This is calculated on the complement, in the minimal (Baily-
Borel) compactification S(Gn)

∗ of S(Gn), of the vanishing locus of lifts (modulo increasing

powers of p) of the Hasse invariant. This complement is affinoid and therefore by (i) the

cohomology can be computed by a complex whose terms are spaces of p-adic modular forms,

in the sense of Katz. By analyzing the finiteness properties of this complex, and using the

density of genuine holomorphic modular forms in the space of p-adic modular forms, [38]

writes E(Π) as the limit of cuspidal τi, as required.
About a year after the results of [38] were announced, Scholze discovered a more flexible

construction based on a very different cohomology theory, the p-adic étale cohomology of

perfectoid spaces. The topological constructions in [38] can in principle also lift torsion

classes in the cohomology of the locally symmetric space attached to GL(n,AK) to torsion
classes in the cohomology of S(Gn), but rigid cohomology cannot detect torsion classes.

The p-adic étale cohomology of perfectoid spaces does not have this defect, and Scholze’s

article [61] not only gives a new and more conceptual proof of the results of [38] but applies

to torsion classes as well. Thus Scholze proved a long-standing conjecture, first formulated

by Ash in [2], that has greatly influenced subsequent speculation on p-adic representations of
general Galois groups. The reader is referred to Scholze’s article in the current proceedings

for more information about his results.



Automorphic Galois representations and the cohomology of Shimura varieties 373

Restrictions on Galois representations on the cohomology of Shimura varieties. In part

(b) of 2.2 the proof of the deepest local properties of the (polarized) ρp,Π at primes dividing

p were proved by finding representations closely related to ρp,Π (the images under tensor

operations) directly in the cohomology of Shimura varieties. When Π is not polarized, the

ρp,Π are still constructed in [38] and [61] by a limiting process , starting from a family of

ρp,Πi
of geometric origin, but there is every reason to believe (see below) that the ρp,Π and its

images under tensor operations will almost never be obtained in the cohomology of Shimura

varieties, and although they are expected to be geometric no one has the slightest idea where

they might arise in the cohomology of algebraic varieties.

Room for improvement. The infinitesimal character λΠ ∈ Hom(tv,C) is regular provided
it is orthogonal to no roots of tv in gv; in other words, if it is contained in the interior of a

Weyl chamber. The regularity hypothesis in Theorem 2.2 can sometimes be relaxed to allow

non-degenerate limits of discrete series, whose infinitesimal characters lie on one or more

walls of a Weyl chamber. The first result of this type is the Deligne-Serre theorem which

attaches (Artin) representations of ΓQ to holomorphic modular forms of weight 1. This has
recently been generalized by Goldring [28] to representations of GL(n) obtained by base

change from holomorphic limits of discrete series of unitary groups.

2.2. Reciprocity. Number theorists can’t complain of a shortage of Galois representations.

The étale cohomology of algebraic varieties over a number fieldK provides an abundance of

�-adic representations of ΓKsatisfying the two Fontaine-Mazur axioms. One of the Fontaine-

Mazur conjectures predicts that any irreducible representation of ΓK satistying these axioms

is equivalent to a constituent of �-adic cohomology of some (smooth projective) variety V
over K. The reciprocity Conjecture 2.1 (a) has been tested almost exclusively for ρ arising
from geometry in this way. The paradigmatic case in whichK = Q and V is an elliptic curve

was discussed in the ICM talks of Wiles (in 1994) and Taylor (in 2002).4 The Fontaine-

Mazur conjecture itself has been solved in almost all 2-dimensional cases when K = Q for

ρ that take complex conjugation to a matrix with determinant −1. Two different proofs have
been given by Kisin and Emerton; both of them take as their starting point the solution by

Khare and Wintenberger of Serre’s conjecture on 2-dimensional modular representations of

ΓQ. All of these results are discussed in a number of places, for example in [24, 46, 47]. I

will therefore concentrate on results valid in any dimension n.
Let ρ : ΓK → GL(n,O) be a continuous representation with coefficients in an �-adic

integer ring O with maximal ideal m and residue field k; let ρ̄ : ΓK → GL(n, k) denote
the reduction of ρ modulo m. We say ρ is residually automorphic if ρ̄ ∼−→ ρ̄�,Π for some

cuspidal automorphic representation Π of GL(n,AK). The method for proving reciprocity

initiated by Wiles consists in proving theorems of the following kind:

Theorem 2.3 (Modularity Lifting Theorem, prototypical statement). Suppose ρ̄ is residually
automorphic. Then every lift of ρ̄ to characteristic zero that satisfies axioms (1) and (2) of
Fontaine-Mazur, as well as

(1) a polarization condition;

(2) conditions on the size of the image of ρ̄ (typically including the hypothesis that ρ̄ is

4The nomenclature associated with the conjecture in this particular case, which predates the Fontaine-Mazur

conjecture, is a matter of considerable sociological and philosophical interest.
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absolutely irreducible); and

(3) ramification conditions at primes dividing � (typically including a regularity hypothe-
sis)

is automorphic. In particular, if ρ itself satisfies conditions (1), (2), and (3), then ρ is
automorphic.

The method for proving such theorems is called the Taylor-Wiles method or the Taylor-
Wiles-Kisin method, depending on context, and is named after its inventors in the setting

when n = 2. The first theorems of this kind for arbitrary n were proved in [21, 70]. Together
with the results of [39] they imply the Sato-Tate theorem for elliptic curves overQ with non-

integral j-invariant (see below). Subsequent improvements have allowed for less restrictive

conditions in (2) and (3). The following theorem of Barnet-Lamb, Gee, Geraghty, and Taylor

[3] represents the current state of the art.

Theorem 2.4 (Modularity Lifting Theorem). Let K be a CM field with totally real subfield
K+, and let c ∈ Gal(K/K+) denote complex conjugation. Let ρ be as in 2.3. Suppose
� ≥ 2(n + 1) and K does not contain a primitive �-th root of 1. Suppose ρ satisfies axioms
(1) and (2) of Fontaine-Mazur, as well as

(1) ρc
∼−→ ρ∨ ⊗ μ, where μ is an �-adic character of ΓK+ such that μ(cv) = −1 for

every complex conjugation cv;

(2) The restriction of ρ̄ to ΓK(ζ�) is absolutely irreducible; and

(3) For any prime v of K dividing � the restriction ρv of ρ to the decomposition group
Γv is potentially diagonalizable and is HT -regular: ρv has n distinct Hodge-Tate
weights.

Suppose ρ is residually automorphic. Then ρ is automorphic.

Remark 2.5. This is not the most general statement – there is a version of this theorem when

K is totally real, and condition (2) can be replaced by adequacy.

Remark 2.6. The first novelty is the simplification of condition (2) on the image of ρ̄:
Thorne showed in [72] that the Taylor-Wiles-Kisin method works when the image of ρ̄ is

what he called adequate, and this condition is implied by the irreducibility condition (2) as

long as � ≥ 2(n + 1). The second novelty in 2.4 is the notion of potential diagonalizabil-

ity. This is roughly the requirement that, after a finite base change, ρv , for v dividing �, is
crystalline and can be deformed in a moduli space of crystalline representations to a sum of

characters. It is known that ρv in the Fontaine-Laffaille range (the setting of [21, 70]) and

ordinary ρv (the setting of [5, 27]) are potentially diagonalizable, but the condition is more

general. In particular, it is preserved under finite ramified base change, which allows for

considerable flexibility.

2.3. Potential automorphy. The need to assume residual automorphy places important re-

strictions on the application of theorems on the model of 2.3 to reciprocity. For some appli-

cations, however, it is enough to know that a given ρ is potentially residually automorphic:

that ρ becomes residually automorphic after base change to an unspecified totally real or CM

Galois extension K ′/K. One can then often use a modularity lifting theorem to prove that

ρ | ΓK′ is automorphic, in other words that ρ is potentially automorphic. If ρ is attached to
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a motiveM , then L(s, ρ) = L(s,M) is given by an Euler product that converges absolutely
in some right half-plane. An application of Brauer’s theorem on induced characters then

implies that L(s, ρ) has a meromorphic continuation to the entire plane, and moreover (by a

theorem due to Shahidi and to Jacquet-Piatetski-Shapiro-Shalika) that L(s, ρ) has no zeroes

down to the right-hand edge of the critical strip.

Potential automorphy was introduced by Taylor in [68] in order to prove a potential

version of the Fontaine-Mazur conjecture for 2-dimensional Galois representations. The

method was generalized to higher dimensions in [39] and in subsequent work of Barnet-

Lamb. The idea is the following. A theorem of the form 2.3 can be applied to an �-adic
ρ that is residually automorphic. But it can also be applied if ρ = ρ� is a member of a

compatible family {ρ�′} of �′-adic representations, where �′ varies over all primes, provided

at least one ρ�1 in the family is known to be residually automorphic. It thus suffices to find a

motiveM of rank n such that

Hypothesis 2.7. ρ̄�,M � ρ̄ and ρ̄�1,M is known a priori to be residually automorphic for
some �1 �= �.

Typically one assumes ρ̄�′,M is induced from an algebraic Hecke character. The motives

used in [39] are the invariantsMt, under a natural group action, in the middle-dimensional

cohomology of the n−1-dimensional hypersurfacesXt with equation (depending on t, with
tn+1 ∈ P1 \ {0, 1,∞} )

ft(X0, . . . , Xn) = (Xn+1
0 + · · ·+Xn+1

n )− (n+ 1)tX0 . . . Xn = 0 (2.1)

This Dwork family of hypersurfaces was known to physicists for their role in the calculations
that led to the formulation of the mirror symmetry conjectures [11]; and they were known

to number theorists because Dwork had studied their cohomology in connection with p-adic
periods.

The isomorphism class of Xt depends on t
n+1 and one sees that their cohomology de-

fines a hypergeometric local system over P1 \ {0, 1,∞}. Properties of this local system

proved by a number of people, are used, together with a “local-global principle" due to

Moret-Bailly, to find a t over a totally real (or CM) Galois extension K ′/K such that Mt

satisfies Hypothesis 2.7.

Applying the method of potential automorphy is not always automatic. One has to satisfy

the conditions of Moret-Bailly’s theorem as well as conditions (1), (2), and (3) of 2.3. More

details can be found in [35] (which was written, however, before the simplifications of [72]

and [3]). Here are a few applications:

Theorem 2.8. LetK = Q and let Π be a cuspidal holomorphic automorphic representation
of GL(2)Q (attached to an elliptic modular form of weight k ≥ 2, say) to which one can
associate a compatible family of 2-dimensional �-adic representations ρ�,Π. Suppose Π is
not obtained by automorphic induction from a Hecke character of an imaginary quadratic
field. Then Symnρ�,Π is potentially automorphic for all n ≥ 1.

This theorem was proved first when k = 2 in [21, 39, 70], assuming Πv is a Steinberg

representation for some v. This hypothesis was dropped, and was generalized to all k in [5].
It follows from the arguments of Serre in [63] and from the non-vanishing of L(s, Symnρ)
mentioned above, that this implies the Sato-Tate conjecture for elliptic modular forms [5, 21,

39, 70]:
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Theorem 2.9. Let f be an elliptic modular newform of weight k for Γ0(N) (for some N ),
and assume the �-adic Galois representations ρ�,f attached to f are not dihedral. For any
prime p not dividing N , let ap(f) denote the eigenvalue of the normalized Hecke operator
at p on f . Let ãp(f) = ap(f)/2p

k−1
2 , which is known to be a real number in the interval

[−1, 1]. As p varies, the ãp(f) are equidistributed in [−1, 1] for the measure
√
1− t2dt.

In particular, ifE is an elliptic curve overQ without complex multiplication, and 1+p−
ap(E) is the number of points ofE over Fp, then the numbers ap(E)/2p

1
2 are equidistributed

in in [−1, 1] for the measure
√
1− t2dt.

The hypothesis that f has trivial nebentypus (is a form for Γ0(N)) is unnecessary and

was only included to allow for a simple statement. A version of 2.8 for Hilbert modular

forms was proved by Barnet-Lamb, Gee, and Geraghty, and they derived the corresponding

version of Theorem 2.9. All of these results were subsumed in the following theorem of

Patrikis and Taylor [59], a strengthening of one of the main theorems of [3]:

Theorem 2.10. Let K be totally real (resp. CM) and let {rλ} be a weakly compatible
family of λ-adic representations of ΓK (where λ runs over finite places of a number field
M ). Assume the rλ are pure of fixed weight w (the Frobenius eigenvalues at an unramified
place of norm q are Weil q

w
2 -numbers); that they are HT -regular; and that they satisfy an

appropriate polarization condition. Then there is a finite totally real (resp. CM) Galois
extensionK ′/K over which the family becomes automorphic.

The Hodge-Tate multiplicities of n-dimensional �-adic representations realized on the

cohomology of the Dwork family are at most 1; moreover, n has to be even, and each Hodge-
Tate weight between 0 and n−1 occurs. Griffiths transversality implies that such a condition

is inevitable when Hodge structures vary in non-trivial families. This appears to restrict

the applicability of the Dwork family to proving potential automorphy. However, it was

observed in [34], and more generally in [5], that it suffices to prove that a given ρ�,Π becomes

automorphic after tensoring with the Galois representation obtained by induction from an

automorphic Galois character attached to a Hecke character of an appropriate cyclic CM

extension K ′/K. This observation was applied in the proof of 2.9 and more systematically

in [3], in both cases in order to replace the given Hodge-Tate weights of ρ by the set of

weights adapted to the cohomology of the Dwork family.

Remark 2.11. Let f be as in Theorem 2.9 andΠ the associated automorphic representation.

Theorem 2.9 is equivalent to the assertion that, as p varies over primes unramified for ρ�,Π,
the conjugacy classes of ρ�,f (Frobp), normalized so that all eigenvalues have complex ab-

solute value 1, are equidistributed in the space of conjugacy classes of SU(2). A version of

the Sato-Tate conjecture can be formulated for a general motive M ; SU(2) is replaced by

the derived subgroup of the compact real form of the Mumford-Tate groupMT (M) ofM .

In order to prove this conjecture for more complicatedMT (M) one would have to be able to
prove the corresponding generalization of Theorem 2.8, with the symmetric powers replaced

by the full set of equivalence classes of irreducible representations σ of MT (M)der. But

even if the �-adic representation ρ�,M attached to M is HT -regular, σ ◦ ρ�,M is generally

not HT -regular, and thus cannot be obtained by Theorem 2.2. Thus one has no way to start

proving potential automorphy of σ ◦ ρ�,M onceMT (M)0,der is of rank greater than 1.

2.3.1. p-adic realization of very general Galois representations. It was mentioned above

that the proof of 2.2 is completed by a p-adic approximation argument. One says more gen-



Automorphic Galois representations and the cohomology of Shimura varieties 377

erally that a p-adic representation ρ : ΓK,S → GL(n,Qp) for some S is p-adically auto-
morphic if ρ = limi ρi (for example, in the sense of pseudo-representations, where the limit

can be in the Zariski or in the p-adic topology), where each ρi is an automorphic Galois rep-

resentation of ΓK,S . The theory of eigenvarieties shows that p-adically automorphic Galois

representations vary in p-adic analytic families. The representations ρp,Π of 2.2 are HT -
regular because Π is cohomological, but analytic families of p-adically automorphic Galois

representations can specialize to representations that are Hodge-Tate but not regular, and to

representations that are not Hodge-Tate at all.

One can ask whether a given ρ is p-adically automorphic. There are discrete obstructions;

for example the set of ramified primes is finite in any p-adic family. There are also sign

obstructions. The 2-dimensional Galois representations ρ�,f attached to an elliptic modular

form f are odd: det ρ�,f (c) = −1 when c is complex conjugation. In other words, no

representation ρ for which det ρ�,f (c) = 1 can be obtained in the cohomology of a Shimura

variety. The signature of complex conjugation is constant on p-adic analytic families of

Galois representations, and therefore represents an obstruction to realizing such an even
representation as a p-adically automorphic representation.

However, the direct sum of two even representations does not necessarily have such

a sign obstruction. Similar discrete invariants characterize p-adically automorphic Galois

representations in higher dimension, but they can be made to vanish upon taking appropriate

direct sums. Say ρ is p-adically stably automorphic if ρ ⊕ ρ′ is p-adically automorphic for

some ρ′. One knows what this means ifK is a totally real or CM field. If not, letK0 ⊂ K be

the maximal totally real or CM subfield, and say a p-adic representation ρ is p-adically stably
automorphic if ρ ⊕ ρ′ is the restriction to ΓK of a p-adically automorphic representation of

ΓK0
.

Question 2.12. Is every p-adic representation of ΓK that satisfies the Fontaine-Mazur ax-
ioms stably p-adically automorphic?

The main theorem of [30] states, roughly, that every p-adic representation of ΓK is

“stably potentially residually automorphic,” where the reader is invited to guess what that

means.

One can often define analytic or geometric invariants of p-adic families by interpolation

of their specializations to automorphic points. Thus one defines p-adic L-functions or Galois
cohomology (Selmer groups) of p-adic families. Specializations to points not known to be

automorphic (e.g., because they are not HT -regular) define invariants of the corresponding
Galois representations.

2.3.2. Prospects for improvement.

(a) Condition (1) in Theorem 2.4 corresponds to the polarization condition in (b) of The-

orem 2.2. At present no one knows how to remove this condition and thus to prove the

reciprocity conjecture for all representations constructed in Theorem 2.2 (see, how-

ever, the articles [10] of Calegari and Geraghty and [31] of Hansen). Removing con-

dition (1) is sufficient, and probably necessary, to show that the ρ�,Π of Theorem 2.2

are irreducible for (almost) all �.

(b) Although we have seen that substitutes can be found for residual irreducibility in ap-

plications to compatible families, it remains a major obstacle for many applications. In

addition to the argument applied in Skinner-Wiles for 2-dimensional representations

of ΓQ, Thorne has recently found a new method based on level raising [73].
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(c) The article [70] replaces the very deep questions regarding congruences between au-

tomorphic forms of different levels (“level-raising”, which an earlier version of [21]

proposed to solve by generalizing Ihara’s Lemma on congruences between elliptic

modular forms) by a careful study of the singularities of certain varieties of tame rep-

resentations of local Galois groups. But this comes at the cost of losing control of

nilpotents in the deformation rings. In particular, current methods cannot classify lift-

ings of ρ̄ to rings in which � is nilpotent. This may be important if one wants to extend

the results of this section to the torsion representations constructed by Scholze.

(d) Dieulefait has expanded on the ideas used by Khare and Wintenberger to prove the

Serre conjecture and has proved some astonishing results. For example, he has proved

base change of elliptic modular forms to any totally real extension [23]. The methods

of [46] and of [23] do not assume residual automorphy but actually prove it in the

cases they consider. It is not yet known whether or not these methods can be applied

in higher dimension.

(e) The authors of [3] ask whether every potentially crystalline representation is poten-

tially diagonalizable. An affirmative answer would expand the range of their methods.

The regularity hypothesis of Condition (3) seems insuperable for the moment. At

most one can hope to prove reciprocity for representations like those constructed in

[28], with Hodge-Tate multiplicities at most 2. The recent proof by Pilloni and Stroh

of the Artin conjecture for (totally odd) 2-dimensional complex representations of ΓK ,

when K is totally real, is the strongest result known in this direction. As long as one

has no method for constructing automorphic Galois representations with Hodge-Tate

multiplicities 3 or greater, the reciprocity question for such representations will remain

inaccessible.

3. Critical values of automorphic L-functions

3.1. Critical values and automorphic motives. LetM be a (pure) motive of rank n over

a number field K, with coefficients in a number field E. By restriction of scalars we can

and will regard M as a motive of rank n[K : Q] over Q. The values at integer points of

the L-function L(s,M) are conjectured to contain deep arithmetic information about M .

If, for example, M = M(A) is the motive attached to the cohomology in degree 1 of an

abelian variety A, then the value, or more generally the first non-vanishing derivative, of

L(s,M(A)) at s = 1 is predicted by the Birch-Swinnerton-Dyer conjecture. This is the only
critical value of L(s,M(A)), in the sense of Deligne (the importance of critical values had

previously been noted by Shimura). Deligne formulated his conjecture on critical values in

one of his contributions to the 1977 Corvallis conference. We follow Deligne in working

with motives for absolute Hodge cycles; thusM is by definition a collection of compatible

realizations in the cohomology of smooth projective algebraic varieties. The realization in

�-adic cohomology gives the Galois representation ρ�,M on an �-adic vector spaceM�, and

therefore determines L(s,M). Extension of scalars from Q to C makes M a motive over

C, whose cohomology is thus a direct factor of the cohomology of a complex manifold,

whose topological cohomology is a Q-vector space calledMB (Betti realization). Complex

conjugation on the points ofM(C) acts onMB as an involution F∞. As a motive over Q,

M also has the algebraic de Rham cohomology, a Q-vector space MdR with a decreasing



Automorphic Galois representations and the cohomology of Shimura varieties 379

Hodge filtration . . . F qMdR ⊂ F q−1MdR . . . byQ-subspaces. For any integerm letM(m)
denote the Tate twistM ⊗Q(m). Hodge theory defines comparison isomorphisms

I(m)M,∞ :M(m)B ⊗ C
∼−→ M(m)dR ⊗ C.

This isomorphism does not respect the rational structures on the two sides. By restricting

I(m)M,∞ to the +1-eigenspace of F∞ inM(m)B and then projecting on a certain quotient

M(m)dR/F
qM(m)dR⊗C, one defines an isomorphism between two complex vector spaces

of dimension roughly half that of M , provided M(m) is critical in Deligne’s sense. The

determinant of this isomorphism, calculated in rational bases of the two sides, is the Deligne
period c+Q (M(m)). It is a determinant of a matrix of integrals of rational differentials inMdR

over rational homology cycles, and is well defined up to Q×-multiples. More generally, if

M is amotive with coefficients in a number fieldE – in other words, if there are actions ofE
on each of the vector spacesMB ,MdR,M�, compatible with the comparison isomorphisms

– then there is a Deligne period c+E(M(m)) well-defined up to E×-multiples; moreover,

L(s,M) then defines an element of E ⊗ C, as in [22]. In the following discussion we will

drop the subscript and just write c+(M(m)) for the Deligne period with coefficients.
We call s = m a critical value of L(s,M) ifM(m) is critical. The set of criticalm can

be read off from the Gamma factors in the (conjectural) functional equation ofL(s,M) ([22],
Definition 1.3). WhenM = M(A), s = 1 is the only critical value. Deligne’s conjecture is

the assertion that

Conjecture 3.1 ([22]). Ifm is a critical value of the motiveM with coefficients in E, then

L(m,M)/c+(M(m)) ∈ E×.

Beilinson’s conjectures express the non-critical integer values of L(s,M) at non-critical
integers in terms of the motivic cohomology (higher algebraic K-theory) of M . Automor-

phic methods give very little information about non-critical values of the L-functions of

motives that can be related to automorphic forms, and this survey has nothing to say about

them. On the other hand, the de Rham realizations of the motives that arise in the coho-

mology of Shimura varieties are given explicitly in terms of automorphic forms. One can

therefore state versions of Deligne’s conjecture for certain of these motives entirely in the

language of automorphic forms.5 The literature on special values of L-functions is vast and a
book-length survey is long overdue. Automorphic versions of Deligne’s conjecture represent

a relatively small segment of the literature that is still too extensive for treatment in the space

of this article. The proofs are generally quite indirect, not least because one can rarely write

downMB in terms of automorphic forms. WhenM is realized in the cohomology (with co-

efficients) of a Shimura variety S(G), one can occasionally define non-trivial classes inMB

by projecting ontoM the cycles defined by Shimura subvarieties S(G′) ⊂ S(G). Integrating
differential forms on S(G) × S(G) over the diagonal cycle S(G) amounts to computing a

5Strictly speaking, Deligne’s conjecture only makes sense in the setting of a theory of motives that is the sub-

ject of very difficult conjectures. For example, one expects that if M and M ′ are motives such that the triples

(MB ,MdR, I(m)M,∞) and (M ′
B ,M ′

dR, I(m)M′,∞) are isomorphic, then M and M ′ are isomorphic as mo-

tives. This would follow from the Hodge conjecture. Similarly, one assumes that L(s,M) = L(s,M ′) implies

thatM 	 M ′; this would follow from the Tate conjecture.

Blasius’s proof of Deligne’s conjecture for L-functions of Hecke characters of CM fields is carried out within

the framework of motives for absolute Hodge cycles. It is practically the only authentically motivic result known in

this direction.
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cohomological cup product. In this brief account we limit our attention to a class of motives

whose Deligne periods can be factored as products of cup products of this kind.

Suppose K is a CM field. As explained in 2.1.1, most of the representations ρ�,Π of

ΓK are realized in the cohomology of a Shimura varieties S(G) attached to unitary groups

G. Along with the n-dimensional Galois representation this construction yields a candidate

for the rank n motive M(Π). Originally M(Π) is defined over K; one obtains a motive

RM(Π) = RK/QM(Π) by restriction of scalars to Q, taking into account the theorem of

Borovoi and Milne on conjugation of Shimura varieties (the Langlands conjecture). The

spaces RM(Π)dR and RM(Π)B satisfy analogues of conditions (1) and (3) of Theorem

2.4. The regularity condition (3) implies there is a set of integers q1 < q2 < · · · < qn
such that dimE F

qRM(Π)dR/F
q+1RM(Π)dR = 1 if and only if q = qi for some i, and

the dimension is 0 otherwise. Here E = E(Π) is the field of coefficients of RM(Π) (more

precisely, E is a finite product of number fields). We choose a non-zero Q-rational E-basis
ωi of F

qiRM(Π)dR/F
qi+1RM(Π)dR, view ωi as a (vector-valued) automorphic form on

G(Q)\G(A), and let Qi(Π) =< ωi, ωi > denote its appropriately normalized L2 inner

product with itself.

Conjecture 3.2. Up to multiplication by E×, each Qi(Π) depends only on the automor-
phic representation Π of GL(n) and not on the realization in the cohomology of a Shimura
variety.

This conjecture is implied by the Tate conjecture. It has been verified in many cases for

the (holomorphic) period Q1(Π). The author has partial results for general Qi(Π).
Given any motive M of rank n satisfying conditions (1) and (3) of 2.4 we can define

invariantsQi(M) in the same way, and a determinant factor q(M) (for this and what follows,
see [32, 36], and section 4 of [29]). For any integer 0 ≤ r ≤ n we write

P≤r(M) = q(M)−1 ·
∏
i≤r
Qi(M).

LetM ′ be a second motive of rank n′, satisfying conditions (1) and (3) of 2.4. Then for any
integerm critical for RK/Q(M ⊗M ′) there is a factorization (cf. [29] (4.11)):

c+(R(M ⊗M ′)(m)) ∼ (2πi)c(m,n,n
′)

n∏
r=1

P≤r(M)ar

n′∏
r′=1

P≤r′(M
′)br′ (3.1)

where ∼ means that the ratio of the two sides lies in the multiplicative group of the co-

efficient field, c(m,n, n′) is an explicit polynomial in m and the dimensions, 0 ≤ ar :=
a(r,M,M ′), br′ := b(r′,M,M ′) and∑

r

ar ≤ n′;
∑
r′
br′ ≤ n.

Defining Π as above, there is an (ad hoc) determinant factor q(Π), and we let

P≤r(Π) = q(Π)−1 ·
∏
i≤r
Qi(Π).

An automorphic version of Deligne’s conjecture is
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Conjecture 3.3. Let Π and Π′ be cuspidal automorphic representations of GL(n)K and
GL(n′)K , satisfying the hypotheses of Theorem 2.2 (b). Letm be a critical value of

L(s,RK/Q(M(Π)⊗M(Π′)) = L(s− n+ n
′ − 2

2
,Π×Π′).

Then

L(m,RK/Q(M(Π)⊗M(Π′))) ∼ (2πi)c(m,n,n
′)
n−1∏
r=1

P≤r(Π)ar

n−2∏
r′=1

P≤r′(Π
′)br′ ,

with ar, br′ as in (3.1).

The integers ar and br′ of (3.1) are determined purely by the relative position of the

Hodge decompositions of MdR ⊗ C and M ′
dR ⊗ C (and don’t depend on m). Suppose

M = RM(Π), M ′ = RM(Π′), with Π and Π′ as in (3.3). The regularity hypotheses

imply that there are finite-dimensional representations W (Π∞) and W ′(Π′∞) of GL(n)K
and GL(n′)K , respectively, such that Π∞ and W (Π∞) (resp. Π′∞ and W ′(Π′∞)) have the
same infinitesimal characters. The ai and bi′ can be computed explicitly in terms of the

highest weights ofW (Π∞) andW ′(Π′∞). For example, suppose n′ = n− 1 and

HomGL(n−1,K⊗C)(W (Π∞)⊗W (Π′∞),C) �= 0. (3.2)

Then ai = bi′ = 1, 1 ≤ i ≤ n− 1; 1 ≤ i′ ≤ n− 2; an = bn−1 = 0.

Theorem 3.4. Suppose K is an imaginary quadratic field. Let Π and Π′ be as in 3.3. Sup-
pose moreover that the infinitesimal characters ofΠ∞ andΠ′∞ satisfy 3.2 and are sufficiently
regular. Then there are constants c′(m,Π∞,Π′∞) such that

L(m,RK/Q(M(Π)⊗M(Π′)))/[c′(m,Π∞,Π
′
∞)

n−1∏
r=1

P≤r(Π)
n−2∏
r′=1

P≤r′(Π
′)] ∈ Q (3.3)

for every critical valuem.

This is a reinterpretation of Theorem 1.2 of [29]. There the invariants P≤r(Π) are re-

placed by complex numbers P (r)(Π), which are Petersson square norms of holomorphic
automorphic forms on unitary Shimura varieties of different signatures (and it is shown that

the quotient in (3.3) lies in a specific number field). Naturally one expects the constants

c′(m,Π∞,Π′∞) to be powers of 2πi. The Tate conjecture implies an identity between the

two kinds of invariants, and this has been proved (up to unspecified archimedean factors, and

up to Q-multiples) in [33] (and subsequent unpublished work).

The methods of [29] are based on interpreting the Rankin-Selberg integral for GL(n)×
GL(n − 1) as a cohomological cup product. Such arguments have been used previously

by Mahnkopf and Raghuram; see [60] for the most general results in this direction. Earlier

results on this problem were conditional on the conjecture that certain archimedean zeta inte-

grals did not vanish identically. Sun’s recent proof of this conjecture [66] has revived interest

in the problem and one can expect rapid progress in the next few years. For general number

fields one does not have the analogues of the invariants P≤r(Π) and the results of [60] are

expressed in terms of period invariants obtained by comparing the cohomological rational

structure ofΠwith one defined byWhittaker models. The (mild) regularity hypothesis of 3.4
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is required in the comparison of these Whittaker period invariants with the motivic invariants

P≤r(Π). Similar arguments should suffice to treat the cases of Conjecture 3.3 for n′ ≤ n−1
that satisfy an analogue of (3.2), for general CM fields. (The case where n′ = 1 was treated

by the author in a series of papers, starting with [32], and is used crucially in the proof of

Theorem 3.4.) The full scope of the methods of [29] is not yet clear, but it is certain that it is

not limited to the situation of (3.2). The identification of c′(m,Π∞,Π′∞) with the invariant

(2πi)c(m,n,n−1) is likely to follow from these methods as well.6

3.2. How general are these results? Only a restricted class of Galois representations can

be obtained using the cohomology of Shimura varieties, and only those that can be realized

directly in the cohomology are associated to motives that admit an automorphic interpreta-

tion. The Rankin-Selberg L-functions described in the previous section, along with a few

related constructions (symmetric and exterior squares and adjoint L-functions), seem to be

the only ones whose critical values can be analyzed by automorphic methods. Raghuram’s

results in [60] apply only under the hypothesis (3.2). It should be straightforward to gen-

eralize his methods to pairs Π, Π′ where Π is cuspidal and Π′ is an essentially tempered

cohomological Eisenstein series, as in [29] (or earlier work of Mahnkopf). If Raghuram’s

results could be extended to cases where neither Π nor Π′ is cuspidal, then the hypothesis

(3.2) would be superfluous (in Theorem 3.4 as well).

A motivic analysis of critical values of Rankin-Selberg L-functions, as in Theorem 3.4,

has thus far only been carried out for CM fields. Bhagwat has proved an analogue of the

relation (3.1) when K = Q, following earlier work of Yoshida (see the appendix to [60])

and similar factorizations must hold for totally real fields. As far as I know, no one has

proposed automorphic interpretations of the terms that occur in Bhagwat’s factorization.

For Π satisfying the polarization condition as in (b) of Theorem 2.2 it should be possible to

interpret some of them as periods of motives realized in the cohomology of Shimura varieties

attached to special orthogonal groups of signature (2, n). In the absence of a polarization

condition, Shimura varieties seem to be of no help.

3.3. Exact formulas for the central critical value. The conjectures of Bloch-Kato and

Fontaine-Perrin-Riou give exact formulas for special values of motivic L-functions. The

algebraic quotients L(m,M)/c+(M(m)) and their generalizations to non-critical values

are expressed explicitly as products of local and global algebraic factors defined in terms

of Galois cohomology. For the central critical value these expressions generalize the Birch-

Swinnerton-Dyer conjecture for the value at s = 1 of L(s,M(A)), in the notation of the

previous section.

Beginning with the thesis of Waldspurger, exact formulas have also been found for cer-

tain central values of automorphic L-functions. The conjecture of Ichino-Ikeda, and its

version for unitary groups formulated by N. Harris, [42, 45] give exact formulas for central

values in the framework of the Gan-Gross-Prasad conjectures [26]. In what follows K is

a CM field. We change notation and let Π denote a cuspidal automorphic representation

of GL(n)K that descends to a (cuspidal) L-packet PΠ,V of a given G = U(V ), viewed
as group over K+, with dimV = n. Similarly, Π′ is an automorphic representation of

GL(n− 1)K obtained by base change from a (cuspidal) L-packet PΠ′,V ′ of G
′ = U(V ′). It

6Note added in proof. This has now been carried out, at least when the coefficients are sufficiently regular, by

Lin Jie.
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is assumed that V ′ embeds in V as a non-degenerate hermitian subspace of codimension 1.
For any π ∈ PΠ,V and π′ ∈ PΠ′,V ′ , the pairing

I = π ⊗ π′ → C : f ⊗ f ′ !→
∫
G′(K+)\G′(A)

f(g′)f ′(g′)dg′, f ∈ π, f ′ ∈ π′ (3.4)

is invariant under the diagonal action of G′(A). One of the Gan-Gross-Prasad conjectures

asserts that the space of such invariant pairings is of dimension 1 for exactly one pair (V, V ′)
and one pair (π, π′) ∈ PΠ,V × PΠ′,V ′ , and that the lucky pair is identified by a compli-

cated formula involving root numbers. The non-archimedean part of this conjecture has

been proved by R. Beuzart-Plessis, following the method used by Waldspurger to solve the

analogous conjecture for special orthogonal groups [7, 74]. Thus if one fixes a non-trivial

pairing B : π ⊗ π′ → C, the pairing I defined in 3.4 is a multiple of B. The Ichino-Ikeda
Conjecture can be seen as a determination of this multiple. In the statement of the conjecture,

the superscript ∨ denotes contragredient; all integrals are taken with respect to Tamagawa

measure.

Conjecture 3.5 ([45]). Let f ∈ π, f ′ ∈ π′, f∨ ∈ π∨, f ′,∨ ∈ π′,∨, and suppose all four
vectors are factorizable. Then

I(f, f ′) · I(f∨, f ′,∨)
< f, f∨ >2< f ′, f ′,∨ >2

= 2−r
∏
v∈S

Zv(f, f
′, f∨, f ′,∨) ·Δ · L( 12 ,Π×Π′)

L(1, π, Ad)L(1, π′, Ad)
.

Here < •, • >2 are the L2 pairings, the factor 2
−r is trivial when Π and Π′ are cuspidal

but not in general, S is the set of ramified primes for π, π′, and the chosen vectors, includ-

ing archimedean primes, the Zv for v ∈ S are normalized integrals of matrix coefficients

attached to the data, Δ is a special value of a finite product of abelian L-functions (the L-
function of the Gross motive), the numerator on the right-hand side is the Rankin-Selberg

product for GL(n) × GL(n − 1), and the factors in the denominator are the Langlands

L-functions for G and G′ attached to the adjoint representations of their L-groups.
Here and elsewhere,L(s, •) denotes the non-archimedean Euler product. TheL-functions

in the right-hand side are given the unitary normalization. Thus the completed L-function
Λ(s) = L∞(s,Π×Π′) ·L(s,Π⊗Π′) in the numerator of the right-hand side always satisfies

Λ(s) = ±Λ(1 − s). When Π and Π′ satisfy (b) of 2.2, however, there is a second (motivic)

normalization as well, in which the value s = 1
2 is replaced by an integer value, and all the

values of L-functions that occur in the right-hand side are critical.

Conjecture 3.5 is of no interest when the sign is−1, because the numerator vanishes triv-

ially. When the L-function is motivic, there have been proposals for an arithmetic substitute

for the conjecture in this case, with L( 12 , •) replaced by its derivative at s = 1
2 , along the

lines of the Gross-Zagier conjecture and subsequent work. When the sign is +1, the conjec-
ture refines the global Gan-Gross-Prasad conjecture, which asserts that L( 12 ,Π×Π′) = 0 if
and only if the pairing I of 3.4 is trivial.

When L( 12 ,Π×Π′) �= 0, Conjecture 3.5 gives an exact expression for its value, provided
one can make good choices of the test vectors f, f ′, f∨, f ′,∨ and can control the local zeta

integrals. It is natural to speculate that these zeta integrals can be interpreted in terms of

local Galois cohomological information, and that when Π and Π′ are attached to motives,

the expressions on the two sides of Conjecture 3.5 can be matched termwise with corre-

sponding expressions in the Bloch-Beilinson and Bloch-Kato conjectures. The local factor
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Zv(f, f
′, f∨, f ′,∨) is the integral of the matrix coefficient of πv attached to the pair (fv, f

∨
v )

against the matrix coefficient of π′v attached to (f
′
v, f

′,∨
v ). The following question is deliber-

ately vague.

Question 3.6. For any given pair of local (ramified) representations πv , π′v , is there a
quadruple fv, f ′v, f

∨
v , f

′,∨
v such that the local zeta integral Zv(f, f ′, f∨, f ′,∨) exactly equals

the local Galois-cohomological factor in the Bloch-Kato conjecture?

As explained in [37], the expressions on the left-hand side are algebraic multiples of

invariants called Gross-Prasad periods that depend only on Π and Π′, provided the test

vectors are chosen to be rationally normalized (with respect to coherent cohomology). The

denominators are closely related to the P≤r defined above. Combining Conjecture 3.5 with

Conjecture 3.3, one gets conjectural expressions for the Gross-Prasad periods as well in

terms of P≤r(π) and P≤r′(π′); see [37], Conjecture 5.16.
In order to compare the local terms of Conjecture 3.5 with the Galois-cohomological

data of the Bloch-Kato conjecture, integral normalizations of the test vectors are needed. It

is well known, however, that even the module of elliptic modular forms with integral modular

Fourier coefficients is not spanned by Hecke eigenfunctions. This is the phenomenon of con-
gruences between Hecke eigenvalues for different automorphic representations, which is the

subject of theorems of the form 2.3, and it is no less relevant to automorphic representations

of groups other than GL(2).

3.3.1. Adjoint L-functions. The denominator of the Ichino-Ikeda formula is relevant to

the problem of integral normalization of test vectors. The point s = 1 is the only criti-

cal value of the adjoint L-functions that occur there. Suppose π has an associated motive

M(Π) =M(π). Then for any prime �, the Bloch-Kato conjecture identifies the �-adic val-
uation of the quotient of L(1, π, Ad) by an (integrally normalized) Deligne period with the

order of a Galois cohomology group that is supposed to count the number of �-adic defor-
mations of the residual Galois representation ρ̄�,π . When n = 2 and K is totally real, a

version of this conjecture has been proved by Diamond-Flach-Guo and Dimitrov, combining

the methods of Theorem 2.4 with the results of [44].

Hida’s paper [44] was the starting point for his theory of families of modular forms, and

was the first to establish a relation between the critical value of the adjoint L-function and

congruences between modular forms. In dimension n > 2, the special cases of the Ichino-
Ikeda conjecture proved by Wei Zhang in [75] are used in [29] to relate the Whittaker period

of a Π satisfying (b) of Theorem 2.2 to L(1, π, Ad), up to rational multiples. One hopes

this provides a starting point for determining L(1, π, Ad) up to units in number fields, as

required by the Bloch-Kato conjecture.

3.4. Two speculative remarks on automorphic p-adic L-functions.

Remark 3.7. Deligne’s conjecture is the starting point of the construction of p-adic L-
functions. The algebraic values on the left-hand side of the identify in 3.1, suitably nor-

malized, are predicted to extend analytically whenever M and m vary in p-adic families.

The literature is vast but fragmentary, and the author’s ongoing project with Eischen, Li,

and Skinner will only add one (rather bulky) fragment to the collection when it is finished.

Current plans are limited to ordinary (Hida) families, but ultimately one expects the method

to extend to completely general families. In particular, such p-adic L-functions could be



Automorphic Galois representations and the cohomology of Shimura varieties 385

specialized to the “very general” p-adic representations of 2.3.1. Moreover, using Brauer in-

duction, one could even attach a p-adic L-functions to a motivic Galois representation ρp,M
that is potentially p-adically automorphic. Although such a function would have no obvious

connection to the complex L-function of M , it could conceivably be related to the Galois

cohomology of ρp,M .

Remark 3.8. One can study the behavior of the right-hand side of Conjecture 3.5 when Π
and Π′ vary in p-adic families. Given the right choice of data in the local zeta integrals at

primes dividing p, the result should be a p-adic meromorphic function of Π and Π′. Can this
function be constructed directly on the left-hand side of the identity?
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The ternary Goldbach problem

Harald Andrés Helfgott

Abstract. The ternary Goldbach conjecture, or three-primes problem, states that every odd number

n greater than 5 can be written as the sum of three primes. The conjecture, posed in 1742, remained

unsolved until now, in spite of great progress in the twentieth century. In 2013 – following a line of

research pioneered and developed by Hardy, Littlewood and Vinogradov, among others – the author

proved the conjecture. In this, as in many other additive problems, what is at issue is really the proper

usage of the limited information we possess on the distribution of prime numbers. The problem serves

as a test and whetting-stone for techniques in analysis and number theory – and also as an incentive

to think about the relations between existing techniques with greater clarity. We will go over the main

ideas of the proof. The basic approach is based on the circle method, the large sieve and exponential

sums. For the purposes of this overview, we will not need to work with explicit constants; however, we

will discuss what makes certain strategies and procedures not just effective, but efficient, in the sense

of leading to good constants. Still, our focus will be on qualitative improvements.
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Keywords. Analytic number theory, additive problems, prime numbers.

The question we will discuss, or one similar to it, seems to have been first posed by

Descartes, in a manuscript published only centuries after his death [14, p. 298]. Descartes

states: “Sed & omnis numerus par fit ex uno vel duobus vel tribus primis” (“But also every

even number is made out of one, two or three prime numbers.”) This statement comes in the

middle of a discussion of sums of polygonal numbers, such as the squares.

Statements on sums of primes and sums of values of polynomials (polygonal numbers,

powers nk, etc.) have since shown themselves to be much more than mere curiosities – and

not just because they are often very difficult to prove. Whereas the study of sums of powers

can rely on their algebraic structure, the study of sums of primes leads to the realization that,

from several perspectives, the set of primes behaves much like the set of integers – and that

this is truly hard to prove.

If, instead of the primes, we had a random set of odd integers S whose density – an

intuitive concept that can be made precise – equaled that of the primes, then we would

expect to be able to write every odd number as a sum of three elements of S, and every even
number as the sum of two elements of S. We would have to check by hand whether this

is true for small odd and even numbers, but it is relatively easy to show that, after a long

enough check, it would be very unlikely that there would be any exceptions left among the

infinitely many cases left to check.

The question, then, is in what sense we need the primes to be like a random set of

integers; in other words, we need to know what we can prove about the regularities of the
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distribution of the primes. This is one of the main questions of analytic number theory;

progress on it has been very slow and difficult. Thus, the real question is how to use well the

limited information we do have on the distribution of the primes.

1. History and new developments

The history of the conjecture starts properly with Euler and his close friend, Christian Gold-

bach, both of whom lived and worked in Russia at the time of their correspondence – about

a century after Descartes’ isolated statement. Goldbach, a man of many interests, is usually

classed as a serious amateur; he seems to have awakened Euler’s passion for number theory,

which would lead to the beginning of the modern era of the subject [71, Ch. 3, §IV]. In

a letter dated June 7, 1742 – written partly in German, partly in Latin – Goldbach made a

conjectural statement on prime numbers, and Euler rapidly reduced it to the following con-

jecture, which, he said, Goldbach had already posed to him: every positive integer can be

written as the sum of at most three prime numbers.

We would now say “every integer greater than 1”, since we no long consider 1 to be a

prime number. Moreover, the conjecture is nowadays split into two:

• the weak, or ternary, Goldbach conjecture states that every odd integer greater than 5
can be written as the sum of three primes;

• the strong, or binary, Goldbach conjecture states that every even integer greater than 2
can be written as the sum of two primes.

As their names indicate, the strong conjecture implies the weak one (easily: subtract 3 from

your odd number n, then express n− 3 as the sum of two primes).

The strong conjecture remains out of reach. A short while ago – the first complete version

appeared on May 13, 2013 – the present author proved the weak Goldbach conjecture.

Main Theorem. Every odd integer greater than 5 can be written as the sum of three primes.

The proof is contained in the preprints [28], [27], [29]. It builds on the great progress

towards the conjecture made in the early 20th century by Hardy, Littlewood and Vinogradov.

In 1937, Vinogradov proved [67] that the conjecture is true for all odd numbers n larger than
some constant C. (Hardy and Littlewood had shown the same under the assumption of the

Generalized Riemann Hypothesis, which we shall have the chance to discuss later.)

It is clear that a computation can verify the conjecture only for n ≤ c, c a constant:

computations have to be finite. What can make a result coming from analytic number theory

be valid only for n ≥ C?
An analytic proof, generally speaking, gives us more than just existence. In this kind of

problem, it gives us more than the possibility of doing something (here, writing an integer n
as the sum of three primes). It gives us a rigorous estimate for the number of ways in which

this something is possible; that is, it shows us that this number of ways equals

main term+ error term, (1.1)

where the main term is a precise quantity f(n), and the error term is something whose

absolute value is at most another precise quantity g(n). If f(n) > g(n), then (1.1) is non-

zero, i.e., we will have shown that the existence of a way to write our number as the sum of

three primes.
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(Since what we truly care about is existence, we are free to weigh different ways of

writing n as the sum of three primes however we wish – that is, we can decide that some

primes “count” twice or thrice as much as others, and that some do not count at all.)

Typically, after much work, we succeed in obtaining (1.1) with f(n) and g(n) such that

f(n) > g(n) asymptotically, that is, for n large enough. To give a highly simplified example:

if, say, f(n) = n2 and g(n) = 100n3/2, then f(n) > g(n) for n > C, where C = 104, and
so the number of ways (1.1) is positive for n > C.

We want a moderate value of C, that is, a C small enough that all cases n ≤ C can be

checked computationally. To ensure this, we must make the error term bound g(n) as small

as possible. This is our main task. A secondary (and sometimes neglected) possibility is

to rig the weights so as to make the main term f(n) larger in comparison to g(n); this can
generally be done only up to a certain point, but is nonetheless very helpful.

As we said, the first unconditional proof that odd numbers n ≥ C can be written as

the sum of three primes is due to Vinogradov. Analytic bounds fall into several categories,

or stages; quite often, successive versions of the same theorem will go through successive

stages.

1. An ineffective result shows that a statement is true for some constant C, but gives
no way to determine what the constant C might be. Vinogradov’s first proof of his

theorem (in [67]) is like this: it shows that there exists a constant C such that every

odd number n > C is the sum of three primes, yet gives us no hope of finding out

what the constant C might be.1 Many proofs of Vinogradov’s result in textbooks are

also of this type.

2. An effective, but not explicit, result shows that a statement is true for some unspecified

constant C in a way that makes it clear that a constant C could in principle be deter-

mined following and reworking the proof with great care. Vinogradov’s later proof

([68], translated in [69]) is of this nature. As Chudakov [8, §IV.2] pointed out, the

improvement on [67] given by Mardzhanishvili [41] already had the effect of making

the result effective.2

3. An explicit result gives a value of C. According to [8, p. 201], the first explicit version
of Vinogradov’s result was given by Borozdkin in his unpublished doctoral disserta-

tion, written under the direction of Vinogradov (1939): C = exp(exp(exp(41.96))).
Such a result is, by definition, also effective. Borodzkin later [2] gave the value

C = ee
16.038

, though he does not seem to have published the proof. The best – that is,

smallest – value of C known before the present work was that of Liu and Wang [40]:

C = 2 · 101346.
4. What we may call an efficient proof gives a reasonable value for C – in our case, a

value small enough that checking all cases up to C is feasible.

How far were we from an efficient proof? That is, what sort of computation could ever

be feasible? The number of picoseconds since the beginning of the universe is less than

1030, whereas the number of protons in the observable universe is currently estimated at

1Here, as is often the case in ineffective results in analytic number theory, the underlying issue is that of Siegel
zeros, which are believed not to exist, but have not been shown not to; the strongest bounds on (i.e., against the

existence of) such zeros are ineffective, and so are all of the many results using such estimates.

2The proof in [41] combined the bounds in [67] with a more careful accounting of the effect of the single possible

Siegel zero within range.
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∼ 1080. This means that even a parallel computer the size of the universe could never

perform a computation requiring 10110 steps, even if it ran for the age of the universe. Thus,
C = 2 · 101346 is too large.

I gave a proof with C = 1029 in May 2013. Since D. Platt and I had verified the

conjecture for all odd numbers up to n ≤ 8.8 · 1030 by computer [31], this established the

conjecture for all odd numbers n.
(In December 2013, C was reduced to 1027 [29]. The verification of the ternary Gold-

bach conjecture up to n ≤ 1027 can be done in a home computer over a weekend. All must be

said: this uses the verification of the binary Goldbach conjecture for n ≤ 4 ·1018 [46], which
itself required computational resources far outside the home-computing range. Checking the

conjecture up to n ≤ 1027 was not even the main computational task that needed to be ac-

complished to establish the Main Theorem – that task was the finite verification of zeros of

L-functions in [48], a general-purpose computation that should be useful elsewhere. We will

discuss the procedure at the end of the article.)

What was the strategy of [27–29]? The basic framework is the one pioneered by Hardy

and Littlewood for a variety of problems – namely, the circle method, which, as we shall see,
is an application of Fourier analysis over Z. (There are other, later routes to Vinogradov’s

result; see [21, 24] and especially the recent work [57], which avoids using anything about

zeros ofL-functions inside the critical strip.) Vinogradov’s proof, like much of the later work

on the subject, was based on a detailed analysis of exponential sums, i.e., Fourier transforms

over Z. So is the proof that we will sketch.
At the same time, the distance between 2 · 101346 and 1027 is such that we cannot hope

to get to 1027 (or any other reasonable constant) by fine-tuning previous work. Rather, we

must work from scratch, using the basic outline in Vinogradov’s original proof and other,

initially unrelated, developments in analysis and number theory (notably, the large sieve).

Merely improving constants will not do; we must do qualitatively better than previous work

(by non-constant factors) if we are to have any chance to succeed. It is on these qualitative

improvements that we will focus.

* * *

It is only fair to review some of the progress made between Vinogradov’s time and ours.

Here we will focus on results; later, we will discuss some of the progress made in the tech-

niques of proof. For a fuller account up to 1978, see R. Vaughan’s ICM lecture notes on the

ternary Goldbach problem [65].

In 1933, Schnirelmann proved [56] that every integer n > 1 can be written as the sum of

at mostK primes for some unspecified constantK. (This pioneering work is now considered

to be part of the early history of additive combinatorics.) In 1969, Klimov gave an explicit

value for K (namely, K = 6 · 109); he later improved the constant to K = 115 (with G.

Z. Piltay and T. A. Sheptickaja) and K = 55. Later, there were results by Vaughan [63]

(K = 27), Deshouillers [15] (K = 26) and Riesel-Vaughan [54] (K = 19).
Ramaré showed in 1995 that every even number n > 1 can be written as the sum of at

most 6 primes [51]. In 2012, Tao proved [58] that every odd number n > 1 is the sum of at

most 5 primes.

There have been other avenues of attack towards the strong conjecture. Using ideas close

to those of Vinogradov’s, Chudakov [9, 10], Estermann [19] and van der Corput [62] proved

(independently from each other) that almost every even number (meaning: all elements of a

subset of density 1 in the even numbers) can be written as the sum of two primes. In 1973, J.-
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R. Chen showed [4] that every even number n larger than a constant C can be written as the

sum of a prime number and the product of at most two primes (n = p1+p2 or n = p1+p2p3).
Incidentally, J.-R. Chen himself, together with T.-Z. Wang, was responsible for the best

bounds on C (for ternary Goldbach) before Lui and Wang: C = exp(exp(11.503)) <
4 · 1043000 [6] and C = exp(exp(9.715)) < 6 · 107193 [7].

Matters are different if one assumes the Generalized Riemann Hypothesis (GRH). A

careful analysis [18] of Hardy and Littlewood’s work [23] gives that every odd number n ≥
1.24 · 1050 is the sum of three primes if GRH is true. According to [18], the same statement

with n ≥ 1032 was proven in the unpublished doctoral dissertation of B. Lucke, a student of
E. Landau’s, in 1926. Zinoviev [72] improved this to n ≥ 1020. A computer check ([16];

see also [55]) showed that the conjecture is true for n < 1020, thus completing the proof of

the ternary Goldbach conjecture under the assumption of GRH. What was open until now

was, of course, the problem of giving an unconditional proof.

2. The circle method: Fourier analysis on Z

It is common for a first course on Fourier analysis to focus on functions over the reals sat-

isfying f(x) = f(x + 1), or, what is the same, functions f : R/Z → C. Such a function

(unless it is fairly pathological) has a Fourier series converging to it; this is just the same as

saying that f has a Fourier transform f̂ : Z → C defined by f̂(n) =
∫
R/Z
f(α)e(−αn)dα

and satisfying f(α) =
∑

n∈Z f̂(n)e(αn)dα (Fourier inversion theorem).
In number theory, we are especially interested in functions f : Z → C. Then things

are exactly the other way around: provided that f decays reasonably fast as n → ±∞
(or becomes 0 for n large enough), f has a Fourier transform f̂ : R/Z → C defined by

f̂(α) =
∑

n f(n)e(−αn) and satisfying f(n) =
∫
R/Z
f̂(α)e(αn). (Highbrow talk: we

already knew that Z is the Fourier dual of R/Z, and so, of course, R/Z is the Fourier dual

of Z.) “Exponential sums” (or “trigonometrical sums”, as in the title of [69]) are sums of the

form
∑

n f(α)e(−αn); the “circle” in “circle method” is just a name for R/Z.

The study of the Fourier transform f̂ is relevant to additive problems in number theory,

i.e., questions on the number of ways of writing n as a sum of k integers of a particular form.

Why? One answer could be that f̂ gives us information about the “randomness” of f ; if f

were the characteristic function of a random set, then f̂(α) would be very small outside a

sharp peak at α = 0. We can also give a more concrete and immediate answer. Recall that,

in general, the Fourier transform of a convolution equals the product of the transforms; over

Z, this means that for the additive convolution

(f ∗ g)(n) =
∑

m1,m2∈Z
m1+m2=n

f(m1)g(m2),

the Fourier transform satisfies the simple rule

f̂ ∗ g(α) = f̂(α) · ĝ(α).

We can see right away from this that (f ∗ g)(n) can be non-zero only if n can be written

as n = m1 + m2 for some m1, m2 such that f(m1) and g(m2) are non-zero. Similarly,
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(f ∗ g ∗ h)(n) can be non-zero only if n can be written as n = m1 +m2 +m3 for some

m1, m2, m3 such that f(m1), f2(m2) and f3(m3) are all non-zero. This suggests that, to
study the ternary Goldbach problem, we define f1, f2, f3 : Z → C so that they take non-zero

values only at the primes.

Hardy and Littlewood defined f1(n) = f2(n) = f3(n) = 0 for n non-prime (and also for

n ≤ 0), and f1(n) = f2(n) = f3(n) = (log n)e−n/x for n prime (where x is a parameter

to be fixed later). Here the factor e−n/x is there to provide “fast decay”, so that everything

converges; as we will see later, Hardy and Littlewood’s choice of e−n/x (rather than some

other function of fast decay) comes across in hindsight as being very clever, though not quite

best-possible. (Their “choice” was, to some extent, not a choice, but an artifact of their

version of the circle method.) The term log n is there for technical reasons – in essence,

it makes sense to put it there because a random integer around n has a chance of about

1/(log n) of being prime.

We can see that (f1 ∗ f2 ∗ f3)(n) �= 0 if and only if n can be written as the sum of three

primes. Our task is then to show that (f1 ∗ f2 ∗ f3)(n) (i.e., (f ∗ f ∗ f)(n)) is non-zero
for every n larger than a constant C ∼ 1027. Since the transform of a convolution equals a

product of transforms,

(f1 ∗ f2 ∗ f3)(n) =
∫
R/Z

̂f1 ∗ f2 ∗ f3(α)e(αn)dα =

∫
R/Z

(f̂1f̂2f̂3)(α)e(αn)dα. (2.1)

Our task is thus to show that the integral
∫
R/Z

(f̂1f̂2f̂3)(α)e(αn)dα is non-zero.

As it happens, f̂(α) is particularly large when α is close to a rational with small de-

nominator. Moreover, for such α, it turns out we can actually give rather precise estimates

for f̂(α). Define M (called the set of major arcs) to be a union of narrow arcs around the

rationals with small denominator:

M =
⋃
q≤r

⋃
a mod q

(a,q)=1

(
a

q
− 1

qQ
,
a

q
+

1

qQ

)
,

where Q is a constant times x/r, and r will be set later. We can write∫
R/Z

(f̂1f̂2f̂3)(α)e(αn)dα =

∫
M

(f̂1f̂2f̂3)(α)e(αn)dα+

∫
m

(f̂1f̂2f̂3)(α)e(αn)dα, (2.2)

where m is the complement (R/Z) \M (called minor arcs).
Now, we simply do not know how to give precise estimates for f̂(α) when α is in m.

However, as Vinogradov realized, one can give reasonable upper bounds on |f̂(α)| for α ∈
m. This suggests the following strategy: show that∫

m

|f̂1(α)||f̂2(α)||f̂3(α)|dα <
∫
M

f̂1(α)f̂2(α)f̂3(α)e(αn)dα. (2.3)

By (2.1) and (2.2), this will imply immediately that (f1 ∗ f2 ∗ f3)(n) > 0, and so we will be
done.
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3. The major arcs M

3.1. What do we really know about L-functions and their zeros? Before we start, let

us give a very brief review of basic analytic number theory (in the sense of, say, [13]). A

Dirichlet character χ : Z → C of modulus q is a character of (Z/qZ)∗ lifted to Z. (In other

words, χ(n) = χ(n + q), χ(ab) = χ(a)χ(b) for all a, b and χ(n) = 0 for (n, q) �= 1.) A

Dirichlet L-series is defined by

L(s, χ) =
∞∑
n=1

χ(n)n−s

for .(s) > 1, and by analytic continuation for .(s) ≤ 1. (The Riemann zeta function ζ(s)
is the L-function for the trivial character, i.e., the character χ such that χ(n) = 1 for all n.)
Taking logarithms and then derivatives, we see that

− L
′(s, χ)

L(s, χ)
=

∞∑
n=1

Λ(n)n−s, (3.1)

where Λ is the von Mangoldt function (Λ(n) = log p if n is some prime power pα, α ≥ 1,
and Λ(n) = 0 otherwise).

Dirichlet introduced his characters and L-series so as to study primes in arithmetic pro-

gressions. In general, and after some work, (3.1) allows us to restate many sums over the

primes (such as our Fourier transforms f̂(α)) as sums over the zeros of L(s, χ). A non-
trivial zero of L(s, χ) is a zero of L(s, χ) such that 0 < .(s) < 1. (The other zeros are

called trivial because we know where they are, namely, at negative integers and, in some

cases, also on the line .(s) = 0. In order to eliminate all zeros on .(s) = 0 outside s = 0,
it suffices to assume that χ is primitive; a primitive character modulo q is one that is not

induced by (i.e., not the restriction of) any character modulo d|q, d < q.)
The Generalized Riemann Hypothesis for Dirichlet L-functions is the statement that,

for every Dirichlet character χ, every non-trivial zero of L(s, χ) satisfies .(s) = 1/2. Of
course, the Generalized Riemann Hypothesis (GRH) – and the Riemann Hypothesis, which

is the special case of χ trivial – remains unproven. Thus, if we want to prove unconditional

statements, we need to make do with partial results towards GRH. Two kinds of such results

have been proven:

• Zero-free regions. Ever since the late nineteenth century (Hadamard, de la Vallée-

Poussin) we have known that there are hourglass-shaped regions (more precisely, of

the shape c
log t ≤ σ ≤ 1 − c

log t , where c is a constant and where we write s =
σ + it) outside which non-trivial zeros cannot lie. Explicit values for c are known

[35, 36, 42]. There is also the Vinogradov-Korobov region [39, 70], which is broader

asymptotically but narrower in most of the practical range (see [20], however).

• Finite verifications of GRH. It is possible to (ask the computer to) prove small, finite

fragments of GRH, in the sense of verifying that all non-trivial zeros of a given finite

set ofL-functions with imaginary part less than some constantH lie on the critical line

.(s) = 1/2. Such verifications go back to Riemann, who checked the first few zeros

of ζ(s). Large-scale, rigorous computer-based verifications are now a possibility.

Most work in the literature follows the first alternative, though [58] did use a finite ver-

ification of RH (i.e., GRH for the trivial character). Unfortunately, zero-free regions seem
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too narrow to be useful for the ternary Goldbach problem. Thus, we are left with the second

alternative.

In coordination with the present work, Platt [48] verified that all zeros s of L-functions
for characters χwith modulus q ≤ 300000 satisfying/(s) ≤ Hq lie on the line.(s) = 1/2,
where

• Hq = 108/q for q odd, and

• Hq = max(108/q, 200 + 7.5 · 107/q) for q even.
This was a medium-large computation, taking a few hundreds of thousands of core-hours on

a parallel computer. It used interval arithmetic for the sake of rigor; we will later discuss

what this means.

The choice to use a finite verification of GRH, rather than zero-free regions, had conse-

quences on the manner in which the major and minor arcs had to be chosen. As we shall

see, such a verification can be used to give very precise bounds on the major arcs, but also

forces us to define them so that they are narrow and their number is constant. To be precise:

the major arcs were defined around rationals a/q with q ≤ r, r = 300000; moreover, as will

become clear, the fact thatHq is finite will force their width to be bounded by c0r/qx, where
c0 is a constant (say c0 = 8).

3.2. Estimates of f̂(α) for α in the major arcs. Recall that we want to estimate sums of

the type f̂(α) =
∑
f(n)e(−αn), where f(n) is something like (log n)η(n/x) for n equal to

a prime, and 0 otherwise; here η : R → C is some function of fast decay, such as Hardy and

Littlewood’s choice, η(t) = e−t. Let us modify this just a little – we will actually estimate

Sη(α, x) =
∑

Λ(n)e(αn)η(n/x), (3.2)

where Λ is the von Mangoldt function (as in (3.1)) . The use of α rather than −α is just a

bow to tradition, as is the use of the letter S (for “sum”); however, the use of Λ(n) rather
than just plain log p does actually simplify matters.

The function η here is sometimes called a smoothing function or simply a smoothing. It
will indeed be helpful for it to be smooth on (0,∞), but, in principle, it need not even be

continuous. (Vinogradov’s work implicitly uses, in effect, the “brutal truncation” 1[0,1](t),
defined to be 1 when t ∈ [0, 1] and 0 otherwise; that would be fine for the minor arcs, but, as

it will become clear, it is a bad idea as far as the major arcs are concerned.)

Assume α is on a major arc, meaning that we can write α = a/q + δ/x for some a/q (q
small) and some δ (with |δ| small). We can write Sη(α, x) as a linear combination

Sη(α, x) =
∑
χ

cχSη,χ

(
δ

x
, x

)
+ tiny error term, (3.3)

where

Sη,χ

(
δ

x
, x

)
=
∑

Λ(n)χ(n)e(δn/x)η(n/x). (3.4)

In (3.3), χ runs over primitive Dirichlet characters of moduli d|q, and cχ is small (|cχ| ≤√
d/φ(q)).
To estimate the sums Sη,χ, we will use L-functions, together with one of the most com-

mon tools of analytic number theory, the Mellin transform. This transform is essentially a
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Laplace transform with a change of variables, and a Laplace transform, in turn, is a Fourier

transform taken on a vertical line in the complex plane. For f of fast enough decay, the

Mellin transform F =Mf of f is given by

F (s) =

∫ ∞

0

f(t)ts
dt

t
;

we can express f in terms of F by the Mellin inversion formula

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)t−sds

for any σ within an interval. We can thus express e(δt)η(t) in terms of its Mellin transform

Fδ and then use (3.1) to express Sη,χ in terms of Fδ and L′(s, χ)/L(s, χ); shifting the

integral in the Mellin inversion formula to the left, we obtain what is known in analytic

number theory as an explicit formula:

Sη,χ(δ/x, x) = [η̂(−δ)x]−
∑
ρ

Fδ(ρ)x
ρ + tiny error term.

Here the term between brackets appears only for χ trivial. In the sum, ρ goes over all non-
trivial zeros of L(s, χ), and Fδ is the Mellin transform of e(δt)η(t). (The tiny error term

comes from a sum over the trivial zeros of L(s, χ).) We will obtain the estimate we desire if

we manage to show that the sum over ρ is small.

The point is this: if we verify GRH for L(s, χ) up to imaginary part H , i.e., if we check

that all zeroes ρ of L(s, χ) with |/(ρ)| ≤ H satisfy .(ρ) = 1/2, we have |xρ| = √
x. In

other words, xρ is very small (compared to x). However, for any ρ whose imaginary part

has absolute value greater than H , we know next to nothing about its real part, other than

0 ≤ .(ρ) ≤ 1. (Zero-free regions are notoriously weak for /(ρ) large; we will not use

them.) Hence, our only chance is to make sure that Fδ(ρ) is very small when |/(ρ)| ≥ H .

This has to be true for both δ very small (including the case δ = 0) and for δ not so small

(|δ| up to c0r/q, which can be large because r is a large constant). How can we choose η so
that Fδ(ρ) is very small in both cases for τ = /(ρ) large?

The method of stationary phase is useful as an exploratory tool here. In brief, it suggests
(and can sometimes prove) that the main contribution to the integral

Fδ(t) =

∫ ∞

0

e(δt)η(t)ts
dt

t
(3.5)

can be found where the phase of the integrand has derivative 0. This happens when t =
−τ/2πδ (for sgn(τ) �= sgn(δ)); the contribution is then a moderate factor times η(−τ/2πδ).
In other words, if sgn(τ) �= sgn(δ) and δ is not too small (|δ| ≥ 8, say), Fδ(σ+ iτ) behaves
like η(−τ/2πδ); if δ is small (|δ| < 8), then Fδ behaves like F0, which is the Mellin

transformMη of η. Here is our goal, then: the decay of η(t) as |t| → ∞ should be as fast

as possible, and the decay of the transformMη(σ + iτ) should also be as fast as possible.
This is a classical dilemma, often called the uncertainty principle because it is the math-

ematical fact underlying the physical principle of the same name: you cannot have a function

η that decreases extremely rapidly and whose Fourier transform (or, in this case, its Mellin

transform) also decays extremely rapidly. What does “extremely rapidly” mean here? It
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means (as Hardy himself proved) “faster than any exponential e−Ct”. Thus, Hardy and

Littlewood’s choice η(t) = e−t seems essentially optimal at first sight.

However, it is not optimal. We can choose η so thatMη decreases exponentially (with a
constant C somewhat worse than for η(t) = e−t), but η decreases faster than exponentially.

This is a particularly appealing possibility because it is t/|δ|, and not so much t, that risks
being fairly small. (To be explicit: say we check GRH for characters of modulus q up to

Hq ∼ 50 · c0r/q ≥ 50|δ|. Then we only know that |τ/2πδ| 	 8. So, for η(t) = e−t,
η(−τ/2πδ) may be as large as e−8, which is not negligible. Indeed, since this term will be

multiplied later by other terms, e−8 is simply not small enough. On the other hand, we can

assume that Hq ≥ 200 (say), and soMη(s) ∼ e−(π/2)|τ | is completely negligible, and will

remain negligible even if we replace π/2 by a somewhat smaller constant.)

We shall take η(t) = e−t
2/2 (that is, the Gaussian). This is not the only possible choice,

but it is in some sense natural. It is easy to show that the Mellin transform Fδ for η(t) =

e−t
2/2 is a multiple of what is called a parabolic cylinder function U(a, z) with imaginary

values for z. There are plenty of estimates on parabolic cylinder functions in the literature

– but mostly for a and z real, in part because that is one of the cases occuring most often in

applications. There are some asymptotic expansions and estimates for U(a, z), a, z, general,
due to Olver (see, e.g., [47]), but unfortunately they come without fully explicit error terms

for a and z within our range of interest. (The same holds for [59].)

In the end, using the saddle-point method, I derived bounds for the Mellin transform Fδ
of η(t)e(δt) with η(t) = e−t

2/2: for s = σ+ iτ with σ ∈ [0, 1] and |τ | ≥ max(100, 4π2|δ|),

|Fδ(s)|+ |Fδ(1− s)| ≤ 4.226 ·
{
e−0.1065( τ

πδ )
2

if |τ | < 3
2 (πδ)

2,

e−0.1598|τ | if |τ | ≥ 3
2 (πδ)

2.
(3.6)

Similar bounds hold for σ in other ranges, thus giving us (similar) estimates for the Mellin

transform Fδ for η(t) = t
ke−t

2/2 and σ in the critical range [0, 1].
A moment’s thought shows that we can also use (3.6) to deal with the Mellin transform

of η(t)e(δt) for any function of the form η(t) = e−t
2/2g(t) (or, more generally, η(t) =

tke−t
2/2g(t)), where g(t) is any band-limited function. By a band-limited function, we could

mean a function whose Fourier transform is compactly supported; while that is a plausible

choice, it turns out to be better to work with functions that are band-limited with respect to

the Mellin transform – in the sense of being of the form

g(t) =

∫ R

−R
h(r)t−irdr,

where h : R → C is supported on a compact interval [−R,R], with R not too large (say

R = 200).
After deriving an explicit formula general enough to work with all the weights η(t) we

have discussed, and once we consider the input provided by Platt’s finite verification of GRH

up to Hq , we obtain simple bounds for different weights. For η(t) = e−t
2/2, x ≥ 108, χ a

primitive character of modulus q ≤ r = 300000, and any δ ∈ R with |δ| ≤ 4r/q, we obtain

Sη,χ

(
δ

x
, x

)
= Iq=1 · η̂(−δ)x+ E · x, (3.7)
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where Iq=1 = 1 if q = 1, Iq=1 = 0 if q �= 1, and

|E| ≤ 5.281 · 10−22 +
1√
x

(
650400√

q
+ 112

)
. (3.8)

Here η̂ stands for the Fourier transform from R to R normalized as follows:

η̂(t) =

∫ ∞

−∞
e(−xt)η(x)dx

Thus, η̂(−δ) is just √2πe−2π2δ2 (self-duality of the Gaussian).

This is one of the main results of [27]. Similar bounds are also proven there for η(t) =

t2e−t
2/2, as well as for a weight of type η(t) = te−t

2/2g(t), where g(t) is a band-limited

function, and also for a weight η defined by a multiplicative convolution. The conditions on

q (q ≤ r = 300000) and δ are what we expected from the outset.

Thus concludes our treatment of the major arcs. This is arguably the easiest part of the

proof; it was actually what I left for the end, as I was fairly confident it would work out.

4. The minor arcs m

4.1. Qualitative goals and main ideas. What kind of bounds do we need? What is there

in the literature?

We wish to obtain upper bounds on |Sη(α, x)| for some weight η and any α ∈ R/Z not

very close to a rational with small denominator. Every α is close to some rational a/q; what
we are looking for is a bound on |Sη(α, x)| that decreases rapidly when q increases.

Moreover, we want our bound to decrease rapidly when δ increases, whereα=a/q+δ/x.
In fact, the main terms in our bound will be decreasing functions of max(1, |δ|/8) · q. (Let
us write δ0 = max(2, |δ|/4) from now on.) This will allow our bound to be good enough

outside narrow major arcs, which will get narrower and narrower as q increases – that is,

precisely the kind of major arcs we were presupposing in our major-arc bounds.

It would be possible to work with narrow major arcs that become narrower as q increases
simply by allowing q to be very large (close to x), and assigning each angle to the fraction

closest to it. This is the common procedure. However, this makes matters more difficult, in

that we would have to minimize at the same time the factors in front of terms x/q, x/
√
q,

etc., and those in front of terms q,
√
qx, and so on. (These terms are being compared to the

trivial bound x.) Instead, we choose to strive for a direct dependence on δ throughout; this
will allow us to cap q at a much lower level, thus making terms such as q and

√
qx negligible.

How good must our bounds be? Since the major-arc bounds are valid only for q ≤
r = 300000 and |δ| ≤ 4r/q, we cannot afford even a single factor of log x (or any other

function tending to ∞ as x → ∞) in front of terms such as x/
√
q|δ0|: a factor like that

would make the term larger than the trivial bound x for q|δ0| equal to a constant (r, say)
and x very large. Apparently, there was no such “log-free bound” with explicit constants

in the literature, even though such bounds were considered to be in principle feasible, and

even though previous work ([5, 11, 12, 58]) had gradually decreased the number of factors

of log x. (In limited ranges for q, there were log-free bounds without explicit constants; see
[11, 53]. The estimate in [69, Thm. 2a, 2b] was almost log-free, but not quite. There were
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also bounds [3, 37] that used L-functions, and thus were not really useful in a truly minor-arc

regime.)

It also seemed clear that a main bound proportional to (log q)2x/
√
q (as in [58]) was too

large. At the same time, it was not really necessary to reach a bound of the best possible

form that could be found through Vinogradov’s basic approach, namely

|Sη(α, x)| ≤ C
x
√
q

φ(q)
. (4.1)

Such a bound had been proven by Ramaré [53] for q in a limited range and C non-explicit;

later, in [50] Ramaré broadened the range to q ≤ x1/48 and gave an explicit value for C,
namely, C = 13000. Such a bound is a notable achievement, but, unfortunately, it is not

useful for our purposes. Rather, we will aim at a bound whose main term is bounded by

a constant around 1 times x(log δ0q)/
√
δ0φ(q); this is slightly worse asymptotically than

(4.1), but it is much better in the delicate range of δ0q ∼ 300000.

* * *

We see that we have several tasks. One of them is the removal of logarithms: we cannot

afford a single factor of log x, and, in practice, we can afford at most one factor of log q.
Removing logarithms will be possible in part because of the use of efficient techniques (the

large sieve for sequences with prime support) but also because we will be able to find can-

cellation at several places in sums coming from a combinatorial identity (namely, Vaughan’s

identity). The task of finding cancellation efficiently (that is, with good constants) is partic-

ularly delicate. Bounding a sum such as
∑

n μ(n) efficiently is harder than estimating a sum

such as
∑

n Λ(n) equally well, even though we are used to thinking of these problems as

equivalent.

We have said that our bounds will improve as |δ| increases. This dependence on δ will
be secured in different ways at different places. Sometimes δ will appear as an argument, as

in η̂(−δ); for η piecewise continuous with η′ ∈ L1, we know that |η̂(t)| → 0 as |t| → ∞.

Sometimes we will obtain a dependence on δ by using several different rational approxima-

tions to the same α ∈ R. Lastly, we will obtain a good dependence on δ in bilinear sums by

supplying a scattered input to a large sieve.

If there is a main moral to the argument, it lies in the close relation between the circle

method and the large sieve. The circle method rests on the estimation of an integral involving

a Fourier transform f̂ : R/Z → C; as we will later see, this leads naturally to estimating

the �2-norm of f̂ on subsets (namely, unions of arcs) of the circle R/Z. The large sieve

can be seen as an approximate discrete version of Plancherel’s identity, which states that

|f̂ |2 = |f |2.
Both in this section and in §5, we shall use the large sieve in part so as to use the fact

that some of the functions we work with have prime support, i.e., are non-zero only on prime

numbers. There are ways to use prime support to improve the output of the large sieve. In

§5, these techniques will be refined and then translated to the context of the circle method,

where f has (essentially) prime support and |f̂ |2 must be integrated over unions of arcs. The

main point is that the large sieve is not being used as a black box; rather, we can adapt ideas

from (say) the large-sieve context and apply them to the circle method.

Lastly, there are the benefits of a continuous η. Hardy and Littlewood already used a

continuous η; this was abandoned by Vinogradov, presumably for the sake of simplicity.
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The idea that smooth weights η can be superior to sharp truncations is now commonplace.

As we shall see, using a continuous η is helpful in the minor-arcs regime, but not as crucial

there as for the major arcs. We will not use a smooth η; we will prove our estimates for any

continuous η that is piecewise C1, and then, towards the end, we will choose to use the same

weight η = η2 as in [58], in part because it has compact support, and in part for the sake of

comparison. The moral here is not quite the common dictum “always smooth”, but rather

that different kinds of smoothing can be appropriate for different tasks; in the end, we will

show how to coordinate different smoothing functions η.

4.2. Combinatorial identities. Generally, since Vinogradov, a treatment of the minor arcs

starts with a combinatorial identity expressing Λ(n) (or the characteristic function of the

primes) as a sum of two or more convolutions. (In this section, by a convolution f ∗ g, we
will mean the Dirichlet convolution (f ∗ g)(n) =∑d|n f(d)g(n/d), i.e., the multiplicative

convolution on the semigroup of positive integers.)

In some sense, the archetypical identity is

Λ = μ ∗ log,
but it will not usually do: the contribution of μ(d) log(n/d) with d close to n is too difficult

to estimate precisely. There are alternatives: for example, there is Selberg’s identity

Λ(n) log n = μ ∗ log2 −Λ ∗ Λ, (4.2)

or the generalization of this toΛ(n)(log n)k = μ∗logk+1 − . . . (Bomberi-Selberg). Another

useful (and very simple) identity was that used by Daboussi’s [12].

The proof of Vinogradov’s three-prime result was simplified substantially in [64] by the

introduction of Vaughan’s identity:

Λ(n) = μ≤U ∗ log−Λ≤V ∗ μ≤U ∗ 1 + 1 ∗ μ>U ∗ Λ>V + Λ≤V , (4.3)

where we are using the notation

f≤W =

{
f(n) if n ≤W ,

0 if n > W ,
f>W =

{
0 if n ≤W ,

f(n) if n > W .

Of the resulting sums (
∑

n(μ≤U ∗ log)(n)e(αn)η(n/x), etc.), the first three are said to be

of type I, type I (again) and type II; the last sum,
∑

n≤V Λ(n), is negligible.
One of the advantages of Vaughan’s identity is its flexibility: we can set U and V to

whatever values we wish. Its main disadvantage is that it is not “log-free”, in that it seems to

impose the loss of two factors of log x: if we sum each side of (4.3) from 1 to x, we obtain∑
n≤x Λ(n) ∼ x on the left side, whereas, if we bound the sum on the right side without

the use of cancellation, we obtain a bound of x(log x)2. Of course, we will obtain some

cancellation from the phase e(αn), but that is not enough.
As was pointed out in [58], it is possible to get a factor of (log q)2 instead of a factor of

(log x)2 in the type II sums by setting U and V appropriately. A factor of (log q)2 is still

too large in practice, and there are also the factors of log x in type I sums. Vinogradov had

already managed to get an essentially log-free result (by a rather difficult procedure) in [69,

Ch. IX]. The result in [11] is log-free. Unfortunately, the explicit result in [12] – the study

of which encouraged me at the beginning of the project – is not. For a while, I worked with
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the Bombieri-Selberg identity with k = 2. Ramaré obtained a log-free bound in [53] using

the Diamond-Steinig identity, which is related to Bombieri-Selberg.

In the end, I decided to use Vaughan’s identity. This posed a challenge: to obtain can-

cellation in Vaughan’s identity at every possible step, beyond the cancellation given by the

phase e(αn). It is clear that the presence of the Möbius function μ should give, in principle,

some cancellation; we will show how to use it to obtain as much cancellation as we need.

4.3. Type I sums. There are two type I sums, namely,∑
m≤U

μ(m)
∑
n

(log n)e(αmn)η
(mn
x

)
(4.4)

and ∑
v≤V

Λ(v)
∑
u≤U

μ(u)
∑
n

e(αvun)η
(vun
x

)
. (4.5)

In either case, α = a/q + δ/x, where q is larger than a constant r and |δ/x| ≤ 1/qQ0 for

some Q0 > max(q,
√
x). For the purposes of this exposition, we will set it as our task to

estimate the slightly simpler sum∑
m≤D

μ(m)
∑
n

e(αmn)η
(mn
x

)
, (4.6)

where D can be U or UV or something else less than x.
Why can we consider this simpler sum without omitting anything essential? It is clear

that (4.4) is of the same kind as (4.6). The inner double sum in (4.5) is just (4.6) with

αv instead of α; this enables us to estimate (4.5) by means of (4.6) for q small, i.e., the

more delicate case. If q is not small, then the approximation αv ∼ av/q may not be accurate

enough. In that case, we collapse the two outer sums in (4.5) into a sum
∑

n(Λ≤V ∗μ≤U )(n),
and treat all of (4.5) much as we will treat (4.6); since q is not small, we can afford to bound

(Λ≤V ∗ μ≤U )(n) trivially (by log n) in the less sensitive terms.

Let us first outline Vinogradov’s procedure for bounding type I sums. Just by summing

a geometric series, we get
∣∣∣∑n≤N e(αn)

∣∣∣ ≤ min(N, c/{α}), where c is a constant and {α}
is the distance from α to the nearest integer. Vinogradov splits the outer sum in (4.6) into

sums of length q. When m runs on an interval of length q, the angle am/q runs through all

fractions of the form b/q; due to the error δ/x, αm could be close to 0 for two values of n,
but otherwise {αm} takes values bounded below by 1/q, 2/q, etc. Thus∣∣∣∣∣∣

∑
y<m≤y+q

μ(m)
∑
n≤N

e(αmn)

∣∣∣∣∣∣ ≤
∑

y<m≤y+q

∣∣∣∣∣∣
∑
n≤N

e(αmn)

∣∣∣∣∣∣ ≤
2N

m
+ 2cq log eq (4.7)

for any y ≥ 0.
There are several ways to improve this. One is simply to estimate the inner sum more

precisely; this was already done in [12]. One can also define a smoothing function η, as in
(4.6); it is easy to get∣∣∣∣∣∣

∑
n≤N

e(αn)η
(n
x

)∣∣∣∣∣∣ ≤ min

(
x|η|1 + |η′|1

2
,

|η′|1
2| sin(πα)| ,

|η̂′′|∞
4x(sinπα)2

)
.
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Except for the third term, this is as in [58]. We could also choose carefully which bound

to use for each m; surprisingly, this gives an improvement – in fact, an important one, for

m large. However, we still get a term proportional to N/m as in (4.7), and this contributes

about (x log x)/q to the sum (4.6), thus giving us an estimate that is not log-free.

What we have to do, naturally, is to take out the terms with q|m form small. We obtain

a log-free bound for the sum over the terms withm ≤M = min(D,Q/2) with q � m, since

αm is then never too close to 0. For m ≤ M divisible by q, we can estimate the inner sum

in (4.6) by the Poisson summation formula; writingm = aq, we get a main term

xμ(q)

q
· η̂(−δ) ·

∑
a≤M/q

(a,q)=1

μ(a)

a
, (4.8)

where (a, q) stands for the greatest common divisor of a and q. It is clear that we have to

get cancellation over μ here. There is an elegant elementary argument [22] showing that the

absolute value of the sum in (4.8) is at most 1. We need to gain one more log, however. This

was done by Ramaré [49].

What shall we do form > Q/2? We can always give a bound

∑
y<m≤y+q

min

(
A,

C

| sinπαn|2
)

≤ 3A+
4q

π

√
AC (4.9)

for y arbitrary; since AC will be of constant size, (4q/π)
√
AC is pleasant enough, but the

contribution of 3A ∼ 3|η|1x/y seems lethal (it adds a multiple of (x log x)/q to the total) and
at first sight unavoidable: the values of m for which αm is close to 0 no longer correspond

to the congruence classm ≡ 0 mod q, and thus cannot be taken out.
The solution is to switch approximations. (The idea of using different approximations

to the same α is neither new nor recent in the general context of the circle method: see [66,

§2.8, Ex. 2]. What may be new is its use to clear a hurdle in type I sums.) What does this

mean? If α were exactly, or almost exactly, a/q, then there would be no other very good

approximations in a reasonable range. However, note that we can define Q = $x/|δq|% for

α = a/q + δ/x, and still have |α − a/q| ≤ 1/qQ. If δ is very small, Q will be larger than

2D, and there will be no terms with Q/2 < m ≤ D to worry about.

What happens if δ is not very small? We know that, for anyQ′, there is an approximation

a′/q′ to α with |α − a′/q′| ≤ 1/q′Q′ and q′ ≤ Q′. However, for Q′ > Q, we know that

a′/q′ cannot equal a/q: by the definition of Q, the approximation a/q is not good enough,

i.e., |α−a/q| ≤ 1/qQ′ does not hold. Since a/q �= a′/q′, we see that |a/q−a′/q′| ≥ 1/qq′,
and, if we take Q′ ≥ (1 + ε)Q, this implies that q′ is relatively large (q′ ≥ (ε/(1 + ε))Q).

Thus, for m > Q/2, the solution is to apply (4.9) with a′/q′ instead of a/q. The con-
tribution of A fades into insignificance: for the first sum over a range y < m ≤ y + q′,
y ≥ Q/2, it contributes at most x/(Q/2), and all the other contributions of A sum up to at

most a constant times (x log x)/q′.
Proceeding in this way, we obtain a total bound for (4.6) whose main terms are propor-

tional to

1

φ(q)

x

log x
q

min

(
1,

1

δ2

)
,

2

π

√
|η̂′′|∞ ·D and q logmax

(
D

q
, q

)
, (4.10)
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with good, explicit constants. The first term – usually the largest one – is precisely what

we needed: it is proportional to (1/φ(q))x/ log x for q small, and decreases rapidly as |δ|
increases.

4.4. Type II, or bilinear, sums. We must now bound

S =
∑
m

(1 ∗ μ>U )(m)
∑
n>V

Λ(n)e(αmn)η(mn/x).

At this point it is convenient to assume that η is the Mellin convolution of two functions. The

multiplicative orMellin convolution on R+ is defined by

(η0 ∗M η1)(t) =
∫ ∞

0

η0(r)η1

(
t

r

)
dr

r
.

Tao [58] takes η = η2 = η1∗Mη1, where η1 is a brutal truncation, viz., the function taking the
value 2 on [1/2, 1] and 0 elsewhere. We take the same η2, in part for comparison purposes,

and in part because this will allow us to use off-the-shelf estimates on the large sieve. (Brutal

truncations are rarely optimal in principle, but, as they are very common, results for them

have been carefully optimized in the literature.) Clearly

S =

∫ X/U

V

∑
m

⎛
⎜⎜⎝∑
d>U
d|m

μ(d)

⎞
⎟⎟⎠ η1

(
m

x/W

)
·
∑
n≥V

Λ(n)e(αmn)η1

( n
W

) dW
W
. (4.11)

By Cauchy-Schwarz, the integrand is at most
√
S1(U,W )S2(V,W ), where

S1(U,W ) =
∑

x
2W <m≤ x

W

∣∣∣∣∣∣∣∣
∑
d>U
d|m

μ(d)

∣∣∣∣∣∣∣∣

2

,

S2(V,W ) =
∑

x
2W ≤m≤ x

W

∣∣∣∣∣∣∣
∑

max(V,W2 )≤n≤W

Λ(n)e(αmn)

∣∣∣∣∣∣∣
2

.

(4.12)

We must bound S1(U,W ) by a constant times x/W . We are able to do this – with a

good constant. (A careless bound would have given a multiple of (x/U) log3(x/U), which
is much too large.) First, we reduce S1(U,W ) to an expression involving an integral of

∑
r1≤x

∑
r2≤x

(r1,r2)=1

μ(r1)μ(r2)

σ(r1)σ(r2)
. (4.13)

We can bound (4.13) by the use of bounds on
∑

n≤t μ(n)/n, combined with the estimation

of infinite products by means of approximations to ζ(s) for s → 1+. After some additional

manipulations, we obtain a bound for S1(U,W ) whose main term is at most (3/π2)(x/W )
for eachW , and closer to 0.22482x/W on average overW .
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(This is as good a point as any to say that, throughout, we can use a trick in [58] that

allows us to work with odd values of integer variables throughout, instead of letting m or n
range over all integers. Here, for instance, if m and n are restricted to be odd, we obtain a

bound of (2/π2)(x/W ) for individualW , and 0.15107x/W on average overW .)

Let us now bound S2(V,W ). This is traditionally done by Linnik’s dispersion method.

However, it should be clear that the thing to do nowadays is to use a large sieve, and, more

specifically, a large sieve for primes. In order to take advantage of prime support, we use

Montgomery’s inequality ([33, 43]; see the expositions in [44, pp. 27–29] and [34, §7.4])

combined with Montgomery and Vaughan’s large sieve with weights [45, (1.6)], following

the general procedure in [45, (1.6)]. We obtain a bound of the form

logW

log W
2q

(
x

4φ(q)
+
qW

φ(q)

)
W

2
(4.14)

on S2(V,W ), where, of course, we can also choose not to gain a factor of logW/2q if q is
close to or greater thanW .

It remains to see how to gain a factor of |δ| in the major arcs, and more specifically in

S2(V,W ). To explain this, let us step back and take a look at what the large sieve is. Given

a civilized function f : Z → C, Plancherel’s identity tells us that∫
R/Z

∣∣∣f̂ (α)∣∣∣2 dα =
∑
n

|f(n)|2.

The large sieve can be seen as an approximate, or statistical, version of this: for a “sample”

of points α1, α2, . . . , αk satisfying |αi − αj | ≥ β for i �= j, it tells us that
∑

1≤j≤k

∣∣∣f̂ (αj)∣∣∣2 ≤ (X + β−1)
∑
n

|f(n)|2, (4.15)

assuming that f is supported on an interval of length X .

Now consider α1 = α, α2 = 2α, α3 = 3α . . . . If α = a/q, then the angles α1, . . . , αq
are well-separated, i.e., they satisfy |αi − αj | ≥ 1/q, and so we can apply (4.15) with

β = 1/q. However, αq+1 = α1. Thus, if we have an outer sum of length L > q – in (4.12),

we have an outer sum of length L = x/2W – we need to split it into *L/q+ blocks of length
q, and so the total bound given by (4.15) is *L/q+(X + q)

∑
n |f(n)|2. Indeed, this is what

gives us (4.14), which is fine, but we want to do better for |δ| larger than a constant.

Suppose, then, that α = a/q+δ/x, where |δ| > 8, say. Then the angles α1 and αq+1 are

not identical: |α1 − αq+1| ≤ q|δ|/x. We also see that αq+1 is at a distance at least q|δ|/x
from α2, α3, . . . αq , provided that q|δ|/x < 1/q. We can go on with αq+2, αq+3, . . . , and
stop only once there is overlap, i.e., only once we reach αm such that m|δ|/x ≥ 1/q. We

then give all the angles α1, . . . , αm – which are separated by at least q|δ|/x from each other

– to the large sieve at the same time. We do this *L/m+ ≤ *L/(x/|δ|q)+ times, and obtain

a total bound of *L/(x/|δ|q)+(X + x/|δ|q)∑n |f(n)|2, which, for L = x/2W ,X =W/2,
gives us about (

x

4Q

W

2
+
x

4

)
logW

provided that L ≥ x/|δ|q and, as usual, |α − a/q| ≤ 1/qQ. This is very small compared to

the trivial bound 
 xW/8.
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What happens if L < x/|δq|? Then there is never any overlap: we consider all angles αi,
and give them all together to the large sieve. The total bound is (W 2/4+ xW/2|δ|q) logW.
IfL = x/2W is smaller than, say, x/3|δq|, then we see clearly that there are non-intersecting
swarms ofαi around the rationals a/q. We can thus save a factor of log (or rather (φ(q)/q) log
(W/|δq|)) by applying Montgomery’s inequality, which operates by strewing displacements

of the given angles (or, here, the swarms) around the circle to the extent possible while

keeping everything well-separated. In this way, we obtain a bound of the form

logW

log W
|δ|q

(
x

|δ|φ(q) +
q

φ(q)

W

2

)
W

2
.

Compare this to (4.14); we have gained a factor of |δ|/4, and so we use this estimate when

|δ| > 4. (In [28], the criterion is |δ| > 8, but, since there we have 2α = a/q+ δ/x, the value
of δ there is twice what it is here; this is a consequence of working with sums over the odd

integers, as in [58].)

* * *

We have succeeded in eliminating all factors of log we came across. The only factor of

log that remains is log x/UV , coming from the integral
∫ x/U
V

dW/W . Thus, we want UV
to be close to x, but we cannot let it be too close, since we also have a term proportional to

D = UV in (4.10), and we need to keep it substantially smaller than x. We set U and V so

that UV is x/
√
qmax(4, |δ|) or thereabouts.

In the end, after some work, we obtain the main result in [28]. We recall that Sη(α, x) =∑
n Λ(n)e(αn)η(n/x) and η2 = η1 ∗M η1 = 4 · 1[1/2,1] ∗ 1[1/2,1].

Theorem 4.1. Let x ≥ x0, x0 = 2.16 · 1020. Let 2α = a/q + δ/x, q ≤ Q, gcd(a, q) = 1,
|δ/x| ≤ 1/qQ, where Q = (3/4)x2/3. If q ≤ x1/3/6, then

|Sη(α, x)| ≤ Rx,δ0q log δ0q + 0.5√
δ0φ(q)

· x+ 2.5x√
δ0q

+
2x

δ0q
· Lx,δ0,q + 3.2x5/6, (4.16)

where δ0 = max(2, |δ|/4),

Rx,t = 0.27125 log

(
1 +

log 4t

2 log 9x1/3

2.004t

)
+ 0.41415

Lx,δ,q =
log δ

7
4 q

13
4 + 80

9

φ(q)/q
+ log q

80
9 δ

16
9 +

111

5
.

(4.17)

If q > x1/3/6, then

|Sη(α, x)| ≤ 0.2727x5/6(log x)3/2 + 1218x2/3 log x.

The factor Rx,t is small in practice; for typical “difficult” values of x and δ0x, it is less
than 1. The crucial things to notice in (4.16) are that there is no factor of log x, and that, in

the main term, there is only one factor of log δ0q. The fact that δ0 helps us as it grows is

precisely what enables us to take major arcs that get narrower and narrower as q grows.
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5. Integrals over the major and minor arcs

So far, we have sketched (§3) how to estimate Sη(α, x) for α in the major arcs and η based

on the Gaussian e−t
2/2, and also (§4) how to bound |Sη(α, x)| for α in the minor arcs and

η = η2, where η2 = 4 · 1[1/2,1] ∗M 1[1/2,1]. We now must show how to use such information

to estimate integrals such as the ones in (2.3).

We will use two smoothing functions η+, η∗; in the notation of (2.2), we set f1 = f2 =
Λ(n)η+(n/x), f3 = Λ(n)η∗(n/x), and so we must give a lower bound for∫

M

(Sη+(α, x))
2Sη∗(α, x)e(−αn)dα (5.1)

and an upper bound for ∫
m

∣∣Sη+(α, x)∣∣2 Sη∗(α, x)e(−αn)dα (5.2)

so that we can verify (2.3).

The traditional approach to (5.2) is to bound∫
m

(Sη+(α, x))
2Sη∗(α, x)e(−αn)dα ≤

∫
m

∣∣Sη+(α, x)∣∣2 dα ·max
α∈m

η̂∗(α)

≤
∑
n

Λ(n)2η2+

(n
x

)
·max
α∈m

Sη∗(α, x).
(5.3)

Since the sum over n is of the order of x log x, this is not log-free, and so cannot be good

enough; we will later see how to do better. Still, this gets the main shape right: our bound

on (5.2) will be proportional to |η+|22|η∗|1. Moreover, we see that η∗ has to be such that we

know how to bound |Sη∗(α, x)| for α ∈ m, while our choice of η+ is more or less free, at

least as far as the minor arcs are concerned.

What about the major arcs? In order to do anything on them, we will have to be able to

estimate both η+(α) and η∗(α) for α ∈ M. Once we do this, we will obtain that the main

term of (5.1) is an infinite product (independent of the smoothing functions), times x2, times∫ ∞

0

∫ ∞

0

η+(t1)η+(t2)η∗
(n
x

− (t1 + t2)
)
dt1dt2. (5.4)

In other words, we want to maximize (or nearly maximize) the expression on the right of

(5.4) divided by |η+|22|η∗|1.
One way to do this is to let η∗ be concentrated on a small interval [0, ε). Then the right

side of (5.4) is approximately

|η∗|1 ·
∫ ∞

0

η+(t)η+

(n
x

− t
)
dt. (5.5)

To maximize this, we should make sure that η+(t) ∼ η+(n/x − t). We set x ∼ n/2, and
see that we should define η+ so that it is supported on [0, 2] and symmetric around t = 1, or
nearly so; this will maximize the ratio of (5.5) to |η+|22|η∗|1.

We should do this while making sure that we will know how to estimate Sη+(α, x)
for α ∈ M. We know how to estimate Sη(α, x) very precisely for functions of the form
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η(t) = g(t)e−t
2/2, η(t) = g(t)te−t

2/2, etc., where g(t) is band-limited. We will work with

a function η+ of that form, chosen so as to be very close (in �2 norm) to a function η◦ that is
in fact supported on [0, 2] and symmetric around t = 1.

We choose

η◦(t) =

{
t2(2− t)3e−(t−1)2/2 if t ∈ [0, 2],

0 if t �∈ [0, 2].

This function is obviously symmetric (η◦(t) = η◦(2−t)) and vanishes to high order at t = 0,
besides being supported on [0, 2].

We set η+(t) = hR(t)te
−t2/2, where hR(t) is an approximation to the function

h(t) =

{
t2(2− t)3et− 1

2 if t ∈ [0, 2]

0 if t �∈ [0, 2].

We just let hR(t) be the inverse Mellin transform of the truncation of Mh to an interval

[−iR, iR], or, what is the same,

hR(t) =

∫ ∞

0

h(ty−1)FR(y)
dy

y
,

where FR(t) = sin(R log y)/(π log y) (the Dirichlet kernel with a change of variables);

since the Mellin transform of te−t
2/2 is regular at s = 0, the Mellin transform Mη+ will

be holomorphic in a neighborhood of {s : 0 ≤ .(s) ≤ 1}, even though the truncation of

Mh to [−iR, iR] is brutal. Set R = 200, say. By the fast decay ofMh(it) and the fact that

the Mellin transform M is an isometry, |(hR(t) − h(t))/t|2 is very small, and hence so is

|η+ − η◦|2, as we desired.
But what about the requirement that we be able to estimate Sη∗(α, x) for both α ∈ m

and α ∈ M?

Generally speaking, if we know how to estimate Sη1(α, x) for some α ∈ R/Z and we

also know how to estimate Sη2(α, x) for all other α ∈ R/Z, where η1 and η2 are two

smoothing functions, then we know how to estimate Sη3(α, x) for all α ∈ R/Z, where
η3 = η1 ∗M η2, or, more generally, η∗(t) = (η1 ∗M η2)(κt), κ > 0 a constant. This is a

simple exercise in exchanging the order of integration and summation:

Sη∗(α, x) =
∑
n

Λ(n)e(αn)(η1 ∗M η2)
(
κ
n

x

)

=

∫ ∞

0

∑
n

Λ(n)e(αn)η1(κr)η2

( n
rx

) dr
r

=

∫ ∞

0

η1(κr)Sη2(rx)
dr

r
,

and similarly with η1 and η2 switched.
Now that we have chosen our smoothing weights η+ and η∗, we have to estimate the

major-arc integral (5.1) and the minor-arc integral (5.2). What follows can actually be done

for general η+ and η∗; we could have left our particular choice of η+ and η∗ for the end.
Estimating the major-arc integral (5.1) may sound like an easy task, since we have rather

precise estimates for Sη(α, x) (η = η+, η∗) when α is on the major arcs; we could just

replace Sη(α, x) in (5.1) by the approximation given by (3.3) and (3.7). It is, however, more

efficient to express (5.1) as the sum of the contribution of the trivial character (a sum of
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integrals of (η̂(−δ)x)3, where η̂(−δ)x comes from (3.7)), plus a term of the form

(maximum of
√
q · E(q) for q ≤ r) ·

∫
M

∣∣Sη+(α, x)∣∣2 dα,
where E(q) = E is as in (3.8), plus two other terms of the same form. As usual, the major

arcs M are the arcs around rationals a/q with q ≤ r. We will soon discuss how to bound

the integral of
∣∣Sη+(α, x)∣∣2 over arcs around rationals a/q with q ≤ s, s arbitrary. Here,

however, it is best to estimate the integral overM using the estimate on Sη+(α, x) from (3.3)

and (3.7); we obtain a great deal of cancellation, with the effect that, for χ non-trivial, the

error term in (3.8) appears only when it gets squared, and thus becomes negligible.

The contribution of the trivial character has an easy approximation, thanks to the fast

decay of η̂◦. We obtain that the major-arc integral (5.1) equals a main term C0Cη◦,η∗x
2,

where

C0 =
∏
p|n

(
1− 1

(p− 1)2

)
·
∏
p�n

(
1 +

1

(p− 1)3

)
,

Cη◦,η∗ =

∫ ∞

0

∫ ∞

0

η◦(t1)η◦(t2)η∗
(n
x

− (t1 + t2)
)
dt1dt2,

plus several small error terms. We have already chosen η◦, η∗ and x so as to (nearly) maxi-

mize Cη◦,η∗ .
It is time to bound the minor-arc integral (5.2). As we said in §5, we must do better than

the usual bound (5.3). Since our minor-arc bound (4.16) on |Sη(α, x)|, α ∼ a/q, decreases
as q increases, it makes sense to use partial summation together with bounds on∫

ms

|Sη+(α, x)|2 =

∫
Ms

|Sη+(α, x)|2dα−
∫
M

|Sη+(α, x)|2dα,

where ms denotes the arcs around a/q, r < q ≤ s, and Ms denotes the arcs around all a/q,
q ≤ s. We already know how to estimate the integral on M. How do we bound the integral

onMs?

In order to do better than the trivial bound
∫
Ms

≤ ∫
R/Z

, we will need to use the fact that

the series (3.2) defining Sη+(α, x) is essentially supported on prime numbers. Bounding the

integral onMs is closely related to the problem of bounding

∑
q≤s

∑
a mod q

(a,q)=1

∣∣∣∣∣∣
∑
n≤x

ane(a/q)

∣∣∣∣∣∣
2

(5.6)

efficiently for s considerably smaller than
√
x and an supported on the primes

√
x < p ≤ x.

This is a classical problem in the study of the large sieve. The usual bound on (5.6) (by, for

instance, Montgomery’s inequality) has a gain of a factor of 2eγ(log s)/(log x/s2) relative
to the bound of (x + s2)

∑
n |an|2 that one would get from the large sieve without using

prime support. Heath-Brown proceeded similarly to bound∫
Ms

|Sη+(α, x)|2dα 
 2eγ log s

log x/s2

∫
R/Z

|Sη+(α, x)|2dα. (5.7)
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This already gives us the gain ofC(log s)/ log x that we absolutely need, but the constant
C is suboptimal; the factor in the right side of (5.7) should really be (log s)/ log x, i.e., C
should be 1. We cannot reasonably hope to do better than 2(log s)/ log x in the minor arcs

due to what is known as the parity problem in sieve theory. As it turns out, Ramaré [52]

had given general bounds on the large sieve that were clearly conducive to better bounds on

(5.6), though they involved a ratio that was not easy to bound in general.

I used several careful estimations (including [51, Lem. 3.4]) to reduce the problem of

bounding this ratio to a finite number of cases, which I then checked by rigorous compu-

tation. This approach gave a bound on (5.6) with a factor of size close to 2(log s)/ log x.
(This solves the large-sieve problem for s ≤ x0.3; it would still be worthwhile to give a

computation-free proof for all s ≤ x1/2−ε, ε > 0.) It was then easy to give an analogous

bound for the integral over Ms, namely,∫
Ms

|Sη+(α, x)|2dα 
 2 log s

log x

∫
R/Z

|Sη+(α, x)|2dα,

where
 can easily be made precise by replacing log s by log s+1.36 and log x by log x+c,
where c is a small constant. Without this improvement, the main theorem would still have

been proved, but the required computation time would have been multiplied by a factor of

considerably more than e3γ = 5.6499 . . . .
What remained then was just to compare the estimates on (5.1) and (5.2) and check that

(5.2) is smaller for n ≥ 1027. This final step was just bookkeeping. As we already discussed,
a check for n < 1027 is easy. Thus ends the proof of the main theorem.

6. Some remarks on computations

There were two main computational tasks: verifying the ternary conjecture for all n ≤ C,
and checking the Generalized Riemann Hypothesis for modulus q ≤ r up to a certain height.

The first task was not very demanding. Platt and I verified in [31] that every odd integer

5 < n ≤ 8.8 · 1030 can be written as the sum of three primes. (In the end, only a check for

5 < n ≤ 1027 was needed.) We proceeded as follows. Oliveira e Silva, Herzog and Pardi

[46]) had already checked that the binary Goldbach conjecture is true up to 4 · 1018. Given
that, all we had to do was to construct a “prime ladder”, that is, a list of primes from 3 up

to 8.8 · 1030 such that the difference between any two consecutive primes in the list is at

least 4 and at most 4 · 1018. (This is a known strategy: see [55].) Then, for any odd integer

5 < n ≤ 8.8·1030, there is a prime p in the list such that 4 ≤ n−p ≤ 4·1018+2. (Choose the
largest p < n in the ladder, or, if nminus that prime is 2, choose the prime immediately under

that.) By [46] (and the fact that 4 · 1018+2 equals p+ q, where p = 2000000000000001301
and q = 1999999999999998701 are both prime), we can write n − p = p1 + p2 for some

primes p1, p2, and so n = p+ p1 + p2.
Building a prime ladder involves only integer arithmetic, that is, computer manipulation

of integers, rather than of real numbers. Integers are something that computers can handle

rapidly and reliably. We look for primes for our ladder only among a special set of integers

whose primality can be tested deterministically quite quickly (Proth numbers: k · 2m + 1,
k < 2m). Thus, we can build a prime ladder by a rigorous, deterministic algorithm that can

be (and was) parallelized trivially.
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The second computation is more demanding. It consists in verifying that, for every L-
function L(s, χ) with χ of conductor q ≤ r = 300000 (for q even) or q ≤ r/2 (for q odd),
all zeroes of L(s, χ) such that |/(s)| ≤ Hq = 108/q (for q odd) and |/(s)| ≤ Hq =
max(108/q, 200 + 7.5 · 107/q (for q even) lie on the critical line. This was entirely Platt’s

work; my sole contribution was to request computer time. In fact, he went up to conductor

q ≤ 200000 (or twice that for q even); he had already gone up to conductor 100000 in his

PhD thesis. The verification took, in total, about 400000 core-hours (i.e., the total number

of processor cores used times the number of hours they ran equals 400000; nowadays, a
top-of-the-line processor typically has eight cores). In the end, since I used only q ≤ 150000
(or twice that for q even), the number of hours actually needed was closer to 160000; since
I could have made do with q ≤ 120000 (at the cost of increasing C to 1029 or 1030), it is
likely, in retrospect, that only about 80000 core-hours were needed.

Checking zeros of L-functions computationally goes back to Riemann (who did it by

hand for the special case of the Riemann zeta function). It is also one of the things that were

tried on digital computers in their early days (by Turing [61], for instance; see the exposition

in [1]). One of the main issues to be careful about arises whenever one manipulates real

numbers via a computer: generally speaking, a computer cannot store an irrational number,

and so one cannot say: “computer, give me the sine of that number” and expect a precise re-

sult. What one should do is to say: “computer, I am giving you an interval I = [a/2k, b/2k];
give me an interval I ′ = [c/2�, d/2�], preferably very short, such that sin(I) ⊂ I ′”. This

is called interval arithmetic; it is arguably the easiest way to do floating-point computations

rigorously.

Processors do not do this natively, and if interval arithmetic is implemented purely on

software, computations can be slowed down by a factor of about 100. Fortunately, there are
ways of running interval-arithmetic computations partly on hardware, partly on software.

Platt has his own library, but there are others online (e.g. PROFIL/BIAS [38]).

Lastly, there were several relatively minor computations embedded in [27–29]. A typical

computation was a rigorous version of a “proof by graph” (“the maximum of a function f
is clearly less than 4 because I can see it on the screen”). There is a standard way to do

this (see, e.g., [60, §5.2]); essentially, the bisection method combines naturally with interval

arithmetic. Yet another computation (and not a very small one) was that involved in verifying

a large-sieve inequality in an intermediate range (as we discussed in §5).

It may be interesting to note that one of the inequalities used to estimate (4.13) was

proven with the help of automatic quantifier elimination [32]. Proving this inequality was

a very minor task, both computationally and mathematically; in all likelihood, it is feasi-

ble to give a human-generated proof. Still, it is nice to know from first-hand experience

that computers can nowadays (pretend to) do something other than just perform numerical

computations – and that this is true even in current mathematical practice.
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Abstract. This paper describes the authors’ joint research on small gaps between primes in the last

decade and how their methods were developed further independently by Zhang, Maynard, and Tao to

prove stunning new results on primes. We now know that there are infinitely many primes differing by

at most 246, and that one can find k primes a bounded distance (depending on k) apart infinitely often.

These results confirm important approximations to the Hardy–Littlewood Prime Tuples Conjecture.
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1. History

The twin prime conjecture that n and n + 2 are both primes for infinitely many positive

integers n, may have been conceived around the time of Euclid, more than two thousand years

ago. Among as yet unsolved problems in mathematics it is one of the oldest. The purpose of

the present article is to give an overview of the progress in the last nine years in this subject,

in particular, of the results of the authors.

As a young boy Gauss observed in 1792 or 1793 that the primes around x have an average
distance log x which led him to conjecture that

π(x) :=
∑
p≤x
p: prime

1 ∼ li x :=

x∫
2

dt

log t
∼ x

log x
(x→ ∞). (1.1)

This conjecture was proved in 1896 (independently) by Hadamard and de la Vallée Poussin,

and is now called the Prime Number Theorem.

A relevant quantity in the study of small gaps between primes is

Δ := lim inf
n→∞

dn
log n

= lim inf
n→∞

pn+1 − pn
log n

, (1.2)

where {pi}∞i=1 =: P is the set of primes sequenced in increasing order and dn := pn+1 −
pn. The Prime Number Theorem, (1.1), immediately implies Δ � 1, so the first task

concerning an upper estimation of Δ was to show an estimate of the type Δ < 1. During the

twentieth century there were many papers on upper estimates forΔ. First, in 1926, Hardy and

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Littlewood (unpublished, see [32]) succeeded in showing, assuming the Generalized Riemann

Hypothesis (GRH), that

Δ � 2/3. (1.3)

The first unconditional bound

Δ � 1− c1, (1.4)

with an unspecified but explicitly calculable c1 > 0, was shown by Erdős in 1940 [5] who

used Brun’s sieve. The next big step was made by Bombieri and Davenport [2] who removed

the assumption of GRH in Hardy and Littlewood’s method by using Bombieri’s work [1] on

the large sieve and showed that

Δ �
(
2 +

√
3
)
/8 = 0.466 . . . . (1.5)

Their method gave Δ � 1/2 but they were also able to combine this with an explicit version

of Erdős’s [5] proof which led them to (1.5). After several smaller improvements (Huxley and

others), Maier [23] succeeded in combining the matrix method he developed with the ideas

of Bombieri–Davenport, Erdős and Huxley, making it possible to multiply the best known

bound by e−γ (γ is Euler’s constant) and reach

Δ � 0.248 . . . . (1.6)

In 2005 the authors proved (see [14]; or for a brief account §2, §3 below)

Δ = 0. (1.7)

2. Ideas behind the proofs of some results concerning small gaps between con-
secutive primes

We begin by recounting a number of conjectures related to the twin prime conjecture and

more generally to small gaps between consecutive primes. Some of them have been known

for a long time, some of them were introduced by us.

Conjecture 2.1 (Twin Prime Conjecture). dn = 2 infinitely often.

A generalization of this was formulated in 1849 by de Polignac.

Conjecture 2.2 (De Polignac’s Conjecture [29]). For every given positive even integer h,
dn = h infinitely often.

For a further generalization we need the notion of admissible k-tuples.

Definition 2.3. H = {hi}ki=1 (0 � h1 < h2 · · · < hk, hk ∈ Z) is admissible if the hi’s do
not cover all residue classes mod p for any prime p.

This is clearly a necessary condition that n+ hi ∈ P for all integers 1 ≤ i ≤ k holds for
infinitely many numbers n.

Dickson formulated in 1904 the conjecture that this condition was also sufficient. Although

his conjecture included linear forms of type ain+ bi (ai, bi ∈ Z) we will consider the special
case ai = 1 for all i ∈ [1, k].
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Conjecture 2.4 (Dickson’s Conjecture [3]). If H is admissible, then n + hi ∈ P for all
i ∈ [1, k] holds for infinitely many values of n.

About twenty years later, in 1923, Hardy and Littlewood formulated this in a quantitative

form as

Conjecture 2.5 (Hardy–Littlewood Prime-Tuples Conjecture [20]). If H is an admissible
k-tuple, then ∑

n�x
{n+hi}ki=1∈Pk

1 ∼ S(H)
x

logk x
, (2.1)

where

S(H) :=
∏
p

(
1− νH(p)

p

)(
1− 1

p

)−k
> 0, (2.2)

and νH(p) denotes the number of distinct residue classes modulo p occupied by the elements
of H.

Note that the relation S(H) > 0 is equivalent to H being admissible.

Until now the conjectures were listed in increasing strength. We introduced a weaker

form of Dickson’s Conjecture:

Conjecture 2.6 (Conjecture DHL(k, 2)). If H is an admissible k-tuple, then n+H contains
at least two primes infinitely often.

If the above conjecture is true for at least one admissible k-tuple, then it implies another

conjecture which is a good approximation to the Twin Prime Conjecture. This we called the

Conjecture 2.7 (Bounded Gaps Conjecture). There exists an absolute constant C such that
dn = pn+1 − pn � C for infinitely many n.

A still weaker form of the Bounded Gap Conjecture is

Conjecture 2.8 (Small Gaps Conjecture). Δ = lim inf
n→∞

pn+1 − pn
log pn

= 0.

Within the scope of our work the existence of small or bounded gaps between consecutive

primes is intimately connected with the distribution of primes in arithmetic progressions. The

following definition of an admissible level ϑ of primes was already known and used in sieve

theory.

Definition 2.9. ϑ is called an admissible level of distribution of primes if for any ε > 0,
A > 0 we have for any X > 2

∑
q�Xϑ−ε

max
a

(a,q)=1

∣∣∣∣ ∑
p≡a(q)
p�X

log p− X

ϕ(q)

∣∣∣∣ � C(A, ε)X

(logX)A
, (2.3)

where C(A, ε) is an ineffective constant depending on A and ε.

The largest known level ϑ = 1/2 is the celebrated Bombieri–Vinogradov [1, 38] Theorem.

The strongest possibility, ϑ = 1, is the Elliott–Halberstam [4] Conjecture, and more generally

one can introduce
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Conjecture 2.10 (Conjecture EH(ϑ)). (2.3) is true for a fixed ϑ ∈ ( 12 , 1].

We succeeded in showing in 2005 the following result.

Theorem 2.11 ([14]). If EH(ϑ) is true for some fixed ϑ > 1/2, then DHL(k, 2) is true for
k > k0(ϑ) and consequently the Bounded Gaps Conjecture is true, i.e. lim inf

n→∞
dn <∞.

Theorem 2.12 ([14]). The Small Gaps Conjecture is true, i.e.Δ = 0.

We improved this somewhat later to

Theorem 2.13 ([15]). lim inf
n→∞

dn
(log n)1/2(log log n)2

<∞.

Concerning the frequency of small gaps we showed

Theorem 2.14 ([17, 18]). Given any fixed η > 0 the relation

dn = pn+1 − pn < η log n (2.4)

holds for a positive proportion of all gaps.

One of the important ideas which yielded a proof of the Small Gaps Conjecture in [14] and

which – along with the work of Y. Motohashi and J. Pintz [25] – represented an important step

in the first proof of the Bounded Gaps Conjecture by Y. Zhang [39] was to attack, among the

listed seven conjectures, particularly DHL(k, 2). The idea was to find suitable non-negative
weights an for n ∈ [N, 2N) to be abbreviated later as n ∼ N , such that an should be

relatively large compared with S =
∑
n∼N

an > 0 if the set

n+Hk = {n+ hi}ki=1 (2.5)

contains some (possibly several) primes. A good quantitative formulation is to consider (and

try to maximize) the ratio

Ej =
Sj
S∗

:=

∑
n∼N

anχP(n+ hj) log(n+ hj)∑
n∼N

an log 3N
, (2.6)

where χP(m) denotes the characteristic function of primes, that is, χP(m) = 1 ifm is prime

and 0 otherwise.

The quantity

α(Hk) =
k∑
j=1

Ej (2.7)

describes the (weighted) average number of primes in n+Hk if n runs between N and 2N ,

i.e. n ∼ N . If we succeed in obtaining for a k-tuple H = Hk a lower bound greater than 1
for the quantity in (2.7), then DHL(k, 2) is proved (at least for a single H = Hk), and from

this the Bounded Gaps Conjecture follows immediately.

(i) If we start with the simple uniform choice an ≡ 1 we obtain

α(Hk) ∼ k

logN
as N → ∞, (2.8)

which clearly tends to 0.
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(ii) Choosing an = 1 if {n+ hi}ki=1 ∈ Pk and 0 otherwise, we can seemingly reach the

optimal value

α(Hk) = k unless S =
∑
n∼N

an = 0. (2.9)

Unfortunately, to exclude the possibility S = S(N) = 0 for N > N0 is equivalent to

the proof of Dickson’s Conjecture, so we arrive at a tautology.

In the following H = Hk will always be an admissible k-tuple, but to simplify notation

we often write simply H instead of Hk.

(iii) An essentially equivalent formulation of the above is to use the generalized von Man-

goldt function

an = Λk
(
PH(n)

)
:=

∑
d|PH(n)

μ(d)

(
log
PH(n)

d

)k
, PH(n) =

k∏
i=1

(n+ hi) (2.10)

which vanishes if PH(n) has more than k distinct prime factors. However, in this case

a direct evaluation of S seems to be hopeless, since d can be as large as Nk.

(iv) It was an idea of Selberg to approximate (2.10) with the divisors cut at R = N c and

accordingly use ∑
d|PH(n)
d�R

μ(d) logk
R

d
. (2.11)

However, this might be negative.

(v) So the next idea is the weight used in the so-called k-dimensional Selberg sieve, i.e.,

simply the square of (2.11), namely,

an,k =

( ∑
d�R,d|PH(n)

μ(d) logk
R

d

)2

. (2.12)

In this case choosing R � N1/2L−A, L = logN , A > A0(k), S can be readily

evaluated. Assuming EH(ϑ), the unconditional case being EH(1/2) (the Bombieri–

Vinogradov Theorem), the more difficult sum Sj can also be evaluated, but only under

the stronger constraint

R � N (ϑ−ε)/2. (2.13)

This yields for the crucial quantity α(Hk) in (2.7)

α(Hk) = ϑ− ε+O
(
1

k

)
(2.14)

primes on average, which is unfortunately still less than 1 even under the strongest

hypothesis ϑ = 1, the original Elliott–Halberstam Conjecture.

(vi) The winning choice is if we are more modest and instead of Dickson’s Conjecture

approximate the situation when
k∏
i=1

(n+ hi) has at most k + � different prime factors

where � � 0 is a free parameter. (The choice � = 1 was used earlier by Heath-Brown
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[22], however, not to localize primes in n+H but to find n values where all components

n+ hi are almost primes). This means that we use (2.12) with k + � instead of k, i.e.
our choice in [14] was

an,k+� =

( ∑
d�R,d|PH(n)

μ(d) logk+�
R

d

)2

. (2.15)

This yielded under the condition (2.13) a gain of a factor 2, rather surprisingly. More

precisely we got

α(Hk) = 2(ϑ− ε) +O
(
�

k

)
+O

(
1

�

)
. (2.16)

Under the optimal choice � =
[√
k/2
]
this meant

α(Hk) = 2(ϑ− ε) +O
(

1√
k

)
. (2.17)

Consequently if EH(ϑ) is true for some ϑ > 1/2 we obtain α(Hk) > 1 primes on

average if k > C/(ϑ− 1/2)2.

In the unconditional case ϑ = 1/2, this yielded Theorem 2.12 but missed the goal

DHL(k, 2) by a hairbreadth.

The way to see how this argument could lead to a proof of the Small Gaps Conjecture

begins by observing that on average only

(
2ε+

c1√
k

)
primes were “missing” to obtain

more than one prime on average. Using all numbers of the form

n+ h, h ∈ [1, H], H = η logN (2.18)

with an arbitrarily small but fixed η > 0 instead of only

n+ hi, hi ∈ Hk (2.19)

we could pick up more primes so as to fill the missing part.

If in case of h ∈ [1, H]\Hk we expect heuristically n+h to be prime with a probability

1/ logN , we can hope to collect

η > 2ε+
c1√
k
+O

(
k

logN

)
(2.20)

primes among n+ h on average if n ∼ N , h ∈ [1, H] \ Hk.

The condition (2.20) is clearly satisfied if

ε <
η

3
, k > C2η

−2, N > N0(k, ε, η). (2.21)

In the original work [14] we used a result of Gallagher [11] and an averaging procedure

over all Hk ⊂ [1, H] to show that the above sketched heuristic works in practice. In the next
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section we use a simpler way, which avoids Gallagher’s Theorem and uses a single, suitably

chosen k-tuple Hk for all k.
We will not sketch the rather complicated procedure to show Theorem 2.13. We just

mention here that it needs the investigation of k-tuples with

k 0 (logN)1/2

(log logN)2
, � 0

√
k. (2.22)

In the work [27] it was shown that using a suitable polynomial P (x) instead of the simple

xk+� in (2.15) (x = log(R/d)) one can improve Theorem 2.13 further to

Theorem 2.15 ([27]). lim inf
n→∞

dn
(logN)3/7(log logN)4/7

<∞.

One can raise the more general question of finding the optimal polynomial, or more

generally the optimal function P (x). B. J. Conrey calculated the optimal weight function,

actually a Bessel-type function. Later in the work [10] an exact analysis confirmed the

optimality of the Bessel-type function and the fact that it yielded instead of (2.17) the sharper

estimate

α(Hk) = 2(ϑ− ε) +O(k−2/3). (2.23)

This was, however, the same strength as the polynomial in [27] and [10] apart from the implicit

constant in the above O symbol. Therefore the result in Theorem 2.15 can be considered as

the limit of the original GPY method.

Concerning Theorem 2.14 the crucial idea is the fact, discovered by the second named

author ([26]), and independently by Friedlander and Iwaniec [9] that the weights an are

strongly concentrated on numbers n where all components n+ hi are almost prime, more

precisely for numbers n with

P−
( k∏
i=1

(n+ hi)

)
> N δ, n ∼ N, (2.24)

where δ is an arbitrarily small fixed positive constant and P−(m) denotes the smallest prime

factor of n. In fact, it was proved in [26] that∑
n∼N

P−(PH(n))�Nδ

an � Cδ
∑
n∼N

an (2.25)

with a constant C = C(k). (The factor C(k)δ was improved to C ′k3δ2 with an absolute

constant C ′ in [17]).

3. Sketch of the proof of Theorems 2.11 and 2.12

In the following we consider a general sieve situation when the number of residues sieved out

mod p satisfies

ΩH(p) = Ω(p) = k for p � Δ(H) :=
∏
i>j

(hi − hj), k fixed (3.1)
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and let Ω(n) be extended multiplicatively for all squarefree values of n. Actually we have

Ω(p) = ΩH(p) = νH(p). There are three possibilities:

(i) to work analytically with two complex variables (cf. [14]);

(ii) to work elementarily (cf. [13] using pure sieve methods beyond (2.3));

(iii) to work partially elementarily and partially analytically with one complex variable.

Here we will pursue the third possibility, worked out in an unpublished note of K.

Soundararajan [37].

We use a somewhat more general weight function: a polynomial P (y) but note that the
argument would work the same for a function P (y) analytic on [0, 1], if P (y) has at least a
kth order zero at 0.

First we evaluate the sum of the weights an, where in the following we will define

an =

⎛
⎝∑
d�R

μ(d)P

(
log(R/d)

logR

)⎞⎠
2

, (3.2)

S =
∑
n∼N

an ∼ N
∑′

d,e�R
μ(d)μ(e)

Ω([d, e])

[d, e]
P

(
log(R/d)

logR

)
P

(
log(R/e)

logR

)
(3.3)

(we ignored a negligible error of size O(R2+ε)) and
∑′

will always denote summation over

squarefree variables).

Introducing the notation (d, e) = u, d = um, e = un, (m,n) = 1 we obtain

S ∼N
∑′

u�R

∑′

m,n�R/u
(m,n)=1

(m,u)=(n,u)=1

μ(m)μ(n)Ω(u)Ω(m)Ω(n)

umn
P

(
log(R/um)

logR

)
P

(
logR/un

logR

)
.

(3.4)

We can rewrite the condition (m,n) = 1 using the relation

∑
β|m,β|n

μ(β) =

{
1 if (m,n) = 1,

0 otherwise
(3.5)

as

S ∼ N
∑′

u�R

∑′

β�R/u
μ(β)

Ω(u)Ω2(β)

uβ2

( ∑′

m′�R/uβ
(m′,u)=1

μ(βm′)Ω(m′)

m′
P

(
log(R/uβm′)

logR

))2

.

(3.6)

Grouping terms with the same value of uβ =: γ with notationm = m′ we have

S ∼ N
∑′

γ�R

Ω(γ)

γ

(∑′

β|γ

μ(β)Ω(β)

β

)( ∑′

m�R/γ
(m,γ)=1

μ(m)Ω(m)

m
P

(
log(R/γm)

logR

))2

. (3.7)
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Let us denote the inner sum by J
(
γ, Rγ

)
where the first variable refers to the condition

(m, γ) = 1, the second tom � R/γ. Further let for a squarefree γ

G(s+ 1, γ) :=
∑′

m
(m,γ)=1

μ(m)Ω(m)

ms+1
=: ζ(s+ 1)−kF (s+ 1, γ). (3.8)

Here we have for Re s > 0

F (s+ 1, γ) =
∏
p

(
1− Ω(p)

ps+1

)(
1− 1

ps+1

)−k∏
p|γ

(
1− Ω(p)

ps+1

)−1

. (3.9)

Using the Taylor expansion

P (x) =
∞∑
j=k

P (j)(0)xj

j!
(3.10)

and Perron’s formula (c > 0, arbitrary)

1

2πi

∫
(c)

xs

sj+1
ds =

{
(log x)j

j! if x � 1,

0 if 0 � x � 1
(j ∈ Z+) (3.11)

we can rewrite J
(
γ, Rγ

)
as

J

(
γ,
R

γ

)
=

∞∑
j=k

P (j)(0)

(logR)j

∑′

m�R/γ
(m,γ)=1

μ(m)Ω(m)

m

1

j!

(
log
R/γ

m

)j
(3.12)

=

∞∑
j=k

P (j)(0)

(logR)j
· 1

2πi

∫
(c)

∞∑
m=1

(m,γ)=1

μ(m)Ω(m)

ms+1

(
R

γ

)s
ds

sj+1

=
∞∑
j=k

P (j)(0)

(logR)j
· 1

2πi

∫
(c)

F (s+ 1, γ)ζ(s+ 1)−k
(
R

γ

)s
ds

sj+1
.

Since F (s+ 1, γ) is regular for σ > − 1
2 we can transform the line inside the zero-free

region of ζ(s+ 1), that is, to σ > 1− c/(log(|t|+ 2)), |t| � exp
(√

logR
)
. The integral is

negligible on the new contour and so we obtain by the residue at s = 0

J

(
γ,
R

γ

)
∼

∞∑
j=k

P (j)(0)

(logR)j
F (1, γ)

(logR/γ)j−k

(j − k)! (3.13)

=
F (1, γ)

(logR)k

∞∑
ν=0

P (ν+k)(0)

ν!

(
log(R/γ)

logR

)ν

=
F (1, γ)

(logR)k
P (k)

(
logR/γ

logR

)
.
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We remark that although this argument does not work if R/γ is not large enough, that
part can be shown to be negligible directly from (3.7). So we obtain

S ∼ N

(logR)2k

∑′

γ�R

Ω(γ)

γ

∏
p|γ

(
1− Ω(p)

p

)
· F (1, γ)2

(
P (k)

(
logR/γ

logR

))2

(3.14)

∼ N

(logR)2k
S2(H)

∑′

γ�R

Ω(γ)

γ

∏
p|γ

(
1− Ω(p)

p

)−1(
P (k)

(
logR/γ

logR

))2

.

Since apart from finitely many primes, for which

p | Δ(H) :=
∏
i>j

(hi − hj) (3.15)

we have Ω(p) = k, the behaviour of Ω(n) is similar to that of the generalized divisor function

τk(n) =
∑

n1n2...nk=n

1. (3.16)

This implies (for the details see Lemma 11 of [13])

∑′

γ�x

Ω(γ)

γ

∏
p|γ

(
1− Ω(p)

p

)−1

∼ S(H)−1 (log x)
k

k!
. (3.17)

The sum in (3.14) can be evaluated from (3.17) by partial summation, and we obtain

S ∼ S(H)N

(logR)k(k − 1)!

1∫
0

yk−1
(
P (k)(1− y)

)2
dy. (3.18)

Let us consider now the quantity

Sj =
∑′

n∼N
anχP(n+ hj) log n, hj ∈ H. (3.19)

In this case (if R < N ) the two conditions

n+ hj ∈ P, d |
k∏
i=1

(n+ hi), d � R (3.20)

and

n+ hj ∈ P, d |
k∏
i=1
i 
=j

(n+ hi), d � R (3.21)

are equivalent. So the situation is similar to (3.3) if

R � N (ϑ−ε)/2 (3.22)
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since it is easy to see that by the condition (2.3) (which is unconditionally true with ϑ = 1/2
by the Bombieri–Vinogradov Theorem) we can substitute χP(n+ hj) log n by 1. Thus we
have

Sj ∼
∑′

d,e�R
μ(d)μ(e)

Ωj([d, e])

[d, e]
P

(
log(R/d)

logR

)
P

(
log(R/e)

logR

)
(3.23)

with the only difference that we have now Ωj(p) = Ω(p)− 1 = k − 1 if p � Δ. The singular

series Sj(H) is accordingly

Sj(H) =
∏
p

(
1− νH(p)− 1

p− 1

)(
1− 1

p

)−(k−1)

(3.24)

=
∏
p

(
1− νp(H)

p

)(
1− 1

p

)−k
= S(H).

So we obtain for all j ∈ [1, k] under the stronger condition (3.22) now analogously to (3.18)

Sj ∼ S(H)N

(logR)k−1(k − 2)!

1∫
0

yk−2
(
P (k−1)(1− y)

)2
dy (3.25)

and this gives in total for R = N (ϑ−ε)/2, P (k−1)(x) = Q(x)

k∑
j=1

Sj

S log 3N
∼ logR

logN
k(k − 1)M(Q) ∼ k(k − 1)(ϑ− ε)

2
M(Q) (3.26)

primes on average in {n + hi}ki=1 if n runs between N and 2N and the numbers n are

weighted by an log n, where

M(Q) =

1∫
0

yk−2
(
Q(1− y))2dy

1∫
0

yk−1
(
Q′(1− y))2dy . (3.27)

In case of the simple choice

P (x) = xk+�, � =
[√
k/2
]
⇔ Q(x) = C(k, �)x�+1 (3.28)

we obtain

M(Q) =

1∫
0

yk−2(1− y)2�+2dy

(�+ 1)2
1∫
0

yk−1(1− y)2�dy
=

(k − 2)!(2�+ 2)!/(k + 2�+ 1)!

(�+ 1)2(k − 1)!(2�)!/(k + 2�)!
(3.29)

=
4
(
1− 1

2(�+1)

)
(k + 2�+ 1)(k − 1)

∼
4
(
1−O

(
1√
k

))
k2

.
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By (3.26) this yields on the weighted average

2(ϑ− ε)
(
1−O

(
1√
k

))
(3.30)

primes in {n+H} if n ∼ N .

The quantity above is clearly greater than 1 if

ϑ > 1/2, k > k0(ϑ), (3.31)

which proves Theorem 2.11.

Suppose now h0 /∈ H, let H0 = H ∪ {h0}, and Ω0(p) = ΩH0
(p) is defined as in (3.1)

with k + 1 in place of k,

S0 =
∑
n∼N

anχP(n+ h0) logn. (3.32)

In case of νH0(p) = νH(p) we have Ω0(p) = νH(p) − 1 residue classes in the sieve

mod p (Ω0 is defined as in (3.1)); if νH0
(p) = νH(p) + 1, then Ω0(p) = νH(p). So we have

in both cases Ω0(p) = νH0(p)− 1 and Ω0(p) = k if p � Δ(H0).
This yields an analogous asymptotic to (3.18) for S0, with H replaced by H0:

S0 ∼ S(H0)N

(logR)k(k − 1)!

1∫
0

yk−1
(
P (k)(1− y)

)2
dy (3.33)

and consequently
S0
S

∼ S (H ∪ {h0})
S(H)

(as N → ∞). (3.34)

This relation helps us to obtain Theorem 2.12 unconditionally. Let us consider an interval

of length

H = η logN, (3.35)

where η is an arbitrarily small fixed positive constant. Let us suppose that we can find for any

k an admissible k-tuple H = Hk such that with a fixed absolute constant c0 > 0

S (Hk ∪ h0) > c0S(H) for any even h0. (3.36)

In this case using only ϑ = 1/2, that is, the Bombieri–Vinogradov Theorem, we obtain on

average

H∑
h=1

∑
n∼N

anχP(n+ h) log n∑
n∼N

an log 3N
� (1− 2ε)

(
1−O

(
1√
k

))
+
c0η

2
− k

log 3N
> 1 (3.37)

primes between n and n+H if

k > k0(η), ε < ε0(η), N > N0(η, k, ε). (3.38)

In order to show the existence of Hk with (3.36) we can just choose

H = Hk =
{
i
∏
p�2k

p
}k
i=1
. (3.39)
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Then we have for any even h with νp = νH(p)

S(H ∪ h)
S(H)

� 2
∏

2<p�2k

1− 2/p

(1− 1/p)2

∏
p>2k

1− (νp + 1)/p

1− (νp + 1)/p+ νp/p2
(3.40)

� c1
∏
p>2k

(
1 +O

(
k

p2

))
� c0.

In such a way we obtain Theorem 2.12. We remark that the above proof avoids Gallagher’s

Theorem [11]. Another proof, also avoiding Gallagher’s Theorem is given in [16] which yields

some other results, like small gaps between consecutive primes in arithmetic progressions

and improved upper estimates for the quantity

Δr = lim inf
n→∞

pn+r − pn
log pn

. (3.41)

4. Sketch of the proof of Theorem 2.14

The most crucial idea in the proof of Theorem 2.14 is that we will change the weights and

instead of the original normalized weights (cf. (2.15)).

an =

( ∑
d≤R,d|PH(n)

μ(d)

(
log(R/d)

logR

)k+�)2

, PH(n) =
k∏
i=1

(n+ hi), � =

[√
k

2

]
(4.1)

we will work with the new weight (n ∼ N )

a′n =

{
an if P−

(
PH(n)

)
> N δ,

0 otherwise,
(4.2)

where δ will be a fixed small positive constant with ε < ε0(η), k > k0(η, ε), δ < δ0(k, η, ε),
R = N (ϑ−ε)/2 and we consider primes in intervals of length

H = η logN (4.3)

as indicated in (2.2).

As mentioned at the end of Section 2 the sum of weights a∗n,H with PH(n) having at least
one small prime divisor not exceeding N δ is negligible and we have (2.25) with a constant

C = C(k), i.e.

0 ≤
∑
n∼N

(an − a′n) =
∑
n∼N

P−(PH(n))≤Nδ

an ≤ Cδ
∑
n∼N

an,

∑
n∼N

P−(PH(n))≤Nδ

anχP(n+ h) log(n+ h) ≤ Cδ
∑
n∼N

anχP(n+ h) log(n+ h).
(4.4)

These are Lemmas 4 and 5 of [26].
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The other tool is Gallagher’s Theorem [11], according to which for k fixed, H → ∞
∑

H⊂[1,H]
|H|=k

S(H) ∼ Hk

k!
. (4.5)

Let further (for a more detailed proof see [17] and [18])

π(n,H) := π(n+H)− π(N), Θ(n) :=

{
log n if n ∈ P,
0 otherwise,

(4.6)

Θ(n,H) :=
H∑
h=1

Θ(n+ h)

M :=
∑
pj∼N

pj+1−pj≤H

1, Q(N,H) :=
∑
n∼N

π(n,H)>1

1 ≤ HM +O
(
Ne−c

√
logN

)
, (4.7)

and consider now instead of (3.19) the modified quantity

S′(h,H) =
∑
n∼N

a′nΘ(n+ h). (4.8)

The substitution of an by a′n will just slightly change the corresponding value of S′(H)
and S′(h,H) respectively, to

S′(H) =
∑
n∼N

a′n = (1 +O(δ))S(H), (4.9)

S′(h,H) =
∑
n∼N

a′nΘ(n+ h) = (1 +O(δ))S(h,H) (4.10)

compared with

S(h,H) :=
∑
n∼N

anΘ(n+ h), (4.11)

where the asymptotics for the quantity (4.11) are given in (3.25) and (3.33) respectively, and

P (x) = xk+� in this section.

The crucial change is that in case of a′n,H > 0 all the prime divisors of PH(n) are at least
N δ with a fixed small δ, so by (4.1) we have a trivial estimate for it:

a′n � 2ω(PH(n)) � 22k
2/δ 2k,δ 1. (4.12)

On the other hand, in this case we cannot use the simplification of Section 3, that is, to

work with a suitably chosen single Hk. Averaging over all H ⊆ [1, H], |H| = k, with the

abbreviations (we take the unconditional case ϑ = 1/2 from now on)

H

logR
=

η(
1
2 − ε) /2 = η′,

∑(k)

H
=

∑
H⊂[1,H]
|H|=k

(4.13)
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we obtain from (3.18), using (3.28)–(3.29) and (4.5)

∑(k)

H
S′(H) ∼ (1 +O(δ))

(η′)kNC(k, �)(2�)!

k!(�+ 1)2(k + 2�)!
=: (1 +O(δ))B. (4.14)

On the other hand, we have by (3.33) and (4.5)

∑(k)

H

∑
n∼N

h∈[1,H]\H

a′nΘ(n+ h) (4.15)

∼ (k + 1)
∑(k+1)

H
S(H)

NC(k, �)(2�)!(1+O(δ))

(logR)k(�+ 1)2(k + 2�)!
:= (1 +O(δ))Bη logN.

Finally, we have by (3.25) and (4.5) with � =
[√
k/2
]
, ϑ = 1/2

∑(k)

H

∑
h∈H

∑
n∼N

a′nΘ(n+ h) (4.16)

∼ (1 +O(δ))
kη′kNC(k, �)(2�+ 2)!

k!(k + 2�+ 1)!
logR

∼ (1 +O(δ))B

(
1− 1

2(�+ 1)

)(
1− 2�+ 1

k + 2�+ 1

)
(1− 2ε) logN.

Adding (4.15), (4.16) and subtracting from it (4.14) multiplied by log 3N we obtain

∑(k)

H

∑
n∼N

a′n
(
Θ(n,H)− log 3N

)
(4.17)

> B logN

{
(1− 2ε)

(
1− C√

k

)
+ η − 1 +O(δ)

}
>
η

2
B logN

if, as stated in the introduction of Section 4 (between (4.2) and (4.3)) we fix ε, k, δ with

ε < ε0(η), k > k0(η, ε), δ < δ0(k, η, ε). (4.18)

Consequently, if (4.18) holds, which we will always assume in the following, then

η

2
B logN < (1 + o(1)) logN

∑
n∼N

π(n,H)>1

π(n,H)
∑(k)

H
a′n. (4.19)

Introducing the notation

T (n,H) :=
∑(k)

H
P−
(
PH(n)

)
>Nδ

1 (4.20)

we have by (4.6)–(4.7), (4.12) and Cauchy’s inequality

ηB 2
( ∑

n∼N
π(n,H)>1

1

)1/2(∑
n∼N

π2(n,H)T (n,H)2
)1/2

(4.21)
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2
(
(HM)1/2 +O

(
N1/2e−c

√
logN/2

))(∑
n∼N

π2(n,H)T (n,H)2
)1/2

.

Further, we have by Selberg’s sieve (Theorem 5.1 of [21] or Theorem 2 in § 2.2.2 of [19]) for

any set H and δ < 1/2

∑
n∼N

P−
(
PH(n)

)
>Rδ

1 � |H|!S(H)

(logRδ)|H|
N(1 + o(1)) (R,N → ∞). (4.22)

This implies by Gallagher’s Theorem (4.5)

∑
n∼N

π(n,H)2T (n,H)2 2
∑

1≤h,h′≤H

∑(k)

H1

∑(k)

H2

∑
n∼N

P−(H1∪H2∪{h}∪{h′})>Nδ

1 (4.23)

2k N
2k+2∑
r=k

∑(r)

H0

S(H0)

(logRδ)r
2k,δ N

2k+2∑
r=k

(
H

logR

)r
2k,δ (η

′)kN.

Taking into account the definition of B in (4.14) we obtain from (4.21) and (4.23)

η(η′)k/2 2k,δ

((
HM

N

)1/2

+ e−c
√
logN/2

)
. (4.24)

Consequently,
HM

N
)k,δ,η 1. (4.25)

Hence,

M )k,δ,η
N

logN
)k,δ,η π(2N), (4.26)

which proves Theorem 2.14.

It may be shown (see Theorem 2 of [18]) that this is sharp in the sense that the assertion

does not remain true if H = o(logN). The proof uses the Selberg sieve upper bound for

prime tuples and Gallagher’s result (4.5).

5. Bounded gaps between primes. Zhang’s theorem

We recall that in our original work (Theorem 2.11 in Section 2) we showed that EH(ϑ) for
any ϑ > 1/2 implies DHL(k, 2) for k > k0(ϑ), consequently the Bounded Gaps Conjecture.

From the proof it is trivial that the condition

max
a,(a,q)=1

(5.1)

in (2.3) can be weakened to

max
a,(a,q)=1,PH(a)≡0(q)

(5.2)
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if we want to show for a specific H that n+H contains at least two primes infinitely often.

However, in 2008 in a joint work of Y. Motohashi and J. Pintz the following stronger form of

Theorem 2.11 was proved, in which the summation in (2.3) can be reduced to smooth moduli.

P+(n) will denote the largest prime factor of n.

Theorem 5.1 ([25]). If there exist δ > 0, ϑ > 1/2 and an admissible k-tuple H with
k > k0(δ, ϑ) such that for any ε > 0, A > 0

∑
q≤Nϑ−ε

P+(q)≤Nδ

max
a

(a,q)=1,q|PH(a)

∣∣∣∣ ∑
p≡a(q)
p∼N

log p− N

ϕ(q)

∣∣∣∣ ≤ C(A, ε)N

logAN
(5.3)

holds for N > N0(H, ϑ, δ), then n+H contains at least two primes for some n ∼ N .

Remark 5.2. Zhang proved a version of this result, and it appeared with a different proof in

his work [39]. Zhang proved condition (5.3) with the explicit values

ϑ =
1

2
+

1

584
, δ =

1

1168
, (5.4)

which finally led to

Theorem 5.3 ([39]). DHL(k, 2) is true for k � 3.5 · 106 and consequently
lim inf
n→∞

(pn+1 − pn) � C = 7 · 107.

His proof of (5.4) uses several deep works of Fouvry, Fouvry–Iwaniec, Bombieri–Fried

lander–Iwaniec, Friedlander–Iwaniec, Heath-Brown, which are based on ideas and works of

Linnik, Weil, Deligne and Birch–Bombieri concerning the estimate of Kloostermann sums.

The Polymath 8a project of T. Tao [30] introduced many improvements into this procedure

(for example to apply instead of the simple weight function P (x) = xk+� the optimal

Bessel function first used by Conrey, later analyzed in details in [10] together with many

improvements in both the Motohashi–Pintz Theorem and in the estimation of Kloostermann

sums) and obtained distribution estimates up to level 1/2 + 7/300, and thus reached

Theorem 5.4 (Polymath 8a). DHL(k, 2) is true for k � 632 and consequently

lim inf
n→∞

(pn+1 − pn) � 4680.

6. Bounded gaps between primes: The Maynard–Tao theorem

About half a year after the manuscript of Zhang [39], simultaneously and independently, J.

Maynard [24] and in his Polymath blogs T. Tao [31] introduced another idea which led to a

new, more efficient proof of the Bounded Gaps Conjecture. The main results of Maynard [24]

were the following.

Theorem 6.1 (Maynard [24]). DHL(k, 2) is true for k ≥ 105, consequently

lim inf
n→∞

(pn+1 − pn) � 600.
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Theorem 6.2 (Maynard [24]). Assuming the Elliott–Halberstam Conjecture, DHL(k, 2) is
true for k ≥ 5, consequently

lim inf
n→∞

(pn+1 − pn) � 12.

The two surprising aspects of the Maynard–Tao method were that it produced not only

pairs but arbitrarily long (finite) blocks of primes in bounded intervals, and for this knowing

that (2.3) holds with any fixed ϑ > 0 (however small) would suffice.

The earlier known strongest result of somewhat similar nature was the much weaker one

in our work [16]. It asserted for any r > 0

Δr := lim inf
n→∞

pn+r − pn
log pn

≤ e−γ (√r − 1
)2
. (6.1)

Further, under the very deep Elliott–Halberstam Conjecture (see (2.3) with ϑ = 1) we could
show [14]

Δ2 = 0. (6.2)

Theorem 6.3 (Maynard–Tao [24]). We have for any r

lim inf
n→∞

(pn+r − pn) 2 r3e4r. (6.3)

The main idea of Maynard and Tao is that the weights are defined instead of

an =

( ∑
d�R

d|PH(n)

μ(d)P

(
logR/d

logR

))2

, PH(n) =
k∏
i=1

(n+ hi) (6.4)

in the more general form

an =

( ∑
d1...dk�R
di|n+hi

μ(d)P

(
log d1
logR

, . . . ,
log dk
logR

))2

, (6.5)

where P (t1, . . . , tk) := Rk → R is a fixed piecewise differentiable function with support

on t1 + t2 + · · ·+ tk � 1. The idea of the use of these more general weights goes back to

Selberg ([36], p. 245). Similar type of weights were used by Goldston and Yıldırım [12],

but due to the special choice of P (t1, . . . , tk) =
k∏
i=1

(1− kti), ti � 1/k, this led only to the

result

Δ = lim inf
n→∞

pn+1 − pn
log pn

� 1

4
. (6.6)

We remark here that the general choice of P
(

logR/d
logR

)
in Section 3 corresponds to the

special case of the above with

P (t1, t2, . . . , , tk) = P̃ (t1 + t2 + · · ·+ tk). (6.7)

Another very interesting remark is that in order to show bounded intervals with arbitrarily

long finite blocks of primes (with a bound e2r/ϑ in place of e4r) we do not need the value
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ϑ = 1/2, that is, the Bombieri–Vinogradov Theorem, just any value ϑ > 0. So we obtain a
numerically slightly weaker form of the existence of arbitrarily long (finite) blocks of primes

in bounded invervals even by the use of the first theorem establishing a positive admissible

level ϑ for the distribution of primes, due to A. Rényi [33, 34] reached in 1947–48, by the

large sieve of Linnik.

Upon further work on the Maynard–Tao method in the Polymath 8b project of Tao,

Theorem 6.1 has been improved to

Theorem 6.4 (Polymath 8b project). DHL(k, 2) is true for k � 50, consequently

lim inf
n→∞

(pn+1 − pn) ≤ 246.

7. De Polignac numbers and some conjectures of Erdős on gaps between con-
secutive primes

There are various 60–70 years old conjectures of Erdős on which a sharpened version of

Zhang’s Theorem (or that of Maynard and Tao) combined with other arguments of the second

named author can give an answer. Below we give a list of them without proofs which can be

found in [28]. The numerical values reflect the stage at the end of Polymath 8A.

Using an argument of the second named author (Lemma 4 in [26]) together with a more

general form of the arguments of Theorem 3 of Zhang and its improvement by Tao’s project,

the following strengthening of Theorem 3 of Zhang can be shown. (Let P−(n) be the smallest

prime factor of n.)

Theorem 7.1 ([28]). Let k ≥ 632, H an admissible k-tuple, hi 2 logN , N > N0(k). Then
there are at least

c1(k,H)
N

logkN

numbers n ∈ [N, 2N) such that n+H contains at least two primes and almost primes in all
other components satisfying P−(n+ hi) > N c2(k) for i = 1, 2, . . . , k.

Remark 7.2. A similar version to the above-mentioned crucial Lemma 4 of [26] appears in

the book Opera de Cribro of Friedlander–Iwaniec [9] published also in 2010.

Whereas the original Theorem 3 of Zhang yields only one de Polignac number, by the aid

of Theorem 7.1 we can show

Theorem 7.3 ([28]). There are infinitely many de Polignac numbers. In fact, they have a
positive lower density > 10−7.

Theorem 7.4 ([28]). There exists an ineffective C such that we have always at least one
de Polignac number between X and X + C for any X . (All gaps between consecutive de
Polignac numbers are uniformly bounded.)

Erdős [6] proved in 1948 the inequality

lim inf
n→∞

dn+1

dn
≤ 1− c0 < 1 + c0 ≤ lim sup

dn+1

dn
(7.1)

with a very small positive value c0 and conjectured that the lim inf = 0 and the lim sup = ∞.
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Theorem 7.5 ([28]). lim inf
n→∞

dn+1

dn
= 0, lim sup

dn+1

dn
= ∞.

Further, we have even

lim inf
n→∞

dn+1 log n

dn
<∞, lim sup

n→∞

dn+1

dn log n
> 0. (7.2)

In general it is difficult to show anything for three consecutive differences. However, we

can show

Theorem 7.6 ([28]). lim sup
n→∞

min(dn−1, dn+1)

dn(log n)c
= ∞ with c = 1/632.

Since the Prime Number Theorem implies

1

N

N∑
n=1

dn
log n

= 1, (7.3)

it is interesting to investigate the normalized distribution of the sequence dn, dn/ log n. Erdős
conjectured 60 years ago that the set of limit points,

J =

{
dn
log n

}′
= [0,∞], (7.4)

but no finite limit point was known until 2005, when we showed 0 ∈ J . (We denote by G′

the set of limit points of the set G.) This was rather strange since in 1955 Erdős [7] and

simultaneously Ricci [35] proved that J has positive Lebesgue measure. A partial answer to

the conjecture of Erdős is

Theorem 7.7 ([28]). There is an (ineffective) constant c∗ such that

[0, c∗] ⊂ J. (7.5)

The above result raises the question whether considering a finer distribution dn/f(n) with
a monotonically increasing function f(n) ≤ log n, f(n) → ∞ the same phenomenon is still

true. The answer is yes.

Theorem 7.8 ([28]). Let f(n) ≤ log n, f(n) → ∞ be an increasing function,

Jf =

{
dn
f(n)

}′
. (7.6)

Then there is an (ineffective) constant c∗f such that

[0, c∗f ] ⊂ Jf . (7.7)

Zhang’s theorem shows the existence of infinitely many generalized twin prime pairs

with a difference at most 7 · 107, while the theorem of Green and Tao shows the existence

of arbitrarily long (finite) arithmetic progressions in the sequence of primes. A common

generalization of these two results is given below. (Let p′ denote the prime following p.)

Theorem 7.9 ([28]). There exists an even d ≤ 4680 with the following property. For any k
there is a k-term arithmetic progression of primes such that p′ = p+ d for all elements of the
progression.
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polynomials over a finite field
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Abstract. The lecture explores several problems of analytic number theory in the context of function

fields over a finite field, where they can be approached by methods different than those of traditional

analytic number theory. The resulting theorems can be used to check existing conjectures over the

integers, and to generate new ones. Among the problems discussed are: Counting primes in short

intervals and in arithmetic progressions; Chowla’s conjecture on the autocorrelation of the Möbius

function; and the additive divisor problem.
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1. Introduction

The goal of this lecture is to explore traditional problems of analytic number theory in the

context of function fields over a finite field. Several such problems which are currently

viewed as intractable over the integers, have recently been addressed in the function field

context with vastly different tools than those of traditional analytic number theory, and the

resulting theorems can be used to check existing conjectures over the integers, and to gener-

ate new ones. The problems that I will address concern

• Counting primes in short intervals and in arithmetic progressions

• Chowla’s conjecture on the autocorrelation of the Möbius function

• The twin prime conjecture

• The additive divisor problem

• The variance of sums of arithmetic functions in short intervals and arithmetic progres-

sions.

Before describing the problems, I will briefly survey some quantitative aspects of the

arithmetic of the ring of polynomials over a finite field.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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2. Background on arithmetic in Fq[x]

2.1. The prime polynomial theorem. Let Fq be a finite field of q elements, and Fq[x]
the ring of polynomials with coefficients in Fq . The polynomial ring Fq[x] shares several
qualitative properties with the ring of integers Z, for instance having a Euclidean algorithm,

hence unique factorization into irreducibles. There are also several common quantitative

aspects. To set these up, I review some basics.

The units of the ring of integers are ±1, and every nonzero integer is a multiple by a

unit of a positive integer. Analogously, the units of Fq[x] are the nonzero scalars F×q , and
every nonzero polynomial is is a multiple by a unit of a monic polynomial. The analogue of

a (positive) prime is a monic irreducible polynomial. To investigate arithmetic properties of

“typical” integers, one samples them uniformly in the dyadic interval [X, 2X]withX → ∞;

likewise to investigate arithmetic properties of “typical” polynomials, one samples them

uniformly from the monic polynomials Mn of degree n, with #Mn = qn → ∞.

The Prime Number Theorem (PNT) states that the number π(x) of primes p ≤ x is

asymptotically equal to

π(x) ∼ Li(x) :=

∫ x

2

dt

log t
∼ x

log x
, x→ ∞ . (2.1)

The Riemann Hypothesis is equivalent to the assertion that

π(x) = Li(x) +O
(
x1/2+o(1)

)
. (2.2)

The Prime Polynomial Theorem asserts that the number πq(n) of monic irreducible poly-

nomials of degree n is

πq(n) =
qn

n
+O

(qn/2
n

)
, (2.3)

the implied constant absolute. This corresponds to the PNT (and to the Riemann Hypothesis)

if we map x ↔ qn, recalling that x is the number of positive integers up to x and qn is

the number of monic polynomials of degree n. Note that (2.3) gives an asymptotic result

whenever qn → ∞; in comparison, the results described below will usually be valid only in

the large finite field limit, that is n fixed and q → ∞.

2.2. Cycle structure. For f ∈ Fq[x] of positive degree n, we say its cycle structure is

λ(f) = (λ1, . . . , λn) if in the prime decomposition f =
∏
α Pα (we allow repetition), we

have #{α : degPα = j} = λj . In particular deg f =
∑

j jλj . Thus we get a partition

of deg f , which we denote by λ(f). For instance, λ1(f) is the number of roots of f in

Fq , and f is totally split in Fq[x] - that is f(x) =
∏n
j=1(x − aj), aj ∈ Fq- if and only if

λ(f) = (n, 0, . . . , 0). Moreover f is prime if and only if λ(f) = (0, 0, . . . , 0, 1).
The cycle structure of a permutation σ of n letters is λ(σ) = (λ1, . . . , λn) if in the

decomposition of σ as a product of disjoint cycles, there are λj cycles of length j. For

instance, λ1(σ) is the number of fixed points of σ, and σ = I is the identity if and only if

λ(σ) = (n, 0, . . . ). Moreover σ ∈ Sn is an n-cycle if and only if λ(σ) = (0, 0, . . . , 0, 1).
For each partition λ 4 n, denote by p(λ) the probability that a random permutation on n

letters has cycle structure λ:

p(λ) =
#{σ ∈ Sn : λ(σ) = λ}

#Sn
. (2.4)
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Cauchy’s formula for p(λ) is

p(λ) =
n∏
j=1

1

jλj · λj ! (2.5)

In particular, the proportion of n-cycles in the symmetric group Sn is 1/n.
The connection between cycle structures of polynomials and of permutations is by means

of the following observation, a straight-forward consequence of the Prime Polynomial The-

orem (2.3): Given a partition λ 4 n, the probability that a random monic polynomial f
of degree n has cycle structure λ is asymptotic, as q → ∞, to the probability p(λ) that a
random permutation of n letters has that cycle structure:

1

qn
#{f monic, deg f = n : λ(f) = λ} = p(λ) +O

(1
q

)
. (2.6)

Note that unlike the Prime Polynomial Theorem (2.3), this result (2.6) gives an asymptotic

only in the large finite field limit q → ∞, n fixed.

Having set up the preliminaries, I turn to discussing new results on quantitative aspects

of arithmetic in Fq[x].

3. Asymptotics in short intervals and arithmetic progressions

3.1. Primes in short intervals. Some of the most important problems in prime number

theory concern the distribution of primes in short intervals and in arithmetic progressions.

According to the Prime Number Theorem, the density of primes near x is 1/ log x. Thus one
wants to knowwhat is the number π(x,H) of primes in an interval of lengthH = H(x) 2 x
around x:

π(x,H) := #{x < p ≤ x+H : p prime} . (3.1)

We expect that for H sufficiently large,

π(x,H) ∼ H

log x
. (3.2)

The PNT implies that (3.2) holds for H ≈ x, and the Riemann Hypothesis gives (3.2) for

all H > x1/2+o(1). In 1930, Hoheisel gave an unconditional proof that (3.2) holds for

all H > x1−δ for any positive δ < 1/33, 000; this has since been improved, currently

to H > x7/12−o(1) (Heath Brown 1988). It is believed that the result should hold for all

H > xε, for any ε > 0, though Maier [30] showed that it does not hold for H = (log x)N

for anyN ; see Granville and Soundararajan [15] for a general framework for such results on

irregularities of distribution and for sharper results. Selberg (1943) showed, assuming the

Riemann Hypothesis, that (3.2) holds for almost all x provided H/(log x)2 → ∞.

To set up an analogous problem for the polynomial ring Fq[x], we first need to define

short intervals. For a nonzero polynomial f ∈ Fq[x], we define its norm by

|f | = #Fq[x]/(f) = q
deg f ,

in analogy with the norm of a nonzero integer 0 �= n ∈ Z, which is |n| = #Z/nZ. Given
a monic polynomial A ∈ Mn of degree n, and h < n, the “short interval” around A of

diameter qh is the set

I(A;h) := {f ∈ Mn : |f −A| ≤ qh} . (3.3)
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The number of polynomials in this “interval” is

H := #I(A;h) = qh+1 . (3.4)

We wish to count the number of prime polynomials in the interval I(A;h). In the limit

q → ∞, Bank, Bary-Soroker and Rosenzweig [4] give an essentially optimal short interval

result:

Theorem 3.1. Fix 3 ≤ h < n. Then for every monic polynomial A of degree n, the number
of prime polynomials P in the interval I(A;h) = {f : |f −A| ≤ qh} about A satisfies

#{P prime, P ∈ I(A;h)} =
H

n

(
1 +On(q

−1/2)
)
,

the implied constant depending only on n.

For irregularities of distribution analogous to Maier’s theorem in the large degree limit

n→ ∞ (q fixed), see [36].
For other applications, we will need a version which takes into account the cycle struc-

ture:

Theorem 3.2 ([4]). Fix n > 1, 3 ≤ h < n and a partition λ 4 n. Then for any sequence of
finite fields Fq , and every monic polynomial A of degree n,

#{f ∈ I(A;h) : λ(f) = λ} = p(λ)H
(
1 +On(q

−1/2)
)
,

with p(λ) as in (2.4), (2.5), the implied constant depending only on n.

3.2. Primes in arithmetic progressions. Dirichlet’s theorem states that any arithmetic pro-

gression n = A mod Q contains infinitely many primes provided that A andQ are coprime,

and the prime number theorem in arithmetic progressions states that for fixed modulus Q,
the number of such primes p ≤ x is

π(x;Q,A) ∼ Li(x)

φ(Q)
, x→ ∞ , (3.5)

where φ(Q) is Euler’s totient function, the number of residues coprime to Q. The General-
ized Riemann Hypothesis (GRH) asserts that (3.5) continues to hold for moduli as large

as Q < X1/2−o(1). An unconditional version, for almost all Q < x1/2−o(1), and all

A mod Q, is given by the Bombieri-Vinogradov theorem. Going beyond the GRH, the

Elliott-Halberstam conjecture gives a similar statement for Q as large as x1−ε.
For Fq[x], it is a consequence of the Riemann Hypothesis for curves over a finite field

(Weil’s theorem) that given a modulus Q ∈ Fq[x] of positive degree, and a polynomial A
coprime to Q, the number πq(n;Q,A) of primes P = A mod Q, P ∈ Mn satisfies

πq(n;Q,A) =
πq(n)

Φ(Q)
+O(degQ · qn/2) ,

where Φ(Q) is the number of coprime residues modulo Q. For q → ∞, the main term is

dominant as long as degQ < n/2.
Going beyond the Riemann Hypothesis for curves, Bank, Bary-Soroker and Rosenzweig

[4] show an individual asymptotic continues to hold for even larger moduli in the limit q →
∞:
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Theorem 3.3 ([4]). If 1 ≤ degQ ≤ n− 3 then

πq(n;Q,A) =
πq(n)

Φ(Q)

(
1 +On(q

− 1
2 )
)
.

This should be considered as an individual version of the Elliot-Halberstam conjecture.

As in the short interval case, they have a stronger result which takes into account the cycle

structure.

4. Autocorrelations and twisted convolution

In this section we describe results on the autocorrelation of various classical arithmetic func-

tions in the function field context.

4.1. Autocorrelations of the Möbius function and Chowla’s conjecture. Equivalent for-

mulations of the PNT and the Riemann Hypothesis can be given in terms of growth of par-

tial sums of the Möbius function, defined by μ(n) = (−1)k if n is a product of k dis-

tinct primes, and μ(n) = 0 otherwise: The PNT is equivalent to nontrivial cancellation∑
n≤x μ(n) = o(x), and the RH is equivalent to square-root cancellation:

∑
n≤x μ(n) =

O(x1/2+o(1)).
A conjecture of Chowla on the auto-correlation of the Möbius function, asserts that given

an r-tuple of distinct integers α1, . . . , αr and εi ∈ {1, 2}, not all even, then

lim
N→∞

1

N

∑
n≤N

μ(n+ α1)
ε1 · · · · · μ(n+ αr)εr = 0 . (4.1)

Note that the number of nonzero summands here, that is the number of n ≤ N for which

n + α1, . . . , n + αr are all square-free, is asymptotically S(α)N , where S(α) > 0 if

the numbers α1, . . . , αr do not contain a complete system of residues modulo p2 for every

prime p, so that Chowla’s conjecture (4.1) addresses non-trivial cancellation in the sum. At

this time, the only known case of Chowla’s conjecture (4.1) is r = 1 where it is equivalent

with the Prime Number Theorem.

Sarnak [35] showed that Chowla’s conjecture implies that μ(n) does not correlate with
any “deterministic” (i. e., zero entropy) sequence. For recent studies on the correlation

between μ(n) and several sequences of arithmetic functions, see [5, 8, 16, 29].

In joint work with Dan Carmon [6], we have resolved a version of Chowla’s conjecture

for Fq[x] in the limit q → ∞. To formulate it, one defines the Möbius function of a nonzero

polynomial F ∈ Fq[x] to be μ(F ) = (−1)r if F = cP1 . . . Pr with 0 �= c ∈ Fq and

P1, . . . , Pr are distinct monic irreducible polynomials, and μ(F ) = 0 otherwise.

Theorem 4.1. Fix r > 1 and assume that n > 1 and q is odd. Then for any choice of distinct
polynomials α1, . . . , αr ∈ Fq[x], with maxdegαj < n, and εi ∈ {1, 2}, not all even,∣∣∣∣∣

∑
F∈Mn

μ(F + α1)
ε1 . . . μ(F + αr)

εr

∣∣∣∣∣2r,n q
n− 1

2 . (4.2)
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Thus for fixed r, n > 1,

lim
q→∞

1

#Mn

∑
F∈Mn

μ(F + α1)
ε1 . . . μ(F + αr)

εr = 0 (4.3)

under the assumption of Theorem 4.1, giving an analogue of Chowla’s conjecture (4.1).

Note that the number of square-free monic polynomials of degree n is, for n > 1, equal
to qn − qn−1. Hence, given r distinct polynomials α1, . . . , αr ∈ Fq[x], with degαj < n,
the number of F ∈ Mn for which all of F (x) + αj(x) are square-free is q

n +O(rqn−1) as
q → ∞. Thus indeed we display cancellation.

The starting point in our argument is Pellet’s formula, which asserts that for the poly-

nomial ring Fq[x] with q odd, the Möbius function μ(F ) can be computed in terms of the

discriminant disc(F ) of F (x) as

μ(F ) = (−1)degFχ2(disc(F )) , (4.4)

where χ2 is the quadratic character of Fq . That allows us to express the LHS of (4.2) as an

n-variable character sum and to estimate it by freezing all but one of the variables, and then

using the Riemann Hypothesis for curves (Weil’s theorem) to bound the one-variable sum.

A key point is to bound the number of times when there is no cancellation in the one-variable

sum.

4.2. Twin primes. It is an ancient conjecture that there are infinitely many twin primes, and

a refined quantitative form, due to Hardy and Littlewood, asserts that given distinct integers

a1, . . . , ar, the number π(x; a1, . . . , ar) of integers n ≤ x for which n+ a1, . . . , n+ ar are
simultaneously prime is asymptotically

π(x; a1, . . . , ar) ∼ S(a1, . . . , ar)
x

(log x)r
, x→ ∞ , (4.5)

for a certain constant S(a1, . . . , ar), which is positive whenever there are no local congru-

ence obstructions. Despite the striking recent breakthroughs by Zhang [37] and Maynard

[31], this conjecture is still open even for r = 2 (twin primes).

Recently the function field version of the problem was solved. Bary-Soroker [3] proved

that for given n, r then for any sequence of finite fields Fq of odd cardinality q, and distinct

polynomials a1, . . . , ar ∈ Fq[x] of degree less than n, the number πq(n; a1, . . . , ar) of

monic polynomials f ∈ Fq[x] of degree n such that f + a1, . . . , f + ar are simultaneously

irreducible satisfies

πq(n; a1, . . . , ar) ∼ qn

nr
, q → ∞ . (4.6)

This improves on earlier results by Pollack [33] and by Bary-Soroker [2].

4.3. The additive divisor problem. The divisor function dr(n) is the number of ways of

writing a positive integer n as a product of r positive integers. In particular for r = 2 we

recover the classical divisor function d2(n) =
∑

d|n 1. The mean value of dr is

1

x

∑
n≤x

dr(n) ∼ (log x)r−1

(r − 1)!
, x→ ∞ . (4.7)



Some problems in analytic number theory for polynomials over a finite field 449

Likewise, the divisor function dr(f) for a monic polynomial f ∈ Fq[x] is defined as the

number of r-tuples of monic polynomials (a1, . . . , ar) so that f = a1 · · · · · ar. The mean

value of dr, when averaged over all monic polynomials of degree n, is

1

qn

∑
f∈Mn

dr(f) =

(
n+ r − 1

r − 1

)
=

nr−1

(r − 1)!
+ . . . , (4.8)

which is a polynomial of degree r − 1 in n.
The “additive divisor problem” (other names are “shifted divisor” and “shifted convo-

lution”) is to understand the autocorrelation of the divisor function, that is the sum (where

h �= 0 is fixed for this discussion)

Dr(X;h) :=
∑
n≤X

dr(n)dr(n+ h) . (4.9)

These sums are of importance in studying the moments of the Riemann ζ-function on the

critical line, see [7, 19].

For r = 2 (the ordinary divisor function), Ingham [18] and Estermann [10] showed that∑
n≤X

d2(n)d2(n+ h) ∼ XP2(logX;h), X → ∞ (4.10)

where P2(u;h) is a quadratic polynomial in u.
For r ≥ 3 it is conjectured that

Dr(X;h) ∼ XP2(r−1)(logX;h), X → ∞ (4.11)

where P2(r−1)(u;h) is a polynomial in u of degree 2(r−1), whose coefficients depend on h
(and r). However, even a conjectural description of the polynomials P2(r−1)(u;h) is difficult
to obtain, see [7, 19].

In joint work with Andrade and Bary-Soroker [1], we study a version of the additive

divisor problem for Fq[x]. We show:

Theorem 4.2. Let 0 �= h ∈ Fq[x], and n > deg h. Then for q odd,

1

qn

∑
f∈Mn

dr(f)dr(f + h) =

(
n+ r − 1

r − 1

)2

+On(q
−1/2) , (4.12)

the implied constant depending only on n.

Note that
(
n+r−1
r−1

)2
is a polynomial in n of degree 2(r − 1) with leading coefficient

1/[(r − 1)!]2.

4.4. About proofs. The results of this section can all be deduced from one principle (though

this was not the original proof of most), namely that for a randommonic polynomial f ∈ Mn

of degree n, the cycle structure of f and its shift f+α are independent as q → ∞. Precisely,

in [1] we show that for for fixed n > 1, and two partitions λ′, λ′′ 4 n, given any sequence of
finite fields Fq of odd cardinality q, and nonzero α ∈ Fq[x] of degree less than n, then

lim
q→∞

1

qn
#{f ∈ Mn : λ(f) = λ′, λ(f + α) = λ′′} = p(λ′)× p(λ′′) (4.13)
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where p(λ), as in (2.4), (2.5), is the probability that a random permutation on n letters has

cycle structure λ. This result is an elaboration of earlier work by Bary-Soroker [3] which

dealt with the case of n-cycles, where λ = λ̃ = (0, . . . , 0, n). There is also a version

allowing several distinct shifts.

To prove (4.13) we need to compute a certain Galois group: Let F be an algebraic closure

of Fq , A = (A0, . . . , An−1) be indeterminates, and

F(A, x) = xn +An−1x
n−1 + · · ·+A0 (4.14)

the generic polynomial of degree n, whose Galois group over F(A) is well-known to be the

full symmetric group Sn. For nonzero α ∈ Fq[x] of degree less than n, let

G(A, x) = F(A, x)
(
F(A, x) + α(x)

)
. (4.15)

Bary-Soroker [3] shows that for odd q, the Galois group of G over F(A) is the product

Sn × Sn, the maximal possible group. The proof requires an ingredient from the proof of

Chowla’s conjecture [6] discussed above.

Once we know the Galois group of G(A, x), we apply an explicit version of Chebotarev’s
theorem for function fields to prove (4.13), see [1] for the details.

5. The variance of sums of arithmetic functions and matrix integrals

I now describe some results concerning the variance of sums of several arithmetic functions.

A common feature is that the variance is expressed as a matrix integral.

5.1. Variance of primes in short intervals. The von Mangoldt function is defined as

Λ(n) = log p if n = pk is a prime power, and 0 otherwise. A form of the Prime Num-

ber Theorem (PNT) is the assertion that

ψ(x) :=
∑
n≤x

Λ(n) ∼ x as x→ ∞ . (5.1)

To study the distribution of primes in short intervals, we define for 1 ≤ H ≤ x,
ψ(x;H) :=

∑
n∈[x−H

2 ,x+
H
2 ]

Λ(n) . (5.2)

The Riemann Hypothesis guarantees an asymptotic formula ψ(X;H) ∼ H as long as

H > X
1
2+o(1). Goldston and Montgomery [13] studied the variance of ψ(x;H), relating

it to the pair correlation function of the zeros of the Riemann zeta function. The conjecture

of Goldston and Montgomery, as refined by Montgomery and Soundararajan1 [32] is that in

the range Xε < H < X1−ε, as X → ∞:

1

X

∫ X

1

|ψ(x;H)−H|2 dx ∼ H
(
logX − logH − (γ + log 2π)

)
(5.3)

with γ being Euler’s constant.

With J. Keating, we prove a function field analogue of Conjecture 5.3:

1based on Hardy-Littlewood type heuristics



Some problems in analytic number theory for polynomials over a finite field 451

Theorem 5.1 ([26]). For h ≤ n− 5, as q → ∞,

1

qn

∑
A∈Mn

∣∣∣∣∣∣
∑

|f−A|≤qh
Λ(f)−H

∣∣∣∣∣∣
2

∼ H
∫
U(n−h−2)

|trUn|2 dU = H(n− h− 2) .

Recall H := #{f : |f − A| ≤ qh} = qh+1. Here the matrix integral is over the unitary

group U(n− h− 2), equipped with its Haar probability measure.

5.2. Variance of primes in arithmetic progressions. A form of the Prime Number Theo-

rem for arithmetic progression states that for a modulus Q and A coprime to Q,

ψ(X;Q,A) :=
∑
n≤X

n=A mod Q

Λ(n) ∼ X

φ(Q)
, as X → ∞ . (5.4)

In most arithmetic applications it is crucial to allow the modulus to grow with X . For

very large moduli Q > X , there can be at most one prime in the arithmetic progression

P = A mod Q so that the interesting range is Q < X . To study the fluctuations of

ψ(X;Q,A), define

G(X,Q) =
∑

A mod Q
gcd(A,Q)=1

∣∣∣∣ψ(X;Q,A)− X

φ(Q)

∣∣∣∣
2

. (5.5)

Hooley, in his ICM article [17], conjectured that under some (unspecified) conditions,

G(X,Q) ∼ X logQ . (5.6)

Friedlander and Goldston [12] conjecture that (5.6) holds if X1/2+ε < Q < X , and further

conjecture that if X1/2+ε < Q < X1−ε then

G(X,Q) = X

⎛
⎝logQ−

(
γ + log 2π +

∑
p|Q

log p

p− 1

)⎞⎠+ o(X) . (5.7)

They show that both (5.6) (in the range X1/2+ε < Q < X) and (5.7) (in the range

X1/2+ε < Q < X1−ε) hold assuming GRH and a strong version of the Hardy-Littlewood

conjecture (4.5) on prime pairs. For Q < X1/2 little is known. In any case, Hooley’s

conjecture (5.6) has not been proved in any range.

With J. Keating [26] we resolve the function-field version of Conjecture (5.6):

Theorem 5.2. Fix n ≥ 2. Given a sequence of finite fields Fq and square-free polynomials
Q(x) ∈ Fq[x] with 2 ≤ degQ ≤ n− 1, then as q → ∞,

G(n;Q) ∼ qn
∫
U(degQ−1)

| trU |ndU = qn(degQ− 1) . (5.8)

We can compare our result (5.8) to the conjectures (5.6) and (5.7): The range X1/2 <
Q < X corresponds to degQ < n < 2 degQ, so that we recover the function field version

of conjecture (5.6); note that (5.8) holds for all n, not just in that range. Thus we believe

that Hooley’s conjecture (5.6) should hold for allQ > Xε. We refer to Fiorilli’s recent work

[11] for a more refined conjecture in this direction.
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5.3. Almost-primes. A variation on this theme was proposed by B. Rodgers [34]. Instead

of primes, he considered “almost primes”, that is products of two prime powers. A useful

weight function for these is the generalized von Mangoldt function

Λ2 = Λ ∗ Λ + deg ·Λ = μ ∗ deg2 (5.9)

which is supported on products of two prime powers (∗ means Dirichlet convolution). The

mean value of Λ2 over the set Mn of monic polynomials of degree n is

1

qn

∑
f∈Mn

Λ2(f) = n
2 − (n− 1)2 = 2n− 1 . (5.10)

To count almost primes in the short intervals, set for A ∈ Mn, and 1 ≤ h < n
Ψ2(A;h) =

∑
f∈I(A;h)

Λ2(f) . (5.11)

Rodgers showed [34] that the variance of Ψ2(A;h) is given as q → ∞, for fixed n and

h ≤ n− 5, by the matrix integral

VarΨ2(•;h) ∼ H
∫
U(n−h−2)

∣∣∣∣∣∣
n−1∑
j=1

trU j trUn−j − n trUn
∣∣∣∣∣∣
2

dU, q → ∞ . (5.12)

He shows the matrix integral to be equal to (4(n− h− 2)3 − (n− h− 2))/3, in fact that

∫
U(N)

∣∣∣∣∣∣
n−1∑
j=1

trU j trUn−j − n trUn
∣∣∣∣∣∣
2

dU =

min(n,N)∑
d=1

(d2 − (d− 1)2))2 . (5.13)

5.4. Sums of the Möbius function and the Good-Churchhouse conjecture. It is a stan-

dard heuristic to assume that the Möbius function behaves like a random variable taking

values ±1 with equal probability, and supported on the square-free integers (which have

density 1/ζ(2) = 6/π2). In particular if we consider the sums of μ(n) in blocks of length

H ,

M(x;H) :=
∑

|n−x|<H/2
μ(n) (5.14)

then when averaged over x, M(x,H) has mean zero, and it was conjectured by Good and

Churchhouse [14] in 1968 thatM(x;H) has variance

1

X

∫ 2X

X

|M(x;H)|2 ∼ H

ζ(2)
(5.15)

for Xε < H = H(X) < X1−ε. Moreover they conjectured that the normalized sums

M(x;H)/
√
H/ζ(2) have asymptotically a normal distribution.

We can apply our method to evaluate the variance of sums of the Möbius function in

short intervals for Fq[x]. Set

Nμ(A;h) :=
∑

f∈I(A;h)

μ(f) . (5.16)

The mean value of Nμ(A;h) is 0, and the variance is
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Theorem 5.3 (Keating-Rudnick [27]). If h ≤ n− 5 then as q → ∞,

VarNμ(•;h) ∼ H
∫
U(n−h−2)

| tr Symn U |2dU = H

where Symn is the representation of the unitary group U(N) on polynomials of degree n in
N variables.

Theorem 5.3 is consistent with Conjecture (5.15) if we replace H by H/ζq(2) where
ζq(2) =

∑
f 1/|f |2 (the sum over all monic f ), which tends to 1 as q → ∞.

5.5. The divisor function in short intervals. Dirichlet’s divisor problem addresses the size

of the remainder term Δ2(x) in partial sums of the divisor function:

Δ2(x) :=
∑
n≤x

d2(n)− x
(
log x+ (2γ − 1)

)
(5.17)

where γ is the Euler-Mascheroni constant. For the higher divisor functions one defines a

remainder termΔk(x) similarly as the difference between the partial sums
∑

n≤x dk(n) and
a smooth term xPk−1(log x) where Pk−1(u) is a certain polynomial of degree k − 1.

Let

Δk(x;H) = Δk(x+H)−Δk(x) (5.18)

be the remainder term for sums of dk over short intervals [x, x + H]. Jutila [22], Coppola
and Salerno [8], and Ivić [20, 21] show that, for Xε < H < X1/2−ε, the mean square of

Δ2(x,H) is asymptotically equal to

1

X

∫ 2X

X

(
Δ2(x,H)

)2
dx ∼ HP3(logX − 2 logH) (5.19)

for a certain cubic polynomial P3.
Lester and Yesha [28] showed that Δ2(x,H), normalized to have unit mean-square us-

ing (5.19), has a Gaussian value distribution at least for a narrow range of H below X1/2:

H =
√
X/L, where L = L(X) → ∞ with X , but L 2 Xo(1), (see [28] for the precise

statement), the conjecture being that this should hold for Xε < H < X1/2−ε for any ε > 0.
In joint work with J. Keating and E. Roditty-Gershon [25], we study the corresponding

problem of the sum of dk(f) over short intervals for Fq[x]. Set

Ndk(A;h) :=
∑

f∈I(A;h)

dk(f) . (5.20)

The mean value is
1

qn

∑
A∈Mn

Ndk(A;h) = q
h+1

(
n+ k − 1

k − 1

)
. (5.21)

In analogy with (5.17), (5.18) we set

Δk(A;h) := Ndk(A;h)− qh+1

(
n+ k − 1

k − 1

)
. (5.22)
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It can be shown that Δk(A;h) ≡ 0 vanishes identically for h > (1 − 1
k )n − 1. Using

Theorem 3.2 [4], we can show that for all 3 ≤ h < n
Δk(A;h) 2n,k q

h+ 1
2 (5.23)

is smaller than the main term.

We express the mean square of Δk(A, h) (which is the variance of Ndk(A;h)) in terms

of a matrix integral. Let Λj : U(N) → GL(ΛjCN ) be the exterior j-th power representation
(0 ≤ j ≤ N ). Define the matrix integrals over the group U(N) of N ×N unitary matrices

Ik(m;N) :=

∫
U(N)

∣∣∣ ∑
j1+···+jk=m
0≤j1,...,jk≤N

tr Λj1(U) . . . tr Λjk(U)
∣∣∣2dU , (5.24)

the integral with respect to the Haar probability measure.

By definition, Ik(m;N) = 0 for m > kN . We have a functional equation Ik(m;N) =
Ik(kN −m;N) and

Ik(m;N) =

(
m+ k2 − 1

k2 − 1

)
, m ≤ N . (5.25)

The identity (5.25) can be proved by various means, for instance using the work of Diaconis

and Gamburd [9] relating matrix integrals to counting magic squares.

Theorem 5.4 ([25]). Let n ≥ 5, and h ≤ min(n− 5, (1− 1
k )n− 2). Then as q → ∞,

1

qn

∑
A∈Mn

|Δk(A;h)|2 ∼ H · Ik(n;n− h− 2) .

In particular for the standard divisor function (k = 2), if h ≤ n/2− 2 and n ≥ 8 then

1

qn

∑
A∈Mn

|Δ2(A;h)|2 ∼ H (n− 2h+ 5)(n− 2h+ 6)(n− 2h+ 7)

6
. (5.26)

This is consistent with (5.19), which leads us to expect a cubic polynomial in (n− 2h).

6. How to compute the variance

Our results on variance described in § 5 depend on expressing the variance in terms of zeros

of Dirichlet L-functions for Fq[x], and using recent equidistribution results of Katz [23],

[24], tailor-made for this purpose. To describe how this is done, we give some background

on L-functions.

6.1. Dirichlet L-functions. Let Q(x) ∈ Fq[x] be a polynomial of positive degree. A

Dirichlet character modulo Q is a homomorphism χ : (Fq[x]/(Q))
× → C×. A Dirich-

let character χ is “even” if χ(cF ) = χ(F ) for all 0 �= c ∈ Fq , and χ is primitive if there

is no proper divisor Q′ | Q so that χ(F ) = 1 whenever F is coprime to Q and F = 1
mod Q′. The number of Dirichlet characters modulo Q is Φ(Q), and the number of even

characters modulo Q is Φev(Q) = Φ(Q)/(q − 1).
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The L-function L(u, χ) attached to χ is defined as

L(u, χ) =
∑

f monic
(f,Q)=1

χ(f)udeg f =
∏
P �Q

(1− χ(P )udegP )−1 (6.1)

where the product, over all monic irreducible polynomials in Fq[x], is absolutely convergent
for |u| < 1/q.

If Q ∈ Fq[x] is a polynomial of degree degQ ≥ 2, and χ �= χ0 is a nontrivial character
mod Q, then the L-function L(u, χ) is a polynomial in u of degree at most degQ − 1.
Moreover, if χ is an even character there is a “trivial” zero at u = 1.

For a primitive even character modulo Q, we can write

L(u, χ) = (1− u) det(I − uq1/2Θχ) (6.2)

where the matrix Θχ ∈ U(degQ − 2) is unitary (as follows from the Riemann Hypothesis

for curves), uniquely defined up to conjugacy. It is called the unitarized Frobenius matrix

of χ. Likewise, if χ is odd and primitive then L(u, χ) = det(I − uq1/2Θχ) where Θχ ∈
U(degQ− 1) is unitary.

Katz [24] showed that as χ varies over all primitive even characters modulo xN+2,

the unitarized Frobenii Θχ become uniformly distributed in the projectivized unitary group

PU(N) for N ≥ 3 as q → ∞ (and also for N = 2 if q is coprime to 2 and 5). Thus for any
nice class function F on U(N), which is invariant under the center (F (zU) = F (u), z on
the unit circle), we have

lim
q→∞

1

Φev(xN+2)

∑
χ mod xN+2

even primitive

F (Θχ) =

∫
PU(N)

F (U)dU . (6.3)

6.2. Short intervals as arithmetic progressions. Our method to handle sums over short

intervals I(A;h) = {f : |f − A| ≤ qh} is to relate them to arithmetic progressions modulo

xn−h.
Denote by P≤n the set of all polynomials of degree at most n. We define a map θn :

P≤n → P≤n by

θn(f) = x
nf(

1

x
) (6.4)

which takes f(x) = f0 + f1x+ · · ·+ fnxn, n = deg f to the “reversed” polynomial

θn(f)(x) = f0x
n + f1x

n−1 + · · ·+ fn . (6.5)

Then for B ∈ Mn−h−1, the map θn takes the “interval” I(Th+1B;h) bijectively onto the

arithmetic progression {g ∈ P≤n : g ≡ θn−h−1(B) mod xn−h}.

6.3. A formula for the variance. The identification of short intervals with arithmetic pro-

gressions allows us to express sums of several arithmetic functions in terms of even Dirich-

let characters. For the case of the von Mangoldt function, this is done in [26]. I illus-

trate this identification in the case of the Möbius function (Theorem 5.3): We denoted by
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Nμ(A;h) =
∑

f∈I(A;h) μ(f). Then for B ∈ Mm−h−1,

Nμ(T
h+1B;h) =

1

Φev(xn−h)

∑
χ mod xn−h

χ 
=χ0 even

χ̄(θn−h−1(B))(M(n;μχ)− M(n− 1;μχ))

(6.6)

where

M(n;μχ) =
∑

f∈Mn

μ(f)χ(f) . (6.7)

We next express the sums M(n;μχ) in terms of zeros of the L-function L(u, χ); for χ
primitive this means in terms of the unitarized Frobenius matrixΘχ. The connection is made

by writing the generating function identity

∞∑
n=0

M(n;μχ)un =
1

L(u, χ) . (6.8)

Therefore we find that for χ primitive and even,

M(n;μχ) =

n∑
k=0

qk/2 tr Symk Θχ (6.9)

where for N > 1, Symn : GL(N,C) → GL(Symn CN ) is the symmetric n-th power

representation. Consequently we obtain

VarNμ(•;h) = qh+1

Φev(xn−h)

∑
χ mod xn−h

χ even and primitive

| tr SymnΘχ|2 +O(qh) . (6.10)

Using Katz’s equidistribution theorem (6.3) we get

lim
q→∞

Var(Nμ(•;h))
qh+1

=

∫
PU(n−h−2)

|tr Symn U |2 dU . (6.11)

The matrix integrals equals 1, hence we conclude that Var(Nμ(;h)) ∼ qh+1 = H , which is

Theorem 5.3.
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Abstract. We survey the theory of perfectoid spaces and its applications.
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1. Introduction

In algebraic geometry, one of the most important dichotomies is the one between characteristic

0 and positive characteristic p. Our intuition is formed from the study of complex manifolds,

which are manifestly of characteristic 0, but in number theory, the most important questions

are in positive or mixed characteristic. Algebraic geometry gives a framework to transport

intuition from characteristic 0 to positive characteristics. However, there are also several

new phenomena in characteristic p, such as the presence of the Frobenius map, which acts

naturally on all spaces of characteristic p. Using the Frobenius, one can formulate the Weil

conjectures, and more generally the theory of weights. This makes many results accessible

over fields such as Fp((t)), which are wide open over fields of arithmetic interest such as Qp.

The theory of perfectoid spaces was initially designed as a means of transporting information

available over Fp((t)) to Qp, but has since found a number of independent applications. The

purpose of this report is to give an overview of the developments in the field since perfectoid

spaces were introduced in early 2011.

To study the transition between characteristic 0 and characteristic p, it is useful to look at

the corresponding local fields Qp and Fp((t)):

Qp = {
∑

n�−∞
anp

n | an ∈ {0, 1, . . . , p− 1}} ,

Fp((t)) = {
∑

n�−∞
ant

n | an ∈ {0, 1, . . . , p− 1} = Fp} .

Although these two fields have formally ‘the same’ elements, the basic addition and multi-

plication operations are different: In Qp, one computes with carry, but in Fp((t)) without
carry. There are several strategies to pass from one field to the other. Let us recall the most

important ones.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Letting p→ ∞. In model theory, one can formalize the idea thatQp becomes isomorphic

to Fp((t)) as p→ ∞. This has the following implication: A first-order statement is true for

almost all fields Qp (for varying p) if and only if it is true for almost all fields Fp((t)). The
first application of this was the Ax-Kochen theorem, [4], that a homogeneous polynomial of

degree d in more than d2 variables admits a solution over Qp, except for a finite list of primes

p (which depends only on d). In fact, the same result is true over Fp((t)) for all p. However,
there are counterexamples to the general statement over Qp, such as a quartic form in 18
variables over Q2 without a solution. More strikingly, this transfer principle is used in the

proof of the fundamental lemma: Ngô, [52], has proved the fundamental lemma over Fp((t))
(for sufficiently large p), which could then be transferred to Qp, if p is sufficiently large.1

However, this strategy cannot be used to get information about any fixed prime number p.
One of the ways in which one wants to compare two fields is to compare the categories of

finite extension fields. This is encapsulated by the absolute Galois group GK = Gal(K/K)
of a field K, where K is some separable closure of K. If K is a local field such as Qp or

Fp((t)), it comes with a decreasing ramification filtration

GK ⊃ G(0)
K = IK ⊃ G(1)

K = PK ⊃ G(2)
K ⊃ . . . ;

here, PK ⊂ IK ⊂ GK are the wild inertia, resp. inertia subgroups. The ‘tame quotient’

Gtame
K = GK/G

(1)
K = GK/PK admits an explicit description, and PK is a (not very explicit)

pro-p-group.

Restricting ramification. From the explicit description of Gtame
K in the case of local fields,

one knows that Gtame
Qp

∼= Gtame
Fp((t))

canonically. In other words, there is a canonical procedure

to associate to a tame extension of Qp a tame extension of Fp((t)). This result can be

strengthened if one passes to extension fields. More precisely, for any n ≥ 1,

GQp(p1/n)/G
(n)

Qp(p1/n)
∼= GFp((t))(t1/n)/G

(n)

Fp((t))(t1/n)
.

This is a result of Deligne, [21], relying on ideas of Krasner, [49], which formalizes the

idea that Qp(p
1/n) and Fp((t))(t1/n) are ‘close local fields’ (which get ‘closer’ as n→ ∞).

Note that, again, this result plays a crucial role in the Langlands program, namely it is used

(through Henniart’s numerical local Langlands correspondence, [37]) in the original proof of

the local Langlands correspondence for GLn over Qp by Harris-Taylor, [34].2

There is yet another approach, which gives a comparison of the whole Galois group.

Making things perfect(oid). Let K = Qp(p
1/p∞) =

⋃
mQp(p

1/pm), which we will mo-

mentarily confuse with its completion, which has the same absolute Galois group GK . Then

a theorem of Fontaine-Wintenberger, [32], states that the absolute Galois groups of GK and

GFp((t)) are isomorphic. This can be considered as a limit case of Deligne’s theorem as one

lets n = pm,m→ ∞. Indeed, note that as Fp((t))(t1/p
m

) is a purely inseparable extension
of Fp((t)), GFp((t))(t1/p

m )
∼= GFp((t)). In fact, if one letsK

! be the completion of

Fp((t))(t
1/p∞) =

⋃
m

Fp((t))(t
1/pm) ,

1One does not need model theory to do this, as Waldspurger, [66], had earlier shown this transfer principle for

large p directly.

2The alternative proof given in [57] avoids this argument, and gives a proof of the local Langlands correspondence

forGLn over Qp which is purely in characteristic 0.
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then the theorem of Fontaine-Wintenberger states equivalently thatGK ∼= GK� . This theorem

is one of the foundational cornerstones of p-adic Hodge theory. Moreover, it is true in a wide

variety of cases: Any ‘deeply ramified’ extension of Qp can be used in place of Qp(p
1/p∞).

Note that the last approach gives the cleanest result: It works for any fixed p, and produces
an isomorphism of the whole Galois groups. However, it comes at the expense of passing to

infinite extensions. The theory of perfectoid spaces is a generalization of this procedure to

higher-dimensional objects.

2. The Fontaine-Wintenberger isomorphism

To start, let us explain the general statement of the Fontaine-Wintenberger isomorphism.3

Definition 2.1. A perfectoid field is a complete topological fieldK, whose topology comes

from a nonarchimedean norm | · | : K → R≥0 with dense image, such that |p| < 1 and, letting
OK = {x ∈ K | |x| ≤ 1} be the ring of integers, the Frobenius map Φ : OK/p→ OK/p is
surjective.

Examples include the completions of Qp(p
1/p∞), Qp(μp∞), Qp and Fp((t))(t1/p

∞
),

Fp((t)). Note that perfectoid fields can be of characteristic 0 or p. In the first case, they

contain Qp naturally, as |p| < 1. Note that Qp is not a perfectoid field (although Zp/p = Fp
has a surjective Frobenius map), because | · | : Qp → R≥0 has discrete image 0 ∪ pZ ⊂ R≥0.

In characteristic p, perfectoid fields are the same thing as perfect complete nonarchimedean

fields.

By a construction of Fontaine, one can take any perfectoid field K, and produce a

perfectoid field K! of characteristic p, called the tilt of K. First, one defines OK� =
lim←−Φ

OK/p, and then definesK! as the fraction field of OK� . It comes with a natural norm,

with respect to which OK� ⊂ K! is the ring of integers. In fact, one has the following

alternative description ofK!.

Lemma 2.2. There is a natural identification of multiplicative monoids

OK� = lim←−
x �→xp

OK = {(x(0), x(1), . . .) | x(i) ∈ OK , (x
(i+1))p = x(i)} , K! = lim←−

x �→xp

K .

In particular, x !→ x� := x(0) defines a multiplicative map K! → K, and the norm
|x|K� = |x�|K onK!.

The crucial input is the basic fact that if a ∼= b mod p, then ap
n ∼= bpn mod pn+1.

As a basic example of the tilting equivalence, the perfectoid fieldK which is the comple-

tion of Qp(p
1/p∞) tilts to the perfect nonarchimedean field K! which is the completion of

Fp((t))(t1/p
∞
). Under the identificationK! = lim←−x �→xp

K, the element t corresponds to the

sequence (p, p1/p, p1/p
2

, . . .). In particular, t� = p, so in a vague sense, the map x !→ x� is
the map ‘replace t by p’. However, calculating it in general involves a p-adic limit, so e.g.

(1 + t)� = lim
n→∞

(1 + p1/p
n

)p
n

.

3It should be noted that the original result of Fontaine-Wintenberger is quite different, at least in emphasis. The

theorem as stated was only proved recently, and was noticed independently (at least) by Kedlaya-Liu and the author.
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This already shows that any general theory of perfectoid objects has to be of an analytic

nature.

Theorem 2.3 ([47, Theorem 3.5.6],[58, Theorem 3.7]). LetK be a perfectoid field.

(i) For any finite extension L/K, L is a perfectoid field.

(ii) The association L !→ L! defines an equivalence between the category of finite exten-
sions ofK and the category of finite extensions ofK!.

It is formal to deduce from part (ii) that the absolute Galois groups GK ∼= GK� are

isomorphic.

3. Untilting: Work of Fargues-Fontaine

The following question arises naturally: For a given perfectoid field L of characteristic p, in
how many ways can it be untilted to a perfectoid fieldK of characteristic 0,K! ∼= L? The
answer to this question leads naturally to the Fargues-Fontaine curve, [30, 31]. In particular,

they prove the following theorem.

Theorem 3.1. Fix a perfectoid field L of characteristic p. There is a regular noetherian
scheme XL of Krull dimension 1 (locally the spectrum of a principal ideal domain) over Qp

whose closed points x are in bijection with equivalence classes of pairs (K, ι), whereK is a
perfectoid field of characteristic 0 and ι : L ↪→ K! is an injection which makesK! a finite
extension of L; here, the pairs (K, ι) and (K, ι ◦ Φn) are regarded as equivalent for any
n ∈ Z. The degree [K! : L] is called the degree of x. Moreover, there are (infinitely many)
points of degree 1.

In particular, one can always untilt a perfectoid field L to characteristic 0, and the ways
of doing so are parametrized by a 1-dimensional object. Note that if, e.g., L is algebraically

closed, then all points are of degree 1 and have algebraically closed residue field. However,
the curve lives only over Qp, and thus is not of finite type over Qp. Concretely,

XL = Proj
⊕
n≥0

B+(L)ϕ=p
n

,

where B+(L) is one of Fontaine’s period rings, a certain completion ofW (OL)[
1
p ]. A point

of XL gives rise to an ideal I ⊂W (OL)[
1
p ] (well-defined up to the action of Frobenius), and

the corresponding perfectoid field of characteristic 0 is given by K = W (OL)[
1
p ]/I . This

gives an explicit description of untilting in terms of Witt vectors.

The work of Fargues-Fontaine has further connections with the theory of perfectoid spaces

that we cannot explain in detail here, for lack of space, cf. [29]. For the rest of this article,

we will usually fix a perfectoid fieldK in characteristic 0, which amounts to fixing a point

∞ ∈ XK� of degree 1.

4. Perfectoid Spaces

Definition 4.1. A perfectoid K-algebra is a Banach K-algebra R for which the subring

R◦ ⊂ R of powerbounded elements is a bounded subring, and such that the Frobenius map
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Φ : R◦/p→ R◦/p is surjective.

The simplest example is R = K〈T 1/p∞〉 for which R◦ = OK〈T 1/p∞〉 is the completion

of OK [T 1/p∞ ] =
⋃
mOK [T 1/pm ]. In other words, perfectoidK-algebras are algebras with

‘lots of (approximate) p-power roots’. Note that perfectoidK-algebras are always quite big,

e.g. nonnoetherian; also, no ‘smallness’ hypothesis is imposed. The mixture of completeness

and nonnoetherianity might cause big trouble (as, e.g., completions of nonnoetherian algebras

are not in general flat)! However, it turns out that the ‘bigness’ condition of surjective

Frobenius forces good behaviour.

One can apply Fontaine’s construction to any perfectoid K-algebra. This defines the

tilting functor: Let R be a perfectoidK-algebra. Set

R!◦ = lim←−
Φ

R◦/p = lim←−
x �→xp

R◦

which is a OK� -algebra, and

R! = R!◦ ⊗O
K�
K! = lim←−

x �→xp

R .

Proposition 4.2 ([58, Theorem 5.2]). Fix a perfectoid fieldK with tiltK!.

(i) For any perfectoidK-algebra R, the tilt R! is a perfectoidK!-algebra with subring of
powerbounded elements R!◦ ⊂ R!.

(ii) The functor R !→ R! defines an equivalence between the category of perfectoid K-
algebras and the category of perfectoidK!-algebras.

Note also that for any perfectoidK-algebra R, one has a continuous multiplicative map

R! → R, f !→ f �.
As remarked earlier, any theory of perfectoid objects has to be of an analytic nature. This

reflects itself algebraically in the fact that perfectoid algebras are Banach algebras. On the

level of spaces, it means that we have to work in some category of nonarchimedean analytic

spaces. The classical such category is Tate’s category of rigid-analytic spaces, [64], but strong

finiteness assumptions are built into the foundations of this theory. There are (at least) two

more recent approaches to nonarchimedean analytic spaces: Berkovich’s analytic spaces, [8],

and Huber’s adic spaces, [40]. We choose to work with Huber’s adic spaces, because we feel

that it is the most natural framework; e.g., it interacts well with the theory of formal models.

Moreover, one glues spaces along open subsets, which is at least technically convenient.4

Following Huber, we make the following definition in the perfectoid world:

Definition 4.3. A perfectoid affinoidK-algebra is a pair (R,R+), where R is a perfectoid

K-algebra, and R+ ⊂ R◦ is an open and integrally closed subring.

The role of the integral subalgebra R+ is certainly secondary, and one may safely assume

that R+ = R◦ on first reading.

Proposition 4.4. The association (R,R+) !→ (R!, R!+) with

R! = lim←−
x �→xp

R , R!+ = lim←−
x �→xp

R+

4Somewhat more importantly, most examples of perfectoid spaces arise as ‘inverse limits’ of classical finite type

spaces. Berkovich spaces are not well adapted to taking inverse limits.
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defines an equivalence between perfectoid affinoidK-algebras and perfectoid affinoidK!-
algebras.

To a pair (R,R+), Huber associates a space of continuous valuations.

Definition 4.5. A valuation on R is a map | · | : R→ Γ ∪ {0}, where Γ is a totally ordered

abelian group (e.g., Γ = R>0, but higher-rank valuations are allowed), such that |0| = 0,
|1| = 1, |xy| = |x||y| and |x+ y| ≤ max(|x|, |y|). The valuation | · | is continuous if for all
γ ∈ Γ, the subset {x ∈ R | |x| < γ} ⊂ R is open.

There is an obvious notion of equivalence of valuations, and one defines Spa(R,R+) as
the set of equivalence classes of continuous valuations | · | on R such that |R+| ≤ 1. For a
point x ∈ Spa(R,R+), we denote by f !→ |f(x)| the associated valuation. One may find

back R+ as

R+ = {f ∈ R | |f(x)| ≤ 1 ∀x ∈ Spa(R,R+)} .
One equips Spa(R,R+) with the topology generated by rational subsets: For f1, . . . , fn,

g ∈ R which generate R as an ideal, the subset

U(f1, . . . , fn; g) = {x ∈ Spa(R,R+) | |fi(x)| ≤ |g(x)|} ⊂ Spa(R,R+)

is a rational subset.

Proposition 4.6 ([38, Theorem 3.5]). The space Spa(R,R+) is a spectral space. In particu-
lar, it is quasicompact, quasiseparated, and the rational subsets form a basis for the topology
consisting of quasicompact open subsets, stable under finite intersections.

Again, one finds an interesting relation under tilting.5

Theorem 4.7 ([58, Theorem 6.3 (i)]). For any x ∈ Spa(R,R+), one may define a point
x! ∈ Spa(R!, R!+) by setting |f(x!)| := |f �(x)| for f ∈ R!. This defines a homeomorphism
Spa(R,R+) ∼= Spa(R!, R!+) preserving rational subsets.

The proof relies on the following crucial approximation lemma.6

Lemma 4.8 ([58, Corollary 6.7 (i)]). Assume K is of characteristic 0. Let f ∈ R be any
element, and fix any ε > 0. Then there exists g ∈ R! such that for all x ∈ Spa(R,R+),

|(f − g�)(x)| ≤ |p|1−εmax(|f(x)|, ε) .
This means in particular that |f(x)| = |g�(x)| except if both are very small. However,

f − g� may be quite large if f is large.

One wants to equip the topological space X = Spa(R,R+) with a structure sheaf OX .

For this, let U = U(f1, . . . , fn; g) ⊂ X be a rational subset. Equip R[g−1] with the topology
for which the image of R+[ f1g , . . . ,

fn
g ] → R[g−1] is open and bounded. Let R〈 f1g , . . . , fng 〉

be the completion of R[g−1] with respect to this topology; it comes equipped with a natural

subring

R〈f1
g
, . . . ,

fn
g

〉+ ⊂ R〈f1
g
, . . . ,

fn
g

〉 .

5A closely related result was proved earlier by Kedlaya, [46].

6A slightly stronger version (replacing 1− ε by p/(p− 1)− ε) appears in [47].
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Proposition 4.9 ([39, Proposition 1.3]). The pair

(OX(U),O+
X(U)) =

(
R〈f1
g
, . . . ,

fn
g

〉, R〈f1
g
, . . . ,

fn
g

〉+
)

depends only on the rational subset U ⊂ X . The map

Spa(OX(U),O+
X(U)) → Spa(R,R+)

is a homeomorphism onto U , preserving rational subsets.

The propositions of Huber so far have not used the assumption that R is perfectoid. This

assumption is needed, however, to prove that OX is actually a sheaf. Huber proved this

when R is strongly noetherian, so e.g. if R is topologically of finite type overK. Perfectoid

K-algebras are virtually never (strongly) noetherian.

Theorem 4.10 ([58, Theorem 6.3]). Let (R,R+) be a perfectoid affinoidK-algebra with tilt
(R!, R!+). Let X = Spa(R,R+), X! = Spa(R!, R!+). For any rational subset U ⊂ X , let
U ! ⊂ X! be its image under the homeomorphism X ∼= X!.

(i) The presheaves OX , OX� are sheaves.

(ii) For any rational subset U ⊂ X , the pair (OX(U),O+
X(U)) is a perfectoid affinoid

K-algebra, which tilts to (OX�(U !),O+
X�(U

!)).

(iii) For any i > 0, the cohomology groupHi(X,OX) = 0 vanishes. In fact,Hi(X,O+
X)

is almost zero, i.e. killed by the maximal ideal of OK .

The resulting spaces Spa(R,R+) (equipped with the two sheaves of topological rings

OX , O+
X ) are called affinoid perfectoid spaces (over K). Objects obtained by gluing such

spaces are called perfectoid spaces overK.

Corollary 4.11. The categories of perfectoid spaces over K and over K! are equivalent.
Here, if X tilts to X!, then the underlying topological spaces of X and X! are canonically
homeomorphic. Moreover, a subset U ⊂ X is affinoid perfectoid if and only if U ! ⊂ X! is
affinoid perfectoid. For any such U , (OX(U),O+

X(U)) is a perfectoid affinoid K-algebra
with tilt (OX�(U !),O+

X�(U
!)).

For any perfectoid space X , one may define its étale site Xét.

Theorem 4.12 ([58, Theorem 7.12, Proposition 7.13]). Under tilting, Xét
∼= X!

ét. Moreover,
if X = Spa(R,R+) is affinoid perfectoid, then H0(Xét,O+

X) = R+ while Hi(Xét,O+
X) is

almost zero for i > 0. In particular, H0(Xét,OX) = R while Hi(Xét,OX) = 0 for i > 0.

The assertion Xét
∼= X!

ét is a far-reaching generalization of the Fontaine-Wintenberger

isomorphism. Indeed, if we put X = Spa(K,OK), which tilts to X! = Spa(K!,OK�),
the assertion is precisely the Fontaine-Wintenberger isomorphism. The assertion about

Hi(Xét,O+
X) is a strengthening of Faltings’s almost purity theorem, which is essentially the

version of it for the finite étale site. Let us state it in our setup.

Theorem 4.13 ([58, Theorem 7.9 (iii)]). Let R be a perfectoidK-algebra, and let S/R be
finite étale. Then S is a perfectoid K-algebra, and S◦ is a uniformly almost finite étale
R◦-algebra.
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The following is an easy corollary, which gives a higher-dimensional variant of the

Fontaine-Wintenberger isomorphism (for the finite étale case).

Corollary 4.14. Let R be a perfectoid K-algebra with tilt R!. Then tilting defines an
equivalence between the categories of finite étale R-algebras and finite étale R!-algebras.

The almost purity theorem is interesting only in characteristic 0; in characteristic p, it is
easy. Originally, Faltings proved such statements in the case of good reduction, [23], and

then more generally for semistable (or more generally toric) reduction, [25]. We note that in

Faltings’ situation, R was the completion of an inductive limit of regular algebras. Then, by

Zariski-Nagata purity, the ramification locus of S◦ over R◦ is purely of codimension 1. We

know by assumption that there is no ramification in characteristic 0, as S/R is finite étale. At

the generic points of R◦/p, it follows from (the proof of) the Fontaine-Wintenberger result

that there is almost no ramification. If there were none, one would get that S◦/R◦ is finite
étale. Faltings made the same argument work in the almost world. It came as a surprise that

no regularity assumption is needed for the theorem.

5. Example: Projective spaces

LetK be a perfectoid field with tiltK!. Let us consider the case of projective space. In all

applications of perfectoid spaces, the hard part is to find a way to pass from objects of finite

type over K to perfectoid objects. This is not possible in a canonical way, and one has to

make a choice.

On Pn, one has the map ϕ : Pn → Pn sending (x0 : . . . : xn) to (x
p
0 : . . . : xpn). Consider

PnK as an adic space overK. Then there is a perfectoid space (PnK)perf overK such that

(PnK)perf ∼ lim←−
ϕ

PnK .

Here, ∼ lim←−, read ‘being similar to the inverse limit’, is a technical notion that accounts for

the non-existence of inverse limits in the category of adic spaces, cf. [62, Definition 2.4.1].

Explicitly, (PnK)perf is glued out of n+ 1 copies of

Spa(K〈T 1/p∞

1 , . . . , T 1/p∞
n 〉,OK〈T 1/p∞

1 , . . . , T 1/p∞
n 〉)

in the usual way. One can make the same construction overK! to get (Pn
K�)

perf .

Theorem 5.1 ([58, Theorem 8.5]). The perfectoid space (PnK)perf tilts to (Pn
K�)

perf . In
particular, there are homeomorphisms of topological spaces underlying the adic spaces, resp.
isomorphisms of étale sites,

|PnK� | ∼= |(PnK�)
perf | ∼= |(PnK)perf | ∼= lim←−

ϕ

|PnK | .

(PnK�)ét ∼= (PnK�)
perf
ét

∼= (PnK)perfét
∼= lim←−

ϕ

(PnK)ét .

These constructions give a ‘projection map’

π : PnK� → PnK

defined on topological spaces and étale topoi, and given by (x0 : . . . : xn) !→ (x�0 : . . . : x�n)
in coordinates.
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There are many variants to this theorem. All one needs is a ‘dynamical system’ (X,ϕ)
over K such that (with respect to a suitable integral model of X) ϕ is a lift of Frobenius.

E.g., one might take the canonical lift of an ordinary abelian variety, with its canonical lift

of Frobenius. In that case, the tilt will be the perfection of the ordinary abelian variety in

characteristic p. However, nothing of this sort works of curves of genus ≥ 2. Currently, there
are very few explicit examples of tilting for varieties besides the cases of toric varieties and

(semi-)abelian varieties. An interesting case might be the one of flag varieties.

6. Weight-monodromy conjecture

One application of the theory of perfectoid spaces is to a class of cases of the weight-

monodromy conjecture. Let us briefly recall the statement, cf. [18].

Let X over Qp (or a finite extension thereof) be a proper smooth variety. Fix a prime

� �= p. On the étale cohomology group V = Hi(XQp
,Q�), the absolute Galois group GQp

acts. Fix a Frobenius element Frob ∈ GQp
. From the Weil conjectures, [19], the Rapoport-

Zink spectral sequence, [54], and de Jong’s alterations, [42], the following is known about

the structure of V :

(i) There is a direct sum decomposition V =
⊕2i

j=0 Vj , where all eigenvalues of Frob on

Vj are Weil numbers of weight j.

(ii) There is a nilpotent operatorN : V → V mapping Vj → Vj−2, coming from the action

of the pro-�-inertia.

Conjecture 6.1 ([18]). For any j = 0, . . . , i, the map N j : Vi+j → Vi−j is an isomorphism.

This is somewhat reminiscent of the Lefschetz decomposition, and is sometimes said to

be ‘Mirror dual’ to it. There is a similar result for projective smooth families of complex

manifolds over a punctured complex disc, which is known to be true by work of Schmid, [56],

and Steenbrink, [63].

Deligne proved the analogue for X over Fp((t)) in [20].7 Our result deduces the conjec-
ture over Qp in many cases by reduction to equal characteristic, via tilting.

Theorem 6.2 ([58]). Let X be a geometrically connected proper smooth variety over a finite
extension of Qp which is a set-theoretic complete intersection in a projective smooth toric
variety. Then the weight-monodromy conjecture holds true for X .

Note that this result is new even for a smooth hypersurface in projective space. Let us

note that strictly speaking, the author is not aware of any (geometrically connected projective

smooth) X which does provably not satisfy this assumption. However, we can also not prove

it in any reasonable generality.

7. Close local fields: Work of Hattori

Recall that the theory of perfectoid spaces developed as a generalization of the Fontaine-

Wintenberger result which worked with infinite extensions of Qp. Hattori shows that one can,

7Actually, he assumed that X is already defined over a curve, but this assumption can be removed.
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however, use this theory to prove generalizations of Deligne’s results on close local fields.

Let us state here one of his results.

For a complete discrete valuation field K with valuation v (normalized with image

Z ∪ {∞}) and residue characteristic p, the absolute ramification index eK is defined as

eK = v(p). In particular, eK = ∞ ifK is of characteristic p.

Theorem 7.1 ([35, Theorem 1.2 (ii)]). Let K1 and K2 be two complete discrete valuation
fields of residue characteristic p, such that the residue fields k1 ∼= k2 are isomorphic. Let
j ≤ min(eK1 , eK2). Then there is an isomorphism

GK1/G
(j)
K1

∼= GK2/G
(j)
K2
.

The main novelty is that the residue fields ki are not assumed to be perfect. Thus,

Hattori has to use the Abbes-Saito ramification filtration for complete discrete valuation

fields with imperfect residue fields, [1]. This is defined in terms of geometrically connected

components of certain rigid-analytic varieties. Hattori’s approach is to use perfectoid spaces

to compare these rigid-analytic varieties in different characteristics. For this, one has to

check that connected components do not change when passing to the perfectoid world,

i.e. extracting a lot of p-power roots; this uses the bound on the ramification degree and

an explicit computation. Then the result follows from the homeomorphism X ∼= X! of

underlying topological spaces.

In particular, this shows that the theory of perfectoid spaces gives new information on the

other approaches to changing the characteristic. We note that in the representation theory of

local groups, there are Hecke algebra isomorphisms for not-too-ramified types of close local

fields, mirroring the Galois story on the automorphic side, cf. [43]. It would be interesting to

see if perfectoid spaces can shed new light on these Hecke algebra isomorphisms as well.

8. Rigid Motives: Work of Vezzani

Another way in which perfectoid spaces have been used to study phenomena of changing the

characteristic is in relation to Ayoub’s category of rigid motives, cf. [5]. Rigid motives are

defined by formally repeating some constructions from A1-homotopy theory, working with

the category of smooth rigid-analytic varieties, and replacing A1 by the closed unit ball. For

any nonarchimedean fieldK and any ring Λ, one gets the resulting category of rigid motives

RigMot(K,Λ) with coefficients in Λ.
The following theorem is due to Vezzani:

Theorem 8.1 ([65]). Let K be a perfectoid field with tilt K!. For any Q-algebra Λ, the
categories RigMot(K,Λ) ∼= RigMot(K!,Λ) are canonically equivalent.

This can be regarded as a version of the Fontaine-Wintenberger isomorphism for ‘rigid

motivic Galois groups’. Vezzani’s strategy is to compare both categories to categories of

‘perfectoid motives’ which one gets from (suitable) perfectoid spaces. It is rather formal that

these perfectoid motives are equivalent overK andK!, and the task becomes to relate these

to classical finite-type objects.
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9. p-adic Hodge theory

The subject of p-adic Hodge theory can be regarded as a parallel to Deligne’s formulation of

complex Hodge theory as the interrelationship between the various cohomology theories asso-

ciated with compact Kähler manifolds. Let us recall the most important results in the complex

setting. Fix a compact Kähler manifold X . One has the singular cohomology Hi(X,Z), the
de Rham cohomology Hi

dR(X), and the Hodge cohomology groups Hi(X,ΩjX).

Theorem 9.1 (Poincaré lemma). The inclusion C → Ω•X is a quasi-isomorphism of sheaves
of complexes. In particular,

Hi(X,Z)⊗ C = Hi(X,C) ∼= Hi
dR(X) .

Theorem 9.2 (Hodge). The Hodge-to-de Rham spectral sequence

Eij1 = Hj(X,ΩiX) ⇒ Hi+j
dR (X)

degenerates at E1.

Theorem 9.3 (Hodge). There is a canonical Hodge decomposition

Hi(X,Z)⊗ C =
i⊕

j=0

Hj(X,Ωi−jX ) .

Now let C be a complete and algebraically closed extension ofQp. For example, C = Cp,
the completion of Qp. Note that C is perfectoid. Let X be a proper smooth rigid-analytic va-

riety over C. This should be regarded as the analogue of a compact complex manifold, which

is not necessarily Kähler. Prior to the author’s work on the subject, all work concentrated on

the case of algebraic X , but it is shown in [59] that this restriction is not necessary.

Again, one has de Rham and Hodge cohomology groupsHi
dR(X),Hi(X,ΩjX), defined

in the same way. What replaces singular cohomology is étale cohomology Hi
ét(X,Zp). The

following result generalizes a fact well-known for algebraic varieties.

Theorem 9.4 ([59, Theorem 1.1], [60, Theorem 3.17]). Let X be a proper rigid-analytic
variety over C. Then Hi

ét(X,Zp) is a finitely generated Zp-module, which vanishes for
i > 2 dimX .

Properness is crucial here. In fact, already for a closed unit disc, the Fp-cohomology is

infinite-dimensional, due to the presence of Artin-Schreier covers. This is in stark contrast

with the �-adic case (� �= p), where strong finiteness statements are known by work of

Berkovich and Huber, [9, 40].

Before explaining the proof of the theorem, recall another result from [59].

Theorem 9.5 ([59, Theorem 1.2]). Let U be a connected affinoid rigid-analytic variety over
C. Then U is aK(π, 1) for p-torsion coefficients. In other words, for every p-torsion local
system L on U , the natural map

Hi(Xét,L) → Hi(π1(X, x̄),Lx̄)

is a bijection, where x̄ ∈ X(C) is a base point, and π1(X, x̄) is the profinite étale fundamental
group.
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There is Artin’s theorem on good neighborhoods which states that a smooth algebraic

variety in characteristic 0 is locally a K(π, 1). It is interesting to note that no smallness or

smoothness assumption is necessary for this result in the p-adic world. Let us briefly sketch
its proof as this gives a good impression on how perfectoid spaces are used in applications to

p-adic Hodge theory. Let Ũ → U be ‘the universal cover of U ’, which is the inverse limit of

all finite étale covers. It is not hard to see that Ũ is an affinoid perfectoid space. Essentially,

the existence of enough p-th roots is assured as taking p-th roots is finite étale in characteristic
0. By formal nonsense, it is enough to prove that Hi(Ũét,Fp) = 0 for i > 0; we already

know thatH1(Ũét,Fp) = 0 as this parametrizes finite étale Fp-torsors, of which there are no

more. Thus, we need to prove that Hi(Ũét,Fp) = 0 for i > 1.

Lemma 9.6. Let Y be an affinoid perfectoid space. For i > 1, Hi(Yét,Fp) = 0.

Proof. By tilting, we may assume that Y is of characteristic p. Then we have the Artin-

Schreier sequence 0 → Fp → OY → OY → 0, and the result follows from vanishing of

coherent cohomology: Hi(Y,OY ) = 0 for i > 0.

Thus, the general idea is to cover X locally by pro-étale maps from perfectoid spaces,

and then use qualitative properties of perfectoid spaces, which are verified in characteristic p.
For this purpose, one introduces the pro-étale site Xproét, in which X is locally perfectoid in

a suitable sense.8

By resolution of singularities for rigid-analytic varieties, the proof of the finiteness theorem

reduces to the proper smooth case; moreover, it is enough to handle the case of Fp-coefficients.
In that case, the argument is involved and makes heavy use of the full machinery of perfectoid

spaces, cf. [59]. Roughly, it proceeds in two steps. First, one shows that Hi
ét(X,O+

X/p) is
almost finitely generated. This makes use of the Cartan-Serre technique of shrinking covers,

and the almost vanishing of Hi(Yét,O+
Y ) on affinoid perfectoid spaces Y . Then one uses a

variant of the Artin-Schreier sequence

0 → Fp → O+
X/p→ O+

X/p→ 0

to deduce finiteness of Fp-cohomology. In fact, one gets the following basic comparison

result at the same time.

Theorem 9.7 ([59, Theorem 1.3], [60, Theorem 3.17]). Let X be a proper rigid-analytic
variety over C. Then the natural map

Hi(Xét,Fp)⊗ OC/p→ Hi(Xét,O+
X/p)

is an almost isomorphism, i.e. both the kernel and the cokernel are killed by the maximal
ideal of OC .

This is a variant on a result of Faltings, [25, Theorem §3.8]. It forms the basic result which

allows one to pass from étale cohomology to coherent cohomology (including here de Rham

and Hodge cohomology). Note that the result implies the following remarkable behaviour

ofM = RΓ(Xét,O+
X). After inverting p,M [p−1] = RΓ(Xét,OX) = RΓ(X,OX) is usual

coherent cohomology. However, after (derived) modding out p,

M/p = RΓ(Xét,O+
X/p)

∼=a RΓ(Xét,Fp)⊗ OC/p

8The idea of the pro-étale site has turned out to be quite powerful for foundational questions, even in the case of

schemes. For new foundations for �-adic cohomology of schemes, see [10].
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is almost isomorphic to étale cohomology. In particular, M [p−1] lives only in degrees 0
through dimX , while M itself has torsion going up until degree 2 dimX . It also shows

the full strength of the result that Hi(Yét,O+
Y ) is almost zero for i > 0, if Y is an affinoid

perfectoid space: Certainly, nothing similar is true for a finite type space. It means that all the

torsion in the cohomology of O+
X gets killed after passing to perfectoid covers. This will be

at the heart of the applications to torsion in the cohomology of locally symmetric spaces, cf.

Section 15.

Let us now mention the analogues of the theorems in the complex world, stated earlier.

For definiteness, we assume here that X = X0 ×k C is the base-change of some X0 defined

over a completed discretely valued extension k of Qp with perfect residue field. Moreover,

we assume that X0 is proper and smooth.

Theorem 9.8 ([59, Corollary 1.8]). The Gk-representation Hi
ét(X,Qp) is de Rham in the

sense of Fontaine, and one has the comparison between étale and de Rham cohomology

Hi
ét(X,Qp)⊗Qp BdR

∼= Hi
dR(X0)⊗k BdR .

In particular, Hi
dR(X0) is the filtered k-vector space associated with the de Rham Gk-

representation Hi
ét(X,Qp).

This is a known phenomenon in p-adic Hodge theory: To get the comparison theorems,

one has to extend scalars to Fontaine’s big period rings. Here, we use BdR, which is a

complete discrete valuation field with residue field C.

Theorem 9.9 ([59, Corollary 1.8]). The Hodge-to-de Rham spectral sequence

Eij1 = Hj(X,ΩiX) ⇒ Hi+j
dR (X)

degenerates at E1.

Note that no Kähler assumption is necessary here. It is interesting to note that some

non-Kähler complex manifolds have p-adic analogues, such as the Hopf surface: Divide

A2\{(0, 0)} by the diagonal action of multiplication by q for some q ∈ k with |q| < 1 to get a
proper smooth rigid-analytic varietyX . This has Hodge numbers h01 = dimH0(X,Ω1

X) =
0 while h10 = dimH1(X,OX) = 1, so Hodge symmetry fails. However, Hodge-to-de

Rham degeneration holds true for the Hopf surface. Fortunately, Iwasawa manifolds for

which the Hodge-to-de Rham degeneration fails, do not have p-adic analogues.
The next result does not need a Kähler assumption either:

Theorem 9.10 ([59, Corollary 1.8], [60, Theorem 3.20]). There is a Hodge-Tate decomposi-
tion

Hi
ét(X,Qp)⊗Qp C

∼=
i⊕

j=0

Hi−j(X,ΩjX)(−j) .

Here, (−j) denotes a Tate twist. More generally, if X is only defined over C, there is a
Hodge-Tate spectral sequence

Eij2 = Hi(X,ΩjX)(−j) ⇒ Hi+j
ét (X,Qp)⊗Qp C .

It degenerates at E2 ifX is algebraic or defined over k (and probably does in general), giving
a Hodge-Tate filtration onHi

ét(X,Qp)⊗QpC with associated graded piecesHi−j(X,ΩjX)(−j).
Note the interesting differences between the Hodge-Tate spectral sequence and the Hodge-

de Rham spectral sequence: It starts at E2, and i and j are interchanged. Moreover, a Tate

twist appears.
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10. Relative ϕ-modules: Work of Kedlaya-Liu

At around the same time that the author wrote [58], Kedlaya-Liu, [47], [48], worked out

closely related results9 with the goal of constructing Qp-local systems on period domains, as

were conjectured by Rapoport-Zink, [55]. Let us briefly recall the conjecture of Rapoport-

Zink, in the case of the group GLn.
Fix a perfect field k of characteristic p, and let V be a k-isocrystal, i.e. a W (k)[p−1]-

vector space V of finite dimension n equipped with a σ-linear isomorphism φ : V → V .
Moreover, fix a ‘filtration type’, i.e. for each integer i ∈ Z a multiplicity ni ≥ 0 such that

n =
∑
ni. The space of decreasing filtrations Fil• V ⊂ V for which gri V has dimension ni

forms naturally an algebraic variety F overW (k)[p−1]; we consider F as an adic space over

W (k)[p−1].
If x ∈ F(K) is a point defined over a finite extensionK ofW (k)[p−1], then, by a theorem

of Colmez-Fontaine, [17], the triple (V, φ,Fil•) comes from a crystalline representation

L(x) of GK if and only if it is weakly admissible. Weak admissibility is an analogue of

a semistability condition, comparing Hodge and Newton slopes. There is a maximal open

subspace Fwa ⊂ F whose classical points are the weakly admissible points, cf. [55].

Conjecture 10.1. For any smooth subspace X ⊂ F such that the universal filtration re-
stricted to X satisfies Griffiths transversality, there exists a natural open subset Xa ⊂
Xwa := X ∩Fwa with the same classical points, and aQp-local system L(X) onXa, which
gives the GK-representation L(x) when passing to the fibre over any x ∈ Xa(K).

The original conjecture of Rapoport-Zink was more optimistic in that it conjectured the

existence of L(X) for X = F , and not only on subspaces where Griffiths transversality

is satisfied. However, this does not fit with the p-adic Hodge theory formalism. Note that

if the filtration is of ‘minuscule type’, meaning that ni �= 0 for at most two consecutive i,
then Griffiths transversality is satisfied on all of F . This assumption is satisfied in all cases

investigated in [55], which are related to p-divisible groups.
Kedlaya announced a proof of this conjecture in [45]. Very roughly, the strategy of

Kedlaya-Liu is to construct the local system locally in the pro-étale site and then glue. This

reduces the problem to the perfectoid case. Moreover, now one has to construct a Qp-local

system on the perfectoid space, or equivalently its tilt. But in characteristic p, Qp-local

systems can be constructed from ϕ-modules by Artin-Schreier-Witt theory. Thus, first they

build a ϕ-module over a relative Robba ring. Then they need to show that the locus where

this ϕ-module is pure of slope 0 is open, and that locally on this locus, an integral structure
exists. These theorems are proved in [47]; they generalize previous results of Kedlaya on

slope filtrations and the existence of integral structures in the absolute setting, [44].

11. Universal covers of p-divisible groups

The following definition of a universal cover arose repeatedly in recent years, cf. e.g. [27],

[30]. We identify a formal scheme S with the functor it represents on (discrete) rings, so e.g.

(Spf lim←−A/I
n)(R) = lim−→Hom(A/In, R) .

9In particular, they proved Corollary 4.14 independently.



Perfectoid spaces and their applications 475

By a commutative group G over S, we mean an fqpc sheaf of commutative groups on the

category of discrete rings living over S. In other words, for any discrete ring R with an

R-valued point S(R), one has a commutative group G(R), satisfying fpqc descent. We are

particularly interested in the cases where G is an abelian variety or a p-divisible group.

Definition 11.1. Let S be a formal scheme over Spf Zp, and letG/S be a commutative group.

The universal cover G̃ of G is defined as G̃ = lim←−×pG.

For example, if G = Spf R[[T1, . . . , Td]] is a formal p-divisible group over a ring R,

then G̃ ∼= Spf R[[T
1/p∞

1 , . . . , T
1/p∞

d ]]. In particular, if R = OK is the ring of integers in a

perfectoid fieldK, then the generic fibre G̃η of G̃ is a perfectoid space overK. If G = Ga is

the additive group, then G̃ = 0.
For any formal scheme S over Spf Zp, we may consider the categories of universal covers

of abelian varieties, resp. universal covers of p-divisible groups, over S, as full subcategories
of the category of commutative groups over S.

Proposition 11.2. Let S′ ⊂ S be a closed immersion of formal schemes defined by a
topologically nilpotent ideal. Then the categories of universal covers of abelian varieties
(resp. p-divisible groups) over S and S′ are equivalent.

Thus, the universal cover may be considered as a crystal on the infinitesimal site. In

particular, let us fix an abelian variety or a p-divisible group G0 over a perfect field k of

characteristic p, of height h. It has a universal deformation space S ∼= SpfW (k)[[T1, . . . , Tk]]
(cf. [41]), and a universal deformation G/S. However, the universal cover G̃ is constant,

equal to the evaluation of the crystal G̃0 on the thickening S → Spec k.
Note that inside G̃ one has the Tate module TpG = ker(G̃→ G) = lim←−×pG[p

n]. If one

fixes a C-valued point of the generic fibre of S, where C is an algebraically closed complete

extension ofW (k)[p−1], then Λ = (TpG)(OC) ∼= Zhp ⊂ G̃(OC) is a Zp-lattice. Informally,

one gets backG = G̃/TpG by quotienting G̃ by this Zp-lattice. Here, G̃ is independent of the

chosen point, but the Zp-lattice varies. This is reminiscent of the complex uniformization of

abelian varieties: Their universal cover is constant, and different abelian varieties correspond

to different Z-lattices in the universal cover. Riemann’s theorem gives a condition on when

the quotient exists as an algebraic variety in terms of the existence of a polarization.

The following theorem is proved in joint work with Weinstein. We refer the reader to [62]

for a more detailed discussion of this result.10

Theorem 11.3 ([62, Theorem D]). Fix a p-divisible group G0 over a perfect field k of height
h and dimension d, as well as a complete and algebraically closed extension C ofW (k)[p−1].
Consider the category of lifts (G, ρ) of G0 to OC up to quasi-isogeny: Here, G/OC is a p-
divisible group, and ρ : G0 ×k OC/p→ G×OC

OC/p is a quasi-isogeny. Then the category
of lifts (G, ρ) is equivalent to the category of Zp-lattices Λ ∼= Zhp ⊂ G̃0(OC) for which there
exists a (necessarily unique) h − d-dimensional subspaceW ⊂ M(G0)(OC)[p

−1] ∼= Ch
such that the image of Λ under the quasi-logarithm map

qlog : G̃0(OC) →M(G0)(OC)[p
−1]

10One may deduce a similar result for abelian varieties by using Serre-Tate theory if one incorporates a polarization

to guarantee algebraization.
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lies inW , and
0 → Λ[p−1] → G̃0(OC) → Ch/W → 0

is exact.

This gives one analogue of Riemann’s theorem on the classification of complex abelian

varieties. The following theorem, again proved in joint work with Weinstein, [62], and closely

related to the previous theorem, gives a different such analogue. For this, we use that any

p-divisible group G over OC has a Hodge-Tate filtration

0 → (LieG)⊗OC
C(1) → TpG⊗Zp C → (LieG∗)∗ ⊗OC

C → 0 ,

which is an analogue of the Hodge-Tate filtration defined above for proper smooth varieties

over C, cf. Theorem 9.10. This Hodge-Tate filtration for p-divisible groups was known

previously, and is due to Faltings, [24], cf. also Fargues, [28].

Theorem 11.4 ([62, Theorem B]). The category of p-divisible groups over OC is equivalent
to the category of pairs (Λ,W ) where Λ is a finite free Zp-module, andW ⊂ Λ⊗Zp C is a
C-subvectorspace.

The functor is given by G !→ (TpG,LieG⊗OC
C(1)). This is analogous to the classifi-

cation of complex abelian varieties by their first singular homology, together with the Hodge

filtration.

12. Lubin-Tate spaces: Work of Weinstein

Weinstein has observed that the Lubin-Tate tower at infinite level carries a natural structure as

a perfectoid space. For this, fix an integer n ≥ 1 and a p-divisible group G0 of dimension 1
and height n. The Lubin-Tate tower at infinite level MG0,∞ parametrizes triples (G, ρ, α)
where (G, ρ) is a deformation of G0 up to quasi-isogeny as before, and α : Znp → TpG is an

infinite level structure.

One may define a p-divisible group
∧
G0 of G0 of dimension 1 and height 1 by taking

the highest exterior power of the Dieudonné moduleM(G0), and passing back to p-divisible
groups. This uses crucially that G0 is of dimension 1. One may construct an alternating map

det : G̃0 ⊗ . . .⊗ G̃0 →
∧̃
G0 .

This follows from the work of Hedayatzadeh, [36], or from a result in Dieudonné theory in

the joint work with Weinstein, [62]. Fix a perfectoid fieldK; then this gives a similar map on

the generic fibre, base-changed toK:

det : G̃0,K ⊗ . . .⊗ G̃0,K →
∧̃
G0

K
.

Inside
∧̃
G0K , one has the rational Tate module Vp(

∧
G0) ⊂ ∧̃

G0K and an exact

sequence

0 → Vp(
∧
G0) →

∧̃
G0

K

log−→ Ga,K → 0 .

The following theorem is easy to deduce from Theorem 11.3, but was proved earlier directly

by Weinstein.



Perfectoid spaces and their applications 477

Theorem 12.1 (Weinstein). The following diagram is cartesian:

MG0,∞
� � ��

��

(
G̃0,K

)n
det

��

Vp(
∧
G0) \ {0} � � �� ∧̃G0K

All intervening objects are perfectoid spaces overK, and the inclusions are locally closed
(i.e., open subsets of Zariski closed subsets).

All objects in this diagram can be made completely explicit. Weinstein has used this

to find explicit affinoid perfectoid subsets of MG0,∞ whose cohomology realizes the local

Langlands correspondence for specific supercuspidal representations, cf. [12]. Recall that it is

known (by the work of Harris-Taylor, [34]) that the cohomology of MG0,∞ realizes the local

Langlands correspondence for all supercuspidal representations ofGLn(Qp). It is remarkable

that while at any finite level, one cannot give an explicit description of the Lubin-Tate tower,

it is possible to describe MG0,∞, together with all group actions, explicitly.

In [62], it is proved that more general Rapoport-Zink spaces become perfectoid at infinite

level, and a description purely in terms of p-adic Hodge theory is given. This made it

possible to prove the duality isomorphism for basic Rapoport-Zink spaces. In particular,

one gets that Drinfeld and Lubin-Tate tower are isomorphic at infinite level as perfectoid

spaces. This improves on earlier results of Faltings, [26], and Fargues, [28], who proved

such isomorphisms, but had to struggle with formalizing them, as no category was known in

which both infinite level spaces lived a priori. Their method is to work with suitable formal

models; for this, new formal models have to be constructed first, which is at least technically

challenging.

It was recently suggested by Rapoport-Viehmann, [53], that there should exist a theory

of ‘local Shimura varieties’, which should relate to Rapoport-Zink spaces in the same way

that general Shimura varieties relate to Shimura varieties of PEL type. The new perspective

on Rapoport-Zink spaces mentioned above should make it possible to prove (parts of) their

conjectures.

13. p-adic cohomology of the Lubin-Tate tower

The Lubin-Tate tower plays an important role in the Langlands program because its �-adic
cohomology for � �= p realizes the local Langlands correspondence, cf. [34]. In the emerging

p-adic local Langlands program, which has taken a definitive form only forGL2(Qp), cf. [13],
one hopes for a similar realization of the p-adic local Langlands correspondence. However,
the Fp-cohomology of the Lubin-Tate tower is too infinite due to the presence of many

Artin-Schreier covers. Still, a variant of Theorem 9.4 holds true in this context; for simplicity,

we state only the version with Fp-coefficients; a similar result holds true with Zp-coefficients.
Let F be a finite extension of Qp. Fix an admissible Fp-representation π of GLn(F ).

Using the Lubin-Tate tower at infinite level, which is a GLn(F )-torsor over P
n−1

F̆
, where F̆

denotes the completion of the maximal unramified extension of F , one gets an étale sheaf Fπ

on Pn−1

F̆
. It is naturallyD×-equivariant, and equipped with a Weil descent datum. Here,D is
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the division algebra of invariant 1/n over F . The following theorem is work in progress of

the author, and relies on the techniques of the proof of Theorem 9.4 along with the duality

between Lubin-Tate and Drinfeld tower.

Theorem 13.1. Let C/F̆ be complete and algebraically closed. Then Hi(Pn−1
C ,Fπ) is an

admissible D×-representation, which vanishes for i > 2(n − 1), and is independent of C.
The resulting functor from admissible GLn(F )-representations to admissible D× × GF -
representations is compatible with some global correspondences.

This makes it possible to pass from GLn(F )-representations to Galois representations in

a purely local way. In the global setup, it proves that the GLn(F )-representation determines

the local Galois group representation.

14. Shimura varieties

Fix a reductive group G over Q with a Shimura datum of Hodge type, giving rise to a

Shimura variety SK , K ⊂ G(Af ), over the reflex field E. There is a Hecke-equivariant

compactification S
∗
K , finite under the minimal compactification S∗K → S

∗
K , and a flag variety

F with G-action, such that the following are true.11

Theorem 14.1. Fix a tame level Kp ⊂ G(Apf ) and a map E → C to a complete and
algebraically closed extension C of Qp. Let (S

∗
K)ad denote the adic space associated with

S
∗
K ⊗E C. Then there is a perfectoid space S

∗
Kp over C such that

S
∗
Kp ∼ lim←−

Kp

(S
∗
KpKp)

ad .

Moreover, there is a G(Qp)-equivariant Hodge-Tate period map

πHT : S
∗
Kp → F .

The map πHT is equivariant for the Hecke operators prime to p with respect to the trivial
action on F; in particular, πHT contracts G(Apf )-orbits. There is a cover of F by affinoid
subsets U ⊂ F for which π−1

HT(U) ⊂ S∗Kp is an affinoid perfectoid subset.

The geometry of πHT is very interesting. Consider the case of the modular curve. Here,

F = P1, and πHT is a p-adic analogue of the embedding of the complex upper half-plane

(which is a path-connected component of the inverse limit over all levels lim←−K
SK(C)) into

P1(C). In both cases, the map is given by the Hodge filtration.

In the case of the modular curve, S
∗
Kp = S∗Kp has a stratification into the ordinary

and the supersingular locus, Sord
Kp and Sss

Kp .12 The flag variety is F = P1. Then, under

πHT, all of S
ord
Kp maps into P1(Qp), while the supersingular locus S

ss
Kp maps into Ω2. Here,

Ω2 = P1 \ P1(Qp) is Drinfeld’s upper half-plane, which is reminiscent of the complex upper

and lower half-plane, which can be written as P1 \ P1(R). It follows that πHT contracts

11It should be possible to use the minimal compactification itself, and make F more explicit, but so far this has

not been worked out.

12We regard some points of the adic space corresponding to rank-2-valuations as part of the ordinary locus which

would usually be considered as part of the supersingular locus. We do so by replacing the ordinary part by its closure.
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connected components of the ordinary locus to points, whereas it does something interesting

on the supersingular locus.

On the ordinary locus, the map is given by the position of the canonical subgroup. On the

supersingular locus, Sss
Kp is a finite disjoint union of Lubin-Tate towers at infinite level (for

n = 2); these are isomorphic to the Drinfeld tower at infinite level, which is a pro-finite étale

cover of Ω2. The composite is πHT. In particular, the isomorphism between Lubin-Tate and

Drinfeld tower is built into the geometry of πHT.

Let us note another perspective on what the Hodge-Tate period map does. Namely, by

Theorem 11.4, giving the Hodge filtration is equivalent to giving the p-divisible group. This
means that the Hodge-Tate period map, on geometric points of the good reduction locus, is

the map sending an abelian variety to its p-divisible group (equipped with all extra structure).

15. Torsion cohomology of locally symmetric spaces

As the final topic, we summarize the application of these ideas to the study of torsion in the

cohomology of locally symmetric spaces.

Fix a reductive group G over Q. For any (sufficiently small) compact open subgroup

K ⊂ G(Af ), one has the locally symmetric space

YK = G(Q)\ (G(R)/K∞A◦∞ ×G(Af )/K) ,

where K∞ ⊂ G(R) is a maximal compact subgroup, and A∞ ⊂ G(R) are the R-valued
points of the maximal Q-split central torus, with identity component A◦∞. Fixing a tame level

Kp ⊂ G(Apf ), one defines the completed cohomology groups

H̃i(Kp) = lim←−
n

lim−→
Kp

Hi(YKpKp ,Z/pnZ) , H̃i
c(K

p) = lim←−
n

lim−→
Kp

Hi
c(YKpKp ,Z/pnZ) .

Also recall the cohomological degree q0, which is ‘the first interesting cohomological

degree’ (namely, the first one to which tempered automorphic representations ofG contribute).

The following conjecture was proposed by Calegari and Emerton, [14].

Conjecture 15.1. The groups H̃i(Kp), H̃i
c(K

p) vanish for i > q0.

Concretely, this means that all cohomology classes in higher degree become infinitely

p-divisible as one goes up along all levels at p. If G is a torus, the conjecture is equivalent to

Leopoldt’s conjecture. On the other hand, we proved the following theorem.

Theorem 15.2 ([61, Theorem I.7]). Assume that G gives rise to a Shimura variety, so that q0
is the (complex) dimension of the associated Shimura variety. Then Conjecture 15.1 holds
true for compactly supported cohomology.

If one establishes that also toroidal compactifications become perfectoid at infinite level,

then one gets the same result for usual cohomology. Unfortunately, for all tori which give

rise to Shimura varieties, the Leopoldt conjecture is trivially satisfied, as the group of units is

finite.

The key to the proof is to translate everything into the setting of Shimura varieties at

infinite level as perfectoid spaces. In that case, one can use the basic comparison theorem to
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pass to the cohomology of O+/p. But at infinite level, one has almost vanishing of higher

cohomology of O+/p on affinoids as the space is perfectoid. This shows vanishing above the

middle dimension, which is exactly the desired statement.

In fact, the same argument proves the following theorem over C, which the author does
not know how to prove directly.

Theorem 15.3. Let X ⊂ PnC be a closed subvariety of dimension d. For any m ≥ 0, let
Xm ⊂ PnC be the pullback of X under the map PnC → PnC sending (x0 : . . . : xn) to
(xp

m

0 : . . . : xp
m

n ). Then, for any i > d,

lim−→
m

Hi(Xm,Fp) = 0 .

For classes in the image of cup product with c1(O(1)), this follows from the fact that

c1(O(1)) becomes infinitely p-divisible. By hard Lefschetz, this accounts for everything

rationally, but it does not say anything about possible p-torsion in the cohomology.

16. Galois representations

It was conjectured since the 1970’s by Grunewald that torsion in the cohomology of locally

symmetric spaces gives rise to Galois representations. This conjecture was made precise by

Ash, [2], and is a ‘mod p analogue’ of (one direction of) the global Langlands conjectures.

Since then, it was numerically verified in many cases: what happens is that a Hecke eigenvalue

system matches Frobenius eigenvalues of a Galois representations for the first few hundred

primes. However, even in these examples, one could not prove that this happens for all
primes.

Theorem 16.1 ([61, Theorem I.3]). Let G be the restriction of scalars of GLn from a totally
real or CM field F . Fix any compact open subgroup K ⊂ G(Af ). Then, for any system of
Hecke eigenvalues ψ appearing inHi(YK ,Fp), there exists a (unique) continuous semisimple
Galois representation

ρψ : GF → GLn(Fp)

such that for all but an explicit finite set of ‘ramified’ places v of F , the characteristic
polynomial of ρψ(Frobv) is described by the Hecke eigenvalues.

Moreover, there is a version of this theorem for Z/pnZ-cohomology, which in the inverse

limit over n gives results for classical automorphic representations. The following result was

proved earlier by Harris-Lan-Taylor-Thorne, [33], by a different method.

Theorem 16.2 ([61, Theorem I.4]). Let π be a regular algebraic cuspidal automorphic
representation of GLn(AF ), where F is totally real or CM. Fix an isomorphism C ∼= Qp.
Then there exists a unique continuous semisimple Galois representation

ρπ,p : GF → GLn(Qp)

such that for all but an explicit finite set of ‘ramified’ places v of F , the characteristic
polynomial of ρπ,p(Frobv) is described by the Satake parameters.
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It should be noted that in general, the cohomology of the spaces YK has a lot of torsion.

The simplest example is the case of GL2 over an imaginary-quadratic field in which the

relevant YK are hyperbolic 3-manifolds. In that case, computations, as well as theoretical

results, show a huge amount of torsion, cf. e.g. [7]. Therefore, the thrust of the above

theorem lies in the p-torsion part of the cohomology. Moreover, recent work of Calegari-

Geraghty, [15], explains how one may use sufficiently fine information about existence of

Galois representations for torsion classes to prove automorphy lifting theorems for GLn
over F . Together with the strong potential automorphy machinery as in the work of Barnet-

Lamb–Gee–Geraghty–Taylor, [6], this gives some hope that one can establish some potential

converse results to Theorem 16.2.

Let us sketch the proof of Theorem 16.1 in the case F = Q. Consider the Siegel moduli

space SK , K ⊂ GSp2n(Af ), of principally polarized abelian varieties of dimension n.
From the Borel-Serre compactification, [11], it follows that the cohomology of the locally

symmetric space for GLn contributes to the cohomology of the Siegel moduli space. Note

that the Borel-Serre compactification is a compactification as a real manifold with corners;

this makes it possible that a purely real manifold appears in the boundary of the algebraic

variety SK . Thus, the task becomes to understand torsion in the cohomology of SK .

Theorem 16.3 ([61, Theorem I.5]). Let SK ,K ⊂ G(Af ), be any Shimura variety of Hodge
type. Then, for any system of Hecke eigenvalues ψ appearing in Hi

c(SK,C,Fp), there exists a
cuspidal eigenform f (possibly of larger level at p, and undetermined weight) such that the
Hecke eigenvalues of f are congruent to ψ modulo p.

This produces congruences between torsion classes and classical cusp forms in large

generality. Note that the classes in which we are interested start life as classes coming

from the boundary; still, the theorem produces congruences to cusp forms. In particular, for

non-torsion classes, it is interesting as it produces congruences between Eisenstein series and

cusp forms. However, in the complementary case where SK is proper, the theorem is also

interesting as it controls all possible torsion classes. For example, it proves the existence

of Galois representations for all torsion classes in U(1, n− 1)-Shimura varieties, which is

required in recent work of Emerton and Gee, [22]. The point is that one knows how to attach

Galois representations to cusp forms in great generality, through the work on automorphic

forms on classical groups by Arthur [3] (cf. also [51] for unitary groups) and the work of

Clozel, Kottwitz and Harris-Taylor among others on the cohomology of Shimura varieties,

[16, 34, 50].

To prove the theorem, one starts by using the basic comparison theorem

Hi
c,ét(SK,C ,Fp)⊗ OC/p ∼=a H

i
ét(S

∗
K,C , I

+/p) ,

where I+ ⊂ O+ is the ideal sheaf of functions vanishing at the boundary. This variant of

Theorem 9.7 is proved in [60, Theorem 3.13]. This provides a first bridge to the sheaf of

cusp forms I+, but one still has to compute cohomology on the étale site. Next, one passes to

infinite level at p, and reduces to controllingHi
ét(S

∗
Kp , I+/p). Here, S

∗
Kp is perfectoid, so we

know that Hi
ét(U, I

+/p) is almost zero for i > 0 and affinoid perfectoid subsets U ⊂ S∗Kp ;

this is a slight variant on Theorem 4.12. This means that Hi
ét(S

∗
Kp , I+/p) can (almost) be

computed by a Cech complex whose terms are the sections of I+/p on affinoid subsets. The

remaining task is to approximate these forms on U by globally defined forms (of finite level),

without messing up the Hecke eigenvalues. Usually, the strategy is to multiply by a multiple
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of the Hasse invariant. This kills all poles away from the ordinary locus, and works if U is

the ordinary locus. However, in our case we need to do the same for a covering of all of S
∗
Kp .

The crucial property of the Hasse invariant is that it commutes with all Hecke operators

prime to p. In our setup, we can use the following construction: As

πHT : S
∗
Kp → F

is equivariant with respect to the trivial action of the Hecke operators prime to p on F , any

function that gets pulled back from F will commute with all Hecke operators prime to p. The
same stays true for sections of automorphic vector bundles; automorphic vector bundles come

via pullback from F .13 In this way, one gets enough ‘fake-Hasse invariants’ to proceed, and

prove the result.

Acknowledgements. This work was done while the author was a Clay Research Fellow.
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Stabilisation de la partie géométrique de la formule
des traces tordue

J.-L. Waldspurger ∗

Résumé. We explain what is twisted endoscopy. We give the formulation of the geometric part of the

twisted trace formula, following the works of Clozel-Labesse-Langlands and Arthur. We explain his

stabilization, which is a work in progress, joint with Moeglin.
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Keywords. twisted endoscopy, twisted trace formula.

1. Introduction

Langlands a posé des conjectures qui classifient les représentations automorphes d’un groupe

réductif connexe défini sur un corps de nombres. La forme fine de ces conjectures requiert

l’usage de la théorie de l’endoscopie, elle-aussi imaginée par Langlands. En retour, cette

théorie permet d’établir dans certains cas très particuliers l’existence prédite par les conjec-

tures de correspondances entre représentations automorphes sur différents groupes. La mé-

thode passe par la “stabilisation de la formule des traces d’Arthur-Selberg”, cette formule

étant l’un des outils les plus puissants de la théorie des formes automorphes. Cette stabi-

lisation a été établie par Arthur [1–3]. Depuis les travaux de Langlands puis d’Arthur et

Clozel sur le changement de base ([9, 16]), on sait qu’il est utile d’étendre la formule des

traces comme la théorie de l’endoscopie à une situation “tordue”, c’est-à-dire où le groupe

est muni d’un automorphisme (il revient plus ou moins au même de considérer un groupe

non connexe). Arthur a tiré des applications spectaculaires de cette théorie appliquée à un

groupeGL(n) tordu par un automorphisme extérieur non trivial, cf. [4]. Dans le cadre tordu,

la formule des traces a été établie par Clozel, Labesse et Langlands et développée par Arthur.

Kottwitz, Labesse et Shelstad ont élaboré après Langlands la théorie de l’endoscopie tordue.

Dans un travail en voie d’achèvement, en collaboration avec Moeglin, nous stabilisons la

formule des traces tordue, en suivant la méthode d’Arthur. Dans la section 2, je tente d’ex-

pliquer ce qu’est l’endoscopie tordue sur un corps de base local et j’énonce les résultats de

stabilisation locaux concernant les intégrales orbitales. Dans la section 3, le corps de base

devient un corps de nombres. Je décris la partie géométrique de la formule des traces tordue

et j’explique sa stabilisation. Comme je l’ai dit, ce travail n’est pas encore complètement

achevé et reste encore soumis à une hypothèse, à savoir la validité du lemme fondamental

pour toutes les fonctions de l’algèbre de Hecke. Ngô Bao Chau a démontré ce lemme pour la

fonction unité de cette algèbre [17]. Sa généralisation ne fait pas de doute et est certainement

incomparablement plus facile que le théorème de Ngô Bao Chau.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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2. La théorie locale

Cette section s’appuie sur les articles [11, 13, 14, 18]. On a donné une présentation plus

personnelle de la théorie dans [19].

2.1. Espaces tordus. Soient F un corps local de caractéristique nulle et F̄ une clôture

algébrique de F . On pose ΓF = Gal(F̄ /F ) et on noteWF le groupe de Weil de F . Soient
G un groupe réductif connexe défini sur F et G̃ un espace tordu sous G. Cela signifie que G̃
est une variété algébrique sur F muni de deux actions de G

G× G̃×G → G̃
(g, γ, g′) !→ gγg′

définies sur F , de sorte que, pour tout γ ∈ G̃, les applications g !→ gγ et g′ !→ γg′ soient
bijectives. Pour γ ∈ G̃, on note adγ l’automorphisme deG tel que γg′ = adγ(g′)γ pour tout
g′ ∈ G. Notons θ la restriction de adγ au centre Z(G) deG. Elle ne dépend pas de l’élément

γ ∈ G̃. On impose les deux conditions :

G̃(F ) �= ∅ et l’automorphisme θ de Z(G) est d’ordre fini.
Outre les données G et G̃, on fixe un caractère ω de G(F ), c’est-à-dire un homomor-

phisme continu ω : G(F ) → C×.
Pour γ ∈ G̃, on note ZG(γ) l’ensemble de points fixes de adγ et Gγ la composante

neutre de ce groupe. Une paire de Borel deG est un couple (B, T ), où B est un sous-groupe

de Borel de G et T est un sous-tore maximal de B (on ne suppose pas B et T définis sur

F ). Un élément γ ∈ G̃ est dit semi-simple s’il existe une paire de Borel (B, T ) de G qui est

conservée par adγ . Tout élément γ ∈ G̃ s’écrit de façon unique comme produit γ = uγss
où γss est semi-simple et u est un élément unipotent de Gγss . On dit que γ est fortement

régulier s’il est semi-simple et si ZG(γ) est commutatif.

On dit que G est quasi-déployé s’il existe une paire de Borel (B, T ) définie sur F . On
dit que G̃ est à torsion intérieure si adγ est un automorphisme intérieur de G pour tout

γ ∈ G̃ (ou pour un γ ∈ G̃, c’est équivalent). Un tel espace tordu à torsion intérieure est

isomorphe à G sur F̄ mais pas forcément sur F . Par exemple, on peut avoir G = SL(n)
et G̃ = {g ∈ GL(n); det(g) = d}, où d est un élément fixé de F×. Dans ce cas, G̃ est

isomorphe à G sur F si et seulement si d est la puissance n-ième d’un élément de F×.

2.2. Intégrales orbitales. On note C∞c (G̃(F )) l’espace des fonctions f : G̃(F ) → C dont

le support est compact et qui sont lisses, c’est-à-dire localement constantes si F est non-

archimédien, C∞ si F est archimédien. Pour tout groupe réductif H défini sur F , on note

par la lettre gothique h son algèbre de Lie. Soit γ ∈ G̃(F ). Notons γss sa partie semi-simple,

posons

DG̃(γ) = |det(1− adγss)|g/gγss
|F ,

où |.|F est la valeur absolue usuelle de F . Fixons des mesures de Haar sur G(F ) et Gγ(F ).

Soit f ∈ C∞c (G̃(F )). Si ω n’est pas trivial sur Gγ(F ), on pose IG̃(γ, ω, f) = 0. Si ω est

trivial sur Gγ(F ), on pose

IG̃(γ, ω, f) = DG̃(γ)1/2
∫
Gγ(F )\G(F )

ω(g)f(g−1γg) dg.
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On note I(G̃(F ), ω) le quotient de C∞c (G̃(F )) par le sous-espace des fonctions f telles que

IG̃(γ, ω, f) = 0 pour tout γ ∈ G̃(F ).
Supposons G quasi-déployé, G̃ à torsion intérieure et ω = 1. On supprime ω des no-

tations. Soit γ un élément semi-simple fortement régulier de G̃(F ). La classe de conjugai-
son stable de γ est l’ensemble des γ′ ∈ G̃(F ) tels qu’il existe g ∈ G(F̄ ) de sorte que

γ′ = g−1γg. En général, cette classe est plus grosse que la classe de conjugaison de γ par

G(F ) : l’exemple simple G = G̃ = SL(2) permet de s’en convaincre. Fixons des mesures

de Haar sur G(F ) et Gγ(F ). Pour γ
′ stablement conjugué à γ, les tores Gγ et Gγ′ sont

isomorphes et la mesure surGγ(F ) en détermine une surGγ′(F ). Pour f ∈ C∞c (G̃(F )), on
pose

SG̃(γ, f) =
∑
γ′
IG̃(γ′, f),

où γ′ parcourt un ensemble de représentants des classes de conjugaison par G(F ) dans la
classe de conjugaison stable de γ. On note SI(G̃(F )) le quotient de C∞c (G̃(F )) par le sous-

espace des f telles que SG̃(γ, f) = 0 pour tout γ comme ci-dessus. C’est un quotient de

I(G̃(F )).
Revenons au cas général. L’analyse harmonique ω-équivariante est l’étude de l’espace

I(G̃(F ), ω). Les travaux de ces dernières décennies sur la formule des traces ont mis en évi-

dence l’importance plus fondamentale des espaces SI(G̃(F )) du cas particulier ci-dessus.

La théorie de l’endoscopie tordue affirme en substance qu’étudier l’espace I(G̃(F ), ω) re-
vient à étudier les espaces SI(G̃′i(F )), où (G′i, G̃

′
i)i=1,...,n est une certaine famille finie de

couples déduits de (G, G̃, ω) et vérifiant les hypothèses plus simples ci-dessus. Nous déve-

lopperons les constructions de cette théorie dans les paragraphes suivants.

2.3. L-groupes. Une paire de Borel épinglée est un triplet E = (B, T, (Eα)α∈Δ), où
(B, T ) est une paire de Borel, Δ est l’ensemble des racines simples de T dans l’algèbre

de Lie u du radical unipotent de B et, pour tout α ∈ Δ, Eα est un élément non nul de

la droite radicielle uα ⊂ u associée à α. Deux paires de Borel (resp. épinglées) de G sont

conjuguées par un élément de G. Fixons une paire de Borel (B, T ). On définit une action

“quasi-déployée” de ΓF sur T de la façon suivante. Pour tout σ ∈ ΓF , fixons g(σ) ∈ G
tel que adg(σ) ◦ σ(B, T ) = (B, T ) (pour g ∈ G, adg est l’automorphisme x !→ gxg−1 de

G). On note σG∗ l’automorphisme adg(σ) ◦ σ de T . Il ne dépend pas du choix de g(σ) et
σ !→ σG∗ est l’action cherchée. Il y a aussi un automorphisme θ de T ainsi défini : on choisit

γ ∈ G̃ tel que adγ conserve (B, T ) (il existe de tels γ) ; alors θ est la restriction de adγ à T ,
laquelle ne dépend pas du choix de γ.

Un groupe dual deG est un groupe réductif connexe Ĝ sur C, muni d’une paire de Borel

épinglée Ê = (B̂, T̂ , (Êα̂)α̂∈Δ̂) et d’une action algébrique de ΓF satisfaisant aux conditions

suivantes. L’action de ΓF conserve Ê . C’est-à-dire que, pour σ ∈ ΓF , on a σ(B̂, T̂ ) =
(B̂, T̂ ) et σ agit par une permutation α̂ !→ σ(α̂) sur Δ̂ de sorte que σ(Êα̂) = Êσ(α̂). Pour
toute paire de Borel (B, T ) de G, on se donne des isomorphismes en dualité X∗(T ) �
X∗(T̂ ), X∗(T ) � X∗(T̂ ) (avec la notation habituelle pour ces groupes de caractères et de

cocaractères), qui échangent ensembles de racines et de coracines, qui respectent les ordres

sur ces ensembles définis par B et B̂ et qui sont équivariants pour les actions de ΓF , le tore
T étant muni de l’action quasi-déployée associée à (B, T ). On demande que si on remplace

(B, T ) par adg(B, T ), pour g ∈ G, les isomorphismes relatifs à adg(B, T ) se déduisent de
ceux relatifs à (B, T ) par composition avec les isomorphismes déduits de adg . On fixe un
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tel groupe dual et on pose LG = Ĝ�WF , oùWF agit sur Ĝ via l’homomorphisme naturel

WF → ΓF . Pour une paire de Borel (B, T ), l’automorphisme θ de T se transporte en un

automorphisme θ̂ de T̂ : si x∗ ∈ X∗(T ) correspond à x̂∗ ∈ X∗(T̂ ), θ◦x∗ correspond à x̂∗◦θ̂.
Cet automorphisme ne dépend pas du choix de (B, T ) et se prolonge en un automorphisme

θ̂ de Ĝ qui conserve Ê et commute à l’action galoisienne. On peut considérer l’ensemble Ĝθ̂
comme un espace tordu sous Ĝ.

On a fixé en 2.1 un caractère ω de G(F ). Il convient de modifier cette donnée en fixant

plutôt un élément a du groupe de cohomologie H1(WF ;Z(Ĝ)). Selon une construction

de Langlands, cet élément détermine un caractère ω de G(F ). Si F est non-archimédien, la

correspondance a !→ ω est bijective. Mais, si F est archimédien, elle est seulement surjective

et fixer a est plus précis que fixer ω.

2.4. Données endoscopiques. Une donnée endoscopique pour (G, G̃,a) est un tripletG′ =
(G′,G′, s̃), oùG′ est un groupe réductif connexe quasi-déployé sur F , G′ est un sous-groupe
de LG et s̃ est un élément semi-simple de l’espace tordu Ĝθ̂, ces données vérifiant les condi-
tions qui suivent. Notons Ĝs̃ la composante neutre du commutant de s̃ dans Ĝ. On suppose

qu’il y a une suite exacte

1 → Ĝs̃ → G′ →WF → 1

et que cette suite est scindée, c’est-à-dire qu’il y a un homomorphisme continuWF → G′ qui
est une section de la deuxième flèche. Fixons une paire de Borel épinglée de Ĝs̃. Pour tout
w ∈ WF , fixons gw = (g(w), w) ∈ G′ tel que adg(w) ◦ w la conserve. Alors l’application

qui, à w, associe l’automorphisme adg(w) ◦w de Ĝs̃ se quotiente ou s’étend (selon que F est

archimédien ou non) en une action de ΓF sur Ĝs̃. On suppose que, muni de cette action, Ĝs̃
est un groupe dual deG′. Cela nous autorise à noter Ĝ′ ce groupe Ĝs̃. On suppose enfin qu’il
existe un cocycle a : WF → Z(Ĝ), dont la classe est a, de sorte que, pour tout (g, w) ∈ G′,
on ait l’égalité sθ̂(g)w(s)−1 = a(w)g, où on a écrit s̃ = sθ̂ avec s ∈ Ĝ.

Deux données endoscopiques G′
1 = (G′1,G′1, s̃1) et G′

2 = (G′2,G′2, s̃2) sont dites équi-
valentes s’il existe x ∈ Ĝ tel que xG′1x−1 = G′2 et xs̃1x

−1 ∈ Z(Ĝ)s̃2. On peut toujours

remplacer une donnée endoscopique par une donnée équivalente G′ = (G′,G′, s̃) de sorte
que les conditions suivantes soient vérifiées : s̃ = sθ̂, avec s ∈ T̂ ; l’action galoisienne

sur Ĝ′ conserve une paire de Borel épinglée dont la paire de Borel (B̂′, T̂ ′) sous-jacente

est (B̂ ∩ Ĝ′, T̂ θ̂,0), le deuxième groupe désignant la composante neutre du sous-groupe des

points fixes de θ̂ agissant dans T̂ . Dans la suite, on ne considère que de telles données. Soient
(B, T ), resp. (B′, T ′), une paire de Borel de G, resp. G′. Des homomorphismes

X∗(T ) � X∗(T̂ )
restriction→ X∗(T̂ θ̂,0) = X∗(T̂ ′) � X∗(T ′)

se déduit un homomorphisme ξ : T → T ′. Il se quotiente en un isomorphisme T/(1 −
θ)(T ) � T ′, où 1 − θ est l’homomorphisme t !→ tθ(t)−1 de T dans lui-même. On montre

que ξ se restreint en un homomorphisme ξ : Z(G) → Z(G′) qui ne dépend pas des choix

de paires de Borel.

On dit que la donnée G′ = (G′,G′, s̃) est elliptique si Z(Ĝ′)ΓF ,0 = Z(Ĝ)ΓF ,θ̂,0, avec

une notation similaire à celle ci-dessus.

2.5. L’espace endoscopique. Pour une paire de Borel épinglée E de G, notons Z(G̃, E)
l’ensemble des γ ∈ G̃ tels que adγ conserve E . Notons Z(G̃, E) le quotient de Z(G̃, E)
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par l’action par conjugaison de Z(G). Si E ′ est une autre paire de Borel épinglée, on choisit
g ∈ G tel que adg(E) = E ′. Alors adg définit un isomorphisme de Z(G̃, E) sur Z(G̃, E ′)
qui ne dépend pas du choix de g. On note Z(G̃) la limite inductive des Z(G̃, E), la limite

étant prise sur les paires de Borel épinglées E de G, les applications de transition étant les

isomorphismes canoniques que l’on vient de définir. Cet objet Z(G̃) étant canonique, il

récupère une action de ΓF . C’est un espace tordu sous Z(G) := Z(G)/(1− θ)(Z(G)).
Soit G′ = (G′,G′, s̃) une donnée endoscopique pour (G, G̃,a). On définit l’espace en-

doscopique G̃′ comme le quotient de G′ ×Z(G̃) par la relation d’équivalence (g′ξ(z), z̃) ≡
(g′, zz̃) pour tout z ∈ Z(G). L’action galoisienne sur G′ × Z(G̃) se descend en une action

galoisienne sur G̃′. On a des actions à droite et à gauche de G′ sur G̃′ qui proviennent des
multiplications sur la première composante de G′ × Z(G̃). Ainsi G̃′ est un espace tordu

sous G′ qui est à torsion intérieure. Remarquons que G̃′(F ) peut être vide. La construction
fournit une application naturelle Z(G̃) → Z(G̃′). Ce dernier ensemble est celui des δ ∈ G̃′
tels que adδ soit l’identité.

2.6. Correspondance endoscopique. SoitG′ = (G′,G′, s̃) une donnée endoscopique pour
(G, G̃,a). Appelons diagramme un sextuplet (ε, B′, T ′, B, T, η), où ε ∈ G̃′(F ), η ∈ G̃(F ),
(B′, T ′), resp. (B, T ), est une paire de Borel de G′, resp. G, vérifiant les conditions sui-
vantes. Les automorphismes adε et adη conservent respectivement (B′, T ′) et (B, T ) (les
éléments ε et η sont donc semi-simples). Les tores T et T ′ sont définis sur F , ainsi que l’ho-
momorphisme ξ : T → T ′ associé aux paires de Borel. Etendons les deux paires de Borel

en des paires de Borel épinglées E et E ′. On peut écrire η = te, avec t ∈ T et e ∈ Z(G̃, E).
L’élément e a une image naturelle e′ dans Z(G̃′) = Z(G̃′, E ′). On impose que ε = ξ(t)e′.
Cela ne dépend pas des choix d’épinglages.

Pour des éléments ε ∈ G̃′(F ) et η ∈ G̃(F ), on dit que ces éléments se correspondent s’il

existe un diagramme les joignant. On dit que G′ est relevant s’il existe un diagramme.

Pour un élément semi-simple η ∈ G̃, on introduit le groupe Iη = GηZ(G)
θ. Soient

η, η′ ∈ G̃(F ) deux éléments semi-simples. On dit qu’ils sont stablement conjugués s’il

existe y ∈ G tel que y−1ηy = η′ et yσ(y)−1 ∈ Iη pour tout σ ∈ ΓF . Cette définition gé-

néralise celle posée en 2.2. La classe de conjugaison stable de η est l’ensemble des éléments

stablement conjugués à η. Soient O′, resp. O, une classe de conjugaison stable d’éléments

semi-simples dans G̃′(F ), resp. G̃(F ). On dit qu’elles se correspondent s’il existe ε ∈ O′

et η ∈ O qui se correspondent (si O est formé d’éléments fortement réguliers, c’est équi-

valent à ce que ε et η se correspondent pour tous ε ∈ O′ et η ∈ O). On montre qu’à une

classe O′ correspond au plus une classe O et qu’inversement, l’ensemble des classes O′ qui
correspondent à une classe O est fini (éventuellement vide).

2.7. Transfert. Soit G′ = (G′,G′, s̃) une donnée endoscopique relevante de (G, G̃,a).
Considérons une suite exacte

1 → C1 → G′1 → G′ → 1,

où G′1 est un groupe réductif et quasi-déployé sur F et C1 est un sous-tore central induit

(c’est-à-dire que X∗(C1) possède une base permutée par l’action galoisienne). Considérons

un espace tordu G̃′1 sous G′1, à torsion intérieure et tel que G̃′1(F ) �= ∅. Supposons donnée
une application G̃′1 → G̃′ compatible avec la projection G′1 → G′. Supposons donné un

plongement ξ̂1 : G′ → LG
′
1 compatible aux projections surWF , dont la restriction à Ĝ

′ ⊂ G′
est un homomorphisme Ĝ′ → Ĝ′1 dual à la projection G

′
1 → G′. De telles données existent,
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cf. [11] 2.2. Pour (δ1, γ) ∈ G̃′1(F ) × G̃(F ), on dit que δ1 et γ se correspondent si δ et γ se

correspondent, où δ est l’image de δ1 dans G̃
′(F ). Kottwitz et Shelstad ont défini un facteur

de transfert Δ1 : G̃′1(F ) × G̃(F ) → C, cf. [11] chapitre 4 et [12]. On a Δ1(δ1, γ) �= 0 si

et seulement si δ1 et γ se correspondent et γ est fortement régulier. Pour de tels éléments,

Δ1(δ1, γ) ne dépend que de la classe de conjugaison stable de δ1 et on a la formule

Δ1(c1δ1, g
−1γg) = λ1(c1)

−1ω(g)Δ1(δ1, γ)

pour tous c1 ∈ C1(F ) et g ∈ G(F ), où λ1 est un caractère de C1(F ) déduit des données.
Notons C∞c,λ1

(G̃′1(F )) l’espace des fonctions f1 : G̃′1(F ) → C qui sont lisses, à support

compact modulo C1(F ) et telles que f1(c1δ1) = λ1(c1)
−1f1(δ1) pour tous c1 ∈ C1(F ) et

δ1 ∈ G̃′1(F ). Les définitions du paragraphe 2.2 s’adaptent à cet espace, on ajoute des λ1 en

indices. Pour f ∈ C∞c (G̃(F )) et f1 ∈ C∞c,λ1
(G̃′1(F )), on dit que f1 est un transfert de f si

on a l’égalité

S
G̃′1
λ1

(δ1, f1) =
∑
γ

Δ1(δ1, γ)[ZG(γ;F ) : Gγ(F )]
−1IG̃(γ, ω, f)

pour tout δ1 dans un ensemble ouvert dense de G̃′1(F ), où γ parcourt l’ensemble des élé-

ments de G̃(F ) correspondant à δ1, modulo conjugaison par G(F ). Pour donner un sens à

cette égalité, il faut fixer des mesures de Haar sur tous les groupes intervenant. Celles sur les

tores Gγ(F ) et G
′
1,δ1

(F ) doivent être reliées.

Théorème 2.1. Tout f ∈ C∞c (G̃(F )) admet un transfert f1 ∈ C∞c,λ1
(G̃′1(F )).

Ce théorème résulte de [17] et [20] 1.5 dans le cas non archimédien. Il est dû à Shelstad

[18] dans le cas archimédien. On montre que les choix de mesures de Haar disparaissent

si l’on introduit pour tout groupe réductif H sur F la droite complexe Mes(H(F )) portée
par une mesure de Haar sur H(F ) et si l’on considère le transfert comme une application

linéaire

I(G̃(F ), ω)⊗Mes(G(F )) → SIλ1(G̃
′
1(F ))⊗Mes(G′(F )).

Cette application dépend des données G′1, G̃
′
1, C1, ξ̂1, ainsi que du choix de Δ1. Ce facteur

n’est en effet pas uniquement déterminé, mais seulement à homothétie près. Considérons

d’autres données G′2,...,Δ2 vérifiant les mêmes hypothèses. Il s’avère que l’on peut définir

un isomorphisme canonique

C∞c,λ1
(G̃′1(F )) � C∞c,λ2

(G̃′2(F ))

qui commute au transfert. C’est-à-dire que, pour f ∈ C∞c (G̃(F )) et f1 ∈ C∞c,λ1
(G̃′1(F )),

f1 est un transfert de f si et seulement si l’image f2 de f1 par l’isomorphisme ci-dessus est

un transfert de f . On peut alors définir un espace noté C∞c (G′) qui est la limite inductive

des espaces C∞c,λ1
(G̃′1(F )), la limite étant prise sur toutes les données auxiliaires G′1,...,Δ1,

les applications de transition étant les isomorphismes ci-dessus. Cette définition pose un

problème logique, les données auxiliaires ne formant pas un ensemble, mais ce problème est

facile à résoudre. Une construction analogue permet de définir des espaces I(G′) et SI(G′).
L’application de transfert devient une application linéaire canonique

I(G̃(F ), ω)⊗Mes(G(F )) → SI(G′)⊗Mes(G′(F ))
f !→ fG

′
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2.8. Les espaces de distributions. On note Dorb(G̃(F ), ω) l’espace de formes linéaires

sur I(G̃(F ), ω) (que l’on peut relever en des formes linéaires sur C∞c (G̃(F ))) engendré par

les intégrales orbitales f !→ IG̃(γ, ω, f), cf. 2.2, quand γ décrit G̃(F ). Quand F est non-

archimédien, c’est aussi l’espace des formes linéaires qui, relevées en des formes linéaires

sur C∞c (G̃(F )), sont supportées par un nombre fini de classes de conjugaison par G(F ). Il
est plus canonique d’introduire comme en 2.7 la droite complexe Mes(G(F )) et sa duale

Mes(G(F ))∗ et de considérer les espaces I(G̃(F ), ω)⊗Mes(G(F )) et Dorb(G̃(F ), ω)⊗
Mes(G(F ))∗. Pour f ∈ I(G̃(F ), ω)⊗Mes(G(F )) et γ ∈ Dorb(G̃(F ), ω)⊗Mes(G(F ))∗,
on note IG̃(γ, f) l’évaluation de γ sur f . Supposons que G soit quasi-déployé, que G̃
soit à torsion intérieure et que a = 1. On note Dst

orb(G̃(F )) le sous-espace des éléments

de Dgéom(G̃(F )) qui sont stables, c’est-à-dire se quotientent en une forme linéaire sur

SI(G̃(F )). Pour f ∈ SI(G̃(F )) ⊗Mes(G(F )) et δ ∈ Dst
orb(G̃(F )) ⊗Mes(G(F ))∗, on

note SG̃(δ, f) l’évaluation de δ sur f .
Soit G′ = (G′,G′, s̃) une donnée endoscopique relevante de (G, G̃,a). On a défini l’es-

pace SI(G′) comme limite inductive d’espaces SIλ1(G̃
′
1(F )) construits à l’aide de données

auxiliaires. Une construction analogue permet de définir un espace Dst
orb(G

′) de formes li-

néaires sur SI(G′). Supposons F non-archimédien. Dualement à l’application de transfert

du paragraphe précédent, on a une application linéaire

transfert : Dst
orb(G

′)⊗Mes(G′(F ))∗ → Dorb(G̃(F ), ω)⊗Mes(G(F ))∗.
Le cas archimédien est plus compliqué, cf. 2.13.

2.9. Espaces de Levi. Soient P un sous-groupe parabolique de G et M une composante

de Levi de P , tous deux définis sur F (on appelleM un Levi de G). Notons M̃ l’ensemble

des γ ∈ G̃ tels que adγ conserve P et M . Supposons M̃ non vide. On appelle alors M̃

un espace de Levi de G̃. C’est un espace tordu sous M . On peut identifier le groupe dual

M̂ à un sous-groupe de Levi de Ĝ, que l’on peut supposer standard et invariant par θ̂
comme par l’action galoisienne. L’élément a ∈ H1(WF ;Z(Ĝ)) se pousse en un élément

aM ∈ H1(WF ;Z(M̂)). Soit M′ = (M ′,M′, ζ̃) une donnée endoscopique elliptique pour
(M, M̃,aM ). Dans la définition de 2.4 intervient un cocycle, ici aM : WF → Z(M̂), de
classe aM . On voit que, quitte à remplacer M′ par une donnée équivalente, on peut suppo-

ser que ce cocycle est à valeurs dans Z(Ĝ). Sa classe dans H1(WF ;Z(Ĝ)) est alors a. On
suppose qu’il en est ainsi.

Soit s̃ ∈ ζ̃Z(M̂)ΓF ,θ̂/Z(Ĝ)ΓF ,θ̂. On montre qu’il existe une donnée endoscopique

G′(s̃) = (G′(s̃),G′(s̃), s̃) de (G, G̃,a) caractérisée par les propriétés suivantes : Ĝ′(s̃) est
la composante neutre du commutant de s̃ dans Ĝ ; G′(s̃) est le sous-groupe de LG engendré

par Ĝ′(s̃) et M′ (en fait, c’est simplement le produit Ĝ′(s̃)M′ = M′Ĝ′(s̃)). Le groupeM ′

s’identifie à un Levi de G′(s̃) et M̃ ′ s’identifie conformément à un espace de Levi de G̃′(s̃).
On définit une constante iM̃ ′(G̃, G̃′(s̃)). SiG′(s̃) n’est pas elliptique, elle est nulle. SiG′(s̃)
est elliptique, on montre qu’il y a un homomorphisme naturel

Z(M̂)ΓF ,θ̂/Z(Ĝ)ΓF ,θ̂ → Z(M̂ ′)ΓF /Z(Ĝ′(s̃))ΓF .

Il est surjectif et de noyau fini. Alors iM̃ ′(G̃, G̃′(s̃)) est l’inverse du nombre d’éléments de

ce noyau.

Soient M̃ un espace de Levi de G̃ et M le Levi de G associé. On note AM le plus

grand sous-tore de Z(M) déployé sur F et AM̃ le plus grand sous-tore de AM sur lequel
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adγ agit trivialement pour tout γ ∈ M̃ (ou pour un γ ∈ M̃ , c’est équivalent). On pose

AM̃ = X∗(AM̃ ) ⊗Z R. On doit fixer pour tout espace de Levi M̃ une mesure de Haar sur

AM̃ . De même, pour toute donnée endoscopique G′ = (G′,G′, s̃) de (G, G̃,a) et pour tout
espace de Levi M̃ ′ de G̃′, on doit fixer une mesure de Haar sur AM̃ ′ . On doit imposer des

conditions de compatibilité à ces divers choix. En particulier, si G′ est elliptique, il y a un

isomorphisme naturel AG̃ � AG̃′ et on impose que les mesures se correspondent par cet

isomorphisme.

2.10. Intégrales orbitales pondérées. Les définitions de ce paragraphe sont dues (comme

bien d’autres) à Arthur. Considérons un espace de Levi M̃ de G̃. Soient γ ∈ G̃(F ) et

f ∈ C∞c (G̃(F )). Supposons d’abord Mγ = Gγ . Si ω est non trivial sur Mγ(F ), on pose

J G̃
M̃
(γ, ω, f) = 0. Supposons ω trivial surMγ(F ). On choisit des mesures de Haar sur tous

les groupes intervenant et on pose

J G̃
M̃
(γ, ω, f) = DG̃(γ)1/2

∫
Mγ(F )\G(F )

ω(g)f(g−1γg)vM̃ (g) dg

où vM̃ est un “poids” défini en [5] paragraphe 1 (à l’aide du choix d’un “bon” sous-groupe

compact maximal de G(F )).

La définition de J G̃
M̃
(γ, ω, f) quand la condition Mγ = Gγ n’est pas vérifiée est beau-

coup plus délicate. Pour a ∈ AM̃ (F ) en position générale, on a Maγ = Gaγ et le terme

J G̃
M̃
(aγ, ω, f) est défini. Plus généralement, J G̃

L̃
(aγ, ω, f) est défini pour tout espace de Levi

L̃ ⊃ M̃ . Alors J G̃
M̃
(γ, ω, f) est défini comme la limite quand a tend vers 1 d’une certaine

combinaison linéaire (à coefficients dépendant de a) de ces intégrales J G̃
L̃
(aγ, ω, f).

De nouveau, il est plus canonique de remplacer f par un élément de C∞c (G̃(F )) ⊗
Mes(G(F )). On s’aperçoit qu’alors les données de γ et d’une mesure sur Mγ(F ) suf-

fisent pour définir les termes ci-dessus. Or ces données définissent aussi une intégrale or-

bitale sur M̃(F ), c’est-à-dire un élément de Dorb(M̃(F ), ω) ⊗ Mes(M(F ))∗. Par linéa-

rité, on peut alors définir J G̃
M̃
(γ, f) pour γ ∈ Dorb(M̃(F ), ω) ⊗ Mes(M(F ))∗ et f ∈

C∞c (G̃(F ))⊗Mes(G(F )). Hormis le cas M̃ = G̃, les applications linéaires f !→ J G̃
M̃
(γ, f)

ne sont pas ω-équivariantes, c’est-à-dire ne se quotientent pas en des applications linéaires

sur I(G̃(F ), ω)⊗Mes(G(F )). Arthur a défini des avatars ω-équivariants de ces applications,
cf. [6] section 2. On n’en donnera pas la définition qui passe par la théorie des représenta-

tions (les objets obtenus ne sont plus, en fait, de nature “géométrique”). On note IG̃
M̃
(γ, f)

l’avatar ω-équivariant de J G̃
M̃
(γ, f). C’est une forme bilinéaire en γ ∈ Dorb(M̃(F ), ω) ⊗

Mes(M(F ))∗ et f ∈ I(G̃(F ), ω) ⊗Mes(G(F )). Comme on le verra en 3.3, ces formes

bilinéaires sont les objets locaux qui interviennent dans la partie géométrique de la formule

des traces.

Variante. Supposons G quasi-déployé, G̃ à torsion intérieure et a = 1. Comme on l’a

dit, pour γ tel que Mγ �= Gγ , les termes J G̃
M̃
(γ, f) sont définis par un procédé de limite.

En fait, il y a plusieurs procédés possibles. Notons η la partie semi-simple de γ et fixons un

sous-tore maximal T de Gη . Notons Σ
Gη (T ) l’ensemble des racines de T dans l’algèbre de

Lie de Gη . A toute fonction Bη : ΣGη (T ) → Q>0 vérifiant des propriétés très restrictives

(par exemple une fonction constante), on peut associer un procédé de passage à la limite. Plus

globalement, supposons que, pour tout élément semi-simple η ∈ G̃(F ), on s’est donné une
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telle fonctionBη , ces fonctions étant reliées elles-mêmes par des conditions de compatibilité.

On appelle ces données un système de fonctions B. Alors on peut définir pour tout γ ∈
M̃(F ) un terme J G̃

M̃
(γ,B, f). Il est égal à J G̃

M̃
(γ, f) si Mγ = Gγ mais ne l’est pas, en

général, si cette condition n’est pas vérifiée. Comme ci-dessus, on en déduit des avatars

invariants IG̃
M̃
(γ, B, f).

2.11. Intégrales orbitales pondérées stables. Supposons le corps F non-archimédien, G
quasi-déployé, G̃ à torsion intérieure et a = 1. On supprime les termes a et θ̂ des notations.
Soit M̃ un espace de Levi de G̃. Le tripletM = (M, LM, 1) est une donnée endoscopique de
(M, M̃) (la donnée “maximale”). Pour δ ∈ Dst

orb(M̃(F ))⊗Mes(M(F ))∗ et f ∈ I(G̃(F ))⊗
Mes(G(F )), on définit un terme SG̃

M̃
(δ, f) par la formule

SG̃
M̃
(δ, f) = IG̃

M̃
(δ, f)−

∑
s∈Z(M̂)ΓF /Z(Ĝ)ΓF ,s 
=1

iM̃ (G̃, G̃′(s))SG′(s)
M (δ, fG

′(s)),

cf. [8] section 5. Expliquons cette formule. Le premier terme IG̃
M̃
(δ, f) a déjà été défini. Pour

s intervenant dans la somme, l’hypothèse s �= 1 entraîne que dim(G′(s)SC) < dim(GSC),
où par exemple GSC est le revêtement simplement connexe du groupe dérivé de G. Suppo-
sons un instant que, dans les constructions de 2.7, on puisse choisir pour données auxiliaires

G′1(s) = G′(s), G̃′1(s) = G̃′(s). En raisonnant par récurrence sur la dimension de GSC ,

on peut supposer défini le terme S
G̃′(s)
M̃

(δ,ϕ) pour ϕ ∈ I(G̃′(s;F )) ⊗Mes(G′(F )). Un
raisonnement formel permet de s’affranchir de l’hypothèse ci-dessus et de définir en général

un terme S
G′(s)
M (δ,ϕ), pour ϕ ∈ I(G′(s))⊗Mes(G′(F )). Comme on va le voir, ce terme

est stable enϕ, c’est-à-dire ne dépend que de l’image deϕ dans SI(G′(s))⊗Mes(G′(F )).
On note fG

′(s) le transfert de f . C’est un élément de cet espace. Le terme S
G′(s̃)
M (δ, fG

′(s̃))
est donc bien défini.

La construction repose donc sur le théorème suivant.

Théorème 2.2. Pour tout δ ∈ Dst
orb(M̃(F )) ⊗ Mes(M(F ))∗, la forme linéaire

f !→ SG̃
M̃
(δ, f) est stable, c’est-à-dire qu’elle se descend en une forme linéaire sur l’espace

SI(G̃(F ))⊗Mes(G(F )).
Variante. Supposons donné un système de fonctions B comme en 2.10. Il s’en déduit

aisément pour tout s un tel système pour chaque G̃′(s). On définit alors SG̃
M̃
(δ, B, f) de la

même façon que ci-dessus. Pour ce terme, le théorème est encore vérifié.

2.12. Intégrales orbitales pondérées endoscopiques. Supposons que F est non-

archimédien, mais que (G, G̃,a) est quelconque. Considérons une donnée endoscopique

G′ = (G′,G′, s̃) de (G, G̃,a). Considérons un diagramme (ε, B′, T ′, B, T, η), où ε ∈ G̃′(F )
et η ∈ G̃(F ) sont des éléments semi-simples. Du diagramme se déduit un homomorphisme

tθ → t′ (où θ = adη). Le tore T
θ,0 est un sous-tore maximal de Gη . Notons Σ

Gη (T θ,0) et

ΣG
′
ε(T ′) les ensembles de racines de T θ,0 dans gη et de T ′ dans g′ε. On peut considérer ces

racines comme des formes linéaires sur tθ, resp. t′. Par l’isomorphisme précédent, ΣG
′
ε(T ′)

ne s’identifie pas à un sous-ensemble de ΣGη (T θ,0). Mais il existe une unique fonction

BG̃ε : ΣG
′
ε(T ′) → Q>0 de sorte que, pour tout α ∈ ΣG

′
ε(T ′), α/BG̃ε (α) soit un élément de

ΣGη (T θ,0). Plus globalement, on peut définir un système de fonctionsBG̃ sur G̃′, au sens de
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2.10, de sorte que, pour tout diagramme comme ci-dessus, la fonctionBG̃ε soit celle associée

à ce système.

Soient M̃ un espace de Levi de G̃ et M′ = (M ′,M′, ζ̃) une donnée endoscopique

elliptique et relevante pour (M, M̃,aM ). Soient δ ∈ Dst
orb(M

′) ⊗Mes(M ′(F ))∗ et f ∈
I(G̃(F ), ω)⊗Mes(G(F )). On pose

IG̃,E
M̃

(M′, δ, f) =
∑

s̃∈ζ̃Z(M̂)ΓF ,θ̂/Z(Ĝ)ΓF ,θ̂

iM̃ ′(G̃, G̃(s̃))S
G′(s̃)
M′ (δ, BG̃, fG

′(s̃)),

cf. [8] section 5. Le sens de chaque terme s’explique comme dans le paragraphe précédent.

Soit γ ∈ Dorb(M̃(F ), ω) ⊗ Mes(M(F ))∗. On montre qu’il existe une famille finie

(M′
i)i=1,...,n de données endoscopiques elliptiques et relevantes de (M, M̃,aM ) et, pour

chaque i, un élément δi ∈ Dst
orb(M

′
i)⊗Mes(M ′

i(F ))
∗, de sorte que

γ =
∑

i=1,...,n

transfert(δi).

Pour f ∈ I(G̃(F ), ω)⊗Mes(G(F )), posons
IG̃,E
M̃

(γ, f) =
∑

i=1,...,n

IG̃,E
M̃

(M′
i, δi, f).

La décomposition ci-dessus de γ n’est pas unique mais on montre que IG̃,E
M̃

(γ, f) ne dépend
pas de ce choix.

Théorème 2.3. Pour tous γ ∈ Dorb(M̃(F ), ω) ⊗ Mes(M(F ))∗ et f ∈ I(G̃(F ), ω) ⊗
Mes(G(F )), on a l’égalité

IG̃,E
M̃

(γ, f) = IG̃
M̃
(γ, f).

2.13. Le cas F archimédien. Il y a des complications techniques lorsque F est archimé-

dien. La première est que, pour obtenir des formules d’inversion satisfaisantes entre G̃ et

ses données endoscopiques, on est parfois obligé d’adjoindre au couple (G, G̃) d’autres

couples (G�, G̃�), où G� est une forme intérieure de G. On appelle K-espace la réunion

disjointe (finie) de ces espaces G̃� et, en général, on doit travailler avec de tels K-espaces,

cf. [8] section 2. Cela ne modifie guère que les notations et ce n’est d’ailleurs pas utile

dans le cas où G est quasi-déployé, G̃ est à torsion intérieure et a = 1. Une difficulté

plus sérieuse est que l’espace de distributions Dorb(G̃(F ), ω) ⊗ Mes(G(F ))∗ engendré

par les intégrales orbitales se comporte mal par endoscopie. C’est-à-dire, considérons une

donnée endoscopique G′ = (G′,G′, s̃) de (G, G̃,a), supposons pour simplifier que le re-

cours à des données auxiliaires ne soit pas nécessaire et que l’on puisse définir un trans-

fert f !→ f G̃
′
de I(G̃(F ), ω) ⊗ Mes(G(F )) dans SI(G̃′(F )) ⊗ Mes(G′(F )). Soit δ ∈

Dst
orb(G̃

′(F ))⊗Mes(G′(F ))∗. Comme le montre un exemple dû à Magdy Assem, que m’a

indiqué Kottwitz, il n’est pas vrai en général que l’application f !→ SG̃(δ, f G̃
′
) soit une com-

binaison linéaire d’intégrales orbitales. La construction de 2.12 s’évanouit si on se limite aux

distributions qui sont des intégrales orbitales. La solution que l’on a retenue est de définir un

espace de distributionsDtr−orb(G̃(F ), ω) un peu plus gros queDorb(G̃(F ), ω), qui vérifie :

- dans la situation ci-dessus, le transfert envoie Dst
tr−orb(G̃

′(F )) ⊗Mes(G′(F ))∗ dans

Dtr−orb(G̃(F ), ω) ⊗Mes(G(F ))∗ (où Dst
tr−orb(G̃

′(F )) est le sous-espace des élé-

ments de Dtr−orb(G̃′(F )) qui sont stables) ;
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- on peut définir les intégrales IG̃
M̃
(γ, f) pour γ ∈ Dtr−orb(M̃(F ), ω)⊗Mes(M(F ))∗.

On n’en donne pas la construction. En utilisant cet espace, on peut adapter les définitions

de 2.11 et de 2.12. Le théorème 2.11 reste valable. Une forme modifiée du théorème 2.12

aussi.

3. La théorie globale

3.1. Espaces tordus. Soit F un corps de nombres. On note V al(F ) l’ensemble des places

de F et, pour v ∈ V al(F ), Fv le complété de F en v. On note A l’anneau des adèles

de F . Les définitions de 2.1 et 2.3 valent en remplaçant le corps local de ce paragraphe

par le corps de nombres F . La seule différence notable est qu’au lieu de fixer un élément

a ∈ H1(WF ;Z(Ĝ)), on fixe seulement un élément a ∈ H1(WF ;Z(Ĝ))/ker
1(F ;Z(Ĝ)),

où ker1(F ;Z(Ĝ)) est le noyau fini de l’homomorphisme

H1(WF ;Z(Ĝ)) →
∏

v∈V al(F )

H1(WFv ;Z(Ĝ)).

On fixe des données (G, G̃,a). De a se déduit un homomorphisme continu ω : G(A) → C×,
trivial sur G(F ). Pour tout v ∈ V al(F ), les données (G, G̃,a) se localisent en des données

(Gv, G̃v,av) sur Fv . On fixe un espace de Levi minimal M̃0 de G̃. On noteW G̃ le quotient

du normalisateur de M̃0 dans G(F ) par son sous-groupeM0(F ). Pour tout espace de Levi
M̃ , on fixe une mesure de Haar surAM̃ = X∗(AM̃ )⊗R (cf. 2.9), ces mesures étant soumises

à certaines conditions de compatibilité.

On fixe un ensemble fini Vram ⊂ V al(F ), contenant les places archimédiennes et

tel que, pour v ∈ V al(F ) − Vram, les données (Gv, G̃v,av) soient “non ramifiées”. On

ne précisera pas ici le sens de cette expression. Elle entraîne en tout cas que, pour v ∈
V al(F ) − Vram, on peut fixer un sous-groupe compact hyperspécial Kv ⊂ G(Fv) et un
espace hyperspécial associé K̃v ⊂ G̃(Fv). On entend par là que K̃v est un sous-ensemble

non vide de G̃(Fv) et que, pour tout γ ∈ K̃v , on a les égalités K̃v = Kvγ = γKv . On fixe

de tels objets, auxquels on impose les conditions :

- pour tout v ∈ V al(F )− Vram,Kv est en “bonne position” relativement à M̃0 ;

- pour tout γ ∈ G̃(F ), γ appartient à K̃v pour presque tout v ∈ V al(F ) − Vram
(“presque tout” signifie “sauf pour un nombre fini”).

3.2. Intégrales orbitales pondérées. Soit V ⊂ V al(F ) un ensemble fini de places de F .
On pose FV =

∏
v∈V Fv . Beaucoup d’objets définis dans le cas local ont des analogues

définis sur l’anneau FV . Ils sont obtenus par produit ou tensorisation des objets sur les corps
Fv pour v ∈ V . On adapte la notation en conséquence. Par exemple, G̃(FV ) =

∏
v∈V G̃(Fv)

et I(G̃(FV ), ω) = ⊗v∈V I(G̃(Fv), ωv).
Soit M̃ un espace de Levi de G̃. Pour γ ∈ Dorb(M̃(FV ), ω) ⊗Mes(M(FV ))

∗ et f ∈
I(G̃(FV ), ω)⊗Mes(G(FV )), Arthur a défini l’intégrale pondérée ω-équivariante IG̃M̃ (γ, f),
cf. [6]. La définition ressemble à celle esquissée en 1.8, mais est de nature mi-locale, mi-

globale. Elle est locale en ce sens que γ et f sont des produits d’objets locaux. Elle est

globale parce que le poids vM̃ et le processus rendant les intégrales ω-équivariantes ne font
intervenir que des espaces de Levi définis sur F . Les termes obtenus sont toutefois reliés à
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ceux de 1.8 par la relation suivante. On suppose γ = ⊗v∈V γv , f = ⊗v∈V fv . D’après [6]
théorème 8.1, on a

IG̃
M̃
(γ, f) =

∑
L̃V ∈L(M̃V )

dG̃
M̃V

(M̃, L̃V )
∏
v∈V

IL̃
v

M̃v
(γv, fv,L̃v ) (3.1)

Expliquons cette formule. On a noté L(M̃V ) l’ensemble des familles L̃V = (L̃v)v∈V telles

que, pour tout v ∈ V , L̃v est un espace de Levi de G̃v contenant M̃v . Pour tout v, fv,L̃v est

l’image de fv dans I(L̃
v(Fv), ωv) par l’application “terme constant” usuelle dans la théorie

de l’induction. Soit L̃V ∈ L(M̃V ). On introduit l’espace AG̃
M̃V

= ⊕v∈V (AM̃v
/AG̃) et son

sous-espace AL̃V = ⊕v∈V (AL̃v/AG̃). L’espace AG̃
M̃

= AM̃/AG̃ se plonge diagonalement

dans AG̃
M̃V

, on note ΔV (AG̃
M̃
) son image. Le terme dG̃

M̃V
(M̃, L̃V ) est nul sauf si

AG̃
M̃V

= ΔV (AG̃
M̃
)⊕ AG̃

L̃V .

Si cette égalité est vérifiée, dG̃
M̃V

(M̃, L̃V ) est le rapport entre les mesures sur le membre de

droite et celle sur le membre de gauche (ces mesures ont été fixées en 2.9 et 3.1).

3.3. La partie géométrique de la formule des traces tordue ω-équivariante. Pour tout

v ∈ V al(F )−Vram, notons 1K̃v
la fonction caractéristique de K̃v . On noteC

∞
c (G̃(A)) l’es-

pace de fonctions sur G̃(A) engendré par les fonctions f=⊗v∈V al(F )fv , où fv∈C∞c (G̃(Fv))
pour tout v et fv = 1K̃v

pour presque tout v �∈ Vram. Primitivement, la formule des traces

tordue est une égalité J G̃géom(f, ω) = J G̃spec(f, ω) pour f ∈ C∞c (G̃(A)), les deux termes

dépendant d’une mesure de Haar sur G̃(A). Elle a été établie dans [10], voir [15] pour

une rédaction plus complète. Les normalisations différant selon les auteurs, nous utilisons

précisément celle de [7]. On ne considère ici que la partie géométrique de cette formule.

Comme toujours, nous préférons supprimer le choix de la mesure de Haar et remplacer f par

f ∈ C∞c (G̃(A)) ⊗Mes(G(A)). On obtient une expression J G̃géom(f , ω). Comme en 2.10,

elle n’est pas ω-équivariante en f . Fixons un ensemble fini V ⊂ V al(F ) contenant Vram.

On identifie C∞c (G̃(FV )) à un sous-espace de C
∞
c (G̃(A)) en identifiant fV ∈ C∞c (G̃(FV ))

à fV ⊗ (⊗v 
∈V 1K̃v
). Pour v �∈ V , le groupe G(Fv) est muni d’une mesure “canonique” pour

laquelle la masse totale de Kv vaut 1. On identifieMes(G(FV )) àMes(G(A)) en tensori-

sant une mesure sur G(FV ) par le produit de ces mesures canoniques pour v �∈ V . On sait

alors définir J G̃géom(fV , ω) pour fV ∈ C∞c (G̃(FV ))⊗Mes(G(FV )). Arthur a transformé ce

terme en une expression IG̃géom(fV , ω) qui est ω-équivariante, c’est-à-dire qui se descend en

une forme linéaire sur I(G̃(FV ), ω)⊗Mes(G(FV )), cf. [7] et [1] paragraphe 2. Décrivons
cette expression.

Notons G̃ss l’ensemble des éléments semi-simples de G̃ et G̃ss(F )/conj l’ensemble

des classes de conjugaison par G(F ) dans G̃ss(F ) (une notation analogue sera utilisée plus

loin avec F remplacé par FV ). Pour O ∈ G̃ss(F )/conj, on définit une certaine distribution

AG̃(V,O, ω) ∈ Dorb(G̃(FV ), ω)⊗Mes(G(FV ))∗, qui vérifie les conditions suivantes
(i) c’est une combinaison linéaire finie d’intégrales orbitales associées aux images dans

G̃(FV ) d’éléments γ ∈ G̃(F ) dont la partie semi-simple appartient à O ;



Stabilisation de la partie géométrique de la formule des traces tordue 499

(ii) AG̃(V,O, ω) = 0 sauf si, pour tout v �∈ V , la classe de conjugaison dans G̃(Fv)
engendrée par O coupe K̃v ;

(iii) AG̃(V,O, ω) = 0 sauf si ω est trivial sur Z(G;A)θ et sur Z(Gγ ;A) pour tout γ ∈ O.

On note L(M̃0) l’ensemble des espaces de Levi de G̃ contenant M̃0. Pour une fonction

fV ∈ I(G̃(FV ), ω)⊗Mes(G(FV )), on a alors l’égalité

IG̃géom(fV , ω) =
∑

M̃∈L(M̃0)

|W M̃ ||W G̃|−1
∑

O∈M̃ss(F )/conj

IG̃
M̃
(AM̃ (V,O, ω), fV ) (3.2)

Pour fV fixé, il n’y a qu’un nombre fini de termes non nuls. Soulignons que IG̃géom(fV , ω) et

les distributions AM̃ (V,O, ω) dépendent des espaces K̃v pour v �∈ V , bien que ceux-ci ne

figurent pas dans la notation.

Donnons quelques précisions sur la distributionAG̃(V,O, ω). Elle dépend de la classe de
conjugaison O ∈ G̃ss(F )/conj et de l’ensemble fini V ⊃ Vram. Pour O fixé, on peut faire

varier V . Pour V ⊂ V ′, AG̃(V,O, ω) et AG̃(V ′,O, ω) sont reliés par une formule qui fait

intervenir les intégrales orbitales pondérées (non ω-équivariantes) des fonctions 1K̃v
pour

v ∈ V ′ − V . Considérons le cas particulier d’une classe O formée d’éléments fortement

réguliers et elliptiques (c’est-à-dire que O ∩ M̃ = ∅ pour tout espace de Levi M̃ 
 G̃).
Supposons que cette classe vérifie les conditions (ii) et (iii). Fixons γ ∈ O. Pour v �∈ V , on
peut d’après (ii) fixer xv ∈ G(Fv) tel que x−1

v γxv ∈ K̃v . On voit que l’on peut supposer

xv = 1 pour presque tout v. Notons x l’élement de G(A) dont les composantes dans G(Fv)
sont xv si v �∈ V et 1 si v ∈ V . Fixons aussi une mesure de Haar sur Gγ(A). Par un procédé
habituel, on définit un sous-groupe AG̃ ⊂ AG̃(A) isomorphe à AG̃ (si F = Q, AG̃ est la

composante neutre de AG̃(R) pour la topologie réelle). Supposons V “assez grand”, cette

condition dépendant de O. De même que ci-dessus, la mesure sur Gγ(A) s’identifie à une

mesure sur Gγ(FV ). Soit dg une mesure de Haar sur G(FV ) et fV ∈ C∞c (G̃(FV )). Pour V
assez grand, on a l’égalité

IG̃(AG̃(V,O, ω), fV ⊗ dg) = [ZG(γ;F ) : Gγ(F )]
−1ω(x)mes(AG̃Gγ(F )\Gγ(A))∫

Gγ(FV )\G(FV )

ω(y)fV (y
−1γy) dy,

où dy se déduit des deux mesures fixées.

On a une application naturelle G̃ss(F )/conj → G̃ss(FV )/conj. Pour une classe de

conjugaison OV ∈ G̃ss(FV )/conj, posons

AG̃(OV , ω) =
∑

O∈G̃ss(F )/conj,O�→OV

AG̃(V,O, ω).

On peut reformuler l’égalité (3.2) en

IG̃géom(fV , ω) =
∑

M̃∈L(M̃0)

|W M̃ ||W G̃|−1
∑

OV ∈M̃ss(FV )/conj

IG̃
M̃
(AM̃ (OV , ω), fV ).
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3.4. Endoscopie. La notion de donnée endoscopique pour (G, G̃,a) se définit comme en

2.4. La seule différence est que l’on impose que le cocycle a de ce paragraphe a pour image

la classe a dans H1(WF ;Z(Ĝ))/ker
1(F ;Z(Ĝ)). Soit G′ = (G′,G′, s̃) une telle donnée

endoscopique. On dit encore qu’elle est elliptique si Z(Ĝ′)ΓF ,0 = Z(Ĝ)ΓF ,θ̂,0. Il est asso-

cié à G′ un espace tordu G̃′ comme en 2.5. On définit une constante i(G̃, G̃′) de la façon

suivante. Elle est nulle siG′ n’est pas elliptique. SupposonsG′ elliptique. Notons Aut(G′)
le groupe des x ∈ Ĝ tels que xG′x−1 = G′ et xs̃x−1 ∈ Z(Ĝ)s̃. Notons

τ(G) = |π0(Z(Ĝ)ΓF )||ker1(F ;Z(Ĝ))|−1,

où π0 désigne le groupe des composantes connexes. On pose

i(G̃, G̃′) = |det((1− θ)|AG/AG̃
)|−1|π0(Aut(G′))|−1τ(G)τ(G′)−1

|π0(Z(Ĝ)ΓF ,0 ∩ Z(Ĝ′))|.
Pour tout v ∈ V al(F ), la donnée se localise en une donnée G′

v = (G′v,G′v, s̃) de

(Gv, G̃v,av), où av est l’image de a dans H1(WFv ;Z(Ĝ)). On dit que G′ est relevante
si G̃′(F ) �= ∅ et si, pour toute place v ∈ V al(F ), G′

v est relevante. Soit V un ensemble

fini de places de F contenant Vram. On dit que G′ est non ramifiée hors de V si le sous-

groupe d’inertie Iv ⊂ WFv
(qui est un sous-groupe de LGv) est contenu dans G′v . Si G′

est non ramifiée hors de V , on montre que les conditions imposées à Vram (que l’on n’a

pas explicitées) valent aussi pour l’ensemble de places V et pour le couple (G′, G̃′) (ou, si
l’on préfère, pour le triplet obtenu en complétant ce couple par le cocycle a′ trivial). Pour
v ∈ V al(F ) − V , le choix que l’on a fait de l’espace hyperspécial K̃v détermine un espace

hyperspécial K̃ ′
v ⊂ G̃′(Fv). Plus exactement, cet espace n’est déterminé qu’à conjugaison

près par G′AD(Fv), où G
′
AD est le groupe adjoint de G′ mais les constructions ultérieures

seront insensibles à une telle conjugaison. On fixe ainsi une famille (K̃ ′
v)v 
∈V , à laquelle on

impose, comme il est loisible, la même condition de compatibilité globale qu’en 3.1.

Considérons une donnée endoscopique G′ = (G′,G′, s̃) relevante et non ramifiée hors

de V . On fixe des données auxiliaires G′1, G̃
′
1, C1 et ξ̂1 comme en 2.7, ces données étant

maintenant définies sur F . On leur impose, comme il est loisible, certaines conditions de

non ramification hors de V . Ces conditions impliquent que l’on peut fixer pour tout v �∈ V
un espace hyperspécial K̃ ′

1,v ⊂ G̃′1(Fv) qui se projette sur K̃ ′
v . On impose à ces données la

même condition de compatibilité globale qu’en 3.1. En tensorisant les constructions de 2.7

sur les places v ∈ V , on définit des espaces C∞c,λ1
(G̃′1(FV )), Iλ1

(G̃′1(FV )) etc..., ainsi que

leurs avatars canoniquesC∞c (G′
V ), I(G

′
V ) etc... Pour identifier par exempleC∞c,λ1

(G̃′1(FV ))
à C∞c (G′

V ), on doit choisir pour tout v ∈ V un facteur de transfert Δ1,v . En fait, l’identi-

fication ne dépend que du produit Δ1,V = ⊗v∈VΔ1,v . Un point important est que le choix

que l’on vient de faire des espaces K̃ ′
1,v pour v �∈ V détermine un tel facteur Δ1,V . En

effet, pour tout v �∈ V , le choix de K̃ ′
1,v détermine un facteur de transfert Δ1,v . D’autre

part, on peut définir canoniquement un facteur de transfert global, cf. [11] lemme 7.3A, [14]

paragraphe IV.2. C’est-à-dire, considérons des éléments δ1 = (δ1,v)v∈V al(F ) ∈ G̃′1(A) et
γ = (γv)v∈V al(F ) ∈ G̃(A). Supposons que, pour tout v, γv soit fortement régulier et que

δ1,v et γv se correspondent. Imposons de plus à δ et γ une certaine condition de non ramifi-

cation (impliquant que Δ1,v(δ1,v, γv) = 1 pour presque tout v �∈ V ). Alors on peut définir

un facteur globalΔ1(δ1, γ). On normalise le facteurΔ1,V de sorte que, pour de tels δ1 et γ,
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on ait l’égalité

Δ1(δ1, γ) = Δ1,V (δ1,V , γV )
∏
v 
∈V

Δ1,v(δ1,v, γv),

où δ1,V = (δ1,v)v∈V et γV = (γv)v∈V . SoitO′
V ∈ G̃′ss(FV )/conj. Les constructions de 3.3

s’adaptent et on définit un élément A
G̃′1
λ1

(O′
V ). C’est une combinaison linéaire d’intégrales

orbitales vues comme des formes linéaires sur Iλ1
(G̃′1(FV )) ⊗Mes(G′(FV )). A l’aide du

facteurΔ1,V ci-dessus, on l’identifie à un élément AG′(O′
V ) ∈ Dorb(G

′)⊗Mes(G′(F ))∗.
Le terme A

G̃′1
λ1

(O′
V ) dépend des choix des K̃

′
1,v mais le facteurΔ1,V aussi. On voit alors que

AG′(O′
V ) ne dépend plus que des K̃

′
v . On montre qu’il ne dépend pas du choix des données

auxiliaires G′1, . . . , ξ̂1.
L’ensemble des classes d’équivalence de données endoscopiques elliptiques, relevantes

et non ramifiées hors de V est fini, on en fixe un ensemble de représentants E(G̃,a, V ).

3.5. Intégrales orbitales pondérées stables. On suppose G quasi-déployé, G̃ à torsion

intérieure et a = 1. Soient M̃ un espace de Levi de G̃ et V un ensemble fini de places

de F contenant Vram. Pour une place archimédienne v de F , on introduit les espaces de

distributions Dtr−orb(M̃(Fv)) et D
st
tr−orb(M̃(Fv)) évoqués en 2.13. Pour une place v non-

archimédienne, on définit ces espaces comme étant simplement égaux àDorb(M̃(Fv)), resp.
Dst
orb(M̃(Fv)). On définit les produits tensoriels de ces espaces sur les places v ∈ V , que

l’on noteDtr−orb(M̃(FV )) etD
st
tr−orb(M̃(FV )). La définition des intégrales orbitales pon-

dérées invariantes IG̃
M̃
(γV , fV ) de 3.2 s’étend au cas où γV appartient àDtr−orb(M̃(FV ))⊗

Mes(M(FV ))
∗. Cela étant, pour

δV ∈ Dst
tr−orb(M̃(FV ))⊗Mes(M(FV ))

∗ et fV ∈ I(G̃(FV ))⊗Mes(G(FV )),

on définit l’intégrale orbitale pondérée stable par la même formule qu’en 2.11 :

SG̃
M̃
(δV , fV ) = I

G̃
M̃
(δV , fV )−

∑
s∈Z(M̂)ΓF /Z(Ĝ)ΓF ,s 
=1

iM̃ (G̃, G̃′(s))SG′(s)
M (δV , f

G′(s)
V ).

Comme dans ce paragraphe, cette définition n’est légitime que grâce au résultat suivant.

Proposition 3.1. Pour tout élément δV ∈ Dst
tr−orb(M̃(FV )) ⊗Mes(M(FV ))

∗, la forme
linéaire fV !→ SG̃

M̃
(δV , fV ) est stable, c’est-à-dire se descend en une forme linéaire sur

SI(G̃(FV ))⊗Mes(G(FV )).
Cela se déduit du théorème 2.11 car on montre que les intégrales SG̃

M̃
(δV , fV ) s’ex-

priment à l’aide des intégrales locales de ce paragraphe par une formule parallèle à (3.1).

3.6. Coefficients stables. On suppose G quasi-déployé, G̃ à torsion intérieure et a = 1.
Soit V un ensemble fini de places de F contenant Vram. Pour OV ∈ G̃ss(FV )/conj, on a

défini en 3.3 la distribution AG̃(OV ) ∈ Dorb(G̃(FV )) ⊗Mes(G(FV ))∗. Pour une réunion
finie OV = �i=1,...,nOV,i de telles classes, on pose AG̃(OV ) =

∑
i=1,...,nA

G̃(OV,i). No-

tons G̃ss(FV )/st− conj l’ensemble des classes de conjugaison stable dans G̃ss(FV ). Pour
un élément OV de cet ensemble, ou pour une réunion finie de telles classes, on définit un
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élément SAG̃(OV ) ∈ Dtr−orb(G̃(FV ))⊗Mes(G(FV ))∗ par la formule de récurrence

SAG̃(OV ) = A
G̃(OV )−

∑
G′∈E(G̃,a,V ),G′ 
=G

i(G̃, G̃′)transfert(SAG′(OG̃′
V )).

Expliquons cette formule. Pour G′ ∈ E(G̃,a, V ), on note OG̃′
V la réunion des classes de

conjugaison stable dans G̃′ss(FV ) correspondant à une classe de conjugaison stable dans

G̃(FV ) contenue dansOV . Cette réunion est finie. SiG
′ �= G, fixons des données auxiliaires

G′1,...,(K̃
′
1,v)v 
∈V comme en 3.4. On peut supposer par récurrence sur dim(GSC) que l’on

a défini la variante SA
G̃′1
λ1

(OG̃′
V ) de notre distribution. Par le même procédé qu’en 3.4, elle

s’identifie à un élément SAG′(OG̃′
V ) ∈ Dtr−orb(G′

V ) ⊗Mes(G′(FV ))∗. On montre que

cette distribution ne dépend plus des choix des espaces K̃ ′
v pour v �∈ V , mais seulement des

K̃v , lesquels sont fixés une fois pour toutes. Le théorème suivant montre que ces distributions

sont stables, on peut donc les transférer.

Théorème 3.2. Pour tout OV ∈ G̃ss(FV )/st− conj, la distribution SAG̃(OV ) est stable.

On voit par récurrence que la distribution SAG̃(OV ) est supportée par les éléments de

G̃(FV ) dont la partie semi-simple appartient à OV .

3.7. La formule stable. On suppose G quasi-déployé, G̃ à torsion intérieure et a = 1. Soit
V un ensemble fini de places de F contenant Vram. Pour fV ∈ SI(G̃(FV ))⊗Mes(G(FV )),
on pose

SG̃géom(fV ) =
∑

M̃∈L(M̃0)

|W M̃ ||W G̃|−1
∑

OV ∈M̃ss(FV )/st−conj

SG̃
M̃
(SAM̃ (OV ), fV ).

On montre que, pour fV fixé, il n’y a dans cette somme qu’un nombre fini de termes non

nuls.

3.8. Le théorème principal. Le triplet (G, G̃,a) est ici quelconque. Soit V un ensemble

fini de places contenant Vram.

Théorème 3.3. Pour tout fV ∈ I(G̃(FV ), ω)⊗Mes(G(FV )), on a l’égalité

Igéom(fV , ω) =
∑

G′∈E(G̃,a,V )

i(G̃, G̃′)SG′
géom(fG

′
V ).

La démonstration de ce théorème est très longue. En particulier, on doit utiliser la partie

spectrale de la formule des traces, dont on n’a pas du tout parlé ici.

3.9. Endoscopie non standard. A plusieurs reprises, on utilise dans les preuves la méthode

de descente d’Harish-Chandra. Dans le cas tordu, cette méthode appliquée à l’endoscopie

fait apparaître des “triplets endoscopiques non standard”. Plusieurs de nos assertions ont des

contreparties pour de tels triplets. Indiquons-en une. Considérons deux groupes réductifs

connexes G1 et G2 définis et quasi-déployés sur F . On les suppose simplement connexes.

Pour i = 1, 2, on fixe une paire de Borel (Bi, Ti) de Gi définie sur F , on note Σ(Ti)
l’ensemble des racines de Ti dans gi et Σ̌(Ti) l’ensemble des coracines. On suppose donnés
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un isomorphisme j : t1 → t2 et une bijection τ : Σ(T2) → Σ(T1) équivariants pour les
actions galoisiennes. Il se déduit de τ une bijection τ̌ : Σ̌(T1) → Σ̌(T2) entre ensembles de

coracines. On suppose que, pour tout α̌ ∈ Σ̌(T1), j(α̌) est un multiple rationnel positif de

τ̌(α̌) et que, pour tout α ∈ Σ(T2), l’application duale j∗ envoie α sur un multiple rationnel

positif de τ(α). L’exemple le plus frappant est le cas où G1 = Sp(2n), G2 = Spin(2n+1)
et j envoie une coracine courte sur une coracine longue et une coracine longue sur deux fois
une coracine courte .

Soit v ∈ V al(F ). L’isomorphisme j permet de définir une correspondance bijective

entre classes de conjugaison stable semi-simples dans les algèbres de Lie g1(Fv) et g2(Fv).
On peut alors définir un transfert similaire à celui de 2.7, mais au niveau des algèbres de

Lie. L’analogue du “facteur de transfert” vaut 1 sur deux éléments qui se correspondent. Par

l’exponentielle, on peut remonter le transfert aux groupes si on se limite à des fonctions ou

des distributions à support assez proche de l’élément neutre. Pour i = 1, 2, on s’intéresse

particulièrement à l’espace des distributions stables sur G̃i(Fv) qui sont à support unipotent.
On le noteDst

unip(G̃i(Fv)). Pour tout ensemble fini V de places de F , le transfert se restreint
en un isomorphisme

Dst
unip(G̃1(FV ))⊗Mes(G1(FV ))

∗ � Dst
unip(G̃2(FV ))⊗Mes(G2(FV ))

∗ (3.3)

Soit V un ensemble fini de places de V al(F ), contenant les places archimédiennes et assez

grand pour que, pour v �∈ V , le triplet localisé (G1,v, G2,v, j) vérifie une certaine condition
de non ramification. Pour i = 1, 2, on applique les définitions des paragraphes précédents en
prenant G = Gi, G̃ = Gi et a = 1. Ainsi, pour OV ∈ Gi,ss(FV )/st − conj, on dispose

d’une distribution SAGi(OV ). Il s’avère qu’elle ne dépend pas des choix des sous-groupes

hyperspéciaux hors de V (ni des espaces hyperspéciaux, qui, ici, sont forcément égaux à ces

groupes). Pour OV = {1}, on note plutôt SAGi
unip(V ) cette distribution. C’est un élément de

Dst
unip(G̃i(FV ))⊗Mes(Gi(FV ))∗.

Théorème 3.4. Les éléments SAG1
unip(V ) et SAG2

unip(V ) se correspondent par l’isomor-
phisme (3.3).
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Abstract. We describe mean value estimates for exponential sums of degree exceeding 2 that approach

those conjectured to be best possible. The vehicle for this recent progress is the efficient congruencing
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1. Introduction

Although pivotal to the development of vast swathes of analytic number theory in the twentieth

century, the differencing methods devised by Weyl [54] and van der Corput [15] are in many

respects unsatisfactory. In particular, they improve on the trivial estimate for an exponential

sum by a margin exponentially small in terms of its degree. The method introduced by Vino-

gradov [50, 51] in 1935, based on mean values, is rightly celebrated as a great leap forward,

replacing this exponentially weak margin by one polynomial in the degree. Nonetheless,

Vinogradov’s methods yield bounds removed from the sharpest conjectured to hold by a

margin at least logarithmic in the degree, a defect that has endured for six decades since the

era in which these ideas were comprehensively analysed. In this report, we describe progress

since 2010 that eliminates this defect, placing us within a whisker of establishing in full the

main conjecture of the subject.

When k, s ∈ N and α ∈ Rk, consider the exponential sum

fk(α;X) =
∑

1≤x≤X
e(α1x+ . . .+ αkx

k) (1.1)

and the mean value

Js,k(X) =

∮
|fk(α;X)|2s dα. (1.2)

Here, as usual, we write e(z) for e2πiz . Also, to save clutter, when G : [0, 1)k → C is

integrable, we write
∮
G(α) dα =

∫
[0,1]k

G(α) dα. By orthogonality, one sees that Js,k(X)

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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counts the number of integral solutions of the system of equations

xj1 + . . .+ x
j
s = y

j
1 + . . .+ y

j
s (1 ≤ j ≤ k), (1.3)

with 1 ≤ xi, yi ≤ X (1 ≤ i ≤ s). Upper bounds for Js,k(X) are known collectively

as Vinogradov’s mean value theorem. We now focus discussion by recording the classical

version of this theorem that emerged from the first half-century of refinements following

Vinogradov’s seminal paper [50] (see in particular [27, 33, 51]), culminating in the papers of

Karatsuba [29] and Stechkin [42].

Theorem 1.1. There is an absolute constant A > 0 having the property that, whenever s, r
and k are natural numbers with s ≥ rk, then

Js,k(X) ≤ C(k, r)X2s−k(k+1)/2+Δs,k , (1.4)

where Δs,k = 1
2k

2(1− 1/k)r and C(k, r) = min{kAsk, kAk3}.
We will not concern ourselves with the dependence on s and k of constants such as

C(k, r) appearing in bounds for Js,k(X) and its allies (but see [57] for improvements in

this direction). Although significant in applications to the zero-free region of the Riemann

zeta function, this is not relevant to those central to this paper. Thus, implicit constants in

the notation of Landau and Vinogradov will depend at most on s, k and ε, unless otherwise
indicated1.

When k ≥ 2, the exponent Δs,k of Theorem 1.1 satisfies Δs,k ≤ k2e−s/k
2

, and so

Δs,k = O(1/ log k) for s ≥ k2(2 log k + log log k). One can refine (1.4) to obtain an

asymptotic formula when s is slightly larger (see [2, Theorem 3.9], for example).

Theorem 1.2. Let k, s ∈ N and suppose that s ≥ k2(2 log k + log log k + 5). Then there
exists a positive number C(s, k) with Js,k(X) ∼ C(s, k)X2s−k(k+1)/2.

With these theorems in hand, we consider the motivation for investigating the sums

fk(α;X). Many number-theoretic functions may be estimated in terms of such sums. Thus,

when Re(s) is close to 1, estimates for the Riemann zeta function ζ(s) stem from partial

summation and Taylor expansions for log(1 + x/N), since

∑
N<n≤N+X

n−it = N−it
∑

1≤x≤X
e
(
− t

2π
log(1 + x/N)

)
.

On the other hand, specialisations of fk(α;X) arise naturally in applications of interest.

Indeed, work on the asymptotic formula in Waring’s problem depends on the sum obtained

by setting α1 = . . . = αk−1 = 0 and αk = β, namely

gk(β;X) =
∑

1≤x≤X
e(βxk). (1.5)

1Given a complex-valued function f(t) and positive function g(t), we use Vinogradov’s notation f(t) � g(t), or
Landau’s notation f(t) = O(g(t)), to mean that there is a positive number C for which f(t) ≤ Cg(t) for all large
enough values of t. Also, we write f(t) � g(t) when g(t) � f(t). If C depends on certain parameters, then we

indicate this by appending these as subscripts to the notation. Also, we write f(t) = o(g(t)) when f(t)/g(t) → 0
as t → ∞. Finally, we use the convention that whenever ε occurs in a statement, then the statement holds for each

fixed ε > 0.
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Writing Rs,k(n) for the number of representations of n as the sum of s positive integral kth
powers, one finds by orthogonality that

Rs,k(n) =

∫ 1

0

gk(β;n
1/k)se(−βn) dβ.

The uninitiated reader will wonder why one should focus on estimates for the mean value

Js,k(X) when many applications depend on pointwise estimates for fk(α;X). Vinogradov
observed that mean value estimates suffice to obtain useful pointwise estimates for fk(α;X).
To see why this is the case, note first that |fk(β;X)| differs little from |fk(α;X)| provided
that the latter is large, and in addition |βj − αj | is rather smaller than X−j for each j, so that

β lies in a small neighbourhood of α having measure of orderX−k(k+1)/2. Second, one sees

from (1.1) that for each integer h the sum fk(α;X) may be rewritten in the form

fk(α;X) =
∑

1−h≤x≤X−h
e
(
α1(x+ h) + . . .+ αk(x+ h)

k
)
.

By estimating the tails of this sum and applying the binomial theorem to identify the coefficient

of each monomial xj , one obtains new k-tuples α(h) for which fk(α;X) = fk(α
(h);X) +

O(|h|). These ideas combine to show that one large value |fk(α;X)| generates a collection
of neighbourhoods B(h), with the property that whenever β ∈ B(h), then |fk(β;X)| is
almost as large as |fk(α;X)|. Given N disjoint such neighbourhoods over which to integrate

|fk(β;X)|2s, non-trivial estimates for |fk(α;X)| follow from the relation

NX−k(k+1)/2|fk(α;X)|2s 2 Js,k(X).

This circle of ideas leads to the following theorem (see [11] and [47, Theorem 5.2]).

Theorem 1.3. Let k be an integer with k ≥ 2, and let α ∈ Rk. Suppose that there exists a
natural number j with 2 ≤ j ≤ k such that, for some a ∈ Z and q ∈ N with (a, q) = 1, one
has |αj − a/q| ≤ q−2. Then one has

fk(α;X) 2
(
Xk(k−1)/2Js,k−1(2X)(q−1 +X−1 + qX−j)

)1/(2s)
log(2X).

To illustrate the power of this theorem, suppose that k is large, and β satisfies the

condition that, whenever b ∈ Z and q ∈ N satisfy (b, q) = 1 and |qβ − b| ≤ X1−k, then
q > X . By substituting the conclusion of Theorem 1.1 into Theorem 1.3, one finds that

gk(β;X) 2 X1−σ(k), where σ(k)−1 = (4 + o(1))k2 log k.

2. Translation invariance and a congruencing idea

A key feature of the system of equations (1.3) is translation-dilation invariance. Thus, the
pair x,y is an integral solution of the system

xj1 + . . .+ x
j
t = y

j
1 + . . .+ y

j
t (1 ≤ j ≤ k), (2.1)

if and only if, for any ξ ∈ Z and q ∈ N, the pair x,y satisfies the system

(qx1 + ξ)
j + . . .+ (qxt + ξ)

j = (qy1 + ξ)
j + . . .+ (qyt + ξ)

j (1 ≤ j ≤ k). (2.2)
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This property ensures that Jt(X) is homogeneous with respect to restriction to arithmetic

progressions2. LetM = Xθ be a parameter to be chosen later, consider a set P of *k2/θ+
primes p withM < p ≤ 2M , and fix some p ∈ P . Also, define

fc(α; ξ) =
∑

1≤x≤X
x≡ξ (mod pc)

e(α1x+ . . .+ αkx
k).

Since
∮ |fc(α; ξ)|2t dα counts the number of solutions of (2.2), with q = pc, for which3

(1− ξ)/q ≤ x,y ≤ (X − ξ)/q, by translation-dilation invariance, it counts solutions of (2.1)
under the same conditions on x and y. Thus

max
1≤ξ≤pc

∮
|fc(α; ξ)|2t dα 2 1 + Jt(X/M

c). (2.3)

Translation invariance also generates useful auxiliary congruences. Let t = s+ k, and
consider the solutions of (2.1) with 1 ≤ x,y ≤ X . The number of solutions T0 in which

xi = xj for some 1 ≤ i < j ≤ k may be bounded via orthogonality and Hölder’s inequality,

giving T0 2 Jt(X)1−1/(2t). Given a conditioned solution with xi �= xj for 1 ≤ i < j ≤ k,
there exists a prime p ∈ P with xi �≡ xj (mod p) for 1 ≤ i < j ≤ k. Let Ξc(ξ) denote
the set of k-tuples (ξ1, . . . , ξk), with 1 ≤ ξ ≤ pc+1 and ξ ≡ ξ (mod pc), and satisfying the
property that ξi �≡ ξj (mod pc+1) for i �= j. Also, put

Fc(α; ξ) =
∑

ξ∈Ξc(ξ)

fc+1(α; ξ1) . . . fc+1(α; ξk),

and define

Ia,b(X) = max
ξ,η

∮
|Fa(α; ξ)2fb(α; η)2s| dα. (2.4)

Then for some p ∈ P , which we now fix, the number T1 of conditioned solutions satisfies

T1 2
∮

F0(α; 0)f(α;X)sf(−α;X)s+k dα. (2.5)

Thus, by Schwarz’s inequality and orthogonality, one has T1 2 I0,0(X)1/2Jt(X)1/2. By
combining the above estimates for T0 and T1, we derive the upper bound

Jt(X) 2 Jt(X)1−1/(2t) + I0,0(X)1/2Jt(X)1/2,

whence Jt(X) 2 I0,0(X).
By Hölder’s inequality, one finds that

|f(α;X)|2s =
∣∣∣∣
p∑

η=1

∑
1≤x≤X

x≡η (mod p)

e(α1x+ . . .+ αkx
k)

∣∣∣∣
2s

≤ p2s−1

p∑
η=1

|f1(α; η)|2s.

2In this section we consider k to be fixed, and hence we drop mention of k from our notations.

3Here we make use of slightly unconventional vector notation. Thus, we write z ≡ ξ (mod q) when zi ≡
ξ (mod q) for 1 ≤ i ≤ t, or a ≤ z ≤ b when a ≤ zi ≤ b (1 ≤ i ≤ t), and so on.
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Thus, on noting the trivial relation f(α;X) = f0(α; η), one sees from (2.4) that

Jt(X) 2 I0,0(X) 2M2smax
ξ,η

∮
|F0(α; ξ)2f1(α; η)2s| dα =M2sI0,1(X). (2.6)

The mean value underlying I0,1(X) counts the number of integral solutions of

k∑
i=1

(xji − yji ) =
s∑
l=1

(
(pul + η)

j − (pvl + η)
j
)

(1 ≤ j ≤ k),

with 1 ≤ x,y ≤ X and 1 ≤ pu+ η, pv + η ≤ X , in which xi �≡ xj (mod p) for i �= j, and
similarly for y. Translation invariance leads from these equations to

k∑
i=1

(
(xi − η)j − (yi − η)j

)
= pj

s∑
l=1

(ujl − vjl ) (1 ≤ j ≤ k),

and hence

(x1 − η)j + . . .+(xk − η)j ≡ (y1 − η)j + . . .+(yk − η)j (mod pj) (1 ≤ j ≤ k). (2.7)
Since the xi are distinct modulo p, Hensel’s lemma shows that, for each fixed choice of y,
there are at most k!pk(k−1)/2 choices for x (mod pk) satisfying (2.7). An application of

Cauchy’s inequality shows from here that

I0,1(X) 2Mk(k−1)/2 max
η

∮ ( pk∑
ν=1

|fk(α; ν)|2
)k

|f1(α; η)|2s dα. (2.8)

Although our notation has been crafted for later discussion of efficient congruencing, the

classical approach remains visible. One applies (2.8) with θ = 1/k, so that pk > X . Thus

|fk(α; ν)| ≤ 1, and it follows from (2.6) and (2.8) that

Jt(X) 2M2sI0,1(X) 2M2s+k(k−1)/2(Mk)kmax
η

∮
|f1(α; η)|2s dα.

It therefore follows from (2.3) that

Js+k(X) 2M2s+k(k−1)/2XkJs(X/M) 2 X2k(X1/k)2s−k(k+1)/2Js(X
1−1/k).

This iterative relation leads from the bound Jk,k(X) 2 Xk to the estimate presented in

Theorem 1.1. Early authors, such as Vinogradov and Hua, made use of short real intervals

in place of congruences, the modern shift to congruences merely adjusting the point of view

from the infinite place to a finite place.

3. Lower bounds and the main conjecture

Write Ts(X) for the number of diagonal solutions of (1.3) with 1 ≤ x,y ≤ X and

{x1, . . . , xs} = {y1, . . . , ys}. Then Js,k(X) ≥ Ts(X) = s!Xs + Os(X
s−1). Meanwhile,

when 1 ≤ x,y ≤ X , one has |(xj1 − yj1) + . . .+ (xjs − yjs)| ≤ sXj . Hence

[X]2s =
∑

|h1|≤sX
. . .

∑
|hk|≤sXk

∮
|fk(α;X)|2se(−α1h1 − . . .− αkhk) dα,
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and we deduce from the triangle inequality in combination with (1.2) that

X2s 2
∑

|h1|≤sX
. . .

∑
|hk|≤sXk

Js,k(X) 2 Xk(k+1)/2Js,k(X).

Thus we conclude that Js,k(X) ) Xs+X2s−k(k+1)/2, a lower bound that guides a heuristic

application of the circle method towards the following conjecture.

Conjecture 3.1 (The Main Conjecture). Suppose that s and k are natural numbers. Then for
each ε > 0, one has Js,k(X) 2 Xε(Xs +X2s−k(k+1)/2).

We emphasise that the implicit constant here may depend on ε, s and k. The critical case
of the Main Conjecture with s = k(k + 1)/2 has special significance.

Conjecture 3.2. When k ∈ N and ε > 0, one has Jk(k+1)/2,k(X) 2 Xk(k+1)/2+ε.

Suppose temporarily that this critical case of the Main Conjecture holds. Then, when

s ≥ k(k + 1)/2, one may apply a trivial estimate for fk(α;X) to show that

Js,k(X) ≤ X2s−k(k+1)

∮
|fk(α;X)|k(k+1) dα 2 X2s−k(k+1)/2+ε,

and when s < k(k + 1)/2, one may instead apply Hölder’s inequality to obtain

Js,k(X) ≤
(∮

|fk(α;X)|k(k+1) dα

) 2s
k(k+1)2 Xs+ε.

In both cases, therefore, the Main Conjecture is recovered from the critical case.

Until 2014, the critical case of the Main Conjecture was known to hold in only two cases.

The case k = 1 is trivial. The case k = 2, on the other hand, depends on bounds for the

number of integral solutions of the simultaneous equations

x21 + x
2
2 + x

2
3 = y21 + y

2
2 + y

2
3

x1 + x2 + x3 = y1 + y2 + y3

}
, (3.1)

with 1 ≤ xi, yi ≤ X . From the identity (a+ b− c)2 − (a2+ b2 − c2) = 2(a− c)(b− c), one
finds that the solutions of (3.1) satisfy (x1 − y3)(x2 − y3) = (y1 − x3)(y2 − x3). From here,

elementary estimates for the divisor function convey us to the bound J3,2(X) 2 X3+ε, so

that Conjecture 3.2 and the Main Conjecture hold when k = 2. In fact, improving on earlier

work of Rogovskaya [41], it was shown by Blomer and Brüdern [10] that

J3,2(X) =
18

π2
X3 logX +

3

π2

(
12γ − 6

ζ ′(2)

ζ(2)
− 5

)
X3 +O(X5/2 logX).

In particular, the factorXε cannot be removed from the statements of Conjectures 3.1 and 3.2.

However, a careful heuristic analysis of the circle method reveals that when (s, k) �= (3, 2),
the Main Conjecture should hold with ε = 0. See [47, equation (7.5)] for a discussion that
records precisely such a conjecture.

The classical picture of the Main Conjecture splits naturally into two parts: small s
and large s. When 1 ≤ s ≤ k, the relation Js,k(X) = Ts(X) ∼ s!Xs is immediate
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from Newton’s formulae concerning roots of polynomials. Identities analogous to that

above yield multiplicative relations amongst variables in the system (1.3) when s = k + 1.
In this way, Hua [26] confirmed the Main Conjecture for s ≤ k + 1 by obtaining the

bound Jk+1,k(X) 2 Xk+1+ε. Vaughan and Wooley have since obtained the asymptotic

formula Jk+1,k(X) = Tk+1(X) + O(Xθk+ε), where θ3 = 10
3 [48, Theorem 1.5] and

θk =
√
4k + 5 (k ≥ 4) [49, Theorem 1]. Approximations to the Main Conjecture of the

type Js,k(X) 2 Xs+δs,k , with δs,k small, can be obtained for larger values of s. Thus, on
writing γ = s/k, the work of Arkhipov and Karatsuba [3] shows that permissible exponents

δs,k exist with δs,k 2 γ3/2k1/2, Tyrina [43] gets δs,k 2 γ2, and Wooley [58, Theorem 1]

obtains δs,k = exp(−Ak/γ2), when s ≤ k3/2(log k)−1, for a certain positive constant A.
We turn next to large values of s. When k ∈ N, denote byH(k) the least integer for which

the Main Conjecture for Js,k(X) holds whenever s ≥ H(k). Theorem 1.2 gives H(k) ≤
(2 + o(1))k2 log k, a consequence of the classical estimate (1.4) with permissible exponent

Δs,k = k2e−s/k
2

. In 1992, the author [56] found a means of combining Vinogradov’s

methods with the efficient differencing method (see [55], and the author’s previous ICM

lecture [61]), obtainingΔs,k ≈ k2e−2s/k2

. This yieldsH(k) ≤ (1+o(1))k2 log k (see [60]),
halving the previous bound. Meanwhile, Hua [26, Theorem 7] has applied Weyl differencing

to bound H(k) for small k. We summarise the classical status of the Main Conjecture in the

following theorem.

Theorem 3.3. The Main Conjecture holds for Js,k(X) when:

(i) k = 1 and 2;

(ii) k ≥ 2 and 1 ≤ s ≤ k + 1;

(iii) s ≥ H(k), where H(3) = 8, H(4) = 23, H(5) = 55, H(6) = 120, . . . , and
H(k) = k2(log k + 2 log log k +O(1)).

4. The advent of efficient congruencing

The introduction of the efficient congruencing method [62] at the end of 2010 has transformed

our understanding of the Main Conjecture. Incorporating subsequent developments [20, 64],

and the multigrade enhancement of the method [65–67], we can summarise the current state

of affairs in the form of a theorem.

Theorem 4.1. The Main Conjecture holds for Js,k(X) when:

(i) k = 1, 2 and 3;

(ii) 1 ≤ s ≤ D(k), where D(4) = 8, D(5) = 10, D(6) = 17, D(7) = 20, . . . , and
D(k) = 1

2k(k + 1)− 1
3k +O(k

2/3);

(iii) k ≥ 3 and s ≥ H(k), where H(k) = k(k − 1).

As compared to the classical situation, there are three principal advances:

(a) First, the Main Conjecture holds for Js,k(X) in the cubic case k = 3 (see [67, The-

orem 1.1]), so that Js,3(X) 2 Xε(Xs +X2s−6). This is the first occasion, for any
polynomial Weyl sum of degree exceeding 2, that the conjectural mean value estimates

have been established in full, even if the underlying variables are restricted to lie in

such special sets as the smooth numbers.
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(b) Second, the Main Conjecture holds in the form Js,k(X) 2 Xs+ε provided that

1 ≤ s ≤ 1
2k(k+ 1)− 1

3k+O(k
2/3), which as k → ∞ represents 100% of the critical

interval 1 ≤ s ≤ k(k + 1)/2 (see [66, Theorem 1.3]). The classical result reported

in Theorem 3.3(ii) only provides such a conclusion for 1 ≤ s ≤ k + 1, amounting to

0% of the critical interval. Here, the first substantial advance was achieved by Ford

and Wooley [20, Theorem 1.1], giving the Main Conjecture for 1 ≤ s ≤ 1
4 (k + 1)2.

Although Theorem 4.1(ii) comes within
(
1
3 + o(1)

)
k variables of proving the critical

case of the Main Conjecture, it seems that a new idea is required to replace this defect

by (c+ o(1))k, for some real number c with c < 1
3 .

(c) Third, the Main Conjecture holds in the form Js,k(X) 2 X2s−k(k+1)/2+ε

for s ≥ k(k − 1). The classical result reported in Theorem 3.3(iii) provides such

a conclusion for s ≥ (1 + o(1))k2 log k, a constraint weaker by a factor log k. So

far as applications are concerned, this is by far the most significant advance thus far

captured by the efficient congruencing method. The initial progress [62, Theorem 1.1]

shows that the Main Conjecture holds for s ≥ k(k + 1), already within a factor 2 of
the critical exponent s = k(k + 1)/2. Subsequently, this constraint was improved first

to s ≥ k2 − 1, and then to s ≥ k2 − k + 1 (see [64, Theorem 1.1] and [65, Corollary

1.2]). The further modest progress reported in Theorem 4.1(iii) was announced in [67,

Theorem 1.2], and will appear in a forthcoming paper.

Prior to the advent of efficient congruencing, much effort had been spent on refining

estimates of the shape Js,k(X) 2 X2s−k(k+1)/2+Δs,k , with the permissible exponent Δs,k

as small as possible (see [9, 19, 56, 58]). Of great significance for applications, efficient

congruencing permits substantially sharper bounds to be obtained for such exponents than

were hitherto available. Such ideas feature in [64, Theorem 1.4], and the discussion following

[20, Theorem 1.2] shows that when 1
4 ≤ α ≤ 1 and s = αk2, then the exponent Δs,k =

(1− √
α)2k2 +O(k) is permissible. Thus, in particular, the critical exponent Δk(k+1)/2,k =

( 32 − √
2)k2 is permissible. By combining [66, Theorem 1.5] and the discussion following

[65, Corollary 1.2], one arrives at the following improvement.

Theorem 4.2. When k is large, there is a positive number C(s) ≤ 1
3 for which

Js,k(X) 2 X(C(s)+o(1))k
(
Xs +X2s−k(k+1)/2

)
.

When α ∈ [ 58 , 1], moreover, one may take C(αk
2) ≤ (2− 3α+ (2α− 1)3/2

)
/(3α).

We finish this section by noting that Theorem 4.1(iii) permits a substantial improvement

in the conclusion of Theorem 1.2.

Theorem 4.3. Let k, s ∈ N and suppose that s ≥ k2 − k + 1. Then there exists a positive
number C(s, k) with Js,k(X) ∼ C(s, k)X2s−k(k+1)/2.

5. A sketch of the efficient congruencing method

Although complicated in detail, the ideas underlying efficient congruencing are accessible

given some simplifying assumptions. In this section, we consider k to be fixed, and drop
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mention of k from our notation. Let t = (u+1)k, where u ≥ k is an integer, and put s = uk.
We define

λt = lim sup
X→∞

(log Jt(X)) /(logX).

Thus, for each ε > 0, one has the bound Jt(X) 2 Xλt+ε. Our goal is to establish that

λt = 2t − k(k + 1)/2, as predicted by the Main Conjecture. Define Λ via the relation

λt = 2t− 1
2k(k + 1) + Λ. We suppose that Λ > 0, and seek a contradiction in order to show

that Λ = 0. Our method rests on an N -fold iteration related to the approach of §2, where N
is sufficiently large in terms of u, k and Λ. Let θ = (16k)−2N , putM = Xθ, and consider a

prime number p withM < p ≤ 2M . Also, let δ > 0 be small in terms of all these parameters,

so that 8δ < N(k/u)NΛθ.
Define the mean value

Ka,b(X) = max
ξ,η

∮
|Fa(α; ξ)2Fb(α; η)2u| dα,

and introduce the normalised mean values

[[Ka,b(X)]] =
Ka,b(X)

(X/Ma)2k−k(k+1)/2(X/M b)2s
and [[Jt(X)]] =

Jt(X)

X2t−k(k+1)/2
.

Then whenever X is sufficiently large in terms of the ambient parameters, one has

[[Jt(X)]] > XΛ−δ and, when X1/2 ≤ Y ≤ X , we have the bound [[Jt(Y )]] ≤ Y Λ+δ .

We begin by observing that an elaboration of the argument delivering (2.5) can be

fashioned to replace (2.6) with the well-conditioned relation

Jt(X) 2M2smax
ξ,η

∮
|F0(α; ξ)2F1(α; η)2u| dα =M2sK0,1(X).

Here we have exercised considerable expedience in ignoring controllable error terms. More-

over, one may need to replaceK0,1(X) by the surrogateK0,1+h(X), for a suitable integer h.
An analogue of the argument leading to (2.8) yields the bound

K0,1(X) 2Mk(k−1)/2 max
η

∮ ( pk∑
ν=1

|fk(α; ν)|2
)k

|F1(α; η)|2u dα.

By Hölder’s inequality, one finds first that

( pk∑
ν=1

|fk(α; ν)|2
)k

≤ (pk)k−1

pk∑
ν=1

|fk(α; ν)|2k,

and then

K0,1(X) 2Mk(k−1)/2(Mk)kmax
η,ν

(
T1(η)

1−1/uT2(η, ν)
1/u
)
,

where

T1(η) =

∮
|F1(α; η)|2u+2 dα and T2(η, ν) =

∮
|F1(α; η)2fk(α; ν)2s| dα.
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On considering the underlying Diophantine systems, one finds that T1(η) may be bounded

via (2.3), while T2(η, ν) may be bounded in terms ofK1,k(X). Thus

Jt(X) 2M2s+k(k−1)/2(Mk)kJt(X/M)1−1/uK1,k(X)1/u.

A modicum of computation therefore confirms that

[[Jt(X)]] 2 [[Jt(X/M)]]1−1/u[[K1,k(X)]]1/u. (5.1)

The mean value underlyingK1,k(X) counts the number of integral solutions of

k∑
i=1

(xji − yji ) =
s∑
l=1

(
(pkul + η)

j − (pkvl + η)
j
)

(1 ≤ j ≤ k),

with 1 ≤ x,y ≤ X and 1 ≤ pku+ η, pkv+ η ≤ X having suitably conditioned coordinates.

In particular, one has x ≡ y ≡ ξ (mod p) but xi �≡ xj (mod p2) for i �= j, and similarly for

y. Translation invariance leads from these equations to

k∑
i=1

(
(xi − η)j − (yi − η)j

)
= pjk

s∑
l=1

(ujl − vjl ) (1 ≤ j ≤ k),

and hence to the congruences

(x1−η)j+ . . .+(xk−η)j ≡ (y1−η)j+ . . .+(yk−η)j (mod pjk) (1 ≤ j ≤ k). (5.2)
Since the xi are distinct modulo p2, an application of Hensel’s lemma shows that, for each

fixed choice of y, there are at most k!(pk)k(k−1)/2 · pk(k−1)/2 choices for x (mod pk
2

) satis-
fying (5.2). Here, the factor pk(k−1)/2 reflects the fact that, even though xi �≡ xj (mod p2)
for i �= j, one has xi ≡ xj (mod p) for all i and j. This situation is entirely analogous to that
delivering (2.8) above, and thus we obtain

K1,k(X) 2 (Mk+1)k(k−1)/2 max
ξ,η

∮ ( pk
2∑

ν=1
ν≡ξ (mod p)

|fk2(α; ν)|2
)k

|Fk(α; η)|2u dα.

From here, as above, suitable applications of Hölder’s inequality show that

[[K1,k(X)]] 2 [[Jt(X/M
k)]]1−1/u[[Kk,k2(X)]]1/u. (5.3)

By substituting this estimate into (5.1), we obtain the new upper bound

[[Jt(X)]] 2 (
[[Jt(X/M)]][[Jt(X/M

k)]]1/u
)1−1/u

[[Kk,k2(X)]]1/u
2

.

By iterating this process N times, one obtains the relation

[[Jt(X)]] 2
(N−1∏
r=0

[[Jt(X/M
kr

)]]1/u
r

)1−1/u

[[KkN−1,kN (X)]]1/u
N

. (5.4)

While this is a vaste oversimplification of what is actually established, it correctly identifies

the relationship which underpins the efficient congruencing method.
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SinceMkN

< X1/3, our earlier discussion ensures that

[[Jt(X)]] ) XΛ−δ and [[Jt(X/M
kr

)]] 2 (X/Mkr

)Λ+δ (0 ≤ r ≤ N).

Meanwhile, an application of Hölder’s inequality provides the trivial bound

[[KkN−1,kN (X)]] 2 (
Mk(k+1)/2

)kN

XΛ+δ.

By substituting these estimates into (5.4), we deduce that

XΛ−δ 2
(
X1/uN

N−1∏
r=0

(
X/Mkr)(1−1/u)/ur

)Λ+δ (
Mk(k+1)/2

)(k/u)N
,

and hence XΛ−δ 2 XΛ+δ(MΘ)(k/u)
N

, where

Θ = 1
2k(k + 1)− (1− 1/u)(Λ + δ)

N∑
r=1

(u/k)r.

But we have u ≥ k, and so our hypotheses concerning N and δ ensure that

Θ ≤ 1
2k(k + 1)−N(1− 1/u)(Λ + δ) < − 1

2NΛ < −3(u/k)Nδ/θ.

We therefore conclude that XΛ−δ 2 XΛ+δM−3δ/θ 2 XΛ−2δ. This relation yields the

contradiction that establishes the desired conclusion Λ = 0. We may therefore conclude that

whenever t ≥ k(k + 1), one has Jt(X) 2 X2t−k(k+1)/2+ε.

We have sketched the proof of the Main Conjecture for Jt(X) when t ≥ k(k + 1).
Theorem 4.1, which represents the latest state of play in the efficient congruencing method,

goes considerably further. Two ideas underpin these advances.

First, one may sacrifice some of the power potentially available from systems of congru-

ences such as (2.7) or (5.2) in order that the efficient congruencing method be applicable

when t < k(k + 1). Let r be a parameter with 2 ≤ r ≤ k, and define the generating function

F
(r)
c (α; ξ) by analogy with Fc(α; ξ), though with r (in place of k) underlying exponential

sums fc+1(α; ξi). One may imitate the basic argument sketched above, with t = (u+ 1)r, to

bound the analogueK
(r)
a,b (X) of the mean valueKa,b(X). In place of (5.2) one now obtains

the congruences

(x1 −η)j + . . .+(xr−η)j ≡ (y1 −η)j + . . .+(yr−η)j (mod pjb) (1 ≤ j ≤ k). (5.5)
For simplicity, suppose that r ≤ (k−1)/2. Then by considering the r congruence relations of
highest degree here, one finds from Hensel’s lemma that, for each fixed choice of y, there are
at most k! choices for x (mod p(k−r)b) satisfying (5.5). Although this is a weaker congruence
constraint than before on x and y, the cost in terms of the number of choices is smaller, and

so useful estimates may nonetheless be obtained for Jt(X). Ideas along these lines underpin

both the work [64] of the author, and in the sharper form sketched above, that of Ford and the

author [20].

The second idea conveys us to the threshold of the Main Conjecture. Again we consider

the mean values K
(r)
a,b (X), and for simplicity put r = k − 1. The congruences (5.5) yield

a constraint on the variables tantamount to xi ≡ yi (mod p2b) at little cost. Encoding this
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constraint using exponential sums, and applying Hölder’s inequality, one boundsK
(k−1)
a,b (X)

in terms of K
(k−2)
a,b (X) and K

(k−1)
b,2b (X). Iterating this process to successively estimate

K
(k−j)
a,b (X) for j = 1, 2, . . . , k−1, we obtain a bound forK

(k−1)
a,b (X) in terms ofK

(k−1)
b,jb (X)

(2 ≤ j ≤ k) and Jt(X/M b). The heuristic potential of this idea amounts to a relation of the

shape

[[K
(k−1)
a,b (X)]] 2

( k∏
j=2

[[K
(k−1)
b,jb (X)]]φj

)
[[Jt(X/M

b)]]1−(k−1)/s, (5.6)

where the exponents φj are approximately equal to 1/s. Again, this substantially oversim-

plifies the situation, since non-negligible additional factors occur. However, one discerns

a critical advantage over earlier relations such as (5.3). As one iterates (5.6), one bounds

[[K
(k−1)
a,b (X)]] in terms of new expressions [[K

(k−1)
b,b′ (X)]], where the ratio b′/b is on average

about 1
2k + 1, as opposed to the previous ratio k. The relation (5.6) may be converted into a

substitute for (5.4) of the shape

[[Jt(X)]] 2
(N−1∏
r=0

[[Jt(X/M
ρr )]]1/u

r

)1−1/u

[[K
(k−1)

ρN−1,ρN
(X)]]1/u

N

,

in which ρ is close to 1
2k + 1 and t = (u + 1)(k − 1). Thus, when u ≥ ρ, we find as

before that the lower bound [[Jt(X)]] ) XΛ−δ is tenable only when Λ = 0, and we have

heuristically established the Main Conjecture when t is only slightly larger than k(k + 1)/2.
Of course, the relation (5.6) represents an idealised situation, and the proof in detail of the

results in [65, 66] contains numerous complications requiring the resolution of considerable

technical difficulties.

6. Waring’s problem

Investigations concerning the validity of the anticipated asymptotic formula in Waring’s

problem have historically followed one of two paths, associated on the one hand with Weyl,

and on the other with Vinogradov. We recall our earlier notation, writing Rs,k(n) for the
number of representations of the natural number n in the shape n = xk1 + . . . + xks , with
x ∈ Ns. A heuristic application of the circle method suggests that for k ≥ 3 and s ≥ k + 1,
one should have

Rs,k(n) =
Γ(1 + 1/k)s

Γ(s/k)
Ss,k(n)n

s/k−1 + o(ns/k−1), (6.1)

where

Ss,k(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

(
q−1

q∑
r=1

e(ark/q)

)s
e(−na/q).

Under modest congruence conditions, one has 1 2 Ss,k(n) 2 nε, and thus the conjectural

relation (6.1) may be seen as an honest asymptotic formula (see [47, §§4.3, 4.5 and 4.6]

for details). Let G̃(k) denote the least integer t with the property that, whenever s ≥ t, the
asymptotic formula (6.1) holds for all large enough n.



Translation invariance, exponential sums, and Waring’s problem 517

Leaving aside the smallest exponents k = 1 and 2 accessible to classical methods, the first

to obtain a bound for G̃(k) were Hardy and Littlewood [21], who devised a method based

on Weyl differencing to show that G̃(k) ≤ (k − 2)2k−1 + 5. In 1938, Hua [24] obtained a

refinement based on the estimate∫ 1

0

|gk(α;X)|2k dα2 X2k−k+ε, (6.2)

in which gk(α;X) is defined via (1.5), showing that G̃(k) ≤ 2k + 1. For small values of k,
this estimate remained the strongest known for nearly half a century. Finally, Vaughan [45, 46]

succeeded in wielding Hooley’sΔ-functions to deduce that G̃(k) ≤ 2k for k ≥ 3. For slightly
larger exponents k ≥ 6, this bound was improved by Heath-Brown [22] by combining Weyl

differencing with a novel cubic mean value estimate. His bound G̃(k) ≤ 7
82

k + 1 was, in

turn, refined by Boklan [8], who exploited Hooley’sΔ-functions in this new setting to deduce

that G̃(k) ≤ 7
82

k for k ≥ 6.
Turning now to large values of k, the story begins with Vinogradov [50], who showed that

G̃(k) ≤ 183k9(log k + 1)2, reducing estimates previously exponential in k to polynomial

bounds. As Vinogradov’s mean value theorem progressed to the state essentially captured

by Theorem 1.1, bounds were rapidly refined to the form G̃(k) ≤ (C + o(1))k2 log k,
culminating in 1949 with Hua’s bound [27] of this shape with C = 4. The connection with
Vinogradov’s mean value theorem is simple to explain, for on considering the underlying

Diophantine systems, one finds that

∫ 1

0

|gk(α;X)|2s dα =
∑
h

∮
|fk(α;X)|2se(−h1α1 − . . .− hk−1αk−1) dα,

where the summation is over |hj | ≤ sXj (1 ≤ j ≤ k − 1). The bound (1.4) therefore leads
via the triangle inequality and (1.2) to the estimate

∫ 1

0

|gk(α;X)|2s dα2 Xk(k−1)/2Js,k(X) 2 X2s−k+Δs,k , (6.3)

which serves as a surrogate for (6.2). In 1992, the author reduced the permissible value of

C from 4 to 2 by applying the repeated efficient differencing method [56]. A more efficient

means of utilising Vinogradov’s mean value theorem to bound G̃(k) was found by Ford [18]

(see also [44]), showing that C = 1 is permissible. Refinements for smaller values of k show
that this circle of ideas surpasses the above-cited bound G̃(k) ≤ 7

82
k when k ≥ 9 (see Boklan

and Wooley [9]).

We summarise the classical state of affairs in the following theorem.

Theorem 6.1 (Classical status of G̃(k)). One has:

(i) G̃(k) ≤ 2k (k = 3, 4, 5) and G̃(k) ≤ 7
82

k (k = 6, 7, 8);

(ii) G̃(9) ≤ 365, G̃(10) ≤ 497, G̃(11) ≤ 627, G̃(12) ≤ 771, . . . ;

(iii) G̃(k) ≤ (1 + o(1))k2 log k (k large).

The most immediate impact of the new efficient congruencing method in Vinogradov’s

mean value theorem [62] was the bound G̃(k) ≤ 2k2 + 2k − 3, valid for k ≥ 2. This already
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supersedes the previous work presented in Theorem 6.1 when k ≥ 7. In particular, the

obstinate factor of log k is definitively removed for large values of k. Subsequent refinements

[20, 63–66] have delivered further progress, especially for smaller values of k, which we

summarise as follows.

Theorem 6.2 (Status of G̃(k) after efficient congruencing). One has:

(i) G̃(k) ≤ 2k (k = 3, 4);

(ii) G̃(5) ≤ 28, G̃(6) ≤ 43, G̃(7) ≤ 61, G̃(8) ≤ 83, G̃(9) ≤ 107, G̃(10) ≤ 134,
G̃(11) ≤ 165, G̃(12) ≤ 199, . . . ;

(iii) G̃(k) ≤ (C + o(1))k2 (k large), where C = 1.54079 is an approximation to the
number (5 + 6ξ − 3ξ2)/(2 + 6ξ), in which ξ is the real root of 6ξ3 + 3ξ2 − 1.

A comparison of Theorems 6.1 and 6.2 reveals that the classical Weyl-based bounds have

now been superseded for k ≥ 5. The latest developments [65, 67] hint, indeed, at further

progress even when k = 4. These advances for smaller values of k stem in part, of course,

from the substantial progress in our new bounds for Js,k(X), as outlined in Theorems 4.1 and

4.2. However, an important role is also played by a novel mean value estimate for moments of

gk(α;X). Define the minor arcs m = mk to be the set of real numbers α ∈ [0, 1) satisfying
the property that, whenever a ∈ Z and q ∈ N satisfy (a, q) = 1 and |qα− a| ≤ X1−k, then
q > X . The argument of the proof of [63, Theorem 2.1] yields the bound∫

m

|gk(α;X)|2s dα2 X
1
2k(k−1)−1(logX)2s+1Js,k(X). (6.4)

We thus infer from Theorem 4.1(iii) that whenever k ≥ 3 and s ≥ k(k − 1), then∫
m

|gk(α;X)|2s dα2 X2s−k−1+ε.

As compared to the classical approach embodied in (6.3), an additional factor X has been

saved in these estimates at no cost in terms of the number of variables, and for smaller values

of k this is a very substantial gain.
For large values of k, the enhancement of Ford [18] given by Ford and Wooley [20,

Theorem 8.5] remains of value. When k, s ∈ N, denote by η(s, k) the least number η with
the property that, whenever X is sufficiently large in terms of s and k, one has

Js,k(X) 2ε X
2s−k(k+1)/2+η+ε.

Let r ∈ N satisfy 1 ≤ r ≤ k−1. Then [20, Theorem 8.5] shows that whenever s ≥ r(r−1)/2,
one has ∫ 1

0

|gk(α;X)|2s dα2 X2s−k+ε(Xη∗r (s,k)−1/r +Xη∗r (s,k−1)
)
,

where η∗r (s, w) = r
−1η(s− r(r − 1)/2, w) for w = k − 1, k.

Finally, we note that familiar conjectures concerning mean values of the exponential sum

gk(α;X) imply that one should have G̃(k) ≤ 2k + 1 for each k ≥ 3, and indeed it may even

be the case that G̃(k) = k + 1.
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7. Estimates of Weyl-type, and distribution mod 1

Pointwise estimates for exponential sums appear already in the work of Weyl [54] in 1916. By

applying k − 1Weyl-differencing steps, one bounds the exponential sum fk(α;X) in terms

of a new exponential sum over a linear polynomial, and this may be estimated by summing

what is, after all, a geometric progression. In this way, one obtains the classical version of

Weyl’s inequality (see [47, Lemma 2.4]).

Theorem 7.1 (Weyl’s inequality). Let α ∈ Rk, and suppose that a ∈ Z and q ∈ N satisfy
(a, q) = 1 and |αk − a/q| ≤ q−2. Then one has

|fk(α;X)| 2 X1+ε
(
q−1 +X−1 + qX−k)21−k

. (7.1)

This provides a non-trivial estimate for fk(α;X) when the leading coefficient αk is not
well-approximated by rational numbers. Consider, for example, the set m = mk defined in

the preamble to (6.4). When αk ∈ m, an application of Dirichlet’s theorem on Diophantine

approximation shows that there exist a ∈ Z and q ∈ N with (a, q) = 1 such that q ≤ Xk−1

and |qα − a| ≤ X1−k. The definition of m then implies that q > X , and so Theorem 7.1

delivers the bound

sup
αk∈m

|fk(α;X)| 2 X1−σ(k)+ε, (7.2)

in which σ(k) = 21−k. Heath-Brown’s variant [22, Theorem 1] of Weyl’s inequality applies

mean value estimates for certain cubic exponential sums that, for k ≥ 6, give bounds superior
to (7.1) when q lies in the range X5/2 < q < Xk−5/2. By making use of the cubic case of

the Main Conjecture in Vinogradov’s mean value theorem [67], the author [68] has extended

this range to X2 < q < Xk−2.

Theorem 7.2. Let k ≥ 6, and suppose that α ∈ R, a ∈ Z and q ∈ N satisfy (a, q) = 1 and
|α− a/q| ≤ q−2. Then one has

|gk(α;X)| 2 X1+εΘ2−k

+X1+ε(Θ/X)
2
3 2
−k

,

where Θ = q−1 +X−3 + qX−k.

For comparison, we note that Heath-Brown [22, Theorem 1] obtains the bound

|gk(α;X)| 2 X1+ε(XΘ)
4
3 2
−k

.

Robert and Sargos [40, Théorème 4 et Lemme 7] extend these ideas when k ≥ 8 to show that

|gk(α;X)| 2 X1+ε
(
X17/8Θ′

) 8
5 2
−k

, in which Θ′ = q−1 +X−4 + qX−k. See Parsell [37]
for a refinement when k = 8.

The above methods yield exponents exponentially small in k. By substituting estimates for

Js,k(X) into the conclusion of Theorem 1.3, one obtains analogous bounds polynomial in k.
Classical versions of Vinogradov’s mean value theorem yield estimates of the shape (7.2) with

σ(k)−1 = (C + o(1))k2 log k. Thus, Linnik [33] obtained the permissible value C = 22 400,
and Hua [27] obtained C = 4 in 1949. This was improved via efficient differencing [56]

in 1992 to C = 2, and subsequently the author [59] obtained C = 3/2 by incorporating

some ideas of Bombieri [11]. The latest developments in efficient congruencing yield the new

exponent σ(k)−1 = 2(k − 1)(k − 2) for k ≥ 3, a conclusion that removes the factor log k
from earlier estimates, and improves on Weyl’s inequality for k ≥ 7.
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Theorem 7.3. Let k be an integer with k ≥ 3, and let α ∈ Rk. Suppose that there exists a
natural number j with 2 ≤ j ≤ k such that, for some a ∈ Z and q ∈ N with (a, q) = 1, one
has |αj − a/q| ≤ q−2. Then one has

|fk(α;X)| 2 X1+ε(q−1 +X−1 + qX−j)σ(k),

where σ(k)−1 = 2(k − 1)(k − 2).

This conclusion makes use of Theorem 4.1(iii), and improves slightly on [65, Theorem

11.1]. When k ≥ 6 and α lies on a suitable subset of R, the above-cited work of Heath-Brown
may deliver estimates for |gk(α;X)| superior to those stemming from Weyl’s inequality,

and similar comments apply to the work of Robert and Sargos, and of Parsell, when k ≥ 8.
However, Theorem 7.3 proves superior in all circumstances to the estimates of Heath-Brown

when k > 7, and to the estimates of Robert and Sargos for all exponents k.
In many applications, it is desirable to have available estimates for |fk(α;X)| that depend

on simultaneous approximations to α1, . . . , αk of a given height. This is a subject to which R.
C. Baker and W. M. Schmidt have made significant contributions. By exploiting such methods

in combination with our new estimates for Js,k(X), one obtains the following conclusion

(compare [65, Theorem 11.2]).

Theorem 7.4. Let k be an integer with k ≥ 3, and let τ and δ be real numbers with
τ−1 > 4(k − 1)(k − 2) and δ > kτ . Suppose that X is sufficiently large in terms of k, δ
and τ , and further that |fk(α;X)| > X1−τ . Then there exist integers q, a1, . . . , ak such that
1 ≤ q ≤ Xδ and |qαj − aj | ≤ Xδ−j (1 ≤ j ≤ k).

Here, the constraint τ−1 > 4(k − 1)(k − 2) may be compared with the corresponding

hypothesis τ−1 > (8 + o(1))k2 log k to be found in [5, Theorem 4.5], and the Weyl-based

bound τ−1 > 2k−1 obtained in [5, Theorem 5.2] (see also [6]). The conclusion of Theorem

7.4 is superior to the latter for k > 8.
Bounds for exponential sums of Weyl-type may be converted into equidistribution results

for polynomials modulo 1 by applying estimates of Erdős-Turán type. Write ‖θ‖ for the least

value of |θ−n| for n ∈ Z, and consider a sequence (xn)∞n=1 of real numbers . Then it follows

from [5, Theorem 2.2], for example, that whenever ‖xn‖ ≥M−1 for 1 ≤ n ≤ N , then

∑
1≤m≤M

∣∣∣∣
N∑
n=1

e(mxn)

∣∣∣∣ > 1
6N.

By carefully exploiting this result using the methods of Baker [5], one deduces from Theorem

7.4 the following conclusion (compare [65, Theorem 11.3]).

Theorem 7.5. When k ≥ 3, put τ(k) = 1/ (4(k − 1)(k − 2)). Then whenever α ∈ Rk and
N is sufficiently large in terms of k and ε, one has

min
1≤n≤N

‖α1n+ α2n2 + . . .+ αknk‖ < Nε−τ(k).

8. Further applications

Vinogradov’s mean value theorem finds application in numerous number-theoretic problems,

besides those discussed in the previous two sections. We take the opportunity now to outline

several applications, emphasising recent developments.
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(i) Tarry’s problem. When h, k and s are positive integers with h ≥ 2, consider the Diophan-
tine system

s∑
i=1

xji1 =

s∑
i=1

xji2 = . . . =

s∑
i=1

xjih (1 ≤ j ≤ k). (8.1)

Let W (k, h) denote the least natural number s having the property that the simultaneous

equations (8.1) possess an integral solution x with

s∑
i=1

xk+1
iu �=

s∑
i=1

xk+1
iv (1 ≤ u < v ≤ h).

The problem of estimatingW (k, h) was intensely investigated by E. M. Wright and L.-K. Hua

(see [25, 28, 69]), the latter obtainingW (k, h) ≤ k2(log k+O(1)) for h ≥ 2. The argument

of the proof of [62, Theorem 1.3] shows thatW (k, h) ≤ s whenever one can establish the

estimate Js,k+1(X) = o(X2s−k(k+1)/2). By using this criterion together with the estimates

for Js,k+1(X) obtained via the latest efficient congruencing methods, one obtains substantial

improvements in these earlier conclusions (see [65, Theorem 12.1] and [66, Theorem 12.1]).

Theorem 8.1. When h and k are natural numbers with h ≥ 2 and k ≥ 3, one hasW (k, h) ≤
5
8 (k + 1)2. Moreover, when k is large, one hasW (k, h) ≤ 1

2k(k + 1) + 1.

Although the last of these conclusions achieves the limit of current analytic approaches to

boundingW (k, h), explicit numerical examples are available4 which may be applied to show

thatW (k, 2) = k + 1 for 1 ≤ k ≤ 9 and k = 11.

(ii) Sum-product theorems. When A is a finite set of real numbers, define the sets A+A =
{x+ y : x, y ∈ A} and A ·A = {xy : x, y ∈ A}, and more generally

hA = {x1 + . . .+ xh : x ∈ Ah} and A(h) = {x1 . . . xh : x ∈ Ah}.
A conjecture of Erdős and Szemerédi [17] asserts that for any finite set of integers A, one
has |A + A| + |A · A| )ε |A|2−ε. It is also conjectured that whenever A is a finite set of

real numbers, then for each h ∈ N, one should have |hA| + |A(h)| )ε,h |A|h−ε. Chang
[13] has made progress towards this conjecture by showing that when A is a finite set of

integers, and |A.A| < |A|1+ε, then |hA| )ε,h |A|h−δ , where δ → 0 as ε→ 0. Subsequently,
Bourgain and Chang [12] showed that for any b ≥ 1, there exists h ≥ 1 with the property that

|hA|+ |A(h)| ) |A|b. By exploiting bounds forW (k, h) of the type given by Theorem 8.1,

Croot and Hart [16] have made progress toward an analogue of such conclusions for sets of

real numbers.

Theorem 8.2. Suppose that ε > 0 and |A ·A| ≤ |A|1+ε. Then there exists a number λ > 0

such that, when h is large enough in terms of ε, one has |h(A ·A)| > |A|λh1/3

.

This conclusion (see [64, Theorem 11.5]) improves on [16, Theorem 2], where a similar

result is obtained with (h/ log h)1/3 in place of the exponent h1/3.

(iii) The Hilbert-Kamke problem and its brethren. Hilbert [23] considered an extension of

Waring’s problem related to Vinogradov’s mean value theorem. When n1, . . . , nk ∈ N, let
Rs,k(n) denote the number of solutions of the system

xj1 + . . .+ x
j
s = nj (1 ≤ j ≤ k), (8.2)

4See the website http://euler.free.fr/eslp/eslp.htm.



522 Trevor D. Wooley

with x ∈ Ns. Put X = max
1≤j≤k

n
1/j
j , and then write

Js,k(n) =
∫
Rk

(∫ 1

0

e(β1γ + . . .+ βkγ
k) dγ

)s
e(−β1n1/X − . . .− βknk/Xk) dβ

and

Ss,k(n) =
∞∑
q=1

∑
1≤a1,...,ak≤q
(q,a1,...,ak)=1

(
q−1fk(a/q; q)

)s
e (−(a1n1 + . . .+ aknk)/q) .

See [1, 34, 35] for an account of the analysis of this problem, and in particular for a discussion

of the conditions under which real and p-adic solutions exist for the system (8.2). While the

conditions n
j/k
k ≤ nj ≤ s1−j/knj/kk (1 ≤ j ≤ k) are plainly necessary, one finds that p-adic

solubility is not assured when s < 2k. This classical technology gives an asymptotic formula

for Rs,k(n) provided that s ≥ (4 + o(1))k2 log k. Efficient congruencing methods lead to

considerable progress. The following result improves on [62, Theorem 9.2] using Theorem

4.1(iii).

Theorem 8.3. Let s, k ∈ N and n ∈ Nk. Suppose that X = maxn
1/j
j is sufficiently large in

terms of s and k, and that the system (8.2) has non-singular real and p-adic solutions. Then
whenever k ≥ 3 and s ≥ 2k2 − 2k + 1, one has

Rs,k(n) = Js,k(n)Ss,k(n)Xs−k(k+1)/2 + o(Xs−k(k+1)/2).

Similar arguments apply to more general Diophantine systems. Let k1, . . . , kt be distinct
positive integers. Suppose that s, k ∈ N, and that aij ∈ Z for 1 ≤ i ≤ t and 1 ≤ j ≤ s.
Write

φi(x) = ai1x
ki
1 + . . .+ aisx

ki
s (1 ≤ i ≤ t),

and consider the Diophantine system φi(x) = 0 (1 ≤ i ≤ t). We write N(B;φ) for the
number of integral solutions of this system with |x| ≤ B. When L > 0, define

σ∞ = lim
L→∞

∫
|ξ|≤1

t∏
i=1

max {0, L(1− L|φi(ξ)|)} dξ.

Also, for each prime number p, put

σp = lim
H→∞

pH(t−s)card{x ∈ (Z/pHZ)s : φi(x) ≡ 0 (mod pH) (1 ≤ i ≤ t)}.

By applying the Hardy-Littlewood method, a fairly routine application of Theorem 4.1(iii)

delivers the following conclusion (compare [62, Theorem 9.1]).

Theorem 8.4. Let s and k be natural numbers with k ≥ 3 and s ≥ 2k2 − 2k + 1. Suppose
that max ki ≤ k, and that aij (1 ≤ i ≤ t, 1 ≤ j ≤ s) are non-zero integers. Suppose in
addition that the system of equations φi(x) = 0 (1 ≤ i ≤ t) has non-singular real and p-adic
solutions, for each prime number p. Then

N(B;φ) ∼ σ∞
(∏

p

σp

)
Bs−k1−...−kt .
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(iv) Solutions of polynomial congruences in short intervals. There has been much activ-

ity in recent years concerning the solubility of polynomial congruences in short intervals,

some of which makes use of estimates associated with Vinogradov’s mean value theorem.

Let f ∈ Fp[X] have degree m ≥ 3, and let M be a positive integer with M < p. De-

note by If (M ;R,S) the number of solutions of the congruence y2 ≡ f(x) (mod p), with
(x, y) ∈ [R + 1, R +M ] × [S + 1, S +M ]. Weil’s bounds for exponential sums yield

the estimate If (M ;R,S) = M2p−1 + O(p1/2(log p)2), one that is worse than trivial for

M ≤ p1/2(log p)2. The work of Chang et al. [14] gives estimates that remain non-trivial for

significantly smaller values ofM .

Theorem 8.5. Let f ∈ Fp[X] be any polynomial of degreem ≥ 4. Then wheneverM is a
positive integer with 1 ≤M < p, we have

If (M ;R,S) 2M1+ε
(
M3p−1 +M3−m)1/(2m(m−1))

.

This follows from [14, Theorem 4] on applying Theorem 4.1(iii). In particular, for any

ε > 0, one finds that there exists a δ > 0, depending only on ε and deg(f), such that whenever
M < p1/3−ε and deg(f) ≥ 4, then If (M ;R,S) 2M1−δ .

(v) The zero-free region for the Riemann zeta function. We would be remiss not to mention

the role of Vinogradov’s mean value theorem in the proof of the widest available zero-free

region for the Riemann zeta function. The sharpest estimates date from work of Vinogradov

[52] and Korobov [31] in 1958 (see also [53]). Thus, there is a positive constant c1 with

the property that ζ(s) �= 0 when s = σ + it, with σ, t ∈ R, whenever |t| ≥ 3 and σ ≥
1− c1(log |t|)−2/3(log log |t|)−1/3. More recently, Ford [19] has shown that one may take

c1 = 1/57.54. This, in turn leads to an effective version of the prime number theorem of the

shape

π(x) =

∫ x

2

dt

log t
+O

(
x exp

(−c2(log x)3/5(log log x)−1/5
))
,

where c2 = 0.2098. Using currently available methods, the nature of the constant C(k, r) in
estimates of the shape (1.4) is significant for estimates of this type, while the precise nature

of the defect in the exponent Δs,k less so. Thus, although the new estimates for Js,k(X)
stemming from efficient congruencing have the potential to impact the numerical constants c1
and c2, the dependence on t and x, respectively, in the above estimates has not been affected.

9. Generalisations

Thus far, we have focused on estimates for Js,k(X), the number of solutions (over the ring Z)
of the translation-dilation invariant system (1.3) with 1 ≤ x,y ≤ X . Previous authors have

considered generalisations in which either the ring, or else the translation-dilation invariant

system, is varied.

(i) Algebraic number fields. The arguments underlying the proof of Theorem 4.1 change little

when the setting is shifted from Z to the ring of integers of a number field. When s ≥ k(k−1),
the ensuing estimates are at most a factor Xε away from the upper bound predicted by a

heuristic application of the circle method. In common with Birch’s use of Hua’s lemma in

number fields [7], our estimates are therefore robust to variation in the degree of the field

extension, since Weyl-type estimates for exponential sums no longer play a significant role in

applications. In forthcoming work we apply such ideas to establish the following result.
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Theorem 9.1. LetL/Q be a field extension of finite degree. Suppose that d ≥ 3, s > 2d(d−1)
and a ∈ (L×)s. Then the hypersurface defined by a1xd1 + . . . + asx

d
s = 0 satisfies weak

approximation and the Hasse principle over L.

For comparison, Birch [7, Theorem 3] gives such a conclusion only for s > 2d, while the
work of Körner [30] yields analogous conclusions in which the number of variables is larger,

and depends also on the degree of the field extension L/Q.

(ii) Function fields. Consider a finite field Fq of characteristic p. Let B ∈ N be large

enough in terms of q, k and s, and denote by Js,k(B; q) the number of solutions of (1.3) with

xi, yi ∈ Fq[t] (1 ≤ i ≤ s) having degree at most B. When p < k, one can reduce (1.3) to

a minimal translation-invariant system in which certain equations are omitted. We writeK
for the sum of the degrees of this minimal system, so thatK = k(k + 1)/2 when p > k, and
K < k(k + 1)/2 when p < k. Then, when s ≥ k(k + 1), the efficient congruencing method

adapts to give the upper bound Js,k(B; q) 2 (qB)2s−K+ε. This and much more is contained

in forthcoming work of the author joint with Y.-R. Liu, generalisations of which are described

in [32].

(iii) Multidimensional analogues. Vinogradov’s methods have been generalised to multidi-

mensional settings by Arkhipov, Chubarikov and Karatsuba [2, 4], Parsell [36] and Prendiville

[39]. Variants of the efficient congruencing method deliver much sharper conclusions in far

greater generality. Let r, s, d ∈ N, and consider a linearly independent system of homo-

geneous polynomials F = (F1, . . . , Fr), where Fj(z) ∈ Z[z1, . . . , zd]. Suppose that for
1 ≤ j ≤ r and 1 ≤ l ≤ d, the polynomial ∂Fj/∂zl lies in span(1, F1, . . . , Fr). Such a

reduced translation-dilation invariant system is said to have rank r, dimension d, degree
k = max degFj , and weight K =

∑r
1 degFj . Denote by Js(X;F ) the number of integral

solutions of the system of equations

s∑
i=1

(Fj(xi)− Fj(yi)) = 0 (1 ≤ j ≤ r),

with 1 ≤ xi,yi ≤ X (1 ≤ i ≤ s). The work of Parsell, Prendiville and the author [38,

Theorem 2.1] provides a general estimate for Js(X;F ) matching the predictions of the

appropriate analogue of the Main Conjecture.

Theorem 9.2. Let F be a reduced translation-dilation invariant system of rank r, dimension
d, degree k and weightK. Then Js(X;F ) 2 X2sd−K+ε for s ≥ r(k + 1).

Reduced translation-dilation invariant systems are easy to generate by taking successive

partial derivatives and reducing to a linearly independent spanning set. Thus, for example, the

initial seed x5 + 3x2y3 gives rise to just such a system

F = {x5 + 3x2y3, 5x4 + 6xy3, x2y2, 10x3 + 3y3, xy2, x2y, x2, xy, y2, x, y},

with d = 2, r = 11, k = 5,K = 30. We therefore see from Theorem 9.2 that Js(X;F ) 2
X4s−30+ε for s ≥ 66. Theorem 9.2 should be susceptible to improvement by using the ideas

underlying multigrade efficient congruencing [65–67].
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10. Challenges

The remarkable success of the efficient congruencing method encourages ambitious specula-

tion concerning other potential applications, a topic we briefly explore.

(i) (The Main Conjecture for larger s). In Theorem 4.1, one sees that the upper bound

Js,k(X) 2 Xs+ε predicted by the Main Conjecture is now known to hold for

1 ≤ s ≤ 1
2k(k + 1)− tk, where tk = 1

3k +O(k
2/3). In striking contrast, on the other

side of the critical value s = 1
2k(k+1), the upper bound Js,k(X) 2 X2s−k(k+1)/2+ε

is known to hold only when s ≥ 1
2k(k + 1) + uk, where uk = 1

2k(k − 3). Plainly, the
value of uk is substantially larger than tk, and an intriguing possibility is that a hitherto

unseen refinement of the method might reduce uk to a size more similar to that of tk.
This would have great significance in numerous applications.

(ii) (Paucity). When k ≥ 3 and 1 ≤ s < 1
2k(k + 1), we have precise asymptotics for

Js,k(X) only when s ≤ k + 1. Since the formula Js,k(X) = Ts(X) ∼ s!Xs is

trivial for 1 ≤ s ≤ k, the case s = k + 1 is the only one with content. It is tempting

to speculate that a suitable adaptation of efficient congruencing might confirm that

Js,k(X) = Ts(X) +O(Xs−δ), for some δ > 0, for some exponent s ≥ k + 2.

(iii) (Minor arc bounds). When q ∈ N and a ∈ Zk, denote by M(q,a) the set of points
α ∈ [0, 1)k such that |qαj − aj | ≤ X1−j (1 ≤ j ≤ k). Write M for the union

of the boxes M(q,a) with 0 ≤ aj ≤ q ≤ X (1 ≤ j ≤ k) and (q, a1, . . . , ak) = 1,
and put m = [0, 1)k \M. The methods of §7 provide estimates of the shape

|fk(α;X)| 2 X1−σk+ε for α ∈ m. However, when s = k(k − 1) + t and t ≥ 1,
our most efficient means of estimating moments of fk(α;X) of order 2s, restricted to

minor arcs, proceeds by applying Theorem 4.1(iii) via the trivial bound∫
m

|fk(α;X)|2s dα 2
(
sup
α∈m

|fk(α;X)|
)2t ∮

|fk(α;X)|2k(k−1) dα

2 X2s− 1
2k(k+1)−2tσk+ε.

This bound is relatively weak, even when t is large. Efficient congruencing provides a

possible means of deriving estimates directly for such moments, and might even lead

to improvements in our lower bounds for permissible exponents σk.

(iv) (Non-translation invariant systems). The system (1.3) is translation-dilation invariant.

A major desideratum is to apply a variant of efficient congruencing to systems of

equations that are not translation invariant. The author has forthcoming work applicable

to systems that are only approximately translation invariant.
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Elementary integration of differentials in families
and conjectures of Pink

Umberto Zannier

Abstract. In this short survey paper we shall consider, in particular, indefinite integrals of differentials
on algebraic curves, trying to express them in elementary terms. This is an old-fashioned issue, for

which Liouville gave an explicit criterion that may be considered a primordial example of differential

algebra. Before presenting some connections with more recent topics, we shall start with an overview

of the classical facts, recalling some criteria for elementary integration and relating this with issues of

torsion in abelian varieties. Then we shall turn to differentials in 1-parameter algebraic families, asking

for which values of the parameter we can have an elementary integral. (This had been considered

already in the 80s by J. Davenport.) The mentioned torsion issues provide a connection of this with a

conjecture of R. Pink in the realm of the so-calledUnlikely Intersections. In joint work in collaboration
with David Masser (still partly in progress), we have proved finiteness of the set of relevant values,

under suitable necessary conditions. Here we shall give a brief account of the whole context, pointing

out at the end possible links with other problems.
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Keywords. Integration, abelian varieties, torsion points, unlikely intersections, conjecture of Pink.

1. Integration in finite terms

Since the invention of integral calculus and the realization of indefinite integration as a pro-

cess inverse to differentiation, a development occurred towards an ‘algebra’ for ‘explicit’

calculations in this direction. Some basic functions, like polynomials and rational functions,

the exponential function ez and its inverse log z, as well as the basic trigonometric func-

tions sin z, cos z, tan z and their inverses, admit indefinite integrals (i.e. a primitive)1which

again may be expressed ‘in terms of these functions’. The application of a few rules (de-

rived from corresponding rules for differentiation) allows expressions of the same kind for

other functions obtained from the former ones by rational operations and by composition.

Then, a (rough) question that arose naturally, and still today presents itself very soon, al-

ready to freshmen, is: Which other functions, constructed from the above mentioned ones
(for instance), do admit an indefinite integral expressed again in similar fashion?

To give more precise meaning to this, we may define the class of elementary functions
as those obtained from the rational functions over C by a finite number of operations of the

following three kinds:

(a) Algebraic operations; namely, if f1(z), . . . , fd(z) have been already obtained, we al-
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low in our class all rational functions in them and a solution y = y(z) of

yd + f1(z)y
d−1 + . . .+ fd(z) = 0.

(b) Exponentiation: if f(z) has been obtained, we allow exp f(z).

(c) Taking a logarithm: we allow log f(z).

Of course (b), (c) lead to trigonometrical functions as well. Some care is needed con-

cerning e.g. the domain of definition, and also, in (a) and (c), which branch of the functions

has to be taken. For instance, one may agree to consider open disks in C as domains, re-

stricting possibly the disk each time an operation is performed, and choosing an arbitrary

branch. In considering finite sets of functions, this procedure is legitimate, and we can even

assume that our functions are meromorphic in a sufficiently small disk, so that in particular

they form a field, which is moreover closed under differentiation.2

Needless to say, one could start with a larger class of functions, or allow other kinds of

operations, like solutions of differential equations of prescribed type; however, this rapidly

lead to subtle issues in differential Galois theory, and here we shall stick to the above basic

special case (except for a few comments in the last section). We refer to Rosenlicht’s article

[29] for a self-contained detailed and clear account of this, to Risch’s paper [25] for a more

formal and general treatment, to Hardy’s book [7] for a somewhat general treatment, however

often based on examples and with few proofs, and to Ritt’s [27] book for further and rather

more involved issues, in several directions, and for other references.3

Once we have decided which is our class of elementary functions, we can say that a

primitive of one such function may be expressed in finite terms (or in elementary terms, or
in closed form) if it belongs itself to the class in question. In spite of the many indefinite

integrals which can be likewise obtained, sometimes at the cost of some ingenious trick, a

freshman shall soon be faced with some other ones, of quite simple functions, which he can

not express in simple terms. Let us now see a few of these explicit instances which seem to

defeat every attempt:

The integral
∫

dz
log z is an example (coming also from Prime Number Theory); it is trans-

formed into
∫
ez dz

z by replacing z with ez . Another one which very soon appears is the

Gaussian
∫
e−z

2

dz, coming from Probability Theory; the substitution z2 ↔ z reduces it to∫
e−z dz√

z
.

Integrals of algebraic differentials also are puzzling, and indeed lead to quite important

issues; let us see some examples, the simplest ones coming with rational functions. It is usu-

ally explained in undergraduate courses that such a function R(z) ∈ C(z) can be integrated

in finite terms, actually as a sum of a rational function and a linear combination of functions

log(z − a) (at least provided we allow complex numbers). This is obtained on decomposing

R(z) in partial fractions, that is expressing it as a C-linear combination of terms zm and

(z − a)−m (m ∈ N).

1In fact, it would be more sensible to speak of integral, or primitive, of a differential f(z)dz rather than ‘integral

of a function’, but we shall use also the latter terminology when it causes no confusion.

2This is for instance the viewpoint adopted in [29]; it is to be mentioned that this does not suffice for more

abstract investigations of algebraic differential equations. In the sequel we shall not pause on such precision.

3 Some other rather classical references in Differential Algebra are Kolchin’s [10] and Kaplanski’s [8] books,

the latter being short but giving a very clear and useful account; a further recent and more advanced one is van der

Put and Singer’s treatise [24]. We point out that these books touch especially differential Galois theory and are not

directly involved with our more basic context, which, in Rosenlicht’s words, is in a sense ‘pre-Galois’.
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The same happens when we integrate a differential on a curve of genus zero, because we

may parametrize the curve (and hence the differential) rationally. The best-known examples

probably occur with conic curves; so, any integral
∫
R(z,

√
1− z2) ·dz, whereR ∈ C(u, v),

may be reduced to the case of rational functions through the parametrization w = 2t
1+t2 ,

z = 1−t2
1+t2 of the circle w2 + z2 = 1 (with inverse t = (1 − z)/w). In particular, we find

(up to a constant and up to a choice of i =
√−1) the formula

∫
dz√
1−z2 = −i log i+2t−it2

1+t2 =

−i · log(iz +√
1− z2) = arcsin z.

On the contrary, if we consider curves of higher genus, often any attempt shall fail;

for instance, trying to compute the length of a lemniscate4 leads to an integral of the form∫
dz√
1−z4 , similar only in shape to the previous one. Indeed, it seems that Fagnano tried

unsuccessfuly to rationalize the integrand, on imitating the case of the circle; this failure

however eventually led him to important formulae, which were subsequently recognized as

duplication formulae for elliptic functions (or for points on an elliptic curve). In fact, the

integral (locally) represents essentially an inverse to a Weierstrass function ℘(z) associated
to the elliptic curve w2 = 1 − z4 (in the same way that the former integral represents an

inverse to sin z). Some thirty years later Euler, with closely related investigations, arrived

to general addition formulae (see the discussion in Siegel’s book [33], Ch. 1). This elliptic

instance (and other ones in higher genus) shall be quite relevant below.

Now, in all of these cases, the question arises on how to prove the impossibility of an
integration in finite terms? How to convince ourselves that the failure is not merely due to a

lack of ingenuity on our part?

In a sense, a fairly complete answer to this was given by Liouville, who presented a the-

ory of integration in finite terms between 1833 and 1841. This is illustrated (in particular) in

[27], but here we shall follow [29], which contains an algebraic proof of a generalization by

Ostrowski (1946) of a theorem proved by Liouville’s in 1835, giving a most useful criterion.

To explain this, we first recall that a differential field F is a field equipped with a deriva-

tion denoted a → a′, such that (a+ b)′ = a′ + b′ and (ab)′ = a′b+ ab′. The constants are
defined as the elements c ∈ F with c′ = 0; they form a subfield containing 1. We agree to

call a an exponential of b, or b a logarithm of a, if b′ = a′/a.
In agreement with the above notion, we define an elementary (differential) extension of

F to be a differential field obtained from F by a finite sequence of adjunctions of elements

which are either algebraic, or exponentials or logarithms, i.e. a field F (t1, . . . , tn), where for
each i = 1, . . . , n, the element ti is either algebraic over F (t1, . . . , ti−1), or the exponential
or the logarithm of an element of F (t1, . . . , ti−1). We find back the previously sketched

concept in case F is the field of meromorphic functions on a given disk, provided we restrict

possibly the disk each time we add a new element.

With these definitions, following again [29] (see also [28]), let us state the alluded result:

Theorem 1.1 ([28, 29]). Let F be a differential field of characteristic zero and let α ∈ F .
If the equation y′ = α has a solution in some elementary differential extension field of F
having the same subfield of constants, then there are constants c1, . . . , cn ∈ F and elements
u1, . . . , un, v ∈ F such that

α = v′ +
n∑
i=1

ci
u′i
ui
.

4 This is the set of points in the plane such that the product of the distances from two given points has a given

product; it is expressed by an equation of degree 4.
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Remark 1.2.

(i) We immediately point out that the assumption about the subfield of constants is auto-

matic in the cases of the fields of meromorphic functions mentioned above.5 In any

case, in the first place one can apply the result after appropriate enlargement of the

constants, and actually the proof can be modified to show that the result remains true

assuming only that the field of constants of F is algebraically closed. We omit details

in this brief account; a corresponding sharper form of the theorem can be found in

[25].

(ii) Note that there is an obvious converse: if α has the stated shape, then α = β′, where
β = v +

∑
ci log ui and where ‘log’ is to be interpreted in the above ‘differential’

sense, which of course coincides with the usual one in the said context of meromorphic

functions, when the derivation is d/dz; in that case
∫
α · dz = β. Clearly β lies in an

elementary extension of F .

In [29] one finds some nice applications of this criterion. One concerns f(z)eg(z) for
rational functions f, g. As proved by Liouville himself,

∫
f(z)eg(z)dz is elementary if and

only if there is a rational function a ∈ C(z) such that f = a′ + ag′; a proof is not too dif-

ficult starting from the theorem (with F = C(z, eg(z))). In turn, one may readily check that∫
e−z

2

dz is not elementary (we find the equation 1 = a′ − 2az, with no rational function

solutions: a could not have poles and would then be constant) and similarly for
∫
(ez/z)dz.

Certain substitutions, e.g. as in the above examples, or integrations by parts, lead to other im-

possibilities. With a bit more effort, in [29] it is checked that
∫
(sin z/z)dz is non-elementary

as well; more generally, partial fraction decompositions often allows to apply the last crite-

rion to obtain either an explicit elementary integral or an impossibility proof.

We want now to concentrate on algebraic differentials, which shall be done in the next

section. Before this, let us remark that a natural question, after Liouville’s theorem, is:

How to decide algorithmically if a given function has an elementary primitive? And, in the
affirmative case, how to compute it? Of course, one must give first a suitable meaning of

‘given function’ and ‘compute’; this may be done in a reasonable way. As remarked in the

book [7], at Hardy’s time a general algorithm was not known, and was first announced (with

some details) in Risch’s short paper [26]. It is to be observed that the steps of this procedure

which are probably the most subtle arise with algebraic differentials, and are related to the

main context of the present article. The whole matter is discussed in detail in [6], which also

raises issues which motivated part of the work with Masser considered below.

2. Integration of some algebraic differentials and a Pell equation in polynomi-
als

In this section we shall illustrate the previous result to analyze some ‘concrete’ special cases

of elementary integrability of algebraic differentials. (We stress that this kind of analysis is

by no means new, and our contributions to the topic shall appear later.)

We have mentioned above some integrals on curves of genus zero, and also Fagnano’s

and Euler’s attempts with integrals of the shape
∫

dz√
1−z4 , which correspond to work with

5 Note that this need not hold for instance in the case when the original field of constants is not algebraically

closed; a simple example comes from
∫
(z2 + 1)−1dz if we work over R, not C.
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rational differentials dz/w on the elliptic curve w2 = 1 − z4. Let us then consider, more

generally, differentials

ω =
h(z)dz

w
, w2 = f(z), (2.1)

where f(z) is a polynomial of degree 2d, without multiple zeros, and where h(z) �= 0 is a

polynomial, say of degree e. For brevity, here we shall stick to these special cases.
The curve so defined is hyperelliptic. We have given for it an equation in the affine

(z, w)-plane; the closure in P2 of such affine curve is singular (only) at infinity (for d > 1),
but it admits a smooth projective model, which we shall denote byH; it has genus g = d−1.

The shape of ω is somewhat natural, also because (as we shall check) for 0 ≤ e ≤ d− 2
we obtain the regular differentials on H . Note that the Fagnano-Euler differential corre-

sponds to d = 2, g = 1, e = 0. Similarly to that case, the vector-integral of a C-basis for the
regular differentials locally gives an embedding of the curve in a torus Cg/Λ, correspond-
ing to its Jacobian variety JH ; the integrals are usually called Abelian functions. (See for

instance [11], especially Ch. 4.)

As mentioned above, H is defined by w2 = f(z) on the whole affine plane; above each

point z = α ∈ C it has two points (α,±√f(α)), except when f(α) = 0, in which case

the said point of the z-line is branched with index 2. Above the point z = ∞ ∈ P1(C),
H has again two points, denoted ∞±, corresponding to the (Laurent-Puiseux) expansions

w = ±adzd+lower order terms, where a2d is the leading coefficient of f .
Let us denote by F = C(H) = C(z, w) the function field of H over C. It is a

differential field with respect to the derivation d/dz; note that the equation for H yields

2wdw = f ′(z)dz, or 2ww′ = f ′(z), which determines the derivation on the whole F . By
Theorem 1.1 we find that

∫
ω is an elementary function if and only if there are v, u1,. . . ,un∈F

and c1,. . . ,cn ∈ C such that

ω = dv +
n∑
i=1

ci
dui
ui
. (2.2)

We now want to derive from (2.2) some necessary conditions; in particular, this shall

prove some cases of impossibility of the integration of ω in finite terms, and shall yield

explicit integral formulae in some other cases.

Let us notice at once that in (2.2) we may assume that n is minimal, and then c1, . . . , cn
shall be linearly independent overQ; if not, then, by taking a suitableQ-basis c′1, . . . , c

′
m for∑

Qci, with m < n, we may write ci =
∑

j bijc
′
j with integers bij . Hence, recalling that

logarithmic differentiation u !→ du/u sends products to sums, we find
∑n

i=1 cidui/ui =∑m
j=1 c

′
jdvj/vj , where vj =

∏
i u

bij
i ∈ F . However, this contradicts minimality of n.

To analyze (2.2) we study the poles of ω. We view z, w as rational functions on H . Let

p ∈ H(C) and suppose first that z(p) ∈ C is finite. If f(z(p)) �= 0, then w(p) �= 0, z− z(p)
is a local parameter at p, and so certainly ω is regular at p. If f(z(p)) = 0, then w is a local

parameter at p. As noted above, we have 2wdw = f ′(z)dz, whence ω = 2h(z)dw/f ′(z).
Now, f has no multiple roots, hence f ′(z(p)) �= 0, proving that ω is again regular at p.
Hence the only possible poles of ω are ∞±. At each of these points, ζ := 1/z is a local

parameter, and we have dz = −dζ/ζ2. Hence ω = h(z)dζ/wζ2. The order of z at each
point at infinity is −1, and the order of w is −d, whence the order of ω at each such point is

d − e − 2. In particular, we find the previous assertion that ω is everywhere regular if and
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only if e ≤ d− 2.6 (A binomial expansion for w at infinity easily shows that the residues of

ω at these poles are given by certain polynomials in the coefficients of f, h, linear in the last
ones.)

Now, let us first suppose that n = 0, i.e. no ui appears in (2.2), so ω = dv is an exact
differential already in F . (A necessary condition for this is that ω has no residues, but if

g > 0 this is not sufficient.) Then, since ω has no finite poles, v cannot have finite poles

as well, and hence is regular on the affine part of H; since the plane equation w2 = f(z)
is nonsingular at finite points, we infer that v = a(z) + wb(z) with polynomials a, b. This
yields ω = (a′ + (2w)−1(2fb′ + f ′b))dz, so a ∈ C and 2h(z) = 2f(z)b′(z) + f ′(z)b(z).
This implies also in particular e ≥ 2d− 1.

Remark 2.1. The conclusion so obtained may be rephrased by saying that the image on

polynomials of the linear differential operator of the first order Φ := 2f(z) d
dz + f ′(z) con-

tains 2h(z). Note that, although the kernel of Φ is trivial on the said space, Φ sends a

polynomial of degreem to one of degreem+2d− 1, hence certainly it is not surjective and
it is ‘unlikely’ that a ‘randomly’ chosen h(z) lies in the image.

Now suppose that n ≥ 1. Note that if ui has multiplicity mi ∈ Z at p ∈ H , then

dui/ui has a simple pole at p, with residuemi. In particular, no differential dui/ui can have
finite zeros or poles. In fact, any p ∈ H is (at most) a simple pole of

∑
cidui/ui, with

residue
∑
cimi. But the mi are integers and the ci are linearly independent over Q, hence

the residue would not be zero as soon as somemi �= 0. On the other hand, dv has residue 0
at p, so p is certainly a pole of ω if somemi �= 0. Since ω has no finite poles, this proves the

claim. (This also proves that if ω is regular then no ui can appear, and the previous analysis

then shows that regular differentials cannot be integrated in the sought way.)

Hence each ui which appears has divisor supported at {∞+,∞−}; however, since the

divisor of a function has degree 0, we infer that each ui which appears has divisor of the

shapemi(∞+ −∞−), for anmi ∈ Z. If some ui appears, this implies in particular that the

divisor class of ∞+ − ∞− is torsion on the Jacobian JH of H . Letm be the exact order of

torsion; then m is the minimal integer > 0 such that there is a rational function u ∈ F with

div(u) = m(∞+ − ∞−), and it is easy to see that in this case each ui is, up to a constant

factor, an integral power of u, so that in fact we may suppose that n = 1, u1 = u.

Remark 2.2. The equation ω = du/u, with algebraic ω, to be solved with an algebraic

function u, appears for instance in Baldassarri and Dwork’s paper [3], where algebraic so-

lutions of second order linear differential equations are studied, also from the algorithmic

viewpoint. (See e.g. pp. 69–70, where conclusions similar to those appearing below are

mentioned.)

Let us draw some consequences from these last deductions. First, the function u is

regular at finite points, so is of the shape u = x(z) + wy(z), for x, y ∈ C[z], y �= 0. We

may suppose that u has a pole of order m > 0 at ∞− and no other poles, so the conjugate

function (over C(z)), denoted uσ , has a pole of order m at ∞+ and no other poles. This

easily yields deg x = m, deg y = m − d, and the norm to C(z) given by uuσ must be

constant (it has no poles), hence may be assumed to be 1 upon division. So we find

x(z)2 − f(z)y(z)2 = 1, y(z) �= 0, (2.3)

6 Note that this never happens when g = 0, but includes the Fagnano-Euler differential when g = 1.
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namely (x, y) is a nontrivial solution of the Pell’s equationX2 − fY 2 = 1 over the polyno-
mial ring C[z].

The relevance of the numerical Pell’s equation over Z is well known, and we shall not

pause on it here, except by recalling that the equation has always nontrivial solutions (i.e.

y �= 0) provided f is a positive integer, not a square. The Pell’s equation over a polynomial

ring is partly analogous, but rather less known, although it has also been studied since long

ago, for instance in 1826 by Abel [1], just in the context of elementary integrability of

certain differentials. These integrals indeed became special cases of Abelian integrals, in
more modern terminology; so it appears that the present context is quite related to some of

Abel’s motivations for his most important discoveries. Here we shall describe only in small

part Abel’s results on this and we refer to van der Poorten and Tran’s article [23] for more,

and further to the writer’s survey [35] (related to the content of the present article) for a

description of other contexts where this equation appears.

Coming back to the above, it is readily checked that some of the steps may be reversed,

and that the solvability of (2.3) amounts to ∞+ −∞− being torsion on JH . It also turns out

that, contrary to the numerical case, this solvability is rather ‘exceptional’: see Example 2.4

below and especially [35] for a detailed illustration of the meaning of this.

In general, if (x, y) ∈ C[z]2 is a solution of (2.3), let us put u := x + wy. After a

few calculations, we find 2du/u = (2xx′ − f ′y2 − 2fyy′) + w((f ′yx/f) + 2xy′ − 2x′y).
Differentiation of (2.3) yields 2xx′ = 2fyy′ + f ′y2. On the one hand, since x, y must be

coprime polynomials, this implies that y divides x′, so x′ = qy for a q ∈ C[z], of degree
d − 1. On the other hand, plugging into the previous formula gives 2xq = 2fy′ + f ′y and
du/u = q/w. In particular, we find an elementary integral from a solution to the Pell’s

equation, a result due to Abel:∫
x′(z)dz

y(z)
√
f(z)

= log
(
x(z) +

√
f(z) · y(z)

)
. (2.4)

Conversely, as is easily checked, this identity (with y �= 0) implies that x(z)2−f(z)y(z)2
is constant, hence if x, y ∈ C[z], the Pell’s equation (2.3) is solvable. (Also, it then turns out
automatically that x′/y has to be a polynomial.)

Coming back to our previous setting, similarly to the first case we find that ω − dv =
(2w)−1(2h− 2fb′ − f ′b))dz+ a′dz. If this is to be equal to c · du/u = cq/w for a c ∈ C∗,
we must have a =constant and 2fb′ + f ′b = 2h− 2cq.

We may resume the analysis in the following criterion (see also the paper [19] with

Masser):

Proposition 2.3. Suppose that the (nonzero) differential (2.1) may be integrated in finite
terms. Then (at least) one of the following occurs:

(i) The differential equation 2ϕ′f + ϕf ′ = 2h has a polynomial solution b ∈ C[z], and
then deg h ≥ 2d− 1. In this case indeed we have

∫
ω = bw.

(ii) The Pell’s equation (2.3) has a solution (x, y) ∈ C[z]2, and then the ratio q := x′/y
is a polynomial of degree d − 1; also, for some c ∈ C, the differential equation
2ϕ′f + ϕf ′ = 2h − 2cq has a polynomial solution b ∈ C[z], and either h/q is
constant or again deg h ≥ 2d− 1. Now we have

∫
ω = bw + c log(x+ wy).

Note that the Pell’s equation is solvable in the Fagnano-Euler case: (z2)2 − √−1
2
(1 −

z4) = 1, however the differential dz/w has no elementary integral: it is regular on H , and

such differentials always escape, e.g. since deg h ≤ d− 2 in those cases.
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We have seen that the solvability of the Pell’s equation corresponds to a certain point

being torsion on the Jacobian JH ; to decide whether this holds in concrete cases historically

proved to be a subtle question. Although there are nowadays standard algorithms to check

whether a given point on an abelian variety is torsion or not, and to find the possible tor-

sion order7, this matter had not been clarified until ≈1970 (see [26], [6]). In this way, if

f(z), h(z) are given ‘explicitly’, we may check effectively by the above criterion whether∫
ω is elementary or not, and we may exhibit an elementary primitive when this exists: in-

deed, once the torsion order is known (if there is torsion), we may compute suitable x, y
as in (2.3), and then (i) or (ii) gives a linear differential equation to be solved in a poly-

nomial b(z) (and a constant c in case (ii)). But the degree of a possible b(z) is bounded
by max(0, deg h + 1 − 2d) and then all of this amounts to solve a given system of linear

equations.

As alluded above, there are considerations showing that for a ‘random’ polynomial f(z)
of even degree ≥ 4, the Pell’s equation shall have no nontrivial solutions.8 The randomness

is intended in the sense of dimensions: The ‘Pellian’ polynomials of a given degree fall into
a denumerable union of (algebraic) families of lower dimension compared to the family of
all polynomials of that degree.

See [35] for some details and illustrations; here we restrict to the following examples,

providing evidence in this direction already for pencils of polynomials (where we remark

that (ii) below is rather harder to prove than the general assertion just stated):

Example 2.4.
(i) Consider the pencil of polynomials fλ(z) = z4 + z + λ, so Hλ : w2 = fλ(z) has

genus 1. It may be proved that the Pell’s equation for fλ(z) cannot be solved identically

in λ, but that, nevertheless, the Pell’s equation for fl has nontrivial solutions for infinitely
many l ∈ C.9 The ls in question appear as poles of the coordinates z, w of multiples of

∞+ −∞− on the elliptic curve obtained fromHλ after choosing ∞− as an origin (note that

such coordinates are algebraic functions of λ); some explicit values leading to solutions are

l = 0, 1/2, (−1− i√3)/4, with minimal degree of x(z) being resp. 3, 4, 4.

In particular, all of these ls are algebraic numbers (which may be seen also on observing

that otherwise the identical Pell’s equation would be solvable) and moreover with bounded

Weil height (as follows from a theorem of Silverman) so they are rather ‘sparse’; for instance,

this implies that there are only finitely many of them which are rational, or even of any fixed

degree over Q. (See [34] and the references therein for proofs of these facts.)

(ii) Consider now the pencil fλ(z) = z
6 + z + λ, giving Hλ of genus 2. As in (i), it is not

too difficult to prove that (2.3), with f = fλ, cannot be solved identically. But now we have

an assertion stronger than before about the ‘exceptional’ values l: though there are some,

like l = 0 (one has the ‘Pellian’ identity (2z5 + 1)2 − f0(z)(2z2)2 = 1)10, we proved with

7 Of course, we must work with finitely presented objects, for instance varieties and points defined over Q and

given by explicit equations over Z. In this case suitable algorithms come e.g. from reduction modulo two distinct

primes. This method is quoted also in [3].

8 It is easy to see that for deg f = 2 there are always solutions of (2.3) with x, y ∈ C[z]. This corresponds to a
curveH of genus 0, and in fact we have already noted that then any differential can be integrated in finite terms.

9 This fact, though not difficult, seems not completely obvious to us; a proof comes on using the above described

correspondence with torsion on an elliptic curve; see [34], especially p. 92.

10 The previous values were communicated to me by Masser’s student Merkert, whereas this one was found by

Masser; both of them used continued fractions.
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Masser in [18] that the Pell’s equation for fl(z) is solvable only for finitely many l ∈ C.11
Correspondingly, there are only finitely many l ∈ C for which an elementary integral∫
h(z)dz/

√
fl(z) exists with h ∈ C[z] of degree ≤ 4. One of them, derived from the above

identity for l = 0, is
∫
5z2dz/

√
z6 + z = log(1 + 2z5 + 2z2

√
z6 + z).

In the sequel we shall again consider families depending on a parameter.

3. Differentials and integrals depending on a parameter

In the last Example 2.4, we have met parametric families of Pell’s equations in polynomials,

illustrating in particular that a nontrivial solution is quite an exceptional phenomenon. The

link provided by Proposition 2.3 then shows that an elementary abelian integral as in (2.4),

in such parametric families of differentials, is also quite uncommon.

Then, one may ask what happens for parametric families more general than the above

ones. From another viewpoint, it is also natural to ask the above questions also for (functions

and) differential forms depending on several variables, and to consider the problem of finding

an elementary primitive with respect to some derivation of the relevant field.

Here we shall consider such problems, and stick to the case of two variables z, λ, and
again to differentiation with respect to z, so that λ may be seen as a parameter for a pencil,

not depending on z (we may also think of λ as a point on an algebraic curve).

We shall soon come back to examples of the previous kind, but first let us briefly pause,

as before, on some cases with transcendental functions, which seem puzzling. For instance,

let us consider (log z)λdz, which we may also write as eλ log log zdz; to integrate it we may

also use the substitution z !→ ez , which sends it to zλezdz, and then a definite integral

relates to the Gamma function. We view λ as a constant, and so we start with a ground

field C(λ), or even L := C(λ), in place of C. Then we may try to apply Theorem 1.1

to F = L(z, log z, ψ), where ψ is thought of as (log z)λ, and may be given a meaning as

an element whose derivative ψ′ equals λψ(z log z)−1.12 This field is certainly closed under

differentiation with respect to z. Taking into account that z, log z, ψ may be shown to be

algebraically independent over L, one may also show that F has L as field of constants for

d/dz, and after some work, we shall find that
∫
ψ · dz is not elementary.13

In fact, already thinking of special values of λ yields non elementary integrals, as we

have seen to happen with λ = −1, and actually this continues to hold for λ equal to any

negative integer, since substitution z !→ ez and integration by parts reduces this to λ = −1.
But for λ ∈ N we find elementary integrals as is immediately verified by the same steps.

This sort of ambiguous behaviour inspires further research.

Actually, this matter of specialization may raise issues already at the moment of giving an

exact definition; for instance, for special values of λ we could find poles of some coefficients

introduced along the process of constructing an elementary extension. However, if we argue

(as above) with algebraic functions of λ, and since in each elementary extension only finitely

many functions are involved, these poles may occur only at finitely many points, and we may

11 As in Example (i), only the algebraic l are of interest for this case.
12 One has to use here basic notions of differential algebra, as presented for instance in [29].

13 Here we should add the condition that also the extension field has L as a field of constants, but in fact this

may be dispensed with, see Remark 1.2(i) above. Or else, if we want to avoid this point, we can also look at λ as

a ‘generic’ complex number itself and look at F as a field of meromorphic functions in some region, as before, so

that C remains the field of constants.



540 Umberto Zannier

specialize without ado outside this set. Hence, for instance, we may immediately deduce that

if an integral is ‘generically’ elementary (i.e., if it is elementary over the constant field C(λ))
then it remains elementary for all but finitely many complex values of λ.14 It is the converse
issue which is (at least for us) much less clear, and much more interesting: If an integral is
not ‘generically’ elementary, for ‘which’ values of the parameter can it become elementary?

Let us call ‘exceptional’ these values. Of course, by ‘which’ we may mean several things;

for instance we may aim to prove that the exceptional values are in some sense ‘sparse’, or

even that they form a finite set, or at least that their set has infinite complement, depending

on the case. Note that the above example shows that in general there is no finiteness assertion

for them.15

Such a kind of problem was actually raised explicitly by J. Davenport in the already

quoted book [6]; he considered throughout especially differentials on an algebraic curve,

and in Ch. 3.6 he allowed dependence on a parameter, also varying algebraically. We may

view these data as a pencil of (curve+differential)s, or else as a single differential on a curve,

both defined over the function field of a(nother) curve. In the sequel we shall tacitly switch

between these viewpoints.

Notation. For later convenience, once the differential ωλ is given (assumed not to have an

elementary primitive identically in λ), let us denote by E the set of the ‘exceptional’ values

of the parameter for which the specialized differential admits an elementary primitive . (It

shall be clear from the context whether we consider any complex value or only algebraic

ones.)

The said book considers, among others, the problem of proving that if such a differential
does not admit an elementary primitive, then the set of values of the parameter for which the
specialized differential admits such a primitive is finite (i.e., E is finite). So, for instance we

have already noted that this fails for the above example of (log z)λ, but now we are confined

to algebraic differentials.

The book contains a Theorem 7 in this direction; however there seems not to be a com-

plete proof of all the stated assertions. In particular, a difficulty which that treatment does

not overcome concerns torsion on a Jacobian (similarly to what we have seen in §2 in con-

nection to the Pell’s equation). It would be much easier to prove the weaker assertion that

the differential admits an elementary primitive if and only if the specialized one admits such
a primitive for all but finitely many values of the parameter.16 Such a result may remind of

the Hilbert’s irreducibility theorem. But here we shall be concerned with the more delicate

question of the finiteness of the set E of exceptional values.

14 This yields another proof that (log z)λdz is not elementary, because, as noted above, it is not such for λ equal

to any negative integer.

15 Through Theorem 1.1 it may be proved that we find an elementary integral of (log z)λ precisely for λ ∈ N.
16 This amounts to E having infinite complement. Even this kind of assertion contains different levels of subtlety,

depending on whether we allow ‘generic’ specializations, or merely algebraic ones. For instance, the assertion of

the above Example 2.4(ii) may be weakened either to ‘there are infinitely many values of λ ∈ C for which the Pell
is not solvable for fλ’ or to the same statement with C replaced by Q or even Q. Now, we had already noted that

the first assertion amounts to the fact that (2.3) is not solvable identically in λ; actually (even limiting to a single

transcendental value of λ), this is almost tautological, which is not the case for the second claim. This last, at any

rate in the ‘non-constant’ cases, follows from a general result by Silverman predicting bounded Weil height for the

exceptional points, or also from suitable applications of Hilbert’s irreducibility Theorem, as in work by Néron.
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A link with Unlikely Intersections. In a series of papers in collaboration withMasser [14]–

[19] we had considered problems involving torsion on pencils of abelian varieties. These

papers actually prove, under suitable conditions, general finiteness theorems for the set of

specializations where a non-torsion section for a pencil of abelian surfaces may become tor-

sion.17 (We analyzed separately the cases when the abelian surface is isogenous to a product

of elliptic curves, or is simple, because the arguments present some differences.) Such an

issue may be considered a ‘relative’ case of the celebrated Manin-Mumford conjecture (a

theorem of Raynaud since the 80s), and is a special case of a general conjecture of Pink [22].

The general topic is often referred to as ‘Unlikely Intersections’, because the specializations

in question are ‘unexpected’ (mainly for dimensional reasons) and should be hard to come

by. See [34] and [35] for a discussion.

Now, we have already pointed out in §2 that the solvability of the Pell’s equation is

related to torsion on a suitable Jacobian variety, and this simple observation (well known

since long ago) provides the link of the said context with the present one.

Indeed, at some point Masser noticed the book [6] and eventually, especially through the

role of the Pell’s equation, we realized that the finiteness questions raised therein could have

been obtained as a consequence of our methods. As will be seen in some examples below,

the present context shall involve other algebraic groups beyond abelian varieties; these arise

as generalized Jacobians of suitable curves, and, for the cases of interest here, are extensions

of abelian varieties by additive groups Gr
a. (See what follows for more; see also [35], §4, for

another link of generalized Jacobians with certain ‘degenerate’ Pell’s equations.)

The proof of a full finiteness statement for any pencil of differentials on a curve is in

the course of being written down. Here we shall merely give some examples, collected in

the next section, illustrating the mentioned connection; the examples should also isolate the

main issues which appear in a general finiteness proof. (In a subsequent section we shall say

more on this general case.)

Remark 3.1. In this context λ shall indicate a generic point of a given curve over Q; the

arguments are not affected by the structure of this curve, and hence for simplicity in the

sequel we shall work mainly with P1, i.e. letting λ be an indeterminate.

Also, we shall let throughout Q be a ground field for the coefficients involved in our

functions and curves. The case when arbitrary complex coefficients appear may be treated in

a completely similar way, but requires a corresponding extension of the said auxiliary results

obtained with Masser; such an extension, which seems more involved than may be expected,

has been carried out partly in [16] and [17], but the general case is still in progress (in joint

work also with Corvaja).

4. Some examples of finiteness of the set of exceptional specializations

To better illustrate the alluded finiteness problem in this article, and keep continuity with

the above, we start by analyzing the hyperelliptic differentials already considered in (2.1),

actually for the particular pencils which appear in a previous example. For these cases, we

shall sketch a deduction of finiteness of the set denoted E above, relying on the mentioned

results with Masser and related ones.

17 On the contrary, except for some degenerate ‘constant’ cases which may be classified, there are infinitely many

torsion specializations on a pencil of elliptic curves, as happens in connection with Example 2.4(i) above.



542 Umberto Zannier

Example 4.1. We shall refer to differentials and curves as in (2.1), but depending on a

parameter λ, so we take therein h(z) = hλ(z), f(z) = fλ(z), polynomials in Q(λ)[z], and
we consider a corresponding ωλ = hλ/w. Let us discuss the specialization issue in some

detail, using the pencils appearing in Example 2.4. We shall presently reverse the order of

the two instances therein, because the second one leads more rapidly to a connection with

our context.

(i) Let us choose fλ(z) = z6 + z + λ, as in 2.4(ii); now the curve H = Hλ is given by

w2 = z6 + z + λ, and has (generically) genus 2.

Let us suppose that ωλ is not identically integrable in finite terms (i.e. considered over

the field Q(λ)) and let us pick l ∈ Q such that ωl is integrable in finite terms; as above, we

denote by E the set of these ‘exceptional’ numbers. (We tacitly disregard the finitely many l
such that fl has a double root, so that Hl shall have also genus 2.)

We shall use Proposition 2.3. Take first the case when Pell’s equation (2.3) for fl does
not have a solution. Then, we infer that the differential equation 2ϕ′fl + ϕf ′l = 2hl has a
polynomial solution. This solvability amounts to the one of a (inhomogeneous) system of

≤ deg hl + 1 linear equations, where the unknowns are the coefficients of ϕ (which must

have degree ≤ deg hl − deg fl + 1 ≤ deg hλ − 5) and where the entries of the system are

expressed linearly in l and the coefficients of hl. By Capelli’s criterion, the solvability may

be controlled through the vanishing of suitable minors of the matrix of the system. Now, we

have a similar matrix with l replaced by λ, with a corresponding solvability condition. Each
minor which is not identically zero in λ may become zero only for finitely many algebraic

numbers l; hence, if l is taken outside this finite set (for any of the minors) we cannot have

solvability (because we are assuming that the system is not identically solvable).

On the other hand, we have already remarked that the Pell’s equation may have solutions

only for finitely many l, as is proved in [18]. (It should be noted that this second finiteness,

contrary to the elementary nature of the arguments for the former case, requires much more

effort and the use of rather deep tools.)

In conclusion, combination of these remarks yields finiteness for the set E .
(ii) Let us now choose fλ(z) = z

4 + z+λ, as in 2.4(i); nowHλ has genus 1 (and is isomor-

phic to the curve with Weierstrass equation y2 = x3 −λx+1/4). We again suppose that ωλ
is not identically integrable in finite terms and analyze the set E , assuming by contradiction

that it is infinite.

Arguing as in part (i), we obtain finiteness of the set of those l ∈ E such that the Pell’s

equation for fl is not solvable.

Suppose now that the Pell’s equation for fl has a solution; we have remarked in Example

2.4 that for the present fλ, of degree 4, this set is infinite (forgetting that l ∈ E), so we cannot
argue as in (i) and have to find supplementary arguments.

Say that l ∈ E and that (xl, yl) is a Pell’s solution with minimal degrees. Now the

differential equation of Proposition 2.3 is 2ϕ′fl+ϕf ′l = 2hl− 2cql, where c is any constant
and ql = x′l/yl has degree 1. One problem in carrying out the previous analysis is that

we have little information on ql; for instance it shall follow that not even its zero can be

expressed algebraically in l (restricting to the numbers l ∈ E in question). Still less we know

xl, yl; note that they are polynomials of minimal degree so that ul := xl + wlyl has divisor
ml(∞+ − ∞−), where ml �= 0 is an integer depending on l, and |ml| = deg xl. Certainly
|ml| shall tend to infinity (for otherwise, as is very easy to see, the Pell’s equation would

be identically solvable). All of this suggests that the quantities appearing in the specialized
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system are not part of an algebraic (continuous) family.

We may cope with this serious difficulty in some steps, as follows. Since the differential

equation 2ϕ′fl+ϕf ′l = 2hl − 2cql has (for some constant c) a polynomial solution ϕ = ϕl,
say, and since deg ql = 1, we see that for infinitely many l the polynomial 2hl is in the image,

modulo linear polynomials, of the differential operator 2fld/dz+f ′l . But then, by elementary

arguments of linear algebra very similar to those in the first part, we deduce the same for

2hλ, namely that there exists a polynomial ϕλ ∈ Q(λ)[z] such that 2ϕ′λfλ + ϕλf
′
λ − 2hλ

has degree ≤ 1.
This amounts to the fact that ωλ−d(ϕλw) is of the shapeQλ(z)dz/w, for a polynomial

Qλ ∈ Q(λ)[z], linear in z, and on subtracting d(ϕλw) we may directly assume that ωλ =
Qλ(z)dz/w. In turn, this yields that ωλ has at most simple poles at ∞+,∞− and no other

poles.18

Then for infinitely many l ∈ E we obtain that ωl = cldul/ul, for a constant cl, which
we may assume �= 0, for otherwise we fall in the previous case (and ωλ would be identically

integrable in finite terms).

Now, looking at poles shall not yield further information, and then let us look at zeros of

these differentials. Let ζλ ∈ Q(λ) be the unique zero of Qλ. Then we may specialize it at

almost all l ∈ Q, obtaining a zero denoted ζl, and we deduce that both points above z = ζl
on Hl, i.e. both points ξ

±
l ∈ Hl such that z(ξ

±
l ) = ζl, are zeros of dul.

Hence, for these l ∈ E there is a rational function on Hl having divisor of the shape

ml(∞+ − ∞−) and such that its differential vanishes at both points above ζl, so vanishes

at ξ+l . Now, while the first condition says that ∞+ − ∞− is torsion on the Jacobian of Hl

(which is essentiallyHl), adding the second condition says that ∞+ −∞− is torsion on the
generalized Jacobian of Hl with respect to the modulus 2ξ+l .

For notions related to generalized Jacobians we refer to Serre’s book [32], and, for the

present case, also to the recent paper [5] by Corvaja, Masser and the writer. Here, we merely

mention that this generalized Jacobian, denoted here Γl, is an extension of the elliptic curve

Hl (for instance with ∞− as origin), by the additive algebraic group Ga; i.e., there is an

exact sequence of algebraic groups 0 → Ga → Γl → Hl → 0. It may be described in

several ways; one of them, especially relevant here, uses a ‘strong’ equivalence of divisors

on a curveH: two such divisorsD,D′ are strongly equivalent if their difference is in the first
place a principal divisor, i.e. D −D′ = div(u) for some rational function u onH (which is

usual equivalence); it is then required that the differential du vanishes at a prescribed point.

So, this is precisely what happens in the above situation, where H = Hl and ξ
+
l is the point

in question.

Naturally, we may consider the ‘generic’ extension Γλ of Hλ by Ga, corresponding to

the modulus 2ξ+λ .19 And we find that for the relevant l ∈ E , the image in Γl of the divisor

∞+ −∞− is torsion. Now, Γλ is an algebraic group (e.g., over Q(λ)) of dimension 2; also,
the divisor ∞+ − ∞− is not identically torsion therein, for otherwise this would imply in

particular that it is torsion on Hλ.

Moreover, it turns out that the extension Γλ is not trivial (also said not split), i.e. not

isomorphic to Ga ×Hλ. This fact, proved for instance in [32] (see Ch. VII, Prop. 15), does

not appear to be obvious, and is absolutely crucial for the sought finiteness: indeed, for a

18 We observe that in more general cases these steps may be replaced by a simple use of the Riemann-Roch

theorem.

19 This involves a choice of the sign; indeed, it would be more precise to work with the base curve with function

field C(λ,
√

f(ζλ)), rather than with the λ-line. However, for brevity we skip such precisions.
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split extension, a point could lie in {0} × Hλ and could then yield infinitely many torsion

specializations (as nothing would change compared to Hλ itself).

At this stage, an analogue of the joint results with Masser, obtained by Masser’s student

Schmidt [31], asserts that the above torsion-degeneracy in fact may happen only for finitely

many values l of λ.

This contradiction concludes the analysis of the present cases.

Note that this implies the previous assertion that the (unique) zero of the polynomial ql
does not vary algebraically in l (for the infinitely many l for which (2.3) is solvable). (Ob-

serve also that the leading coefficient of ql is ±ml, whose absolute value tends to infinity.)

Remark on effectivity. We note that, though we may calculate the exceptional numbers

l ∈ E for which the Pell’s equation is not solvable, our proof methods do not presently

allow to list the finitely many remaining ones. However the mentioned theorem of Silverman

giving the boundedness of the Weil height h(l) is effective and can be used to list the relevant
l with degree bounded by a prescribed number. Also, there is good hope that the structure of

the proofs can be suitably analyzed so to be made completely effective.

Example 4.2. We now present an example, taken from [5], when the curve is ‘constant’ (i.e.

not depending on λ) but instead the differential is variable. Suppose that f ∈ C[z] has degree
3 and no multiple roots and consider the projective smooth curve H of genus 1 with affine

equation w2 = f(z). This curve has a unique point O at infinity (i.e. where z has a pole).
Take now the differential

ωλ :=
dz

(z − λ)w,

where λ is a variable, that is we consider (H and) this differential as defined overQ(λ). This
may be easily checked to have a double zero at O and two poles at the points P±λ where

z = λ, with residues ±1/
√
f(λ). Theorem 1.1 then easily implies that, if l ∈ C,

∫
ωl is

elementary if and only if there are a nonzero constant cl and a rational function ul on H
such that ωl = cldul/ul. Similarly to Example 4.1(ii), this implies that, for some nonzero

integer ml, the class of the divisor ml(P
+
l − P−l ) with respect to the modulus 2O is zero;

in turn, this yields that P+
l − P−l is torsion of the corresponding (nontrivial) extension Γ

of JH(∼= H) by Ga. As in the previous example, though P+
l − P−l is torsion on JH for

infinitely many l, it may be proved that this stronger torsion condition may be verified only

for finitely many l ∈ C.
In this example actually the double zero of ω at O would imply that the class of

ml(P
+
l − P−l ) is zero with respect to the modulus 3O, which is a condition even stronger

than needed. If for instance we replace the present cubic f(z)with, e.g., the quartic z4+z+1,
the corresponding ωλ has two simple zeros at the two points at infinity. This gives just what

is needed, and choosing any of the zeros suffices for the above argument to work.

It is to be noted that this proof can be carried out without appealing to the method used

in the above quoted papers with Masser; this is because H is constant, and hence a general-

ization of Raynaud’s theorem obtained by Hindry, or else the method of [5], suffices.20 See

[5] also for references.

20 In fact, the divisor in question describes, as λ varies, a curve in Γ, and no such curve can contain infinitely

many torsion points: otherwise the curve would have to be a translate of an algebraic subgroup, by the cited works.

But the only algebraic subgroup of dimension 1 of Γ is Ga, and each translate of it has at most one torsion point.
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5. Some considerations towards a general case

A general criterion. For the analysis of the general case of algebraic differentials over a

curve one argues similarly, using a criterion easily derived from Theorem 1.1 and which

has been implicit in the above examples. (This appears, e.g., in [26].) Let us describe the

essentials.

We letX be an algebraic curve, with function field k(X) (where k is algebraically closed
of characteristic zero) and let ω be a (rational) differential onX admitting an elementary in-

tegral. Then, by Theorem 1.1 (or at any rate by the mentioned more precise version regarding

the constants) ω can be written as in (2.2), with v, u1, . . . , un ∈ k(X) and ci ∈ k, namely

ω = dv +
∑n

i=1 cidui/ui. As in a previous proof, we can assume that n is minimal, and

then the ci are linearly independent over Q. Any differential dui/ui has poles of order 1, at
the zeros and poles of ui, with residues given by the respective multiplicities; also, dv has
no residues. Hence, at each point p ∈ X , we have an equation

resp ω = e1pc1 + . . .+ enpcn, (5.1)

with integers eip = ordp(ui). Of course, if we are given in advance only ω, we do not know
the possible ui; however the argument may be partially reversed; let us see how.

In the first place, we may let c1, . . . , cn be a basis for the vector space spanned over Q
by the residues of ω, and then for any p ∈ X we have (uniquely) an equation (5.1), where

the eip are rationals; but in fact (since only finitely many points p are involved) they can be

assumed to be integers after rescaling the ci by a suitable rational. At this stage we have

to check whether an equation (2.2) holds, however for some possibly different constants c∗i
(and possibly another n). In this case, by the above remarks, the Q-space spanned by the

ci has to be the same as for the c∗i . Hence, on expressing the c∗i linearly in terms of the ci,
with rational coefficients, and using the additive property of the logarithmic derivative, at the

cost of multiplying ω by a suitable integer m �= 0, we may assume that c∗i = ci, and that

mω = dv +
∑
cidui/ui. Hence, we arrive at the previous conclusion, ‘only’ at the cost of

multiplying bym. Necessarily,

m
∑
p∈X

eip · p = div(ui), i = 1, . . . , n. (5.2)

Note that in this argument the divisors Di :=
∑

p∈X eip · p ∈ div(X) are determined

in terms only of ω, and have degree zero, because of the Q-independence of the ci and
the sum-formula for residues (see [32], Prop. 6). They may be also shown to be linearly

independent over Z. A nonzero integer m as in (5.2) is a priori not given (or bounded) in

terms of ω (which shall be the main point); in any case, (5.2) yields the following strong

necessary condition:

Criterion. If ω admits an elementary integral, there is a nonzero integer m such that the
mDi are principal divisors, i.e., for i = 1, . . . , n, the class of Di in the Jacobian JX of X
is torsion.

So, we see that the torsion condition that we had previously found in connection with the

Pell’s equation appears indeed generally.

When we have a pencil of differentials, to be specialized, we may compare the ‘generic’

criterion with the ‘special’ one, as we have done in the above examples. Through this com-

parison, in the mentioned joint work with Masser we have very recently obtained the sought
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finiteness for the exceptional set E ; as in the above simple examples, this heavily relies on the

said finiteness results with Masser towards Pink’s conjecture (or else on Schmidt’s thesis).

However, it is to be remarked that in the course of these applications several new issues

appear along the way, apparently with different levels of difficulty. We briefly list some of

them, the simplest of which we already met in the examples; we shall not go in detail of how

overcoming them (which may be indeed done, and shall appear in a forthcoming paper).

We let Xλ denote a pencil of curves over a(nother) ‘base’ curve B over Q, where λ
is a generic point of B (and Xλ is defined over Q(λ)).21 We let ωλ a differential on Xλ

and denote by Xl, ωl, specializations of them, where l ∈ B(Q). We assume that ωλ is

not identically integrable in elementary terms and want to prove the finiteness of the above

defined set E .
(a) About the Criterion. We have observed that the condition provided by the ‘Criterion’

is only necessary for integrability in finite terms, not sufficient. Indeed, in the first place

Theorem 1.1 involves also the function v and its differential, not taken into account in the

Criterion. However, it is a matter of linear algebra (using the Riemann-Roch theorem) that if

ωl − dvl has only poles of order ≤ 1 for an infinity of special values l and rational functions
vl on Xl, then there exists a function vλ such that ωλ − dvλ has the same property.22 In this

way we may directly assume such a pole structure for ωλ, and then the same will hold for

ωl, so we may assume v = 0 in the application of Theorem 1.1.

However, even with this hypothesis on a differential ω, the condition in the Criterion does
not become sufficient. In fact, that condition only ensures that there are rational functions

u1, . . . , un such thatmω−∑ cidui/ui has no poles. But on a curve genus g there are inde-
pendent g differentials of this sort, so for g > 0 we cannot conclude thatmω =

∑
cidui/ui.

Hence, concerning our purposes, we cannot hope to extract all the needed information from

the Criterion. (To supplement this, one has to consider generalized Jacobians.)

(b) About rational dependence of coefficients. Then, there is the question of linear inde-

pendence over Q of the ci. For our purposes we must consider not merely the ci = ci(λ),
which are certain algebraic functions of λ, but also their specializations ci(l) at exceptional
points l ∈ E , and of course it may happen that the Q-linear independence is destroyed at l.
However this may occur at most for a set of algebraic points l of bounded degree over Q (in

fact, when the dimension drops we have a nontrivial equation
∑
ρici(l) = 0 with ρi ∈ Q).

Now, the main point here is that, when dealing with torsion, the already mentioned results by

Silverman gives boundedness of the height for the special values when a non-torsion section

of an abelian family becomes torsion (at least provided the family has no ‘constant’ factors

of dimension > 0); and then Northcott’s finiteness theorem may be applied, which yields

the sought finiteness. (On the other hand, concerning constant factors, we remark that Sil-

verman’s argument still may be partially restored to give sufficient information. See also

Masser’s Appendix C to [34]; we omit details here.)

Remark 5.1. The book [6] by J. Davenport raises some of these issues, and proposes meth-

ods to solve them, which sometimes indeed may work. (See pp. 89–91). However, for

instance heights do not appear and a complete treatment is not clarified. In any case, there

21 For simplicity we had previously considered only the case where B = P1, and λ is a variable, which causes

no real conceptual difference in our arguments.

22 Here we may have to use also good reduction at the relevant l, which however holds with only finitely many

exceptions.
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are delicate points still to be mentioned, and we go ahead to illustrate some of them.

(c) About torsion specializations. A major point concerns torsion, and actually this itself

turns into several different issues, as we shall now try to illustrate.

The divisors which arise (i.e., the ones called Di in the Criterion) define points in the

Jacobian Jλ of Xλ, or, rather, sections Di = Diλ : B → Jλ; indeed, Jλ is a pencil of

Jacobians over B. For instance, if all the Diλ would be identically torsion, say of order

m, then (as in (a) above) we would find suitable functions uiλ such that δλ := mωλ −∑
ciduiλ/uiλ would be regular. But then we could replace ωλ with the regular δλ and

conclude easily; indeed (as in the calculations of §2), δλ �= 0 (since ωλ is not identically

integrable in finite terms), hence δl �= 0 for almost all l, finishing the argument because a

nonzero regular differential cannot be integrated in finite terms.

We conclude that it suffices to work with the assumption that some Diλ is not a torsion

section, and one main step in proving finiteness of E is to show that Dil may become a

torsion point on Jl only finitely many times.

Actually, such a clear-cut assertion is not always true: if Jλ is an elliptic pencil, then

this kind of ‘degeneracy’ usually happens in an infinite (though sparse) set of l ∈ B(Q);
we have found concrete instances of this behaviour in Examples 2.4(i) and 4.1(ii) above.

For the assertion to hold, it turns out that we need at least that Jλ has relative (i.e., over

B)) dimension ≥ 2, but still this does not suffice. For relative dimension = 2, the required
finiteness of torsion specializations has been proved in the quoted joint papers with Masser,

provided however that the non-torsion section does not map in a proper algebraic subgroup;

for instance, this is automatic if Jλ is generically simple. We see that already in this case

of surfaces some supplementary hypotheses are needed, and in fact, checking them for the

sought application may happen to present difficulties.

Anyway, a first point in this direction has been to generalize [16]–[18] to any relative

dimension ≥ 2; this extension is only in part similar to the former case, for instance because

the abelian pencils which occur cannot always be represented as Jacobians (so one has to use

the Siegel space). Also, one has to look at simple factors of Jλ (after an isogeny), and let Aλ
be a typical one; it may happen that Al becomes non-simple for l ∈ E , and then to deal with
other aspects of the proof (of which we shall say a little more in the next section) one needs

for instance results by Masser and Wüstholz (see [13]) to control polarizations.

(d) About splitting of generalized Jacobians. Once such a more general result has been

established under the appropriate hypotheses, we have still to deal with the cases when the

relevant section does not meet such assumptions, as happens for instance when a nonzero

multiple of it lies in some elliptic pencil inside the Jacobian pencil. In these cases, like for

Example 4.1(ii), we have to take advantage of a generalized Jacobian, arising from zeros of

a suitable differential.

The discussion of all the possibilities which may arise is not brief, and involves further

obstacles. Therefore we do not pause further on this, except by pointing out that one such

difficulty is related to the possible triviality of the relevant generalized Jacobian (by which

we mean that the relevant Gs
a is a direct factor). For basic cases like in Example 4.1, the

triviality never occurs, as we have remarked; but this is not the only possibility. We offer a

last example to illustrate this point.

Example 5.2. Let us consider the hyperelliptic curve Hλ of genus 2 with equation w2 =
z6 + z4 + λz2 + 1. We have an obvious map φ(z, w) = (z2, w) to the curve of genus 1
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defined by v2 = u3 + u2 + λu+ 1. Let us take the point ξ = ξλ := (0, 1) on Hλ. Then, as

in Example 4.1(ii), we may construct the generalized Jacobian Γ2ξ ofHλ with respect to the

modulus 2ξ; it is an extension of the usual Jacobian J = Jλ by Ga:

0 → Ga → Γ2ξ
π→ J → 0.

As before, this extension is not split (as proved in [32]), in the sense that there is no section

for π, or, equivalently, Γ2ξ is not isomorphic to Ga × J .
However, it can be shown that there is a section if one restricts above a suitable elliptic

curve Ẽ ⊂ J , namely there is a map η : Ẽ → Γ2ξ with π ◦ η = identity of Ẽ. (One can

exhibit Ẽ; in the first place, there is an isogeny ι from J to E × F , where F is the curve of

genus 1 defined by y2 = x3 + λx2 + x+ 1, and one may put Ẽ = ι−1(E × {0}).)
Hence, restricting Γ2ξ above Ẽ yields a splitting, and this might heavily affect the finite-

ness proof, for reasons that we have outlined above. However, if we happen to meet such an

instance in the course of the above analysis, there is a further information that can be used,

and this concerns ramification of the map φ at ξ, which may be seen to be indeed related to

this splitting. In the present case we find that the ramification index eφ(ξ) is 2. But then,

it turns out that for our purposes we could consider the extension of J determined by the

modulus 3ξ, denoted Γ3ξ; this is now an extension of J byG2
a. And it would suffice that this

extension, restricted above E×{0}, is not totally split (i.e. not isomorphic toG2
a ×E). This

indeed can be proved, although we omit details here.

6. A few words on the proofs and about further questions

We have illustrated some aspects of the proof of finiteness of the set denoted E above; and we

have remarked (e.g., in (c) above) that they crucially rely on other finiteness proofs obtained

with Masser, representing special cases of Pink’s conjectures. Hence now we shall only

comment on the proofs of these auxiliary ingredients. (See the book [34] for a more complete

overview of the topic of Unlikely Intersections, and see the article [22] by Pila in this volume

for further and more recent directions and advances in the subject.)

On the proofs of finiteness for torsion specializations. So, we have a pencil of abelian

varieties A → B over a curve B, and a section σ : B → A, all defined over Q.23 Then,

under suitable assumptions (for instance that the image σ(B) is not contained in any proper

algebraic group subscheme) we aim to prove that σ(l) can be torsion only for finitely many

l ∈ B(Q). (Below, we also keep the previous conventions, where we had denoted by λ -

resp. l - a generic - resp. algebraic - point of B, and by Aλ, Al the respective fibers.)
A main principle is to view the abelian fibersAl (also for l ∈ C) as complex tori (varying

analytically) and then the torsion points, read in terms of real coordinates in the lattice bases

for the tori, become rational points.

Now, a torsion point σ(l) ∈ Al yields other ones by conjugation over a number field of

definition (on other - conjugate - fibers Al′ ). Here one can get a lower bound for the number

of such conjugates through deep results by Masser, David, Masser-Wüstholz; note that by

conjugation one jumps around the various fibers, so some uniformity is needed. On the other

23 We have already remarked that the case when the field of definition is C requires additional arguments, which

in part are still the object of work in progress with Corvaja and Masser.
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hand, one can estimate efficiently their number from above, since the corresponding rational

points lie on a certain transcendental real surface, which is obtained as the inverse image

of σ(B) by the abelian maps. These last estimates stem from work of Bombieri-Pila for

curves, then of Pila for surfaces, and finally of Pila-Wilkie for transcendental varieties of

arbitrary dimension.24 Comparison of estimates yields a contradiction (on the appropriate

assumptions) if the torsion order is large enough, concluding the argument.

The question of looking at rational points on transcendental objects (whereas the origi-

nal motivations mainly concerned algebraic varieties) was raised especially by Sarnak; one

should also mention that Sarnak indeed foresaw some principles of this method in the case

of tori long ago, in an unpublished paper [30].

Pila and the writer obtained a new proof of the Raynaud’s theorem (former Manin-

Mumford conjecture) by this method. Masser and the writer first used the method on a

‘test’ problem of Masser, asking for a proof of finiteness of the set of complex numbers l
such that two points with abscissa 2 or 3 on the Legendre curve El : y

2 = x(x − 1)(x − l)
are torsion; later this problem was realized to be a case of the Pink’s conjectures. The proof

of Masser’s expectation was achieved in [14], [15], and the already mentioned further pa-

pers extended this systematically. In another direction, Pila applied this kind of method to

prove new and considerably general cases of the Andrè-Oort conjecture; moreover he found

that the counting of rational points was indeed ‘doubly useful’ in the whole context. Pila,

Tsimerman, Ullmo and others extended this last principle to further issues. (See [34] for

more details on this brief history and for some references, and see [22].)

Further (delicate) results needed in this kind of proof are:

- A bound by Silverman (1983) on the height of algebraic points l such that σ(l) be-
comes torsion. (This bound has been already mentioned above; in particular, it is

useful to deal with issue (b) in the previous section, but also elsewhere in the proofs.

It requires appropriate assumptions on which we do not pause here.)

- An inequality by David (1991) relating the order of a torsion point x of a simple

abelian variety A/Q with the degree over Q of a common field of definition for A, x,
and with the Faltings height of A. This is proved by transcendence techniques, and in

particular offers explicit dependencies compared to previous bounds of Masser. (See

Masser’s Appendix D in [34] for a sketch of such a proof in a special case.) It is also

to be remarked that our application with Masser of this result of David needs, in the

case of ‘unexpected’ splitting of the abelian variety, other results of Masser-Wüstholz,

in order to use this theorem for the simple factors.

- A result by André (1992) asserting algebraic independence, as locally analytic func-

tions on B, of abelian logarithms of the given section and periods for the tori corre-

sponding to the abelian fibers. This is crucial to show that the real surface containing

the relevant rational points (to which one has to apply the Pila-Wilkie estimates) is

‘highly’ transcendental, in the sense that actually it does not contain any arc of a real

algebraic curve.

Here we omit references for these auxiliary ingredients, and instead refer to [18], [22] or

[34] for that.

24 Other applications of these results may be found in the already mentioned paper [22] by Pila in the present

volume.
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Effectivity within this method is expected, but not yet proved. (The mentioned height

bounds and lower bounds for degrees are already effective, but the situation is not yet clear

for the upper bounds in the Bombieri-Pila-Wilkie work.) This reflects towards an ineffectiv-

ity for the finiteness theorems in the quoted papers, and hence also concerning the present

context: for instance, at the moment there is no available procedure to exhibit the finite set

in Example 2.4(ii).

Analogues and a conjecture of Grothendieck. Indefinite integration of a given differential

h(z)dz corresponds to a linear differential equation y′(z) := dy/dz = h(z) for a function
y = y(z). (This may be also reduced to the homogeneous form hy′′ = h′y′.) Needless

to say, one can consider more general equations, and especially relevant generalizations are

obtained with linear ones of any order, with rational (or algebraic) function coefficients.

The study of the fields generated by the solutions originated differential Galois theory, and
information on the relevant Galois groups often enables one to answer questions like whether

the solutions can be expressed in terms of a certain prescribed class of functions. Previously

in this paper we have considered the class of elementary functions, but one may change this,

and for instance either restrict to algebraic functions, or, conversely, allow more freedom,

for instance including in the class all the integrals of algebraic functions, or all solutions of

special types of differential equations.25

So, we see that there are somewhat different types of questions that may be asked, and

it turns out that their study may require different tools. For instance, in the special case of

elementary integrals considered above in this paper, the mere differential Galois groups does

not provide any useful information. Still, sometimes the issues may be strictly linked; for

example, the analysis of §2 led to the equation cdy = ωy and in turn to torsion on a Jacobian
and the Pell’s equation, and this is the same that one finds on asking for algebraic solutions

of the differential equation (see also [3], in connection with Remark 2.2 above).

Now, similarly to the problems discussed above, one can consider parametric families

of such differential equations, and it makes sense to ask how often the structure of the field

generated by the solutions of the specialized equations reflects the generic structure. Here

again we may ask several types of questions:

For which values of the parameter does the Galois group equal the generic one?

or

For which values of the parameter can the solutions be expressed within some
prescribed class, assuming this can’t be done for the generic solution?

And so on. Again, the analysis and the answers may be quite different in the various

cases.

For instance, concerning a pencil of differentials ωλ on Xλ (notation being as above in

this section) it would be easy to prove that ωλ has an algebraic (rather than an elementary)
integral identically in λ if and only if ωl has an algebraic integral for infinitely many l ∈
B(Q). (A proof follows similarly to the first cases of Example 4.1(i), (ii), in §4 above.)

However, even for a differential equation of the first order, we may have algebraic solutions

(i.e. finite Galois group) precisely for rational values of the parameter, whereas the generic

Galois group is Gm: this is what happens for zy
′ = λy, with solutions c · zλ.

25 For examples of this, see the books quoted in §1, and [3]. A relevant category is the class of liouvillian
extensions, see [24].
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In particular, if we formulate our issue in terms of the Galois group, a finiteness assertion

for the exceptional specializations does not hold generally even restricting to algebraic func-

tion coefficients for our equations.26 Concerning other classes of functions, here is a (vague)

problem in this direction.

Problem. Let us be given a linear differential equation
∑n

i=0 aiλ(z)y
(i) = 0 with coef-

ficients aiλ ∈ Q(λ)[z], and let us assume that it has no nonconstant solution which is an

elementary function (in the above sense) over the constant field Q(λ). Under what condi-

tions can we conclude that there are only finitely many l ∈ Q for which the specialized

equation
∑n

i=0 ail(z)y
(i) = 0 has a nonconstant elementary function solution?

Perhaps the assumptions here could be changed by replacing throughout ‘a nonconstant

solution’ with ‘a full system of linearly independent solutions’; and perhaps one should re-

quire that all singularities of the operator are regular.27 Observe that in the above formulation

we do not have finiteness in general, as shown by the equation zy′′− (z+λ)y′ = 0, satisfied
by
∫
zλezdz, which is elementary precisely for λ ∈ N.28

In any case, at the moment we have no definite general conjecture in this direction, but

we believe it should be interesting to explore the questions, the classes of functions and the

conditions under which one can expect finiteness.

Another analogy concerns reduction modulo a prime p instead of specialization of
a parameter. Namely, we suppose to be given a differential ω on an algebraic curveX defined

over Q (or a number field K), so that we can reduce modulo almost all primes p (or places
v of K), to obtain a differential ωp on the reduced curve Xp, defined over the residue field

Fp. This is of course a kind of specialization, and we may ask as before for which primes p
is ωp integrable in finite terms, assuming that ω is not likewise integrable.

Naturally, the fact that the residue field has positive characteristic changes much, if not

for the fact that the function field Fp(Xp) has finite degree over the constant field for a

derivation. Indeed, there are several features which distinguish this analysis from the former

one. Let us see two simple examples in this direction.

Example 6.1.
(i) LetE be an elliptic curve overQ, with Weierstrass equationw2 = f(z) (f ∈ Q[z] a cubic
monic polynomial with simple roots) and let ω = dz/w be a regular differential (unique up

to constants).

We have seen in §2 that in characteristic zero a regular differential is never integrable in

finite terms. On the other hand, concerning the (good) reduction(s) Ep of E, we have:

- If p is a prime of supersingular reduction for E 29, i.e. if Ep is supersingular, then ωp
is exact, i.e. ωp = dup for some up ∈ Fp(Xp).

- If Ep is ordinary, then ωp = cp · dup/up for some constant cp and some nonzero
up ∈ Fp(Xp).

See [12], Appendix 2.4, for a proof using the Cartier operator. So, we see that now

26 In the paper [2], see especially §7, André has studied the context of a conjecture of Grothendieck on reductions

modulo p of differential equations (to be mentioned also below) in the case of families in characteristic zero.

27 This assumption is often relevant in the context, for instance to relate the differential Galois group to mon-

odromy.

28 Note that this equation has an irregular singularity at infinity.

29At least for curves over Q, there are infinitely many such primes after a result of Elkies.
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the reduction of ω is always integrable in finite terms, and is even exact for infinitely many

primes.

This is in marked contrast with our previous conclusions (regarding specializations) in

characteristic zero. (On the other hand, an integral of ωp is algebraic only in the case of

supersingular reduction.)

(ii) Let now r ∈ Z and, similarly to Example 4.1(ii), set f(z) = z4+ z+ r, and consider the
curve E defined as a projective smooth model of w2 = f(z); the function z has two poles

denoted ∞± and E becomes an elliptic curve on choosing e.g. ∞− as an origin.

Consider ω := zdz/w; as in §2, ω has two simple poles at ∞± and no other poles. As

recalled in Example 2.4(i), the Pell’s equation (2.3) may be solvable for the present f(z)
only for finitely many r ∈ Q; hence, Proposition 2.3 shows that for almost all r ∈ Z, as in
(i), ω is not integrable in finite terms. Let us then fix one such r, and as above let us p vary.

We haven’t mentioned any analogue of Theorem 1.1 in positive characteristic, but we

shall only need the sufficiency (for integrability in finite terms) of the condition stated therein.

And actually it shall be sufficient to study whether ωp = dvp + cp · dup/up for rational

functions up, vp on Ep and a constant cp.
Observe, by the way, that after reduction the Pell’s equation is always solvable (as in

the classical case of Z), because any point on Ep defined over a finite field has finite order;

however the analysis parallels only in part the one for Proposition 2.3.

Note that (after a possible finite extension of the constant field) there exists a function up
whose divisor is of the shape ∞+ − ∞− − pDp, where Dp is a divisor of degree 0 on Ep.
Indeed, since Jp := Pic

o(Ep) is a divisible group we can find γ ∈ Jp so that δ = pγ, where
δ is the class of ∞+ − ∞−. And then, if Dp is a divisor of degree 0 with class γ, we find
what is required.

Now, dup/up has only simple poles, exactly at ∞±, with respective residues ±1, and
adjusting the constant cp we can ensure that ωp − cp · dup/up has no poles, i.e. is a regular

differential on Ep (possibly 0): ωp = cp · dup/up + ηp, where ηp is regular on Ep.
But then, by what has been recalled in part (i) of this example, ηp is always either exact

or logarithmic up to a constant. We conclude that again ωp is always integrable in finite

terms.

These examples show in particular that in this context things behave rather differently

compared to what we have previously seen, since it happens that the reduction is always

integrable in finite terms but the differential is not. On the contrary, if we look at an algebraic
integral, things are different. Let us pause a moment on this interesting issue.

An attractive conjecture attributed to Pólya was as follows:

Let f(z) =
∑∞

n=0 anz
n be a power series with coefficients an ∈ Z, repre-

senting an algebraic function. Suppose that an indefinite integral of f(z) has
also integral coefficients (which amounts to n + 1|an for all n ∈ N). Then the
integral (that is, the power series

∑∞
n=0 anz

n+1/(n + 1)) also represents an
algebraic function.

This statement might look perhaps innocuous, however turned out to be deep; a proof

for rational functions f(z) is not too difficult, and similarly if (z, f(z)) describes a rational
curve, but the case of positive genus is at a quite different level. A general proof was given

by André, partly relying on a method of Chudnovski; see [2], Prop. 6.2.1.
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Actually, André worked under weaker assumptions; he looked at the differential equation

y′(z) = f(z) and assumed the solvability of the reduction of this equation modulo p, in a

power series in Fp[[z]], for all primes p in a set of density 1 (or even density > 1/2), to
obtain the same conclusion that the equation has algebraic function solutions. André proved

a similar theorem for the equation y′ = f(z)y.
These theorems of André represent cases of a well-known conjecture of Grothendieck,

which (roughly speaking) predicts a complete system of algebraic function solutions for a
linear differential equation over Q(z) whose reduction modulo p has a complete system of
power series solutions over a finite field, for almost all primes p. Other important cases of

this deep conjecture, still open in general, were proved by Katz [9].

Naturally, one may replace Q by a number field.

We note that for the conclusion it does not suffice that the hypothesis holds for infinitely
many primes p: indeed, as remarked in Example 6.1(i), a nonzero regular differential on an

elliptic curve overQ becomes exact for the infinitely many primes of supersingular reduction

(and if the curve is CM this set of primes has even density 1/2).
We refer to [2], to §8 of [3] and to Katz’s paper [9] for extensive discussions and results

towards the Grothendieck conjecture and related topics. (As mentioned above, in [2] an

analogue of the conjecture is studied in generality for fields of characteristic zero, including

for instance pencils of differential equations over a curve.)

To conclude, we remark it would be interesting to formulate a general statement embrac-

ing the examples we have met so far.
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Small gaps between primes and primes in
arithmetic progressions to large moduli
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Abstract. Let pn denote the n-th prime. We describe the proof of the recent result

lim inf
n→∞

(pn+1 − pn) < ∞,

which is closely related to the distribution of primes in arithmetic progressions to large moduli. A

major ingredient of the argument is a stronger version of the Bombieri-Vinogradov theorem which is

applicable when the moduli are free from large prime factors.
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Kloostermann sums.

1. Introduction

Let pn denote the n-th prime and write dn = pn+1−pn . The prime number theorem implies

that the average value of dn is ∼ log pn. The study of the upper and lower bounds for dn is

one of the central subjects in analytic number theory.

Currently, the best result on the upper bound for dn is due to Baker, Harman and Pintz

[1] that gives

dn 2 p21/40n .

The lower bound for dn has attracted great interest. For eighty years, the work on this

problem had concentrated on estimating the quantity

Δ = lim inf
n→∞

dn
log pn

.

The inequality Δ ≤ 1 is a trivial consequence of the prime number theorem. In 1926 Hardy

and Littlewood [13] obtained Δ ≤ 2/3 on assuming GRH. In 1940 Erdös [8] obtained Δ <
1−c unconditionally with a small unspecified computable constant c > 0. In 1965 Bombieri

and Davenport [2] obtained Δ ≤ 0.4665.... In 1988 Maier [16] obtained Δ ≤ 0.2484.... In
2005 Goldston, Pintz and Yildirim [11] eventually proved

Δ = 0.

In 2013 Zhang [18] proved the following

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Theorem 1.1.
lim inf
n→∞

dn <∞. (1.1)

This result may be regarded as a weak form of the twin prime conjecture

lim inf
n→∞

dn = 2. (1.2)

In fact, Zhang proves (1.1) with the right side replaced by 7× 107. This specific number has

been considerably reduced.

A major ingredient of the proof is a stronger version of the Bombieri-Vinogradov theo-

rem which is not implied by the Generalized Riemann Hypothesis directly, but it relies on

some deep results in algebraic geometry.

Recently Maynard [15] obtained some stronger results via different methods. In particu-

lar, he proved

lim inf
n→∞

(pn+k − pn) <∞
for any fixed k > 0.

2. Admissible sets

Let

H = {h1, h2, ..., hk}
be a set composed of distinct non-negative integers. We say that H is admissible if νp(H) <
p for every prime p, where νp(H) denotes the number of distinct residue classes modulo p
occupied by the hj .

The reason for introducing admissible sets may be described as follows. Assume that H
is not admissible. Then there is a prime p such that, for any positive integer n, the tuple

(n+ h1, n+ h2, ..., n+ hk) (2.1)

contains at least one multiple of p. Thus we conclude
Suppose that there are infinitely many positive integers n such that each element in the

tuple (2.1) is a prime. Then H must be admissible.
A conjecture of Hardy and Littlewood asserts the converse. Here we state a weak form

of their conjecture only.

Conjecture 2.1. Suppose that H is admissible. There are infinitely many positive integers n
such that each element in the tuple (2.1) is a prime.

Note that the twin prime conjecture is a special case of this conjecture with H = {0, 2}.
It is easy to see that Theorem 1.1 can be deduced from the following

Theorem 2.2. Suppose that H is admissible with k sufficiently large. There are infinitely
many positive integers n such that the tuple (2.1) contains at least two primes.

Theorem 2.2 actually gives

lim inf
n→∞

dn ≤ max
i 
=j

|hi − hj |. (2.2)
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The initial step in the proof of Theorem 2.2 consists in transferring the problem to eval-

uate and compare certain arithmetic sums. Write

θ(n) =

{
log n if n is prime,

0 otherwise.

Let x denote a large number, and let f be defined on (x, 2x) ∩ Z such that

f(n) ≥ 0. (2.3)

We introduce

S1(x, f) =
∑

x<n<2x

f(n) (2.4)

and

S2(x, f ;H) =
∑

x<n<2x

( k∑
j=1

θ(n+ hj)

)
f(n). (2.5)

The key point is to prove that, for any sufficiently large x, there is a function f satisfying

(2.3), such that
S2(x, f ;H)

S1(x, f)
> log 3x. (2.6)

This implies that there is an integer n ∈ (x, 2x) such that the tuple (2.1) contains at least two
primes.

3. The choice of f by Goldsdon-Pintz-Yildirim

From now on, the set H is assumed to be admissible and fixed.

To choose f and show that (2.6) holds, the following conditions are necessary.

(i) f should be non-negative.

(ii) One should be able to evaluate the sums S1(x, f) and S2(x, f ;H) efficiently.

(iii) The sum S2(x, f ;H) should be “large” in comparison with S1(x, f).

Let Λ(n) denote the von Mangoldt function. To satisfy the condition (iii), one may

choose

f(n) =

k∑
j=1

Λ(n+ hj)

(the difference θ−Λ is negligible). However, this is not valid in practice since one is unable

to evaluate S2(x, f ;H).
It is known that

Λ(n) =
∑
d|n
μ(d) log

n

d
, (3.1)

where μ(d) denotes the Möbius function. This relation may not be applicable directly in
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many sieve problems, since one is unable to handle the contribution from the terms on the

right side with d large. In practice, Λ(n) is often approximated (replaced) by

ΛD(n) =
∑
d|n
d<D

μ(d) log
D

d
(3.2)

for n < 2x, where D is a parameter < x. Usually, D is of the form

D = xb, 0 < b <
1

2
. (3.3)

If one chooses

f(n) =
k∑
j=1

ΛD(n+ hj),

then, with D given by (3.3), S1(x, f) and S2(x, f ;H) can be evaluated. However, the con-

dition (i) may not hold.

In order to satisfy the condition (i), a simple idea which comes from Selberg’s sieve is

that f takes the form

f(n) = λ(n)2, λ(n) ∈ R. (3.4)

From now on, we assume that f is of the form (3.4) and write D = xb. The problem is

reduced to choosing λ.
It was Goldston, Pintz and Yildirim who found a form of λ(n) which proves very effi-

cient. Let

PH(n) =
k∏
j=1

(n+ hj), (3.5)

and let l be a fixed positive integer. They choose

λ(n) =
1

(k + l)!

∑
d|PH(n)
d<D

μ(d)

(
log
D

d

)k+l
. (3.6)

One may also consider the general form

λ(n) =
∑

d|PH(n)
d<D

μ(d)h

(
log(D/d)

logD

)
, (3.7)

where h is a real polynomial satisfying

h(i)(0) = 0, 0 ≤ i ≤ k.
The form (3.7) and its variants also find application to other problems in analytic number

theory, which is usually called the GPY sieve.

From now on, we assume that b < 1/2 and write νp, P (n), S1 and S2 for νp(H), PH(n),
S1(x, f) and S2(x, f ;H) respectively; similar abbreviations will apply in the sequel. Let

λ(n) be as in (3.6). Write

g(d) =
1

(k + l)!

(
log
D

d

)k+l
if d < D (3.8)



Small gaps between primes and primes in arithmetic progressions to large moduli 561

and

g(d) = 0 if d ≥ D, (3.9)

so that

λ(n) =
∑
d|P (n)

μ(d)g(d). (3.10)

The evaluation of S1 is not difficult. Squaring out λ(n)2 and changing the order of

summation we obtain

S1 =
∑
d1

∑
d2

μ(d1)μ(d2)g(d1)g(d2)
∑

x<n<2x
P (n)≡0([d1,d2])

1, (3.11)

where [d1, d2] denotes the l.c.m. of d1 and d2. Note that [d1, d2] is square-free and

[d1, d2] < D
2 = x2b

if μ(d1)μ(d2)g(d1)g(d2) �= 0. Let

&1(d) = |μ(d)|
∏
p|d
νp. (3.12)

For any square-free d, d|P (n) if and only if n lies in exactly &1(d) distinct residue classes
(mod d). It follows that the innermost sum in (3.11) is equal to

&1([d1, d2])

[d1, d2]
x+O(&1([d1, d2])).

This yields

S1 = xT1 +O(x
2b+ε), (3.13)

where

T1 =
∑
d1

∑
d2

μ(d1)μ(d2)g(d1)g(d2)&1([d1, d2])

[d1, d2]
. (3.14)

The error term in (3.13) is acceptable since b < 1/2.
We now turn to S2. In a way similar to the proof of (3.11), we deduce that

S2 =
∑
d1

∑
d2

μ(d1)μ(d2)g(d1)g(d2)

k∑
j=1

∑
x<n<2x

P (n)≡0([d1,d2])

θ(n+ hj). (3.15)

If d is square-free, d < D2, n ∈ (x, 2x) and n+ hj is a prime, then d|P (n) if and only if
d ≡ c(mod d) for some c ∈ Cj(d),

where

Cj(d) = {c : 1 ≤ c ≤ d, (c, d) = 1, P (c− hj) ≡ 0(mod d)}. (3.16)

Thus the innermost sum in (3.15) is equal to∑
c∈Cj([d1,d2])

∑
x<n<2x

n≡c([d1,d2])

θ(n+ hj). (3.17)
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Let

&2(d) = |μ(d)|
∏
p|d

(νp − 1). (3.18)

For square-free d it can be shown that

|Cj(d)| = &2(d).

It follows from (3.17) and the prime number theorem that the innermost sum in (3.15) is

equal to
&2(d)

ϕ(d)
x+O

( ∑
c∈Cj(d)

R(x; c, d)

)
+O(xε), (3.19)

where ϕ(d) denotes the Euler function, and where

R(x; d, c) =

∣∣∣∣ ∑
x<n<2x
n≡c(d)

θ(n)− x

ϕ(d)

∣∣∣∣. (3.20)

Inserting (3.19) into (3.15) we obtain

S2 = xT2 +O((log x)
2k+2lE) +O(x2b+ε), (3.21)

where

T2 = k
∑
d1

∑
d2

μ(d1)μ(d2)g(d1)g(d2)&2([d1, d2])

ϕ([d1, d2])
(3.22)

and

E =
∑
d<D2

|μ(d)|τ3(d)&2(d)
k∑
j=1

∑
c∈Cj(d)

R(x; c, d).

Here τ3(d) denotes the 3-fold divisor function.

The problem is now reduced to evaluation T1 and T2 and estimating E.

4. The main term

By (3.13) and (3.21), we need only prove the following which lead to (2.6).

(a) With k sufficiently large and with l appropriately chosen,

T2
T1
> (1 + c) log x (4.1)

for some positive constant c.

(b) The sum E can be efficiently bounded, namely,

E 2 x(log x)−A (4.2)

for any large constant A.
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Note that &1 is supported on square-free integers. Substituting d0 = (d1, d2) and rewrit-

ing d1 and d2 for d1/d0 and d2/d0 respectively, we deduce that

T1 =
∑
d0

∑
d1

∑
d2

μ(d1d2)&1(d0d1d2)

d0d1d2
g(d0d1)g(d0d2). (4.3)

Similarly,

T2 = k
∑
d0

∑
d1

∑
d2

μ(d1d2)&2(d0d1d2)

ϕ(d0d1d2)
g(d0d1)g(d0d2). (4.4)

The right sides of (4.3) and (4.4) can be evaluated by standard methods. It is shown that

T1 ∼ 1

(k + 2l)!

(
2l

l

)
S(logD)k+2l

and

T2 ∼ k

(k + 2l + 1)!

(
2l + 2

l + 1

)
S(logD)k+2l+1,

where

S =
∏
p

(
1− νp

p

)(
1− 1

p

)−k
.

(Note that S = 0 if H is not admissible.) It follows that

T2
T1

∼ bk

k + 2l + 1

(2l + 2)(2l + 1)

(l + 1)2
log x. (4.5)

If b > 1/4, then, with k is sufficiently large in terms of b and with l appropriately chosen,

we have
bk

k + 2l + 1

(2l + 2)(2l + 1)

(l + 1)2
> 1. (4.6)

This leads to (4.1). On the other hand, the relation (4.6) is not valid for b ≤ 1/4.
Thus we conclude

Theorem 2.2 will be valid if (4.2) holds for some b > 1/4.

5. The error term

We say that the primes have level of distribution ϑ if, for any large constant A and for any

small positive constant ε,

∑
d<Q

max
y≤x

max
(c,d)=1

∣∣∣∣ ∑
n≤y

n≡c(d)

Λ(n)− y

ϕ(d)

∣∣∣∣2 x(log x)−A (5.1)

with Q = xϑ−ε. Since the estimate∑
n≤y

n≡c(d)

Λ(n)− y

ϕ(d)
2 y1/2+ε
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is implied by the GRH, the primes have level of distribution 1/2 if GRH is true. This result

was unconditionally proved by Bombieri and Vinogradov in 1965.

Theorem 5.1. The primes have level of distribution 1/2.

Elliott and Halberstam [7] conjectured that the primes have level of distribution 1. By

Cauchy’s inequality, we see that (4.2) will be valid if the primes have level of distribution

ϑ = 2b+ ε. Thus, by the discussion in Section 4, we conclude

Theorem 2.2 will be valid if the primes have level of distribution ϑ for some
ϑ > 1/2.

6. Refinement of the GPY method

One is unable to prove that the primes have level of distribution ϑ for some ϑ > 1/2, even
if the GRH is assumed. We introduce a refinement of the GPY method which applies to the

main and error terms equally.

Let  > 0 be a small constant, and let b = 1/4 +  . Our first observation is that,

on the right sides of (4.3) and (4.4), the terms with d0d1d2 having a large prime factor p,
say p ≥ x�, make minor contribution. Thus, if we modify the sum in (3.6) by imposing

the constraint that p|d implies p < x�, the resulting main terms in S1 and S2 will have

minor changes only. This was independently observed by Motohashi and Pintz. Our second

observation, which is the most novel part of the proof, is that with such a constraint imposed

in (3.6), the resulting error in S2 can be efficiently bounded.
From now on, let S1, S2 and f(n) be as in (2.4), (2.5) and (3.4) respectively, but let λ(n)

be redefined by

λ(n) =
∑

d|(P (n),P)

μ(d)g(d)

with g(d) given by (3.8) and (3.9), where

P =
∏
p<x�

p.

Repeating the arguments in Section 4 we obtain

S1 = xT ∗1 +O(x2b+ε)

and

S2 = xT ∗2 +O((log x)2k+2lE∗) +O(x2b+ε),

where

T ∗1 =
∑
d1|P

∑
d2|P

μ(d1)μ(d2)g(d1)g(d2)&1([d1, d2])

[d1, d2]
,

T ∗2 = k
∑
d1|P

∑
d2|P

μ(d1)μ(d2)g(d1)g(d2)&2([d1, d2])

ϕ([d1, d2])
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and

E∗ =
∑
d<D2

d|P

|μ(d)|τ3(d)&2(d)
k∑
j=1

∑
c∈Cj(d)

R(x; c, d).

By routine estimations of the differences T1−T ∗1 and T2−T ∗2 and (4.5), it can be shown

that
T ∗1
T ∗2
> (1 + c) log x

for some constant c > 0, if k is sufficiently large and if l is appropriately chosen. The proof

of Theorem 2.2 is therefore reduced to proving

Theorem 6.1. If  is sufficiently small, then

E∗ 2 x(log x)−A

for any large constant A.

7. Sketch of the proof of Theorem 6.1

Note that D2 = x1/2+2�. By Theorem 5.1 and Cauchy’s inequality, the proof of Theorem

6.1 is reduced to showing that∑
x1/2−ε<d<D2

d|P

∑
c∈Cj(d)

R(x; c, d) 2 x(log x)−2A 1 ≤ j ≤ k. (7.1)

The constraint d|P is crucial in the proof of (7.1). This is originally due to the simple

fact that if 1 < R < d, d > x1/2−ε and d|P , then d can be factored as

d = rq with R < r < x�R. (7.2)

We can replace θ by Λ in the expression for R(x; c, d). The proof of (7.1) is described
as follows. For any function γ supported on (x, 2x) ∩ Z we define

Δ(γ; c, d) =

∣∣∣∣ ∑
n≡c(d)

γ(n)− 1

ϕ(d)

∑
(n,d)=1

γ(n)

∣∣∣∣, (c, d) = 1.

Using a combinatorial identity for Λ due to Heath-Brown [14], the proof of (7.1) is

reduced to estimating the sum of Δ(γ; c, d) for certain Dirichlet convolutions γ. There are
three types of the convolutions involved in the proof. Write

η = 1 + (log x)−2A, x1 = x3/8+8�, x2 = x1/2−4�.

In the first two types the function γ is of the form γ = α ∗ β such that

(i) α = (α(m)) is supported on [M, η19M),

(ii) β = (β(n)) is supported on [N, η19N),
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(iii) MN ∈ (x, 2x).

(There are some other conditions on α(m) and β(n).) We say that γ is of Type I if x1 <
N ≤ x2; we say that γ is of Type II if x2 < N < 2x1/2; we say that γ is of Type III if it

is of the form γ = α ∗ κN1 ∗ κN2 ∗ κN3 where α is as in (i) and κN is the characteristic

function of [N, ηN) ∩ Z, such that

(iv) N3 ≤ N2 ≤ N1, MN1 ≤ x1,
(v) MN1N2N3 ∈ (x, 2x).

It should be stressed that, without the constraint d|P , we are unable to efficiently bound

the sum ∑
x1/2−ε<d<D2

∑
c∈Cj(d)

Δ(γ; c, d)

if γ is of Type I or II. However, by (7.2), the Type I and II estimates are reduced to bounding

sums of the type ∑
R<r<2R

∑
Q<q<2Q

∑
c∈Cj(rq)

Δ(γ; c, rq) (7.3)

with R appropriately chosen such that it is close to N in the logarithmic scale. Thus, using

the dispersion method due to Bombieri, Fouvry, Friedlander and Iwaniec [3–5, 9], andWeil’s

bound for Kloosterman sums, we can prove that the sum (7.3) is

2 x(log x)−43A. (7.4)

The Type III estimate essentially relies on the Birch-Bombieri result in the appendix to

Friedlander and Iwaniec [10]. This result in turn relies on Deligne’s proof of the Riemann

Hypothesis for varieties over finite fields (theWeil Conjecture)[6]. Assuming γ is of Type III,
we estimate each Δ(γ; c, d) directly. However, without the constraint d|P , efficient bounds

for Δ(γ; c, d) can not be obtained unless we relax the conditionMN1 ≤ x1. Our argument

is carried out by combining the method in [10] and the factorization (7.2) (here r is chosen
to be relatively small), the latter will allow us to save a factor r1/2. Thus we obtain

Δ(γ; c, d) 2 x1−ε

d
(7.5)

for x1/2−ε < d < D2, d|P and (c, d) = 1.
The estimate (7.1) follows from (7.4) and (7.5).
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1. Introduction

A famous conjecture of Hardy and Littlewood [29] predicts that given a k-tuple of integers
H = {h1, . . . , hk}, there are infinitely many k-tuples

x+ h1, . . . , x+ hk,

such that all elements are simultaneously prime unless there is an obvious divisibility ob-

struction. Denote by νH(p) the number of congruence classes modulo p that H occupies,

and call a k-tuple of integers admissible if νH(p) < p for all primes p. Then the Hardy-

Littlewood conjecture amounts to the statement that x+ h1, . . . , x+ hk are simultaneously

prime infinitely often if and only if H is admissible. Moreover, they conjectured a precise

formula for the asymptotic number of k-tuples for an admissible H: Let P denote the set of

primes, then

|{x ∈ [1, N ], {x+ h1, . . . , x+ hk} ⊂ P}| ∼ S(H)
N

(logN)k
.

The constantS(H) is an Euler product and is called the singular series.1 While there have re-

cently been extraordinary developments towards our understanding of gaps between primes

and prime tuples [17, 36, 37, 51], some of them presented at the current ICM, we are still far

from proving this conjecture.

One can relax the conjecture by looking for prime points in higher rank affine sublattices

of Zk. In a series of papers by Green-Tao [21, 22], Green-Tao-Z [24] we prove:

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Theorem 1.1 (Green-Tao-Z (2012)). Let {ψi(	x)}ki=1 be a collection of k affine linear forms
in m variables with integer coefficients, ψi(	x) =

∑m
j=1 aijxj + bi. Suppose no two forms

are affinely dependent2. Then

|{	x ∈ [0, N ]m, {ψ1(	x), . . . , ψk(	x)} ⊂ P}| ∼ S(	ψ)
Nm

(logN)k

where S(	ψ) is an explicit Euler product (analogous to S(H)).

As a special case of this theorem we obtain the asymptotic number of k-term arithmetic

progressions of primes. The reader will observe that the condition that no two forms are

affinely dependent rules out the important case of twin primes, or more generally any k-
tuple with bounded gaps as described above, however its non-homogeneous nature allows

one to use it in various applications that were previously conditional on the Hardy-Littlewood

conjectures (see for example [8, 30]). Theorem 1.1 may be viewed as a vast generalization

of Vinogradov’s 3-prime theorem [49]: any large enough odd number is a sum of three

primes. We remark that very recently Vinogradov’s result has been extended to include all

odd numbers greater that 5 [31], thus verifying the weak Goldbach conjecture.

In this paper we give an outline of intertwining developments in ergodic theory, combi-

natorics and additive number theory leading to Theorem 1.1.

2. Arithmetic progressions in sets of positive density

Our starting point on the combinatorial front is the following result of K. Roth [39]. Let

E ⊂ N. The upper density of E is defined to be

d̄(E) = lim sup
N→∞

|E ∩ [1, N ]|
N

.

Theorem 2.1 (Roth 1953). Let E ⊂ N be a set of positive upper density, then E contains a
non trivial 3-term arithmetic progression.

Roth’s proof plays an important role in later developments - we outline the idea below.

Let δ > 0, and suppose E has density δ in an arithmetic progression P of size N , namely

E ⊂ P and |E| = δN . We first observe that if each element in P were to be chosen

independently at random to be in E with probability δ then E would typically contain many

3-term progressions - approximately δ3N2. In view of this, Roth’s argument is based on the

following:

• either E has at least δ
3N2

2 3-term progressions, or

1The singular series S(H) is given by the Euler product

S(H) =
∏

p

(
1− νH(p)

p

)(
1− 1

p

)−k

.

We refer the reader to [42] for an excellent exposition of the heuristics leading to the conjecture above. We write

a(N) ∼ b(N) if a(N) = b(N)(1 + o(1)).
2Affine linear forms are affinely dependent is their linear parts are linearly dependent; e.g. the forms x and x+2

are affinely dependent. A collection of k affine linear forms no two forms are affinely dependent is said to be of

finite complexity [21].
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• E has density at least δ + c(δ) on a sub-progression Q ⊂ P of size N
1
3 , where c is a

decreasing positive function.

Our starting point is a subset E ⊂ P = [1, N ], of density δ. After running the above

argument at most s = 1/c(δ) times we obtain a subset E′ ⊂ E which is of density (exactly)

1 in a subprogression P ′ ⊂ [1, N ] of size at least N
1
3s . Namely, either at some point we

have many 3-term arithmetic progressions, or after finitely many steps we find an arithmetic

progression of size N
1
3s in E; if N is sufficiently large then N

1
3s ≥ 3.

We remark that a more careful analysis allows one to have the density δ depend on N in

the form δ = 1/(log logN)t 3.
The main issue is, of course, the second step in this argument - namely, obtaining in-

creased density on a large subprogression. This can be achieved via discrete Fourier analysis

- one considersE as a subset of ZN = Z/NZ. Denoting 1E the characteristic function ofE,
one shows that if E does not contain roughly the expected number of 3-term progressions,

then the function 1E − δ has a large non trivial Fourier coefficient, namely, there exist an

integer r such that ∣∣∣∣∣ 1N
∑
x∈ZN

(1E − δ)(x)e2πix r
N

∣∣∣∣∣ ≥ c(δ).
Using equidistribution properties of the sequence {x r

N }mod 1, one finds a large subpro-

gression Q - of size N
1
3 - on which x r

N is roughly constant. This in turn can be translated

into an increased density of at least δ+c(δ) on (many) translates ofQ. This type of argument

is referred to nowadays as a density increment argument.

Generalizing Roth’s theorem to k-term progressions for k > 3 turned out to be very

difficult, and was shown by Szemerédi in his famous theorem [44]:

Theorem 2.2 (Szemerédi 1975). Let E be a set of positive upper density, then E contains a
non trivial k-term arithmetic progression.

By now there are many proofs of Szemerédi’s theorem. In this paper we will focus

on two of them: Furstenberg’s ergodic theoretic proof, which marked the beginning of the

ergodic theoretic side of our story, and Gowers’s proof, which pioneered the application of

tools from additive combinatorics to the study of arithmetic progressions.

3. Furstenberg’s proof of Szemerédi’s theorem

Shortly after Szemerédi proved the theorem on arithmetic progressions in sets of positive

upper density in the integers, Furstenberg gave an ergodic theoretic proof of Szemerédi’s

theorem [15]. The ideas behind this proof initiated a new field in ergodic theory, referred

to as ergodic Ramsey theory, and are the foundation of all subsequent ergodic theoretic

developments on which the story in our paper is based.

Furstenberg first observed that one can translate questions about patterns in subsets of

positive density in the integers to return time questions for sets of positive measure in a

measure preserving system. More precisely:

3The state of the art in the question of 3-term progressions is the recent result of T. Sanders stating that one can

have the density as small as δ = 1/ logN1−o(1) [41].
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Theorem 3.1 (Furstenberg correspondence principle). Let δ > 0, and let E ⊂ N be a
set with positive upper density4. There exists a probability measure preserving system5

(X,B, μ, T ), and a measurable set A with μ(A) > 0, such that the following holds: if
for some integers n1, . . . , nk

μ(A ∩ T−n1A ∩ . . . ∩ T−nkA) > 0,

then
d̄(E ∩ (E − n1) ∩ . . . ∩ (E − nk)) > 0.

In particular, there exists an integer x such that x, x+ n1, . . . , x+ nk ∈ E.
It follows that if we seek a k + 1 term arithmetic progression in E, it suffices to show

that for any probability measure preserving system (X,B, μ, T ), and any A with μ(A) > 0,
there is a positive integer n with μ(A ∩ T−nA ∩ . . . ∩ T−knA) > 0. Observe that the case
k = 1 is the famous Poincaré recurrence theorem. Indeed, Furstenberg proves the following

theorem:

Theorem 3.2 (Furstenberg multiple recurrence theorem). Let (X,B, μ, T ) be a measure
preserving system, and let A be with μ(A) > 0. Then for any k > 0

lim inf
N→∞

1

N

∑
n≤N

μ(A ∩ T−nA ∩ . . . ∩ T−knA) > 0. (3.1)

On first impression, it might seem that in replacing the arbitrary set E of positive density

with an arbitrary set A of positive measure, our situation is not much improved. However, in

the ergodic theoretic context one might hope to prove and apply useful structure theorems.

In the case at hand - the averages (3.1) are studied via morphism to more structured measure

preserving systems, as we will try to demonstrate below.

We will henceforth assume that the system X is ergodic, namely any T -invariant set is
of measure either 0 or 1. Any system can be decomposed to its ergodic components, thus we

lose no generality in Theorem 3.2 by making this assumption.

We first briefly discuss Furstenberg’s ergodic theoretic proof of Roth’s theorem on 3-term
progressions. We wish to evaluate the average

1

N

∑
n≤N

μ(A ∩ T−nA ∩ T−2nA) =
1

N

∑
n≤N

∫
1A(x)1A(T

nx)1A(T
2nx)dμ

where 1A(x) is the characteristic function of A. Furstenberg proves that there exists a mea-

sure preserving system Z = (Z,BZ , μZ , TZ) that is a Kronecker system6, and a morphism7

4Furstenberg’s correspondence principle as well as his multiple recurrence theorem hold in the more general

context when one considers the upper Banach density of the set E,

d∗(E) = lim sup
N−M→∞

|E ∩ [M,N − 1]|
N −M

.

We will keep to the upper density for simplicity.

5A probability measure preserving system X = (X,B, μ, T ) consists of a probability space (X,B, μ) and an

invertible measurable map T : X → X with T∗μ = μ.
6A Kronecker system Z = (Z,BZ , μZ , TZ) is a system where Z is a compact Abelian group, BZ the Borel

σ-algebra, μZ the Haar measure, and TZ is a rotation TZ(x) = x+ α for some α ∈ Z
7A morphism between measure preserving systemsX,Y is a measure preserving map between the correspond-

ing measure spaces that intertwines the actions of TX , TY . In this case Y is called a factor of X.
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π : X → Z such that for any f0, f1, f2 ∈ L∞(X),

1

N

∑
n≤N

∫
f0(x)f1(T

nx)f2(T
2nx)dμ

is asymptotically the same as

1

N

∑
n≤N

∫
π∗f0(z)π∗f1(T

n
Zz)π∗f2(T

2n
Z z)dμZ .

That is, rather than trying to evaluate the average in an arbitrary (ergodic) system, we need

to evaluate it in a very special system - a compact abelian group rotation system: we are left

with evaluating

lim
1

N

∑
n≤N

∫
π∗1A(z)π∗1A(z + nα)π∗1A(z + 2nα)dμZ .

Via Fourier analysis the above limit is easily seen to equal∫
π∗1A(z)π∗1A(z + b)π∗1A(z + 2b)dμZ(z)dμZ(b).

Now the projection π∗ is a positive operator, namely if f ≥ 0 then π∗f ≥ 0. It follows that
π∗1A ≥ 0, and since

∫
π∗1AdμZ =

∫
1Adμ = μ(A) > 0, the above average is clearly pos-

itive. The system Z = Z(X) is called the Kronecker factor of X and satisfies the following

universal property. If Y is a Kronecker system that is a factor of X and πY : X → Y the

factor map, then πY factors through Z(X) as demonstrated in the diagram below:

X

Z(X) Y

π
πY

∃

The factor Z(X) is constructed via the eigenfunctions of X. Let us demonstrate why a

non trivial eigenfunction implies the existence of a non-trivial circle rotation factor. Let ψ
be an eigenfunction of X,

ψ(Tx) = λψ(x).

The function |ψ| is a T -invariant function, and by ergodicity |ψ| is constant a.e. Thus we can
normalize ψ to take values in the unit circle. Any normalized eigenfunction gives rise to a

morphism to a circle rotation system ψ : X → (S1,Borel,Haar, ·λ):

X X

S1 S1

ψ

T

ψ

·λ
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The factor Z(X) would then be the image of the map (ψi) : X → (S1)N given by

x→ (ψi(x)), where {ψi} is the collection of normalized eigenfunctions8 ofX.

If X has no non-trivial eigenfunctions, then Z(X) is trivial (a point system), and thus

π∗f =
∫
f dμ. In this case X is called weakly mixing. We then have

1

N

N∑
n=1

∫
f(x)f(Tnx)f(T 2nx) dμ→

(∫
f dμ

)3

,

and we can thus think of the points x, Tnx, T 2nx as asymptotically independent on average.

The content of Furstenberg’s argument is then that if x, Tnx, T 2nx are not asymptotically

independent on average, then the obstruction lies in an Abelian group rotation factor. We

remark that it is clear that an Abelian group rotation factor is an obstruction as in Abelian

groups z + 2nα is determined by z, z + nα.

X

Z

z

z + nα z + 2nα

x

Tnx

T2nx

Figure 3.1. The points x, Tnx, T 2nx are independent (asymptotically on average) in the fibers over

the maximal Abelian group rotation factor.

To summarize, Furstenberg’s proof of Roth’s Theorem is based on the following di-

chotomy:

• either X is weakly mixing, or

• there is a morphism from X to a non trivial group rotation system.

The above argument motivates the following definition ([16]):

Definition 3.3 (k-characteristic factor). Let Y be a factor of X, and let π : X → Y be the

factor map. We say thatY is k-characteristic if

1

N

N∑
n=1

∫
f0(x)f1(T

n
Xx) . . . fk(T

kn
X x)dμX

8We implicitly assume that the system X is separable and thus has at most countably many normalized eigen-

functions.
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is asymptotically the same as

1

N

N∑
n=1

∫
π∗f0(y)π∗f1(T

n
Yy) . . . π∗fk(T

kn
Y y)dμY.

We make the following observations:

• The system X itself is k-characteristic for all k.

• The trivial system is 1-characteristic. In this case π∗f(x) =
∫
f(x)dμX, and by the

mean ergodic theorem

1

N

N∑
n=1

∫
f(x)f(TnXx)dμX ∼

(∫
fdμX

)2

.

• The Kronecker factor Z(X) is 2-characteristic (Furstenberg [15]).

The Furstenberg-Zimmer structure theorem [15, 55] relativizes the dichotomy between

weak mixing and an abelian rotation factor. One can show, using spectral theory, that X
being weakly mixing is equivalent to the product system with the diagonal action X × X
being ergodic. One can relativize this notion as follows. Let X ×Y X be the fiber product

over Y. Say that π : X → Y is a relatively weak mixing extension if the map π ×Y π :
X×Y X → Y is relatively ergodic, namely any T × T invariant subset inX×Y X is lifted

from Y via the map π ×Y π. The role of the compact abelian group rotation is replaced

by the notion of an isometric extension. Say that π : X → Y is an isometric extension if

X = Y×σM whereM = (M,BM, μM) withM a compact metric space, BM the Borel σ-
algebra and μM the probability measure invariant under the the action of the isometry group

ofM , TX(y,m) = (TYy, σ(y)m), where σ is a (measurable) map from Y to the isometry

group ofM , and μX = μY × μM .

Theorem 3.4 (Furstenberg-Zimmer structure theorem [15, 55]). There exists a sequence of
factors

X → . . .→ Zk(X) → Zk−1(X) → . . .→ Z1(X) → !

such that for each k, eitherX → Zk(X) is relatively weakly mixing, or there is a morphism
from X to a non trivial isometric extension of Zk(X).

Theorem 3.5 (Furstenberg [15]). The factors Zk(X) are (k + 1)-characteristic.

Observe that the factor Z0(X) is the trivial factor and the factor Z1(X) is the Kronecker
factor. With the above structure theorem at hand it then suffices to prove the multiple recur-

rence theorem for systems which are towers of isometric extensions. Furstenberg utilizes this

structure to show multiple recurrence - the idea being that if the multiple recurrence prop-

erty holds for any k for a system Y, and X is an isometric extension of Y, then multiple

recurrence holds for X as well.

4. Obstructions to 4-term progressions

The Kronecker factor Z1(X) = Z(X) is also a universal 2-characteristic factor : it satisfies
the property that if Y is any 2-characteristic factor and πY : X → Y the factor map, then

the factor map πZ : X → Z(X) factors through Y as demonstrated in the diagram below:
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X

Y Z(X)

πY
πZ

∃

The factors Zk(X) that were constructed by Furstenberg are not universal (k + 1)-
characteristic for k > 1. This raises the following natural problem: classify the universal

(k + 1)-characteristic factors Zk(X). In other words, we try to understand the exact ob-

structions on the points x, Tnx, . . . , T (k+1)nx preventing them from moving about freely in

X .

For the case k = 1, the upshot of the discussion regarding Furstenberg’s proof of Roth’s

theorem on 3-term progressions in the previous section was that the only obstructions to the

independence (asymptotically on average) of x, Tnx, T 2nx come from a compact abelian

group rotation factor, associated to the non trivial eigenfunctions of X. Already in the case

k = 2 (corresponding to 4-term progressions) we have new obstructions. Consider for

example the system

Y = (T× T,Borel,Haar, TY)

where

TYy = TY(z, w) = (z + α,w + 2z + α),

where α is irrational. Iterating S we obtain

TnYy = T
n
Y(z, w) = (z + nα,w + 2nz + n2α).

We now observe that

y = 3TnYy − 3T 2n
Y y + T

3n
Y y

Namely, the point y is determined by the three points TnYy, T
2n
Y y, T

3n
Y y.

Y

T
z

z + nα

z + 2nα

z + 3nα

y

Tn
Yy

T2n
Y y

T3n
Y y

Figure 4.1. The points y, Tn
Yy, T 2n

Y y, T 3n
Y y are not independent in the fibers over T .
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If there is a morphism X → Y, these new obstructions to the (asymptotic on average)

independence of the points x, TnXx, T
2n
X x, T

3n
X x will surface. Another way to see the ob-

structions coming from the system Y is by observing that the system Y exhibits second
order eigenfunctions, namely functions φ satisfying φ(TYy) = ψ(y)φ(y) where ψ is an

ordinary (first order) eigenfunction; for example the function φ(y) = φ(z, w) = e2πiw is a

second order eigenfunction. Any second order eigenfunction satisfies

φ(y) = φ3(TnYy)φ
−3(T 2n

Y y)φ(T
3n
Y y)

Thus choosing f0 = φ−1, f1 = φ3, f2 = φ−3, and f3 = φ we see that

1 =

∫
f0(x)f1(T

n
Yy)f2(T

2n
Y y)f3(T

3n
Y x)dm

=
1

N

∑
n≤N

∫
f0(x)f1(T

n
Yy)f2(T

2n
Y y)f3(T

3n
Y x)dm.

On the other hand one can verify that a (non trivial) 2nd order eigenfunction φ (and its pow-

ers) is orthogonal to ordinary eigenfunctions, thus for any i = 0, 1, 2, 3 the projection of the

function fi on the Kronecker factor is 0.

It turns out, however, that second order eigenfunctions are not the only obstructions.

Consider the Heisenberg nilsystem: the phase space Y is the Heisenberg nilmanifold

Y = N/Γ =
(

1 R R
0 1 R
0 0 1

)/(
1 Z Z
0 1 Z
0 0 1

)
equipped with the Borel σ-algebra and the Haar measure, and the transformation TY given

by TYgΓ = agΓ, where

a =
(

1 α 0
0 1 β
0 0 1

)
.

Topologically Y is a circle bundle over a two dimensional torus. This system shares with the

system in the above example the property that the point gΓ is determined by angΓ, a2ngΓ,
a3ngΓ. However this dependence can not be described by a simple equation as in the previ-

ous example. Moreover, Y has no non-trivial second order eigenfunctions9.
The Heisenberg nilsystem is a special case of the following system:

Y = (N/Γ,Borel,Haar, TY),

where N/Γ a 2-step nilmanifold, and

TY : gΓ → agΓ a ∈ N.

The system Y is called a 2-step nilsystem. It turns out that we need not look for further

obstructions in the case k = 2 - all obstructions to 4-term progressions come from 2-step
pro-nilsystems - inverse limits of 2-step nilsystems [10–12, 16]:

Theorem 4.1 (Conze-Lesigne, Furstenberg-Weiss). LetX be an ergodic measure preserving
system. There exists a 2-step pro-nilsystem Y and a morphism π : X → Y such that Y is

9The easiest way to see this is via equidistribution properties of polynomial orbits on nilmanifolds [34].
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Y

T2

z

z + n(α, β)

z + 2n(α, β)

z + 3n(α, β)

gΓ

angΓ

a2ngΓ

a3ngΓ

Figure 4.2. The points gΓ, angΓ, a2ngΓ, a3ngΓ are not independent in the fibers over the two dimen-

sional torus.

the universal 3-characteristic factor of X, namely

1

N

N∑
n=1

∫
f(x)f(TnXx)f(T

2n
X x)f(T

3n
X x)dμX

is asymptotically the same as

1

N

N∑
n=1

∫
π∗f(y)π∗f(T

n
Yy)π∗f(T

2n
Y y)π∗f(T

3n
Y y)dμY.

We can now prove Szemerédi’s theorem for 4-term progressions by verifying that in a

2-step nilsystem the above limit is positive (when f = 1A).

Let us say a few words about the proof. By Furstenberg’s structure theorem it is suffi-

cient to study systems X of the form Z ×σ M where Z = Z1(X) is the Kronecker factor,
TZ(z) = z + α, andM is a compact metric space and σ : Z → ISO(M). It is then shown

that one can further reduce to the case whereM is a compact abelian group and σ : Z →M
satisfies a functional equation now called the Conze-Lesigne equation: for all b, a.e z

σ(z + b)− σ(z) = c(b) + Fb(z + α)− Fb(z). (4.1)

Describing how one can solve the above equation is beyond the scope of this paper, but let

us hint how this equation is related to nilpotency. Consider the group

G = {(b, f) : b ∈ Z, f : Z →M measurable}
with the action

(b, f) ∗ (c, g) = (b+ c, f c · g)
where f c(z) = f(z+c). Then condition (4.1) can be interpreted as the fact that [(α, σ), (b, Fb)]
is in the center of G, which hints at 2-step nilpotent behavior.
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We mention another observation regarding equation (4.1). Upon examination one sees

that

c(b1 + b2)− c(b1)− c(b2)
is an eigenvalue of TZ, and using the fact that there are only countably many of those, one

can modify c(b), Fb(z) so that c(b) is linear in b in a neighborhood of zero in Z. A similar

feature will surface in the combinatorial analysis described in section 8 below, devoted to

the Inverse Theorem for the Gowers norms, which is why we mention it here.

5. Gowers proof of Szemerédi’s Theorem

The next advancement (chronologically) was in the combinatorial front. Gowers gave a new

proof for Szemerédi’s theorem [27]. His proof is a generalization of Roth’s argument to

arbitrarily long arithmetic progressions using an ingenious combination of discrete Fourier

analysis and additive combinatorics; in particular Gowers obtains a Roth type bound for the

density of the form 1/(log logN)c(k) for some constant depending on k - the length of the

progression.

We first fix some notation. We denote by [N ] the interval [1, N ]. For a finite set E we

denote by Ex∈Ef(x) the average 1
|E|
∑

x∈E f(x). For two functions f, g : [N ] → C we

write f(x) 2 g(x) if |f(x)| ≤ Cg(x) for some constant C independent of N , and we write

f(x) 2A g(x) if |f(x)| ≤ C(A)g(x) for some constant C(A) independent of N .

In the course of the proof Gowers defines the following norms which play a very impor-

tant role in further developments.

Definition 5.1 (Gowers norms). Let f : Z/NZ → C. For h ∈ Z/NZ define the discrete

derivative in direction h
Δhf(x) = f(x+ h)f(x)

We define the k-th Gowers uniformity norms Uk on CN by

‖f‖2kUk[N ] = Ex,h1,...hk∈[N ]Δh1
. . .Δhk

f(x)

Remark 5.2. One can define the Gowers norms on any abelian group; of special interest is

the group Fn2 where the Gowers norms are intimately related to polynomial testing.

We make a few initial observations. For 1-bounded functions f (‖f‖∞ ≤ 1)

• ‖f‖Uk[N ] = 1 if an only if f(x) = e2πiq(x) where q is a polynomial of degree < k .

• By repeated application of the Cauchy-Schwarz inequality, if f correlates with e2πiq(x)

where q is a polynomial of degree < k then f has large Gowers norms; namely

|Ex∈[N ]f(x)e
−2πiq(x)| > δ =⇒ ‖f‖Uk[N ] )δ 1.

• If f is a random function taking the values ±1 with probability 1/2 for any x ∈ [N ],
then by the law of large numbers, ‖f‖Uk[N ] = o(1).
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The Gowers uniformity norms play an important role in the study of arithmetic progressions.

If f and g are close in the Uk norm, i.e ‖f − g‖Uk[N ] is small, then they have approximately

the same number of k+1 term progressions. Denote by APk(f) the number of (k+1)-term
progressions in f : denote

APk(f) = Ex,d∈[N ]f(x)f(x+ d) . . . f(x+ kd).

Then

|APk(f)−APk(g)| 2k ‖f − g‖Uk[N ]. (5.1)

In fact a more general statement regarding linear forms is true:

Proposition 5.3. Let f1, . . . , fk be 1-bounded functions. Let L1(	x), . . . , Lm(	x) be k affine
linear forms in d variables with integer coefficients: Li(	x) =

∑d
j=1 lijxj + bi, no two of

which are affinely dependent. Then there exists k > 0 such that

|E	x∈[N ]df1(L1(	x)) · · · fk(Lm(	x))| 2 min
j

‖fj‖Uk[N ].

The proposition is proved via repeated applications of the Cauchy-Schwarz inequality,

and this is where the Gowers norms enter the picture in the proof of Theorem 1.1; it is the

source of the condition that no two forms are affinely dependent.

The strategy of Gowers is similar in spirit to that of Roth. The idea is as follows. Let

E ⊂ [N ] be with |E| = ηN . Then

• either the number of (k + 1)-term progressions is more than half of that expected in

random set, namely ≥ ηk+1N2/2, or

• ‖1E − η‖Uk[N ] )η 1.

In order to proceed one needs to understand the condition ‖1E − η‖Uk[N ] )η 1. For

k = 2 we observe that
‖f‖4U2[N ] = ‖f̂‖44 ≤ ‖f̂‖22‖f̂‖2∞.

Thus if ‖f‖2 ≤ 1 then we find that ‖f‖U2[N ] ≥ η implies ‖f̂‖∞ ≥ η2. This implies that f
has a large Fourier coefficient, namely

|Ex∈[N ]f(x)e(xα)| ≥ η2.
For larger k the situation is much more complicated. Gowers proves the following local

inverse theorem for higher Gowers norms.

Theorem 5.4 (Local inverse theorem for Gowers norms). Let f : Z/NZ → C be with
|f | ≤ 1. Then

‖f‖Uk[N ] ≥ δ =⇒ |Ex∈P f(x)e2πiq(x)| )δ 1,

where P is a progression of length at least N t, q(x) is a polynomial of degree k − 1, and t
depends10 on k, δ.

10In fact Gowers shows that one can find many such progressions: one can partition Z/NZ into progressions

P1, . . . , PM of average length greater thanNt, such that
∑M

i=1 |
∑

x∈Pi
f(x)e2πiq(x)| �δ N .
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The word ‘local’ in this context refers to the fact that the correlation in the above theorem

is obtained not on the full interval [N ] but rather on a short progression of length at least N t

with t < 1 (for k > 2). This theorem provides sufficient structure to obtain increased density

on a subprogression of length at least Ns: we apply Theorem 5.4 to the function 1E − η,
and use the equidistribution properties of the sequence {q(x)} mod 1 to find an arithmetic

progression of length at least Ns (s < t) on which {q(x)}mod 1 is roughly constant.

6. Classification of universal k-characteristic factors

We return now to the question of classifying k-characteristic factors. Recall that we are

interested in the averages

1

N

∑
n≤N

∫
f(x)f(Tnx)f(T 2nx) . . . f(T knx)dμ. (6.1)

The universal 4-characteristic factors were classified by Host and Kra [33], and indepen-

dently in the author’s PhD thesis [52], and were shown to be 3-step pro-nilsystems. Both

methods were extended to work for general k - by Host and Kra in [32], and by the author in
[54].

Theorem 6.1 (Host-Kra (05), Z (07)). LetX be an ergodic measure preserving system. The
universal k-characteristic factor Yk(X) is a (k − 1)-step pro-nilsystem.

We have the following diagram displaying the relation between the factors Zk(X) de-
fined by Furstenberg in his proof of Szemerédi’s theorem and the pro-nilfactors Yk(X)
which are the universal characteristic factors:

Zk(X) · · · Z2(X)

X Z1(X) !

Yk(X) · · · Y2(X)

As a corollary of this structure theorem one can calculate the asymptotic formula for the

averages in (6.1) via a limit formula for the corresponding averages on nilsystems [53].

Theorem 6.2 (Z (05)). LetX be a (k − 1)-step nilsystem. Then

lim
1

N

∑
n≤N

∫
f0(x)f1(T

nx) . . . fk(T
knx)dμ =

∫
f0(x0)f1(x1) . . . fk(xk)dmH

wheremH is the Haar measure on the subnilmanifoldHΓk+1/Γk+1 ⊂ Xk+1 = (G/Γ)k+1,
where H is the subgroup{(

g0, g0g1, g0g
2
1g2, g0g

3
1g

3
2g3, . . . , g0g

k
1g

(k2)
2 . . . g

( k
k−2)
k−2

)
: gi ∈ Gi

}

where {1}=Gk−1⊂Gk−2⊂ . . . ⊂ G1=G0=G is the derived series, i.e. Gi+1 = [Gi, G].
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One can now prove Szemerédi’s theorem by showing that the above limit is positive if

fi = 1A for i = 0, . . . , k. This approach to proving Szemerédi’s theorem (and various gen-

eralizations) was taken in [6].

The proof in [54] generalizes the methods in [10–12]. Inductively, one is led to the prob-

lem of solving a functional equation similar in nature to equation (4.1), only the extension

cocycles are now defined on a (pro)-nilmanifolds (rather than a compact abelian group).

Such cocycles are in general much more difficult to handle, but one can still use the fact that

orbits on products of nilmanifolds are well understood and have a nice algebraic nature (as

one can see in Theorem 6.2 above).

The proof in [32] introduces seminorms, which are similar, at least semantically, to the

Gowers uniformity norms11

Definition 6.3 (Host-Kra-Gowers semi-norms).

‖f‖2kUk(X) := lim
N→∞

Eh1,...,hk∈[N ]

∫
Δh1 . . .Δhk

f(x)dμ(x).

It is then proved that characteristic factors for averages associated with the ergodic Uk
semi-norms defined above are also pro-nilsystems. Or, in a different formulation:

‖f‖Uk+1(X) > 0 =⇒ π : X → k-step nilsystem, π∗f �= 0.

This suggests a far reaching generalization of the Gowers local inverse theorem, which we

will discuss in section 8 below.

7. The Green-Tao theorem from a characteristic factor point of view

In their famous paper, Green and Tao prove a Szemerédi’s type theorem in the prime numbers

[19]:

Theorem 7.1 (Green-Tao (05)). LetE ⊂ P of positive relative density, thenE contains long
arithmetic progressions.

We present the idea of the proof from a characteristic factor point of view. Our starting

point will be the following version of Szemerédi’s theorem: Let f : [N ] → [0, 1] be a

function with |En∈[N ]f(x)| > δ. Then for any integer k > 0

APk(f) = Ex,d∈[N ]f(x)f(x+ d) . . . f(x+ kd) ≥ c(δ) + o(1) (7.1)

where c(δ) > 0, and is independent of N .

If we naively try to apply this theorem for a subset E of the prime numbers of relative

density δ, we run into an obvious problem that Ex∈[N ]1E(x) = o(1). We can try to fix this

problem by putting a weight on each prime - we consider the von-Mangoldt function Λ(x)
which takes the value log p if x is a positive power of p and 0 otherwise. In this case we will
have

Ex∈[N ]Λ(x)1E(x) = δ + o(1),

11Such averages as the one below were studied in the case k = 2 already by Bergelson in [4].
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for some constant δ > 0 (independent ofN ). But now we face the problem that the function

1̃E(x) = Λ(x)1E(x) does not take values in [0, 1]; in fact the function 1̃E(x) is unbounded.
Green and Tao show that for a certain class of unbounded functions (functions bounded by

a k-psuedorandom function) one can find a “k-characteristic factor” for the average (7.1)

generated by bounded functions ! We can summarize the procedure as follows:

• Introduce combinatorial notions of (approximate) factor and projection onto a factor.

• Find a convenient combinatorial “k-characteristic factor” for averages associated with
theUk norms, in this case a factor of functions bounded by a constantC(k) (depending
only on k).

• Let π∗(1̃E) be the (approximate) projection on the factor. Then 0 ≤ π∗(1̃E) ≤ C(k),
the average of the function π∗1̃E is approximately the same as that of 1̃E , namely ap-

proximately δ, and ‖1̃E −π∗(1̃E)‖Uk[N ] 12 is small. A version of the Gowers-Cauchy-

Schwarz inequality (for functions bounded by k-pseudoradnom functions) gives then,

as in (5.1), that

|APk(1̃E)−APk(π∗1̃E)| 2 ‖1̃E − π∗1̃E‖Uk[N ] (7.2)

• Apply Szemerédi’s Theorem to theC(k)-bounded function π∗1̃E , to obtainAPk(π∗1̃E)
)δ 1, and thus APk(1̃E) )δ 1

A different way to say this is that given ε > 0 we can decompose

1̃E = g + h (7.3)

where g is a C(k)-bounded function, and h is a function with ‖h‖Uk[N ] < ε. This type

of theorem is now referred to as a decomposition theorem. There is a very nice modern

and more abstract treatment of general decomposition theorems in [28], and [38] using the

Hahn-Banach theorem. We remark that Theorem 7.1 has since been extended to include

polynomial configurations [46], and multidimensional configurations [13, 14, 48].

8. The Inverse Theorem for the Gowers Norms

The argument in the Green-Tao theorem is based on Szemerédi’s theorem which is valid for

any subset of positive density in the integers. This has two major caveats. The first is that

it can not lead to an asymptotic formula for the number of arithmetic progressions, only a

lower bound. The second is that it can not be used to study non homogeneous linear config-

urations, since there are counter examples within periodic sets of positive density. How then

can we hope to get an asymptotic formula as in Theorem 1.1 ?

12We defined the Gowers norms for functions f on the group Z/NZ. We can define Gowers norms for functions

f : [N ] → C, setting G := Z/ÑZ for some integer Ñ ≥ 2dN , and defining a function f̃ : G → C by

f̃(x) = f(x) for x = 1, . . . , N and f̃(x) = 0 otherwise. We then set

‖f‖Ud[N ] := ‖f̃‖Ud(G)/‖1[N ]‖Ud(G),

where 1[N ] is the indicator function of [N ]. It is easy to see that this definition is independent of the choice of Ñ .



584 Tamar Ziegler

We recall now that - in the ergodic theoretic context - to get a limit formula we needed

to identify the universal characteristic factors. Motivated by theorem 6.1, Green and Tao

conjectured in 2006 that the combinatorial “universal characteristic factors” for the Uk norm
come from nilsequences - sequences arising in a natural way from nilsystems.

Conjecture 8.1 (Inverse conjecture for the Gowers norms (GI(s))). Let s ≥ 0 be an in-
teger, and let 0 < δ ≤ 1. Then there exists a finite collection Ms,δ of s-step nilmani-
folds G/Γ, each equipped with some smooth Riemannian metric dG/Γ as well as constants
C(s, δ), c(s, δ) > 0 with the following property. Whenever N ≥ 1 and f : [N ] → C is
a 1-bounded function such that ‖f‖Us+1[N ] ≥ δ, there exists a nilmanifold G/Γ ∈ Ms,δ ,
some g ∈ G and a function F : G/Γ → C bounded in magnitude by 1 and with Lipschitz
constant at most C(s, δ) with respect to the metric dG/Γ, such that

|En∈[N ]f(n)F (gnx)| ≥ c(s, δ). (8.1)

That is, the global obstruction (scale N ) to Gowers uniformity come from sequences

arising from nilsystems. Recall that the local theorem for the Gowers norms shows that local

obstructions (at scale N t) to Gowers Us+1 uniformity norms come from phase polynomials

of degree s. We remark that the converse to Conjecture 8.1 is true and relatively easy to

prove via repeated applications of the Cauchy-Schwarz inequality. Namely, if (8.1) holds

then ‖f‖Us+1[N ] )δ 1. We also mention that if δ is sufficiently close to 1 then the conjecture
is true; moreover, f is close (in L1) to a genuine (unique) phase polynomial [1], and thus

correlates with a (unique) phase polynomial13; uniqueness allows one to try an intelligent

guess. In the realm when δ > 0, we cannot expect uniqueness, and as it turns out, we also

can’t expect correlation with a genuine phase polynomial.

One can ask a similar question in the context of finite field geometry. Given a function

f : Fnp → D with large Gowers norm (fixing p and letting n approach ∞), what can be

said about f? It was conjectured that such functions would correlate with polynomial phase

functions. More precisely:

Conjecture 8.2 (Inverse conjecture for the Gowers norms in finite fields). Let p be a prime
and let f : Fnp → C be 1-bounded, with ‖f‖Us+1[Fn

p ]
≥ δ. Then there exists a polynomial

P : Fnp → Fp of degree ≤ k such that

|Ex∈Fn
p
f(x)e2πiP (x)/p| ≥ c(s, δ).

The case s = 1 of both conjectures follows from a short Fourier-analytic computation.

The case s = 2 of Conjecture 8.1 was proved in [20]. The case s = 2 of Conjecture 8.2 was

proved in [20] for odd p and for p = 2 in [40]. Surprisingly, Conjecture 8.2 turned out to be

false; a counter example for the U4[Fn2 ]was constructed independently in [18, 35]. However,
it turned out that with a small modification ofConjecture 8.2 is actually true [7, 45, 47]. Call

P : Fnp → C a non-standard polynomial of degree < k if for all h1, . . . , hs ∈ Fnp we have

Δh1 . . .ΔhsP ≡ 1

If char F ≥ s, then a non-standard polynomial is a standard phase polynomial, i.e e2πiP (x)/p

where P : Fnp → Fp a polynomial of degree < s, but otherwise the class of non-standard

polynomials is larger.

13One can exhibit a polynomial phase function ep(x) as a nilsequence see e.g. [24]
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Theorem 8.3 (Bergelson-Tao-Z (10), Tao-Z (10,12)). Let p be a prime and let f : Fnp → C
be 1-bounded, with ‖f‖Us+1[Fn

p ]
≥ δ. Then there exists a non-standard polynomial P of

degree ≤ s, and a constant c(s, δ) > 0 such that

|Ex≤Fn
p
f(x)eP (x)| ) c(s, δ).

The proof of theorem 8.3 is via an ergodic theoretic structure theorem, similar in nature to

Theorem 6.1, and a correspondence theorem - translating the finitary question to a question

about limiting behavior of multiple averages for an ⊕Fp ergodic action.
Finally Conjecture 8.1 was proved [24]:

Theorem 8.4 (Green-Tao-Z (12)). The inverse conjecture for the Gowers norms GI(s)
norms is true.

The proof of Theorem 8.4 is long an complicated and is carried out in [24]. For a more

gentle introduction to the proof we refer the reader to either [26], where the case k = 3 (the

U4 norm) is handled, or to the announcement in [25]. We now try to give the flavor of the

proof. Suppose ‖f‖Us+1[N ] ≥ δ, then by definition

Eh∈N‖Δhf(n)‖2sUs[N ] )δ 1.

It follows that for all h in a set H of size )δ N we have ‖Δhf(n)‖Us[N ] )δ 1. Now,

inductively we know that, for h ∈ H , Δhf(n) correlates with an s − 1-step nilsequence

Fh(g
n
hxhΓ) (of complexity 2δ 1), namely

|Eh∈NΔhf(n)Fh(g
n
hxhΓ)| )δ 1

In the caseGI(2), this 1-step nilsequence can be taken to be e2πiλhn, but in general we can’t

hope for anything as simple. The key difficulty now is to try to find some extra structure

relating the nilsequences Fh(g
n
hxhΓ) for different values of h. This is already quite diffi-

cult in the GI(2) case. In this case, an ingenious argument of Gowers involving tools from

additive combinatorics, coupled with some geometry of numbers allows one to linearize λh
on a nice set - a generalized arithmetic progression (GAP). This argument is then combined

with a symmetry argument to construct a 2-step nilsequence g(h) with Δhg(n) = e
2πiλhn

for many values of h [20]). For general s, we follow the same strategy, however it turns

out to be rather difficult to extract some algebraic structure relating the various nilsequences

Fh(g
n
hxhΓ). An alternate approach to the inverse theorem was subsequently developed by

Szegedy [9, 43]. We remark that both Theorems 8.3, 8.4 are qualitative; it is a major open

question to find quantitative proofs for them.

How can one apply Theorem 8.4 to obtain Theorem 1.1? We give a very rough sketch.

One needs to calculate the projection of the function 1̃P(n) = (log n)1P(n) onto the combi-

natorial nil-factor. It turns out that the projection essentially lies in the much smaller factor

of periodic functions (with bounded period). More precisely, one first performs pre-sieving

to eliminate the periodic contributions. LetW =
∏
p<w p for w a slowly increasing function

of N . For (b,W ) = 1 consider 1̃W,b,P(n) = 1̃P(Wn + b). The projection of this function

on the combinatorial nil-factor should be constant, and since its average is 1 - this constant

should be 1; namely one must show that

‖1̃W,b,P(n)− 1‖Uk[N ] = o(1).
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Suppose ‖1̃W,b,P(n)− 1‖Uk[N ] > δ. Fix ε > 0, and decompose as in (7.3)

1̃W,b,P(x)− 1 = f + g

where f is bounded f 2k 1 , and ‖g‖Uk[N ] < ε. Then since Uk is a norm we get that

‖f‖Uk[N ] > δ/2. By Theorem 8.4 there is a nilsequence F (gnxΓ) of complexity 2δ 1
(i.e. all parameters associated with the nilsequence such as the dimension of the nilmanifold

are bounded in terms of δ), such that |Ef(x)F (gnxΓ)| )δ 1. From the easy direction of

Theorem 8.4 (which is valid for non bounded functions as well, via repeated applications

of the Cauchy-Schwarz inequality) we have |Eg(x)F (gnxΓ)| < c(ε) (with c a decreas-

ing function). In [22] it is shown that for any bounded complexity nilsequence we have

E(1̃W,b,P(n) − 1)F (gnxΓ) = o(1). Choosing ε sufficiently small in the decomposition

(7.3), we get a contradiction.
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On the virtual fundamental class

Kai Behrend

Abstract. We make a few general remarks about derived schemes, and explain the formalism of the

virtual fundamental class. We put particular emphasis on the case of symmetric obstruction theo-

ries, and explain why the associated intersection numbers and enumerative invariants (such as those of

Donaldson-Thomas) exhibit motivic behaviour. Motivated by this, we raise the question of categorifi-

cation, and explain why this leads into derived symplectic geometry.
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1. Introduction

One of the most remarkable success stories in algebraic geometry in the last 20 years has

been the advances made in enumerative geometry by the introduction of new invariants such

as those of Gromov-Witten [17], or Donaldson-Thomas [26], [20]. A key concept in these

developments is the virtual fundamental class [4], [19]. It provides a substitute for smooth-

ness in the case that moduli spaces are far from non-singular. Before it was even constructed,

it was clear [16] that the virtual fundamental class should be some kind of ‘classical shadow’

of a ‘derived moduli scheme’.

In differential geometry, such issues are usually dealt with by moving objects into gen-

eral position (for example, replacing holomorphic curves by pseudo-holomorphic curves),

but in algebraic geometry, this is often not possible, and a more intrinsic approach is re-

quired. Thus, one seeks to construct the virtual fundamental class from data intrinsic to the

moduli problem in question: this is the derived geometry of the moduli problem. The vir-

tual fundamental class provides a cycle against which one can integrate natural cohomology

classes to obtain enumerative invariants.

There is a fundamental difference between the enumerative theories à la Gromov-Witten,

and those à la Donaldson-Thomas. The latter belong to derived symplectic geometry, and

therefore display motivic behaviour (which the former do not). That these invariants might

satisfy some kind of motivic behaviour was realized right away, because it is apparent when

the moduli spaces are non-singular. In the general case, the proof of this fact was then

furnished in [2]. The key realization was, that the correct way to count the contribution of

a point of the moduli space to the virtual count was a generalization of the Milnor number

of a critical point. This opened the door to motivic generalizations of Donaldson-Thomas

theory [18], and derived symplectic geometry [24].
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This article is divided into two parts.

In the first, we give a brief idea of some properties of derived schemes in general, and

delve into the theory of the virtual fundamental class in more detail. We will not define

derived schemes, and will completely ignore many important issues, such as, for example,

all higher categorical phenomena.

In the second part we consider Lagrangian intersections, and explain how this leads to

the motivic nature of Donaldson-Thomas invariants and the discovery of derived symplectic

geometry.

2. The virtual fundamental class

The virtual fundamental class is a classical shadow of a derived space. We start by explain-

ing what this means.

We will generally put ourselves in the context of algebraic geometry over the field of

complex numbers. By a classical scheme we mean a ‘usual scheme’ as discussed in [12], for

example. Let us agree that all our schemes are of finite type over C.

2.1. Derived schemes. We will not define what a derived scheme is, but rather list the most

important of its ‘classical shadows’. Suppose X is a derived scheme.

2.1.1. Classical locus. There is a classical scheme X ⊂ X, contained as a closed sub-

scheme inside X. Usually the classical scheme X is highly singular, even if X is not. It may

happen that X = X .

2.1.2. Amplitude. Derived schemes have an ‘amplitude of smoothness’. This is an integer

n ≥ 0. If n = 0, then X = X and X is non-singular. (In fact, every smooth scheme can be

considered as a derived scheme of amplitude 0.)
If the amplitude satisfies n ≤ 1, the derived scheme X is often called quasi-smooth. If

X has amplitude 1, and X = X, then X is necessarily a local complete intersection scheme.

(Conversely, every local complete intersection scheme is a quasi-smooth derived scheme.)

The smoothness amplitude may be ∞, although that case should be considered patho-

logical. (Classical schemes which are not local complete intersections are always of infinite

amplitude when considered as derived schemes.)

2.1.3. Virtual dimension. If the amplitude is finite, the derived scheme X has a virtual

dimension. This agrees with the usual notion of dimension in the case of amplitude zero

(and also in the case of amplitude 1, if X = X).

2.1.4. Virtual fundamental class. This exists only in the case that the smoothness ampli-

tude is at most 1, i.e., the quasi-smooth case.

If the amplitude is 0, the virtual fundamental class is the usual fundamental class [X] of
X , as an oriented real manifold. If X is compact, it is an element of H2d(X,Z), where d is
the complex dimension ofX , in the general case it is an element of Borel-Moore homology,

i.e., homology with locally finite supports. In algebraic geometry, we usually prefer to use

Chow homology, then the fundamental class is in Ad(X), the group of cycles of dimension

d modulo rational equivalence. We will use the Chow homology version.
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2.1.5. Tangent complex. There is a derived category objectTX ∈ Db
coh(OX) in the derived

category of the classical locus called the tangent complex. In the amplitude zero case, TX is

the tangent bundle of the classical scheme X = X. More generally, in the case X = X, the
tangent complex TX is the dual of the more fundamental cotangent complex of X .

The tangent complex determines the amplitude: if the tangent complex TX is a complex

of vector bundles E0 → E1 → . . .→ En overX , then the derived scheme X has amplitude

in [0, n]. More precisely, X has amplitude in [0, n], if and only if, locally in X , the tangent

complex is quasi-isomorphic to a complex E0 → . . .→ En of vector bundles over X .

The tangent complex also determines the virtual dimension. In fact, the virtual dimension

of X is the rank of TX, which is equal to
∑amplitude

i=0 (−1)i dimEi, for a (local) presentation
TX = E•.

Let us denote the cohomology sheaves of TX by hi(TX). There are coherent sheaves on
X . We always have that h0(TX) = TX = Der(OX ,OX) is the Zariski tangent sheaf of X .

In the quasi-smooth case, we denote h1(TX) by obX, and call it the obstruction sheaf.
In this latter case, we may think of TX as a 2-extension of obX by TX , i.e., an element of

Ext2OX
(obX, TX):

0 �� TX �� T0
X

�� T1
X

�� obX �� 0

In case X is non-singular as a scheme, obX is a vector bundle, and so the 2-extension TX is

a cohomology class in H2
(
X, ob∨X ⊗TX).

2.1.6. Canonical bundle. In the finite amplitude case, the determinant of TX is a well-

defined line bundle onX . Its dual is denoted byKX and called the virtual canonical bundle
of X.

2.1.7. Higher structure sheaves. There is a graded sheaf of OX -algebras on the classical

locus X , denoted π∗(OX). It satisfies π0(OX) = OX and πi(OX) = 0, for all i < 0. Every
πi(OX) is a coherent sheaf of OX -modules. Moreover, π∗(OX) is a graded commutative
sheaf of OX -algebras, so there are operations πi(OX) ⊗OX

πj(OX) → πi+j(OX). In the

quasi-smooth case, π∗(OX) is bounded above. In general (even in the finite amplitude case)

it will be unbounded.

2.2. Examples. Here are a few typical sources of derived schemes.

2.2.1. Affine variety cut out by a set of equations. Any collection of r polynomials f1, . . .,
fr ∈ C[x1, . . . , xn] in n variables defines a derived scheme X of amplitude contained in

[0, 1], i.e. a quasi-smooth derived scheme. Its virtual dimension is equal to n − r, the ‘ex-
pected’ dimension of the common zero locus of r equations in n variables. The underlying

classical scheme is X = SpecC[x1, . . . , xn]/(f1, . . . , fr). Every irreducible component of

X has dimension n− r or larger. IfX is of pure dimension n− r, then it is a local complete

intersection scheme, and X = X . All derived phenomena are due to excess dimension in the

intersection of the r hypersurfaces Z(f1), . . . , Z(fr).

2.2.2. Toy model of quasi-smooth derived schemes. Slightly more generally, suppose that

M is a non-singularC-variety, andE →M an algebraic vector bundle overM , with a global

section s : M → E. In this case the scheme-theoretic zero locus X ⊂ M of s is naturally
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endowed with a derived scheme structure X ⊂ X ⊂ M . The smoothness amplitude of X is

contained in [0, 1], and the virtual dimension is dimM − rkE.
Differentiating the section s : M → E gives rise to a homomorphism of vector bundles

TM |X → E|X over X , this represents the tangent complex TX ∈ Db
coh(OX), if we put

TM |X in degree 0 and E|X in degree 1. The kernel of TM |X → E|X , i.e., h0(TX), is
the Zariski tangent sheaf of X , denoted TX . It is isomorphic to the sheaf of derivations

OX → OX , and does not depend on X, only on X . The obstruction sheaf obX = h1(TX),
is the cokernel of TM |X → E|X . It depends on X in an essential way. There is an exact

sequence of coherent sheaves on X

0 �� TX �� TM |X �� E|X �� obX �� 0 .

(To get the signs right, let us remark that, strictly speaking, the complex TX is given by the

canonical homomorphism TM |X → E|X , multiplied by−1, as it is the dual of the cotangent
complex of X, which is considered more fundamental.)

The name obstruction sheaf comes from deformation theory. The obstruction sheaf con-

tains all obstructions to the smoothness of X , although it can be much bigger. (Moreover,

the obstructions to smoothness of X are, of course, intrinsic to X , whereas obX is not.)

The virtual fundamental class of X is the localized top Chern class of E, which is an

element of H2 dimM−2 rkE(X,Z), or AdimM−rkE(X), respectively. Let us review its con-

struction via deformation to the normal cone, [11].
The graph of s is a subvariety Γs of the total space of E, isomorphic to the base M

via the projection π : E → M . We multiply Γs by a scalar λ ∈ C∗ using the vector

bundle structure on E, and let λ → ∞. The limit maps to X ⊂ M via the projection

π, and it is invariant under the C∗-action on E. Therefore, it is is a cone CX inside the

restriction E|X of the bundle E to X . The cone CX is known as the normal cone of X
in M . As an abstract scheme, CX → X depends only on the embedding X ↪→ M , in

fact, CX = SpecX
⊕∞

i=0 I
i/Ii+1, where I is the ideal sheaf of X inM . (The embedding

CX ↪→ E|X comes from writing X as the zero locus of the section s : M → E of π.) The
cone CX/M is of pure dimension dimM .

We are not interested in this cone as a scheme, but only in its fundamental cycle. If

C1, . . . , Cs are the irreducible components of CX/M and r1, . . . , rs their multiplicities in

the scheme CX/M , then the fundamental cycle is [CX/M ] = r1[C1] + . . . + rs[Cs] ∈
AdimM (E|X). The images of the components Ci under π are subvarieties of X , the dis-
tinguished subvarieties. They will play a role in 3.2.5, below.

Pulling back cycles via the projection π : E|X → X induces an isomorphism on Chow

groups A(X) → A(E|X), by homotopy invariance of Chow homology. The inverse of

this isomorphism is the Gysin map 0!E : A(E|X) → A(X). It lowers degrees by rkE,
because pulling back increases degrees by rkE. The localized top Chern class is ctop(E) =
0!E [CX/M ]. As mentioned, this is the virtual fundamental class of the derived scheme X.

[X]vir = ctop(E) = 0!E [CX/M ] .

The image of this class in A(M) is the usual top Chern class of E as a bundle overM .

If all irreducible components of X have the expected dimension dimM − rkE, we are
in the case where X = X and X is a local complete intersection. Then [X]vir = [X].

In the case where X is non-singular (as a scheme), the obstruction sheaf obX is a vector

bundle. Its rank is the excess dimension determined by the equation

dimX = dimM − rkE + rk obX .
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Its top Chern class is the virtual fundamental class:

[X]vir = ctop(obX) ∩ [X] .

2.2.3. Intersection theory. Still more generally, consider two smooth subvarieties M , N
inside a smooth ambient variety V . The classical intersection scheme is the fibered product

X = M ×V N . If X has the expected dimension, its scheme structure carries all relevant

intersection theory phenomena, in particular the intersection multiplicities. In the case of

excess intersection dimension, there is a refined fibered product X in the category of derived

schemes, whose underlying classical scheme is X . The virtual dimension of X is dimV −
dimM − dimN .

Again, the amplitude of X is contained in [0, 1]. It is equal to 0 if and only if the intersec-
tion ofM andN inside V is transverse, which means that at every point P in the intersection

X , we have TM |P + TN |P = TV |P .
Again, X = X if and only if X has dimension dimV − dimM − dimN at every one

of its points, i.e., if and only if the intersection is proper.
The tangent complex is TX = [TM |X ⊕ TN |X → TV |X ]. The obstruction sheaf fits into

the exact sequence

0 �� TX �� TM |X ⊕ TN |X �� TV |X �� obX �� 0 .

So if X is non-singular, then obX is equal to the excess bundle of the intersection.
The virtual fundamental class is the refined intersection product [X]vir = [M ] · [N ] ∈

A(X), which maps to the (global) intersection product in A(V ). (This is the top Chern class
of the excess bundle in the case that X is non-singular.)

The higher structure sheaves are derived tor-sheaves:

πi(OX) = TorOV
i (OM ,ON ) .

(This is the origin of the word derived scheme.)
If M and N have complementary dimension, then the virtual dimension of X is 0, and

hence [X]vir is a 0-cycle on X . If, moreover, X is proper (the algebraic analogue of com-

pact), then [X]vir has a well-defined degree. This is the intersection number ofM and N in

V , which we think of as the virtual number of points of X:

#vir(X) = deg[X]vir =

∫
[X]vir

1 ∈ Z .

If the intersection is transverse, #vir(X) = #(X). If it is proper, #vir(X) is equal to the

length of the 0-dimensional scheme X .

2.2.4. Gauge theory. Suppose that L = L≥0 is a differential graded Lie algebra. As a

standard example, let Y be a compact C∞-manifold, and let

Lk = C∞(Y,ΩkY ⊗CMn×n)

be the C-vector space of matrix-valued C∞-forms of degree k on Y . The differential is

the de Rham differential, the Lie bracket is the anti-commutator of the natural associative

product on L given by combining wedge product of forms with matrix multiplication in the

natural way.
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The curvature map is the quadratic map F : L1 → L2, defined by

x !→ dx+ 1
2 [x, x] .

The vanishing locus of the curvature in L1 is theMaurer-Cartan locus of L. In our example,

L1 is the set of all connections on the trivial vector bundle of rank n on Y , and the Maurer-

Cartan locus is the set of flat connections.

LetG be a gauge group for L. This is a complex Lie group whose Lie algebra is L0, and

which acts on L by automorphism of the differential graded Lie algebra structure, in such a

way that the derivative of the action of G on Lk is the Lie algebra action of L0 and Lk given
by the graded Lie algebra structure of L. In our example, G = C∞(Y,GLn) is the group of
invertible sections in L0 = C∞(Y,Mn×n).

Moreover, assume given a gauge cocycle, i.e., a map γ : G→ L1, satisfying

1. γ(gh) = gγ(h) + γ(g),

2. dγ(g) + 1
2 [γ(g), γ(g)] = 0,

3. g
(
d(g

−1

x)
)
= dx+ [γ(g), x],

then we define the gauge action of G on L1 by g ∗ x = gx + γ(g). In our example,

γ(g) = −(dg)g−1.

The moduli space of (L,G, γ) is the quotient of the Maurer-Cartan locus by the gauge

action. In our example, this is the set of flat connections on the trivial bundle modulo gauge

equivalence, or, equivalently, the set of isomorphism classes of flat vector bundles of rank n,
whose underlying C∞-bundle is trivial. In other words, it is the moduli space of (topologi-

cally trivial) local systems on Y .
For the quotient by G to be well-behaved, we have to restrict to an open subset of L1,

where G has trivial, or almost trivial stabilizers. In our example, this leads to the moduli

space of simple local systems. Unfortunately, it is not compact.

Strictly speaking (in our example), each Lk, as well as G, is infinite-dimensional, so

the above constructions do not make sense within algebraic geometry, but the ideas are nev-

ertheless very important. On the other hand, there are many examples where L and G are

finite-dimensional, so we are within algebraic geometry, and the quotient by the gauge group

can be treated with geometric invariant theory, and the well-behaved subspace of L1 is the

stable locus with respect to a linearization of the gauge group action.

For example, Kapranov[13] has shown how our example can be made finite-dimensional

by triangulating the manifold Y , and considering simplicial matrix valued cochains.

Anyway, let us call the moduli space X = MC(L)/G. It is the classical locus of a

derived scheme X. To construct the tangent complex TX, we start with the trivial graded

vector bundle with fibre L over MC(L), and endow it with the differential which is given

by dx in the fibre over the Maurer-Cartan element x. Here dx is the differential d twisted by

ad(x), i.e., dx(y) = dy + [x, y]. The gauge groups acts on the complex of vector bundles

(L, dx) over X , on the fibres via the linear action, on the base via the gauge action. The

complex (L, dx) therefore descends to a complex of vector bundles on the quotient. This

is the shift TX[−1]. Therefore, Hi(TX|x) = Hi+1(L, dx). (If H0(L, dx) �= 0, then the

stabilizer ofG at x, whose Lie algebra isH0(L, dx), is positive-dimensional. This stabilizer

would have been ‘ignored’ when taking the G-quotient, and hence in this case TX[−1] is
obtained as the truncation τ≥1(L, d

x).)
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In our example, (L, dx) is the de Rham complex of Y with values in the endomorphism

bundle of the flat bundle E defined by x. Therefore its cohomology groups areHi(L, dx) =
Hi
(
Y,End(E)

)
, and hence Hi(TX|x) = Hi+1

(
Y,End(E)

)
. The virtual dimension of this

derived scheme is therefore

dimY−1∑
i=0

(−1)iHi+1
(
Y,End(E)

)
= 1− χ(Y,End(E)) ,

and its amplitude is contained in the interval [0, dimY − 1].
For the Zariski tangent space of the point of X defined by the flat bundle E we get

TX |E = H1
(
Y,End(E)

)
. This is the space of infinitesimal deformations of E, and this

result would have been predicted by deformation theory. The next space H2
(
Y,End(E)

)
contains the obstructions to the smoothness of X at the point represented by E. This is

another fact proved in deformation theory.

If we pull back the higher structure sheaves formX toMC(L), and take global sections,
we get essentially the differential graded Lie algebra cohomology of L (a generalization of

ordinary Lie algebra cohomology to the differential graded case), with values in the trivial

module C.
So if Y is a surface, then X is quasi-smooth, and we should have a virtual fundamental

class. But it turns out, at least when Y is orientable, that there is more symmetry (see 3.3.1,

below), and therefore X is smooth. The spaces X we get are known as character varieties,
there is a rich body of literature devoted to their study.

2.3. Construction of the virtual fundamental class. SupposeX is a quasi-smooth derived

scheme. For simplicity, let us assume that the underlying classical scheme X is quasi-

projective. Then it is possible to write the obstruction sheaf obX = h1(TX) as a quotient

of a locally free sheaf F � obX. There is then an associated scheme of closed subcones

C ↪→ F . It is characterized by the property that whenever X is (locally!) written as the

derived scheme associated to a toy modelM
s−→ E, then for any lift φ as in the diagram

F
φ

�� ����
E|X �� �� obX

we have C = φ−1(CX/M ).
It can be shown that C is the preimage under the epimorphism F � obX of the cone

cvX ⊂ obX of small curvi-linear obstructions.
The virtual fundamental class of X is then

[X]vir = 0!F [C] ∈ A(X) .

It does not depend on the choice of F nor on the choice of the epimorphism F � obX.
As this construction shows, the virtual fundamental class of X depends only on the tan-

gent complex TX, and its properties. Abstracting these properties, leads to the notion of

perfect obstruction theory. We explain this formalism next.

2.3.1. The truncated tangent complex of a scheme. Given a schemeX , which is embed-

ded as a closed subscheme into a non-singular scheme M , there is a canonical homomor-
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phism of coherent sheaves on X

TM |X �� NX/M .

Here, NX/M is the normal sheaf of X in M , it is the dual of the coherent OX -module

I/I2, where I is the ideal sheaf of X inM . A standard argument shows that the associated

object of Db
coh(OX), obtained by putting TM |X in degree 0 and NX/M in degree 1 (and

multiplying the map by−1), does not depend on the embeddingX ↪→M chosen, and exists

naturally even when no such embedding exists globally. This derived category object is the

truncated tangent complex of X , notation TX . (It is the dual of τ≥−1LX , where LX is the

cotangent complex of the scheme X .)

AsNX/M is the dual of a coherent sheaf, it is, in fact, a scheme overX . The normal cone

of the embedding X ⊂M is naturally a C∗-invariant closed subscheme CX/M ↪→ NX/M .

2.3.2. Perfect obstruction theories. A perfect obstruction theory on the scheme X is an

object of the derived category F ∈ Db
coh(OX), together with a morphism φ : TX → F ,

such that

1. F is of perfect amplitude contained in [0, 1], in other words,X being quasi-projective,

F is given by a two term complex of vector bundles F 0 → F 1 over X ,

2. whenever we represent φ (locally over X) by a homomorphism of complexes

TM |X ��

φ0

��

NX/M

φ1

��
F 0 �� F 1

(2.1)

the square we obtain is a pullback diagram of schemes over X .

Given a perfect obstruction theory TX → F on X , we define the corresponding obstruction

sheaf to be obF = h1(F ). Any way of representing F as F 0 → F 1 gives an epimorphism

F 1 → obF from a vector bundle, and hence, as explained above, a cone C ↪→ F 1, and the

virtual fundamental class

[X,F ]vir = 0!F 1 [C] ∈ A(X) .

which depends only on the schemeX , and the perfect obstruction theory TX → F . (For any
diagram (2.1), the cone C ↪→ F 1 pulls back to the normal cone CX/M ⊂ NX/M under φ1.)

Whenever X is a quasi-smooth derived scheme, there is a natural homomorphism TX →
TX in Db

coh(OX), which is, in fact, a perfect obstruction theory. The virtual fundamental

class of X is then equal to the virtual fundamental class of the underlying classical scheme

X with respect to the obstruction theory TX.

In general, perfect obstruction theories are much easier to construct than derived schemes.

Usually, they come directly from deformation theory, and the fact that they are perfect also

follows from standard facts in deformation theory (if it is true).

2.3.3. K-theory fundamental class. The original suggestion of Kontsevich to construct

the virtual fundamental class was via the higher structure sheaves. In fact, for any quasi-

smooth derived scheme X, the following is true [7]:

[X]vir = τX [π∗(OX)] · Td−1(TX) .
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Here τX is the homological Chern character of Baum-Fulton-MacPherson, applied to the

class of the alternating sum of the higher structure sheaves in K-theory of coherent sheaves

on X .

2.4. Applications. When the scheme X is endowed with a virtual fundamental class

[X,F ]vir ∈ Ad(X), defined by a perfect obstruction theory F (which may or may not

come from a quasi-smooth derived scheme X via F = TX), andX is proper, then the virtual
fundamental class defines a homomorphism

Ad(X) −→ Z , ψ !−→
∫
[X]vir

ψ .

Here d is the virtual dimension of (X,F ). The cohomology classes ψ of degree d which are
integrated against the virtual fundamental class to obtain integers are often called insertions.
Thus combining the virtual fundamental class with suitable insertions gives integers, which

are often referred to as invariants, because being constructed by means of intersection theory,

they are usually invariant under deformations of the underlying geometry.

2.4.1. Donaldson Invariants. As an example, consider the algebraic geometry analogue

of our gauge theory example, above. Instead of flat bundles on a compact C∞-manifold,

we consider holomorphic bundles on a compact complex manifold, or algebraic vector bun-

dles on a non-singular projective variety, denoted Y . For a vector bundle E over Y , its
infinitesimal deformations are given by the vector space H1

(
Y,End(E)

)
, and obstructions

are contained in the vector spaceH2
(
Y,End(E)

)
. This suggests, by analogy with the above

gauge theory example, that the derived moduli scheme X of bundles on Y should have a

tangent complex TX with the property that Hi(TX|E) = Hi+1
(
Y,End(E)

)
at every point

E of the classical moduli scheme X of bundles on Y . This leads us to expect that the de-

rived category object
(
τ≥1Rπ∗Hom(E ,E )

)
[1] on X might serve as a perfect obstruction

theory, and define a virtual fundamental class on X . (Here E is the universal bundle over

X × Y , and π : X × Y → X is the projection.) As one of the requirements on a perfect

obstruction theory is that it has to exist in the interval [0, 1], we will need to require that

Hi
(
Y,End(E)

)
= 0, for all i > 2. The best way to assure this in general, is to assume that

Y is of dimension 2, i.e., an algebraic surface. We then do, indeed, get a perfect obstruction

theory, and a virtual fundamental class for X . To compactify X , we pass to stable sheaves.

In good cases, i.e., where there are no strictly semi-stable sheaves, the moduli space will be

compact, and with suitable insertions, we get numerical invariants. These are, essentially,

Donaldson invariants [10]. See [22] for a treatment using virtual fundamental classes.

2.4.2. Gromov-Witten invariants. An example for which the theory of perfect obstruc-

tion theories and virtual fundamental classes was very successful is that of Gromov-Witten

invariants. The relevant moduli space is essentially a moduli space of morphisms X =
Mor(C, V ), where C is a fixed algebraic curve (with at most nodal singularities) and V a

fixed non-singular projective variety. Deformation theory tells us that infinitesimal defor-

mations of f : C → V are given by H0(C, f∗TV ), i.e., by vector fields tangent to V ,
supported by C. Moreover, obstructions are contained in H1(C, f∗TV ). So Rπ∗f∗TV is

a perfect obstruction theory for X . (Here f : X × C → V is the universal map, and

π : X × C → X the projection.) The key construction that makes this useful, is the

compactification of X = Mor(C, V ) using stable maps due to Kontsevich. In the compact-
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ification the curve C exhibits ‘bubbling phenomena’, i.e. it sprouts off trees of projective

lines (or Riemann spheres), connected to each other by nodal singularities. No matter how

bad the bubbling, we always have Hi(C, f∗TV ) = 0, for i > 1, because C always stays

one-dimensional.

For the theory of Gromov-Witten invariants one makes this construction relative to the

moduli space of all stable curves. So one keeps V fixed, but varies C. The additional

complication that arises, is that the automorphism groups of curves, although finite, may

jump in families. This means that the moduli space will be a stack of Deligne-Mumford type
rather than a scheme. The only difference this makes is that the integrals of the insertions

against the virtual fundamental class, and hence the Gromov-Witten invariants, will take

values in rational numbers, rather than integers.

3. The virtual fundamental class in symplectic geometry

We continue in the context of algebraic geometry over C. Thus, a symplectic manifold is

a non-singular scheme over C, endowed with an everywhere non-degenerate closed alge-

braic (hence holomorphic) 2-form. A Lagrangian submanifold is an algebraic (in particular

holomorphic) submanifold of half the dimension of the ambient symplectic manifold, whose

tangent space is everywhere isotropic for the symplectic form.

3.1. Lagrangian intersections. In symplectic geometry it is natural to consider the inter-

section of two Lagrangian submanifolds inside a symplectic manifold. First of all, we notice

that the expected dimension of such an intersection is always 0, because two Lagrangian

submanifolds always have complementary dimensions. Thus, if the intersection is compact,

intersection theory gives rise to intersection numbers, without the need for cohomological

insertions.

3.1.1. Motivic nature of intersection. Now something quite unexpected happens: the in-

tersection number is motivic, i.e., it behaves like an Euler characteristic. To explain what we
mean by this, suppose that S is a symplectic manifold of dimension 2n, and let L, M be

Lagrangian submanifolds, with intersection X = L ∩M .

1. the intersection number #vir(X) makes sense whether or not the intersection X is

compact,

2. the intersection number is additive over open covers: if S = U ∪ V , for Zariski open
subsets U , V of S, then

#vir(X) + #vir(X ∩ U ∩ V ) = #vir(X ∩ U) + #vir(X ∩ V ) .

One of our goals is to explain why this is so.

3.1.2. Punctual contributions to the intersection number. The two motivic properties

imply that we can make sense of the contribution to the intersection number of every single

point P ∈ X . Simply set

νX(P ) = #vir(X)−#vir(X \ P ) .
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It turns out that the function

νX : X −→ Z

is constructible (i.e. constant along the strata of a suitable stratification of X), and that

#vir(X) =
∑
n∈Z

nχtop{x ∈ X : νX = n}

is the weighted Euler characteristic with respect to the constructible function νX .

Another surprising fact is that νX(P ) depends only on the scheme structure of X near

P , i.e., the singularity of X at P . Thus the constructible function νX is intrinsic to X .

3.1.3. Obstruction sheaf. Another unexpected fact is that also the obstruction sheaf is in-

trinsic to the classical intersection scheme X . To determine the obstruction sheaf, recall the

tangent complex TX = [TL ⊕ TM → TS ]|X . We take its dual, and shift it back into the

interval [0, 1]: T∨X[−1] = [ΩS → ΩL ⊕ ΩM ]|X . Now the symplectic form defines an iso-

morphism σ : TS → ΩS , such that σ∨ = −σ. We use σ to construct the homomorphism

θ = 1
2 (σ ⊕ σ) : TL|X ⊕ TM |X → ΩS |X giving rise to a commutative diagram

TX

(θ,−θ∨)
��

TL|X ⊕ TM |X 1⊕−1 ��

θ

��

TS |X
−θ∨
��

T∨X[−1] ΩS |X −1⊕1 �� ΩL|X ⊕ ΩM |X
Since the kernel of ΩS |X → ΩL|X is equal to TL|X , by the Lagrangian nature of L, and a

similar fact holds forM , we see that the kernel of [ΩS → ΩL ⊕ ΩM ]|X is equal to TX , and

that θ induces the identity on TX . Similar reasoning proves that the cokernel of [TL⊕TM →
TS ]|X is equal to ΩX , and that −θ∨ = θ induces the identity on ΩX . We deduce that

(θ,−θ∨) : TX → T∨X[−1] is a canonical quasi-isomorphism, hence an isomorphism in the

derived category. We conclude that

obX = h1(TX) = h
1(T∨X[−1]) = ΩX .

From this it also follows that

TX = h0(TX) = ob∨X ,

in other words, deformations are dual to obstructions, and the obstruction sheaf is the sheaf
of differentials.

3.1.4. Smooth intersection. Let us explain the origin of the motivic nature of Lagrangian

intersection numbers in the case where the intersection X is smooth (as a scheme). (Some-

times, this condition is referred to as clean intersection.) It means that the dimension of the

intersection TL|x ∩ TM |x inside TS |x is a locally constant function of x ∈ X . The obstruc-

tion sheaf is locally free, and called the excess bundle. We see that the excess bundle of the

intersection is always the cotangent bundle of the intersection variety. Its top Chern class is

therefore equal to ctop(ΩX) = (−1)dimXctop(TX), i.e., up to sign, equal to the Euler class

of X . By the Gauß-Bonnet formula we conclude, if X is proper:

#vir(X) =

∫
[X]

ctop(obX) = (−1)dimX

∫
[X]

ctop(TX) = (−1)dimXχtop(X) , (3.1)
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where χtop denotes the topological Euler characteristic. (Apologies for using ‘top’ in two

different senses.) Unlike the intersection number, the topological Euler characteristic is well-

defined also for non-proper X . Moreover, it is additive over open covers.

We see that for the case of smooth intersection, the weight function is constant (and

intrinsic to X):

νX ≡ (−1)dimX .

Every point P ∈ X contributes (−1)dimX to the intersection number.

3.1.5. Toy model: Critical locus of a regular function. The toy model for a Lagrangian

intersection is the critical locus of a regular function. Suppose that M is a manifold and

f : M → C a regular function. The graph of the exact differential form df is a Lagrangian

submanifold inside the cotangent bundleΩM ofM with its tautological symplectic structure.

The zero section of the cotangent bundle is another Lagrangian, and the intersection of these

two Lagrangians is the critical locus of f inM .

X = Crit(f) .

For simplicity of exposition, assume that X is contained (at least set-theoretically) in the

fibre of f over 0. As f is necessarily constant on every component of its critical set, this is

not a serious restriction. Then X is a natural scheme structure on the set of singularities of

the fibre f−1(0) ⊂M .

Let P ∈ X be a point. The Milnor fibre of f at P is the intersection of a nearby fibre of

f :M → C with a small ball around P ∈M :

Ff (P ) = {x ∈M : ||x|| ≤ ε and f(x) = η} (3.2)

for sufficiently small ε ) η > 0. The Milnor fibre Ff (P ) is a manifold with boundary

(the boundary is the link of the singularity of f at P ), which is independent of the choice of

metric on M used to define the ball of radius ε, and of ε and η, as long as ε is sufficiently
small, and η sufficiently small with respect to ε. It is called the Milnor fibre, because it is

diffeomorphic to the fibre of the fibration

Bε(P ) \ f−1(0) −→ S1 , x !−→ f(x)

||f(x)|| .

studied by Milnor [21].

In his well-known textbook [ibid.], Milnor studied mainly the case were P is an isolated

singularity of f−1(0), i.e., an isolated point of X . In this case he proved that Ff (P ) has
the homotopy type of a bouquet of spheres of real dimension dimCM − 1. The number of

spheres, which can be expressed as

μf (P ) = (−1)dimM
(
1− χtopFf (P )

)
, (3.3)

is called the Milnor number, and Milnor proved that it is equal to the dimension of OX,P ,

i.e., the multiplicity of P as a point on the schemeX . In local coordinates x1, . . . , xn onM
near P , this is the dimension of

C[[x1, . . . , xn]]/(∂1f, . . . , ∂nf) ,

which is finite, as f has an isolated critical point at x = 0.



On the virtual fundamental class 603

When X has positive dimension, so that P is not an isolated critical point of f , the ex-
pression (3.3) is still a well-defined integer. Just as in the case of an isolated singularity, the

number μf (P ) depends only on the scheme structure of X near P (not on the function f
whose critical scheme X is), and it varies in a constructible fashion over X . It is a conse-

quence of the microlocal index theorem of Kashiwara and MacPherson (and the fact that the

characteristic variety of the perverse sheaf of vanishing cycles is equal to the normal cone of

the critical set) that, if Crit f is proper,

#vir(Crit f) = χtop(Crit f, μf ) .

This is an analogue of formula (3.1), and proves the motivic nature of #vir(Crit f), in the

case X = Crit f .
We see that in this case νX(P ) = μf (P ), so the contribution of the point P to the virtual

count is, up to sign, the reduced Euler characteristic of the Milnor fibre.

3.1.6. Homogeneous case. We explain one case where the generalized Milnor number

νX(P ) = μf (P ) of (3.3) is easy to determine. Consider a set of non-zero integers r1, . . . , rn ∈
Z, called weights, and assume we have a polynomial f ∈ C[x1, . . . , xn] which is weighted

homogeneous of degree 0, if we assign to xi the weight ri. Let X ⊂ An be the critical

scheme of f , i.e., the affine scheme with affine coordinate ringC[x1, . . . , xn]/(∂1f, . . . , ∂nf).
Let us further assume that f ∈ (x1, . . . , xn)

3. This is not a serious restriction, if we are inter-

ested in the critical locus of f . It ensures that at the origin P ∈ An, we have TX |P = TAn |P ,
and hence that dimTX |P = n.

In this case the generalized Milnor number (3.3) is

μX(P ) = (−1)n .

This is easy to see: consider the circle group S1 ⊂ C∗ and its action on An = Cn given

by θ · (x1, . . . , xn) = (θr1x1, . . . , θ
rnxn). The Milnor fibre (3.2) is invariant under this

S1-action. Also, this S1-action on the Milnor fibre is fixed point free. Therefore, the Euler

characteristic of the Milnor fibre vanishes.

This calculation has non-trivial applications, for example, it implies that for the Hilbert

scheme of n points on a smooth scheme of dimension 3 (proper or not), the weighted Euler

characteristic is, up to sign, equal to the topological Euler characteristic:

χtop(Hilbn Y, νHilbn Y ) = (−1)nχtop(Hilbn Y ) . (3.4)

3.2. Symmetric obstruction theories.

3.2.1. Lagrangian intersection case. In the Lagrangian intersection case, the tangent com-

plex is endowed with extra structure, namely an odd pairing. Above, we constructed the

quasi-isomorphism Θ = (θ,−θ∨) : TX → T∨X[−1]. It has the property that Θ∨[−1] = −Θ.

This means that it can be equivalently thought of as an alternating pairing of degree −1

TX ⊗ TX −→ OX [−1] ,

or a global section of (Λ2T∨X)[−1]. (This latter class is the classical shadow a (−1)-shifted
symplectic structure on the derived scheme X underlying this Lagrangian intersection. The

closedness is not seen at the classical level.) The second exterior power of Θ is an isomor-

phism

Λ2Θ : Λ2TX −→ Λ2(T∨X[−1]) = Sym2 T∨X[−2] ,
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via which we can turn the pairingΛ2TX → OX [−1] defined byΘ into a pairing Sym2 T∨X →
OX [1]. This symmetric pairing is called the symmetric obstruction theory defined by the

Lagrangian intersection X = L ∩M . (In the literature, it is usually T∨X which is called the

obstruction theory, not TX.)

3.2.2. General case. This leads us to the following definition. A perfect obstruction theory

TX → F is symmetric, if F is endowed with a non-degenerate alternating pairing of degree

−1. (Equivalently, F∨ is endowed with a non-degenerate symmetric pairing of degree +1,
and this is where the name comes from.) This means that we are given an isomorphism

Θ : F → F∨[−1], such that Θ∨[−1] = −Θ.

In the toy model caseX = Crit f , the perfect obstruction theory is given by the Hessian
of f , this is a self dual map H(f) : TM |X → ΩM |X . In fact, the obstruction theory is

F = [TM |X
−H(f)�� ΩM |X ] .

Its shifted dual is

F∨[−1] = [TM |X
H(f) �� ΩM |X ] ,

and so Θ = (id,− id) : F → F∨[−1] defines the required pairing.

In the general case, just like in the Lagrangian intersection case, the obstruction sheaf is

always canonically isomorphic to the sheaf of differentials: h1(F ) = ΩX .

We will now explain what the presence of this additional structure says about the virtual

fundamental class.

3.2.3. Almost closed 1-forms. In the non-symplectic case, there is no difference between

the toy model for an intersection, and the toy model for a perfect obstruction theory. Every

intersection of smooth varieties (étale or analytically) locally looks like the zero set of a

section of a vector bundle on a smooth variety, and every perfect obstruction theory is locally

isomorphic to the perfect obstruction theory given by a such a toy model.

In the present case this is no longer true. Every Lagrangian intersection looks locally

like the critical scheme of a holomorphic function (by the holomorphic Darboux theorem),

but this is not true for symmetric obstruction theories.

The local model for a scheme with symmetric obstruction theory is a non-singular variety

with an almost closed 1-form on it. A 1-form on a non-singular schemeM is almost closed,
if dω vanishes in Ω2

M |X , where X is the zero locus of ω. In other words, the equations

∂ifj = ∂jfi, saying that the 1-form ω =
∑
fidxi is closed, have to be satisfied only modulo

the ideal (fi). Almost closed 1-forms give rise to symmetric obstruction theories on their

vanishing loci, and every scheme with symmetric obstruction theory locally comes from

an almost closed 1-form. There are examples of almost closed 1-forms, whose associated

symmetric obstruction theory does not admit a description as the symmetric obstruction

theory of a critical set [23].

3.2.4. Microlocal geometry. Suppose X is a scheme embedded as a closed subscheme in

the smooth schemeM . Microlocal geometry provides us with a commutative diagram
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Z∗(X)
Eu
∼

��

cM0 ��

Con(X)

cSM
0

��

Ch
∼

�� LX(ΩM )

0!��
A0(X)

Here Z∗(X) is the group of cycles on X , it is the free abelian group generated by the

irreducible closed subvarieties (prime cycles) ofX . The group Con(X) is the abelian group
of all Z-valued constructible functions on X . On the right, LX(ΩM ) is the group of conic

Lagrangian cycles on the cotangent bundle of M , which lie over X . The homomorphism

Eu is MacPherson’s local Euler obstruction, and Ch is the characteristic cycle map. The

downward maps are the degree 0 Chern-Mather class, the degree 0 Schwartz-MacPherson

Chern class, and the intersection with the zero section (Gysin map), respectively. The left

hand triangle does not depend on the embedding intoM .

The easiest of the horizontal maps to describe explicitly is the composition L = Ch ◦Eu.
It maps a prime cycle V in X to the closure of the conormal bundle inside ΩM of any non-

singular open subset of V , multiplied by (−1)dimV .

The next easiest is the inverse ofCh. Let P be a point inX . Choose a Euclidean distance

function from P in the complex manifoldM , denote its square by ρ, and let Δ be the graph

of dρ inside ΩM . Then the value of the constructible function Ch−1([C]) at P is

Ch−1([C])(P ) = I{P}([C], [Δ]) ,

the topological intersection number of the conic Lagrangian cycle [C] with [Δ] at P . This is
well-defined, because P is an isolated point of the intersection C ∩Δ.

Thus, by composition, we have also described Eu = Ch−1 ◦L.

3.2.5. The distinguished cycle and its Euler obstruction. Let CX/M be the normal cone

of X in M , and {Ci} its irreducible components with their multiplicities ri. Let ci be the

prime cycle in X obtained as the image of Ci under the projection CX/M → X . Form the

cycle

cX =
∑

(−1)dim cirici

onX . It is called the distinguished cycle ofX . It is a standard fact that cX is intrinsic toX:

it does not depend on the chosen embedding X ↪→M .

Define1 νX = Eu(cX). This is a constructible function on X , which is intrinsic to X .

The value νX(P ) of νX at the point P ∈ X only depends on an analytic neighbourhood

of P in X , it is an invariant of the singularity of X at the point P . When not mentioned

otherwise, the weighted Euler characteristic of a scheme is the weighted Euler characteristic

with respect to the weight function νX .

If X is smooth near P , then νX(P ) = (−1)dimX . If X is the scheme-theoretic critical

locus of an analytic function f onM near P , then νX(P ) = μf (P ).
(Even in the presence of a symmetric obstruction theory, it is not true that νX(P ) is

always a generalized Milnor number for a function f , such that X = Crit(f) near P ,
by the above mentioned [23]. For such cases μf (P ) is not defined, so in [2], we prove a

1This function νX is sometimes referred to as the Behrend function in the literature on Donaldson-Thomas

theory.
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formula expressing νX(P ) as a linking number, which is similar in spirit to the Milnor fibre

definition, and always applies.)

3.2.6. The main theorem. [2] Now suppose thatX is endowed with a symmetric obstruc-

tion theory. The embedding X ↪→ M provides us with an epimorphism ΩM |X � ΩX
from a vector bundle to the obstruction sheaf. The obstruction theory then gives us, as ex-

plained in 2.3, an obstruction cone C ⊂ ΩM |X ⊂ ΩM , and the virtual fundamental class is

[X]vir = 0![C].
The obstruction cone is locally (as a cone scheme overX) isomorphic to the normal cone

CX/M . The local isomorphisms are given by locally existing almost closed 1-forms cutting

out X inM .

The key fact is that the conic cycle [C] in ΩM is Lagrangian. This is a local calculation,

so we can reduce to the case where X is the zero locus of an almost closed 1-form ω onM ,

and the symmetric obstruction theory is given by ω, too. The graph of ω is not Lagrangian

in ΩM , as ω is not closed, but multiplying the graph by a scalar, end letting the scalar go to

infinity, we obtain C, which does turn out to be Lagrangian, as a conic cycle.
Therefore [C] is obtained via Ch ◦Eu from unique cycle in X . Because C is locally

isomorphic to CX/M , this cycle in X can only be the distinguished cycle cX . We conclude

that [C] = Ch(νX), and

[X]vir = 0![C] = cSM0 (νX) = cM0 (cX) .

So, just as the obstruction sheaf, the virtual fundamental class is intrinsic to X .

Now MacPherson’s theorem, which generalizes the Gauß-Bonnet theorem to singular

schemes (and is also equivalent to Kashiwara’s microlocal index theorem), says that, ifX is

proper

χtop(X, ν) = deg(cSM0 ν) ,

for any constructible function ν on X . Applying this to our distinguished function νX , we

get, if X is proper

#vir(X) = deg[X]vir = deg(cSM0 νX) = χtop(X, νX) .

We conclude that the virtual count is equal to the weighted Euler characteristic, and hence

satisfies the two motivic properties.

3.3. Discussion. Let us start by discussing a prototypical source of symmetric obstruction

theories, which is not a priori an algebraic Lagrangian intersection.

3.3.1. Gauge theory. Let us continue with our above discussion of gauge theory. The ad-

ditional ingredient we need, to move it into derived symplectic geometry is a symmetric

bilinear pairing κ : L⊗ L→ C[−�] of degree −�, on our differential graded Lie algebra L.
(The most important case is � = 3.) This pairing needs to be cyclic, which means, besides

being symmetric, that

1. κ(dx, y) + (−1)deg xκ(x, dy) = 0,

2. κ([x, y], z) = κ(x, [y, z]).

Finally, κ needs to be non-degenerate. For the purposes of this superficial exposition, let us

agree that this means that κ sets up a perfect pairing between Li and L�−i, for all i. It has
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as immediate consequence that L exists entirely within the interval [0, �]. (In practice, this

condition is too strong, it is almost never satisfied. Instead, one has to deal with κ which

only induce perfect pairings on cohomology. This is, in fact, the source of many subtleties

of derived symplectic geometry.)

In our standard example, where L = C∞(Y,Ω•Y ⊗Mn×n), we need to assume that Y is

oriented, so that it has a fundamental class [Y ]. The pairing κ is then given by

κ(x, y) =

∫
[Y ]

tr(x ◦ y) .

(The circle denotes the associative product on L.) We will ignore issues of topology on the

infinite-dimensional L, and instead pretend that L is finite-dimensional.

The isomorphism of complexes κ : (L, dx) → (L, dx)∨[−�] over MC(L) is invariant
under the gauge action, and so descends to the moduli space X , and provides us with an

isomorphism TX[−1]
∼−→ TX[−1]∨[−�], hence TX

∼−→ T∨X[2 − �]. As before, we need to

truncate (L, dx) into the interval [1, �− 1], if G acts with positive-dimensional stabilizer. If

� = 3, we obtain TX in the interval [0, 1], together with an isomorphism TX
∼−→ T∨X[−1],

i.e., a symmetric obstruction theory.

In our example, the case � = 3 is the case where Y is a 3-manifold. A rigorous treatment

would identify the corresponding virtual counts as Casson invariants. (Although, because

of the technical difficulties of the gauge theoretic approach, the Casson invariant is usually

treated differently.)

Let us continue discussing the case � = 3. The curvature map F : L1 → L2 is now a

map F : L1 → (L1)∨, and can therefore be thought of as an algebraic differential form on

the linear space L1. The cyclicity of κ implies that this form is closed. It is therefore exact,

and an antiderivative is easily written down:

f(x) = 1
2κ(x, dx) +

1
6κ(x, [x, x]) .

This cubic function f : L1 → C is known as the Chern-Simons function. It satisfies df = F ,
and so the Maurer-Cartan locus MC(L) = Z(F ) = Crit(f) is the critical locus of the

Chern-Simons function.

It is almost true that f : L1 → C is invariant under the gauge action and induces a

function f̃ : L1/G → C of which the moduli space X = MC(L)/G is the critical set. In

fact, f̃ has values in C/Z, but this is sufficient to make sense of its critical locus.

Unfortunately, it is not straightforward to follow these arguments through in Kapranov’s

finite-dimensional model for moduli of local systems, because the cup product (unlike the

wedge product) is not commutative on the level of cochains.

3.3.2. Donaldson-Thomas theory. Considering the algebraic geometry analogue of this

gauge theory example leads to a holomorphic analogue of the Casson invariant, which is

known as the Donaldson-Thomas invariant. If we are only interested in virtual counts, we

can avoid all gauge theoretic complications, and directly construct a symmetric obstruction

theory on the relevant moduli space of stable coherent sheaves on a fixed Calabi-Yau three-

fold Y . In fact, the perfect obstruction theory is essentially the same we mentioned above in

2.4.1, namely
(
τ[1,2]Rπ∗Hom(E ,E )

)
[1]. The symmetric structure is given by Serre dual-

ity, which implies that deformations, given by Ext1(E,E) are dual to obstructions, which

are given byExt2(E,E). Because Y is Calabi-Yau, its canonical sheaf, which would usually

feature in Serre duality, is trivial.
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As the virtual fundamental class comes from a symmetric obstruction theory, the associ-

ated virtual counts, i.e., the Donaldson-Thomas invariants, are of a motivic nature. This sets

them apart from many other counting invariants for Calabi-Yau threefolds, and is the reason

why they have been so intensely studied in recent years.

The simplest non-trivial example of a Donaldson-Thomas moduli space is the Hilbert

scheme Hilbn Y . Using the above mentioned result (3.4), one can prove that for every pro-

jective Calabi-Yau 3-fold Y , the virtual count is, up to sign, equal to the Euler characteristic:

#vir(Hilbn Y ) = (−1)nχtop(Hilbn Y ) .

This formula was first conjectured in [20].

3.3.3. Motivic invariants. Let K(Var) be the Grothendieck group of varieties. It is gen-

erated as an abelian group by symbols [X], for all finite type C-schemes X , subject to the

scissor relations, namely that, whenever Z ↪→ X is a closed immersion of schemes, we have

[X] = [Z]+ [X/Z]. The groupK(Var) is called the group of motivic weights, or sometimes

simply the group of motives.
Mapping a scheme or variety X to [X] defines the universal Euler characteristic. Every

map from the category of schemes to an abelian group satisfying the scissor relations factors

uniquely throughK(Var). So, since the virtual counts in Donaldson-Thomas theory behave

somewhat like an Euler characteristic, it is tempting to try to construct, for every moduli

space of sheaves X (compact or not) on a Calabi-Yau threefold Y , an element DT (X) in
K(Var), such that χtop(DT (X)) = χtop(X, νX).

The main challenge is to replace the integer weights, given by the constructible function

νX , by motivic weights. For this purpose, it turns out the symmetric obstruction theory is

not sufficient. One has to construct locally Chern-Simons type functions and find motivic

versions of μf , rather than νX . It is then natural to use motivic vanishing cycles [9] as

motivic weights. This programme has been carried out by Kontsevich-Soibelman [18], in

an even more ambitious context where sheaves on a Calabi-Yau threefold are replaced by

objects of more general Calabi-Yau-three categories.

The simplest case is the Hilbert scheme. In [3] we write down the generating series

ZY (t) =
∞∑
n=0

[Hilbn Y ]mot t
n ,

where Y is a Calabi-Yau threefold (compact or not), and [Hilbn Y ]mot denotes the motivic

virtual count associated to the Hilbert scheme of n points on Y . For the case Y = A3, we

have

ZA3(t) =
∞∏
m=1

m−1∏
k=0

(1− Lk+2−m
2 tm)−1 = Exp

( −L
3
2 t

(1 + L
1
2 t)(1 + L−

1
2 t)

)
.

And for general Y

ZY (t) = Exp
(
[Y ]

−L−
3
2 t

(1 + L
1
2 t)(1 + L−

1
2 t)

)
.

(Here Exp is the motivic exponential.)
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3.3.4. Categorification. The Euler characteristic of an algebraic varietyX over C is given

by

χtop(X) =
∑
i

(−1)i dimHi(Xtop,C) ,

the alternating sum of the dimensions of the cohomology groups of the topological space

Xtop (analytic topology) associated to X . We say that the cohomology spaces categorify
the Euler characteristic. The terminology is justified by the fact that the cohomology lies in

the category of vector spaces, rather the set of numbers. This is an important step, because

it allows the full machinery of homological algebra to be applied to the calculation of Euler

characteristics, and it gives much deeper information then the Euler characteristic alone.

The question arises, if one can write weighted Euler characteristics in a similar fashion.

In the toy model case where X = Crit f , for a function f : M → C on a smooth scheme

X , we have the perverse sheaf of vanishing cycles Φf on X , and

χtop(X, νX) = χtop(X,μf ) =
∑
i

(−1)i dimHi(Xtop,Φf ) .

So we say that the perverse sheaf of vanishing cycles categorifies the virtual number of

critical points of f .
Recently [6, 15], global versions of Φf on moduli spaces of sheaves have been con-

structed, thus categorifying Donaldson-Thomas theory in this sense. Gluing the locally de-

fined sheaves of vanishing cycles requires an orientation on the moduli space.

3.3.5. Orientation. Even for the case of Lagrangian intersections, the question of orienta-

tion is non-trivial. For the derived scheme X, defined by the Lagrangian intersection L ∩M
inside S we have

detTX = detTL|X ⊗ detTM |X ⊗ (detTS |X)−1 = detTL|X ⊗ detTM |X ,
because detΩS = Λ2nΩS is trivial (the n-th power of the symplectic form trivializes it). So

for the canonical line bundle, we have

KX = KL|X ⊗KM |X .
A line bundle Υ on X , such that Υ⊗2 = KX is called an orientation of the Lagrangian

intersection. For example, ifKL|X = KM |X , then the intersection is canonically oriented.

The systematic study of motivic invariants and categorification requires a thorough un-

derstanding of orientations.

3.4. Derived symplectic geometry. We will say a few words about the classical shadows

of a derived symplectic scheme. Then we will discuss the toy model in more depth.

3.4.1. Tangent complex. On the level of tangent complexes, a symplectic structure on a

derived scheme X will induce an isomorphism

θ : TX −→ T∨X[−n] (3.5)

of some degree, which we have denoted by −n. As TX is in degrees ≥ 0 and T∨X in degrees

≤ 0, it follows that n is equal to the amplitude of X.
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Moreover, θ is antisymmetric, i.e., satisfies θ = −θ∨[−n].
For example, if the degree of θ is 0, then the complex TX in the interval [0, �] is quasi-

isomorphic to the complex T∨X in the interval [−�, 0], which means that TX is in fact concen-

trated in degree 0, and is simply a vector bundle. So if the symplectic structure θ is of degree
n = 0, the derived scheme X is a classical scheme X endowed with a classical symplectic

structure.

If the degree of θ is −1, then the complex TX in the interval [0, �] is quasi-isomorphic to

the complex T∨X[−1] in the interval [1− �, 1], which forces � ≤ 1, so that X is quasi-smooth,

and θ is nothing but a symmetric obstruction theory on the underlying classical scheme X ,

as discussed above.

3.4.2. Higher structure sheaves. On the level of higher structure sheaves, a symplectic

structure on X will induce an analogue of the Poisson bracket. This will be a bracket { , } :
πk(OX)⊗C π�(OX) → πk+�−n(OX), which is a derivation with respect to the commutative

product in each argument, and satisfies the graded Jacobi identity.

In the case of Lagrangian intersections, this bracket was constructed in [5]. It was then

discovered [1], that this bracket comes naturally out of considering deformation quantization
up to first order.

3.4.3. Quantization. To explain the approach to categorification via quantization, we can-

not get by with our classical shadows any longer. So let us finish by discussing a toy model

for a derived symplectic scheme. We restrict to the odd case.
We take the point of view that a derived scheme is a graded manifold with a homological

vector field on it (in other words, a differential graded manifold). Thus, let V = V 0 ⊕
. . . ⊕ V n be a finite-dimensional graded vector space which we think of as a linear graded

manifold (so that the graded tangent space at every point is equal to V ). The algebra of

functions on V is SymV ∨, the graded symmetric algebra generated by the dual V ∨ of V .
On SymV ∨ we have a derivation Q : SymV ∨ → SymV ∨, of degree +1, which satisfies

[Q,Q] = 0, or equivalently Q ◦Q = 0. The derived scheme is X = (V,Q).
For example, if we consider the gauge theory context, and discard L0 (and the gauge

group), as well as L� (where � is the top degree), we may take V = L[1,�−1][1]. The deriva-
tion Q corresponds to the vector field given by the algebraic map x !→ dx+ 1

2 [x, x], from V
to V . (In general, Q may have higher order terms: this makes L an L∞-algebra, instead of a

differential graded Lie algebra.)

The classical shadows of X are as following: the underlying classical scheme is

Spech0(SymV ∨, Q). The amplitude is n. The virtual dimension is
∑

i(−1)i dimV i. The
tangent complex is the trivial graded vector bundle with fibre V , endowed with the differen-
tial which is given by the derivative of Q, thought of as an algebraic map Q : V → V . The
higher structure sheaves are πi(OX) = h

−i(SymV ∨, Q).
Given a non-degenerate alternating pairing κ ∈ Λ2V ∨ [−n] of degree −n, we have an

induced isomorphism κ : V
∼−→ V ∨ [−n], such that κ∨[−n] = −κ. Let us assume that it

commutes with Q. Then we have a symplectic structure on (V,Q). (The 2-form of degree

−n given by κ is closed, because it is constant.) In the gauge theory context, compatibility

with Q is equivalent to cyclicity as defined in 3.3.1, above.

Let us now assume that n is odd. The second symmetric power of κ induces an isomor-
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phism

(Sym2 κ)[n] : Sym2 V [n]
∼ �� Sym2(V ∨[−n]) [n] = Λ2V ∨ [−n] .

Taking the preimage of κ itself under this isomorphism, we obtain Δ ∈ Sym2 V [n]. We

may interpret this as a map Sym2 V ∨ → C [n], which extends uniquely to a second order

differential operator Δ : SymV ∨ → SymV ∨ [n] of degree n, vanishing on V ∨, called the

Batalin-Vilkovisky operator.
We can also consider Δ : Sym2 V ∨ → C[n] as a symmetric pairing, which extends

uniquely to a symmetric biderivation { , } : SymV ∨⊗SymV ∨ → C[n]. This is the Poisson
bracket of the symplectic structure κ. (It also exists in the case that n is even, although it is

anti-symmetric in this case.) The BV operator Δ generates the Poisson bracket in the sense

that

Δ(xy)− (−1)xxΔ(y)−Δ(x) y = {x, y} .
Let us now restrict to the case n = 1, so that V = V 0 ⊕ V 1, and κ identifies V 1

with (V 0)∨. Then SymV ∨ is identified with the algebra of polyvector fields on V 0, the

Poisson bracket with the Schouten bracket, and Δ with the divergence operator associated

to the linear structure on V . (Via the identification of polyvector fields with differentials

given by a volume form compatible with the linear structure,Δ corresponds to the de Rham

differential.)

As in the above gauge theory example, there exists a Chern-Simons map f ∈ SymV ∨

of degree 0, such that Q = {f, · }. The only difference is that f may have higher order

terms. We may think of f as a polynomial function f : V 0 → C.
AsΔ satisfiesΔ2 = 0, it defines a differential on SymV ∨, which commutes withQ. To

obtain a double complex from the two commuting differential Q and Δ, we we introduce a

formal variable �, and pass to SymV ∨((�)), with differentialΔ+ �Q. Then it follows from
a theorem recently proved by Sabbah [25], that for the generalized Milnor number of f at

the origin 0 ∈ V 0, we have

μf (0) =
∑

(−1)k dimC((�))H
k
(
SymV ∨((�)), Q+ �Δ

)
Thus the C((�))-vector spaces Hk

(
SymV ∨((�)), Q + �Δ

)
categorify the Donaldson-

Thomas type virtual count.

Currently there is ongoing research to generalize this toy model to actual moduli spaces.

As mentioned, the main difficulty is that many properties of κ, such as the non-degeneracy,

or the compatibility withQ, are only satisfied up to homotopy (unless one is willing to work

in infinite dimensions, which has its own problems). See [24].

3.4.4. Lagrangian intersections. For the case of Lagrangian intersections, the categorifi-

cation via quantization was achieved by Kashiwara-Schapira [14], see also [8].
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1. Introduction

This note is intended as a brief survey of the theory of quasimaps from curves to a certain

(large) class of GIT quotients, and of its applications to Gromov-Witten theory, as developed

in the papers [6, 10–14]. The theory may be viewed as an algebro-geometric realization

of Witten’s Gauged Linear σ-model (GLSM) [52] in the geometric phases. The study of

GLSM and of its relation to Mirror Symmetry has been a very active area in String Theory,

see [1, 22, 31, 32, 34, 42] for a (very incomplete) sampling of developments.

When such a geometric phase (a target with a GIT presentation) is fixed, there is a fam-

ily of quasimap theories indexed by a stability parameter ε ∈ Q>0. When ε > 1 one

recovers the “nonlinear σ-model”, i.e., the Gromov-Witten theory of the target. There is a

wall-and-chamber structure on Q>0, with walls at 1, 12 ,
1
3 , . . . ,

1
d , . . . , such that the theory

stays unchanged in the chamber ( 1
d+1 ,

1
d ]. Wall-crossing formulas relating the invariants in

different chambers of nonsingular targets are conjectured (and are established in many cases)

in [11] for genus zero, and in [12] for all genera; the genus zero case is extend to orbifolds in

[6]. These results are described in §4-5 of the paper. As explained there, the wall-crossing

formulas may be viewed as generalizations in many directions of Givental’s Mirror Theo-

rems [26] for (complete intersections in) toric manifolds with semi-positive anti-canonical

class. In addition, the mirror map is given a geometric interpretation as the generating series

of primary quasimap invariants with a fundamental class insertion.

There is also an extension of the theory in a different direction, allowing the domain

curves of quasimaps to carry weighted markings. When (some) markings are given infinites-

imally small weights, this produces for many targets a closed form expression of a “big

I-function” defined on the entire parameter spaceH∗(X,Q) associated to the GIT targetX .

By a result in [13] the big J-function of the Gromov-Witten theory of X is obtained from

this new big I-function via the “Birkhoff factorization” procedure of [18]. As a result, one

obtains an explicit determination of all the genus zero Gromov-Witten invariants of X .

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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2. Maps from curves to quotient targets

2.1. A class of GIT quotients. LetW = SpecA be an affine algebraic variety over C and

let G be a reductive algebraic group over C, acting uponW from the right. Choose a char-

acter ofG, θ ∈ Hom(G,C∗). Denote by Cθ the associated 1-dimensionalG-representation

space. This determines aG-equivariant line bundle Lθ :=W × Cθ onW .

There are four quotients as follows.

(i) The affine quotientW/affG := Spec(AG), which is of finite type over C by Hilbert’s

Theorem.

(ii) The stack quotient [W/G] (see [20, 40]). One departure when working with alge-

braic stacks versus working with schemes is that algebraic stacks are groupoid-valued

functors from the category of schemes, while schemes are set-valued functors. By

the Yoneda lemma, the category (Sch/C) of C-schemes is embedded into the cate-

gory of functors of points. For schemes X,Y ∈ (Sch/C), the set of Y -points of X
is Hom(Sch/C)(Y,X), i.e., the set of all morphisms from Y to X over C. The stack
[W/G] can be considered as a functor from (Sch/C) to the category of groupoids,

defined as follows. A morphism from Y to [W/G] is by definition a triple (Y, P, f̃),
where P is a principal G-bundle on Y (which is trivializable in the étale topology of

Y ) and f̃ : P →W is aG-equivariant morphism. Equivalently, it is a triple (Y, P, f),
with f a section of the induced fiber bundle P ×G W → Y with fiber W . An iso-

morphism from (Y, P, f) to (Y, P ′, f ′) is a G-bundle homomorphism ϕ : P → P ′

such that f ′ ◦ ϕ = f . Suppose that Y = SpecC; then the C-points of [W/G] form
a groupoid, the collection of orbits with the isomorphisms described above. A C-
point has non-trivial automorphisms if and only if the correspondingG-orbit in Y has

non-trivial stabilizer group.

Consider the trivial G-bundle W × G on W . It comes with the G-equivariant map

W × G → W given by the action. This gives a canonical morphism from W to

[W/G], fitting in the cartesian diagram

P
f ��

��

W

��
Y �� [W/G].

The geometry of [W/G] is encoded by the “atlas”W → [W/G].

(iii) The GIT quotient W//G := W//θG := Proj(⊕n≥0Γ(W,L
⊗n
θ )G)). This is a quasi-

projective scheme, equipped with a canonical projective morphism to W/affG. It is
called the Proj quotient in direction θ in [43, §6.13].

(iv) The GIT stack quotient [W ss/G]. This is an open substack of [W/G] sinceW ss :=
{p ∈ W : s(p) �= 0 for some n > 0, s ∈ Γ(W,Lnθ )

G} is a G-invariant open subset

ofW .

Assumption 2.1. G acts onW ss with at most finite stabilizers.
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Assumption 2.1 is equivalent to requiring that there are no strictly semi-stable points.

Under this assumption, the GIT stack quotient [W ss/G] is a Deligne-Mumford (DM) stack.

It follows that there is a natural commuting diagram of morphisms:

[W ss/G] ��

proper

��

[W/G]

��
W//G

projective
�� W/affG.

The left vertical morphism is proper, see e.g. [35].

2.2. Examples.

1. Projective Spaces. LetG = C∗ diagonally act on V = Cn+1 and let θ = idC∗ . Then

V//G = Pn ⊂ [V/G] = [Cn+1/C∗]

and Lθ restricted to V//G is O(1).

Note that the set of C-points of [V/G] contains one more element [0, ..., 0] other than
those in the projective space Pn. This point has nontrivial automorphisms and is called

a stacky point. Even when n = 0, the stack [C/C∗] is interesting. This stack parame-

terizes pairs (L, s) with L a line bundle and s a section of L.

2. Grassmannians. Let V = Hom(Cr,Cn), G=GL(r,C) and θ=det. Then V//G =
Gr(r, n), the Grassmannian of r-planes in Cn. A similar description works for a type

A flag variety, see e.g. [5].

3. Toric DM-stacks. V = CN and G = (C∗)r; there are many choices of θ and the GIT

quotient [V ss/G] is a toric DM-stack.

4. Complete Intersections. Any projective variety X ⊂ Pn−1 is a GIT quotient: X =
W//C∗, withW = C(X) ⊂ Cn, the affine cone over X , but only complete intersec-
tions lead to good theories (see Remark 3.3 below).

5. Zero locus of regular sections of homogenous vector bundles. Let V,G, θ define a GIT
quotient as in §2.1 and let E be a G-representation with induced vector bundle E =
V ss×GE on V//G. Let s ∈ Γ(V, V ×E)G be regular with induced s̄ ∈ Γ(V//G, E).
If we set W := Z(s) ⊂ V (note that W is lci), then W//G = Z(s̄) ⊂ V//G. For

example, complete intersections in toric varieties are obtained in this way, but there

are many more non-abelian examples with indecomposable bundles E which are not
complete intersection.

According to Coates, Corti, Galkin, and Kasprzyk [17] who rework the Mori-Mukai

classification of Fano 3-folds, every smooth Fano 3-fold can be realized as an example

of this type. We remark that the Rødland’s Pfaffian Calabi-Yau 3-fold and the deter-

minantal Gulliksen-Negård Calabi-Yau 3-fold are also of this type (see [50, §2], [34,

§5] respectively).

6. Nakajima Quiver Varieties. Nakajima quiver varieties ([47]) give a large class of typ-

ically quasi-projective only GIT quotients of the kind we are interested in, see [14,

Example 6.3.2]. Particularly interesting such examples are certain Hilbert schemes of
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points on non-compact surfaces. For example, let

V = Hom(Cn,Cn)⊕2 ⊕ Hom(C,Cn)⊕ Hom(Cn,C),

W := {(A,B, i, j) ∈ V | [A,B] + ij = 0},
G = GL(n,C), and θ = det .

ThenW//G = Hilbn(C2) andW/affG = Symn(C2). This is the well-known ADHM
presentation of the Hilbert scheme of points in the plane.

More generally, let Γ ⊂ SL(2,C) be a finite subgroup. Let
X := Γ-Hilb(C2) := {Z ⊂ C2 : OZ

∼= C · Γ}.
It is the crepant resolution of C2/Γ. Using an appropriate Fourier-Mukai functor

Φ : D(X) → DΓ(C2), the Hilbert scheme Hilbn(X) can be realized as the Nakajima

quiver variety associated to the framed affine Dynkin diagram with a certain King’s

stability condition, see [37], [48].

7. Local Targets. Let V,G, θ define a projective GIT quotient and letE be aG-represen-

tation space, with an induced vector bundle E = V ss ×G E on V//G. Assume E is

a sum of Ckiθ for some negative integers k1, . . . , kr. If W := V × E, then θ gives
a linearization and W//G is the total space of E over V//G. Again, it is only quasi-

projective. These are usually called local targets in Gromov-Witten theory.

8. SUC(2, L). Let C be a nonsingular projective curve. Then the moduli space of rank 2

stable vector bundles on C with an odd determinant L, degL ≥ 4g(C)− 1 is realized
as the GIT quotient of an affine variety by a general linear group (see [43, Theorem

10.1]).

2.3. Moduli of maps to the stack quotient. To keep the presentation simple, from now on

we assume that theG-action onW ss is free. The general case is referred to [6].
Let (C, p1, · · · , pk) be a pointed, genus g prestable curve, i.e., C is a connected projec-

tive curve at worst with nodal singularities, pi are ordered nonsingular points of C, and the

arithmetic genus of C is g.

As explained, a map C
[u]−→ [W/G] is described by the data(

(C, {pi}), P, u
)

with P a principalG-bundle onC and u a section of the inducedW -bundle P×GW
ρ−→ C.

Any such [u] : C → [W/G] defines

β ∈ Pic([W/G])∨ = HomZ(Pic
G(W ),Z), β(L) = degC L,

where L := u∗(P ×G L) (a line bundle on C). This β is called the numerical class of the
triple

(
(C, {pi}), P, u

)
.

Consider the moduli stackMg,k([W/G], β) parametrizing all
(
(C, {pi}), P, u

)
as above.

It is a non-separated Artin stack of infinite type. We describe here its obstruction theory.

Consider the natural morphisms:

Mg,k([W/G], β)

ν
����

���
���

���
�

μ �� Bung,kG

φ

��
Mg,k
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where

• Mg,k is the moduli stack of prestable k-pointed curves of genus g;

• φ : Bung,kG −→ Mg,k is the relative moduli stack of principalG-bundles on the fibers

of the universal curve Cg,k −→ Mg,k;

• μ and ν are the natural forgetful morphisms.

BothMg,k andBun
g,k
G are smooth Artin stacks and φ is a smooth morphism. It follows

that the natural obstruction theory to consider is the μ-relative obstruction theory govern-

ing deformations of sections u. Over the open substack Mg,k(W//G, β), this induces the
usual absolute obstruction theory of maps to the GIT quotient. The stack Mg,k(W//G, β)
parameterizes the triples

(
(C, {pi}), P, u

)
with C irreducible and the image of u contained

in P ×GW
ss.

The above discussion suggests several natural questions to address:

1. The Kontsevich compactification Mg,k(W//G, β) is an open and closed substack of

Mg,k([W/G], β). Using the linearization θ, can we impose stability conditions to sin-
gle out otherDeligne-Mumford open and closed substacks containingMg,k(W//G, β),
and which are proper (overW/affG)?

2. If in addition the restriction of obstruction theory is perfect, these substacks will have

a virtual class, hence we get “numerical invariants” associated to the triple (W,G, θ).
When is the obstruction theory perfect?

3. Assuming the first two questions have been answered satisfactorily, how do the in-

variants change when varying the stability condition? Can one obtain explicit “wall-

crossing” formulas?

In the rest of the paper we explain how quasimap theory provides some answers to the

above questions. The first two questions are discussed in §3, while §4 and §5 deal with the

wall-crossing phenomenon and its relation to Mirror Symmetry.

3. Quasimaps and ε-stability

3.1. Stable quasimaps.

Definition 3.1.

(i)
(
(C, {pi}), P, u

)
is called a θ-quasimap (or simply quasimap) toW//G if

#{u(C) ∩Wus} <∞,

whereWus := W \W ss. Hence, C
[u]
��� W//G is a rational map with finitely many

base points.

(ii) A θ-quasimap is called prestable, if the base points are away from the nodes and

markings of C.

For such a prestable quasimap and x ∈ C, define
�(x) := length(Ox,C/[u]

�I[Wus/G]Ox,C) ∈ Z≥0.
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(iii) Fix ε ∈ Q>0. A prestable quasimap is called ε-stable, if

1. the line bundle ωC(
∑
pi) ⊗ Lεθ on C is ample, where Lθ = u∗(P ×G Lθ) =

P ×G Cθ.

2. ε�(x) ≤ 1 for every nonsingular point x ∈ C.
There is also an “asymptotic” stability condition, obtained by requiring only the ample-

ness condition, but for every ε ∈ Q>0. We denote it by ε = 0+.

Denote by Qε
g,k(W//G, β) the moduli stack parameterizing ε-stable quasimaps of type

(g, k, β).

Theorem 3.2 ([14]). For every ε ≥ 0+,Qε
g,k(W//G, β) is a DM stack with a natural proper

morphism to the affine quotient. (In particular, if W//G is projective, then Qε
g,k(W//G, β)

is proper.)
If W ss is nonsingular and W has at worst lci singularities (necessarily in Wus), then

the canonical obstruction theory on Qε
g,k(W//G, β) (relative to Bung,kG ) is perfect.

From now on we assume the lci condition on W, so that Qε
g,k(W//G, β) carries a virtual

fundamental class.

Remark 3.3.

1. The theory depends on the triple (W,G, θ), not just on the geometric targetW//G.

2. Assume (g, k) �= (0, 0).

• If ε > 1 we get the Kontsevich stable maps to W//G; the obstruction theory is

then perfect for allW (of courseW ss is assumed to be nonsingular). However,

for ε ≤ 1 the lci condition is necessary.

• If 0 < ε ≤ 1
β(Lθ)

, all lengths of base points are allowed and the domain curve

has no rational tails. The asymptotic stability condition says that we are in this

chamber for all β.
• There are finitely many “chambers” ( 1

d+1 ,
1
d ] such that the moduli spaces stay

constant for ε ∈ ( 1
d+1 ,

1
d ]; intuitively, when crossing the wall we trade rational

tails of degree d (with respect to O(θ)) with base points of length d.

3.2. Some history.

• For fixed curve with no markings and ε = 0+, many earlier compactifications are

unified by this construction:

– Drinfeld’s quasimaps to Pn, see [3]. However, note that the moduli of Drin-

feld’s quasimaps to flag varieties considered in [3] are defined using the Plücker

embeddings and therefore fit into the situation described in Example 4 of §2.2.

Since under the Plücker embedding the flag varieties are not complete intersec-

tions, the canonical obstruction theory of the moduli spaces is not perfect.

– Gauged linear σ-models for toric targets (Witten [52], Morrison - Plesser [42],

Givental [25, 26]).

– Quot schemes for Grassmannians ((Strømme [49], Bertram [2]); their general-

ization to type A flag varieties due to Laumon [38, 39] (and rediscovered under

the names hyperquot or flag-quot schemes in [9, 36]).
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– ADHM sheaves for Hilbn(C2) (Diaconescu [21]).

• For the case when the complex structure of the domain curves varies and/or markings

are allowed, the starting point was the work byMarian, Oprea, and Pandharipande [41]

on moduli of stable quotients (in the terminology introduced above, this corresponds

to target a Grassmannian and ε = 0+). Inspired by their paper, the authors developed

the toric case and realized that the GIT point of view is the correct generalization

of both ([10]). The ε-stability idea appeared first in work by Mustaţă and Mustaţă

for target Pn ([46]). For Grassmannian targets, Toda introduced and studied ε-stable
quotients in [51].

• There’s a long (ongoing) related story in the symplectic category concerned with

the study of (compactifications of) the moduli space of solutions to vortex equa-

tions, starting with work of Cieliebak - Gaio - Salamon and of Mundet i Riera, see

[7, 8, 29, 30, 44, 45, 54]. An algebraic version of this theory is developed by Wood-

ward in [53].

• Frenkel - Teleman - Tolland are developing a general formalism of a Gromov-Witten

type theory of quotient stacks [Y/G], see [24].

3.3. Quasimap Invariants. There are evaluation maps evi toW//G (by the prestable con-

dition) and tautological line bundlesMi on Qε
g,k(W//G, β) with fiber the cotangent line to

C at the ith marking:

evi : Q
ε
g,k(W//G, β) →W//G.

As usual, denote ψi := c1(Mi). Given

δ1, . . . δk ∈ H∗(W//G,Q)

and integers a1, . . . , ak ≥ 0, we define ε-quasimap invariants

〈δ1ψa1
1 , . . . , δkψ

ak

k 〉εg,k,β :=

∫
[Qε

g,k(W//G,β)]vir

∏
ψai
i

∏
ev∗i (δi)

for all ε ≥ 0+.

If ε > 1 (we write ε = ∞ for all such stability conditions), these are the descendant

Gromov-Witten invariants ofW//G.

The definition above requires W//G projective; in the quasi-projective case there are

equivariant versions available for all interesting targets, e.g., toric varieties, local targets,

and Nakajima quiver varieties. Precisely, what is needed in order to have a good theory

for non-compact targets W//G is that there is an action on W by an algebraic torus T ∼=
(C∗)r, commuting with the G-action and such that the T-fixed locus on the affine quotient

W/affG is proper (and therefore a finite set). To get a unified framework, we will make this

assumption from now, allowing the case r = 0 of a trivial torus.
The invariants satisfy the “splitting axiom” and in fact they form the degree zero sector of

a Cohomological Field Theory (CohFT) onH∗(W//G). However, for general targetsW//G
and ε ≤ 1, the string equation may fail so the CohFT will not have a flat identity. We refer

the reader to [12, §2] for some more details on the quasimap CohFT.
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4. Genus zero wall-crossing and mirror maps

It is natural to expect that different stability chambers carry the same information. This will

be expressed via wall-crossing formulas for generating functions of the invariants. In this

section we explain why the wall-crossing formulas for genus zero invariants are generaliza-

tions (in many directions) of Givental’s Toric Mirror Theorems.

First we fix some notations:

• H∗(W//G) denotes the localized T-equivariant cohomology with Q-coefficients.

• 〈 , 〉 is the intersection pairing on H∗(W//G).

• {γ1 = �, . . . , γs} and {γ1, . . . , γs} are dual bases ofH∗(W//G) with respect to 〈 , 〉.
Here � denotes the cohomology class dual to the fundamental cycle.

• Eff(W,G, θ) denotes the semigroup of numerical classes β ∈ Pic([W/G])∨ repre-

sented by θ-quasimaps with possibly disconnected domain. (Note that Eff(W,G, θ)
is in general bigger than the cone of effective curves inW//G.)

• Λ ∼= Q[[q]] denotes the Novikov ring of the theory, that is, the q-adic completion of

the semigroup ring C[Eff(W,G, θ)], β ↔ qβ .

4.1. S-operators. For δi ∈ H∗(W//G) and integers ai ≥ 0, put

〈〈δ1ψa1
1 , . . . , δkψ

ak

k 〉〉εg,k =
∑

β∈Eff(W,G,θ)

∑
m≥0

qβ

m!
〈δ1ψa1

1 , . . . , δkψ
ak

k , t, . . . , t)〉εg,k+m,β .

It is a formal function of t =
∑s

i=1 tiγi ∈ H∗(W//G).
Define, for γ ∈ H∗(W//G,Λ) and a formal variable z,

Sεt (z)(γ) :=

s∑
i=1

γi〈〈 γi

z − ψ , γ〉〉
ε
0,2(t).

Here ψ = ψ1 and the right-hand side is interpreted as usual by expanding 1/(z − ψ) as a
geometric series in ψ/z. By convention, 〈 γi

z−ψ , γ〉ε0,2,0 = 〈γi, γ〉. We think of Sεt as a family

(parametrized by t) of operators on H∗(W//G,Λ). When the variable z is understood we

drop it from the notation.

In Gromov-Witten theory, the operator S∞t is well-known. Its matrix is the (inverse of)

a fundamental solution for the quantum differential equation. Furthermore, by the string

equation for Gromov-Witten invariants, S∞t (�) coincides with Givental’s (big) J-function
of W//G (we will come back to J-functions in the next subsection). The operator S∞t
determines the entire genus zero sector of the Gromov-Witten theory ofW//G by a standard

reconstruction procedure, essentially due to Dubrovin [23]. As shown in [12], the same

reconstruction works for ε-quasimap invariants for all ε ≥ 0+. The key point where a new

idea is needed is the proof of the following result, which reconstructs invariants with two
descendant insertions.

Theorem 4.1. Let z, w be formal variables and define

V εt (z, w) :=
s∑

i,j=1

γi ⊗ γj〈〈 γi

z − ψ ,
γj

w − ψ 〉〉ε0,2(t),
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where the convention
s∑

i,j=1

γi ⊗ γj〈 γi

z − ψ ,
γj

w − ψ 〉ε0,2,0 =
[Δ]

z + w

is made for the unstable term in the double bracket, with [Δ] the diagonal class. Then

V εt =
Sεt (z)⊗ Sεt (w)([Δ])

z + w
.

The usual - and very easy - argument that proves the above theorem in Gromov-Witten

theory (see [27, item (4) on p.117]) requires the string equation and therefore does not extend
to stability parameters 0+ ≤ ε ≤ 1. The new proof from [12] is uniform for all values of ε.

4.2. Wall-crossing for S-operators. Themost general wall-crossing formula in genus zero

applies to the operators Sεt , see [11, Theorem 7.3.1]. We state here a slightly more special

case.

Theorem 4.2. Assume that there is an action by a torusT onW , commuting with the action
of G, and such that the induced T-action on W//G has isolated fixed points. For every
ε ≥ 0+

Sεt (�) = S
∞
τε(t)(�),

where the (invertible) transformation τ ε(t) is the series of primary ε-quasimap invariants

τ ε(t) =

s∑
i=1

γi〈〈γi,�〉〉ε0,2(t)− �

= t+
s∑
i=1

γi
∑
β 
=0

∑
m≥0

qβ

m!
〈γi,�, t, . . . , t〉ε0,2+m,β .

Moreover, the same statement holds for E-twisted theories, where E is any convex G-
representation.

A G-representation is called convex if the G-equivariant bundle W × E on W is gen-

erated by G-equivariant sections. By twisted theories in the last statement we mean that the

twisting is by the top Chern class, in the sense of Coates - Givental [18], as extended for

quasimap invariants in [14, §6.2]. The twisting vector bundle E onW//G is descended from

the representation E.
Note that no positivity assumptions are made in Theorem 4.2 on (W,G, θ), or on

(W,E,G, θ) in the twisted case, and also that no assumption is made on the 1-dimensional

orbits of the T action onW//G.

Theorem 4.2 applies to essentially every example listed earlier: toric manifolds, flag

manifolds, some (but not all) Nakajima quiver varieties, and local targets over them all admit

torus actions with the required property. Of course, the statement is conjectured to hold

without the existence of a torus action with isolated fixed points, see [11, Conjecture 6.1.1].

In fact, the part of the Theorem involving twisted theories already covers such targets. This

is because the E-twisted quasimap invariants give (almost all of) the genus zero quasimap

invariants of the zero-locus of a regular section of the bundle E = W ss ×G E and this

zero-locus generally is not T-invariant.
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4.3. Jε-functions and Birkhoff factorization. Recall first the big J-function of Gromov-

Witten theory:

J∞(q, t, z) = �+
t

z
+
∑
i

γi〈〈 γi

z(z − ψ) 〉〉
∞
0,1(t)

= �+
t

z
+
∑
β,k

qβ

k!
(ev1)∗

[M0,1+k(W//G, β)]
vir ∩∏1+k

j=2 ev
∗
j t

z(z − ψ)

(the last sum is over (β, k) �= (0, 0), (0, 1)). We want to extend it to all ε ≥ 0+. The

problem is that the spaces Qε
0,1(W//G, β) do not exist for ε ≤ 1

β(Lθ)
. To resolve it we use

the interpretation of the J-function as a sum of certain virtual localization residues for the

natural C∗-action on the Gromov-Witten graph spacesM0,k(W//G× P1, (β, 1)).
Specifically, for all 0+ ≤ ε, k ≥ 0, we have the quasimap graph space

QGε0,k,β(W//G) = {((C, {pi}), P, u, ϕ) | ϕ : C → P1, ϕ∗[C] = [P1]}.
This is the moduli space of (genus zero, k-pointed) ε-stable quasimaps whose domain curve

contains a component C0 which is a parametrized P1. The ampleness part of the ε-stability
condition involves only C \ C0, while the length condition remains the same. These spaces

are defined for all k ≥ 0 and the analogue of Theorem 3.2 holds for them. For toric targets

and ε = 0+ they were introduced in [10], the general case is in [14].

The C∗-action on P1 induces an action onQGε0,k,β(W//G). Let z denote the equivariant
parameter.

Consider the fixed locus F0 of quasimaps for which all markings and the entire degree β
are over 0 ∈ P1 ∼= C0. There are two cases:

• k ≥ 1, or ε > 1
β(Lθ)

. Then F0 ∼= Qε
0,1+k(W//G, β) with its canonical virtual class

and eC∗(N
vir) := eC∗(N

vir
F0/QGε

0,k,β(W//G)) = z(z − ψ). We also have the evaluation

map ev = ev1 : F0 →W//G.

• k = 0 and ε ≤ 1
β(Lθ)

. Then F0 = {(P1, P, u)}, with u having a base point of

(maximal) length β(Lθ) at 0 ∈ P1. We define ev : F0 → W//G by taking evaluation

at the generic point of P1. In this case eC∗(N
vir) changes with β.

Now for each ε ≥ 0+ we define the big Jε-function by

Jε(q, t, z) :=
∑
β,k≥0

qβ

k!
ev∗ResF0

(
[QGε0,k,β(W//G)]vir ∩

k∏
j=1

ev∗j t
)

= �+
t

z
+

∑
0<β(Lθ)≤1/ε

qβev∗
[F0]

eC∗(Nvir)

+
∑
β,k

qβ

k!
(ev1)∗

[Qε
0,1+k(W//G, β)]

vir ∩∏1+k
j=2 ev

∗
j t

z(z − ψ) .

The small Jε-function is by definition the specialization at t = 0,

Jεsm(q, z) := Jε(q, 0, z).
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For the asymptotic stability ε = 0+ we have the small I-function

Ism(q, z) = J0+(q, 0, z) = �+
∑
β 
=0

qβev∗
[F0]

eC∗(Nvir)
.

When W//G is a nonsingular toric variety, or a complete intersections in a toric vari-

ety, the small I-function is (essentially up to an exponential factor) the cohomology valued

hypergeometric q-series introduced by Givental, see [26].
Closed expressions for Ism are known also for many non-abelian GIT quotients: flag

manifolds of classical type, zero loci of sections of homogeneous bundles in them, local

targets over them, the Hilbert scheme of points in C2 ([4, 5, 15, 16]).

In general, the big Jε-function and the operator Sεt are related by “Birkhoff factoriza-

tion”. This is the content of the following Theorem.

Theorem 4.3 ([11]). For any GIT target and any ε ≥ 0+

Jε(q, t, z) = Sεt (P
ε(q, t, z))

where P ε(q, t, z) is a power series in z. (In fact, P ε is naturally a generating function of
C∗-equivariant graph space integrals, see [11, §5.4].)

4.4. The case of semi-positive targets. The triple (W,G, θ) is called semi-positive if

β(det(TW )) ≥ 0

for every β ∈ Eff(W,G, θ). Here TW is the (virtual) tangent bundle of the lci G-variety

W , viewed as an element in the equivariantK-groupK0
G(W ). We note that semi-positivity

implies that the anti-canonical class of a projective W//G is nef, but the converse need not

be true.

The Birkhoff Factorization in Theorem 4.3 simplifies drastically for semi-positive tar-

gets. If (W,G, θ) is semi-positive, easy dimension counting arguments show that for every

ε ≥ 0+ the function Jε contains no positive powers of z. Hence we have the asymptotic

expansions

Jεsm(q, z) = Jε0 (q)�+
Jε1 (q)

z
+O(1/z2),

Jε(q, t, z) = Jε0 (q)�+
t+ Jε1 (q)

z
+O(1/z2).

In particular, we have

Ism(q, z) = I0(q)�+ I1(q)
1

z
+O(1/z2),

defining the q-series I0(q) and I1(q). They satisfy I0(q) = 1 + O(q) ∈ Λ and I1 ∈
qH≤2(W//G,Λ). For ε > 0, the coefficients Jε0 (q) and J

ε
1 (q) are polynomial truncations of

the series I0 and I1. Note that since there are explicit closed formulas for Ism in almost all

examples, the series I0(q) and I1(q) are also explicit.
It follows that Theorem 4.3 specializes to the following Corollary (a very special case of

this result is due to [19], by different methods).
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Corollary 4.4 ([11]). Let (W,G, θ) be semi-positive and let ε ≥ 0+ be arbitrary. Then the
J-function and the S-operator are related by

Sεt (�) =
Jε(q, t, z)

Jε0 (q)
.

The transformation τε(t) =
∑s

i=1 γi〈〈γi,�〉〉ε0,2(t)− � satisfies

τε(t) =
t+ Jε1 (q)

Jε0 (q)
,

and in particular
s∑
i=1

γi
∑
β 
=0

qβ〈γi,�〉ε0,2,β =
Jε1 (q)

Jε0 (q)
.

Combining Theorem 4.2 with Corollary 4.4 gives the following Corollary.

Corollary 4.5 ([11]). Assume (W,G, θ) is semi-positive and there is a T-action onW//G
with isolated fixed points. Then

J∞
(
q,
t+ Jε1 (q)

Jε0 (q)
, z

)
=
Jε(q, t, z)

Jε0 (q)
.

The same is true for E-twisted theories on W//G, where E is a convex G-representation
such that, for all θ-effective β,

β(det(TW ))− β(W × det(E)) ≥ 0.

Let ε = 0+. After making t = 0 in the last Corollary and applying the string and divisor
equations in the GW side, we obtain the usual formulation of the genus zero Mirror Theorem

for the small J-function of Gromov-Witten theory

e
1
z

I1(q)

I0(q) J∞sm(Q, z) = Ism(q, z)

after the change of variable Qβ = qβe
∫
β

I1(q)

I0(q) . For Calabi-Yau complete intersections in

toric varieties, this change of variables is precisely the mirror map obtained from the solu-

tions to the Picard-Fuchs equations associated to the mirror manifolds. Note that by the last

equation in Corollary 4.4 the mirror map acquires a geometric interpretation in terms of two-

point primary (0+)-quasimap invariants with a fundamental class insertion, as suggested by

Jinzenji [33].

Hence the genus zero wall-crossing formula in Theorem 4.2 generalizes the mirror theo-

rems as follows:

• from abelian to non-abelian quotients

• from the small to the big phase space

• from ε = 0+ to all ε

• from semi-positive GIT triples to all such triples.
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4.5. Wall-crossing for Jε-functions in the general case. Without the semi-positivity as-

sumption the relation between Jε(q, t, z) and J∞(q, t, z) is more complicated than the one

given by Corollary 4.5. The most concise formulation is given by the following Conjecture

[11, Conjecture 6.4.2].

Conjecture 4.6. For all GIT triples (W,G, θ) and all stability parameters ε ≥ 0+ the
function Jε(q, t, z) is on the Lagrangian cone of the Gromov-Witten theory ofW//G.

Recall that for a general target X Givental introduced a formalism which encodes the

genus zero sector of the Gromov-Witten theory ofX via an overruled Lagrangian cone in an

appropriate infinite-dimensional symplectic vector space, see [18, 28]. The Lagrangian cone

is generated by the big J-function (this statement is another formulation of the Dubrovin

reconstruction mentioned earlier). The conjecture then implies that J∞(q, τ∞,ε(q, t), z) is
a linear combination of the derivatives ∂tiJ

ε(q, t, z) with uniquely determined coefficients

(depending on q, t, and z) and unique change of variables t !→ τ∞,ε(q, t).

Theorem 4.7 ([11]). Assume there is a T-action on W such that the induced action on
W//G has isolated fixed points and isolated 1-dimensional orbits. Then Conjecture 4.6
holds true.

4.6. Big I-functions. The results described so far in this section elucidate the relationship

between quasimap and GW invariants ofW//G in genus zero. However, if one is primarily

interested in calculating GW invariants, the applicability of these results is restricted only to

invariants with (descendant) insertions at one marking. This is because only for the small

I-function one can write down explicit closed formulas. In general, quasimap invariants

with two or more insertions are equally difficult to determine for all values of the stability

parameter ε. To improve the situation the authors have introduced in [13] a new version of

big I-function of (W,G, θ) by considering a theory of (0+)-stable quasimaps with infinites-

imally weighted markings. We conjectured that this function lies on the Lagrangian cone of

the Gromov-Witten theory ofW//G. Arguments parallel to the ones in the unweighted case

are used to prove the following Theorem.

Theorem 4.8 ([13]). Let (W,G, θ) be a GIT triple. Assume there is a T-action onW such
that the induced action onW//G has isolated fixed points and isolated 1-dimensional orbits.
Then the big I-function associated to (W,G, θ) is on the Lagrangian cone of the Gromov-
Witten theory ofW//G. Furthermore, if E is a convexG-representation, then the E-twisted
I is on the E-twisted Lagrangian cone ofW//G.

As a consequence, the big J function of the (E-twisted) Gromov-Witten theory ofW//G
is obtained from I via the Birkhoff factorization procedure of Coates and Givental [18]. The
advantage is that one can calculate again explicit closed formulas for this new big I-function
in many cases. In [13] it is explained how to do so for toric varieties and for complete

intersections in them. For example, if Cn+1//idC∗ = Pn is the standard GIT presentation

of the projective space and E = Cl(id) is the 1-dimensional C∗-representation with weight

l ∈ Z>0, then one finds

IECn+1//C∗(t) =
∞∑
d=0

qd
exp(

∑n
i=0 ti(H + dz)i/z)∏d

k=1(H + kz)n+1

ld∏
k=0

(lH + kz),

where H is the hyperplane class and t =
∑n

i=0 tiH
i is the general element of H∗(Pn,Q).
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Observe that if we denote by tsm = t0�+ t1H the restriction of t to the small parameter

space H0(Pn,Q)⊕H2(Pn,Q), then

IECn+1//C∗(tsm) = exp(
t0�+ t1H

z
)

∞∑
d=0

qd exp(dt1)

∏ld
k=0(lH + kz)∏d

k=1(H + kz)n+1
,

which is precisely Givental’s small I-function of a hypersurface of degree l in Pn (and differs

from the function Ism from §4.3 by the overall exponential factor exp( t0�+t1Hz ) and the

change q !→ q exp(t1)).

Remark 4.9. The results described in §4.2 - §4.6 above have been extended in [6] to the

case of “orbifold GIT targets”, that is, to the case when [W ss/G] is a nonsingular Deligne-
Mumford stack. A result related to Theorem 4.8 has been obtained earlier by Woodward,

[53, Theorem 1.6].

5. Higher genus wall-crossing for semi-positive targets

In this section we discuss the wall-crossing formulas for higher genus ε-quasimap descen-

dant invariants in the case of semi-positive triples (W,G, θ).
Let

t(ψ) := t0 + t1ψ + t2ψ
2 + t3ψ

3 + . . . ,

with tj =
∑

i tjiγi ∈ H∗(W//G,Q) general cohomology classes.

By definition, the genus g, ε-descendant potential of (W,G, θ) is

F εg (t) :=
∑

β∈Eff(W,G,θ)

∑
m≥0

qβ

m!
〈t(ψ1), t(ψ2), . . . t(ψm)〉εg,m,β .

As usual, we omit from the sum the unstable terms corresponding to (g,m, β, ε) for which
the moduli spaces are not defined.

Conjecture 5.1 ([12]). For a semi-positive triple (W,G, θ), and every ε ≥ 0+

(Jε0 (q))
2g−2F εg (t(ψ)) = F

∞
g

(
t(ψ) + Jε1 (q)

Jε0 (q)

)
. (5.1)

Further, for every ε1 �= ε2
(Jε10 (q))2g−2F ε1g (Jε10 (q)t(ψ)− Jε11 (q)) = (Jε20 (q))2g−2F ε2g (Jε20 (q)t(ψ)− Jε21 (q)) .

(5.2)

To be precise, in the case g = 0 the equalities are conjectured to hold modulo terms of degree

≤ 1 in the coordinates tji (but see [12, Remark 3.1.3 ] for an explanation on how to extend

the statement to an equality up to constants).

Note that the (a priori stronger) wall-crossing formula (5.2) follows from (5.1).

Considering the Taylor coefficients on both sides gives the following equivalent formu-

lation of (5.1): If 2g − 2 + k ≥ 0, then for arbitrary δ1, . . . δk ∈ H∗(W//G,Q) and integers
a1, . . . , ak ≥ 0,
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(Jε0 (q))
2g−2+k

∑
β

qβ〈δ1ψa1
1 , . . . , δnψ

ak

k 〉εg,k,β =

∑
β

qβ
∞∑
m=0

1

m!

〈
δ1ψ

a1
1 , . . . , δkψ

ak

k ,
Jε1 (q)

Jε0 (q)
, . . . ,

Jε1 (q)

Jε0 (q)

〉∞
g,k+m,β

.

Combining Corollary 4.5 with reconstruction for ε-quasimap invariants proves the Con-

jecture in genus zero.

Theorem 5.2 ([12]). Let (W,G, θ) be semi-positive. Assume there is an action by a torus
T, such that the fixed points of the induced T-action on W//G are isolated. Then the g =
0 case of Conjecture 5.1 holds. Moreover, if E is a convex G-representation such that
β(det(TW )) − β(W × det(E)) ≥ 0 for all θ-effective β, then the conjecture also holds at
g = 0 for the E-twisted ε-quasimap theories ofW//G.

A more convincing piece of evidence for the validity of the Conjecture is provided by

the following result:

Theorem 5.3 ([12]). Let X be a nonsingular quasi-projective toric variety of dimension n,
obtained as the GIT quotient of a semi-positive triple (Cn+r, (C∗)r, θ). Then Conjecture 5.1
holds for X .

It is easy to see that toric varieties (in any semi-positive GIT presentation) have I0(q) = 1
(and hence Jε0 = 1 for all ε). WhenX is a nonsingular and projective toric Fano and we take

its “standard” GIT presentation (as considered e.g. in [10]), then I1(q) = 0 as well. Hence

we obtain the following

Corollary 5.4. IfX is a nonsingular projective Fano toric variety, then its quasimap invari-
ants (for the standard GIT presentation) are independent on ε:

F εg (t(ψ)) = F
∞
g (t(ψ)), ∀ε ≥ 0 + .

The first statement of the kind in the Corollary was established by Marian - Oprea -

Pandharipande [41] for W//G a Grassmannian and for ε = 0+. Their result was extended

to all ε in [51] by Toda.

Remark 5.5.

1. The most interesting case covered by Theorem 5.3 is that of toric Calabi-Yau targets.

For 3-folds, our theorem says that F 0+
g |t(ψ)=0 is equal to the B-model genus g pre-

potential, expanded near a large complex structure point for the mirror of X .

2. The arguments proving Theorem 5.3 also apply to show that the higher genus wall-

crossing of Conjecture 5.1 holds for some non-abelian local Calabi-Yau targets, namely

local Grassmannians, and in fact local type A flag manifolds, see [12, Theorem 1.3.4].

3. The remaining challenge is to prove Conjecture 5.1 for compact Calabi-Yau targets at

g ≥ 1.
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1. Introduction

In recent years an extensive investigation of semiorthogonal decompositions of derived cate-

gories of coherent sheaves on algebraic varieties has been done, and now we know quite a lot

of examples and some general constructions. With time it is becoming more and more clear

that semiorthogonal components of derived categories can be thought of as the main objects

in noncommutative algebraic geometry. In this paper I will try to review what is known in

this direction — how one can construct semiorthogonal decompositions and how one can

use them.

In section 2 we will recall the basic notions, discuss the most frequently used semiorthog-

onal decompositions, and state the base change formula. In section 3 we review the theory

of homological projective duality which up to now is the most powerful method to construct

semiorthogonal decompositions. In section 4 we discuss categorical resolutions of singu-

larities, a subject interesting by itself, and at the same time inseparable from homological

projective duality. In section 5 examples of homologically projectively dual varieties are

listed. Finally, in section 6 we discuss semiorthogonal decompositions of varieties of small

dimension.

I should stress that in the area of algebraic geometry described in this paper there are

more questions than answers, but it really looks very promising. Also, due to volume con-

straints I had to leave out many interesting topics closely related to the main subject, such

as the categorical Griffiths component, Hochschild homology and cohomology, and many

others.
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2. Semiorthogonal decompositions

This paper can be considered as a continuation and a development of the ICM 2002 talk [7]

of Alexei Bondal and Dmitri Orlov. So I will freely use results and definitions from [7] and

restrict myself to a very short reminder of the most basic notion. In particular, the reader is

referred to [7] for the definition of a Serre functor, Fourier–Mukai transform, etc.

2.1. A short reminder. Recall that a semiorthogonal decomposition of a triangulated cate-

gory T is a collection A1, . . . ,An of full triangulated subcategories such that:

(a) for all 1 ≤ j < i ≤ n and any objectsAi ∈ Ai,Aj ∈ Aj one hasHomT (Ai, Aj) = 0;

(b) the smallest triangulated subcategory of T containing A1, . . . ,An coincides with T .

We will use the notation T = 〈A1, . . . ,An〉 for a semiorthogonal decomposition of T with

components A1, . . . , An.

We will be mostly interested in semiorthogonal decompositions of Db(coh(X)), the
bounded derived category of coherent sheaves on an algebraic variety X which in most

cases will be assumed to be smooth and projective over a base field k.
Recall that a full triangulated subcategory A ⊂ T is admissible if its embedding functor

i : A → T has both left and right adjoint functors i∗, i! : T → A . An admissible

subcategory A ⊂ T gives rise to a pair of semiorthogonal decompositions

T = 〈A ,⊥A 〉 and T = 〈A ⊥,A 〉, (2.1)

where

⊥A := {T ∈ T | Hom(T,A[t]) = 0 for all A ∈ A , t ∈ Z}, (2.2)

A ⊥ := {T ∈ T | Hom(A[t], T ) = 0 for all A ∈ A , t ∈ Z}, (2.3)

are the left and the right orthogonals to A in T . More generally, if A1, . . . ,Am is a

semiorthogonal collection of admissible subcategories in T , then for each 0 ≤ k ≤ m
there is a semiorthogonal decomposition

T = 〈A1, . . . ,Ak,
⊥〈A1, . . . ,Ak〉 ∩ 〈Ak+1, . . . ,Am〉⊥,Ak+1, . . . ,Am〉. (2.4)

The simplest example of an admissible subcategory is the one generated by an ex-

ceptional object. Recall that an object E is exceptional if one has Hom(E,E) = k and

Hom(E,E[t]) = 0 for t �= 0. An exceptional collection is a collection of exceptional objects

E1, E2, . . . , Em such that Hom(Ei, Ej [t]) = 0 for all i > j and all t ∈ Z. An exceptional

collection in T gives rise to a semiorthogonal decomposition

T = 〈A , E1, . . . , Em〉 with A = 〈E1, . . . , Em〉⊥. (2.5)

Here Ei denotes the subcategory generated by the same named exceptional object. If the

category A in (2.5) is zero the exceptional collection is called full.

2.2. Full exceptional collections. There are several well-known and quite useful semi-

orthogonal decompositions. The simplest example is the following

Theorem 2.1 (Beilinson’s collection). There is a full exceptional collection

Db(coh(Pn)) = 〈OPn ,OPn(1), . . . ,OPn(n)〉. (2.6)
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Of course, twisting by OPn(t) we get 〈OPn(t),OPn(t + 1), . . . ,OPn(t + n)〉 which is

also a full exceptional collection for each t ∈ Z.
A bit more general is the Grassmannian variety:

Theorem 2.2 (Kapranov’s collection, [19]). Let Gr(k, n) be the Grassmannian of k-dimen-
sional subspaces in a vector space of dimension n. Let U be the tautological subbundle of
rank k. If char k = 0 then there is a semiorthogonal decomposition

Db(coh(Gr(k, n))) = 〈 ΣαU∨ 〉α⊂R(k,n−k), (2.7)

whereR(k, n−k) is the k×(n−k) rectangle, α is a Young diagram, andΣα is the associated
Schur functor.

When char k > 0 there is an exceptional collection as well, but it is a bit more compli-

cated, see [9].

Another interesting case is the case of a smooth quadric Qn ⊂ Pn+1.

Theorem 2.3 (Kapranov’s collection, [19]). When char k �= 2 and k is algebraically closed,
there is a full exceptional collection

Db(coh(Qn)) =

{
〈S,OQn ,OQn(1), . . . ,OQn(n− 1)〉, if n is odd
〈S−, S+,OQn ,OQn(1), . . . ,OQn(n− 1)〉, if n is even

(2.8)

where S and S± are the spinor bundles.

Many exceptional collections have been constructed on other rational homogeneous

spaces, see e.g. [48], [32], [47], [42], [11], and [41]. Full exceptional collections on smooth

toric varieties (and stacks) were constructed by Kawamata [20]. Also exceptional collections

were constructed on del Pezzo surfaces [46], some Fano threefolds [24, 45] and many other

varieties.

2.3. Relative versions. Let S be a scheme andE a vector bundle of rank r on it. Let PS(E)
be its projectivization, f : PS(E) → S the projection, and OPS(E)/S(1) the Grothendieck
line bundle on PS(E).

Theorem 2.4 ([46]). For each i ∈ Z the functor

Φi : D
b(coh(S)) → Db(coh(PS(E))), F !→ Lf∗(F )

L⊗ OPS(E)/S(i) (2.9)

is fully faithful, and there is a semiorthogonal decomposition

Db(coh(PS(E))) = 〈Φ0(D
b(coh(S))), . . . ,Φr−1(D

b(coh(S)))〉. (2.10)

Of course, analogously to the case of a projective space, one can replace the sequence of

functors Φ0, . . . ,Φr−1 by Φt, . . . ,Φt+r−1 for any t ∈ Z.
An interesting new feature appears for Severi–Brauer varieties. Recall that a Severi–

Brauer variety over S is a morphism f : X → S which étale locally is isomorphic to a

projectivization of a vector bundle. A Severi–Brauer variety X can be constructed from a

torsion element in the Brauer group Br(S) of S.
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Theorem 2.5 (Bernardara’s decomposition, [3]). Let f : X → S be a Severi–Brauer variety
of relative dimension n and β ∈ Br(S) its Brauer class. Then for each i ∈ Z there is a fully
faithful functor Φi : Db(coh(S, βi)) → Db(coh(X)) and a semiorthogonal decomposition

Db(coh(X)) = 〈Φ0(D
b(coh(S))),Φ1(D

b(coh(S, β))), . . . ,Φn(D
b(coh(S, βn)))〉. (2.11)

Here coh(S, βi) is the category of βi-twisted coherent sheaves on S and the functor Φi

is given by F !→ Lf∗(F )
L⊗ OX/S(i), where the sheaf OX/S(i) is well defined as a f∗β−i-

twisted sheaf.

Another important semiorthogonal decomposition can be constructed for a smooth blow-

up. Let Y ⊂ X be a locally complete intersection subscheme of codimension c and let X̃
be the blowup of X with center in Y . Let f : X̃ → X be the blowup morphism and

D ⊂ X̃ the exceptional divisor of the blowup. Let i : D → X̃ be the embedding and

p : D → Y the natural projection (the restriction of f to D). Note that D ∼= PY (NY/X) is
the projectivization of the normal bundle.

Theorem 2.6 (Blowup formula, [46]). The functor Lf∗ : Db(coh(X)) → Db(coh(X̃)) as
well as the functors

Ψk : Db(coh(Y )) → Db(coh(X̃)), F !→ Ri∗(Lp
∗(F )

L⊗ OD/Y (k)),

are fully faithful for all k ∈ Z, and there is a semiorthogonal decomposition

Db(coh(X̃)) = 〈Lf∗(Db(coh(X))),Ψ0(D
b(coh(Y ))), . . . ,Ψc−2(D

b(coh(Y )))〉. (2.12)

Finally, consider a flat fibration in quadrics f : X → S. In other words, assume that

X ⊂ PS(E) is a divisor of relative degree 2 in a projectivization of a vector bundle E of

rank n+ 2 on a scheme S corresponding to a line subbundle L ⊂ S2E∨.

Theorem 2.7 (Quadratic fibration formula, [31]). For each i ∈ Z there is a fully faithful
functor

Φi : D
b(coh(S)) → Db(coh(X)), F !→ Lf∗(F )

L⊗ OX/S(i)

and a semiorthogonal decomposition

Db(coh(X)) = 〈Db(coh(S, C�0)),Φ0(D
b(coh(S))), . . . ,Φn−1(D

b(coh(S)))〉, (2.13)

where C�0 is the sheaf of even parts of Clifford algebras on S associated with the quadric
fibration X → S.

The sheaf C�0 is a sheaf of OS-algebras which as an OS-module is isomorphic to

C�0 ∼= OS ⊕ (Λ2E ⊗ L )⊕ (Λ4E ⊗ L 2)⊕ . . .
and equipped with an algebra structure via the Clifford multiplication. If the dimension n
of fibers of X → S is odd, then C�0 is a sheaf of Azumaya algebras on the open subset of

S corresponding to nondegenerate quadrics (which of course may be empty). On the other

hand, if n is even then OS ⊕ ΛnE ⊗ L n/2 is a central subalgebra in C�0, so the latter gives

a sheaf C̃�0 of algebras on the twofold covering

S̃ := SpecS(OS ⊕ ΛnE ⊗ L n/2) (2.14)

of S, and C̃�0 is a sheaf of Azumaya algebras on the preimage of the open subset of S
corresponding to nondegenerate quadrics.
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2.4. Base change. A triangulated category T is S-linear if it is equipped with a module

structure over the tensor triangulated category Db(coh(S)). In particular, if X is a scheme

over S and f : X → S is the structure morphism then a semiorthogonal decomposition

Db(coh(X)) = 〈A1, . . . ,Am〉 (2.15)

is S-linear if each of subcategoriesAk is closed under tensoring with an object ofD
b(coh(S)),

i.e. for A ∈ Ak and F ∈ Db(coh(S)) one has A
L⊗ Lf∗(F ) ∈ Ak.

The semiorthogonal decompositions of Theorems 2.4, 2.5 and 2.7 are S-linear, and the

blowup formula of Theorem 2.6 is X-linear. The advantage of linear semiorthogonal de-

compositions lies in the fact that they obey a base change result. For a base change T → S
denote by π : X ×S T → X the induced projection.

Theorem 2.8 ([37]). If X is an algebraic variety over S and (2.15) is an S-linear semi-
orthogonal decomposition then for a change of base morphism T → S there is, under a
certain technical condition, a T -linear semiorthogonal decomposition

Db(coh(X ×S T )) = 〈A1T , . . . ,AmT 〉
such that π∗(A) ⊂ AiT for any A ∈ Ai and π∗(A′) ⊂ Ai for any A′ ∈ AiT which has
proper support over X .

2.5. Important questions. There are several questions which might be crucial for further

investigations.

Question 2.9. Find a good condition for an exceptional collection to be full.

One might hope that if the collection generates the Grothendieck group (or the

Hochschild homology) of the category then it is full. However, recent examples of quasiphan-

tom and phantom categories (see section 6.2) show that this is not the case. Still we may

hope that in the categories generated by exceptional collections there are no phantoms. In

other words one could hope that the following is true.

Conjecture 2.10. Let T = 〈E1, . . . , En〉 be a triangulated category generated by an excep-
tional collection. Then any exceptional collection of length n in T is full.

If there is an action of a group G on an algebraic variety X , one can consider the equiv-

ariant derived category Db(cohG(X)) along with the usual derived category. In many in-

teresting cases (flag varieties, toric varieties, GIT quotients) it is quite easy to construct a

full exceptional collection in the equivariant category. It would be extremely useful to find a

way to transform it into a full exceptional collection in the usual category. In some sense the

results of [41] can be considered as an example of such an approach.

Another very important question is to find possible restrictions for existence of semi-

orthogonal decompositions. Up to now there are only several cases when we can prove in-
decomposability of a category. The first is the derived category of a curve of positive genus.

The proof (see e.g. [44]) is based on special properties of categories of homological dimen-

sion 1. Another is the derived category of a Calabi–Yau variety (smooth connected variety

with trivial canonical class). Its indecomposability is proved by a surprisingly simple argu-

ment due to Bridgeland [8]. This was further generalized in [21] to varieties with globally

generated canonical class. On the other hand, the original argument of Bridgeland general-

izes to any connected Calabi–Yau category (i.e. with the Serre functor isomorphic to a shift

and Hochschild cohomology in degree zero isomorphic to k).
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3. Homological projective duality

The starting point of a homological projective duality (HP duality for short) is a smooth

projective variety X with a morphism into a projective space and a semiorthogonal decom-

position of Db(coh(X)) of a very special type.

3.1. Lefschetz decompositions. Let X be an algebraic variety and L a line bundle on X .

Definition 3.1. A right Lefschetz decomposition of Db(coh(X)) with respect to L is a

semiorthogonal decomposition of form

Db(coh(X)) = 〈A0,A1 ⊗ L , . . . ,Am−1 ⊗ Lm−1〉 (3.1)

with 0 ⊂ Am−1 ⊂ · · · ⊂ A1 ⊂ A0. In other words, each component of the decomposition

is a subcategory of the previous component twisted by L .

Analogously, a left Lefschetz decomposition of Db(coh(X)) with respect to L is a

semiorthogonal decomposition of form

Db(coh(X)) = 〈Bm−1 ⊗ L 1−m, . . . ,B1 ⊗ L −1,B0〉 (3.2)

with 0 ⊂ Bm−1 ⊂ · · · ⊂ B1 ⊂ B0.

The subcategoriesAi (resp.Bi) forming a Lefschetz decomposition will be called blocks,
the largest will be called the first block. Usually we will consider right Lefschetz decompo-

sitions. So, we will call them simply Lefschetz decompositions.

Beilinson’s collection on Pn is an example of a Lefschetz decomposition with A0 =
A1 = · · · = An = 〈OPn〉. Kapranov’s collection on the Grassmannian Gr(k, n) also has a

Lefschetz structure with the category Ai generated by Σ
αU∨ for α ⊂ R(k − 1, n− k − i).

Note that in Definition 3.1 one can replace the twist by a line bundle with any other autoe-

quivalence of Db(coh(X)) and get the notion of a Lefschetz decomposition with respect to

an autoequivalence. This may be especially useful when dealing with arbitrary triangulated

categories.

It is also useful to know that for a given line bundle L a Lefschetz decomposition is

completely determined by its first block. Moreover, an admissible subcategory extends to

a right Lefschetz decomposition if and only if it extends to a left Lefschetz decomposition.

The simplest example of an admissible subcategory which does not extend to a Lefschetz

decomposition is the subcategory 〈OP2 ,OP2(2)〉 ⊂ Db(coh(P2)).

Question 3.2. Find a good sufficient condition for a Lefschetz extendability of an admissible
subcategory A0 ⊂ Db(coh(X)).

One can define a partial ordering on the set of all Lefschetz decompositions of

Db(coh(X)) by inclusions of their first blocks. As we will see soon, the most interesting

and strong results are obtained by using minimal Lefschetz decompositions.

3.2. Hyperplane sections. Let X be a smooth projective variety with a morphism into a

projective space f : X → P(V ) (not necessarily an embedding). PutOX(1) := f∗OP(V )(1)
and assume that a right Lefschetz decomposition with respect to OX(1)

Db(coh(X)) = 〈A0,A1(1), . . . ,Am−1(m− 1)〉 (3.3)
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is given (we abbreviate Ai(i) := Ai ⊗ OX(i)). Consider the dual projective space P(V ∨).
By the base change (Theorem 2.8) the productX×P(V ∨) inherits a P(V ∨)-linear semiorthog-

onal decomposition

Db(coh(X × P(V ∨))) = 〈A0P(V ∨),A1(1)P(V ∨), . . . ,Am−1(m− 1)P(V ∨)〉
Consider the universal hyperplane section of X , X := X ×P(V ) Q ⊂ X × P(V ∨), where
Q ⊂ P(V ) × P(V ∨) is the incidence quadric and denote by α : X → X × P(V ∨) the
natural embedding.

Lemma 3.3. The functor Lα∗ : Db(coh(X × P(V ∨))) → Db(coh(X )) is fully faithful on
each of the subcategories A1(1)P(V ∨), . . . , Am−1(m−1)P(V ∨) and induces a P(V ∨)-linear
semiorthogonal decomposition

Db(coh(X )) = 〈C ,A1(1)P(V ∨), . . . ,Am−1(m− 1)P(V ∨)〉. (3.4)

The first component C of this decomposition is called the HP dual category ofX . It is a

very interesting category, especially if it can be identified with the derived category of some

algebraic variety Y . In this case this variety is called the HP dual variety of X .

Definition 3.4. An algebraic variety Y equipped with a morphism g : Y → P(V ∨) is

called homologically projectively dual to f : X → P(V ) with respect to a given Lefschetz

decomposition (3.3) if there is given an object E ∈ Db(coh(Q(X,Y ))) such that the Fourier–
Mukai functor ΦE : Db(coh(Y )) → Db(coh(X )) is an equivalence onto the HP dual

subcategory C ⊂ Db(coh(X )) of (3.4).

HereQ(X,Y ) = (X×Y )×P(V )×P(V ∨)Q = X ×P(V ∨) Y . If a homological projective

duality between varietiesX and Y is established then there is an interesting relation between

derived categories of their linear sections.

3.3. Homologically projectively duality statement. For each linear subspace L ⊂ V ∨

denote its orthogonal complement in V by L⊥ := Ker(V → L∨). Further denote

XL := X ×P(V ) P(L
⊥), YL := Y ×P(V ∨) P(L). (3.5)

Varieties defined in this way are called mutually orthogonal linear sections of X and Y . We

will say that XL and YL have expected dimensions if

dimXL = dimX − r and dimYL = dimY − (N − r),
where N = dimV and r = dimL (so that N − r = dimL⊥).

Theorem 3.5 (Homological projective duality, [29]). Let (Y, g) be an HP dual variety for
(X, f) with respect to (3.3). Then

(1) Y is smooth and Db(coh(Y )) has an admissible subcategory B0 equivalent to A0

and extending to a left Lefschetz decomposition

Db(coh(Y )) = 〈Bn−1(1− n), . . . ,B1(−1),B0〉, Bn−1 ⊂ · · · ⊂ B1 ⊂ B0. (3.6)

(2) (X, f) is HP dual to (Y, g) with respect to (3.6).
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(3) The set of critical values of g is the classical projective dual of X .

(4) For any subspace L ⊂ V ∨ if XL and YL have expected dimensions then there are
semiorthogonal decompositions

Db(coh(XL)) = 〈CL,Ar(r), . . . ,Am−1(m− 1)〉, (3.7)

Db(coh(YL)) = 〈Bn−1(1− n), . . . ,BN−r(r −N),CL〉 (3.8)

with the same triangulated category CL appearing in the RHS.

The decomposition (3.6) ofDb(coh(Y )) will be referred to as the HP dual Lefschetz de-
composition. The common component CL of decompositions (3.7) and (3.8) will be referred

to as the nontrivial part of the derived categories of XL and YL, while the subcategories

Ai(i) and Bj(−j) (one checks that the pullback functors for the embeddingsXL → X and

YL → Y are fully faithful on the subcategories Ai and Bj for i ≥ r and j ≥ N − r) are
considered as trivial (in the sense that they come from the ambient varieties).

The first two statements of this Theorem show that the relation we are dealing with is

indeed a duality, the third statement shows the relation to the classical projective duality (and

so justifies the word “projective” in the name), and the last statement is the real result. We

will soon see how powerful it is.

Note also that in the statement of the Theorem the linear sections XL and YL need not

be smooth. In fact, one can show that for HP dual varietiesX and Y a sectionXL is smooth

if and only if its orthogonal section YL is smooth, but no matter whether this is the case or

not, the decompositions (3.7) and (3.8) hold true.

Now let us say some words about the relations of the Lefschetz decompositions (3.3)

and (3.6) for HP dual varieties. As it was already mentioned, the largest components of those

are just equivalent B0
∼= A0. Further, the component Bi is very close to the orthogonal

complement of AN−1−i in A0. More precisely, these two categories have semiorthogonal

decompositions with the same components but with in general different gluing functors. This

can be visualized by a picture.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

B16B15B14B13B12B11B10B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

The gray part of the picture corresponds to the initial Lefschetz decomposition, the columns

correspond to its blocks, while the white part corresponds to the dual decomposition, the

complementary columns correspond to the complementary subcategories of the dual Lef-

schetz decomposition. The number of rows is equal to the number of different components

in the initial (and the dual) Lefschetz decomposition. In this example picture A0 = A1 =
A2 �= A3 = A4 �= A5 = A6 = A7 �= A8 = A9, and so one can say that the rows

correspond to the “primitive parts” (A3)
⊥
A0

, (A5)
⊥
A3

, (A8)
⊥
A5

, and A8 of all the categories

in the picture, the length of the initial decomposition is m = 10, the length of the dual

decomposition is n = 17, while the dimension of the ambient space is N = 20.
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Note that Bi = 0 if and only if AN−1−i = A0, so the number n of components in (3.6)

equals N minus the number of components in (3.3) equal to A0.

In fact, the best (in many aspects) situation is when in the original Lefschetz decompo-

sition (3.3) all components coincide A0 = A1 = · · · = Am−1 (such Lefschetz decomposi-

tions are called rectangular). Then the HP dual Lefschetz decomposition is also rectangular,

has the same components B0 = B1 = · · · = Bn−1
∼= A0 and

n = N −m
(in particular in a picture analogous to the above the gray and the white parts are rectan-

gles, which explains the name “rectangular”). Moreover, in this case for any 0 < r < N
one has either r ≥ m or N − r ≥ n, hence in decompositions (3.7) and (3.8) either the

first or the second category has only one component CL and nothing else. Then the other

decomposition shows that the nontrivial component of the derived category of a linear sec-

tion is equivalent to the derived category of the orthogonal linear section of the dual variety.

3.4. HP duality and noncommutative varieties. In general, the homologically projec-

tively dual categoryC ⊂Db(coh(X )) defined by (3.4) need not be equivalent toDb(coh(Y ))
for an algebraic variety Y . In fact, only a few such cases are known — the linear duality,

the duality for quadrics, the duality for Grassmannians Gr(2, 4) and Gr(2, 5), and the spinor

variety S5 (see section 5).
One can get many additional interesting examples by allowing Y to be a noncommutative

variety. Here a noncommutative variety can be understood in different ways. If one uses the

most general sense— as a semiorthogonal component of the derived category of an algebraic

variety — then tautologically the HP dual category C itself will provide a noncommutative

HP dual variety. In fact, one can develop a theory of HP duality for noncommutative varieties

in this sense and prove the same results (see [30]). However, in this most general form

the semiorthogonal decompositions provided by the HP duality Theorem will not have an

apparent geometric interpretation.

In fact, an interesting geometry arises in HP duality if the dual variety Y is close to a

commutative variety. For example, it often happens that there is a (commutative) algebraic

variety Y0 with a map g0 : Y0 → P(V ∨), a sheaf of finite OY0 -algebras R on Y0 whose

bounded derived category Db(coh(Y0,R)) of coherent R-modules on Y0 is equivalent to

the HP dual category C of X and such that the equivalence C ∼= Db(coh(Y0,R)) is given
by an appropriate object E ∈ Db(coh(Q(X,Y0),R)). Of course, one can easily allow here

the variety X also to be noncommutative in the same sense. It is easy to modify all the

definitions accordingly.

In section 5 we discuss examples showing that this generalization is meaningful. Among

such examples are the Veronese–Clifford duality, the Grassmannian–Pfaffian duality, and

their generalizations.

In fact, in some of these examples, the HP duality Theorem 3.5 still gives semiorthogonal

decompositions for usual commutative varieties (even though the dual variety is noncommu-

tative). Indeed, the sheaf of algebras R on Y0 is frequently isomorphic to a matrix algebra

on an open subset of Y0, typically, on its smooth locus — in fact, in these cases the noncom-

mutative variety (Y0,R) can be thought of as a categorical resolution of singularities of Y .
In this situation, taking a subspace L ⊂ V ∨ such that Y0L is contained in that open subset,

one gets Db(coh(YL)) = Db(coh(Y0L,R)) ∼= Db(coh(Y0L)).
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4. Categorical resolutions of singularities

As it was explained above (and we will see in some of the examples below) in many cases

the HP dual variety looks as a noncommutative (or categorical) resolution of singularities of

a singular variety. So, a good notion of a categorical resolution is necessary for the theory.

4.1. The definition. If π : Ỹ → Y is a resolution of singularities (in the usual sense), we

have an adjoint pair of triangulated functors

Rπ∗ : D
b(coh(Ỹ )) → Db(coh(Y ))

and

Lπ∗ : Dperf(Y ) → Db(coh(Ỹ ))

(here Dperf(Y ) stands for the category of perfect complexes on Y ). We axiomatize this

situation in the following

Definition 4.1 (cf. [33, 39]). A categorical resolution of singularities of a scheme Y is a

smooth triangulated category T and an adjoint pair of triangulated functors

π∗ : T → Db(coh(Y ))

and

π∗ : Dperf(Y ) → T
such that π∗ ◦ π∗ ∼= idDperf(Y ). In particular, the functor π

∗ is fully faithful.

We will not discuss the notion of smoothness for a triangulated category. In fact, for

our purposes it is always enough to assume that T is an admissible Y -linear subcategory of

Db(coh(Ỹ )) for a geometric resolution Ỹ → Y .
Let (T , π∗, π∗) and (T ′, π′∗, π

′∗) be two categorical resolutions of Y . We will say that

T dominates T ′ if there is a fully faithful functor ε : T ′ → T such that π′∗ = π∗ ◦ ε.
Clearly, this is compatible with the usual dominance relation between geometric resolutions

— if a resolution π : Ỹ → Y factors as Ỹ
f−−→ Ỹ ′

π′−−→ Y then the pullback functor

ε := Lf∗ : Db(coh(Ỹ ′)) → Db(coh(Ỹ )) is fully faithful and

Rπ∗ ◦ Lf∗ = Rπ′∗ ◦Rf∗ ◦ Lf∗ ∼= Rπ′∗.
Categorical resolutions have two advantages in comparison with geometric ones. First,

if Y has irrational singularities the pullback functor for a geometric resolution is never fully

faithful and so its derived category is not a categorical resolution in sense of Definition 4.1.

However, it was shown in [39] that any separated scheme of finite type (even nonreduced)

over a field of zero characteristic admits a categorical resolution.

The second advantage is that the dominance order for categorical resolutions is more

flexible. For example, in many examples one can find a categorical resolution which is much

smaller than any geometric resolution. There are strong indications that the Minimal Model

Program on the categorical level may be much simpler than the classical one. In particular,

we expect the following.

Conjecture 4.2 (cf. [7]). For any quasiprojective scheme Y there exists a categorical reso-
lution which is minimal with respect to the dominance order.
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4.2. Examples of categorical resolutions. As an evidence for the conjecture we will con-

struct categorical resolutions which are presumably minimal.

Theorem 4.3 ([33]). Let f : Ỹ → Y be a resolution of singularities and let E be the
exceptional divisor with i : E → Ỹ being the embedding. Assume that the derived cate-
gory Db(coh(E)) has a left Lefschetz decomposition with respect to the conormal bundle
OE(−E):

Db(coh(E)) = 〈Cm−1((m− 1)E), . . . ,C1(E),C0〉, (4.1)

which is Y -linear and has Li∗(Lf∗(Dperf(Y ))) ⊂ C0. Then the functor Ri∗ is fully faithful
on subcategories Ck ⊂ Db(coh(E)) for k > 0, the subcategory

C̃ := {F ∈ Db(coh(Ỹ )) | Li∗(F ) ∈ C0} (4.2)

is admissible in Db(coh(Ỹ )), and there is a semiorthogonal decomposition

Db(coh(Ỹ )) = 〈Ri∗(Cm−1((m− 1)E)), . . . , Ri∗(C1(E)), C̃ 〉. (4.3)

Moreover, the functor Lf∗ : Dperf(Y ) → Db(coh(Ỹ )) factors as a composition of a fully
faithful functor π∗ : Dperf(Y ) → C̃ with the embedding γ : C̃ → Db(coh(Ỹ )), and the
functors π∗ := Rf∗ ◦γ and π∗ give C̃ a structure of a categorical resolution of singularities
of Y .

If C ′
0 ⊂ C0 ⊂ Db(coh(E)) are two admissible Lefschetz extendable subcategories

(with respect to the conormal bundle) then clearly by (4.2) the categorical resolution C̃ ′

constructed from C ′
0 is a subcategory in the categorical resolution C̃ constructed from C0.

Moreover, if ε : C̃ ′ → C̃ is the embedding functor then π′∗ = π∗◦ε, so C̃ dominates C̃ ′. This
shows that minimal categorical resolutions are related to minimal Lefschetz decompositions.

As an example of the application of the above Theorem consider the cone Y over a

smooth projective varietyX ⊂ P(V ). Then Ỹ = TotX(OX(−1)), the total space of the line
bundle OX(−1) = OP(V )(−1)|X , is a geometric resolution of Y . The exceptional divisor

of the natural morphism f : Ỹ → Y then identifies with the zero section of the total space,

E = X , and the conormal bundle identifies with OX(1). So, a left Lefschetz decomposition

ofDb(coh(X)) with respect to OX(1) gives a categorical resolution of the cone Y over X .

Example 4.4. Take X = P3 with the double Veronese embedding f : P3 → P9, so that

f∗OP9(1) = OP3(2), and a left Lefschetz decomposition

Db(coh(P3)) = 〈C1(−2),C0〉 with C0 = C1 = 〈OP3(−1),OP3〉.
Then the category C̃ := {F ∈ Db(coh(TotP3(OP3(−2)))) | Li∗F ∈ 〈OP3(−1),OP3〉} is

a categorical resolution of the Veronese cone, which is significantly smaller than the usual

geometric resolution. It is expected to be minimal.

4.3. Crepancy of categorical resolutions. Crepancy is an important property of a resolu-

tion which in the geometric situation ensures its minimality. A resolution f : Ỹ → Y is

crepant if the relative canonical class KỸ /Y is trivial. There is an analogue of crepancy for

categorical resolutions. In fact, there are two such analogues.

Definition 4.5 ([33]). A categorical resolution (T , π∗, π∗) of a scheme Y is weakly crepant
if the functor π∗ : Dperf(Y ) → T is simultaneously left and right adjoint to the functor

π∗ : T → Db(coh(Y )).
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By Grothendieck duality, the right adjoint of the derived pushforward functor Rf∗ :
Db(coh(Ỹ )) → Db(coh(Y )) is given by f !(F ) = Lf∗(F )⊗OỸ (KỸ /Y ), so for a geometric

resolution crepancy and weak crepancy are equivalent.

Definition 4.6 ([33]). A categorical resolution (T , π∗, π∗) of a scheme Y is strongly crepant
if the relative Serre functor of T over Db(coh(Y )) is isomorphic to the identity.

Again, Grothendieck duality implies that for a geometric resolution crepancy and strong

crepancy are equivalent. Moreover, it is not so difficult to show that strong crepancy of a

categorical resolution implies its weak crepancy, but the converse is not true in general. To

see this one can analyze the weak and strong crepancy of categorical resolutions provided

by Theorem 4.3.

Proposition 4.7. In the setup of Theorem 4.3 assume that the scheme Y is Gorenstein and
KỸ /Y = (m − 1)E, where m is the length of the left Lefschetz decomposition (4.1). The

corresponding categorical resolution C̃ of Y is weakly crepant if and only if

Li∗(Lf∗(Dperf(Y ))) ⊂ Cm−1. (4.4)

Furthermore, C̃ is strongly crepant if and only if (4.1) is rectangular, i.e.

Cm−1 = · · · = C1 = C0. (4.5)

So, starting from a nonrectangular Lefschetz decomposition it is easy to produce an

example of a weakly crepant categorical resolution which is not strongly crepant.

Example 4.8. Take X = Q3 ⊂ P4 and let Y be the cone over X (i.e. a 4-dimensional

quadratic cone). Then the left Lefschetz collection

Db(coh(X)) = 〈C2(−2),C1(−1),C0〉 with C0 = 〈S,OX〉, C1 = C2 = 〈OX〉

(S is the spinor bundle) gives a weakly crepant categorical resolution C̃ of Y which is not

strongly crepant. In fact, if q : TotX(OX(−1)) → X is the canonical projection, the vector

bundle q∗S is a spherical object in C̃ and the relative Serre functor is isomorphic to the

corresponding spherical twist.

4.4. Further questions. Of course, the central question is Conjecture 4.2. Theorem 4.3

shows that it is closely related to the question of existence of minimal Lefschetz decomposi-

tions.

Another interesting question is to find new methods of construction of minimal cate-

gorical resolutions. An interesting development in this direction is the work [1] in which a

notion of a wonderful resolution of singularities (an analogue of wonderful compactifications)

is introduced and it is shown that a wonderful resolution gives rise to a weakly crepant cat-

egorical resolution. This can be viewed as an advance on the first part of Proposition 4.7. It

would be very interesting to find a generalization of the second part of this Proposition in the

context of wonderful resolutions.

Another aspect is to find explicit constructions of minimal resolutions for interesting

varieties, such as Pfaffian varieties for example. Some of these arise naturally in the context

of HP duality as we will see later.



Semiorthogonal decompositions in algebraic geometry 647

5. Examples of homological projective duality

If an HP duality for two varieties X and Y is proved, one gets as a consequence an identi-

fication of the nontrivial components of the derived categories of linear sections of X and

Y . Because of that it is clear that such a result is a very strong statement and is usually not

so easy to prove. In this section we list several examples of HP duality. We assume that

char k = 0 in this section.

5.1. Linear duality. Let X = PS(E) be a projectivization of a vector bundle E on a

scheme S and assume that the map f : X → P(V ) is linear on fibers of X over S. In

other words, we assume that f is induced by an embedding of vector bundles E → V ⊗OS

on S. In this case the line bundle OX(1) = f∗OP(V )(1) is a Grothendieck line bundle for

X over S. By Theorem 2.4 we have a rectangular Lefschetz decomposition of Db(coh(X))
of lengthm = rk(E) with blocks

A0 = A1 = · · · = Am−1 = p∗(Db(coh(S))),

where p : X → S is the projection. So, we are in the setup of HP duality and one can ask

what the dual variety is?

The answer turns out to be given by a projectivization of another vector bundle over S.
Define E⊥ as the kernel of the dual morphism

E⊥ := Ker(V ∨ ⊗ OS → E∨).

The projectivization PS(E⊥) comes with a natural morphism g : PS(E⊥) → P(V ∨) and
Theorem 2.4 provides PS(E⊥) with a rectangular Lefschetz decomposition of lengthN−m
with blocks B0 = B1 = · · · = BN−m−1 = q∗(Db(coh(S))), where q : PS(E⊥) → S is

the projection.

Theorem 5.1 ([29]). The projectivizationsX = PS(E) and Y = PS(E⊥) with their canon-
ical morphisms to P(V ) and P(V ∨) and the above Lefschetz decompositions are homologi-
cally projectively dual to each other.

The picture visualizing this duality is very simple:

Db(coh(S)) · · · · · · Db(coh(S))

withm gray boxes and N −m white boxes.

In the very special case of S = Spec k the bundle E is just a vector space and the variety

X is a (linearly embedded) projective subspace P(E) ⊂ P(V ). Then the HP-dual variety is

the orthogonal subspace P(E⊥) ⊂ P(V ∨). In particular, the dual of the space P(V ) itself
with respect to its identity map is the empty set.

5.2. Quadrics. There are two ways to construct a smooth quadric: one — as a smooth hy-

persurface of degree 2 in a projective space, and the other — as a double covering of a pro-

jective space ramified in a smooth quadric hypersurface. These representations interchange

in a funny way in HP duality.

Denote by S the spinor bundle on an odd dimensional quadric or one of the spinor bundles

on the even dimensional quadric.
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Theorem 5.2.

(1) If X = Q2m ⊂ P2m+1 with Lefschetz decomposition given by

A0 = A1 = 〈SX ,OX〉, A2 = A3 = · · · = A2m−1 = 〈OX〉 (5.1)

then the HP dual variety is the dual quadric Y = Q∨ ⊂ P̌2m+1 with the same Lef-
schetz decomposition.

OX · · · SY
SX · · · OY

(2) If X = Q2m−1 ⊂ P2m with Lefschetz decomposition given by

A0 = 〈SX ,OX〉, A1 = A2 = · · · = A2m−2 = 〈OX〉 (5.2)

then the HP dual variety is the double covering Y → P̌2m ramified in the dual quadric
Q∨ ⊂ P̌2m with Lefschetz decomposition (5.1)

OX · · · SY
SX · · · OY

(3) If X = Q2m−1 → P2m−1 is the double covering ramified in a quadric Q̄ ⊂ P2m−1

with Lefschetz decomposition (5.2) then the HP dual variety is the double covering
Y → P̌2m−1 ramified in the dual quadric Q̄∨ ⊂ P̌2m−1 with the same Lefschetz
decomposition.

OX · · · SY
SX · · · OY

5.3. Veronese–Clifford duality. Let W be a vector space of dimension n and V = S2W
its symmetric square. We take X = P(W ) and consider its double Veronese embedding f :
P(W ) → P(V ). Then f∗OP(V )(1) = OP(W )(2). Beilinson’s collection (2.6) on P(W ) can

be considered as a Lefschetz decomposition (with respect to OP(W )(2)) ofD
b(coh(P(W )))

with $n/2% blocks equal to
A0 = A1 = · · · = A�n/2�−1 := 〈OP(W ),OP(W )(1)〉,

and if n is odd one more block

A�n/2� := 〈OP(W )〉.
The universal hyperplane section X of X is nothing but the universal quadric in P(W )
over the space P(V ∨) = P(S2W∨) of all quadrics. Then the quadratic fibration formula

of Theorem 2.7 gives an equivalence of the HP dual category C with the derived category

Db(coh(P(V ∨), C�0)) of coherent sheaves of modules over the even part of the universal

Clifford algebra

C�0 = OP(S2W∨) ⊕ Λ2W ⊗ OP(S2W∨)(−1)⊕ . . . ,
on the space P(S2W∨) of quadrics. We will consider the pair (P(S2W∨), C�0) as a non-

commutative variety and call it the Clifford space.
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Theorem 5.3 (Veronese–Clifford duality, [31]). The homological projective dual of the pro-
jective space X = P(W ) in the double Veronese embedding P(W ) → P(S2W ) is the
Clifford space Y = (P(S2W∨), C�0).

The HP dual Lefschetz decomposition of the Clifford space is given by the full excep-

tional collection

Db(coh(P(S2W∨, C�0))) = 〈C�1−n2 , C�2−n2 , . . . , C�−1, C�0〉,
where

C�1 =W ⊗ OP(S2W∨) ⊕ Λ3W ⊗ OP(S2W∨)(−1)⊕ . . .
is the odd part of the Clifford algebra and C�k−2 = C�k ⊗ OP(S2W∨)(−1) for each k ∈ Z.
The picture visualizing this duality is:

O · · · · · · C�1O(1) · · · · · · C�0
n even

or

O · · · · · · C�1O(1) · · · · · · C�0
n odd

For even n it has n/2 gray columns and n2/2 white columns, and for odd n it has (n− 1)/2
gray columns, one mixed column, and (n2 − 1)/2 white columns.

5.4. Grassmannian–Pfaffian duality. The most interesting series of examples is provided

by GrassmanniansGr(2,m) of two-dimensional subspaces in anm-dimensional vector space.

Let W be a vector space of dimension m and let V = Λ2W , the space of bivectors.

The group GL(W ) acts on the projective space P(Λ2W ) with orbits indexed by the rank of

a bivector which is always even and ranges from 2 to 2$m/2%. We denote by Pf(2k,W )
the closure of the orbit consisting of bivectors of rank 2k and call it the k-th Pfaffian va-
riety. Clearly, the smallest orbit Pf(2,W ) is smooth and coincides with the Grassman-

nian Gr(2,W ) in its Plücker embedding. Another smooth Pfaffian variety is the maxi-

mal one — Pf(2$m/2%,W ) = P(Λ2W ). All the intermediate Pfaffians are singular with

sing(Pf(2k,W )) = Pf(2k− 2,W ). The submaximal Pfaffian variety Pf(2$m/2%− 2,W∨)
of the dual space is classically projectively dual to the Grassmannian Gr(2,W ). This sug-
gests a possible HP duality between them.

To make a precise statement we should choose a Lefschetz decomposition of

Db(coh(Gr(2,W ))). A naive choice is to take Kapranov’s collection (2.7). It can be consid-

ered as a Lefschetz decomposition on X := Gr(2,m) withm− 1 blocks

A0 = 〈OX ,U∨X , . . . , Sm−2U∨X〉, A1 = 〈OX ,U∨X , . . . , Sm−3U∨X〉, . . . , Am−2 = 〈OX〉.
However, it is very far from being minimal. It turns out that a reasonable result can be

obtained for another Lefschetz decomposition

Db(coh(Gr(2,m)) = 〈A0,A1(1), . . . ,Am−1(m− 1)〉
with

A0 = · · · = Am−1 = 〈OX ,U∨X , . . . , S(m−1)/2U∨X〉. (5.3)

ifm is odd, and with

A0 = · · · = Am/2−1 = 〈OX ,U∨X , . . . , Sm/2−1U∨X〉,
Am/2 = · · · = Am−1 = 〈OX ,U∨X , . . . , Sm/2−2U∨X〉, (5.4)

ifm is even.
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Conjecture 5.4. The HP dual of the Grassmannian Gr(2,W ) with Lefschetz decomposi-
tion (5.4) (or (5.3) depending on the parity of m = dimW ) is given by a minimal cate-
gorical resolution of the submaximal Pfaffian Pf(2$m/2% − 2,W∨). When m is odd, this
resolution is strongly crepant.

This conjecture is proved for m ≤ 7 in [28]. In fact, for m = 2 and m = 3 one has

Gr(2,W ) = P(Λ2W ) and linear duality applies. For m = 4 and m = 5 the submaximal

Pfaffian Pf(2,W∨) coincides with the Grassmannian, and the above duality is the duality

for Grassmannians:

Gr(2, 4)
OX UY
U∨X OY

Gr(2, 5)
OX UY
U∨X OY

For m = 6 and m = 7 the submaximal Pfaffian Y = Pf(4,W∨) is singular, but its
appropriate categorical resolutions can be constructed by Theorem 4.3. It turns out that

these resolutions indeed are HP dual to the corresponding Grassmannians:

Gr(2, 6) Pf(4, 6) Gr(2, 7) Pf(4, 7)

For m ≥ 8 this construction of a categorical resolution does not work. However it is

plausible that the Pfaffians have wonderful resolutions of singularities, so a development

of [1] may solve the question.

5.5. The spinor duality. LetW be a vector space of even dimension 2m and q ∈ S2W∨

a nondegenerate quadratic form. The isotropic Grassmannian of m-dimensional subspaces

inW has two connected components, abstractly isomorphic to each other and called spinor
varieties Sm. These are homogeneous spaces of the spin group Spin(W )with the embedding

into P(ΛmW ) given by the square of the generator of the Picard group, while the generator

itself gives an embedding into the projectivization P(V ) of a half-spinor representation V
(of dimension 2m−1) of Spin(W ). For smallm the spinor varieties are very simple (because

the spin-group simplifies): in fact, S1 is a point, S2 = P1, S3 = P3, and S4 = Q6. The first

interesting example is S5.

Theorem 5.5 ([27]). The spinor variety X = S5 has a Lefschetz decomposition

Db(coh(X)) = 〈A0,A1(1), . . . ,A7(7)〉 with A0 = · · · = A7 = 〈OX ,U∨5 〉. (5.5)

The HP dual variety is the same spinor variety Y = S5.

S5 S5

5.6. Incomplete dualities. It is often quite hard to give a full description of the HP dual

variety. On the other hand, there is sometimes an open dense subset U ⊂ P(V ∨) for which
there is a description of the category CU obtained by a base change U → P(V ∨) from the

HP dual category C . If Db(coh(YU )) is a (noncommutative) variety such that YU ∼= CU (a

U -linear equivalence), we will say that YU is the HP dual of X over U , or an incomplete HP
dual variety.
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Proposition 5.6. If YU is an HP dual of X over an open subset U ⊂ P(V ∨) then the
semiorthogonal decompositions (3.7) and (3.8) hold for any subspace L ⊂ V ∨ such that
P(L) ⊂ U and the varieties XL and YL have expected dimensions.

There are several examples of HP duality when only an incomplete dual variety is known.

Below we discuss two of them. LetW be a vector space of dimension 6 with a symplectic

form ω, and X = LGr(3,W ) ⊂ P13 the corresponding Lagrangian Grassmannian. The

classical projectively dual variety Y1 := X∨ ⊂ P̌13 is a quartic hypersurface which is

singular along a 9-dimensional variety Y2 ⊂ Y1. One can check that X has a rectangular

Lefschetz decomposition (see [48])

Db(coh(X)) = 〈A0,A1(1),A2(2),A3(3)〉 with (5.6)

A0 = A1 = A2 = A3 = 〈OX ,U∨X〉.

The HP dual variety in this case is described only over the open set U = P̌13 \ Y2, see [27].
For this a morphism π : Ỹ → Y1 which is a nondegenerate conic bundle over Y1 \ Y2 is

constructed in loc. cit. Let R be the associated quaternion algebra on Y1 \ Y2.
Theorem 5.7 ([27]). If X = LGr(3, 6) ⊂ P13 with Lefschetz decomposition (5.6) then the
noncommutative variety (Y1 \ Y2,R) is the HP dual of X over P̌13 \ Y2.

LGr(3, 6) (Y1 \ Y2,R)

Another example is related to the simple algebraic group G2. Let X be the orbit of the

highest weight vector in the projectivization P13 = P(V ) of the adjoint representation V of

G2. Then X can also be realized as the zero locus of a global section of the vector bundle

Λ4(W/U) on the Grassmannian Gr(2,W ) for a 7-dimensional fundamental representation

W of G2 corresponding to a generic 3-form λ ∈ Λ3W∨. By that reason we use the notation

G2Gr(2,W ) for X .

The classical projectively dual variety Y1 := X∨ ⊂ P̌13 is a sextic hypersurface which

is singular along a 10-dimensional variety Y2 ⊂ Y1. One can check thatX has a rectangular

Lefschetz decomposition

Db(coh(X)) = 〈A0,A1(1),A2(2)〉 with A0 = A1 = A2 = 〈OX ,U∨X〉. (5.7)

As in the previous case, the HP dual variety is described only over the open set U = P̌13\Y2,
see [27]. A morphism π : Ỹ → Y0 to the double covering Y0 → P̌13 ramified in Y1 which

is a Severi–Brauer variety with fiber P2 over Y0 \ Y2 is constructed in loc. cit. Let R be the

associated Azumaya algebra on Y0 \ Y2.
Theorem 5.8 ([27]). If X = G2Gr(2, 7) with Lefschetz decomposition (5.7) then the non-
commutative variety (Y0 \ Y2,R) is the HP dual of X over P̌13 \ Y2.

G2Gr(2, 7) (Y0 \ Y2,R)
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5.7. Conjectures. Note that Gr(2,W ) = Pf(2,W ). This suggests a generalization of the

Grassmannian–Pfaffian duality to higher Pfaffians.

Conjecture 5.9. For any k there is an HP duality between appropriate minimal categorical
resolutions of the Pfaffians Pf(2k,W ) and Pf(2($m/2% − k),W∨). When m = dimW is
odd these resolutions are strongly crepant.

Below are the expected pictures for the HP duality for Pf(4, 8) and for Pf(4, 9):

Pf(4, 8) Pf(4, 8)

Pf(4, 9) Pf(4, 9)

It is also expected that there is a generalization of the Veronese–Clifford duality. Con-

sider a vector space W of dimension n and its symmetric square V = S2W . The group

GL(W ) acts on the projective space P(V ) = P(S2W ) with orbits indexed by the rank of a

tensor. We denote by Σ(k,W ) ⊂ P(S2W ) the closure of the orbit consisting of symmet-

ric tensors of rank k. The smallest orbit Σ(1,W ) is smooth and coincides with the double

Veronese embedding of P(W ). On the other hand, Σ(n,W ) = P(S2W ) is also smooth. All

the intermediate varieties Σ(k,W ) are singular with sing(Σ(k,W )) = Σ(k − 1,W ). The
classical projective duality acts on these varieties by Σ(k,W )∨ = Σ(n− k,W∨). However,
the HP duality is organized in a much more complicated way.

Besides Σ(k,W ) itself one can consider its modifications:

• the Clifford modification (Σ(k,W ), C�0) for the natural sheaf of even parts of Clifford
algebras on it, and

• (for even k) the double covering Σ̃(k,W ) of Σ(k,W ) corresponding to the central

subalgebra in C�0 as in (2.14),
and their minimal categorical resolutions. It seems that HP duality interchanges in a com-

plicated way modifications of different type. For example, besides the original Veronese–

Clifford duality between Σ(1, n) and (Σ(n, n), C�0) there are strong indications that (the

minimal resolution of) Σ(2, 4) is HP dual to (the minimal resolution of) the double covering

Σ̃(4, 4) of Σ(4, 4) = P9 (see [15]), (the minimal resolution of) Σ(2, 5) is HP dual to (the

minimal resolution of) the double covering Σ̃(4, 5) of Σ(4, 5) (see [14]), while (the minimal

resolution of) the double covering Σ̃(2, n) of Σ(2, n) is HP dual to (the minimal resolution

of) Σ(n− 1, n) for all n (this can be easily deduced from the linear duality).
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6. Varieties of small dimension

Let us list what is known about semiorthogonal decompositions of smooth projective vari-

eties by dimension. In this section we assume that k = C.

6.1. Curves. Curves are known to have no nontrivial semiorthogonal decompositions with

the only exception of P1 (for which every semiorthogonal decomposition coincides with the

Beilinson decomposition up to a twist), see [44].

6.2. Surfaces. For surfaces the situation is more complicated. Of course, by the blowup

formula any surface has a semiorthogonal decomposition with several exceptional objects

and the derived category of a minimal surface as components. In particular, any rational

surface has a full exceptional collection. Moreover, for P2 it is known that any full excep-

tional collection can be obtained from Beilinson’s collection by mutations (which are related

to Markov numbers and toric degenerations of P2). For other del Pezzo surfaces all excep-

tional objects have been classified [23], and moreover, three-blocks exceptional collections

were constructed [18], but the complete picture is not known.

For minimal ruled surfaces, of course there is a semiorthogonal decomposition into two

copies of the derived category of the curve which is the base of the ruling.

For surfaces of Kodaira dimension 0 it is well known that there are no nontrivial semi-

orthogonal decompositions for K3 and abelian surfaces. The same was proved for bielliptic

surfaces in [21]. For Enriques surfaces there may be an exceptional collection of line bundles

of length up to 10 (see [49]), and for so-called nodal Enriques surfaces the complementary

component is related to the Artin–Mumford quartic double solid [15].

For surfaces of Kodaira dimension 1 with pq > 0 there are no semiorthogonal decompo-

sitions by [21].

Finally, for surfaces of general type there is an unexpectedly rich theory of semiorthogo-

nal decompositions. In fact, for many surfaces of general type with pg = q = 0 (the classical
Godeaux surface, the Beauville surface, the Burniat surfaces, the determinantal Barlow sur-

face, some fake projective planes) exceptional collections of length equal to the rank of the

Grothendieck group have been constructed in [2, 4, 5, 10, 12, 13]. The collections, how-

ever, are not full. The complementary components have finite (or even zero) Grothendieck

group and trivial Hochschild homology and by that reason they are called quasiphantom or

phantom categories. The phantoms cannot be detected by additive invariants, but one can

use Hochschild cohomology instead, see [38].

An interesting feature here is that the structure of the constructed exceptional collections

resembles very much the structure of exceptional collections of del Pezzo surfaces with the

same K2. The only (but a very important) difference is that whenever there is a Hom-space

between exceptional bundles on del Pezzo, the corresponding exceptional bundles on the

surface of general type have Ext2-space. This seemingly small difference, however, has a

very strong effect on the properties of the category. See more details in loc. cit.

6.3. Fano 3-folds. For derived categories of threefolds (and higher dimensional varieties)

there are no classification results (as there is no classification of threefolds). Of course, as it

already was mentioned for varieties with trivial (or globally generated) canonical class there

are no nontrivial decompositions. So, from now on we will discuss Fano varieties.



654 Alexander Kuznetsov

In dimension 3 all Fano varieties were classified in the works of Fano, Iskovskikh and

Mukai. All Fano 3-folds with Picard number greater than 1 are either the blowups of other

Fano varieties with centers in points and smooth curves (and then their derived category

reduces to the derived category of a Fano 3-fold with smaller Picard number), or conic

bundles over rational surfaces (see Tables 12.3–12.6 of [17]). For conic bundles one can

use the quadratic bundle formula (Theorem 2.7). It gives a semiorthogonal decomposition

with several exceptional objects and the derived category of sheaves of modules over the

even part of the Clifford algebra on the base of the bundle.

If the Picard number is 1, the next discrete invariant of a Fano 3-fold to look at is the in-
dex, i.e. the maximal integer dividing the canonical class. By Fujita’s Theorem the only Fano

3-folds of index greater than 2 are P3 and Q3. Their derived categories are well understood,

so let us turn to 3-folds of index 2 and 1.

For a Fano 3-fold Y of index 2 the pair of line bundles (OY ,OY (1)) is exceptional and
gives rise to a semiorthogonal decomposition

Db(coh(Y )) = 〈BY ,OY ,OY (1)〉. (6.1)

The component BY is called the nontrivial component of Db(coh(Y )).
A similar decomposition can be found for a Fano 3-foldX of index 1 if its degree dX :=

(−KX)3 is not divisible by 4 (the degree of a 3-fold of index 1 is always even). By a result

of Mukai [43] if dX > 2 on such X there is an exceptional vector bundle EX of rank 2 with

c1(EX) = KX , which is moreover orthogonal to the structure sheaf of X . In other words,

(EX ,OX) is an exceptional pair and there is a semiorthogonal decomposition

Db(coh(X)) = 〈AX , EX ,OX〉. (6.2)

The component AX is called the nontrivial component ofDb(coh(X)).
It is rather unexpected that the nontrivial parts BY and AX for a Fano 3-fold Y of index

2 and degree dY := (−KY /2)
3 and for a Fano 3-foldX of index 1 and degree dX = 4dY +2

have the same numerical characteristics, and are, moreover, expected to belong to the same

deformation family of categories. In fact, this expectation is supported by the following

result. Recall that the degree of a Fano 3-fold of index 2 with Picard number 1 satisfies

1 ≤ d ≤ 5, while the degree of a Fano 3-fold of index 1 with Picard number 1 is even and

satisfies 2 ≤ d ≤ 22, d �= 20. So there are actually 5 cases to consider.

Theorem 6.1 ([34]). For 3 ≤ d ≤ 5 each category BYd
is equivalent to some category

AX4d+2
and vice versa.

See loc. cit. for a precise statement. In fact, for d = 5 the category is rigid and is

equivalent to the derived category of representations of the quiver with 2 vertices and 3

arrows from the first vertex to the second (this follows from the construction of explicit

exceptional collections in the derived categories of Y5 and X22, see [45] and [24]). Further,

for d = 4 each of the categories BY4 and AX18 is equivalent to the derived category of a

curve of genus 2, and moreover, each smooth curve appears in both pictures. This follows

from HP duality for the double Veronese embedding of P5 and from HP duality for G2

Grassmannian respectively (Theorem 5.8). Finally, for d = 3 no independent description of

the category in question is known, but the HP duality for the Grassmannian Gr(2, 6) gives
the desired equivalence (see [25, 28]).
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It turns out, however, that already for d = 2 the situation is more subtle. It seems that in

that case the categories BY2 lie at the boundary of the family of categories AX10 . And for

d = 1 the situation is completely unclear.

The situation with Fano 3-folds of index 1 and degree divisible by 4 is somewhat differ-

ent. For such threefolds it is, in general, not clear how one can construct an exceptional pair.

However, for dX = 12 and dX = 16 this is possible. For dX = 12 Mukai has proved [43]

that there is an exceptional pair (E5,OX) where E5 is a rank 5 exceptional bundle with

c1(E5) = 2KX . Using HP duality for the spinor variety S5 (Theorem 5.5) one can check

that this pair extends to a semiorthogonal decomposition

Db(coh(X12)) = 〈Db(coh(C7)), E5,OX12〉,

where C7 is a smooth curve of genus 7 (see [26, 27]). Analogously, for dX = 16Mukai has

constructed [43] an exceptional bundle E3 of rank 3 with c1(E3) = KX . Using HP duality

for LGr(3, 6) (Theorem 5.7) one can check that there is a semiorthogonal decomposition

Db(coh(X16)) = 〈Db(coh(C3)), E3,OX16
〉,

where C3 is a smooth curve of genus 3 [27].

6.4. Fourfolds. Of course, for Fano 4-folds we know much less than for 3-folds. So, we

will not even try to pursue a classification, but will restrict attention to some very special

cases of interest.

Maybe one of the most interesting 4-folds is the cubic 4-fold. One of its salient features

is the hyperkähler structure on the Fano scheme of lines, which turns out to be a deformation

of the second Hilbert scheme of a K3 surface. This phenomenon has a nice explanation from

the derived categories point of view.

Theorem 6.2 ([36]). Let Y ⊂ P5 be a cubic 4-fold. Then there is a semiorthogonal decom-
position

Db(coh(Y )) = 〈AY ,OY ,OY (1),OY (2)〉,
and its nontrivial component AY is a Calabi–Yau category of dimension 2. Moreover, the
category AY is equivalent to the derived category of coherent sheaves on a K3 surface, at
least if Y is a Pfaffian cubic 4-fold, or if Y contains a plane Π and a 2-cycle Z such that
degZ + Z ·Π ≡ 1 mod 2.

To establish this result for Pfaffian cubics one can use HP duality for Gr(2, 6). The asso-
ciated K3 is then a linear section of this Grassmannian. For cubics with a plane a quadratic

bundle formula for the projection of Y from the plane Π gives the result. The K3 surface

then is the double covering of P2 ramified in a sextic curve, and the cycle Z gives a splitting

of the requisite Azumaya algebra on this K3.

For generic Y the category AY can be thought of as the derived category of coherent

sheaves on a noncommutative K3 surface. Therefore, any smooth moduli space of objects in

AY should be hyperkähler, and the Fano scheme of lines can be realized in this way, see [40].

The fact that a cubic 4-fold has something in common with a K3 surface can be easily

seen from its Hodge diamond. In fact, the Hodge diamond of Y is
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1
0 0

0 1 0
0 0 0 0

0 1 21 1 0
0 0 0 0

0 1 0
0 0

1

and one sees immediately the Hodge diamond of a K3 surface in the primitive part of the
cohomology of Y . There are some other 4-dimensional Fano varieties with a similar Hodge
diamond. The simplest example is the 4-fold of degree 10 in Gr(2, 5) (an intersection of
Gr(2, 5) with a hyperplane and a quadric in P9). Its Hodge diamond is

1
0 0

0 1 0
0 0 0 0

0 1 22 1 0
0 0 0 0

0 1 0
0 0

1

and again its primitive part has K3 type. On a categorical level this follows from the

following result

Theorem 6.3 ([35]). Let X be a smooth projective variety of index m with a rectangular
Lefschetz decomposition

Db(coh(X)) = 〈B,B(1), . . . ,B(m− 1)〉
of length m. Let Yd be the smooth zero locus of a global section of the line bundle OX(d)
for 1 ≤ d ≤ m. Then there is a semiorthogonal decomposition

Db(coh(Yd)) = 〈AYd
,B,B(1), . . . ,B(m− d− 1)〉

and moreover, a power of the Serre functor SAYd
is isomorphic to a shift

(SAYd
)d/c =

[
d · (dimX + 1)− 2m

c

]
, where c = gcd(d,m). (6.3)

In particular, if d dividesm then the component AYd
is a Calabi–Yau category of dimension

dimX + 1− 2m/d.

Remark 6.4. Analogously, one can consider a double covering Y ′d → X ramified in a zero

locus of a global section of the line bundle OX(2d) instead. Then there is an analogous

semiorthogonal decomposition and the Serre functor has the property

(SAY ′
d

)d/c = τ
(m−d)/c
∗ ◦

[
d · (dimX + 1)−m

c

]
, (6.4)

where τ is the involution of the double covering.
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Applying this result to a 4-fold Y of degree 10 one constructs a semiorthogonal decom-

position Db(coh(Y )) = 〈AY ,OY ,U∨Y ,OY (1),U∨Y (1)〉 with UY being the restriction of the

tautological bundle from the Grassmannian Gr(2, 5) and AY a Calabi–Yau category of di-

mension 2. Again, for some special Y one can check that AY is equivalent to the derived

category of a K3 surface and so altogether we get another family of noncommutative K3

categories. Moreover, in this case one can also construct a hyperkähler fourfold from Y .
One of the ways is to consider the Fano scheme of conics on Y . It was proved in [16] that it
comes with a morphism to P5 with the image being a singular sextic hypersurface, and the

Stein factorization of this map gives a genus zero fibration over the double covering of the

sextic, known as a double EPW sextic. This is a hyperkähler variety, deformation equivalent

to the second Hilbert square of a K3 surface.
Finally, there is yet another interesting example. Consider a hyperplane section Y of a

5-foldX , which is the zero locus of a global section of the vector bundle Λ2U∨3 ⊕Λ3(W/U3)
on Gr(3,W )withW of dimension 7. This variety Y was found by O. Küchle in [22] (variety
c5 in his table), and its Hodge diamond is as follows

1
0 0

0 1 0
0 0 0 0

0 1 24 1 0
0 0 0 0

0 1 0
0 0

1

Conjecture 6.5. The 5-dimensional variety X ⊂ Gr(3,W ) has a rectangular Lefschetz
decomposition Db(coh(X)) = 〈B,B(1)〉 with the category B generated by 6 excep-
tional objects. Consequently, its hyperplane section Y has a semiorthogonal decomposition
Db(coh(Y )) = 〈AY ,B〉 with AY being a K3 type category.

It would be very interesting to understand the geometry of this variety and to find out,

whether there is a hyperkähler variety associated to it, analogous to the Fano scheme of lines

on a cubic fourfold and the double EPW sextic associated to the 4-fold of degree 10. A

natural candidate is the moduli space of twisted cubic curves.
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1. Introduction

K3 surfaces have long been a subject of active study in algebraic geometry, involving a

combination of algebraic, arithmetic and complex-geometric perspectives. In the case of K3

surfaces over fields of characteristic p > 0, there has been a great deal of progress over

the past few years in understanding certain basic questions. In this article, I survey some

of these recent advances. In particular, I discuss various proofs of the Tate conjecture over

finite fields in odd characteristic and global properties of the moduli space of polarized K3

surfaces, trying to give a sense of the different techniques at our disposal. In the last section,

I discuss some geometric applications of this circle of ideas and some open questions.

2. Tate conjecture over finite fields

In this section, we discuss the Tate conjecture for K3 surfaces over finite fields. First, we

recall the general statement for divisors on an arbitrary smooth projective variety. Given

such a variety X , defined over a finite field k = Fq of characteristic p, and a prime � �= p,
the first Chern class in �-adic cohomology defines a map

cét1 : Pic(X)⊗Q� → H2
ét(X,Q�(1))

Gal(k/k),

where Pic(X) denotes the Picard group ofX , parametrizing line bundles, and the right-hand

side denotes the Galois-invariant part of the (Tate-twisted) second étale cohomology group.

The Tate conjecture for X predicts that this map is surjective. It can be viewed as a more

difficult analog of the Lefschetz (1, 1) theorem for complex varieties, in that it gives a way of

understanding the subspace of cohomology generated by divisor classes via linear-algebraic

data. It remains completely open for most varieties; in the case of K3 surfaces, however, we

have the following:

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Theorem 2.1. The Tate conjecture holds for K3 surfaces in odd characteristic.

After a series of earlier results [4, 11, 31, 36, 43], the most general statement given here

is due to Madapusi Pera [28], whose proof we discuss in the next section; his result applies

not just for finite fields but all finitely generated fields in characteristic p. In this section,

we will review a somewhat weaker approach, via work of Nygaard-Ogus [36] in the case of

finite height and, in the remaining cases, via work of myself [31] (for primes larger than the

polarization degree plus 4) and Charles [11] (for primes at least 5). We then close with some

questions regarding the behavior of Picard groups in families of surfaces.

2.1. Earlier results. Before discussing more recent arguments, we mention two significant

earlier results (among others)

In the case where the K3 surface admits the structure of an elliptic fibration, the Tate

conjecture is equivalent to the statement that the Brauer group H2
ét(X,Gm) is finite. In

this form, the conjecture was proven in 1974 by Artin and Swinnerton-Dyer [4]. If the

group is infinite, they produce twists of the elliptic fibration, trivialized by multisections

of increasing degree; a beautiful intersection theory argument shows that eventually these

twists must become isomorphic as abstract surfaces which leads to a contradiction. Since

K3 surfaces whose Picard groups have rank at least 5 are automatically elliptically fibered,

the Tate conjecture follows already in these cases.

A more general breakthrough came via Nygaard [35] and Nygaard-Ogus [36], who han-

dle the case of finite height K3 surfaces. In order to explain this result, we first explain the

definition of the height of a K3 surface. Given a K3 surface X , its formal Brauer group

B̂r(X) of X , defined by Artin and Mazur [3], is a one-dimensional formal group scheme

representing the functor

T !→ [Ker(Br(X × T ) → Br(X))] ,

on local Artin k-algebras, where Br(X×T ) is the Brauer group ofX×T . The height of the
K3 surface is simply the height of its formal Brauer group. When finite, it can take values

between 1 and 10; otherwise, when B̂r = Ĝa, we say the K3 surface has infinite height or,

equivalently, that the K3 surface is supersingular.
In [35] and [36], Nygaard and Ogus prove the Tate conjecture for finite height K3 sur-

faces in characteristic p ≥ 5; these comprise an open, dense subset in the moduli space of

K3 surfaces. Their argument uses the notion of canonical and quasi-canonical lifts ofX over

the ring of Witt vectors W (k). These are distinguished lifts for which certain properties of

X are preserved; in particular, both the cohomological Frobenius action as well as the entire

Picard group of X extend to quasi-canonical lifts. Once this is shown, the authors use the

Lefschetz (1, 1) theorem to construct the expected line bundles in characteristic zero and

specialize them back to k.

2.2. Supersingular K3 surfaces. It remains to handle the case supersingular K3 surfaces.

In general, supersingular K3 surfaces exhibit behavior that cannot occur in characteristic

zero. For instance, the Tate conjecture is equivalent to a conjecture of Artin which states that,

after passage to k, the geometric Picard rank of X is as large as possible, i.e. rkPic(Xk) =
22 = b2(X). As an example, if we take p ≡ 3 mod 4, Tate [44] showed that the Fermat

quartic

{x4 + y4 + z4 + w4 = 0} ⊂ P3
k
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has geometric Picard rank 22. This phenomenon is quite striking when compared to charac-

teristic zero, where Hodge theory tells us that rkPic(X) ≤ 20.
As another example, it was conjectured by several people that supersingular K3 surfaces

are unirational, and can be seen explicitly in the above example. Again, this phenomenon is

ruled out in characteristic zero, since the pullback of a non-vanishing two-form to a rational

variety would remain non-vanishing while in characteristic p the map can (and must) be

inseparable. Quite recently, Liedtke [26] has announced a proof of this conjecture.

Unfortunately, due to this unusual behavior, the strategy of quasi-canonical lifts does

not apply for supersingular surfaces, since the Picard group cannot be lifted to characteristic

zero. Instead, the approach of [11, 31] is to exploit another instance of strange supersingular

behavior, first observed by Artin [2]: in a connected family of supersingular K3 surfaces,

although the Picard group can jump under specialization, the rank of the Picard group must

remain constant. This observation is significant because, over C, such phenomena never

occur. Indeed, by a result of Green ([47, 4.2]) and Oguiso [37], given a non-isotrivial family

of K3 surfaces over a complex baseB, the set of points onB where the Picard group jumps in

rank is dense in the complex-analytic topology. The approach to showing the Tate conjecture

in the supersingular case is to exploit the tension between these two behaviors to force the

existence of extra cycles in supersingular families.

2.3. Automorphic forms. In order to to do this, we apply work of Borcherds [9, 10] on

automorphic forms to find an arithmetic approach to the Green-Oguiso result. Let M2d,k

denote the moduli space of primitively polarized K3 surfaces over k of degree 2d. Given

a rank 2 lattice Λ with a distinguished basis vector v of self-intersection 2d, the Noether-

Lefschetz divisor DΛ is the locus of polarized surfaces (X,L) with an inclusion of pairs

(Λ, v) ⊂ (Pic(X), L) (this locus is non-empty for suitable lattices). Given such a lattice Λ,
we can associate discrete invariants (disc(Λ), δ) as follows. If we extend v to a basis 〈v, w〉,
the congruence class δ ∈ Hd = Z/2d of the pairing 〈v, w〉 is well-defined up to a sign.

Using an explicit construction of automorphic forms, Borcherds shows that the generat-

ing function (with coefficients in Pic(M2d)⊗ Z[Hd])

φ(q) = −[λ]q0 ⊗ e0 +
∑
Λ

[DΛ]q
− disc(Λ)/2d ⊗ eδ ∈ Pic(M2d)[[q]]⊗ Z[Hd]

is a holomorphic modular form of weight 21/2. Here, the constant term is the Hodge bundle

λ = c1(π∗(Ω2
π)) associated to the universal family of K3 surfaces π : X → M2d,k. This

result has already found many applications in the enumerative geometry of K3 surfaces over

the complex numbers (see [19, 32]).

Although Borcherds’ work is in characteristic zero, we can still apply it to characteristic

p by spreading out and intersecting these divisors with a proper curve in the locus of super-

singular surfaces. In order to find proper curves in the supersingular locus, we can either

study degenerations of K3 surfaces (which leads to the constraint on the prime in [31]) or

instead use degenerations of abelian varieties, as in [11]. The result is a modular form whose

coefficients encode the Noether-Lefschetz degrees of our family. One also needs to ensure

this modular form isn’t zero; by looking at the constant term, this follows from positivity

properties of the Hodge bundle (see Corollary 3.3 in the next section). Once the constant

term is nonzero, an elementary estimate shows that the modular coefficients grow very fast

and we can deduce that Noether-Lefschetz degrees for sufficiently large discriminant are

non-vanishing. This shows the following:
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Proposition 2.2. Let B be a proper curve and let X → B denote a non-isotrivial family of
K3 surfaces of degree 2d not divisible by p. For any suitable lattice Λ with −disc(Λ) ) 0,
there exists b ∈ B with Pic(Xb) ⊇ Λ.

With this proposition in hand (and assuming we have proper curves to work with), the

Tate conjecture follows easily. Indeed, if we consider lattices Λk =

(
2d k
k 0

)
, these

have arbitrarily large discriminant and correspond to elliptic fibrations. Therefore, the Tate

conjecture holds for at least one fiber on any proper family by the result of Artin-Swinnerton-

Dyer. As the Picard rank is constant in families, it must hold for every fiber in the family by

Artin’s observation.

One can push these techniques further. Using a more intricate analysis, Charles is able to

prove the Tate conjecture for codimension two cycles on cubic fourfolds as well as divisors

on certain reductions of higher-dimensional holomorphic symplectic varieties.

2.4. Noether-Lefschetz behavior. Over the complex numbers, the theorem of Green and

Oguiso gives us more detailed information about how Picard ranks vary in a family of K3

surfaces; it says that these ranks jump when compared to the generic geometric rank on

a dense set of points in the Euclidean topology (although note that by [33] p-adic density

statements no longer hold). If we have a family over a more general one-dimensional base,

we can at least ask for a Zariski dense (i.e. infinite) set of points in the jumping locus.

In what follows, let B denote either a smooth irreducible curve over an algebraically

closed field k or let B = SpecOK [1/N ] for a number field K; in either case, let η denote a
geometric point lying over the generic point of B.

Question 2.3. Let π : X → B be a smooth non-isotrivial family of polarized K3 surfaces
over B. Are there infinitely many closed points b ∈ B such that rkPic(Xb) > rkPic(Xη)?

As already stated, the answer is yes in equicharacteristic zero. Furthermore, since we

have families of supersingular K3 surfaces (which have constant Picard rank 22), we know
the answer is no in equicharacteristic p. Supersingular families are not the only counterex-

ample; another example is the family of Kummer surfaces associated to the product of a

fixed supersingular elliptic curve and a varying family of elliptic curves.

However, it seems reasonable to expect that this question has a positive answer if we put

some further constraints on the family, e.g. that the generic fiber is ordinary or that the family

does not meet the supersingular locus at all (even after passing to a partial compactification

ofB). In the mixed characteristic setting, it is expected that the answer is always yes; at least

for certain Kummer surfaces, there is unpublished work of Charles along these lines.

Motivated by the last section, a more careful analysis of the modularity of Noether-

Lefschetz degrees should help here. As before, the rapid growth of the coefficients of mod-

ular forms will typically produce infinitely many intersection points (although not always).

Indeed, in the equicharacteristic p setting, one can often prove the answer to this question

is yes for certain families using precisely this argument. In the arithmetic setting, there are

conjectures of Kudla and collaborators (see [20] for an overview) predicting modular behav-

ior for arithmetic Noether-Lefschetz degrees, in the sense of Arakelov theory; if provable, it

seems natural to apply these modularity conjectures for Question 2.3.
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3. Moduli of K3 surfaces

In this section, we discuss moduli spaces of polarized K3 surfaces in mixed and finite char-

acteristic, following the work of Madapusi Pera [27, 28]. We discuss extensions of the period

map, defined using the classical Kuga-Satake construction, and its structure in odd charac-

teristic. From this, we can deduce many useful geometric corollaries.

3.1. Constructions in characteristic zero. Given an even positive integer 2d, let M2d de-

note the moduli space of K3 surfaces over Z[1/2], equipped with a primitive polarization of

degree 2d. It is a Deligne-Mumford stack, smooth over Z[1/2d] [13] (and has mild singular-

ities at other odd primes).

Over C, many global properties of the moduli space can be deduced via Hodge theory

and the global Torelli theorem [40]. We recall briefly how this goes. Let U be the two-

dimensional hyperbolic lattice, and let

M = U⊕3 ⊕ E8(−1)⊕2

denote the abstract K3 lattice. If we write (e, f) for the standard basis of the first copy of U ,
then we set

L2d = 〈e+ df〉⊥ ⊂M,
i.e. we take the orthogonal complement of a fixed primitive vector of degree 2d.

Let G = SO(L2d) and G
′ = CSpin(L2d) denote the orthogonal and spin groups associ-

ated to L2d and consider the period domain

Ω2d = {ω ∈ P(L2d,C)|〈ω, ω〉 = 0, 〈ω, ω〉 > 0} = SO(2, 19)/SO(2)× SO(19).

Let Γ2d ⊂ G(Z) be the subgroup which acts trivially on the discriminant group L∨2d/L2d.

The analytic quotient [Ω2d/Γ2d] is algebraic via [5] and can be identified with the Shimura

variety of orthogonal type Sh2d,C := Sh(GQ,Ω)C.
Given a polarized complex K3 surface (X,L) and an isomorphism of its primitive co-

homology with L2d, the line H2,0(X) defines a point in Ω2d. This map behaves well in

families; after forgetting the marking, we obtain the period map

PC : M̃2d,C → Sh2d,C,

where M̃2d is an étale double cover corresponding to a choice of spin structure. It follows

from the Torelli theorem that the period map is an open immersion, although not surjective.

However, we can enlarge our moduli space to include pairs (X,L) where L is a big and nef

line bundle on X (so-called quasi-polarized K3 surfaces). The period map extends to this

larger space Mqp
2d,C, and becomes surjective and étale (although not quite an isomorphism

sinceMqp
2d is non-separated).

It follows from [1, 42] that this morphism descends to Q: PQ : M̃2d,Q → Sh2d,Q. After
passing to a further finite étale cover, the analogous story holds with the Shimura variety of

spin type Sh′2d := Sh(G′Q,Ω).
The second classical idea I want to mention is the Kuga-Satake construction [21] which

associates an abelian variety to a polarized K3 surface. Its definition is purely transcendental:

given any polarized integral weight two Hodge structure V of K3 type, the Kuga-Satake

construction defines a polarized weight one Hodge structure on the Clifford algebra W =
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Cl(V ). When V is the primitive cohomology of a polarized K3 surface (X,L), the abelian
variety corresponding to W is its Kuga-Satake variety KS(X,L). As a consequence of its

definition, we have an embedding of weight 0 Hodge structures

P 2(X,Z)(1) ↪→ End(H1(KS(X,L),Z)) (*)

where P 2 is the primitive cohomology, which can be used to recover information about

(X,L) from KS(X,L).
This construction can be rephrased via the Shimura variety Sh′2d as follows. The spin

representation defines a homomorphism from G′ to the symplectic group CSp(Cl(L2d))
associated to the Kuga-Satake variety. This map induces a morphism of Shimura varieties,

and the Kuga-Satake construction comes from the composition

M̃2d,,C → Sh′2d,C → Ag,C,

where the last space is the moduli space of principally polarized abelian varieties. One

remarkable feature of this Shimura-theoretic approach is that the transcendental Kuga-Satake

construction descends to Q.

3.2. Extension to mixed characteristic. As far as I know, it was Deligne [12] who first

applied a pointwise extension of the Kuga-Satake construction to characteristic p in his proof
of the Weil conjectures for K3 surfaces.

In [17] and [27], Kisin and Madapusi Pera prove the following

Theorem 3.1. There exists a regular integral canonical model Sh2d over Z[1/2] for the
Shimura varieties Sh2d,Q. A similar result holds for Sh′2d,Q.

We briefly explain this terminology, referring the reader to the references for a precise

statement. These integral canonical models are defined by an extension property analogous

to Néron models for abelian schemes. For each prime p (after passage to infinite level) we re-
quire them to satisfy an extension property from certain regular test schemes over Zp. When

p doesn’t divide 2d, Kisin constructs the integral model for Sh′2d via taking the normaliza-

tion of the closure inside a moduli space of abelian varieties with level structure, defined over

SpecZ[1/2d]. To weaken the constraint on the prime, Madapusi Pera embeds Sh2d inside

a larger orthogonal type Shimura variety where Kisin’s approach applies. The difficulty in

both cases is proving regularity; this requires delicate deformation theory arguments.

Using the extension property, one can show that the period map defined on M̃2d,Q can be

extended over all primes, so we have the mixed-characteristic period map:

P : M̃2d → Sh2d.

Since our integral models are defined via Ag , we can think of the period map as being

defined via its compatibility with the Kuga-Satake construction (and in particular this gives

a definition of Kuga-Satake varieties in mixed characteristic). This approach to the extension

of the period map and Kuga-Satake constructions was first pursued by Vasiu [46] and Rizov

[42] with stronger constraints on the prime.

The key result is the following ([28], Theorem 4.2). For primes not dividing 2d, the
result was shown in [31].

Theorem 3.2. The period map P is étale.
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For primes not dividing 2d, this result was shown in [31] and [42] as well. The key step

in all approaches is to extend the inclusion (*) to de Rham cohomology in characteristic p.
Indeed, since deformations of K3 surfaces are detected by the Kodaira-Spencer map, this

controls the differential of the period map. Since the period map is defined by extending

from characteristic zero, this requires an integral comparison theorem between cohomology

in characteristic p and characteristic 0 (Fontaine-Messing [14] in [31], Bloch-Kato [6] in

[28]).

3.3. Geometric consequences. Theorem 3.2 has immediate geometric consequences:

Corollary 3.3.

(i) For every p > 2, the moduli space M2d,Fp
is a quasi-projective Deligne-Mumford

stack over Fp.

(ii) The Hodge bundle π∗(Ω2
π) is an ample line bundle.

(iii) If p2 does not divide d thenM2d,Fp
is geometrically irreducible.

The last statement uses the existence of toroidal compactifications [29] in mixed charac-

teristic, mimicking the Deligne-Mumford argument for the moduli space of curves. Mada-

pusi Pera has further recent work which should weaken the constraint on the prime. I find the

ampleness of the Hodge bundle especially interesting, since I know of no geometric approach

to this question. Recent work of Patakfalvi [38] has provided semi-positivity statements in

greater generality and it would be interesting to see if they apply here.

Lastly, one can ask for surjectivity of the period morphism, as in characteristic zero.

Here, the results are currently limited. If the degree of the polarization is sufficiently small,

we have the following results, from [30, 31].

Assuming p > 18d+4, in [31], I show that any one-parameter degeneration of polarized

K3 surfaces can be replaced with a K-trivial central fiber with at worst normal-crossings

and rational singularities, following a combinatorial classification due to Kulikov, Pinkham,

and Persson [22, 39] over C. In [30], Matsumoto uses this classification to prove a criterion

for good reduction, analogous to the Néron-Ogg-Shafarevich condition for abelian schemes.

The combination yields the following:

Corollary 3.4. Assume p > 18d + 4. After extending to quasipolarized K3 surfaces, the
period map

P : M̃qp

2d,Fp
→ Sh2d,Fp

is surjective.

The condition on the prime is used to find semistable models for degnerations, so that we

can run the semistable minimal model program using work of Kawamata [16]. Better results

on semistable reduction for surfaces in characteristic p would allow us to remove this bound.

3.4. Application to Tate. Finally, we sketch briefly how the mixed-characteristic period

map helps approach the Tate conjecture, independent of the arguments of the last section.

Given a polarized K3 surface (X,L), the extended period map and its composition to Ag

again gives us an abelian variety A = KS(X,L). The arguments above (in particular the

proof of the étale property) show that we have �-adic and crystalline versions of (*). Let

L�(A) ⊂ End(H1(A,Q�) denote the image of the �-adic version of (*) and Lcris(A) the
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analogous crystalline subspace. We can define a subspace LEnd(A) of special endomor-

phisms of A to be those whose cycle classes (for all realizations) lie in L�(A) and Lcris(A).
The Tate conjecture can then be rephrased as an isomorphism

LEnd(A)⊗Q� → L�(A)
Gal(k/k).

After passing to a larger spin-type Shimura variety (leaving the world of K3 surfaces), one

can assume the left-hand side is nonzero. Let I ⊂ Aut(A)Q be the largest algebraic subgroup

whose realizations are contained in the image of CSpin. For a particular choice of �, a result
of Kisin [18] shows that this is a nonzero map between irreducible representations of I .
Since the Tate conjecture is independent of �, the result follows.

4. Applications

We close by explaining a pair of geometric applications.

4.1. Finiteness of K3 surfaces. We first explain a consequence of the Tate conjecture,

shown in joint work with Lieblich and Snowden [25]:

Theorem 4.1. Fix a finite field k = Fq of characteristic p ≥ 5.

(i) The Tate conjecture holds for K3 surfaces over k implies that there are finitely many
isomorphism classes of K3 surfaces defined over k that satisfy the Tate conjecture.

(ii) Conversely, the Tate conjecture for K3 surfaces over finite extensions of k is implied
the finiteness of the set of isomorphism classes of K3 surfaces over extensions of k.

As a consequence of the first implication and the Tate conjecture, we see that there are

finitely many K3 surfaces over any finite field of characteristic ≥ 5. Even though the second
direction is redundant now, I have stated it here, since the technique is quite different from

the approach mentioned eariler.

For the first implication, notice that finiteness of the set of isomorphism classes does not

follow from the existence of the moduli spaces of finite type, since we need to fix an auxiliary

polarization and consider M2d,k for all d ≥ 1. A similar result for abelian varieties was

shown by Zarhin (see [48]). The argument proceeds as follows. Using the Tate conjecture

(in both the �-adic and crystalline incarnations), for any K3 surfaceX defined over k, we can
control Pic(Xk) ⊗ Z� and Pic(Xk) ⊗ Zp in terms of the action of geometric Frobenius on

étale/crystalline cohomology. Since k is fixed, there are only finitely many possibilities for

the eigenvalues of this action and thus we can control the discriminant of the Picard group.

This allows us to find a polarization on X of degree bounded by a constant C(k). One also
needs to bound the number of non-isomorphic twists, but this follows from structure theory

of Aut(Xk) due to Totaro [45].
In the other direction, the idea is to mimic the argument of Artin and Swinnerton-Dyer

discussed earlier. Following [4], instead of considering twists of the elliptic structure, one

can take Brauer classes and consider moduli spaces of twisted sheaves associated to these

classes - for the right choice of discrete invariants, these will be twisted K3 surfaces. If the

Brauer group were infinite, using period-index results of Lieblich [24] and the finiteness as-

sumption, one can create an infinite sequence of (non-isomorphic) derived equivalent twisted
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K3 surfaces over k. One can further lift this sequence (and the derived equivalences) to C
which violates work of Huybrechts and Stellari [15].

While no longer strictly necessary, I think it is interesting to ask the following:

Question 4.2. Is there an argument for finiteness without assuming the Tate conjecture?

A positive answer to this question would be quite interesting; all the approaches to the

Tate conjecture discussed above (including the work of Nygaard and Ogus) require crys-

talline techniques and global properties of the moduli space, while this approach is �-adic in
nature (although still technical in a different way).

4.2. Construction of rational curves. In this section, we mention briefly very interesting

results of Bogomolov-Hassett-Tschinkel [7] and Li-Liedtke [23] on using the Tate conjecture

to construct rational curves on K3 surfaces in characteristic zero.

The starting point is the following conjecture:

Conjecture 4.3. Any K3 surface X over an algebraically closed field contains infinitely
many integral rational curves.

Over characteristic zero (and for non-supersingular surfaces in characteristic p), rational
curves are necessarily isolated. The naive reason to expect this conjecture is a rough dimen-

sion count for any sufficiently ample linear system. One can make a stronger conjecture,

asking for infinitely many rational curves contained in the linear systems |nL| where n ≥ 1
and L is a fixed polarization.

The first result along these lines is an old theorem of Bogomolov and Mumford [34]

who prove the conjecture holds for a very general K3 surface, i.e. on the complement of

a countable union of subvarieties of the moduli space. Their proof proceeds by writing

reducible genus 0 curves C on Kummer surfaces X of increasing degree and proving the

pair (X,C) can be deformed so that C is irreducible. By work of Bogomolov-Tschinkel

[8], the conjecture also holds for elliptic K3 surfaces or surfaces with infinite automorphism

group. Most recently, we have the following theorem [7, 23]:

Theorem 4.4. In characteristic �= 2, there are infinitely many integral rational curves on a
K3 surface X with odd geometric Picard rank.

We restrict to the characteristic zero case; the general case is similar. The strategy of the

argument, first pursued in [7], is to execute a mixed-characteristic version of the Bogomolov-

Mumford argument. That is, after reducing to the case of Q, one can spreadX over the ring

of integers R of a number field. Using the Tate conjecture (in fact, via a density argument,

the finite height case suffices), it follows that the geometric Picard rank of specializations

Xs is even and in particular larger than the generic Picard rank. This fact allows us to

produce rational curves of increasing degree, contained in different specializations. In [23],

the authors show that, after adding additional rational curve components, these curves can

be lifted to characteristic zero. By taking appropriate irreducible components, they produce

integral rational curves on X of ever-increasing degree.

The only situation not covered by this theorem and the Bogomolov-Tschinkel result are

K3 surfaces with Picard lattices of rank 2 and 4. For example, the Picard lattice

( −2 3
3 −2

)
is a simple example where we do not know how to produce enough rational curves in gen-

eral. In all such cases, if we had a positive answer to Question 2.3, then the specialization

strategy would apply here as well.
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The dimension of jet schemes of singular varieties

Mircea Mustaţă

Abstract. Given a schemeX over k, a generalized jet scheme parametrizes maps SpecA → X , where

A is a finite-dimensional, local algebra over k. We give an overview of known results concerning the

dimensions of these schemes for A = k[t]/(tm), when they are related to invariants of singularities in
birational geometry. We end with a discussion of more general jet schemes.

Mathematics Subject Classification (2010). Primary 14E18; Secondary 14B05.

Keywords. Jet scheme, log canonical threshold, minimal log discrepancy.

1. Introduction

Given a scheme X (say, of finite type over an algebraically closed field k), a tangent vector
to X can be identified with a morphism Spec k[t]/(t2) → X . The tangent vectors to X are

the closed points of the first jet scheme J1(X) of X . More generally, for every m ≥ 1 one

can define a scheme of finite type Jm(X) whose closed points parametrize all morphisms

Spec k[t]/(tm+1) → X . Explicitly, if X is defined in some affine space AN by polyno-

mials f1, . . . , fr, then as a set Jm(X) is identified to the set of solutions of f1, . . . , fr in

k[t]/(tm+1). Truncating induces natural maps Jp(X) → Jq(X) for every p > q. When

X is a smooth, n-dimensional variety, then every such projection is locally trivial in the

Zariski topology, with fiberA(p−q)n. In particular, Jm(X) is a smooth variety of dimension

(m + 1)n. However, when X is singular, the jet schemes Jm(X) have a more complicated

behavior that reflects in a subtle way the singularities of X .

In fact, instead of the algebras k[t]/(tm+1) we can consider an arbitrary local, finite k-
algebraA. The morphisms Spec(A) → X are parametrized by a generalized jet scheme that

we denote JA(X). For example, if

A = k[t1, . . . , tr]/(t
m1+1
1 , . . . , tmr+1

r ),

then JA(X) is isomorphic to the r-iterated jet scheme Jm1
(Jm2

(. . . Jmr
(X))). The con-

struction and the formal properties of these more general jet schemes are very similar to

those of the usual ones. We give an overview of the construction and of the basic proper-

ties of the generalized jet schemes in §2. By taking suitable projective limits, one can then

define JA(X) when A is a local, complete k-algebra, with residue field k. We describe this

construction in §3. The much-studied case is that of A = k[[t]], when JA(X) is known as the
scheme of arcs of X .

Information on the schemes Jm(X) is provided by the change of variable formula in

motivic integration, see [8]. More precisely, if X is embedded in a smooth variety Y , then

Proceedings of the International Congress of Mathematicians, Seoul, 2014



674 Mircea Mustaţă

one can use a log resolution of the pair (Y,X) to compute, for example, the dimensions

of the schemes Jm(X) in terms of the data of the resolution. In this way one can relate

the behavior of these dimensions to some of the invariants of the pair (Y,X) that appear in
birational geometry. We describe this story in §4.

One can ask questions with a similar flavor about the dimensions of the generalized jet

schemes JA(X), but very little is known in this direction. We propose in §5 some invariants

defined in terms of the asymptotic behavior of the dimensions of JA(X), whenA varies over

certain sequences of algebras of embedding dimension 2. We also discuss the irreducibility

of iterated jet schemes for locally complete intersection varieties.

2. Generalized jet schemes

Let k be a field of arbitrary characteristic. All schemes we consider are schemes over k. Let
LFA/k be the category whose objects are local finite k-algebras, with residue field k, with
the maps being local homomorphisms of k-algebras. Given a scheme X and A ∈ LFA/k,
the scheme of A-jets ofX is a scheme JA(X) that satisfies the following universal property:
for every scheme Y , there is a functorial bijection

HomSch/k(Y, JA(X)) � HomSch/k(Y × SpecA,X). (2.1)

Standard arguments imply that it is enough to have a functorial bijection as in (2.1) when

Y is an affine scheme. In particular, by taking Y = Spec k, we see that the set of k-valued
points of JA(X) is in bijection with the set of A-jets of X , that is, A-valued points of X .

Note that if A = k, then JA(X) = X .

Before discussing existence, we make some general remarks. Suppose that φ : A → B
is a homomorphism in LFA/k and that JA(X) and JB(X) exist. We have a functorial

transformation

HomSch/k(Y × SpecA,X) → HomSch/k(Y × SpecB,X)

given by composition with Y ×SpecB → Y ×SpecA. This is induced via the isomorphism

(2.1) by a unique scheme morphism πXB/A : JA(X) → JB(X). In particular, ifA ∈ LFA/k,

then the morphism to the residue fieldA→ k induces πXA = πXA/k : JA(X) → X . Similarly,

the structure morphism k → A induces a section sXA : X → JA(X) of πXA . Given two

morphisms A → B and B → C in LFA/k, if JA(X), JB(X), and JC(X) exist, then it is

easy to see that πXC/B ◦ πXB/A = πXC/A. When the scheme X is clear from the context, we

simply write πB/A, πA, and sA instead of πXB/A, π
X
A , and sXA .

When A = k[t]/(tm+1), the A-jets are called m-jets and the corresponding scheme

is denoted Jm(X), the mth jet scheme of X . It is not hard to deduce from the univer-

sal property that J1(X) is isomorphic as a scheme over X with the total tangent space

Spec(Sym(ΩX/k)). We now sketch the proof of the existence of JA(X). The argument is

the same as in the case of the usual jet schemes, hence we refer the reader to [12, Section 2]

for details.

Consider first the case when X = SpecS is affine and consider a presentation

S � k[x1, . . . , xN ]/(f1, . . . , fr).
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Let us fix a basis (ei)1≤i≤m for A. We can thus write

ei · ej =
m∑
�=1

ci,j,�e�. (2.2)

We consider an affine scheme Y = SpecR. Giving a morphism Y × SpecA → X is

equivalent to giving a ring homomorphism

φ : k[x1, . . . , xN ]/(f1, . . . , fr) → R⊗k A. (2.3)

This is uniquely determined by φ(xj), for 1 ≤ j ≤ N , which can be written as

φ(xj) =
m∑
i=1

ai,j ⊗ ei, with ai,j ∈ R for 1 ≤ i ≤ m, 1 ≤ j ≤ N.

Furthermore, for any such choice of φ(xj), we get a k-algebra homomorphism

φ̃ : k[x1, . . . , xN ] → R⊗k A

and this induces a k-algebra homomorphism (2.3) if and only if φ̃(fα) = 0 for 1 ≤ α ≤ r.
On the other hand, the relations (2.2) imply that for every α, we can find polynomials P

(i)
α

in aj,�, with coefficients in k (these coefficients in turn are polynomials in the structure

constants ci,j,�) such that for φ̃ as above, we have

φ̃(fα) =
m∑
i=1

P (i)
α (a1,1, . . . , am,N )⊗ ei.

This shows that JA(X) is cut out in AmN by the equations P
(i)
α for 1 ≤ α ≤ r and

1 ≤ i ≤ m.

The above argument shows that JA(X) exists whenever X is affine. It is then easy to

check that ifX is any scheme such that JA(X) exists, then for every open subset U ofX , the

scheme JA(U) exists and it is isomorphic to (πXA )−1(U). Given now an arbitrary scheme

X , consider an affine open coverX = ∪iUi. Note that JA(Ui) exists for every i. Moreover,

for every i and j, the schemes (πUi

A )−1(Ui ∩ Uj) and (π
Uj

A )−1(Ui ∩ Uj) are canonically

isomorphic, being isomorphic to JA(Ui ∩ Uj). We can thus glue the schemes JA(Ui) along
these open subsets and it is then straightforward to check that the resulting scheme satisfies

the universal property of JA(X). We collect in the next proposition the conclusion of the

above discussion.

Proposition 2.1. For every A ∈ LFA/k and every scheme X , the scheme JA(X) of A-jets
of X exists. Moreover, the following hold:

i) If X is of finite type over k, then JA(X) is of finite type over k.

ii) The canonical projection πA : JA(X) → X is affine.

iii) If X is an affine subscheme of AN defined by r equations and dimk(A) = m, then
JA(X) is defined in JA(AN ) � ANm by rm equations. More generally, if A → A′

is a surjective homomorphism in LFA/k, then

JA(X) ↪→ (πA
N

A′/A)
−1(JA′(X))

is cut out by r · (dimk(A)− dimk(A
′)) equations.
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In what follows we discuss some basic properties of generalized jet schemes. It is

clear that if f : X → Z is a morphism and A ∈ LFA/k, we have a unique morphism

JA(f) : JA(X) → JA(Z) such that the bijection (2.1) is functorial also in X . Therefore

taking X to JA(X) gives a functor, such that if A → B is a morphism of finite k-algebras,
then πB/A is a natural transformation.

Example 2.2. Iterated jet schemes can be described as schemes of A-jets. Indeed, given

m1, . . . ,mr ∈ Z≥0, if we take A = k[t1, . . . , tr]/(t
m1+1
1 , . . . , tmr+1

r ), then it follows from

the universal property that for every schemeX , we have a canonical isomorphism of schemes

over X
JA(X) � Jm1(Jm2(. . . Jmr (X))).

Remark 2.3. It follows from the explicit description of the scheme of A-jets of an affine

schemeX that if ι : Z ↪→ X is a closed immersion, then for every A ∈ LFA/k, the induced
morphism JA(ι) is a closed immersion.

Remark 2.4. IfX is any scheme over k andK/k is a field extension, for every A ∈ LFA/k
we have A⊗k K ∈ LFA/K and there is a canonical isomorphism

JA⊗kK(X ×Spec k SpecK) � JA(X)×Spec k SpecK.

The assertion follows easily from the isomorphism (2.1).

The following proposition describing the behavior of generalized jet schemes with re-

spect to étale morphisms is an immediate consequence of (2.1) and of the fact that étale

morphisms are formally étale.

Proposition 2.5. If f : X → Y is an étale morphism of schemes of finite type over k, then
for every A ∈ LFA/k we have a Cartezian diagram

JA(X)
JA(f)−−−−→ JA(Y )

πX
A

⏐⏐H ⏐⏐HπY
A

X
f−−−−→ Y.

Using Proposition 2.5 and the description of the scheme of A-jets for an affine space, we
obtain the following

Corollary 2.6. If X is a smooth n-dimensional variety1 over k, then for every surjective
morphism A → B in LFA/k, the induced morphism JA(X) → JB(X) is locally trivial in
the Zariski topology, with fiberAdn, where d = dimk(A)−dimk(B). In particular, JA(X)
is a smooth variety of dimension n · dimk(A).

Corollary 2.7. If X is a scheme of finite type over k, then for every A ∈ LFA/k, we have

dim(X) ≤ dim(JA(X))

dimk(A)
≤ max

x∈X
dim(TxX).

1A variety is assumed to be reduced, irreducible, and of finite type over k.
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Proof. The first inequality follows from Corollary 2.6 and the fact that there is a locally

closed immersion Y ↪→ X , with Y smooth and dim(Y ) = dim(X). The second inequality

also follows from Corollary 2.6 since for every x ∈ X , if n = dim(TxX), then there is

an open neighborhood U of x in X and a closed immersion U ↪→ Z, where Z is a smooth

variety of dimension n.

Example 2.8. If we consider arbitrary A ∈ LFA/k, then we can get arbitrarily close to

the upper-bound in Corollary 2.7. Indeed, if x ∈ X is such that n = dim(TxX) and

(A,m) ∈ LFA/k is such that m2 = 0 and dimk(A) = r, then

(πA)
−1(x) � A(r−1)n hence

dim(JA(X))

dimk(A)
≥ n− n

r
.

Remark 2.9. If G is a group scheme over k, then it is easy to see that JA(G) is a group

scheme over k for every A ∈ LFA/k. Moreover, if G acts on a scheme X , then JA(G) acts
on JA(X).

Remark 2.10. Suppose thatA ∈ LFA/k is a graded2 k-algebra. The grading ofA induces a

morphism φ : A1 × Spec(A) → Spec(A) that corresponds to the k-algebra homomorphism

A→ A[t] that takes a homogeneous element a ∈ A of degreem to atm. IfX is any scheme,

then we obtain an induced morphism ΦXA : A1×JA(X) → JA(X) that takes any morphism

(u, v) : Y → A1 × JA(X), with

v ∈ Hom(Y, JA(X)) � Hom(Y × Spec(A), X)

to the composition

Y × Spec(A)
(id,u◦pr1)−−−−−−→ Y × Spec(A)×A1 (idY ,φ)−−−−−→ Y × Spec(A)

v−−−−→ X.

It is easy to see that the restriction of ΦXA to JA(X) � {0} × JA(X) is equal to sXA ◦ πXA .

In particular, for such A we see that if Z is an irreducible component of JA(X), then ΦXA
induces a morphismA1 × Z → Z, hence sXA ◦ πXA (Z) ⊆ Z.

3. Generalized arc schemes

We now generalize the construction in the previous section to complete local algebras. More

precisely, let LCA/k be the category of complete local Noetherian k-algebras, with residue

field k (the maps being local morphisms of k-algebras). Note that LFA/k is a full subcate-
gory of LCA/k.

Given (A,m) ∈ LCA/k and a scheme X over k, we define a scheme JA(X)

JA(X) := lim←−
A→B

JB(X), (3.1)

where the projective limit is over all surjective maps A → B in LCA/k, with B lying in

LFA/k. Note that a map from φ : A → B to ψ : A → C is a map f : B → C such that

f ◦ φ = ψ and such a map induces a morphism πXC/B : JB(X) → JC(X). Since all JB(X)

2All graded algebras we consider are graded by Z≥0.



678 Mircea Mustaţă

are affine schemes over X , it follows that the projective limit (3.1) exists. In fact, if U ⊆ X
is an affine open subset, then

Γ(JA(U),OJA(U)) � lim−→
A→B

Γ(JB(U),OJB(U)).

Note that if A ∈ LFA/k, then we recover the previous definition. It is clear that if

h : X → Y is a morphism of schemes, we obtain an induced morphism JA(h) : JA(X) →
JA(Y ) and in this way we get a functor from the category of schemes over k to itself. If

g : A1 → A2 is a morphism in LCA/k, we obtain a functorial transformation

πXA2/A1
: JA1(X) → JA2(X).

Indeed, if φ : A2 → B2 is a surjective map in LCA/k, with B2 finite over k, then φ ◦ g
factors through a quotient B1 of A1 by a power of the maximal ideal, hence we have a

map JA1
(X) → JB1

(X) → JB2
(X), where the first map is given by the definition of

projective limit and the second map is πXB2/B1
. Note that this definition has the following

two properties:

i) If φ : A → B is a surjective map in LCA/k, with B finite over k, then the map

JA(X) → JB(X) given by the projective limit definition is the same as πXB/A.

ii) If A→ B → C are maps in LCA/k, then πXC/B ◦ πXB/A = πXC/A.

Remark 3.1. Suppose thatX is a scheme andA ∈ LCA/k. For every k-algebraR, consider
the completionR⊗̂kA ofR⊗kA with respect to the topology induced byA (more precisely,

if mA is the maximal ideal in A, then the topology on R ⊗k A is the mA · (R ⊗k A)-adic
topology). In this case we have a canonical functorial map

Hom(SpecR⊗̂kA,X) → Hom(SpecR, JA(X)). (3.2)

It is easy to see that this is a bijection if R = k or if X is affine.

As we see in the next example, even when X is a finite type, the scheme JA(X) is not,
in general, of finite type.

Example 3.2. If A = k[[t]], the scheme JA(X) = lim←−
m

Jm(X) is the scheme of arcs of X ,

denoted by J∞(X). For example, if X = An, with n ≥ 1, then J∞(X) is an infinite-

dimensional affine space, that is, J∞(X) � Spec k[x1, x2, . . .].
If A = [[t1, t2]], then JA(X) is known as the space of wedges of X . It is easy to de-

duce from Remark 3.1 that this is canonically isomorphic to J∞(J∞(X)). More generally,

if we put An = k[[x1, . . . , xn]], then we have a canonical isomorphism J∞(JAn
(X)) �

JAn+1(X) for every n ≥ 1.

Remark 3.3. It would be interesting to have explicit examples of schemes JA(X), whenX
is singular. Very few such examples are known and all of these only deal with Jm(X) or
J∞(X). Moreover, in almost all cases one can only describe the reduced structure on these

spaces. An easy example is that of schemes defined by monomial ideals in a polynomial

ring (see [23, Proposition 4.10]). A more interesting example is that of J∞(X), when X is

a toric variety. In this case, if T is the torus acting on X , one can completely describe the

orbits of the J∞(T )-action on J∞(X), see [15]). It is much trickier to describe Jm(X) for
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a toric variety X; this is only understood in the 2-dimensional case, see [21]. One example

in which both Jm(X) and J∞(X) are well understood is that of a generic determinantal

variety X . In this case, X is a closed subscheme of a space of matricesM = Mm,n(k) and
the group G = GLm(k) × GLn(k) acts onM inducing an action on X . For a description

of the orbits of Jm(G) on Jm(X) and of the orbits of J∞(G) on J∞(X), see [9].

4. Dimensions of jet schemes and invariants of singularities

Beyond the formal properties that we discussed, little is known about jet schemes in the

generality that we considered in the previous two sections. We now restrict to the case of

the “usual” jet schemes Jm(X), for which a lot is known due to the connection to birational
geometry that comes out of the theory of motivic integration.

In order to describe this connection, we first recall how one measures singularities in

birational geometry. The idea is to use all divisorial valuations, suitably normalized by the

order of vanishing along the relative Jacobian ideal. From now on we assume that the ground

field k is algebraically closed, of characteristic 0, and we only consider the k-valued points

of the schemes involved.

For simplicity, we assume that we work on an ambient smooth variety X . Let a be a

nonzero ideal on X (all ideals are assumed to be coherent). A divisor over X is a prime

divisor on a normal variety Y that has a birational morphism to X (Y is a birational model
over X). Each such divisor induces a valuation ordE of the function field K(Y ) = K(X).
We identify two such divisors if they give the same valuation. In particular, if Z → Y is

a birational morphism, with Z normal, then we identify E with its strict transform on Z.
Therefore we may always assume that Y is smooth (using a resolution of singularities of Y )
and that Y is proper over X (using Nagata’s compactification theorem). Given a divisor E
over X , its center on X denoted cX(E) is the closure of the image of E in X (it is easy to

see that this is independent of the chosen model).

Let E be a divisor over X . To a nonzero ideal a on X , we can attach a nonnegative

integer ordE(a), defined as follows. We may assume that E is a divisor on a smooth variety

Y over X , such that the structural morphism f : Y → X factors through the blow-up along

a. Therefore we may write a·OY = OY (−D) for an effective divisorD on Y and ordE(a) =
ordE(D) is the coefficient ofE inD. For example, if x ∈ X andE is the exceptional divisor

on the blow-up of X at x, then ordE(a) is the order of a at x, denoted by ordx(a). This is
characterized by

ordx(a) := max{r | a ⊆ mr
x},

where mx is the ideal defining x.
The idea is to measure the singularities of a using all invariants ordE(a), where E varies

over the divisors over X . Very roughly, one thinks of the singularities of a being “worse” if

ordE(a) is larger. On the other hand, when we vary E, the numbers ordE(a) are unbounded,
hence we need a normalizing factor. It turns out that the right factor to use is provided

by the log discrepancy, which is defined as follows. If f : Y → X is a proper, birational

morphism, with Y a smooth variety andE is a prime divisor on Y , then the relative canonical
class KY/X is the degeneracy locus of the morphism of vector bundles of the same rank

f∗(ΩX) → ΩY . In other words,KY/X is locally defined by the determinant of the Jacobian

matrix of f . The log discrepancy of ordE is A(ordE) := ordE(KY/X) + 1. It is easy to

check that the definition does not depend on the model Y we have chosen.
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There are various related invariants of singularities that one considers in birational ge-

ometry. In what follows, we focus on two such invariants, the log canonical threshold and

the minimal log discrepancy. We begin by introducing the former invariant. If X is smooth

and a is a nonzero ideal on X , then the log canonical threshold of a is

lct(a) := inf
E

A(ordE)

ordE(a)
,

where the infimum is over all divisors E over X . Note that this is finite whenever a �= OX

and by convention we put lct(OX) = ∞ and lct(0) = 0. If W is the closed subscheme

defined by a, we sometimes write lct(X,W ) for lct(a). Note that in the definition of lct(a)
we consider the reciprocals of the invariants ordE(a), hence “worse” singularities correspond
to smaller log canonical thresholds.

While defined in terms of all divisors over X , it is a consequence of resolution of sin-

gularities that the log canonical threshold can be computed on suitable models. Recall that

a log resolution of the pair (X, a) is a proper birational morphism f : Y → X , with Y
smooth, such that a · OY = OY (−D) for an effective divisor D on Y such that D +KY/X

has simple normal crossings3. The existence of such resolutions follows from Hironaka’s

fundamental results. A basic result about log canonical thresholds says that if f : Y → X is

a log resolution of (X, a) as above, then lct(a) is computed by the divisors on Y : if we write
D =

∑r
i=1 aiEi andKY/X =

∑r
i=1 kiEi, then

lct(a) =
r

min
i=1

ki + 1

ai
.

A consequence of this formula is the fact, not apparent from the definition, that lct(a) is a
rational number.

The log canonical threshold is a fundamental invariant of singularities. It appeared im-

plicitly already in Atiyah’s paper [2] in connection with the meromorphic continuation of

complex powers. The first properties of the log canonical threshold have been proved by

Varchenko in connection with his work on asymptotic expansions of integrals and mixed

Hodge structures on the vanishing cohomology, see [27], [28], and [29]. It was Shokurov

who introduced the log canonical threshold in the context of birational geometry in [25].

From this point of view, lct(a) is the largest rational number q such that the pair (X, aq) is
log canonical. We mention that the notion of log canonical pairs is of central importance in

the Minimal Model Program, since it gives the largest class of varieties for which one can

hope to apply the program. In fact, in the context of birational geometry it is useful to not

require that the ambient variety is smooth, but only that it has mild singularities, and it is

in this more general setting that one can define the log canonical threshold. A remarkable

feature of this invariant is that it is related to many points of view on singularities. We refer

to [19] and [24] for an overview of some of these connections and for the basic properties of

the log canonical threshold.

Example 4.1. In order to illustrate the behavior of the log canonical threshold, we list a few

examples. When a is generated by f ∈ O(X), we simply write lct(f) for the corresponding
log canonical threshold.

3A divisor on a smooth variety has simple normal crossings if around every point we can find local algebraic

coordinates x1, . . . , xn such that the divisor is defined by xa1
1 · · ·xan

n for some nonnegative integers a1, . . . , an.
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i) If the subscheme V (a) defined by a has codimension r, then lct(a) ≤ r. This is an
equality if V (a) is smooth.

ii) If f = xa1
1 · · ·xan

n ∈ k[x1, . . . , xn], then lct(f) = mini
1
ai
.

iii) If f = xa1
1 + . . .+ xan

n ∈ k[x1, . . . , xn], then lct(f) = min
{
1,
∑

i
1
ai

}
.

Remark 4.2. In terms of size, the log canonical threshold in a neighborhood of a point x ∈
X is comparable to ordx(a). More precisely, given x ∈ X , there is an open neighborhood

U of x such that the following inequalities hold:

1

ordx(a)
≤ lct(a|U ) ≤ dim(X)

ordx(a)
.

It turns out that the log canonical threshold governs the growth of the dimensions of the

jet schemes Jm(W ) of a scheme W . Note that by taking a finite affine open cover of W ,

we can reduce to the case whenW can be embedded in a smooth variety (for example, in an

affine space).

Theorem 4.3. IfX is a smooth n-dimensional variety andW is a proper, nonempty, closed
subscheme of X , then

lim
m→∞

dim(Jm(W ))

m+ 1
= max

m

dim(Jm(W ))

m+ 1
= n− lct(X,W ).

Moreover, the maximum above is achieved for allm such that (m+ 1) is divisible enough.

This result was proved in [23] by making use of the change of variable formula in motivic

integration (in fact, the formula had appeared implicitly earlier in [7]). We explain below,

following [10], how this theorem follows from a more general result relating the approach to

singularities via divisors over X and that using certain subsets in the space of arcs J∞(X).
Before doing this, we discuss another invariant of singularities, whose definition is similar

to that of the log canonical threshold, but whose behavior turns out to be more difficult to

study.

Suppose, as above, that X is a smooth variety, a is a nonzero ideal on X , and q is a

positive rational number. In order to avoid some pathologies of a trivial nature, we assume

dim(X) ≥ 2. If Z is a proper, irreducible closed subset of X , then the minimal log discrep-
ancy mldZ(X, a

q) is defined as

mldZ(X, a
q) := inf{A(ordE)− q · ordE(a) | cX(E) ⊆ Z}. (4.1)

Note that “better” singularities correspond to larger minimal log discrepancies. It is a ba-

sic fact that the minimal log discrepancy is either −∞ or it is nonnegative. We have

mldZ(X, a
q) ≥ 0 if and only if the pair (X, aq) is log canonical around Z, that is, there

is an open neighborhood U of Z such that lct(a|U ) ≥ q. Like the log canonical threshold,

the minimal log discrepancy can be computed on suitable models. More precisely, if IZ is

the ideal defining Z and f : Y → X is a log resolution of (X, IZ · a), then there is a prime

divisor E on Y that achieves the infimum in (4.1), assuming that this infimum is not −∞
(moreover, finitenes also can be tested just on the divisors on Y ). For an introduction to

minimal log discrepancies, we refer to [1]. The following result gives an interpretation of

minimal log discrepancies in terms of jet schemes.
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Theorem 4.4. LetX be a smooth variety of dimension≥ 2, a a nonzero ideal onX defining
the subscheme W , and q a positive rational number. For every proper, irreducible closed
subset Z of X , we have

mldZ(X, a
q) = inf{(m+ 1)(dim(X)− q)− dim(Jm(W ) ∩ (πWm )−1(Z))}.

Moreover, if the infimum is not −∞, then it is a minimum.

The theorem was proved in [13] using the change of variable formula in motivic integra-

tion. In this special form in which X is assumed to be smooth, it can also be deduced from

the main result in [10] that we discuss below.

We note that part of the interest in invariants of singularities like the log canonical thresh-

old and the minimal log discrepancy comes from the fact that their behavior is related to one

of the outstanding open problems in birational geometry, namely Termination of Flips (see

[3] for the connection of this conjecture to log canonical thresholds and [26] for the connec-

tion to minimal log discrepancies). In this respect, there are two points to keep in mind:

• For all applications to birational geometry, it is important to work with ambient va-

rieties that have mild (log canonical) singularities, and not just smooth, as above. In

this context, one can still describe minimal log discrepancies in terms of properties of

(certain subsets in) jet schemes, see [13]. However, this description is less effective in

general. It was used to prove some open questions about minimal log discrepancies,

such as Inversion of Adjunction and Semicontinuity in the case when the ambient va-

riety is locally complete intersection, see [11] and [13]. However, this method has not

been successful so far in dealing with more general ambient varieties.

• While properties of log canonical thresholds are better understood (see below for the

ACC property), it is in fact the (conjectural) properties of minimal log discrepancies

that would give a positive answer to the Termination of Flips Conjecture. More pre-

cisely, Shokurov has shown that two conjectures on minimal log discrepancies, the

Semicontinuity Conjecture and the ACC Conjecture imply Termination of Flips; see

[26] for the precise statements.

In order to give the flavor of ACC statements regarding invariants of singularities, we state

the following result concerning log canonical thresholds.

Theorem 4.5. For every n ≥ 1, the set of rational numbers

{lct(a) | a 
 OX , X smooth, dim(X) ≤ n}
satisfies ACC, that is, it contains no infinite strictly increasing sequences.

This result was conjectured by Shokurov and proved in [6]. A general version, in which

the ambient variety is not assumed to be smooth (which, as we have already mentioned, is

much more useful for birational geometry) has been recently proved in [14]. It is worth

mentioning that a corresponding conjecture for minimal log discrepancies is widely open

even in the case of smooth ambient varieties. For recent progress motivated by this question,

see [17] and [18].

Besides the ACC Conjecture for minimal log discrepancies, the other important open

problem about these invariants concerns their semicontinuity (this was conjectured by Am-

bro [1]). As we have already mentioned, when the ambient variety is smooth, this can be

deduced from Theorem 4.4 using general properties of the dimension of algebraic varieties

in families.
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Corollary 4.6. If X is a smooth variety, a is a nonzero ideal on X , and q is a positive
rational number, then the map

X 8 x→ mldx(X, a
q)

is lower semicontinuous.

Our next goal is to describe more generally, following [10], a dictionary between the

approach to singularities using divisorial valuations and that using certain subsets in the

space of arcs. We fix a smooth varietyX of dimension n. We will be concerned with certain

subsets in the space of arcs J∞(X). In what follows we restrict to the k-valued points of

J∞(X), considered as a topological space with the Zariski topology. Recall that we have

canonical projections πm : J∞(X) → Jm(X). A cylinder in J∞(X) is a subset of the form
C = π−1

m (S), where S is a constructible subset in Jm(X). We say that C is closed, locally

closed, or irreducible, if S has this property. Moreover, we put

codim(C) := codim(S, Jm(X)) = (m+ 1)n− dim(S).

It is easy to see that all these notions do not depend on m, since the natural projections

Jm+1(X) → Jm(X) are locally trivial with fiberAn.

The main examples arise as follows. Suppose that a is a nonzero ideal on X , defining

the subschemeW . Associated toW we have a function ordW : J∞(X) → Z≥0∪{∞} such
that for γ : Spec k[[t]] → X , we have

ordW (γ) = ordt(γ
−1(a))

(with the convention that this is ∞ if the ideal γ−1(a) is 0). With this notation, the contact
locus

Cont≥m(W ) := ord−1
W (≥ m)

is a closed cylinder, hence

Contm(W ) := ord−1
W (m) = Cont≥m(W )� Cont≥(m+1)(W )

is a locally closed cylinder. In fact, we have

Cont≥(m+1)(W ) = π−1
m (Jm(W )).

In particular, we have

codim(Cont≥(m+1)(W )) = (m+ 1)n− dim(Jm(W )).

The main point of the correspondence we are going to describe is that divisorial val-

uations correspond to cylinders in such a way that the log discrepancy function translates

to the codimension of the cylinder. In order to simplify the exposition, let us assume that

X = Spec(R) is affine. Note first that if C is an irreducible closed cylinder in J∞(X), then
we may define a map

ordC : R→ Z≥0 ∪ {∞}, ordC(f) := min{ordV (f)(γ) | γ ∈ C}.
This satisfies

ordC(f + g) ≥ min{ordC(f), ordC(g)} and ordC(fg) = ordC(f) + ordC(g).
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Moreover, if C does not dominate X , then ordC(f) < ∞ for every nonzero f , hence ordC
extends to a valuation of the function field of X . The following is the main result from [10]

concerning the description of divisorial valuations in terms of cylinders in the space or arcs.

For an extension to singular varieties, see [4].

Theorem 4.7. Let X be a smooth variety.

i) If C is an irreducible closed cylinder in J∞(X) that does not dominate X , then there
is a divisor E over X and a positive integer q such that ordC = q · ordE .

ii) For every divisor E over X and every positive integer q, there is a closed irreducible
cylinder C in J∞(X) such that ordC = q · ordE . Moreover, there is a unique maximal
such cylinder C = Cq(E), with respect to inclusion, and

codim(Cq(E)) = q ·A(ordE).

It is easy to see that this result implies both Theorems 4.3 and 4.4. The key step in the

proof of Theorem 4.7 consists in analyzing the valuations corresponding to the irreducible

components of Cont≥m(W ), for a closed subschemeW . This is done by considering a log

resolution f : Y → X of (X, a), where a is the ideal defining W . In this case, we have an

induced map g = J∞(f) : J∞(Y ) → J∞(X). If f is an isomorphism over X � A, where
A is a proper closed subset ofX , then the valuative criterion for properness implies that g is
a bijection over J∞(Y ) � J∞(A). While J∞(A) is “small” in J∞(X) (for example, if the

ground field is uncountable, then no cylinder is contained in J∞(A)), the map g is far from
being a homeomorphism over J∞(Y )� J∞(A). In fact, it is a fundamental result that if C
is a cylinder contained in Conte(KY/X), then g(C) is again a cylinder and

codim(g(C)) = codim(C) + e.

This is a consequence of the geometric statement behind the change of variable formula in

motivic integration, due to Kontsevich [20]. For the relevant statement and its proof, as well

as for an important generalization to the case when X is not smooth, we refer to [8]. Since

Cont≥m(f−1(W )) = g−1(Cont≥m(W )), one can deduce the following formula for the

codimension of Cont≥m(W ), see [10] for details.

Theorem 4.8. Let X be a smooth variety andW a proper closed subscheme of X , defined
by the ideal a. If f : Y → X is a log resolution of the pair (X, a) and we write

f−1(W ) =
r∑
i=1

aiEi and KY/X =
r∑
i=1

kiEi,

then codim(Cont≥m(W )) is equal to

min

{
r∑
i=1

(ki + 1)νi | ν = (ν1, . . . , νr) ∈ Zr≥0,
⋂
νi>0

Ei �= ∅,
r∑
i=1

aiνi ≥ m
}
.

Moreover, it is easy to see that in the setting of this theorem, every irreducible com-

ponent C of Cont≥m(W ) is the closure of the image of a multi-contact locus of the form

∩ri=1Cont
≥νi(Ei). Using this, one deduces that ordC is equal to q · ordE , where E is the
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exceptional divisor on a suitable weighted blow-up of Y with respect to the simple normal

crossing divisor
∑

iEi. We note that since both log canonical thresholds and minimal log

discrepancies can be computed using log resolutions, the statement of Theorem 4.8 is enough

to imply Theorems 4.3 and 4.4. On the other hand, one can give a proof for Theorem 4.7

without using log resolutions, see [30]. An advantage of that approach is that one obtains

the same result in positive characteristic.

Remark 4.9. It is an immediate consequence of Theorem 4.8 that ifW is any scheme, then

dim(Jm−1(W ))

m
≤ dim(Jmp−1(W ))

mp

for every positive integers m and p. It would be interesting to give a direct proof of this

inequality without relying on log resolutions. Such an argument could then hopefully be

extended to cover other jet schemes JA(X), for suitable A.

Remark 4.10. It was shown in [23] that one can use the description of the log canonical

threshold in Theorem 4.3 to reprove some of the basic properties of this invariant. For exam-

ple, one can use this approach to prove the following special case of Inversion of Adjunction:

if X is a smooth variety and H is a smooth hypersurface in X , then for every ideal a on X
such that a · OH �= 0, there is an open neighborhood U of H such that

lct(a|U ) ≥ lct(a · OH). (4.2)

The usual proof of this inequality makes use of vanishing theorems (see for example [19]).

Since Theorem 4.8 also holds in positive characteristic, one deduces that the inequality (4.2)

holds in this setting as well, see [30], in spite of the fact that vanishing theorems can fail.

Remark 4.11. It would be interesting to find a jet-theoretic proof of the following result of

Varchenko. Suppose that T is a connected scheme and W ↪→ An × T is an effective Cartier

divisor, flat over T , such that for every (closed) point t ∈ T , the induced divisor Wt ↪→ An

has an isolated singularity at 0. By using the connection between the log canonical threshold
and Steenbrink’s spectrum of a hypersurface singularity, Varchenko showed in [27] that if

the Milnor number at 0 for each Wt is constant for t ∈ T , then lct0(An,Wt) is independent
of t (here lct0(A

n,Wt) = lct(U,Wt ∩ U), where U is a small neighborhood of 0). It would
be interesting to deduce this fact from the behavior of jet schemes. It is easy to see that the

jet schemes Jm(Wt) are the fibers of a relative jet scheme Jm(W/T ) over T and a natural

question is whether the constancy of Milnor numbers implies that this family is flat over T
(in a neighborhood of the fiber over 0 via the natural map Jm(W/T ) → An).

Remark 4.12. Suppose, for simplicity, thatX = Spec(R) is a smooth affine variety. Recall

that if a is an ideal inR, then its integral closure a consists of all φ ∈ R such that ordE(φ) ≥
ordE(a) for all divisors E over X . It follows from Theorem 4.7 that if b is another ideal in

R, then b ⊆ a if and only if Cont≥m(a) ⊆ Cont≥m(b) for allm. In particular, the integral

closure a is determined by the contact loci (Cont≥m(a))m≥1. Given other invariants of

an ideal that only depend on the integral closure, it would be interesting to find a direct

description of these invariants in terms of the contact loci of that ideal. For example, if a
is supported at a point x ∈ X , it would be interesting to find a description of the Samuel

multiplicity e(a · OX,x,OX,x) in terms of the contact loci of a.
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We now turn to a related connection between singularities and jet schemes. It turns out

that in the case of locally complete intersection varieties, one can characterize various classes

of singularities in terms of the behavior of the jet schemes. The following is the main result

in this direction.

Theorem 4.13. LetW be a locally complete intersection variety.

i) If W is normal, then W has log canonical singularities if and only if Jm(W ) has
pure dimension for every m ≥ 0. Moreover, in this case we have dim(Jm(W )) =
(m+ 1) · dim(X) and Jm(W ) is a locally complete intersection.

ii) The varietyW has rational (equivalently, canonical) singularities if and only if Jm(W )
is irreducible for everym ≥ 0.

iii) The variety W has terminal singularities if and only if Jm(W ) is normal for every
m ≥ 0.

The assertion in ii) was proved in [22] using motivic integration. It was then noticed in

[10] that the main ingredient in the proof can also be deduced from Theorem 4.7. The result

had been conjectured by David Eisenbud and Edward Frenkel. They use it in the appendix

to [22] to give an analogue of a result of Kostant to the setting of loop Lie algebras. The

assertions in i) and iii) follow using similar ideas once some basic Inversion of Adjunction

statements are proved, see [11] and [13].

We end with an interpretation for the condition of having pure-dimensional or irreducible

jet schemes under the assumptions of Theorem 4.13. It turns out that these considerations

can be made in the context of generalized jet schemes and we will make use of this in the

next section.

Proposition 4.14. LetW be an n-dimensional locally complete intersection variety and let
A be a local, finite k-algebra, with dimk(A) = �.

i) JA(W ) is pure-dimensional if and only if all irreducible components of JA(W ) have
dimension �n. If this is the case, then JA(W ) is locally a complete intersection.

ii) JA(W ) is irreducible if and only if the inverse image in JA(W ) of the singular locus
ofW has dimension < �n. If this is the case, then JA(W ) is also reduced.

iii) Suppose thatA→ A′ is a surjective k-algebra homomorphism, whereA andA′ are fi-
nite, local k-algebras, with A′ being positively graded. If JA(W ) is pure-dimensional
or irreducible, then JA′(W ) has the same property.

Proof. If we writeW = U1 ∪ . . . ∪Um, with each Ui open inX , then JA(W ) = JA(U1) ∪
. . . ∪ JA(Um). Using this, it is easy to see that if the assertions in the proposition hold

for each Ui, then they hold for X . Therefore we may assume W is a closed subvariety of

X = Ad, whose ideal is generated by r = d− n elements.

We have seen in Proposition 2.1 that JA(W ) is cut out in JA(X) � A�d by �r equations.
Therefore each irreducible component of JA(X) has dimension ≥ �n. On the other hand, it

follows from Corollary 2.6 that JA(Xsm) is an open subset of JA(X) of dimension �n. We

thus conclude that JA(X) is pure-dimensional if and only if all irreducible components of

JA(X) have dimension �n. We also see that if this is the case, then JA(X) is itself a locally
complete intersection. This proves i).

Note also that JA(W ) is irreducible if and only if the inverse image of the singular locus

Wsing in JA(W ) has dimension < �n. If this is the case, then JA(W ) is generically reduced
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and being Cohen-Macaulay (recall that JA(W ) has to be a locally complete intersection), it

is reduced. This gives ii).

In order to prove iii), let �′ = dimk(A
′). It is enough to show that if Z is any closed

subset ofW , then

dim (πWA′ )
−1(Z) ≤ dim (πWA )−1(Z)− (�− �′)n. (4.3)

It follows from Proposition 2.1 that

JA(W ) ↪→ (πA
d

A′/A)
−1(JA′(W )) (4.4)

is cut out by r(� − �′) equations and the same holds if we restrict to the inverse images

of Z. By putting these together, we obtain the inequality (4.3) if we can show that for

every irreducible component R of (πWA′ )
−1(Z), its inverse image (πA

d

A′/A)
−1(R) intersects

(πWA )−1(Z). This is a consequence of the fact that if x ∈ Z, then sXA (x) lies in this inter-

section by Remark 2.10.

5. Some questions on generalized jet schemes

In this section we collect some questions and remarks concerning the behavior of the schemes

JA(X), when embdim(A) ≥ 2. Very little is known in this context, partly due to a lack of

examples. In what follows we work over an algebraically closed field k of characteristic

zero.

Motivated by Theorem 4.3, we begin by proposing several invariants that measure the

rate of growth of the dimensions of certain schemes JA(X). In order to simplify the notation,

we restrict to the first unknown case, that when embdim(A) = 2. We introduce three

invariants, depending on the choice of algebras A.
We first consider the algebrasAp,q = k[s, t]/(s

p, tq), with p, q ≥ 1. Note that dimk(A) =
pq. Given a scheme X , let

αp,q(X) := dim JAp,q
(X)

and

α(X) := sup
p,q≥1

αp,q(X)

pq
.

Note thatα(X) ≤ maxx∈X dim(TxX) by Corollary 2.7. Since JAp,q
(X) � Jp−1(Jq−1(X)),

it follows from Remark 4.9 that for every positive integerm, we have

αp,q(X)

pq
≤ αmp,q(X)

mpq
and

αp,q(X)

pq
≤ αp,mq(X)

mpq
. (5.1)

This clearly implies

α(X) = sup
p≥1

αp,p(X)

p2
= lim sup

p→∞

αp,p(X)

p2
. (5.2)

On the other hand, it follows from Theorem 4.3 that ifX is a closed subscheme of the smooth

variety Y , then for every q ≥ 1, we have

lim
p→∞

αp,q(X)

pq
= sup

p≥1

αp,q(X)

pq
= dim(Y )− lct(Jq−1(Y ), Jq−1(X))

q
. (5.3)
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It is easy to deduce from (5.1) and (5.3) the following proposition.

Proposition 5.1. If X is a closed subscheme of the smooth variety Y , then

α(X) = dim(Y )− inf
q≥1

lct(Jq−1(Y ), Jq−1(X))

q

=dim(Y )− lim inf
q→∞

lct(Jq−1(Y ), Jq−1(X))

q
.

We now turn to another invariant, corresponding to a different sequence of algebras. For

every m ≥ 1, let Am = k[s, t]/(s, t)m. Note that dimk(Am) = m(m+1)
2 . For a scheme X

over k, we put βm := dim(JAm(X)) and

β(X) := sup
m≥1

βm(X)

m(m+ 1)/2
. (5.4)

It follows from Corollary 2.7 that β(X) ≤ maxx∈X dim(TxX).

Question 5.2. Is the supremum in (5.4) also the limsup of the corresponding sequence? Is

there any relation between α(X) and β(X)?

Example 5.3. The invariant β(X) is slightly easier to compute than α(X). For example,

suppose that X is defined in An = Spec k[x1, . . . , xn] by x
a1
1 . . . x

an
n , for nonnegative

integers a1, . . . , an, not all of them equal to 0. An element of JAm(X) corresponds to

a k-algebra homomorphism φ : k[x1, . . . , xn] → k[s, t]/(s, t)m, which is determined by

φ(x1), . . . , φ(xn), such that
∏
i φ(xi)

ai = 0. If we denote by νi the smallest power of (s, t)
that contains φ(xi), we see that we get a disjoint decomposition of JAm

(X) into locally

closed subsets JAm(X)ν , parametrized by ν = (ν1, . . . , νn) ∈ {0, 1, . . . ,m}n such that∑n
i=1 aiνi ≥ m. It is straightforward to see that

dim(JAm(X)ν) =
nm(m+ 1)

2
−

n∑
i=1

νi(νi + 1)

2

and an easy computation shows that since
∑n

i=1 aiνi ≥ m, we have

n∑
i=1

νi(νi + 1)− m(m+ 1)∑n
i=1 a

2
i

≥ 0. (5.5)

Moreover, if we take νi = ai� for some � ≥ 1 andm = � ·∑i a
2
i , then the left-hand side of

(5.5) is equal to � (
∑n

i=1 ai − 1). This implies that

β(X) = lim sup
m→∞

βm(X)

m(m+ 1)/2
= n− 1∑n

i=1 a
2
i

.

Yet another invariant of a similar flavor is the following. If X is a scheme over k, then
let

γ(X) := sup
A

dim(JA(X))

dimk(A)
,
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where the supremum is over all algebras A ∈ LFA/k which are graded4 and such that

embdim(A) ≤ 2. It is clear from definition that α(X), β(X) ≤ γ(X), while Corollary 2.7

implies that γ(X) ≤ maxx∈X dim(TxX).
We now turn to a different question, motivated by Theorem 4.13 and inspired by [16].

Suppose that X is a locally complete intersection variety and r is a positive integer. We

say that X has irreducible (resp. pure-dimensional) r-iterated jet schemes if the jet scheme

Jm1(Jm2(. . . Jmr (X))) is irreducible (resp. pure-dimensional) for all nonnegative integers

m1, . . . ,mr.

Proposition 5.4. For a locally complete intersection varietyX , the following are equivalent:

i) X has irreducible (resp. pure-dimensional) r-iterated jet schemes.

ii) JA(X) is irreducible (resp. pure-dimensional) for every A ∈ LFA/k which is graded
and such that embdim(A) ≤ r.

iii) JAm(X) is irreducible (resp. pure-dimensional) for every m ≥ 1, where Am =
k[x1, . . . , xr]/(x1, . . . , xr)

m.

Furthermore, X has irreducible r-iterated jet schemes if and only if all (r − 1)-iterated jet
schemes of X have rational singularities. If this is the case, then all r-iterated jet schemes
of X are reduced locally complete intersections.

The equivalence of i)-iii) is an easy consequence of Proposition 4.14, which together with

Theorem 4.13 also gives the last assertions in the proposition. When r ≥ 2, it is not easy to

give examples of singular varieties which have all r-iterated jet schemes pure-dimensional.

We discuss below the case of cones over smooth projective hypersurfaces, which provides

the only nontrivial class of examples for r = 2.

Remark 5.5. Note that if X is a locally complete intersection variety, then it follows from

Proposition 5.4 that X has pure-dimensional 2-iterated jet schemes if and only if α(X) =
dim(X), which is also equivalent to saying that either β(X) = dim(X) or that γ(X) =
dim(X).

Remark 5.6. We note that Example 2.8 implies that if x ∈ X is a singular point such that

r >
dim(X)

dim(TxX)− dim(X)
,

then X does not have pure-dimensional r-iterated jet schemes.

Suppose now that X ⊆ An, with n ≥ 3, is defined by a homogeneous polynomial f of

degree d > 0. We assume thatX�{0} is smooth, which is the case for general f . It is well-
known that X has rational (log canonical) singularities if and only if d < n (resp., d ≤ n).
Using Theorem 4.13, we conclude that X has irreducible (pure-dimensional) 1-iterated jet

schemes if and only if d < n (resp., d ≤ n). We give a direct argument for this, in the spirit

of [5, §3].

Example 5.7. We show that if X = V (f) ⊂ An, with f homogeneous of degree d > 0,
such that X has an isolated singularity at 0, then Jm(X) is irreducible (pure-dimensional)

4Of course, it might make sense to remove the condition that A is graded. We do not know whether this would

give a different invariant.



690 Mircea Mustaţă

for all m ≥ 1 if and only if d < n (resp., d ≤ n). Let us denote by πm : Jm(X) → X and

π′m : Jm(An) → An the canonical projections. It follows from Proposition 4.14 that we

need to show the following: we have dim(π−1
m (0)) < (m+1)(n−1) (resp., dim(π−1

m (0)) ≤
(m+1)(n− 1)) for allm ≥ 1 if and only if d < n (resp., d ≤ n). We use the following two

facts:

i) If m ≤ (d − 1), then the closed embedding Jm(X) ↪→ Jm(An) induces an isomor-

phism π−1
m (0) � π′m−1

(0) � Amn.

ii) Ifm ≥ d, then we have an isomorphism π−1
m (0) � Jm−d(X)×An(d−1).

Both assertions follow from the universal property defining Jm(X), together with the follow-
ing observations: if R is a k-algebra and u1, . . . , un ∈ tR[t]/(tm+1), then f(u1, . . . , un) =
0 whenever m ≤ d − 1; for m ≥ d, we have f(u1, . . . , un) = 0 if and only if when we

write ui = tvi, we have f(v1, . . . , vn) = 0 in R[t]/(tm+1−d), where vi is the class of vi in
R[t]/(tm+1−d).

In particular, it follows from i) that dim(π−1
d−1(0)) = (d − 1)n. If dim(π−1

d−1(0)) <
d(n− 1), we deduce that d < n. Conversely, suppose that d < n. We prove by induction on

m that dim(π−1
m (0)) < (m+ 1)(n− 1). If 0 ≤ m ≤ d− 1, this follows easily from i). On

the other hand, if m ≥ d, then the assertion follows from ii) and the inductive hypothesis.

One similarly shows that d ≤ n if and only if dim(π−1
m (0)) ≤ (m+ 1)(n− 1) for allm.

With the above notation, we are interested in when the r-iterated jet schemes of X are

irreducible or pure-dimensional for r ≥ 2. It is easy to give a necessary condition, arguing

as in Example 5.7.

Proposition 5.8. LetX ⊂ An be defined by a homogeneous polynomial f of degree d > 0.
If r ≥ 2 and the r-iterated jet schemes of X are pure-dimensional, then dr ≤ n.
Proof. For every positive integer j, we consider Aj = k[t1, . . . , tr]/(t1, . . . , tr)

jd. Note

that for every k-algebra R and every u1, . . . , un ∈ (t1, . . . , tr)
j/(t1, . . . , tr)

jd ⊂ R ⊗k Aj ,
we have f(u1, . . . , un) = 0. This shows that JAj

(X) contains a closed subscheme Zj , with

dim(Zj) = n · dimk(t1, . . . , tr)
jAj = n

((
jd+ r − 1

r

)
−
(
j + r − 1

r

))
.

Using Proposition 4.14 and the fact that dimk(Aj) =
(
jd+r−1

r

)
, we deduce from our as-

sumption that

n

((
jd+ r − 1

r

)
−
(
j + r − 1

r

))
≤ (n− 1) ·

(
jd+ r − 1

r

)
.

This gives (
jd+ r − 1

r

)
≤ n ·

(
j + r − 1

r

)
, (5.6)

which we can rewrite as

n ≥ d ·
r−1∏
i=1

jd+ i

j + i
. (5.7)

Since each function φi(x) =
dx+i
x+i , with 1 ≤ i ≤ r−1, is increasing, with limx→∞ φi(x) =

d, we conclude from (5.7) by letting j go to infinity that n ≥ dr.
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Remark 5.9. If in the above proposition we assume instead that the r-iterated jet schemes

ofX are irreducible, then in (5.7) we get strict inequality. However, this does not imply that

n > dr.

Question 5.10. Does the converse to the assertion in Proposition 5.8 hold when X has an

isolated singularity? More precisely, suppose that X is defined in An by a homogeneous

polynomial f of degree d, such that X � {0} is smooth. If r ≥ 2 is such that n ≥ dr, are
all r-iterated jet schemes of X pure-dimensional? Are they irreducible? Do these assertions

hold if f is general?

Remark 5.11. The only evidence for a positive answer to Question 5.10 is provided by the

result from [16], saying that if f =
∑

u aux
u ∈ k[x1, . . . , xn], where the sum is over all

u = (u1, . . . , un) ∈ Zn≥0 with
∑

i ui = d, then if d2 ≤ n and the coefficients (au)u are

algebraically independent over Q, then the 2-iterated jet schemes of X = V (f) are irre-

ducible. The proof shows that all Jm(X) have rational singularities by reducing to positive

characteristic and using the theory of F -singularities. In particular, this shows that if the

ground field k is uncountable, then for a very general polynomial, the 2-iterated jet schemes

of V (f) are irreducible.

Remark 5.12. It is interesting that the bound in Question 5.10 is (almost) the same as the

bound that shows up in Lang’s Cr condition on fields. Recall that if r ≥ 0, then a field K
satisfies the condition Cr if every homogeneous polynomial f ∈ K[x1, . . . , xn] of degree d,
with dr < n, has a nontrivial zero in Kn. For example, if k is algebraically closed, then it

is known that the field K = k(x1, . . . , xr) satisfies condition Cr. It would be interesting if

there was a connection between Cr fields and Question 5.10.
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Some aspects of explicit birational geometry inspired
by complex dynamics

Keiji Oguiso

Abstract. Our aim is to illustrate how one can effectively apply the basic ideas and notions of topolog-

ical entropy and dynamical degrees, together with recent progress of minimal model theory in higher

dimension, for an explicit study of birational or biregular selfmaps of projective or compact Kähler

manifolds, through concrete examples.
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ifolds.

1. Introduction

This is a survey of some aspects of recent progress on birational and biregular complex al-

gebraic geometry inspired by complex dynamics in several variables. Our aim is to illustrate

how one can apply the basic ideas and notions of topological entropy and dynamical de-

grees, together with recent progress of minimal model theory in higher dimension, for an

explicit study of birational or biregular selfmaps of projective or compact Kähler manifolds.

Especially, we focus on the following one of the most basic, natural problems:

Problem 1.1. Find many examples of projective or Kähler manifolds M admitting inter-
esting birational automorphisms of infinite order, or more preferably, primitive biregular
automorphisms of positive entropy.

There are so many interesting works in this area since the breakthrough results due to

Serge Cantat [19] and Curtis T. McMullen [58], and this note is definitely far from being

a complete panorama of this area. Also, needless to say, there is no universally acceptable

mathematical definition of the term interesting and the choice of topics and materials owes

much to my own flavour and ability, and probably not the one that everyone agrees with. For

instance, the terms of infinite order ignore very beautiful aspects of finite group actions on

manifolds.

Throughout this note, we work over the complex number field C. We assume some

familiarity with basics on complex geometry and algebraic geometry. Unless stated other-

wise, the topology we use is the Euclidean topology (not Zariski topology), a point means

a closed point, and manifolds and varieties are connected. By abuse of language, we call a

(bi)meromorphic map also a (bi)rational map even under non-algebraic settings. We denote

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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by I(f) the indeterminacy locus of a rational map f : M · · · → N , i.e., the complement

of the maximal, necessarily Zariski open dense, subset U ⊂ M such that f |U is holomor-

phic. I(f) is a Zariski closed subset ofM of codimension ≥ 2 ifM is normal. The set of

birational selfmaps (resp. biregular selfmaps, resp. birational selfmaps being isomorphic in

codimension one) ofM form a group under the natural composition. We denote these groups

by Bir (M) (resp. Aut (M), resp. PsAut (M)). Here we call f isomorphic in codimension

one if f neither contracts nor extracts any divisors, in other words, if there are Zariski open

dense subsets U , U ′ ofM such that codimM \ U ≥ 2, codimM \ U ′ ≥ 2 for which the

restriction map f |U : U → U ′ is an isomorphism. We call an element of Bir (M) (resp.
PsAut (M), resp. Aut (M)) a birational automorphism (resp. a pseudo-automorphism,

resp. an automorphism or a biregular automorphism) of M . We call a compact complex

variety of class C if it is birational to a compact Kähler manifold. Unless stated otherwise,

we denote the golden number (
√
5 + 1)/2 by η, the cyclic group of order n by Zn, the free

product of groups G1 and G2 by G1 ∗G2.

2. What kind of manifolds we are interested in?

LetM be a compact Kähler manifold of dimM = l > 0. We are interested in a birational
automorphism f ofM , in particular, of infinite order.

2.1. Primitive birational automorphisms after De-Qi Zhang. If fi ∈ Bir (Mi) (i = 1,
2), then f1 × f2 ∈ Bir (M1 ×M2) and it is of infinite order if so is one of fi. We are more

interested in birational automorphisms not coming from lower dimensional pieces, more

precisely, primitive ones in the sense of De-Qi Zhang [90]:

Definition 2.1. A birational automorphism f of M is imprimitive if there are a dominant

rational map ϕ :M · · · → B to a compact complex varietyB with 0 < dim B < dim M =
l and a rational map g : B · · · → B, necessarily a birational automorphism of B, such that

ϕ ◦ f = g ◦ ϕ. A birational automorphism that is not imprimitive is primitive.

Here we may assume that B is smooth and ϕ : M → B is holomorphic whenever it is

more convenient. Indeed, we may resolve B first and then resolve the indeternimacy of ϕ,
by the fundamental result of Hironaka.

What kind of manifolds can have primitive birational automorphisms of infinite
order?

We can not answer this question completely, but if we assume that minimal model program

[43, 49, 52] in higher dimensional projective manifolds work, then one has the following

rough but quite nice picture at least in the projective case. This beautiful observation is due

to De-Qi Zhang (see [90] and [65] for more precise results):

Theorem 2.2. Let M be a projective manifold of dimension l. Assume that the minimal
model conjecture (MMP) and the weak abundance (WA) in dimension l hold, in the sense
that any l-dimensional projective manifold V is birational to either a minimal model with
weak abundance or a Mori fiber space, i.e., there is a projective variety Vmin, birational to
V , with only normal,Q-factorial terminal singularities such that either one of the following
two holds:
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(MMP-1) in addition,KVmin
is nef (minimal model); or

(MMP-2) in addition, there exists an extremal contraction ϕ : Vmin → B, with respect to
KVmin onto a normal projective variety such that 0 ≤ dim B < dim V (Mori
fiber space),

and additionally,

(WA) In the case (MMP-1), |mKVmin | is non-empty for somem > 0.

Then any l-dimensional projective manifold M with a primitive birational auto-
morphism f of infinite order is birational to either:

(RC) a rationally connected manifold, in the sense that any two points can be connected
by a finite chain of rational curves;

(WCY) a minimal Calabi-Yau variety, in the sense that it is a minimal variety with numer-
ically trivial canonical divisor and of irregularity 0; or

(T) an abelian variety, i.e., a projective complex torus.

Example 2.3.

(1) When l = 1, (RC) is P1, (T) is an elliptic curve and no (WCY).

(2) When l = 2, (RC) is a rational surface, (T) is an abelian surface, and (WCY) is a K3

surfaces or an Enriques surface (see eg. [2]).

Since the proof of Theorem 2.2 provides a good introduction on objects we are interested

in, we give here a fairly complete proof, following [86, 90].

Proof. Themost essential point is that any canonically defined maps are preserved byBir(M).
Let κ (M) ∈ {−∞, 0, 1, · · · , l} be the Kodaira dimension. κ (M) is the maximal di-

mension of the imagesWm under the pluri-canonical maps associated to the complete linear

system |mKM | (m = 1, 2, 3, · · · ) :

Φm := Φ|mKM | :M · · · →Wm := ImΦ|mKM | ⊂ |mKM |∗ = Pdim |mKM | ,

if |mKM | �= ∅ for somem > 0 and κ (M) = −∞ otherwise. It is a birational invariant.

Consider first the case where κ(M) ≥ 0. We may assume that Φm is regular. We

can and do choose m so that dim Wm = κ(M) and Φm is of connected fibers. We write

W =Wm. Note that any birational automorphism f preserves the set of global holomorphic

pluri-canonical forms, as codim I(f) ≥ 2. Then the induced projective linear map f∗ ∈
PGL (|mKM |∗) = Aut (|mKM |∗) preservesW and is equivariant to f with respect to Φm.

Hence f is imprimitive if 1 ≤ κ(M) ≤ l − 1.
If κ(M) = l, then the same is true butM andW are birational. So

Bir (M) = Aut (W ) ⊂ PGL (|mKM |∗).

It is Zariski closed in the affine noetherian group PGL (|mKM |∗), as it is the stabilizer

of the point [W ] of the action of PGL (|mKM |∗) on Hilb (|mKM |∗). Hence it is finite.

Indeed, if otherwise, dim Aut (W ) ≥ 1 and we can choose a one dimensional algebraic

subgroup, which is necessarily isomorphic to C or C×. The Zariski closures of the orbits

of general points ofW under this 1-dimensional algebraic subgroup are necessarily rational,

and coverW andM . Then again by the Hilbert scheme, we have a dominant holomorphic
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maps π : Y → M from the fiber space Y → X whose general fibers Yx are isomorphic

to P1. Since we work over the field of characteristic 0, the map π is separable so that

|mKY | �= ∅ as well. Hence for general Yx, we have degmKYx ≥ 0 by the adjunction

formula, a contradiction to the fact that Yx � P1. Hence Bir (M) is finite and in particular,

f is of finite order when κ(M) = l.
Hence κ(M) = 0 or −∞. So far we did not use the assumption (MMP), (WA). Also,

our assumption that f is of infinite order is used only to conclude κ(M) �= l.
Assume that κ(M) = 0. Consider next the irregularity q(M) := h0(M,Ω1

M ). If

q(M) > 0, then we have the albanese morphism

albM :M → Alb (M) = H0(M,Ω1
M )∗/H1(M,Z) .

It is classical that Alb (M) is an abelian variety. Since κ(M) = 0, a fundamental theorem

due to Kawamata [46] (again free from (MMP), (WA)) says that albM is surjective with

connected fibers, in particular q(M) ≤ l. For the same reason as before, the action Bir (M)
descends to the biregular action of Alb (M) equivariantly with respect to the albanese map.

Hence either q(M) = 0 or q(M) = l. In the second case, M is birational to Alb (M).
If q(M) = 0, then by our assumption (MMP), M is birational to a minimal Calabi-Yau

variety. (Here, if one prefers, one also stops at the stage κ(M) = 0 and q(M) = 0. Then the
conjectural (MMP) is not required here.)

It remains to treat the case κ(M) = −∞. This is the most subtle case where we really

use our assumptions (MMP) and (WA) (but we do not use our assumption that f is of infinite
order anymore). (WA) is one way to conclude (MMP-1) and (MMP-2) are exclusive. Let

us consider W := Mmin in Theorem 2.2, whose existence needs (MMP). If KW would be

nef, then by (WA), |mKM | = |mKW | �= ∅ for some m > 0, a contradiction to κ(M) =
−∞. Hence, the case (MMP-1) does not happen and therefore (MMP-2) happens by our

assumptions (MMP). In (MMP-2), by the property of an extremal contraction, the fibers of

the Mori fiber space are covered by rational curves. Now we consider the maximal rationally

connected fibration, MRC fibration, for short [51]. The MRC fibration r : M · · · → R is an

almost holomorphic, rational dominant map such that for general x ∈M , the fiberMp 8 x is
the maximal rationally connected submanifold ofM containing x, and birationally preserved
by Bir (M), hence by f . Since 0 ≤ dim R ≤ l − 1 for ourM , it follows that R is a point,

i.e.,M is rationally connected.

(MMP) and (WA) hold in dimension≤ 3, finally due to Mori [62] (MMP) and Kawamata

[47] (WA) in the strongest form that nef KVmin is actually semi-ample. So, Theorem 2.2

is unconditional in dimension ≤ 3. In higher dimension, both conjectures are expected

to be true (cf. [13, 43, 64]). In dimension 2, Theorem 2.2 is essentially the same as the

breakthough observation due to Cantat [19] (see also [22]), in terms of topological entropy.

2.2. Three classes of manifolds in Theorem 2.2. In this subsection, we discuss basic man-

ifolds belonging to the three classes in Theorem 2.2, which are indeed the main objects in

this note.

Rational manifolds. An excellent reference of rationally connected manifolds (RC mani-

folds) is [51]. Most basic examples of RC manifolds are rational manifolds, i.e., manifolds

which are birational to Pl. Note that Aut (Pl) = PGL(l + 1,C). It is obvious that generic
g ∈ Aut (Pl) is of infinite order. On the other hand, any g ∈ Aut (Pl) is imprimitive
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if l ≥ 2. Indeed, g has a fixed point P ∈ Pl, corresponding to the eigenvector of a lift

g̃ ∈ GL(l + 1,C). The family of lines through P is then stable under g. Let BlP Pl

be the blow up of Pl at P . The lines through P are the fibers of the natural morphism

BlP Pl → Pl−1 = P(TP,Pl), and this fibration is stable under the natural (biregular) action
of g.

So, in our view, Aut (Pl) = PGL (l + 1,C) is not so interesting. However, the group

PGL (l + 1,C) has a very deep aspect in birational geometry, for instance, the following

striking result due to Cantat [21]:

Theorem 2.4. LetM be an l-dimensional projective manifold. If there is an injective group
homomorphism PGL (n+1,C) → Bir (M), as abstract groups, then n ≤ l and the equality
n = l holds if and only if M is rational. In particular, Bir (Pl) � Bir (Pl′) as abstract
groups if and only if l = l′.

The standard Cremona transformation

crl : P
l · · · → Pl , [x0 : x1 : · · · : xl] !→

[
1

x0
:
1

x1
: · · · : 1

xl

]

is the most basic birational non-biregular automorphism of Pl (l ≥ 2). The indeterminacy

locus of crl are ∪i 
=jLij , where Lij := (xi = xj = 0). Let SCrl := 〈PGL(l+1,C), crl〉 <
Crl := Bir (Pl). We have SCr2 = Cr2 (Noether’s theorem, [35]). If l ≥ 3, then SCrl is
much smaller than Crl but SCrl is rich enough. One of unexpected applications of SCrl is
the following result due to Lesieutre [55]. In [55], the group SCr3 and its complex dynamical

aspect are effectively applied to prove the following derived categorical result:

Theorem 2.5. There is a smooth rational threefold with infinitely many birational non-
isomorphic Fourier-Mukai partners.

Note that crl maps the coordinate hyperplane Hi = (xi = 0) to the standard coor-

dinate point ei = [0 : · · · : 0 : 1 : 0 : · · · 0], where 1 is at the ith coordinate. So,

crl ∈ Bir (Pl)\PsAut (Pl). Actually PsAut (Pl) = Aut (Pl) by PicPl = ZH . However,

if we blow-upPl at the (l+1) standard coordinate points ei, then crl gives rise to a pseudo-
automorphism c̃ri of Bl{ei}P

l, and performing further blowing-ups, we can make it a bireg-

ular automorphism, of order 2. Let S, T ∈ PGL(l+ 1,C). Then f = S ◦ crl ◦ T−1 ∈ SCrl
is of infinite order for almost all choices of S and T , and f lifts to a pseudo-automorphism
of some blowing-ups of Pl, under some periodicity condition for the indeterminacy loci

I(f±n) [6, 7, 9]. In this way, Bedford and Kim construct many interesting rational sur-

face automorphisms as well as pseudo-automorphisms of rational threefolds very explicitly.

However, when l = 3, none of them seems to be realized as a biregular automorphism (cf.

Question 5.6).

A few properties of pseudo-automorphisms. Before entering two other classes, we recall

a few basic properties of PsAut (M). The group PsAut (M) naturally acts on the Néron-

Severi group NS (M) := Im(c1 : Pic (M) → H2(M,Z)) as well as on H2(M,Z). This
action is functorial, in the sense that (f ◦ g)∗ = g∗ ◦ f∗ on H2(M,Z) and preserves the

Hodge decomposition ofH2(M,Z) (but not the intersection (xl) in general). For a minimal

model in the sense (MMP-1), we have the following factorization. This fundamental result

is due to Kawamata [48]:
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Theorem 2.6. Let M be a minimal model. Then Bir (M) = PsAut (M), and any f ∈
Bir (M) is decomposed as f = ϕ ◦ ιm−1 ◦ · · · ◦ ι0, where M0 = M = Mm and ιi :
Mi · · · → Mi+1 (0 ≤ i ≤ m − 1) are flops betweeen minimal models Mi and Mi+1 and
ϕ ∈ Aut (M).

Complex tori, CY manifolds and HK manifolds. The case of complex tori is very much

known (See [37, 78] for some dynamically interesting features in tori). Most basic examples

of minimal Calabi-Yau varieties are CY manifolds and (projective) HK manifolds as defined

below. CY manifolds, HK manifolds together with rational manifolds are the main objects

in this note.

Definition 2.7. LetM be an l-dimensional simply-connected compact Kähler manifold.

(1) M is a Calabi-Yau manifold in the strict sense (CY manifold) if l ≥ 3 andH0(M,ΩjM )
= 0 for 0 < j ≤ l − 1 and H0(M,ΩlM ) = CωM , where ωM is a nowhere vanishing

holomorphic l-form.

(2) M is a compact hyperkähler manifold (HK manifold) ifH0(M,Ω2
M ) = CσM , where

σM is an everywhere nondegenerate holomorphic 2-form.

Good references of CY manifolds and HK manifolds are [41, 56]. By definition, HK

manifolds are of even dimension and K3 surfaces are nothing but HKmanifolds of dimension

2. CY manifolds M are always projective by h0(Ω2
M ) = 0 (as l ≥ 3). On the other

hands, both projective HK manifolds and non-projective HK manifolds are dense both in the

Kuranishi space and in the global moduli space of marked HK manifolds [38, 44]. Examples

with interesting (birational) automorphisms in our view will be given in Sections 4, 5, 6.

The importance of CY manifolds and HK manifolds in complex algebraic geometry

lies in the fact, called the Bogomolov decomposition theorem [4], that these two classes of

manifolds together with complex tori form the building blocks of compact Kähler manifolds

with trivial first Chern class.

We close this section by the following:

Remark 2.8. Let M be a CY manifold or a projective HK manifold and G < Bir (M) =
PsAut (M). Assume that there is an ample divisor H such that f∗H = H in Pic (M) �
NS (M) for all f ∈ G. Then G < Aut (M) and G is a finite group. In particular, if

ρ(M) := rankNS (M) = 1, then Bir (M) = Aut (M) and it is a finite group. So, in our
view, interesting cases are ρ(M) ≥ 2.

Indeed, the same argument as in Theorem 2.2, applied for the G-equivariant embedding

Φ|mH| :M → |mH|∗ for largem > 0, shows that G < Aut (M) and at the same time G is

a Zariski closed algebraic subgroup of PGL (|mH|∗). Since dim G = 0 byH0(M,TM) =
0, the result follows.

3. Topological entropy and Dynamical degrees

3.1. Topological entropy. References of this subsection are [40, 45].

Let X = (X, d) be a compact metric space and f : X → X be a continuous surjective

selfmap of X . We denote by fn the n-th iterate of f . The topological entropy of f is

the fundamental invariant that measures how fast two general points spread out under the
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action of the semi-group {fn|n ∈ Z≥0}, hence, presents a kind of complexity of f . For the
definition, we define the new distance df,n on X by

df,n(x, y) = max0≤j≤n−1d(f
j(x), f j(y)) for x, y ∈ X.

Under the identification x ↔ x(n) := (x, f(x), · · · , fn−1(x)), the new distance df,n(x, y)
is the distance of the graph

Γf,n := {x(n) = (x, f(x), · · · , fn−1(x)) |x ∈ X} ⊂ Xn

induced by the product distance on Xd. The first projection pr1 : (Γf,n, df,n) → (X, df,n)
is an isometry and pr1 : (Γf,n, df,n) → (X, d) is a homeomorphism.

Let ε > 0 be a positive real number. We call two points x, y ∈ X (n, ε)-separated if

df,n(y, x) ≥ ε, and a subset F ⊂ X (n, ε)-separated if any two distinct points of F are

(n, ε)-separated. Let

Nd(f, n, ε) := Max {|F | | F ⊂ X is (n, ε)− separated } .

Note that Nd(f, n, ε) is a well-defined positive integer, because X is compact.

Remark 3.1. Please imagine that ε > 0 is “very very small”, so that we can not distinguish
two points x, y ∈ X with d(x, y) < ε by “our eyes” but can do if d(x, y) ≥ ε. Then,

we can not distinguish x, y if they are not (1, ε)-separated but we can distinguish them by

performing f if they are (2, ε)-separated. Similarly, we can distinguish x, y at some stage,

say f j(x), f j(y) (0 ≤ j ≤ n − 1), if they are (n, ε)-separated. In this sense, Nd(f, 1, ε) is
the maximal number of points of X distinguished by eyes and Nd(f, n, ε) is the maximal

number of points of X distinguished by eyes after performing f j (0 ≤ j ≤ n − 1). So,

roughly, the growth of the sequence {Nd(f, n, ε)}n≥1 measures how fast general points

spread out under the iterations of f to be distinguishable by our eyes (if it will be).

Definition 3.2. The topological entropy, or entropy for short, of f is:

htop(f) := hd(f) := limε→+0hd(f, ε) ,

where

hd(f, ε) := limsupn→∞
logNd(f, n, ε)

n
.

Since logNd(f, n, ε) ≥ 0 is an increasing function of ε > 0, the limit exists in [0,∞]
(possibly ∞). More or less from the definition, we obtain:

Corollary 3.3.

(1) htop(f) is a topological invariant, in the sense that hd′(f) = hd(f) for any distance
d′ of X such that (X, d′) and (X, d) are homeomorphic.

(2) If htop(f) > 0, then fm �= idX for allm ≥ 1, i.e., ord (f) = ∞.

(3) If f is an isometry, for instance a translation of a torus, then htop(f) = 0. In particu-
lar, the converse of (2) is not necessarily true.

(4) htop(f × f ′) = htop(f) + htop(f
′) where f ′ is a surjective selfmap of a compact

metric space X ′ = (X ′, d′).
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Example 3.4. Let E be a 1-dimensional complex torus. Consider the abelian surface A =
E×E and its surjective endomorphism fM (x) =Mx given byM ∈M(2,Z)with detM �=
0. Note that fM ∈ Aut (A) if detM = ±1. Let α, β be the eigenvalues of M such that

|α| ≤ |β|. Then, according to the three cases (i) |α| ≥ |β| ≥ 1, (ii) |α| ≥ 1 ≥ |β|,
(iii) 1 ≥ |α| ≥ |β|, the entropy htop(fM ) is (i) log |αβ|2, (ii) log |α|2, (iii) log 1 = 0.
In particular, htop(fM ) = log η2 > 0, the natural logarithm of (the square of) the golden

number, for the Lie automorphism fM ∈ Aut (A) given by

M =

(
2 1

−1 −1

)
.

Very rough idea is as follows. For simplicity, we further assume that M is diagonaliz-

able in M(2,C). We fix the flat distance d on A from the universal cover C2. Let ε > 0
be a very small number. Let us cover A by N mutually disjoint complex 2-dimensional

ε-“parallelograms” (actual real dimension is 4) that are parallel to the complex eigenvectors

ofM . Then N(fM , 1, ε) is about N . Next divide each of N ε-parallelograms into mutually

disjoint ε-parallelograms with respect to the distance dfM ,2. In case (i), each original paral-

lelogram is devided into about |αβ|2 new parallelograms, because |α| ≥ 1 and |β| ≥ 1 (and

real dimension is 2 + 2). Therefore, N(fM , 2, ε) is about |αβ|2N . In case (ii), each paral-

lelogram is devided into |α|2 new parallelogram, because |α| ≥ 1 but |β| ≤ 1. Therefore,
N(fM , 2, ε) is about |α|2N . Similarly, in case (iii), N(fM , 2, ε) remains N . Repeating this,

we see that N(fM , n, ε) is about |αβ|2(n−1)N , |α|2(n−1)N , N according to the three cases

(i), (ii), (iii). This implies the result.

Note that in each case, the entropy is the natural logarithm of the spectral radius of

f∗M |H∗(A,Z). Actually, this is not accidental as we will explain in the next subsection.

3.2. Fundamental theorem of Gromov-Yomdin. References of this subsection are [33,

34, 39, 40, 89] (see also [22]).

Let M be a compact Kähler manifold of dimension l and η be any Kähler form on

M . Then M is a compact metric space by the distance defined by η. Let f : M → M
be a surjective holomorphic map. Then f∗ naturally acts on the k-th cohomology group

Hk(M,Z) as well as each Hodge component Hp,q(M). We define rp(f) to be the spectral
radius of f∗|Hp,p(M), that is, the maximum absolute value of eigenvalues of f∗|Hp,p(M).
Similarly, we denote by r(f) (resp. reven(f)) the spectral radius of f∗ on ⊕2l

k=0H
k(M,Z)

(resp. ⊕l
p=0H

2p(M,Z)).
We define the p-th dynamical degree dp(f) by

dp(f) := lim
n→∞

(δp(f
n))

1
n ,

where

δp(f
n) := (

∫
M

(fn)∗(ηp) ∧ ηl−p) = ([(fn)∗(ηp)].[ηl−p])M .

Here (∗, ∗∗)M is the intersection number. The limit does not depend on the choice of η
once the existence is guaranteed. Indeed, for two Kähler forms η and η′, there are positive
real number C and a Kähler form η” such that C[η] = [η′] + [η”] in H1,1(M,R). The

fact that the limit exists is non-trivial. There are many ways to see it. For instance, it is an

immediate consequence of the following crucial observation by Dinh-Sibony, which holds

also for rational dominant selfmaps [33, 34]:
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Theorem 3.5. There is a constant C = CM,η depending only onM and η (but not on f and
g) such that

δp(f ◦ g) ≤ Cδp(f)δp(g) ,
for any two dominant holomorphic selfmaps f :M →M , g :M →M .

The logarithmic volume lov (f), introduced by Gromov, is

lov (f) := limsupn→∞
log Volume(Γf,n)

n
,

where

Volume(Γf,n) :=
1

l!

∫
Γf,n

(
n∑
i=1

pr∗i ηM )l .

The following fundamental theorem is due to Gromov-Yomdin:

Theorem 3.6. LetM be a compact Kähler manifold of dimension l and f : M → M be a
surjective holomorphic map. Then, dp(f) = rp(f) and

htop(f) = lov (f) = logmax0≤p≤l dp(f) = logmax0≤p≤l rp(f) = log reven(f) = log r(f) .

Moreover, if M is projective, then htop(f) is also equal to the natural logarithm of the
spectral radius of f∗| ⊕p H

p,p(M,Z).

This theorem opens the door to compute the entropy of a biregular automorphism by

algebro-geometric methods. For instance, Example 3.4 is immediate from this theorem; one

may just compute rp(f) for p = 0, 1, 2. Moreover, dp(f) and rp(f) can be regarded as finer
invariants of f than htop(f), while geometric meanings become less apparent.

Corollary 3.7.

(1) htop(f) = 0 if dim M = 1, and also htop(f) = 0 for f ∈ Aut0(M) (the identity
component of Aut (M)). For instance, htop(f) = 0 if f ∈ Aut (Pd) or again if f is
a translation automorphism of a complex torus.

(2) The topological entropy is the natural logarithm of an algebraic integer.

Indeed, (1) is clear by Theorem 3.6. Since the eigenvalues of f∗|H∗(M,Z) are algebraic
integers, (2) follows from Theorem 3.6.

Corollary 3.8.

(1) d0(f) = 1 and dl(f) = deg f , the topological degree of f .

(2) The sequence {dp(f)}0≤p≤l is log-concave, i.e., dp−1(f)dp+1(f) ≤ dp(f)2.
(3) dp(f) ≥ 1 for all p and,

(4) htop(f) > 0 if and only if d1(f) > 1.

(1) is clear by definition. We have δp−1(f)δp+1(f) ≤ δp(f)
2 by the Hodge index the-

orem (when M is projective and η is chosen to be a Hodge metric) and by the Tessier-

Khovanski inequality in general case. Then (2) follows from (1), and (2) implies (3), (4).

Very brief outline of the proof of Theorem 3.6 is as follows [33, 40]. Note the obvious
relation (fn)∗ = (f∗)n for f ∈ Aut (M). Then dp(f) = rp(f) follows from linear algebra
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plus the Perron-Frobenious theorem on the linear maps preserving a strict convex cone. So,

dp(f) = rp(f) ≤ reven(f) ≤ r(f). The deepest part is htop(f) ≥ log r(f) for any com-

pact oriented Riemannian C∞-manifolds and surjective oriented C∞-map f : M → M .

This is due to Yomdin [89] (see also [40]). Gromov [39] proved the reverse inequality

htop(f) ≤ lov (f) = logmax0≤p≤k dp(f). The essential part of this inequality is that if

F ⊂ M is (n, ε)-separated, then the corresponding subset F(n) in the graph Γf,n is (1, ε)-
separated, and therefore the balls Γf,n ∩ B(x(n), ε/2) (x(n) ∈ F(n)) are mutually disjoint.

This gives an obvious estimate of Volume (Γf,n) from the below and leads the first inequal-

ity, via Lelong’s theorem. lov (f) = max0≤p≤ddp(f) is non-trivial but doable by fairly

straightforward computations of the differential forms, at least when f is holomorphic.
See also [28] for derived categorical approach for the topological entropy.

3.3. Generalization for rational mappings after Dinh-Sibony. References of this sub-

section are [33, 34, 42] (see also [22]).

Let M be a compact Kähler manifold of dimension l, and f : M · · · → M be a dom-

inant rational selfmap. The topological entropy htop(f) is defined in the same way as in

the holomorphic case, just by considering the well-defined orbits, i.e., {fk(x)}n−1
k=0 with

fk(x) �∈ I(f) at each n-th step. The logarithmic volume lov (f) is defined again in the same

way as above, just by taking the graph Γ0
f,n overM \ ∪n−1

k=0I(f
k) at each n-th step [33, 42].

The pullback operation f∗ : Hp,p(M) → Hp,p(M) is well-defined if one uses currents.
Let M̃ be a resolution of the indeterminacy of f and pi : M̃ → M (i = 1, 2) be the

natural projections. Then for any closed (p, p)-form α, we define f∗(α) = (p1)∗p∗2(α),
where p∗2 is the natural pullback as forms and (p1)∗ is the natural pushforward as currents,

i.e., 〈(p1)∗(p∗2(α)), β〉M := 〈p∗2(α), p∗1(β)〉M̃ . The action f∗naturally descends to the linear
action on Hp,p(M). So, the definitions of δp(f) and the p-th dynamical degree dp(f) make

sense without any change. dp(f) does not depend on the choice of η for the same reason

as before, again once the existence of the limit is guaranteed. However, there is one crucial

difference from the holomorphic case; (f ◦g)∗ �= g∗◦f∗ and (fn)∗ �= (f∗)n in general. This
already happens for the standard Cremona transformation crl ofP

l and makes outlined proof

in the holomorphic case delicate at all the places where we freely use them. For instance, in

general, there is no way to compare dp(f) and rp(f). Dinh and Sibony [33, 34] proved:

Theorem 3.9. Let X be a compact Kähler manifold of dimension l and f : M · · · → M
be a dominant, rational map (= meromorphic map, by our convention). Then, Theorem 3.5
holds for rational dominat maps and

htop(f) ≤ lov (f) = logmax0≤p≤d dp(f) .

Moreover dp(f) are birational invariants in the sense that dp(f) = dp(ϕ ◦ f ◦ϕ−1) for any
birational map ϕ :M · · · →M ′ between compact Kähler manifolds.

On the other hand, htop(f) is not a birational invariant by Guedj [42]:

Example 3.10. Let f : C2 → C2 be a morphism defined by (x, y) → (x2, y + 1). Then f
naturally extends to a rational selfmap f1 of P

2 and a holomorphic selfmap f2 of P
1 ×P1.

Then, htop(f1) = 0 but htop(f2) = log 2 > 0.

Because of the birational invariance of dynamical degrees, one can define dynamical

degrees for a dominant selfmap of a singular compact complex space of class C in an obvious
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manner, but not the topological entropy in this way. For this reason, dynamical degrees fit

well more with birational geometry than the entropy. They are also useful when we study

biregular automorphisms in Problem 1.1, as we shall see in concrete cases in Section 5.

The essential part of the proof of Theorems 3.5, 3.9 and their variants later is a deep

theory of semi-regularization of currents, very roughly, a method for approximating currents

well by sequences of smooth forms. Once such semi-regularization results are well estab-

lished, then the proof goes along the same line as in the holomorphic case if one carefully
replaces all necessary estimates for currents by those of semi-regularizing smooth forms.

For a rational dominant selfmap f , Corollary 3.7 (2) is expected to be true but unknown.
For instance, (2) is true for d1(f) if f ∈ PsAut (M). This is because then (fn)∗ = (f∗)n on

H2(M,Z), hence d1(f) = r1(f) for the same reason as in the holomorphic case. Corollary

3.8 (1), (2), (3), being free from htop(f), is clearly true, but (4) is not true as Example 3.10

shows.

3.4. Relative dynamical degrees after Dinh-Nguyên-Truong. References of this subsec-

tion are [30] and [31]. Corollary 3.3 (3) or dynamical degrees of the product map f × f ′ :
X ×X ′ → X ×X ′ suggests a good notion of relative dynamical degrees with nice proper-

ties. If exists, then it will provide a useful numerical criterion for the primitivity of a selfmap,

as we shall test in some concrete cases in Section 5.

Setting I. Let f : M · · · → M , g : B · · · → B be dominant rational maps such that
π ◦ f = g ◦ π. Here π :M → B is a surjective holomorphic map between compact Kähler
manifolds M and B of dimensions l and b (necessarily l ≥ b) with Kähler forms ηM and
ηB .

In Setting I, we define the relative dynamical degrees dp(f |π) by

dp(f |π) := lim
n→∞

(∫
M

(fn)∗(ηpM ) ∧ π∗(ηbB) ∧ ηl−p−bM

)1/n

, 0 ≤ p ≤ l − b .

This definition is due to Dinh and Nguyên [30]. If we take ηB so that ηbB is the Poincaré dual

of a point and virtually identify all the fibers Mb and regard then f |Mb : Mb · · · → Mg(b)

as the virtual selfmap of Mb, then dp(f |π) is the same form as the p-th dynamical degree

of the virtual f |Mb. Note also that π∗(ηbB) ∧ ηl−p−bM is a form as π is holomorphic and

(fn)∗(ηpM ) is a current of proper bidegree. So the integration in the right hand side makes

sense. This is the reason why we assume that π is holomorphic. The existence of the limit

is again non-trivial, but settled by [30] and [31]. The following fundamental result is due to

Dinh-Nguyên-Truong [30, 31]:

Theorem 3.11. In Setting I, for all 0 ≤ p ≤ l,
dp(f) = max

j
dj(g)dp−j(f |π) .

Here j runs through all the integers for which the integrations defining dj(g) and dp−j(f |π)
are meaningful, i.e., j runs through max {0, p − l + b} ≤ j ≤ min {p, b}. Moreover,
{dp(f |π)}p satisfy dp−1(f |π)dp+1(f |π) ≤ dp(f |π)2 (the log-concavity) and they are bira-
tional invariants in an obvious sense, within Setting I.

That π is holomorphic in Theorem 3.11 appears slightly restrictive, compared with usual

situations, and the most natural setting is probably the following:
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Setting II. π′ : M ′ · · · → B′ is a dominant rational map from an l-dimensional compact
complex varietyM ′ of class C to a compact complex variety B′ of dimension b, equivariant
with rational dominant selfmaps f ′ and g′ ofM ′ and B′.

In Setting II, B′ is of class C by the original definition of class C, and therefore, there

is a birational morphism ϕ : B → B′ from a compact Kähler manifold B as well. Then

resolving the indeterminacy of the rational map ϕ−1 ◦ π′ fromM ′ to B, we obtain a holo-
morphic surjective morphism between compact Kähler manifolds π : M → B. Moreover,

π is equivariant to the rational dominant selfmaps f and g of M and B, naturally induced

from f ′ and g′. This is exactly Setting I in Theorem 3.11. By the birational invariance of

dynamical degrees, we have dp(f) = dp(f
′), dp(g) = dp(g′). Moreover, by the birational

invariance of the relative dynamical degrees in Setting I in Theorem 3.11, we can define
d(f ′|π′) := d(f |π) which is independent of the choice of models π : M → B. Then, the
equation in Theorem 3.11 is nothing but the equation dp(f

′) = maxj dj(g
′)dp−j(f ′|π′) in

Setting II. Therefore:

Corollary 3.12. Theorem 3.11 is true also in the Setting II.

Note that d0(f
′|π′) = 1 and dl−b(f ′|π′) is the topological degree of f ′|Mt : Mt · · · →

Mg′(t) for a generic fiber M
′
t (t ∈ B). The log-concavity then implies that dp(f

′|π′) ≥ 1
for any meaningful p as before.

Since only d0(f |π) = 1 is the meaningful relative dynamical degree for a generically

finite map, we obtain the following [30, 31] from Theorem 3.12:

Corollary 3.13.

(1) The dynamical degrees are invariant under any equivariant generically finite dominant
maps, i.e., if π :M · · · → B is a generically finite dominant rational map equivariant
to the rational dominant selfmaps f , g ofM , B, then dp(f) = dp(g) for every p.

(2) The topological entropy of dominant holomorphic selfmaps of compact Kähler mani-
folds are invariant under equivariant generically finite dominant rational maps. More
precisely, in (1), if both M and B are compact Kähler manifolds and f and g are
holomorphic, then htop(f) = htop(g).

(2) follows from (1) and Theorem 3.6.

Our primary interest in Theorem 3.11 is its applicability for primitivity of rational self-

maps. When l = dim M ≤ 3, we can deduce the following fairly useful numerical criterion
for the primitivity of f ∈ BirM from Theorem 3.11. (1) is known before Theorem 3.11 and

(2) is due to Truong and myself [79]:

Corollary 3.14. LetM be a compact Kähler manifold and f ∈ Bir (M).

(1) Assume that dim M = 2. Then f is primitive if d1(f) > 1. In particular,
f ∈ Aut (M) is primitive if htop(f) > 0.

(2) Assume that dim M = 3. Then f is primitive if d1(f) �= d2(f).
Outline of (2) is as follows. Assume that f is imprimitive. Then there are a compact

Kähler manifold B, dominant rational maps π : M · · · → B, g : B · · · → B such that

π ◦ f = g ◦ π. Here 0 < dim B < 3 = dim M . We consider the case dim B = 2 (the case
dim B = 1 is similar). Then by Corollary 3.12, we have

d1(f) = max{d1(g), d1(f |π)} , d2(f) = max{d1(f |π)d1(g), d2(g)} .
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Since f and g are birational, d3(f) = d2(g) = 1. Thus, by Corollary 3.12, 1 = d3(f) =
d2(g)d1(f |π), hence, d1(f |π) = 1. So, d1(f) = max{d1(g), 1} = d2(f).

4. Surface automorphisms in the view of entropy

In this section, we take a closer look at surface automorphisms of positive entropy. They are

primitive by Corollary 3.14(1). We assume some familiarity with classification of surfaces.

A good reference is [2] with [35] for rational surfaces. Throughout this section, S is a smooth

compact Kähler surface.

4.1. Surface automorphisms of positive entropy. We note that a birational automorphism

f ∈ Bir (S) naturally induces a biregular automorphism of the minimal model Smin of the

same dynamical degrees (Theorem 3.9) if κ (S) ≥ 0. In this way, one can almost recover

from Theorem 2.2 the following breakthrough observation due to Cantat [19]:

Theorem 4.1. Assume that S admits an automorphism f ∈ Aut (S) of positive entropy, i.e.,
d1(f) > 1. Then S is birational to either (i) P2, (ii) a K3 surface, (iii) a 2-dimensional
complex torus, or (iv) an Enriques surface. In the case (i), S is a blow up of P2 at 10 or
more points, possibly infinitely near [63].

Recall that d1(f) = r1(f) > 1 is an algebraic integer (Corollary 3.7 (2)). It turns out to

be a special algebraic integer of even degree, called a Salem number:

Definition 4.2. An irreducible monic polynomial S(x) ∈ Z[x] is called a Salem polynomial
if the complex roots are of the following form (possibly d = 1):

a ∈ (1,∞) , 1/a ∈ (0, 1) , αi, αi ∈ S1 := {z ∈ C | |z| = 1} \ {±1}(1 ≤ i ≤ d− 1) .

The unique root a > 1 is called a Salem number of degree 2d (= degS(x)).

The smallest known Salem number is the Lehmer number which is the unique root > 1
of the following Salem polynomial of degree 10:

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1 .

It is approximately 1.17628 and conjectured to be the minimum among all Salem numbers.

So far, this conjecture is neither proved nor disproved.

The following theorem is due to McMullen [57–59]:

Theorem 4.3. Let f ∈ Aut (S) and assume that d1(f) > 1. Then, d1(f) is a Salem number,
and d1(f) is always greater than or equal to the Lehmer number.

See also [60, 61, 73, 81, 85] for relevant results.

4.2. Examples of surface automorphisms of positive entropy. There is a huge number of

works concerning automorphisms of surfaces. Here among many examples, I present four

examples which are smoothly connected to the topics in the next sections.
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Example 1 - Rational surface automorphisms. Recall that any birational automorphism

of P2 is expressed by two rational functions of the affine coordinates (x = x2/x1, y =
x3/x1) of P

2
[x1:x2:x3]

. Consider the birational automorphism of the following special form

([59], also compare with an earlier form in [6]):

f∗(x, y) := f∗(a,b)(x, y) := (a+ y, b+
y

x
) , a, b ∈ C .

I(f) is the set of coordinate points {e1, e2, e3} and I(f−1) is {e2, e3, e4}, where e4 :=
(a, b). Set ek+4 := fk(e4). Choose (a, b) so that ek �∈ e1e2 ∪ e2e3 ∪ e3e1 for all 4 ≤ k ≤ n
with n ≥ 10 and en+1 = e1 (periodicity condition of indeterminacies). Then one can

realize f as an automorphism of S = Sn, the blowing-ups of P
2 at the n points ek. This f

also realizes the Coxeter element cn of the Weyl group W (En) in the sense that f∗ = cn
on H2(S,Z) under the natural identification En = K⊥

S and W (En) < O(H2(S,Z)),
hence of positive entropy. For instance, f with n = 10 and (a, b) = (0.4995...,−0.0837...)
realizes the Lehmer first dynamical degree and f with n = 11 and (a, b) approximately

(0.0444 − 0.4422i, 0.0444 + 0.4422i) has a Siegel domain (cf. Example 4). The actual

construction in [59] is not merely the numerical one but is based on an explicit marked

Torelli type result for log K3 surfaces (S,C) with C being a unique cuspidal rational curve

in | −KS |.

Example 2 - Birational automorphisms after Diller-Favre. Reference here is [27]. Let

c ∈ C and consider the birational automorphism of P1 ×P1 defined by the following affine

form:

fc(x, y) := (y + 1− c, x y − c
y + 1

) .

[27] computes the first dynamical degree of fc and observes many interesting features, de-

pending on c ∈ C. For instance, if c is irrational, then d1(fc) = η, the golden number.

Note that the golden number is not a Salem number, so that fc with irrational c can never be
realized as a biregular automorphism of any smooth birational models.

Example 3 - Cayley’s K3 surface after Festi, Garbagnati, van Geemen and van Luijk.
In the long history of automorphisms of K3 surfaces or more specifically those of smooth

quartic surfaces, Cayley seems the first who suggested the existence of automorphisms of

infinite order. Here we explain his beautiful, very explicit construction, following a modern

elegant account [36]. This example will be also used to construct higher dimensional HK

example in Section 6.

Let aijk (1 ≤ i, j, k ≤ 4) be 43 generic complex numbers. Let us consider the following

determinantal quartic surface in P3 with homogeneous coordinates x = [x1 : x2 : x3 : x4]:

S0 := (detM0(x) = 0) ⊂ P3
x ,

whereM0 =M0(x) := (
∑

i aijkxi)k,j is the 4× 4 matrix whose (k, j) entry is
∑

i aijkxi.
By our genericity assumption, rankM0(x) = 3 for all x ∈ S0 and S0 is a smooth quartic K3

surface. One can also construct two more smooth determinantal quartic K3 surfaces from

aijk:
S1 := (detM1(y) = 0) ⊂ P3

y , S2 := (detM2(z) = 0) ⊂ P3
z .

HereM1 =M1(y) := (
∑

i aijkyj)i,k,M2 =M2(z) := (
∑

i aijkzk)j,i.
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Let Pi be the cofactor matrix ofMi. Then,

PiMi =MiPi = det (Mi) · I4 and xM1(y) = (
∑
i,j

aijkxiyj)k = yM0(x)
t .

Recall that rank (M0(x)) ≥ 3 for each x ∈ P3 and the same forM1(y),M2(z). Thus, the
j-th column (pij(x))i of P0 = P0(x) gives a Cremona transformation ϕ0 : P3

x · · · → P3
y

that maps S0 to S1, hence, an isomorphism ϕ0|S0 : S0 → S1. In the same way, we have two

more Cremona transformations ϕ1 : P3
y · · · → P3

z, ϕ2 : P3
z · · · → P3

x and isomorphisms

ϕ1|S1 : S1 → S2, ϕ2|S2 : S2 → S0. In this way, we obtain an explicit automorphism of S0:
g := ϕ2 ◦ ϕ1 ◦ ϕ0. This is the automorphism that Cayley first found around 1870 and said
that “The process may be indefinitely repeated” [25, 36].

As observed by [36], in modern terminologies, a characterization of linear determinantal

varieties [5] with our genericity assumption says that S0 is nothing but a K3 surface with

NS (S0) = (Zh1 ⊕ Zh2,

(
4 6
6 4

)
) = (Z[η], 4Nm(∗)) , Nm(a+ bη) = a2 + ab− b2 .

Here η is the golden number and the lattice identification is given by h1 ↔ 1 and h2 ↔ η2.
Under this identification, the action of g on NS (S) is the multiplication by η6 on Z[η]. So,
as predicted by Cayley, g is actually of infinite order and htop(g) = log η6 > 0. [36] further
shows that Aut (S0) = 〈g〉. They also give the explicit integers aijk ∈ Z with desired

properties. I re-discovered Cayley’s automorphism in answering a question of Kawaguchi

([74], see also [12]):

Theorem 4.4. LetW be a smooth compact Kähler surface with automorphism f such that f
is of positive entropy and has no fixed point. ThenW is birational to a projective K3 surface,
and the pair of Cayley’s K3 surface S0 and its automorphism g is one of such examples.

Example 4 - Non-projective K3 surface automorphism with Siegel domain after Mc-
Mullen. Let f be an automorphism of a smooth surface S. We call a domain U ⊂ S
a Siegel domain of f if f(U) = U and U is biholomorphic to the 2-dimensional unit

disk Δ2 with coordinates (z1, z2) such that the induced action of f on Δ2 is of the form

f∗(z1, z2) = (α1z1, α2z2) for some multiplicatively independent complex numbers α1
and α2 on the unit circle S1, i.e., αm1

1 αm2
2 �= 1 for any integers (m1,m2) �= (0, 0) and

|α1| = |α2| = 1.
If S is a K3 surface and f is an automorphism with Siegel domain as above, then

f∗σS = α1α2σS . Here σS �= 0 is a global holomorphic 2-form on S. Note that α1α2
is not root of unity. Thus S is necessarily non-projective, as the pluri-canonical represen-

tation of Bir (M)∗|H0(M,OM (mKM )) is always finite if M is projective [86]. The next

very surprising result due to McMullen [58] gave me a strong motivation to study birational

automorphisms from the view of this note:

Theorem 4.5. There is a K3 surface S of Picard number 0 with Aut (S) = 〈f〉 such that
f is of positive entropy and has a Siegel domain. In particular, the canonical representation
f∗|H0(O(KS)) = f

∗|H0(Ω2
S) is of infinite order, and there is no pointQ ∈ S such that the

orbitAut (S)·Q is topological dense (even though f is of positive entropy). Slightly more ex-
plicitly, one of such (S, f) is realizable so that the characteristic polynomial of f∗|H2(S,Z)
is the following Salem polynomial of degree 22;

S22(X) := x22 + x21 − x19 − 2x18 − 3x17 − 3x16 − 2x15 + 2x13 + 4x12
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+5x11 + 4x10 + 2x9 − 2x7 − 3x6 − 3x5 − 2x4 − x3 + x+ 1 .

In this case, htop(f) = log a, where a is the Salem number of S22(x), approximately,
1.37289.

Unlike the examples above, construction is highly implicit, based on the surjectivity of

the period map and golobal Torelli theorem for K3 surfaces, and the existence of Siegel

domain is based on a deep transcendental number theoretical result [58], from which one

can deduce the transcendency of π and e in one line. See also [73] for a slightly different

example.

We close this section with a few remarks relevant to Theorem 4.5:

Remark 4.6. As mentioned, there are smooth rational surfaces with an automorphism with

Siegel domain [7, 8, 59]. Rational surfaces are always projective, but this does not contradict

the finiteness of pluri-canonical representation, because

κ(S) = −∞, i.e., H0(S,OS(mKS)) = 0 for all m > 0.

Remark 4.7. Let S, f be as in Theorem 4.5 and P be the center of the Siegel domain. Let

M be the blowing-ups of N := S × S, first at the intersection point (P, P ) of S × {P},
{P}×S, the diagonalΔ, and the graph Γf , and next along the proper transforms of S×{P},
{P} × S,Δ, Γf . ThenM is a simply-connected compact Kähler fourfold which can not be

deformed into projective manifolds under any small proper deformation ([72], also compare

with [88]).

Remark 4.8. Let S be a projective K3 surface. Then 1 ≤ ρ(S) ≤ 20, and projective

K3 surfaces with ρ(S) ≥ ρ form countable union of (20 − ρ)-dimensional families. The

automorphism group of S tends to be larger if ρ(S) becomes larger (see [67] for the precise

statement in terms of deformation). If ρ(S) = 20, for instance if S is the Fermat quartic

surface, then Aut (S) contains the free subgroup Z ∗ Z with many elements of positive

entropy, and the orbit Aut (S) · P is topologically dense in S for generic P ∈ S ([20, 69]

see also [82]).

5. Rational and CY threefolds with primitive automorphisms of positive
entropy

5.1. Biregular automorphisms vs. birational automorphisms. Some experiences show

that in dimension ≥ 3, the biregular automorphisms tend to be drastically fewer than bira-

tional automorphisms. So, finding manifolds with “interesting” biregular automorphisms is

more challenging in some sense. Here I present a few examples of this tendency.

Example 1 - CY manifolds in Fano manifolds. Cayley’s K3 surfaces are smooth anti-

canonical members of the Fano threefold P3. Smooth anti-canonical members of higher

dimensional Fano manifolds are CY manifolds. However,

Theorem 5.1. Let l ≥ 3 andM be a smooth member of | −KV | of a smooth Fano manifold
V of dimension l + 1. ThenM is a CY manifold of dimension l ≥ 3, but |Aut (X)| is finite.

Lefschetz hyperplane theorem shows that ι∗ : H2(V,Z) � H2(M,Z) under the in-

clusion ι : M → V for l ≥ 3. Kollár [16] shows that Amp (M) � Amp (V ) under
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ι∗. Hence Amp (M) is a finite rational polyhedral cone as so is Amp (V ). This implies

|Aut (M)| <∞ by Remark 2.8.

Example 2 - CY manifolds of smaller Picard numbers. Recall that Cayley’s K3 surfaces

are of Picard number 2 and have automorphism of positive entropy. On the other hand, we

have ([75]; see also [53, 54]):

Theorem 5.2. |Aut (M)| <∞ for an odd dimensional CY manifold of ρ(M) = 2.

Example 3. Let M be a general complete intersection in P3 × P3 of 2 hypersurfaces of

bidegree (1, 1) and a hypersurface of bidegree (2, 2). Then M is a CY threefold of Picard

number 2 (hence an example of both Theorems 5.1, 5.2). Let ιk be the covering involution

of the k-th projection prk : M · · · → P3 of degree 2. Set f := ι2 ◦ ι1 ∈ Bir (M). Then,
d1(f) = 17+12

√
2 > 1, 〈f〉 � Z and [Bir (M) : 〈f〉] <∞ even though Aut (M) is finite.

Recall that Bir (M) = PsAut (M) for CY manifolds. Example 3 is an application of

Theorem 2.6 with an explicit analysis of the movable cone [75].

The following theorem also shows a sharp contrast in dimension 2 and ≥ 3:

Theorem 5.3. Let l ≥ 2 andM = (2, · · · , 2) ⊂ (P1)l+1 = P1
1 × P1

2 × · · · × P1
l+1 be a

smooth generic hypersurface of multi-degree (2, · · · , 2). Then M is a K3 surface if l = 2
and a CY manifold of dimension l if l ≥ 3, and:

(1) If l = 2, then Bir (M) = Aut (M) = 〈ι1, ι2, ι3〉 � Z2 ∗ Z2 ∗ Z2, while

(2) If l ≥ 3, then Aut (M) = {idM} and Bir (M) = 〈ι1, · · · , ιl+1〉 � Z2 ∗ · · · ∗ Z2

((l + 1)-times free product).

Here ιk is the covering involutions of the natural projection to the product (P1)l in
which the k-th factor P1

k of (P
1)l+1 removed. Moreover, there are (many) elements f

with d1(f) > 1.

So, Bir (M) becomes larger and larger according to the dimension, but Aut (M) sud-
denly disappears in dimension ≥ 3. This is proved by Cantat and myself [23]. The essential

algebro-geometric part of (2) is that in l ≥ 3, the covering involutions ιk are (no longer

automorphism but) a birational involutions and at the same time all possible flops ofM . We

then apply Theorem 2.6.

Example 4 - CY manifold automorphisms of positive entropy. Only one “series” of ex-

amples with automorphisms of positive entropy that I know is:

Theorem 5.4. Let M be the universal cover of the punctual Hilbert scheme Hilbl (S) of
length l ≥ 2 of an Enriques surface S. ThenM is a CY manifold of dimension 2l, and M
admits (many) biregular automorphisms of positive entropy if S is generic.

See [77] and [23]. It is interesting to ask:

Question 5.5. Does a CY manifold M in Theorem 5.4 admit a primitive automorphism of
positive entropy?

Higher dimensional rational manifold automorphisms of positive entropy. Finding “in-

teresting” biregular automorphisms of rational manifolds seems much more difficult. Sur-
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prisingly, the following most basic question, posed by Bedford, is still unsolved (See also

[84] for many negative evidences):

Question 5.6. Is there a biregular automorphism of positive entropy on a smooth rational
threefold obtained by blowing-ups of P3 along smooth centers?

On the other hand, in [9–11, 80], there are constructed many examples of rational mani-

folds with interesting pseudo-automorphisms, by generalizing constructions of rational sur-

face automorphisms. Especially, the following result due to Bedford-Cantat-Kim [10] is

quite remarkable and also strongly supports a negative answer for Question 5.6:

Theorem 5.7. There is a smooth rational threefold M , obtained by blowing-ups of P3 at
smooth centers, with f ∈ PsAut (M) such that f is primitive, of d1(f) > 1, and (M,f) has
no equivariant smooth birational model (M ′, f ′) with f ′ ∈ Aut (M ′).

Their f does not preserve even any foliation. In their construction, π : M → P3 is

a partial resolution of indeterminacy of τ ◦ cr3 ∈ Bir (P3) and their iterates, for suitably

chosen τ ∈ PGL (4,C) with periodicity conditions of indeterminacy. Then the birational

automorphism f = π ◦ (τ ◦ cr3) ◦ π−1 becomes a pseudo-automorphism of M . In their

construction, there is a rational surface S ⊂ M preserved by f4 in the sense that f4|S ∈
Bir (S). Their crucial observation for the non-existence of (M ′, f ′) is that d1(f

4|S) is

neither a Salem number nor 1. On the other hand, if f could be regularized, then so is f4|S,
possibly on other regularized models on which S survives. But, then d1(f

4|S) must be a

Salem number or 1 by the birational invariance of the dynamical degrees (Theorem 3.9) and

by Theorem 4.3.

5.2. First examples of rational and CY threefolds with primitive automorphisms of
positive entropy. Main reference is [79]. The essential idea is the quotient construction

from a manifoldM with rich automorphisms: If G < Aut (M) is a “small” finite subgroup

with “big” normalizer N < Aut (M), then the “big” group N/G acts biregularly on the

quotient varietyM/G and on its equivariant resolution as well.

Our actual construction is as follows. Let Eτ = C/(Z + Zτ) be the elliptic curve of

period τ . There are exactly two elliptic curves with a Lie automorphism other than ±1.
They are E√−1 and Eω , where ω := (−1 +

√−3)/2. Let X4 (resp. X6, resp. X3) be the

canonical resolutions of the quotient threefolds

E√−1 × E√−1 × E√−1/〈
√−1I3〉 , Eω × Eω × Eω/〈−ωI3〉 , Eω × Eω × Eω/〈ωI3〉

i.e., the blow up at the maximal ideals of singular points. As is well known, X3 is a CY

threefold [3]. It is analytically rigid, but plays an important role in the classification of CY

threefolds in the view of the second Chern class [66, 76]. Our X3, X6, X4 provide the first
examples of a Calabi-Yau threefold and smooth rational threefolds with primitive biregular
automorphisms of positive entropy:

Theorem 5.8.

(1) Both X6 and X4 are rational.

(2) Moreover, X3, X6, X4 admit primitive biregular automorphisms of positive entropy.

(1) is proved by Truong and myself for X6 [79], and by Colliot-Thélène [26] for X4 via

[24] both answering a question of Ueno and Campana [17, 86]). (2) is proved by Truong and

myself [79].
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The most crucial parts are the rationality of X6 and X4 and finding primitive automor-

phisms. One of the key steps for the rationality is the following result ([79], [24]) shown via

determination of the rational function fields:

Theorem 5.9. Let (s, t, z, w) be the standard affine coordinates of C4. Then:

(1) X4 is birational to the hypersurface H4 in C4 defined by

(t2 − z)(s2 − w3) = (s2 − w)(t2 − z3) .

(2) X6 is birational to the hypersurface H6 in C4 defined by

(w3 − 1)(t2 − 1) = (z3 − 1)(s2 − 1) .

The projection p34 : (t, s, z, w) !→ (z, w) gives the conic bundle structures on H4 and

H6; p34 : H4 → C2, p34 : H6 → C2. It is clear that (t, s, z, w) = (1, 1, z, w) is a

section of p34 : H6 → C2, and therefore H6 is rational. p34 : H4 → C2 does not admit a

rational section. However, Colliot-Thélène [26] shows that the conic bundle p34 : H4 → C2

is birational to the conic bundle p34 : (H4)
′ → C2 over the same base. Here (H4)

′ is
the affine hypersurface defined by t2 − zs2 − w = 0. This process is not explicit, but a

consequence of the fact that these two conic bundles define the same element of the Brauer

group Br (C(z, w)) of the base space C2 [26]. (H4)
′ is rational as w = t2 − zs2, whence

so is H4.

Let us give an example of primitive biregular automorphisms of positive entropy of X3,

X6, X4. Let us consider the matrix

P = Pa =

⎛
⎝ 0 1 0

0 0 1
−1 3a2 0

⎞
⎠ ,

where a is an integer such that a ≥ 2. Since detP = 1, P naturally defines Lie automor-

phisms g3 = g6, g4 of (Eω)
3 and (E√−1)

3. By the construction and by the universality of

blowing-up, the automorphisms gk descends to the biregular automorphisms, say fk, ofXk.

The eigenvalues of α, β, γ of P are real numbers with |α| > |γ| > 1 > |β|. By using α,
β, γ, one can compute that d1(gk) = α

2 and d2(gk) = α
2γ2. Thus d2(gk) > d1(gk) > 1.

Then d2(fk) > d1(fk) > 1 by Corollary 3.13. Hence fk provide desired automorphisms by

Corollary 3.14 (2).

Question 5.10. It is interesting to connect X6 and X4 to P3 by explicit blowing-ups and
blowing-downs along smooth centers. This is in principle possible by [1]. In the view of
Question 5.6, it is quite interesting to see if one can obtain X6 and/or X4 only by blowing-
ups of P3 along smooth centers or not.

6. Birational automorphisms of HK manifolds

6.1. Some generalities. We assume some familiarity with basics on HK manifolds. Excel-

lent references are [41], Part III before Verbitsky’s Torelli theorem [87] and [56] after that.

We only recall that any HK manifold admits a non-degenerate integral symmetric bilinear
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form, called Beauville-Bogomolov form (BB-form, for short), bM (∗, ∗∗) : H2(M,Z) ×
H2(M,Z) → Z with signature (3, b2(M) − 3), being compatible with Hodge decompo-

sition and invariant under deformation and Bir (M). We denote by S[n] = Hilbn(S) the
Hilbert scheme of the 0-dimensional closed subschemes of lengths n ≥ 2 on a K3 sur-

face S. S[n] is a HK manifold of dimension 2n and of ρ(S[n]) = ρ(S) + 1. Through the

Hilbert-Chow morphism S[n] → Symn S, we have a natural identification as Z-modules,

H2(S[n],Z) = H2(S,Z) ⊕ Ze, where e = [E]/2, the half of the exceptional divisor E of

the Hilbert-Chow morphism. Under the BB-form b(∗, ∗∗), the above isomorphism is also an

isometry with (e2) = −2(n− 1).

6.2. Rough structure theorem on birational automorphisms. LetM be a HK manifold

of dim M = 2n. We have the following Tits’ alternatives:

Theorem 6.1. Let G < Bir (M). Then:

(1) For each (M,G), either one of the following two holds:

(i) G is an almost abelian group of rank r, i.e., G is isomorphic to Zr (r ≥ 0) up to
finite kernel and cokernel, or

(ii) G is essentially non-commutative, i.e., G contains a free subgroup Z ∗ Z.
(2) (ii) happens only ifM is projective and ρ(M) ≥ 3. Moreover, in case (ii), there are

(many) f ∈ G such that d1(f) > 1. In particular, if in addtion G ⊂ Aut (M), then
there are (many) f ∈ G with htop(f) > 0 in the case (ii).

This is proved by [68–70]. The essential part is as follows. The natural representation

r : G → GL (H2(M,Z)) has a finite kernel (Remark 2.8) for projective case and [44] for

general case). Thus G is well approximated by the image G∗ := r(G). Then, the funda-

mental result of Tits (Theorem 6.2) reduces the problem to showing that if G∗ is virtually

solvable, then it is an almost abelian group of finite rank. This can be done by using the

additional strong condition that G∗ is a subgroup of OHodge(H
2(M,Z)).

Theorem 6.2. Any groupH < GL (n, k) (k is a field of characteristic 0) satisfies either one
of the following two:

(1) H has a solvable subgroup of finite index (virtually solvable), or

(2) H is essentially non-commutative, i.e., H contains Z ∗ Z.
Remark 6.3. Tits’ alternative type result with the same form as in Theorem 6.1 does not

hold in general. However, some meaningful different formulation is proposed and proved

for the biregular automorphism group of any compact Kähler manifold ([50, 91], see also

[29, 32]).

One can also compute the dynamical degrees and entropy [71]:

Theorem 6.4. For any f ∈ Aut (M) of any HK manifoldM , the dynamical degrees dk(f)
are all Salem numbers or 1. More precisely, d2n−k(f) = dk(f) = d1(f)k for all 0 ≤ k ≤
n = dim M/2. In particular, if d1(f) > 1, then

1 = d0(f) < d1(f) < · · · < dn−1(f) < dn(f) > dn+1(f) > · · · > d2n(f) = 1 ,

and htop(f) = n log d1(f) > 0 (resp. 0) if d1(f) > 1 (resp. d1(f) = 1).
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6.3. A few examples. By the definition of S[n], we have a natural inclusion Aut (S) ⊂
Aut (S[n]). This shows that if Aut (S) is infinite, then so is Aut (S[n]). So, contrary to the

case of CY manifolds and rational manifolds, there are many examples of HK manifold with

many biregular automorphisms.

Example 1 - Non-projective primitive automorphism of positive entropy. Let (S, f) be
as in Theorem 4.5. SetM = S[n] and denote by fM ∈ Aut (M) the automorphism naturally

induced by f . We have d1(fM ) = d1(f) = a, the Salem number, and therefore htop(fM ) =
n log a > 0. Since S has no non-constant global meromorphic function (as ρ(S) = 0), the
same is true forM . ThenM has no rational fibration [18]. Hence fM is primitive as well.

We also see that Bir (M) = Aut (M) = 〈fM 〉 � Aut (S) � Z.

Example 2 - The case where Picard number 2. We have the following:

Theorem 6.5.

(1) Let S be a projective K3 surface with ρ(S) = 1. Then, ρ(S[n]) = 2 but Bir (S[n]) is a
finite group.

(2) There is a projective HK fourfoldM deformation equivalent to S[2] such that ρ(M) =
2, Aut (M) = Bir (M) is almost abelian group of rank 1 with element of positive en-
tropy. More specifically,M with NS (M) � (Z[η], 4Nm(∗)), “the same Néron-Severi
lattice as Cayley’s K3 surface”, gives such an example. In particular, 2 is the minimal
Picard number of projective HK manfolds of dimension ≥ 4 with automorphism of
positive entoropy (cf. Remark 2.8).

(1) is observed by [75]. Unlike Cayley’s K3 surfaces, our M in (2) is highly non-

constructible. However, it is likely true that M in (2) has a primitive automorphism of
positive entropy (not yet settled).

Example 3 - Projective HK manifold of Picard number 3. Let S ⊂ P3 be a smooth

quartic surface. Then for two general points P,Q in S, the line PQ in P3 meets S in four

points, say, P , Q, P ′, Q′. The correspondence {P,Q} !→ {P ′, Q′} defines a birational

automorphism ιS of S[2] of order 2, called the Beauville involution [3]. If S has no line, then

ιS is biregular. Note that ιS ∈ Bir (S[2]) \Aut (S) under Aut (S) ⊂ Aut (S[2]).
Let S be a Cayley’s K3 surface. Identifying S = S0 ⊂ P3, our S has three different

embeddingsΦk : S → Sk ⊂ P3 (k = 0, 1, 2) under the notation in Example 3 in Subsection

(4.2). Let ιk be the Beauville involution with respect to the embedding Φk. We have the

following theorem similar to Theorem 5.3:

Theorem 6.6. Let S be a Cayley’s K3 surface. Then,

Bir (S[2]) = Aut (S[2]) = 〈ι0, ι1, ι2〉 and g = ι0 ◦ ι1 ◦ ι2 ,
under the natural inclusion 〈g〉 = Aut (S) ⊂ Aut (S[2]). Moreover, Aut (S[2]) has a
subgroup isomorphic to the free product Z ∗ Z, hence admits an automorphism of positive
entoropy (Theorem 6.1). In particular, [Aut (S[2]) : Aut (S)] = ∞ and 3 is the minimal Pi-
card number of projective HK manfolds of dimension ≥ 4 with essentially non-commutative
automorphism group.

One of interesting fact is that we have the second factorization g = ι0 ◦ ι1 ◦ ι2 in S[2],

which looks similar to , but completely different from, the factorization that Cayley found
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in P3 (Example 3 in Subsection (4.2)). Another interesting fact is that Aut (S[2]) becomes

much bigger than Aut (S) in this example, which makes a sharp contrast to the following

open question, called the naturality question, posed by Boissière and Sarti [14, 15]):

Question 6.7. Is Aut (S) = Aut (S[m]) under the natural inclusion form ≥ 3?
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Local mirror symmetry in the tropics

Mark Gross and Bernd Siebert

Abstract. We discuss how the reconstruction theorem of [20] applies to local mirror symmetry [11].

This theorem associates to certain combinatorial data a degeneration of (log) Calabi-Yau varieties.

While in this case most of the subtleties of the construction are absent, an important normalization

condition already introduces rich geometry. This condition guarantees the parameters of the construc-

tion are canonical coordinates in the sense of mirror symmetry. The normalization condition is also

related to a count of holomorphic disks and cylinders, as conjectured in [20] and partially proved in

[7–9]. We sketch a possible alternative proof of these counts via logarithmic Gromov-Witten theory.

There is also a surprisingly simple interpretation via rooted trees marked by monomials, which points

to an underlying rich algebraic structure both in the relevant period integrals and the counting of holo-

morphic disks.

Mathematics Subject Classification (2010). Primary 14J33; Secondary 14J32, 14T05.

Keywords. local mirror symmetry, tropical curves, Gross-Siebert program.

1. Introduction

In [18, 20], we proposed a mirror construction as follows. We begin with a polarized degen-

erating flat family X → T = SpecR of n-dimensional Calabi-Yau varieties where R is a

complete local ring. We consider only degenerations of a special sort which we term toric de-
generations, see [18], Def. 4.1. Roughly, these are degenerations for which the central fibre

is a union of toric varieties glued along toric strata, and such that the map X → T is locally

given by a monomial near the zero-dimensional strata of the central fibre X0. Associated to

this degeneration we construct the dual intersection complex (B,P, ϕ), where

(a) B is an n-dimensional integral affine manifold with singularities (possibly with bound-

ary). In other words, B is a topological manifold with an open subset B0 with

Δ := B \ B0 of codimension ≥ 2, such that B0 has an atlas of coordinate charts

whose transition maps lie in Aff(Zn), the group of integral affine transformations.

(b) P is a decomposition of B into convex lattice polyhedra (possibly unbounded). The

singular locusΔ is typically the union of codimension two cells of the first barycentric

subdivision of P not intersecting the interior of a maximal cell of P nor containing

a vertex of P . There is a one-to-one inclusion reversing correspondence between ele-

ments ofP and toric strata ofX0. The local structure ofP near a vertex is determined

by the fan defining the corresponding irreducible component. The maximal cells of

P are determined by the toric structure of the map X → T near the corresponding

zero-dimensional strata of X0.
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(c) ϕ is a multi-valued piecewise affine function. This is a collection {(Ui, ϕi)} of R-
valued functions ϕi on an open cover {Ui} of B, with each ϕi piecewise affine linear
with respect to the polyhedral decomposition P , and ϕi − ϕj being affine linear on

Ui∩Uj . We assume the slopes of the ϕi on cells of P to be integral. In this case, ϕ is

determined by the polarization on X , with local representatives near vertices given by

a piecewise linear function defined by restricting the polarization to the corresponding

irreducible component.

Given this data, we obtain the mirror to the degeneration X → T by reinterpreting

(B,P, ϕ) as the intersection complex of another polarized toric degenerationY → Spec k�t�
(in the projective case). This time, there is a one-to-one inclusion preserving correspondence

between cells of P and toric strata of X0, the central fibre of this new degeneration. The

cells of P are the Newton polytopes for the polarization restricted to the various strata of

X0, and ϕ is determined by the local toric structure of the map near zero-dimensional strata.

The prime difficulty in the program lies in reconstructing Y → Spec k�t� from the data

(B,P, ϕ). The main result of [20] gives an algorithm for constructing a structure S of

walls which tell us how to construct the degeneration.

More recently [15] has considered families constructed using the technology of [20] over

higher dimensional base schemes. This represents a modification of the above procedure. In

the typical example, instead of choosing a fixed polarization on Y , one chooses a monoid

P of polarizations. Let Q = Hom(P,N) be the dual monoid. Then this data determines a

multi-valued piecewise linear function ϕ taking values in Qgp
R := Qgp ⊗Z R. If m is the

maximal monomial ideal of k[Q], and k̂[Q] denotes the completion of k[Q] with respect to

this ideal, then the construction gives a family Y → Spec k̂[Q].
The history of the problem of associating a geometric object (complex manifold, non-

Archimedean space, toric degeneration...) to an integral affine manifold with singularities

began with work of Fukaya [12]. Fukaya gave a heuristic suggesting that one should be

able to construct the mirror to a K3 surface using objects that look like structures in two

dimensions (in two dimensions, we can think of a structure as just consisting of a possibly

infinite number of unbounded rays). Fukaya observed that holomorphic disks with boundary

on fibres of an SYZ fibration ([27]) gave similar pictures of structures on the mirror side. In

2004, Kontsevich and Soibelman in [26] gave the first construction of a structure, showing

how given a two-dimensional affine sphere with singularities one could construct a consistent

structure and from this structure a non-Archimedean K3 surface. We combined the picture of

toric degenerations we had been developing independently of the above-mentioned authors

with some ideas from [26], allowing us to construct degenerations from structures in all

dimensions in [20].

In the first two sections of this paper, we shall illustrate the program by carrying it out

completely for toric Calabi-Yau manifolds, a case usually referred to as local mirror sym-

metry [11]. This particular case can be viewed as being complementary to the case that the

ideas of [26] were able to handle. In the remaining sections, we shall analyze enumerative

meaning and a tropical interpretation of this construction.

2. Degenerations of toric Calabi-Yau varieties

Our running example is the construction of the mirror of what is called “local P2”, the total

space X of the canonical bundle KP2 over P2. Since X itself is a toric variety, its anti-
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canonical divisor −KX is linearly equivalent to the sum of toric divisors. There are four

toric divisors, the zero section S ⊂ X , which is the maximal compact subvariety of X ,

and the preimages F0, F1, F2 of the three coordinate lines in P2 under the bundle projection

X → P2. Toric methods show that S + F0 + F1 + F2 ∼ 0 and hence X is a non-compact

Calabi-Yau threefold. The normal bundleNS|X = OP2(−3) is determined by the adjunction

formula from the Calabi-Yau condition and it is the dual of an ample line bundle. Hence,

by a result of Grauert [13], any embedded P2 in a Calabi-Yau threefold has an analytic

neighbourhood biholomorphic to an analytic neighbourhood of S in X .

For the general description, fix throughoutM = Zn,MR =M⊗ZR, N=HomZ(M,Z).1
Let σ ⊆MR be a compact lattice polytope, and assume 0 ∈ σ. Define

C(σ) = {(rm, r) |m ∈ σ, r ∈ R≥0} ⊆MR ⊕ R.

The cone C(σ) viewed as a fan defines an affine toric variety Xσ . A polyhedral decom-

position P of σ into standard simplices leads to a fan Σ = {C(τ) | τ ∈ P} which is a

refinement of C(σ). This yields a toric resolution of singularities XΣ → Xσ . Assume also

that the fan Σ supports at least one strictly convex piecewise linear function.

For the case of local P2 take n = 2 and σ = Conv{(1, 0), (0, 1), (−1,−1)}, where
Conv(S) denotes the convex hull of the set S. Then the dual cone C(σ)∨ is C(σ∗), the
cone over the polar polytope σ∗ with vertices (−1,−1), (2,−1), (−1, 2). It turns out that
Xσ = Spec(C[C(σ)∨ ∩ Z3]) is the cyclic quotient A2/Z3 with Z3 acting diagonally on the

coordinates by multiplication with third roots of unity. Taking the polyhedral decomposition

as shown in Figure 2.1 yields forXΣ the blowing up of the origin ofXσ . One can show that

XΣ is the total space of KP2 and the map to Xσ is the contraction of the zero section. Note

also that the projection C(σ) → MR defines a map from Σ to the fan of P2, which indeed

corresponds to the bundle projection XΣ → P2.

In general, the map XΣ → Xσ has a reducible exceptional locus, with one component

for each vertex of P that is not a vertex of σ, and the explicit description of the geometry is

more complicated.

It turns out that constructing a mirror toXΣ does not fit well with our program. The rea-

son is that XΣ does not seem to possess a fibration by Lagrangian tori of the kind expected

by mirror symmetry [16]. Rather, such a fibration will exist only after removal of a hypersur-

face in XΣ that is disjoint from the exceptional fibre of XΣ → Xσ . To run our program we

could give an ad hoc construction of an affine manifold with singularities derived from the

fan Σ or write down a toric degeneration of XΣ. The local P2 case has been discussed from

the former point of view in [21], Examples 5.1 and 5.2. Since it can be done easily in the

present case we follow the latter method here. This method is motivated by the construction

of toric degenerations of hypersurfaces in toric varieties in [17].

To exhibit XΣ as an anticanonical hypersurface in a toric variety we embed the fan Σ in

MR ⊕ R as a subfan of a fan Σ̃ inMR ⊕ R2. For each maximal cone C ∈ Σ the fan Σ̃ has

two maximal cones

C1 = C × 0 + R≥0 · (0, 1,−1), C2 = C × 0 + R≥0 · (0, 0, 1).
ThenΣ is the subfan of Σ̃ consisting of cones lying in the hyperplaneMR⊕R⊕0 ⊂MR⊕R2.

The fan Σ̃ only has two rays not contained in Σ, with generators (0, 0, 1) and (0, 1,−1).
The inclusion MR ⊕ R ⊕ 0 ⊂ MR ⊕ R2 induces a map of fans from Σ to Σ̃, hence an

1Since M,N will eventually be treated as data for the mirror side our conventions in this section are opposite

to the usual ones in toric geometry.
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embedding j : XΣ ↪→ XΣ̃ identifying XΣ with the closure of the orbit of the subtorus

defined by this inclusion through the distinguished point (the unit of the toric variety). Note

that the projection to R2 maps Σ̃ to the fan Σ
Â2 of the toric blowing up Â2 of A2, with rays

generated by (0, 1), (1, 0), (1,−1). Under this map the subfanΣ ⊂ Σ̃maps to the interior ray

R≥0 · (1, 0). Viewing this interior ray as giving a map of fans, from the one-dimensional fan

defining A1 to the two-dimensional fan defining Â2, we obtain an embedding i : A1 ↪→ Â2.

We thus obtain a cartesian diagram of toric morphisms

XΣ
j−−−−→ XΣ̃

p

⏐⏐H ⏐⏐Hq
A1 i−−−−→ Â2

The left vertical arrow is induced by the projection MR ⊕ R → R, hence is given by the

pull-back to XΣ of the distinguished monomial x on Xσ defining the toric boundary as a

reduced subscheme.

Explicitly, write x, y for the toric coordinates on A2 and Â2 = (xu−yv = 0) ⊂ A2×P1

for the blowing up. Then im(i) is the strict transform of the diagonal x = y. Dehomoge-

nizing u = 1 or v = 1 we obtain the usual two coordinate patches with coordinates y, v and
x, u respectively with the transitions v = u−1 and x = yv or y = xu. We use the same

notation for the pull-back of x, y, u, v to the corresponding two types of affine patches with

u �= 0 or v �= 0 of XΣ̃.

To describe XΣ̃ let C ∈ Σ be a maximal cone. Then if (m, a) ∈ N ⊕ Z defines a facet

C ′ ⊂ C, that is, (m, a) generates an extremal ray of C∨, the element (m, a, a) ∈ N ⊕ Z2

defines the facet C ′ + R≥0(0, 1,−1) of C1. There is only one more facet of C1, namely C
itself, defined by (0, 0,−1), and hence

C∨1 = {(m, a, a) | (m, a) ∈ C∨}+ R≥0 · (0, 0,−1).

The rays of C∨2 are generated by (m, a, 0) for (m, a) an extremal ray of C∨, and by (0, 0, 1),
so C∨2 = C∨ × 0 + R≥0(0, 0, 1). In either case, we have an identification

Spec k[C∨i ∩ (N ⊕ Z2)] = Spec k[C∨ ∩N ]× A1 ⊂ XΣ × A1.

The toric coordinate for A1 is v = z(0,0,−1) for C1 and u = z(0,0,1) for C2. From this

description it is clear that the embedding of XΣ in XΣ̃ is given by u = 1 in affine patches

with v �= 0 and by v = 1 in the affine patches with u �= 0.
To write down a degeneration of XΣ to the toric boundary ∂XΣ̃ ⊂ XΣ̃ view u, v as

sections of the line bundle q∗O(−E) where E ⊂ Â2 is the exceptional curve. Then XΣ is

the zero locus of s := u− v. On the other hand, xu = yv defines a section s0 of q
∗O(−E)

with zero locus ∂XΣ̃. Thus the hypersurface X ⊂ XΣ̃ × A1 with equation

ts+ s0 = 0

defines a pencil in XΣ̃ with members XΣ at t = ∞ and with the toric boundary ∂XΣ̃ at

t = 0. Note this pencil is the preimage of the pencil on Â2 defined by the same equations.

In particular, by direct computation Xt is completely contained in either type of coordinate

patch for t �= 0. Working in a patch with v �= 0we have s = u−1, s0 = xu and the equation

0 = ts+ s0 = t(u− 1) + xu = u(t+ x)− t
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shows u(t + x) = t �= 0. Thus t + x �= 0 and u can be eliminated. In other words,

Xt � XΣ \ Zt with Zt ⊂ XΣ the hypersurface x = −t. Note also that our notation is

consistent in that x indeed descends to the defining equation of the toric boundary of Xσ .

It is not difficult to show that X → A1 is a toric degeneration. Indeed, we have already

checked that X0 is the toric boundary of XΣ̃. Some harder work shows that locally near the

zero-dimensional strata of X0, the projection X → A1 is toric. We omit the details, but this

can be done similarly to arguments given in [17].

The dual intersection complex is then easily described along the lines given in [17],

where, for a Calabi-Yau hypersurface in a toric variety, B was described as the boundary of

a reflexive polytope, with the cones over the faces of the polytope yielding the fan defining

the ambient toric variety. Topologically, we can write B ⊆MR ⊕ R2 as

B = σ̃1 ∪ σ̃2
where

σ̃1 = Conv
(
(0, 1,−1) ∪ (σ × {(1, 0)})),

σ̃2 = Conv
(
(0, 0, 1) ∪ (σ × {(1, 0)})).

Note that the support of the fan Σ̃ above is the cone over σ̃1 ∪ σ̃2. We then take P =
{C ∩B |C ∈ Σ̃}.

Finally, the affine structure onB is defined as follows. Identify σ with σ×{(1, 0)} ⊆ B,
and take the discriminant locusΔ to be the union of cells of the first barycentric subdivision

of P not containing vertices of P , see Figure 2.1. We then define affine charts as follows.

First, we define affine charts ιi : σ̃i \ σ ↪→ Ai as the inclusions, where Ai denotes the

affine hyperplane in MR ⊕ R2 spanned by σ̃i. Second, for each vertex v ∈ P , choose a

neighbourhood Uv of (v, 1, 0) ∈ B. These neighbourhoods can be chosen so that Uv∩Uv′ =
∅ if v �= v′ and the two sets σ̃i \ σ along with the open sets Uv cover B \ Δ. Define a chart

ιv : Uv → (MR ⊕ R2)/R(v, 1, 0) via the inclusion followed by the projection. It is easy

to check that these charts give an integral affine structure. This again precisely follows the

procedure for Calabi-Yau hypersurfaces in toric varieties considered in [17]. This gives rise

to the pair (B,P).

B(σ, P̄)

Figure 2.1. On the left is the initial polytope with its decomposition. We take the vertices of σ to be

(1, 0), (0, 1) and (−1,−1). On the right is the resulting B with its discriminant locusΔ, indicated by

the dotted line.

In general, a pair (B,P) can be described by specifying the lattice polytopes in P and

specifying a fan structure at each vertex v, that is, the identification of a neighbourhood of



728 Mark Gross and Bernd Siebert

each vertex with the neighbourhood of 0 in a fan Σv . This identification gives a one-to-

one inclusion preserving correspondence between cells of P containing v and cones of Σv ,
along with integral affine identifications of the tangent wedges of each cell τ ∈ P containing

v with the corresponding cone of Σv . These identifications patch together to give an affine

chart in a neighbourhood of the vertex v.
In our example, it is worth describing the fan structure at a vertex v ∈ σ. Since the fan

structure at a vertex must be the fan yielding the corresponding irreducible component of

X0, toric geometry tells us this fan structure must be given as the quotient fan obtained from

Σ̃ by dividing out by the ray generated by this vertex. Explicitly, we use the chart

ιv : Uv → (MR ⊕ R2)/R · (v, 1, 0) ∼=MR ⊕ R, (2.1)

the latter isomorphism given by (m, r1, r2) !→ (m − r1v, r2). The fan Σv can then be

described as the fan of tangent wedges to images of cells τ ∈ P containing v. The set of
maximal cones of this fan, described as subsets ofMR ⊕ R, is

{Tvτ + R≥0(−v,−1) | v ∈ τ ∈ Pmax} ∪ {Tvτ + R≥0(0, 1) | v ∈ τ ∈ Pmax}, (2.2)

where Tvτ denotes the tangent wedge to v ∈ τ inMR ⊕ 0. Figure 2.2 shows some of the fan

structures when σ is an interval [−1, 1] of length two.

(B,P)

Figure 2.2.

One can understand the nature of the singularities of B by studying the local system Λ
of integral vector fields on B0. Given integral affine coordinates y1, . . . , yn, Λ is locally the

family of lattices in the tangent bundle of B0 generated by ∂/∂y1, . . . , ∂/∂yn. If v, v
′ ∈ P

are adjacent vertices, consider a path γ passing from v through σ̃1 to v
′ and then through σ̃2

back to v. To identify Λv , we can use the chart (2.1), which gives an identification of Λv
with M ⊕ Z. It is an easy exercise to check that parallel transport in Λ around γ yields a

monodromy transformation

Tvv′ : Λv → Λv

(m, r) !→ (m+ r(v − v′), r) (2.3)

The final piece of data for the dual intersection complex (B,P, ϕ) of X → A1 is a

multi-valued piecewise linear function ϕ describing aspects of the Kähler geometry of the

situation.

In the next section, we will build the mirror family over some base scheme. The natural

choice for this base is related to the Kähler cone of XΣ, or the Picard group. By toric
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geometry, Pic(XΣ) equals piecewise linear functions on Σ modulo linear functions. It will

thus be convenient to normalize the piecewise linear functions as follows. Choose a maximal

cell τ ∈ Pmax which has 0 as a vertex. Let P be the monoid of integral convex piecewise

linear functions on the fan Σ which take the value 0 on the cone C(τ). Note that P gp ∼=
PicXΣ. Setting Q := Hom(P,N), there is a universal piecewise linear function ψ : |Σ| →
Qgp

R , with

ψ(x) = (P 8 ϕ !→ ϕ(x)).

This function is strictly convex in the sense of [14], Definition 1.12. In the local P2 case

normalized piecewise linear functions are determined by the value at the one remaining

vertex of σ not contained in τ and hence Q = N.
The multi-valued piecewise linear function ϕ comes from the universal piecewise linear

function ψ on |Σ| by descent to a quotient fan, or rather from a choice of extension of this

function to Σ̃. This choice can be made by choosing an element q ∈ Q \ {0}. While the

choice of q affects the family of polarizations on XΣ̃, it does not affect the family after

restriction to Xt for t �= 0. However, it does affect the polarization on X , and hence will play

some role in the mirror, seen explicitly in (3.7). We take ψ̃ to be the Qgp
R -valued piecewise

linear extension of ψ which takes the value 0 at (0, 1,−1) and the value q at (0, 0, 1). One
can check that this function is strictly convex in the sense of [14], Definition 1.12.

We can then construct ϕ from ψ̃ as follows. For each C ∈ Σ̃, let τ = C ∩ B be

the corresponding cell of P . The function ψ̃ induces a function on the quotient fan of

Σ̃ along C (this quotient fan determining the fan structure of B along τ ) as follows. Let

ψ̃τ ∈ Hom(M ⊕ Z2, Q) be a linear extension of ψ̃|C . Then ψ̃ − ψ̃τ is a piecewise affine

function on Σ̃ vanishing on C, hence descending to the quotient fan of Σ̃ along C. We take

(ψ̃ − ψ̃τ )|B as a representative of ϕ on a small open neighbourhood of Int(τ) in B; this is
clearly the pull-back of the corresponding function on the quotient fan of Σ̃ along C under

the projection to (MR ⊕ R2)/RC.

3. The mirror degeneration and slab functions

Having described (B,P, ϕ) in our example as the dual intersection complex of a degenera-

tion of the local Calabi-Yau XΣ, we turn to the construction of the mirror, which shall be a

family Y → Spec k̂[Q] over a generally higher-dimensional base.

This family is constructed by constructing families Yk → Spec k[Q]/mk+1 to each order

k, giving rise to a formal scheme Ŷ → Spf k̂[Q]. As the case at hand will be projective, the

Grothendieck existence theorem gives rise to the desired family. Alternatively, Y can be

constructed using a graded ring of theta functions, following [15].

Here is a brief summary of the construction. The central fibre Y0 can be described as

Y0 =
⋃

σ∈Pmax

Pσ

where Pmax denotes the maximal cells of P and Pσ is the toric variety (projective if σ
is compact) determined by the polyhedron σ. These toric varieties are glued together in

a manner reflecting the combinatorics of P: if σ1 ∩ σ2 = τ , then the strata Pτ ⊆ Pσ1 ,

Pτ ⊆ Pσ2 are identified.



730 Mark Gross and Bernd Siebert

Local models for the kth order deformation of Y0 are determined by the function ϕ. A
key point of the construction involves an invariant description for the local models, which

we explain here. The function ϕ, defined on an open cover {Ui} by single-valued functions

ϕi : Ui → Qgp
R , determines an extension of Λ byQgp, the constant sheaf with coefficients in

Qgp. Indeed, on Ui ∩B0, this extension will split as Λ|Ui ⊕Qgp, and on the overlap, (m, r)
as a section of Λ|Ui

⊕Qgp is identified on Ui∩Uj with (m, r+d(ϕj −ϕi)(m)) as a section
of Λ|Uj ⊕Qgp, interpreting d(ϕj−ϕi) ∈ Hom(Λ|Ui , Q

gp). We then have an exact sequence

0 → Qgp → P → Λ → 0 (3.1)

on B0. We write the map P → Λ as m !→ m̄. After choosing a representative ϕi of ϕ in a

neighbourhood of a point x ∈ B0, the stalk Px is identified with Λx ⊕ Qgp. There is a fan

Σx = {Txσ |x ∈ σ ∈ P} (of not-necessarily strictly convex cones), where Txσ denotes the

tangent wedge to σ at x. This allows us to define a convex PL function ϕx : |Σx| → Qgp
R

whose slope on Txσ coincides with the slope of ϕi|σ . We then set

Px := {(m, q) |m ∈ Λx ∩ |Σx|, q ∈ Qgp, q − ϕx(m) ∈ Q} ⊆ Px (3.2)

While this definition as described inside of Λx ⊕Q depends on the choice of representative,

in fact it is independent of this choice when viewed as a submonoid of Px.
Note that Q acts naturally on Px, giving k[Px] a k[Q]-algebra structure. For a vertex v,

we can now view Spec k[Pv]/mk+1 as a local model for the kth order deformation of Y0 in
a neighbourhood of the stratum of Y0 corresponding to v. In addition, the local system P
gives a method of defining parallel transport of monomials.

Let us describe certain aspects of this construction for our local mirror symmetry ex-

ample. Using the fan structure given by (2.2), we can describe the monoid Pv ⊆ Pv as

{(m, r, s) | s− ϕv(m, r) ∈ Q} ⊆M ⊕ Z⊕Qgp using the identifications

Pv ∼= Λv ⊕Qgp ∼=M ⊕ Z⊕Qgp (3.3)

induced first by the representative ϕv at v and second by the affine coordinate chart on Uv .
In particular, for the purposes of the discussion below, we can describe the most relevant part

of Pv as follows. First, we choose the representative ϕv by choosing the linear function ψ̃v
to be (0, ψ̄(v), 0) ∈ (N ⊕ Z2)⊗Z Q

gp, with ψ̄ = ψ|σ×{1}. Let P̄v ⊆ Pv be the submonoid

consisting of m ∈ Pv with m̄ tangent to σ. Then P̄v is naturally described in terms of ψ̄.
Indeed, consider the convex hull of the graph of ψ̄,

Ξψ̄ := {(m, 0, s) |m ∈ σ, s− ψ̄(m) ∈ Q} ⊆MR ⊕ R⊕Qgp
R ,

an unbounded polyhedron with vertices mapping to vertices ofP under the projectionMR⊕
R ⊕ Qgp

R → MR. Then we can identify P̄v with the integral points in the tangent wedge of

Ξψ̄ at (v, 0, ψ̄(v)).
We also note that under the identification (3.3) of Pv , the monodromy of Λ described in

(2.3) lifts to a monodromy transformation of Pv given by
Tvv′ : Pv → Pv
(m, r, q) → (m+ r(v − v′), r, q + r(ψ̄(v)− ψ̄(v′))) (3.4)

The key additional (and usually most complex) ingredient for constructing Yk is a struc-
ture S . A structure encodes data about how certain forms of these local models are glued
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together. We will explain this structure in our example, but not go into too much detail. A

more detailed explanation for how this works is given in the expository paper [21].

The structure takes a particularly simple form here. In general, a structure is a collection

of walls, polyhedral cells in B of codimension one each contained in a cell of P carrying

the additional data of certain formal power series. In [20] we distinguish a special sort of

wall, namely those contained in codimension one cells, and call them slabs. They tend to

have a different behaviour. In the case at hand, only slabs appear, and these cover σ. The
functions attached to the slabs are determined from the monodromy around the discriminant

locusΔ.

In this example, the slabs are the sets τ×{(1, 0)} for τ ∈ Pmax. For a slab b, associated
to any point x ∈ b \ Δ is a formal power series fb,x =

∑
m∈Px

cmz
m. This should only

depend on the connected component of b \ Δ containing x, so there is in fact one such

expression for each vertex v of τ , and we can write fb,v =
∑

m∈Pv
cmz

m. Furthermore,

cm �= 0 implies m̄ is tangent to b, so in fact the sum is overm ∈ P̄v .
The series fb,v are completely determined by a number of simple properties. This follows

in the case under consideration from having chosen P to consist of standard simplices. In

what follows we will want to compare fb,v with fb,v′ for different vertices v, v
′ of b. To do

so, we use parallel transport in P from v to v′. Given the identification Pv withM⊕Z⊕Qgp

used to give the formula (3.4) and noting that only monomials of the form z(m,0,p) can appear
in fb,v , we see that the particular path chosen between v and v

′ is irrelevant.
We can now state the conditions determining the fb,v:

1. The constant term of each fb,v is 1.

2. If v and v′ are adjacent vertices of b, then the corresponding slab functions are related
by

fb,v′ = z
(v−v′,0,ψ̄(v)−ψ̄(v′))fb,v. (3.5)

Here the equality makes sense after parallel transport of the exponents from v to v′ in
the local system P , and (v− v′, 0, ψ̄(v)− ψ̄(v′)) ∈ Pv′ using the identification of Pv′
given by (3.3).

3. log fv contains no terms of the form zq for q ∈ Q \ {0}. Here we view Q ⊆ Pv via

the natural inclusion Qgp ⊆ Pv .
4. If v lies in slabs b, b′, then fb,v = fb′,v .

Item 1 is a normalization which originated in [18], Def. 4.23. However, we shall see

its enumerative importance in §4. Item 2 is the crucial point of slabs: they allow us to

define parallel transport of monomials through slabs in a way which cancels the effects of

monodromy. We shall say more about this shortly. The condition 3 is interpreted by writing

fv = 1 + · · · and using the Taylor expansion for log(1 + x) =
∑∞

i=1(−1)i+1xi/i. This

can be interpreted inside some suitably completed ring. After expanding out each expression

(· · · )i, one demands that no monomials of the form zq appear for any q ∈ Q \ {0}. Finally,
4 tells us how expressions propagate across σ × {1}.

To see the significance of the second condition, let w ∈ Int(σ̃1), w
′ ∈ Int(σ̃2). Suppose

we want to compare monomials defined at w (that is, monomials with exponent in Pw) with
monomials defined at w′ (that is, monomials with exponent in Pw′ ). If we parallel transport
from Pw to Pw′ , the result depends on the path. For example, let v, v′ be adjacent vertices
of τ ∈ Pmax. Let Tv , Tv′ denote parallel transport in Λ from w to w′ via the vertices v and
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v′ respectively. Then from (3.4), it follows that for (m, r, q) ∈ Pw =M ⊕ Z⊕Q,
Tv′(m, r, q)− Tv(m, r, q) =

(
r(v − v′), 0, r(ψ̄(v)− ψ̄(v′)).

For convenience, we can identify Pw and Pw′ with Pv so that Tv is the identity. This

difference between Tv and Tv′ creates problems for comparing the rings k[Pw] and k[Pw′ ].
However, we can follow the rule that if we wish to transport a monomial z(m,r,q) along a

path between w and w′ which crosses a slab b in a connected component of b\Δ containing

a vertex v, we apply an automorphism

z(m,r,q) !→ z(m,r,q)f−rb,v . (3.6)

Here r represents the result of projecting (m, r, q) = (m, r) via the projection π : Λv → Z
obtained by dividing out by the tangent space to the slab. If instead we pass through the slab

b via the connected component of b \Δ containing v′, we get

z(m,r,q) !−→ z(m+r(v−v′),r,q+r(ψ̄(v)−ψ̄(v′))f−rv′ = z(m,r,q)f−rv ,

coinciding with (3.6). Here we use the above expression for Tv − Tv′ and (3.5). Hence we

see that the ambiguity produced by monodromy is resolved by the slab functions.

Examples 3.1. In the following examples, we express the various functions fb,v as formal

power series with exponents appearing in P̄v , using the representation of P̄v as the integral

points of the tangent wedge of Ξψ̄ at (v, 0, ψ̄(v)).

(1) Take σ to be the interval [−1, 1] as in Figure 2.2, with P as given there. The monoid

of convex piecewise linear functions on Σ is generated by the function which takes

the values 0, 0 and 1 respectively at (−1, 1), (0, 1) and (1, 1). Thus we have Q = N,
and the universal piecewise linear function ψ coincides with the above generator. For

a vertex v, with P̄v ⊆ M ⊕ 0 ⊕ Qgp, write x = z(1,0,0), t = z(0,0,1), t being the

generator of k[Q]. Then we have

f[−1,0],−1 = 1 + x+ x2t+ xt,

f[−1,0],0 = f[0,1],0 = 1 + x−1 + xt+ t,

f[0,1],1 = 1 + x−1t−1 + x−2t−1 + x−1.

Note that log f[−1,0],−1, log f[0,1],1 are clearly devoid of pure powers of t as any power,
say, of x+x2t+xt clearly produces only terms with positive powers of x. On the other
hand, f[−1,0],0 = (1+x−1)(1+xt), and taking logs we get log(1+x−1)+log(1+xt)
which will again involve no pure t power. The t term in f[0,1],0 was necessary to

achieve this.

(2) Take σ to be as in Figure 2.1. Again, the monoid of convex piecewise linear functions

on the fan Σ is generated by, say, the function taking the values 0 at (0, 0, 1), (1, 0, 1)
and (0, 1, 1) and the value 1 at (−1,−1, 1). So again Q = N, with the universal

function ψ agreeing with this generator. Writing x = z(1,0,0,0), y = z(0,1,0,0), t =
z(0,0,0,1), it is easy to see that the terms of the slab function fb,(0,0) (independent of b
by the fourth condition) required by conditions 1 and 2 are 1+x+ y+ tx−1y−1. The

normalization condition forces us to add some additional terms:

fb,(0,0) = 1 + x+ y + tx−1y−1 +
∑
k≥1

akt
k,
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where the ak are uniquely determined by the requirement that

∞∑
i=1

(−1)i+1
(x+ y + tx−1y−1 +

∑
k≥1 akt

k)i

i

contains no pure powers of t. This series in t begins as

−2t+ 5t2 − 32t3 + 286t4 − 3038t5 + · · · .

(3) Let σ be the convex hull of the points (±1, 0), (0,±1) and take P to be the star

subdivision at the origin. Now the monoid P of convex piecewise linear functions

which are 0 on (0, 0, 1), (1, 0, 1) and (0, 1, 1) is isomorphic to N2, determined by the

values α1, α2 of the function at generators of the other two rays. Thus we can write

Q = N2, t1 = z(1,0) ∈ k[Q], t2 = z(0,1) ∈ k[Q]. Using x, y as defined in the previous
example, one can check that for any slab b,

fb,0 := 1 + x+ y + t1x
−1 + t2y

−1 + t1 + t2 + 3t1t2 + 5t21t2 + 5t1t
2
2 + · · · .

The additional terms represented by · · · give a power series in t1, t2.
We now describe the degeneration Y → Spec k̂[Q] produced by the above data. In fact,

it is not difficult to do this in terms of equations, as follows. First, define

C(Ξψ̄) := {((um, 0, uq, u) | (m, 0, q) ∈ Ξψ̄, u ∈ R≥0} ⊆MR ⊕ R⊕Qgp
R ⊕ R.

Here the closure is necessary because Ξψ̄ is unbounded. We then obtain a graded ring

Sψ̄ := k[C(Ξψ̄) ∩ (M ⊕ Z⊕Qgp ⊕ Z)]

where the grading is given by the projection fromM ⊕ Z ⊕ Qgp ⊕ Z onto the last copy of

Z. Note the closure in the definition of cone adds the cone {0} × {0} ×R≥0Q× {0} to the

set, so we see the degree 0 part of Sψ̄ is k[Q]. We can then complete, with

Ŝψ̄ := Sψ̄ ⊗k[Q] k̂[Q].

It is then natural to think of the slab functions as being given by a single degree 1 element

of Ŝψ̄ . Indeed, given a vertex v ∈ P , we obtain from fb,v an element of degree 1 by mul-

tiplying all monomials of fb,v by z
(v,0,ψ̄(v),1). It follows from (3.5) that this is independent

of the choice of v and gives an element F ∈ Ŝψ̄ of degree 1. One can then show that

Y = Proj Ŝψ̄[U,W ]/(UW − zqV0F ). (3.7)

Here U,W are of degree 1, V0 ∈ Ŝψ̄ is the element corresponding to (0, 0, 0, 1) (which lies

in Ξψ̄ by the assumption that 0 ∈ σ and ψ has been chosen so that ψ̄(0) = 0). The element

q ∈ Q is the element chosen in the definition of ψ̃ at the end of §2. This can be shown in

much the way the special case discussed in [21], Example 5.2, being the case of Examples

3.1, (2). Note that after localizing at zq , this family does not depend on the choice of q up
to isomorphism, just as the choice of q did not affect the polarization on the general fibres of
X → A1.
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The homogeneous coordinate ring of Y is generated in degree 1 by theta functions, as
explored in [15]. Each point of B(Z) (the set of points of B with integral coordinates)

corresponds to a generator of this ring as a k̂[Q]-algebra. Explicitly, the integral points in

this example are the integral points of σ and the apexes of the pyramids σ̃1 and σ̃2. If v is an
integral point of σ, then z(v,0,ψ̄(v),1) ∈ Ŝψ̄ is the corresponding theta function. On the other

hand, the monomials U andW correspond to the two apexes.

This description of Y can be related to the more traditional mirror to XΣ as described

in [11]. Here Y can be decompactified by setting V0 = 1, obtaining an open subset Yo.

Passing to the generic fibre Yo
η of Yo → Spec k̂[Q], we obtain a variety defined over the

field of fractions K of k̂[Q]. We can describe Yo as a subvariety of A2 × (N ⊗Z Gm) over
the fieldK given by the equation

uw = zqfb,0, (3.8)

where b is any slab containing 0 ∈ σ. Here u,w are coordinates on A2. Without the

normalization condition, we could take fb,0 =
∑

m∈σ∩M z
(m,ψ̄(m)), which would lead to

the mirror of XΣ being precisely that given in [11].

Remark 3.2. The crucial feature of the mirror family we have just described, as opposed to

the one given in [11], is that the monomial coordinates on the base Spec k̂[Q] are canonical
in the sense of mirror symmetry. To describe this briefly, we work over the field k = C, and
assume that the power series f := fb,0 is convergent in some analytic neighbourhood U of

the zero-dimensional stratum in SpecC[Q]. Let U∗ = U \ ∂ SpecC[Q], the complement of

the union of toric divisors. Thus we can view Yo as giving an analytic family Yo → U∗. We

write Yo
t for the fibre over t ∈ U∗. On such a fibre, one has the holomorphic volume form

on the fibres of Yo → Spec k̂[Q] given by

Ω = (2πi)−n−1d log u ∧ d log x1 ∧ · · · ∧ d log xn.
One then finds that there is a monodromy invariant cycle α0 ∈ Hn+1(Yo

t ,Z) such that∫
α0

Ω = 1, so that Ω is a normalized holomorphic form in the sense of mirror symmetry.

Further, if q1, . . . , qr ∈ Qgp are a basis for Qgp, one can find (multi-valued) flat families

of (n + 1)-cycles α1, . . . , αr with
∫
αi

Ω = log zqi . The key point of this calculation is to

take the logarithmic derivative of these period integrals and reduce the resulting integral to

an integral on the hypersurface fb,v = 0 in N ⊗Z Gm. Via residues, this is translated into

an integral of the derivative of log fb,0 over various tori in N ⊗Z Gm. The fact that these

integrals are then constant follows precisely from the normalization condition on fb,0.

4. Enumerative predictions

So far we have seen two interpretations of the slab functions and the normalization condi-

tion. The first came from the desire to write down a correction to the patching of the naive

toric models for the mirror degeneration Y → Spec k̂[Q] in a way consistent with local

monodromy of the affine structure on B. We discussed in §2 how this condition along with

the normalization condition determines the slab functions uniquely. Then in Remark 3.2

we saw that the normalization condition is responsible for making our families canonically

parametrized in the sense of mirror symmetry. Both of these arguments concern the complex
geometry of the mirror degeneration Y → Spec k̂[Q].
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In the following two sections we will give two related interpretations of normalized slab

functions related to the symplectic geometry of the degenerationX → A1 of the local Calabi-

Yau variety XΣ we started with. The interpretation supports the view that the degenerations

constructed by structures are indeed the ones expected from homological mirror symmetry

and open-closed string theory.

Since the completion of [20], a clearer idea emerged as to the precise meaning of struc-

tures. This picture has arisen from several converging points of view: (1) The heuristic

correspondence between tropical Morse trees and Floer homology emerging in discussions

between us and Mohammed Abouzaid. Some of these ideas were discussed in [3] and [22].

(2) Auroux’s work [4] on T -duality on complements of anti-canonical divisors, describing

the complex structure on the SYZ dual of a Lagrangian fibration using counts of Maslov

index two disks. This has inspired quite a bit of work, which is realising Fukaya’s original

dream of correcting the complex structure of the mirror via counts of holomorphic disks. (3)

[24] made explicit the enumerative content of the key part of the algorithm of [26] (or the

two-dimensional version of [20]). In particular, this established an enumerative meaning for

functions attached to walls of a structure.

Heuristically, one expects the following interpretation in the SYZ picture of mirror sym-

metry. Suppose given a (special) Lagrangian fibration f : X → B from a Calabi-Yau

X , with the general fibre being a torus. Consider Maslov index zero holomorphic disks with

boundary a fibre of f . For dimensional reasons the expectation is that the set of points x ∈ B
such that f−1(x) bounds a Maslov index zero holomorphic disk is real codimension one in

B, forming a collection of walls. These walls should determine the structure necessary to

build the mirror to X , but one needs to attach functions to the walls. Again, heuristically,

these functions are expected to take the shape, at a point x ∈ B with L = f−1(x),

exp

⎛
⎜⎝ ∑

β∈π2(X,L)
∂β 	=0

kβnβz
β

⎞
⎟⎠ . (4.1)

Here the sum is over all relative homotopy classes β such that ∂β ∈ π1(L) is non-zero, kβ
is the index of ∂β ∈ π1(L) and nβ is some count of Maslov index zero disks with boundary

on L. This series should be defined as a formal power series in some suitable ring. One can

note that as x ∈ B varies, the groups π2(X,L) vary forming a local system on B0 (where

B0 = {x ∈ B | f−1(x) is non-singular}). This local system is analogous to the sheaf P of

§2, with the exact sequence of homotopy groups

π2(L) = 0 → π2(X) → π2(X,L) → π1(L) → π1(X)

being analogous to the exact sequence (3.1).

It is difficult to give exact definitions for the numbers nβ . There have been several ap-

proaches to dealing with this. For example, Auroux [4] pioneered, in the case of an effective

anti-canonical divisor, the use of counts of Maslov index two disks to define holomorphic

coordinates which are then transformed by wall-crossing automorphisms as we cross walls

in B over which Maslov index zero disks live.

A different approach, using log geometry, originates in [24]. There, working with Pand-

haripande, we used relative Gromov-Witten invariants to make sense of the formula (4.1).

The situation there was effectively that of a rational surface with an anti-canonical divisor

D, and the nβ of (4.1) are replaced with counts of curves meeting the divisorD in one point.

This was used for a general mirror symmetry construction for such surfaces in [14].
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It is interesting to note how these two points of view apply to the case of local mirror

symmetry considered in this paper. Auroux’s point of viewwas used effectively in a sequence

of papers [7–9] to study the same local mirror symmetry situation as discussed in this paper.

Wall-crossing formulas for counts of Maslov index two disks are used to obtain what should

be the same slab functions as discussed in this paper. The count of Maslov index two disks is

reduced to a closed Gromov-Witten invariant on a toric variety, which can then be calculated

via known mirror symmetry results. This allows one to show show that the slab functions

defined using their counts give rise to canonical coordinates just as our slab functions do.

On the other hand, generalising the idea of replacing holomorphic disks with relative

curves, one should be able to work with a certain kind of logarithmic curve called a punctured
curve, the theory of which is currently being developed in a joint project with Abramovich

and Chen [2]. These curves will live in the central fibre of the toric degeneration Y → A1

constructed in §2, and can be viewed as a substitute for holomorphic curves with boundary

in an algebro-geometric context. Then (4.1) can be used to define slab functions, where now

nβ is a count of genus 0 logarithmic curves with one puncture.

We do not propose calculating the slab functions in this way. Rather, we should be able

to show that the slab functions defined in this way satisfy the same determining properties

that the slab functions of §2 did. This is done by probing slabs by broken lines (see [6, 14,

15]) and interpreting these enumeratively using a different type of punctured curve, roughly

corresponding to cylinders. These punctured curves play the same role that Maslov index

two disks play in the analysis of slab functions of [7–9]. Crucially, we need to use the gluing

formula of [2] to relate broken lines and punctured curves.

While the details of this approach will be given elsewhere, let us demonstrate this using

the simple example from Examples 3.1, (1). We depict in Figure 4.1 the central fibre of the

degeneration X → A1 constructed in §2 in this case. The total space X has two ordinary

double points, situated on the singular locus of X0, where the map X → A1 is not normal

crossings. The inclusion X0 ⊆ X induces a log structure on X0, but the log structure is

not well-behaved at the two points (not fine in the sense of log geometry). In particular, the

theory of log Gromov-Witten invariants as developed in [1, 10, 23] cannot be used directly.

While a theory of invariants which can deal directly with this poorly behaved log structure is

under development, for the moment we will deal with it via a small resolution of the ordinary

double points. There are four choices of such resolutions, one of which is shown on the right

in Figure 4.1. These choices can be thought of in terms of the affine geometry of the dual

intersection complex B, with the resolutions corresponding to sliding the two singularities

of the affine structure along σ to various choices of vertices.

X−1 X0 X1

Figure 4.1. The left-hand figure shows the five irreducible components of X0, with the three labelled

components indexed by the vertices of σ. Here X0
∼= P1 × P1 and X−1, X1 are isomorphic to the

blow-up of A2 at a point.
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We have different slab functions fb,v for the vertices v = −1, 0, 1. To identify the slab

function at a vertex v as a generating function, we choose a small resolution X̃ → X so that

the irreducible component indexed by v remains toric. This effectively slides the singularities

away from the vertex. The resolution in Figure 4.1 is used for the vertex v = 0. The slab
function is given by (4.1) where nβ is a count of log curves of genus 0 with one puncture

mapping to the boundary of the componentXv indexed by v. In Figure 4.2 we show the two

obvious such curves for v = 0. However, multiple covers of these curves totally ramified

at the puncture points are also possible, and a d-fold cover will contribute with multiplicity

(−1)d+1/d2. The slab function is then, following (4.1),

(1 + x−1)(1 + xt) = exp

( ∞∑
d=1

d · (−1)d+1

d2
x−d +

∞∑
d=1

d · (−1)d+1

d2
(tx)d

)
,

with the monomials x−1 and tx and their powers playing the role of zβ .

Figure 4.2. The two punctured curves corresponding to holomorphic disks. The curves include the

exceptional divisors of the small resolution, and the punctures are represented by the white circles.

To prove this formula without a direct calculation, we show the slab functions defined by

these counts satisfy conditions 1-4 of §3. Conditions 1 and 3 are obvious from (4.1), as the

statement that only monomials zβ with ∂β �= 0 appear is analogous to the statement that no

terms of the form zq for q ∈ Q\{0} appear inside the exponential. Condition 4 is automatic

because in this situation the slab function only depends on the vertex. It remains to show

condition 2, and we use broken lines for this, which can be reviewed in [22]. A broken

line is a piecewise linear path with monomials cLz
mL attached to each domain of linearity,

and the derivative of the line in the domain L is −m̄L. When the broken line crosses a

wall, we may change the monomial by applying the wall-crossing automorphism (3.6) to the

monomial and choosing a new monomial being one of the terms in the expression obtained

after applying this automorphism. In Figure 4.3, we consider germs of broken lines which

come vertically from below with initial monomial zm with m̄ = (0,−1) ∈ MR ⊕ R. We

define LiftQ(m) to be the sum over all broken lines ending at a basepoint Q of the final

attached monomials. Note that if Q is near a vertex v of σ, then in fact LiftQ(m) = zmfb,v .
It is then not difficult to show that (3.5) holds for all pairs of adjacent vertices if and only if

LiftQ(m) is independent of Q chosen above the slabs as in Figure 4.3.

Broken lines can be viewed as a purely combinatorial (tropical) way to count holomor-

phic cylinders. But we can actually count logarithmic curves of genus 0 with two punctures

to emulate cylinders, and there will be a correspondence between such twice-punctured log-

arithmic curves and broken lines. Varying the basepoint can be achieved by varying a point

constraint for one of the punctures. The key point is that various ways of degenerating the
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Q

Q′

Figure 4.3. There are four broken lines with endpointsQ on the left, two of which don’t bend. All have

initial monomial zm with m̄ = (0,−1). Once the broken line crosses the slab, there are four possible

attached monomials: zm, tzm, x−1zm, xtzm. The right-hand picture shows a different choice of

basepoint Q′, and there are again four broken lines.

point constraint can lead to different broken lines with different endpoints. However, the

count of these punctured curves will be independent of the constraint.

To see this explicitly, let’s look at the example of the straight line in the left-hand diagram

in Figure 4.3 with attached monomial zm. To understand what happens when we move this

broken line through the singularity, it is helpful to move the singularity to the vertex 0 by

using the small resolution depicted in Figure 4.4. Consider the family of twice-punctured

curves given by the vertical fibres ofX0, the blowup of P1×P1. Any curve in this family has

a tropicalization (see [23], §3). The tropicalization of a general curve in this family is just the

vertical line through the singularity on the right-hand side of Figure 4.4. Combinatorially,

this just indicates that the curve intersects the upper and lower boundary divisors of X0.

However, the family has two special members which are degenerate with respect to the log

structure on the central fibre. The tropicalization of the punctured curve when it falls into

X0 ∩ X1 is the straight broken line depicted in Figure 4.4 to the right of the vertex. If on

the other hand we move the punctured curve to the left, it becomes reducible, the union

of X−1 ∩ X0 and the exceptional curve of the small resolution. This curve tropicalizes

to the tropical curve depicted on the left, now with two vertices corresponding to the two

components. The bend is a consequence of gluing the once-punctured curve with support

the exceptional curve to the thrice-punctured curve with supportX0 ∩X−1. The broken line

is then a subset of this tropical curve.

The point is that the two broken lines make the same contribution to LiftQ(m) asQ varies

because they can both be viewed as counting the number of curves in the one-parameter

family described passing through some point inX0. The point can degenerate intoX−1∩X0

orX0 ∩X1, giving the two types of broken line behaviour. Thus the invariance of LiftQ(m)
can be viewed as the fact that these lifts are generating functions for counts of certain types

of punctured curves.

The key point for the argument is then to prove that broken lines really calculate Gromov-

Witten invariants of punctured curves. This shall be shown using a general gluing formula

[2].

Note so far we have not actually calculated the Gromov-Witten invariants of XΣ. These

should be extracted in the B-model from some additional period integrals past the ones

discussed in Remark 3.2. A significant challenge remaining is to give a tropical description
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Figure 4.4.

for these period integrals and Gromov-Witten invariants.

Remark added in proof. After the initial release of this paper, Lau in [25] completed the

proof that the analogue of the slab functions considered in [7–9] in fact satisfy our normal-

ization condition, and hence agree with our slab functions.

5. Tropical disks and slab functions

The picture of counting holomorphic disks and cylinders from §4 suggests an interpretation

of the slab functions in terms of tropical curves. In this section we give a surprisingly simple

interpretation of this sort. The arguments are by algebraic manipulations of the slab func-

tions. We are thus lead to the challenge of interpreting the tropical counts in terms of the

counting of holomorphic disks on XΣ.

We study the collection of slab functions at a vertex v ∈ P with v ∈ Intσ. By Condi-

tion (4) of slab functions all the fb,v for slabs b containing v agree. Dehomogenizing (3.7)

at v we are thus left with the local model uw − ft = 0 for the mirror degeneration for

some f ∈ k̂[P ]. Here P = P̄v is a toric submonoid of M ⊕ Qgp with P× = {0} and the

completion is with respect to P \ {0}. Recall also the projection
M ⊕Qgp −→M, m !−→ m̄.

For example, for the mirror of local P2 we had Q = N, P ⊂ N3 generated by (1, 0, 0),

(0, 1, 0), (−1,−1, 1), hence k̂[P ] = k[x, y, z]�t�/(xyz − t), and
f = 1 + x+ y + z − 2t+ 5t2 − 32t3 + 286t4 − 3038t5 + · · · .

In general we assume f = 1+
∑r

i=1 z
mi +g with m̄i �= 0 for all i and g =

∑
q bq · zq ∈

k̂[Q] taking care of the normalization condition.2 Under this assumption we are going to

give an infinite product expansion

f =
∏

{m | m̄ 
=0}
(1 + amz

m)

in k̂[P ], with each am having an interpretation in terms of tropical disks in MR with root

2Note that by the universal nature ofQ the sum over zmi implicitly comprises a universal choice of coefficients.
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weightm. Moreover, each coefficient bq of g has an interpretation in terms of pointed tropical

curves of genus zero.3

To this end consider the following definition of the type of a tropical disk. A rooted tree
is a partially ordered finite set with a unique maximal element, called the root vertex, which
is connected and without cycles when viewed as a graph. The predecessors of a vertex v are
the adjacent vertices that are smaller than v. The minimal elements of a tree are called its

leaves, so these are the elements without predecessors. We require that there are no elements

with only one predecessor. In graph theory language this means that the interior vertices are

at least trivalent and the leaves are the unique univalent vertices.

We now define types of tropical trees weighted by elements of P . Note that Q can be

identified with the submonoid {m ∈ P | m̄ = 0} of P .

Definition 5.1. The type of a P -labelled tropical disk is a rooted tree Γ with sets VΓ of

vertices and EΓ of edges along with a vertex-labeling map

w : VΓ −→ P \Q, v !−→ mv

fulfilling the following conditions:

1. For any non-leaf vertex v ∈ VΓ with predecessors v1, . . . , v� the balancing condition

mv = mv1 + · · ·+mv�

holds.

2. For any vertex v the weightsm1, . . . ,m� of the adjacent predecessor vertices are pair-

wise distinct.

By abuse of notation we suppress the labelling function in the notation and write just Γ for

the type of a tropical disk. The set of non-leaf vertices is denoted V̂Γ.
If we take the weight mΓ of the root vertex in Q rather than in P \ Q and otherwise

leave the definition unchanged we arrive at the notion of type of P -labelled pointed rational
tropical curve.

Each type of tropical disk or rational tropical curve determines an isotopy class of tradi-

tional tropical curves inMR with edges labelled by lifts of the direction vector (an element

of M ) to P , the labelling of the predecessor vertex. In the disk case one may add another

edge to force the balancing condition at the root vertex.

The balancing condition for a tropical disk implies that the labelling function is uniquely

determined by its values on the leaf vertices v1, . . . , v�. In particular, for the weight of the

root vertex we have

mΓ = mv1 + · · ·+mv� .

Let now S = {m1, . . . ,mr} be the set of exponents m occuring in f with m̄ �= 0. For
m ∈ P with m̄ �= 0 denote by Tm(S) the set of types of P -labelled tropical disks Γ with

mΓ = m and with leaf labels in S. Similarly Rq(S) denotes the set of types of P -labelled
pointed rational tropical curves with leaf labels in S andmΓ = q.

3If σ has several interior integral points the change of vertex formula (3.4) provides a non-trivial identity between

expressions labelled by different sets of tropical trees. It would be interesting to give an interpretation of this formula

within the following discussion.
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Proposition 5.2. For f = 1 +
∑

m∈S z
m + g with g =

∑
q 
=0 bqz

q as above it holds

f =
∏

{m | m̄ 
=0}
(1 + amz

m) (5.1)

with
am =

∑
Γ∈Tm(S)

(−1)|V̂Γ| and bq =
∑

Γ̃∈Rq(S)

(−1)|VΓ̃|−1.

Proof. Expanding the infinite product in the statement and gathering according to monomi-

als yields

∏
{m | m̄ 
=0}

(1 + amz
m) =

∑
m∈P

( ∞∑
�=1

∑
m=m1+···+m�

Γi∈Tmi
(S)

(−1)|V̂Γ1
| · · · (−1)|V̂Γ�

|
)
zm. (5.2)

In this expansion � is the number of am-terms in the infinite product to be multiplied. Thus

the third sum on the right-hand side is over all decompositionsm = m1+ · · ·+m� ofm into

� pairwise distinct summands in P . Recall that V̂Γ is the set of non-leaf vertices. Fixm with

m̄ �= 0 now and consider the coefficient of zm. Then for � ≥ 2 any collection Γ1, . . . ,Γ� of
types of tropical disks withm = mΓ1 + · · ·+mΓ�

can be merged into a new type of tropical

disk Γ ∈ Tm(S) by connecting the root vertex of each Γi by one edge to the root vertex

v0 ∈ VΓ. Thus the root vertex of Γ is �-valent with adjacent predecessor trees Γ1, . . . ,Γ�.
Now this merged tree Γ contributes to the coefficient of zm as one term for � = 1. Since

the vertices of Γ other than the root vertex are in bijection with the vertices of Γ1, . . . ,Γ� it
holds

(−1)|V̂Γ| = −(−1)|V̂Γ1
| · · · (−1)|V̂Γ�

|.

Thus each term with � ≥ 2 in the sum of the right-hand side of (5.2) cancels with one term

for � = 1. Conversely, if the root vertex of the type of a tropical disk Γ has valency � ≥ 2
then Γ is obtained by this merging procedure. On the right-hand side of (5.2) we are thus left

only with those m with m̄ = 0 and in addition with those trees with only one vertex. The

latter condition means that the root vertex is also a leaf vertex. These terms yield the sum∑
m∈S z

m. The terms with m̄ = 0 define a power series 1+ h ∈ k̂[Q]. We have thus shown

∏
{m | m̄ 
=0}

(1 + amz
m) = 1 +

r∑
i=1

zmi + h,

with h ∈ k̂[Q]. Since the left-hand side of this equation is clearly normalized we see that

h = g. Tropically, the coefficient of zq in g is the weighted sum of types of P -labelled
pointed rational tropical curves, with the marked point (of valency � ≥ 2) the merging point

of � tropical trees Γ1, . . . ,Γ�. The balancing condition of an underlying tropical curve at the
marked point is the statement

m̄Γ1 + · · ·+ m̄Γ�
= m̄ = 0.

For f = 1 + x+ y + z + g the expansion up to order 4 is

(1 + x)(1 + y)(1 + z)(1− xy)(1− yz)(1− xz)(1 + x2y)
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x y x y x x yy y x y x

Figure 5.1.

·(1 + xy2) . . . (1 + yz2)(1− x2y2)(1− y2z2)(1− x2z2)
·(1− x2yz)(1− xy2z)(1− xyz2)(1− xz3) . . . (1− yz3)

Figure 5.1 shows the tropical trees contributing to the coefficient −1 = (−1)3 + (−1)3 +
(−1)2 of x2y2. Note that many labelled trees with four leaves are ruled out because of

the third condition in Definition 5.1 that no two predecessor subtrees at some vertex be

isomorphic.

We finish this section with two remarks on a possible enumerative interpretation of the

expansion in terms of tropical disks and trees. First, according to (4.1) we should write the

product expansion (5.1) in exponential form. Indeed, we can also write

f = exp

⎛
⎝ ∑
{m | m̄ 
=0}

∑
Γ∈T̃m(S)

(−1)|V̂Γ|

|Aut(Γ)|z
m

⎞
⎠ .

Here the sum is over the space T̃m(S) of tropical disks with the stability condition Defini-

tion 5.1,2 dropped. Expanding exp in a Taylor series the proof is largely the same as the one

given, with extra care taken concerning automorphisms.

Second, in log Gromov-Witten theory the log structure on the moduli space only depends

on the type of tropical curve associated to a stable log map [23]. It is tempting to believe in

a formulation of the counting problem by a symmetric obstruction theory [5] on a moduli

space with a log structure stratified by types of tropical disks, with each stratum contributing

(−1)|V̂Γ|/|Aut(Γ)|.

Acknowledgements. M.G. was partially supported by NSF grant 1105871 and 1262531.

We would like to thank all people who influenced our way of thinking about various aspects

of our program. Special thanks go toMohammed Abouzaid, Paul Hacking, Sean Keel, Diego

Matessi and Rahul Pandharipande.

References

[1] D. Abramovich and Q. Chen, Stable logarithmic maps to Deligne–Faltings pairs II,
preprint, 2011.

[2] D. Abramovich, Q. Chen, M. Gross, and B. Siebert, Gluing project, in progress.

[3] P. Aspinwall, T. Bridgeland, A. Craw, and M. Douglas, M. Gross, A. Kapustin,

G. Moore, G. Segal, B. Szendroi, and P. Wilson, Dirichlet branes and mirror symme-



Local mirror symmetry in the tropics 743

try, Clay Mathematics Monographs, 4. American Mathematical Society, Providence,

RI; Clay Mathematics Institute, Cambridge, MA, 2009. x+681 pp.

[4] D. Auroux, Mirror symmetry and T -duality in the complement of an anticanonical
divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51–91.

[5] K. Behrend and B. Fantechi, Symmetric obstruction theories and Hilbert schemes of
points on threefolds, Algebra Number Theory 2 (2008), 313–345.

[6] M. Carl, M. Pumperla, and B. Siebert, A tropical view of Landau-Ginzburg models,
available at http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf

[7] K. Chan, C-H. Cho, S-C. Lau, and H-H. Tseng, Gross fibrations, SYZ mirror symmetry,
and open Gromov-Witten invariants for toric Calabi-Yau orbifolds, preprint, 2013.

[8] K. Chan, S-C. Lau, and N.C. Leung, SYZ mirror symmetry for toric Calabi-Yau mani-
folds, J. Differential Geom. 90 (2012), 177–250.

[9] K. Chan, S-C. Lau, and H-H. Tseng, Enumerative meaning of mirror maps for toric
Calabi-Yau manifolds, Adv. Math. 244 (2013), 605–625.

[10] Q. Chen, Stable logarithmic maps to Deligne–Faltings pairs I, preprint, 2010.

[11] T.-M. Chiang, A. Klemm, S.-T. Yau, and E. Zaslow, Local mirror symmetry: calcula-
tions and interpretations, Adv. Theor. Math. Phys. 3, (1999), 495–565.

[12] K. Fukaya, Multivalued Morse theory, asymptotic analysis and mirror symmetry, in
Graphs and patterns in mathematics and theoretical physics, 205–278, Proc. Sympos.

Pure Math., 73, Amer. Math. Soc., Providence, RI, 2005.

[13] H. Grauert, Über Modifikationen und exzeptionelle Mengen, Math. Ann. 146 1962,

331–368.

[14] M. Gross, P. Hacking, and S. Keel, Mirror symmetry for log Calabi-Yau surfaces I,
preprint, 2011.

[15] M. Gross, P. Hacking, S. Keel, and B. Siebert, Theta functions on varieties with effec-
tive anticanonical class, preprint, 2014.

[16] M. Gross, Examples of special Lagrangian fibrations, in Symplectic geometry and mir-
ror symmetry (Seoul, 2000), 81–109, World Sci. Publishing, River Edge, NJ, 2001.

[17] , Toric Degenerations and Batyrev-Borisov Duality, Math. Ann. 333 (2005),

645-688.

[18] M. Gross and B. Siebert, Mirror symmetry via logarithmic degeneration data I, J. Dif-
ferential Geom. 72 (2006), 169–338.

[19] ,Mirror symmetry via logarithmic degeneration data II, J. Algebraic Geom. 19
(2010), 679–780.

[20] , From real affine to complex geometry, Ann. of Math. 174 (2011), 1301–1428.



744 Mark Gross and Bernd Siebert

[21] , An invitation to toric degenerations, Surv. Differ. Geom. 16, 43–78, Int.
Press 2011.

[22] , Theta functions and mirror symmetry, preprint arXiv:1204.1991 [math.AG],

43pp.

[23] , Logarithmic Gromov-Witten invariants, J. of the AMS, 26 (2013), 451–510.

[24] M. Gross, R. Pandharipande, and B. Siebert, The tropical vertex, Duke Math. J. 153
(2010), 297–362.

[25] S.-C. Lau, Gross-Siebert’s slab functions and open GW invariants for toric Calabi-Yau
manifolds, preprint, 2014, arXiv:1405:3863.

[26] M. Kontsevich and Y. Soibelman, Affine structures and non-archimedean analytic
spaces, The unity of mathematics, 321–385, Progr. Math., 244, Birkhäuser Boston,

Boston, MA, 2006.a

[27] A. Strominger, S.-T. Yau, and E. Zaslow, Mirror Symmetry is T -duality, Nucl. Phys.
B479, (1996) 243–259.

DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CV3 0WB, United King-

dom

E-mail: mgross@dpmms.cam.ac.uk

FB Mathematik, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

E-mail: siebert@math.uni-hamburg.de



Derived category of coherent sheaves and counting
invariants

Yukinobu Toda

Abstract. We survey recent developments on Donaldson-Thomas theory, Bridgeland stability condi-

tions and wall-crossing formula. We emphasize the importance of the counting theory of Bridgeland

semistable objects in the derived category of coherent sheaves to find a hidden property of the generat-

ing series of Donaldson-Thomas invariants.
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Keywords. Donaldson-Thomas invariants, Bridgeland stability conditions.

1. Introduction

1.1. Moduli spaces and invariants. The study of the moduli spaces is a traditional re-

search subject in algebraic geometry. They are schemes or stacks whose points bijectively

correspond to fixed kinds of algebro-geometric objects, say curves, sheaves on a fixed va-

riety, etc. These moduli spaces are interesting not only in algebraic geometry, but also in

connection with other research fields such as number theory, differential geometry and string

theory. In general it is not easy to study the geometric properties of the moduli spaces. In-

stead one tries to construct and study the invariants of the moduli spaces, e.g. their (weighted)

Euler characteristics, virtual Poincaré or Hodge polynomials, integration of the virtual cy-

cles via deformation-obstruction theory. It has been observed that the best way to study

such invariants is taking the generating series. Sometimes the generating series defined from

the moduli spaces have beautiful forms and properties. Let us observe this phenomenon

for some rather amenable examples. For a quasi-projective variety X (in this article, we

always assume that the varieties are defined over C), the Hilbert scheme of n-points de-

noted by Hilbn(X) is the moduli space of zero dimensional subschemes Z ⊂ X such that

χ(OZ) = n. It contains an open subset corresponding to n-distinct points in X , and the

geometric structures of its complement is in general complicated. Nevertheless if X is non-

singular, the generating series of the Euler characteristics of Hilbn(X) have the following

beautiful forms [21, 27]

∑
n≥0

χ(Hilbn(X))qn =

⎧⎨
⎩

(1− q)−χ(X), dimX = 1∏
m≥1(1− qm)−χ(X), dimX = 2∏
m≥1(1− qm)−mχ(X), dimX = 3.

(1.1)

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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In the case X = Cd, the torus localization shows that χ(Hilbn(Cd)) coincides with the

number of d-dimensional partitions of n. The resulting product formulas are consequences

of enumerative combinatorics, as in [64]. A general case is reduced to the case X = Cd.

1.2. Curve counting invariants. The study of the invariants of the moduli spaces of curves

inside a variety is more important and interesting, because of its connection with world sheet
counting in string theory. A particularly important case is when X is a Calabi-Yau 3-fold,
i.e. X has a trivial canonical line bundle withH1(X,OX) = 0, as the string theory predicts
our universe to be the product of the four dimensional space time with a Calabi-Yau 3-fold.

Similarly to Hilbn(X), we denote by Hilbn(X, β) the Hilbert scheme of curves inside X ,

that is the moduli space of projective subschemes C ⊂ X with dimC ≤ 1, [C] = β and

χ(OC) = n. The following result was obtained by the author in 2008, and plays a key role

in this article:

Theorem 1.1 ([77, 78]). Let X be a smooth projective Calabi-Yau 3-fold. Then for fixed
β ∈ H2(X,Z), the quotient series∑

n∈Z χ(Hilbn(X, β))qn∑
n≥0 χ(Hilbn(X))qn

(1.2)

is the Laurent expansion of a rational function of q, invariant under q ↔ 1/q.

Note that the denominator of (1.2) is given by the formula (1.1). A typical example of

a rational function of q invariant under q ↔ 1/q is q/(1 + q)2 = q − 2q2 + 3q3 − · · · .
We remark that the invariance of q ↔ 1/q does not say the invariance of the generating

series after the formal substitution q !→ 1/q, but so after taking the analytic continuation of

the function (1.2) from |q| 2 1 to |q| ) 1. The above result was conjectured in [45] as the

unweighted version of the rationality conjecture of rank one Donaldson-Thomas (DT) invari-

ants by Maulik-Nekrasov-Okounkov-Pandharipande (MNOP) [48]. The rationality conjec-

ture was proposed in order to formulate the Gromov-Witten/Donaldson-Thomas correspon-
dence conjecture comparing two kinds of curve counting invariants on Calabi-Yau 3-folds.

The DT invariant was introduced by Thomas [67], as a holomorphic analogue of Casson

invariants of real 3-manifolds. It counts stable coherent sheaves on a Calabi-Yau 3-fold, and

is a higher dimensional generalization of Donaldson invariants on algebraic surfaces. For a

Calabi-Yau 3-fold X , an ample divisor H on X and a cohomology class v ∈ H∗(X,Q),
the DT invariant DTH(v) ∈ Z is defined to be the degree of the zero dimensional vir-

tual fundamental cycle on the moduli space of H-stable coherent sheaves E on X with

ch(E) = v. It also coincides with the weighted Euler characteristic with respect to the

Behrend’s constructible function on that moduli space [6]. The DT invariants were later gen-

eralized by Joyce-Song [36] and Kontsevich-Soibelman [40] so that they also count strictly

H-semistable sheaves. The generalized DT invariants involve the Behrend functions and the

motivic Hall algebras in the definition, and they are Q-valued.

The Hilbert scheme of points or curves on a Calabi-Yau 3-fold is also interpreted as a

moduli space of stable sheaves, by assigning a subscheme C ⊂ X with its ideal sheaf IC ⊂
OX . The resulting DT invariant is the weighted Euler characteristic of the Hilbert scheme

of points or curves, and in particular it is independent of H . In this sense, the invariant

χ(Hilbn(X, β)) is the unweighted version of the DT invariant, which coincides with the

honest DT invariant up to sign if Hilbn(X, β) is non-singular. The result of Theorem 1.1 for

the weighted version was later proved by Bridgeland [19]. The rationality property and the
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invariance of q ↔ 1/q of the series (1.2) are not visible if we just look at the moduli spaces

of curves or points. Such hidden properties of the series (1.2) are visible after we develop

new moduli theory and invariants of objects in the derived category of coherent sheaves.

1.3. Derived category of coherent sheaves. Recall that for a variety X , the bounded de-

rived category of coherent sheaves DbCoh(X) is defined to be the localization by quasi-

isomorphisms of the homotopy category of the bounded complexes of coherent sheaves on

X . The derived category is no longer an abelian category, but has a structure of a triangu-

lated category. It was originally introduced by Grothendieck in 1960’s in order to formulate

the relative version of Serre duality theorem, known as Grothendieck duality theorem. Later

it was observed by Mukai [51] that an abelian variety and its dual abelian variety, which

are not necessary isomorphic in general, have the equivalent derived categories of coher-

ent sheaves. This phenomena suggests that the category DbCoh(X) has more symmetries

than the category of coherent sheaves, as the latter category is known to reconstruct the

original variety. Such a phenomena has drawn much attention since Kontsevich proposed

the Homological mirror symmetry conjecture in [39]. It predicts an equivalence between

the derived category of coherent sheaves on a Calabi-Yau manifold and the derived Fukaya

category of its mirror manifold, based on an insight that the derived category DbCoh(X)
is a mathematical framework of D-branes of type B in string theory. There have been sev-

eral developments in constructing Mukai type derived equivalences between non-isomorphic

varieties [5, 14, 38, 55], and non-trivial autequivalences [34, 62], based on the ideas from

mirror symmetry. Furthermore such Mukai type equivalences have been discovered beyond

algebraic geometry. For instance, derived McKay correspondence [10] gives an equivalence

between the derived category of finite group representations and the derived category of co-

herent sheaves on the crepant resolution of the quotient singularity. This is now interpreted

as a special case of equivalences between usual commutative varieties and non-commutative

varieties in the context of Van den Bergh’s non-commutative crepant resolutions [22]. There

also exists an Orlov’s equivalence [56] between the derived category of coherent sheaves

on a Calabi-Yau hypersurface in the projective space and the category of graded matrix fac-

torizations of the defining equation of it. This result, called Landau-Ginzbrug/Calabi-Yau

correspondence, was also motivated by mirror symmetry. Now it is understood that the de-

rived categories have more symmetries than the categories of coherent sheaves. Our point of

view is to make the hidden properties of the generating series of DT type invariants visible

via symmetries in the derived categories.

1.4. Bridgeland stability conditions. The idea of applying derived categories to the study

of generating series of DT type invariants suggests an importance of constructing moduli

spaces and invariants of objects in the derived categories. Note that in constructing the

original DT invariants, we need to fix an ample divisor on a Calabi-Yau 3-fold X , and the

associated stability condition on Coh(X) in order to construct a good moduli space of sta-

ble sheaves. The notion of stability conditions on triangulated categories, in particular on

derived categories of coherent sheaves, was introduced by Bridgeland [16] as a mathemati-

cal framework of Douglas’s Π-stability [24] in string theory. For a triangulated category D,

a Bridgeland stability condition on it roughly consists of data σ = (Z, {P(φ)}φ∈R) for a
group homomorphism Z : K(D) → C called the central charge, and the collection of sub-

categories P(φ) ⊂ D for φ ∈ R whose objects are called σ-semistable objects with phase
φ. The main result by Bridgeland [16] is to show that the set of ‘good’ stability conditions
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on D forms a complex manifold. This complex manifold is in particular important when

D = DbCoh(X) for a Calabi-Yau manifoldX . In this case, the space of stability conditions

Stab(X) is expected to contain the universal covering space of the moduli space of complex

structures of a mirror manifold of X . So far the space Stab(X) has been studied in several

situations, e.g. X is a curve [16, 47], X is a K3 surface [17], X is a some non-compact

Calabi-Yau 3-fold [11, 15, 74, 76]. On the other hand, there has been a serious issue in

studying Bridgeland stability conditions on projective Calabi-Yau 3-folds which are likely

to be the most important case: we are not able to prove the existence of Bridgeland stabil-

ity conditions on smooth projective Calabi-Yau 3-folds. In [12], the existence problem is

reduced to showing a conjectural Bogomolov-Gieseker type inequality evaluating the third

Chern character of certain two term complexes of coherent sheaves. However proving that

inequality conjecture seems to require a new idea.

1.5. New invariants via derived categories. Let X be a smooth projective Calabi-Yau 3-

fold. We expect that, for a given σ ∈ Stab(X) and v ∈ H∗(X,Q), there exists the DT type

invariantDTσ(v) ∈ Qwhich counts σ-semistable objectsE ∈ DbCoh(X)with ch(E) = v.
As we mentioned, there is a serious issue in constructing a Bridgeland stability condition on

projective Calabi-Yau 3-folds, but let us ignore this for a while. For an ample divisor H
on X , we expect that the classical H-stability appears as a certain special limiting point in

Stab(X) called the large volume limit. If we take σ ∈ Stab(X) near the large volume

limit point, then we expect the equality DTσ(v) = DTH(v). On the other hand, suppose

that there is an autequivalence Φ of DbCoh(X) and τ ∈ Stab(X) so that the equality

DTτ (v) = DTτ (Φ∗v) holds for any v. Then the generating series of the invariants DTτ (v)
is preserved by the variable change induced by v !→ Φ∗v. If we are able to relateDTσ(v) and
DTτ (v), then it would imply the hidden symmetry of the generating series of classical DT

invariants DTH(v) with respect v !→ Φ∗v. The relationship between DTσ(v) and DTτ (v)
is studied by the wall-crossing phenomena: there should be a wall and chamber structure on

the space Stab(X) so that the invariants DT∗(v) are constant on a chamber but jumps if ∗
crosses a wall. The wall-crossing formula of the invariantsDT∗(v) should be described by a
general framework established by Joyce-Song [36], Kontsevich-Soibelman [40], using stack

theoretic Hall algebras.

However as we mentioned, we are not able to prove Stab(X) �= ∅, so the above story

is the next stage after proving the non-emptiness. The idea of proving Theorem 1.1 was to

introduce ‘weak’ Bridgeland stability conditions on triangulated categories, and apply the

above story for the space of weak stability conditions on the subcategory of DbCoh(X)
generated by OX and one or zero dimensional sheaves. The latter subcategory is called the

category ofD0-D2-D6 bound states. The notion of weak stability conditions is a kind of lim-

iting degenerations of Bridgeland stability conditions, and it is a coarse version of Bayer’s

polynomial stability conditions [2], the author’s limit stability conditions [75]. It is easier

to construct weak stability conditions and enough to prove Theorem 1.1 applying the above

story. The derived dual E !→ RHom(E,OX), an autequivalence ofDbCoh(X), turned out
to be responsible for the hidden symmetric property of q ↔ 1/q of the series (1.2) in the

above story.

The idea of proving Theorem 1.1 has turned out to be useful in proving several other inter-

esting properties of DT type invariants, say DT/PT correspondence [19, 77] conjectured by

Pandharipande-Thomas [59]. We refer to [20, 52, 65, 72, 73, 79, 80, 82–84] for other works

relating the above story.
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1.6. Plan of this article. In Section 2, we review and survey recent developments of

Donaldson-Thomas theory. In Section 3, we survey the developments on Bridgeland sta-

bility conditions. In Section 4, we discuss open problems on DT theory and Bridgeland

stability conditions.

2. Donaldson-Thomas theory

2.1. Moduli spaces of semistable sheaves. LetX be a smooth projective variety andH an

ample divisor on X . For an object E ∈ Coh(X), its Hilbert polynomial is given by

χ(E ⊗ OX(mH)) = adm
d + ad−1m

d−1 + · · ·
for ai ∈ Q by the Riemann-Roch theorem. Here ad �= 0 and d is the dimension of the support

of E. The reduced Hilbert polynomial χH(E,m) is defined to be χ(E ⊗ OX(mH))/ad.

Definition 2.1. An object E ∈ Coh(X) is H-(semi)stable if for any subsheaf 0 �= F 
 E,

we have dimSupp(F ) = dimSupp(E) and the inequality χH(F,m) < (≤)χH(E,m)
holds form ) 0.

Remark 2.2. Note that if E is torsion free, then χH(F,m) = md + c · μH(E)md−1 +
O(md−2) where d = dimX , μH(E) = c1(E)Hd−1/rank(E), and c is some constant.

Hence theH-(semi)stability is the refinement ofH-slope (semi)stability defined by the slope

function μH(∗).
Let Coh(X) be the 2-functor from the category of complex schemes to the groupoid,

whose S-valued points form the groupoid of flat families of coherent sheaves on X over S.
The 2-functor Coh(X) forms a stack, which is known to be an Artin stack locally of finite

type, but neither finite type nor separated. The situation becomes better if we consider the

substacks for v ∈ H∗(X,Q)

Ms
H(v) ⊂ Mss

H(v) ⊂ Coh(X).

Here Ms(ss)
H (v) is the substack of H-(semi)stable E ∈ Coh(X) with ch(E) = v, which is

an open substack of Coh(X). The stackMss
H(v) is of finite type but not separated in general.

The stack Ms
H(v) is of finite type, separated, and a C∗-gerb over a quasi-projective scheme

M s
H(v). The schemeM s

H(v) is projective if Ms
H(v) = Mss

H(v).

2.2. Donaldson-Thomas invariants. Let X be a smooth projective 3-fold. We say it is

a Calabi-Yau 3-fold if KX = 0 and H1(X,OX) = 0. A typical example is a quintic

hypersurface in P4. Let H be an ample divisor on X , v an element in H∗(X,Q), and
consider the moduli scheme M s

H(v). A standard deformation theory of sheaves (cf. [32])

shows that the tangent space at [E] ∈ M s
H(v) is given by Ext1(E,E), and the obstruction

space is given by Ext2(E,E). The Calabi-Yau condition and the Serre duality implies that

the latter space is dual to Ext1(E,E). Hence the virtual dimension at [E], defined to be

the dimension of the tangent space minus the dimension of the obstruction space, is zero

which is independent of E. Based on this observation, Thomas [67] constructed two term

complex of vector bundles E• on M s
H(v) and a morphism E• → LMs

H(v) in D(M s
H(v)),

giving a symmetric perfect obstruction theory in the sense of Behrend-Fantechi [8, 9]. By
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the construction in [8], there is the associated zero dimensional virtual cycle [M s
H(v)]vir

on M s
H(v), and we are able to take its degree if M s

H(v) is projective. The DT invariant is

defined as follows:

Definition 2.3. If Ms
H(v) = Mss

H(v) holds, we define DTH(v) ∈ Z to be the degree of

[M s
H(v)]vir.

The above construction via the virtual cycle easily shows that the DT invariant is invariant

under deformations of complex structures of X . However in practice, it is more convenient

to describe the DT invariant in terms of Behrend’s constructible function [6]. The Behrend

function is easily described if we use the following result by Joyce-Song [36]:

Theorem 2.4 ([36]). for any p ∈ M s
H(v), there is an analytic open subset p ∈ U ⊂ M s

H(v),
a complex manifold V and a holomorphic function f : V → C such that U is isomorphic to
{df = 0}.

Using the above result, the Behrend function νB onM s
H(v) is described as

νB(p) = (−1)dimV (1− χ(Mp(f)))

where Mp(f) is the Milnor fiber of f at p. The function νB is shown to a be well-defined

constructible function onM s
H(v).

Theorem 2.5 ([6]). If Ms
H(v) = Mss

H(v) holds, we have the equality

DTH(v) =
∑
k∈Z

k · χ(ν−1
B (k)). (2.1)

In particular ifM s
H(v) is non-singular and connected, the invariantDTH(v) coincides with

χ(M s
H(v)) up to sign.

Based on the above description of the DT invariant, Joyce-Song [36] and Kontsevich-

Soibelman [40] constructed the generalized DT invariant DTH(v) ∈ Q without the condi-

tionMs
H(v) = Mss

H(v). The construction uses the stack theoretic Hall algebraH(Coh(X))
ofCoh(X), and its well-definedness is highly non-trivial. A very rough description of it may

be

DTH(v) =

∫
logMss

H(v)

νB · dχ.

The ‘log’ is taken in the algebra H(Coh(X)). Some more explanation of a specific case is

available in [81].

Remark 2.6. We can define another invariant DTχH(v) ∈ Q by formally putting νB ≡
1 in the definition of DTH(v). If Ms

H(v) = Mss
H(v), it coincides with the usual Euler

characteristic χ(M s
H(v)). When we say a result as a weighted (resp. an unweighted) version,

it means the result for the invariants DTH(v) (resp. DTχH(v)).

2.3. Rank one DT invariants. In what follows, we identify H4(X,Q), H6(X,Q) with
H2(X,Q), Q respectively by the Poincaré duality. Given β ∈ H2(X,Z) and n ∈ Z, it
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is easy to show that Hilbn(X, β) is isomorphic to M s
H(v) for v = (1, 0,−β,−n) by the

assignment C !→ IC . The resulting invariant

In,β = DTH(1, 0,−β,−n) ∈ Z

is independent of H , and it counts one or zero dimensional subschemes C ⊂ X with [C] =
β, χ(OC) = n. For β ∈ H2(X,Z), the series Iβ(X) is defined to be

Iβ(X) =
∑
n∈Z

In,βq
n.

Example 2.7. (i) If β = 0, we have [9, 42, 44]

I0(X) =
∏
k≥1

(1− (−q)k)−kχ(X).

(ii) If f : X → Y is a birational contraction whose exceptional locus is C ∼= P1 with

normal bundle OC(−1)⊕2, we have [3]∑
m≥0

Im[C](X)tm =
∏
k≥1

(1− (−q)k)−kχ(X)
∏
k≥1

(1− (−q)kt)k.

The above example indicates that the quotient series Iβ(X)/I0(X) is the honest curve
counting series with homology class β. The following conjecture was proposed by MNOP

[48]:

Conjecture 2.8 ([48]).

(i) The quotient series Iβ(X)/I0(X) is the Laurent expansion of a rational function of q,
invariant under q ↔ 1/q.

(ii) After the variable change q = −eiλ, we have the equality

∑
β≥0

Iβ(X)

I0(X)
tβ = exp

⎛
⎝ ∑
g≥0,β>0

GWg,β(X)λ2g−2tβ

⎞
⎠ .

Here GWg,β(X) ∈ Q is the Gromov-Witten invariant counting stable maps f : C → X
from projective curves C with at worst nodal singularities with g(C) = g, f∗[C] = β.
The variable change q = −eiλ makes sense by the rationality conjecture (i). The above

conjecture was first proved for toric Calabi-Yau 3-folds in [48].

2.4. Developments on MNOP conjecture. As we mentioned in the introduction, the result

of Theorem 1.1 is the unweighted version of Conjecture 2.8 (i). The weighted version was

proved in [19]. We have the following result [77, 78] (unweighted version), [19] (weighted

version):

Theorem 2.9. There exist invariants Nn,β ∈ Q, Ln,β ∈ Q satisfying

• Nn,β = N−n,β = Nn+Hβ,β for any ample divisor H on X ,

• Ln,β = L−n,β , and it is zero for |n| ) 0,
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such that we have the following formula:

∑
β≥0

Iβ(X)tβ =
∏

n>0,β≥0

exp((−1)n−1nNn,βq
ntβ)

⎛
⎝∑

n,β

Ln,βq
ntβ

⎞
⎠ .

Remark 2.10. The proofs for the unweighted version in the author’s papers [77, 78] can

be modified to show the weighted version, if once a similar result of Theorem 2.4 for the

moduli spaces of complexes in [35, 43] is shown to be true (cf. [81]). This is also applied for

the results below.

The rationality conjecture is an easy consequence of Theorem 2.9:

Corollary 2.11. Conjecture 2.8 (i) is true.

There exist geometric meanings of Nn,β and Ln,β . The former invariant is nothing but

the generalized DT invariant DTH(0, 0, β, n), which counts one or zero dimensional H-

semistable sheaves F on X with [F ] = β, χ(F ) = n. A priori, Nn,β is defined using the

ample divisor H , but the resulting invariant is shown to be independent of H . The latter in-

variant Ln,β is more interesting. It counts certain two term complexes E ∈ DbCoh(X)
(indeed they are perverse coherent sheaves in the sense of [7, 37]) satisfying ch(E) =
(1, 0,−β,−n), which are semistable with respect to a derived self dual weak stability con-

dition on it. The result of Theorem 2.9 is proved along with the idea stated in Subsection 1.5.

A similar idea also proves Pandharipande-Thomas conjecture [59] relating the quotient

series of rank one DT invariants with the invariants counting stable pairs. The definition of

stable pairs is given as follows:

Definition 2.12 ([59]). A stable pair is data (F, s) where F is a pure one dimensional sheaf

on X , s : OX → F is a morphism which is surjective in dimension one.

A typical example of a stable pair is (OC(D), s), where C ⊂ X is a smooth curve,D ⊂
C is an effective divisor and s is a natural composition OX � OC ⊂ OC(D). For given
β ∈ H2(X,Z) and n ∈ Z, the moduli space Pn(X, β) of stable pairs (F, s) with [F ] = β,
χ(F ) = n is a projective scheme with a symmetric perfect obstruction theory [59]. The PT

invariant Pn,β ∈ Z is defined to be the degree of the zero dimensional virtual fundamental

cycle [Pn(X,β)]vir on Pn(X,β). The invariant Pn,β is deformation invariant, and coincides

with the weighted Euler characteristic with respect to the Behrend function on Pn(X, β).
The following conjecture was proposed by [59], its unweighted version was proved in [63,

77], and the weighted version was proved in [19]:

Theorem 2.13. For fixed β ∈ H2(X,Z), we have the equality of the generating series

Iβ(X)

I0(X)
=
∑
n∈Z

Pn,βq
n.

Finally in [58], Pandharipande-Pixton proved Conjecture 2.8 (ii) for large class of Calabi-

Yau 3-folds including quintic hypersurfaces in P4:

Theorem 2.14 ([58]). Conjecture 2.8 (ii) is true if X is a complete intersection Calabi-Yau
3-fold in the product of projective spaces.

Indeed what they proved is the correspondence between Gromov-Witten invariants and

stable pair invariants. Combined with Theorem 2.13, the result of Theorem 2.14 was proved.

Their proof relies on the degeneration formula of GW and PT invariants, and the torus local-

ization formula.
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2.5. Non-commutative DT theory and flops. The DT theory can be also constructed for

non-commutative varieties or algebras. Let Y be a quasi-projective 3-fold which admits two

crepant small resolutions giving a flop:

φ : X
f→ Y

f†← X†. (2.2)

In this situation, Van den Bergh [22] constructed sheaf of non-commutative algebras AY on

Y and derived equivalences

DbCoh(X†)
Ψ→ DbCoh(AY )

Φ→ DbCoh(X) (2.3)

so that their composition gives Bridgeland’s flop equivalence [16]. For n ∈ Z and β ∈
H2(X,Z), let Hilbn(AY , β) be the moduli space of surjections AY � F in Coh(AY )
such that F has at most one dimensional support and [Φ(F )] = β, χ(Φ(F )) = n. If X is

a smooth projective Calabi-Yau 3-fold, there is a symmetric perfect obstruction theory on

Hilbn(AY , β), and the degree of its zero dimensional virtual fundamental cycle defines the

non-commutative DT (ncDT) invariant An,β ∈ Z. Alternatively, An,β is defined to be the

weighted Euler characteristic of the Behrend function on Hilbn(AY , β). We set Iβ(AY ) to
be

Iβ(AY ) =
∑
n∈Z

An,βq
n.

The following result was proved in [84] for the unweighted version, and [20] for the weighted

version, basically along with the argument in Subsection 1.5:

Theorem 2.15. We have the following identities:

∑
f∗β=0

Iβ(AY )t
β =

∏
k≥1

(1− (−q)k)kχ(X)

⎛
⎝ ∑
f∗β=0

Iβ(X)tβ

⎞
⎠
⎛
⎝ ∑
f∗β=0

I−β(X)tβ

⎞
⎠

∑
β Iβ(X)tβ∑

f∗β=0 Iβ(X)tβ
=

∑
β Iβ(AY )t

β∑
f∗β=0 Iβ(AY )tβ

=

∑
β Iφ∗β(X

†)tβ∑
f∗β=0 Iφ∗β(X

†)tβ
.

Example 2.16. Let Y = (xy + zw = 0) ⊂ C4 be the conifold singularity, and take two

crepant small resolutions (2.2) by blowing up at the ideals (x, z) and (x,w). In this case, the
algebra AY is the path algebra of the following quiver

• a2 ��

a1

�� •
b1

��

b2

��

with relation given by the derivations of the super potential W = a1b1a2b2 − a1b2a2b1.
Although X is not projective in this case, the ncDT invariant An,m[C] ∈ Z makes sense,

and coincides with the weighted Euler characteristic of the moduli space of framed AY -

representations with dimension vector (n,m+n). The proof of Theorem 2.15 also works in

this situation. Using Example 2.7 (ii), the first identity of Theorem 2.15 becomes∑
n,m

An,m[C]q
ntm =

∏
k≥1

(1− (−q)k)−2k
∏
k≥1

(1− (−q)kt)k
∏
k≥1

(1− (−q)kt−1)k.
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The above formula was first conjectured by Szendrői [66], and later proved by Young [88],

Nagao-Nakajima [54].

Remark 2.17. In general for a quiver Q with a super potential W , we are able to define the

ncDT theory for (Q,W ). A mutation of the pair (Q,W ) defines another quiver with a super
potential (Q†,W †). The relationship between ncDT invariants on (Q,W ) and (Q†,W †) is
described in terms of cluster transformations. We refer to [40, 53] for the detail.

3. Bridgeland stability conditions

3.1. Definitions. We recall the definition of Bridgeland stability conditions on a triangu-

lated category D. We fix a finitely generated free abelian group Γ with a norm ‖ ∗ ‖
on ΓR together with a group homomorphism cl : K(D) → Γ. A typical example is that

D = DbCoh(X) for a smooth projective variety X , Γ is the image of the Chern character

map ch: K(X) → H∗(X,Q), and cl = ch. By taking the dual of cl, we always regard a

group homomorhpism Γ → C as a group homomorphismK(D) → C.

Definition 3.1 ([16]). A stability condition on D is data σ = (Z, {P(φ)}φ∈R), where
Z : Γ → C is a group homomorphism (called central charge), P(φ) ⊂ D is a full sub-

category (called σ-semistable objects with phase φ) satisfying the following conditions:

• For 0 �= E ∈ P(φ), we have Z(E) ∈ R>0 exp(
√−1πφ).

• For all φ ∈ R, we have P(φ+ 1) = P(φ)[1].

• For φ1 > φ2 and Ei ∈ P(φi), we have Hom(E1, E2) = 0.

• (Harder-Narasimhan property): For each 0 �= E ∈ D, there is a collection of distin-

guished triangles Ei−1 → Ei → Fi → Ei−1[1], EN = E,E0 = 0 with Fi ∈ P(φi)
and φ1 > φ2 > · · · > φN .

Another way defining a stability condition is to use a t-structure as follows:

Lemma 3.2 ([16]). Giving a stability condition on D is equivalent to giving data (Z,A),
where Z : Γ → C is a group homomorphism, A ⊂ D is the heart of a bounded t-structure,
satisfying

Z(A \ {0}) ∈ {r exp(iπφ) : r > 0, 0 < φ ≤ 1} (3.1)

together with the Harder-Narasimhan property: for any E ∈ A, there exists a filtration
0 = E0 ⊂ E1 ⊂ · · · ⊂ EN = E such that Fi = Ei/Ei−1 is Z-semistable with argZ(Fi) >
argZ(Fi+1) for all i. Here E ∈ A is Z-semistable if for any subobject 0 �= F 
 E, we have
argZ(F ) < (≤)argZ(E).

Proof. The correspondence is as follows: given (Z, {P(φ)}φ∈R), the corresponding heartA
is the extension closure of P(φ) for 0 < φ ≤ 1. Conversely given (Z,A), the category P(φ)
is defined to be the category of Z-semistable objects E ∈ A with Z(E) ∈ R>0 exp(iπφ).
Other P(φ) are defined by the rule P(φ+ 1) = P(φ)[1].

Example 3.3. Let C be a smooth projective curve, D = DbCoh(C), Γ = Z⊕2 and cl =
(rank, deg). We set Z : Γ → C to be (r, d) !→ −d + ir. Then (Z,Coh(C)) is a stability

condition, whose Z-semistable objects coincide with classical semistable sheaves on C.
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3.2. The space of stability conditions. The space of stability conditions is defined as fol-

lows:

Definition 3.4. We define StabΓ(D) to be the set of stability conditions on D satisfying the

support property, i.e. there is a constant C > 0 such that ‖cl(E)‖/|Z(E)| < C holds for

any 0 �= E ∈ ∪φ∈RP(φ).

The main result of Bridgeland [16] shows that the set StabΓ(D) has a structure of a

complex manifold. If D = DbCoh(X) for a smooth projective variety X , Γ = Im(ch) and
cl = ch, we set Stab(X) = StabΓ(D). LetAuteq(X) be the group of exact autequivalences
of DbCoh(X). The space Stab(X) admits a left action of Auteq(X) and a right action of

C. The latter action is given by (Z, {P(φ)}φ∈R) · λ = (e−iπλZ, {P(φ + Reλ)}φ∈R) for
λ ∈ C. We are interested in the double quotient stack

[Auteq(X)\Stab(X)/C] . (3.2)

The conjecture by Bridgeland [18] is that if X is a Calabi-Yau manifold, the above double

quotient stack contains the stringy Kähler moduli space of X , that is the moduli space of

complex structures of a mirror manifold of X .

Example 3.5.

1. If C is an elliptic curve, then (3.2) is shown in [16] to be isomorphic to the modular

curve SL2(Z)\H. This is compatible with the fact that C is self mirror.

2. Let π : X → P2 be the total space of ωP2 , which is a non-compact Calabi-Yau 3-fold.

In this case, Stab(X) is defined to be StabΓ(D) where D is the bounded derived

category of compact supported coherent sheaves on X , Γ is the image of ch ◦ π∗ in

H∗(P2,Q), and cl = ch ◦ π∗. Then the quotient stack (3.2) contains [(C \ μ3)/μ3]
by [11]. The latter stack is the parameter space ψ3 of the mirror family ofX given by

{y30 + y31 + y32 − 3ψy1y2y3 = 0} ⊂ P2.

The space (3.2) is most interesting for projective Calabi-Yau 3-folds, e.g. quintic hyper-

surfaces in P4. Even in the quintic 3-fold case, the space (3.2) is very difficult to study. In

this case, Bridgeland’s conjecture [18] is stated in the following way:

Conjecture 3.6. Let X ⊂ P4 be a smooth quintic 3-fold, and set MK = [(C \ μ5)/μ5].
Then there is an embedding

MK ↪→ [Auteq(X)\Stab(X)/C] .

The above embedding should be given by the solutions of the Picard-Fuchs equation

which the period integrals of the mirror family of X satisfy. Its explicit description is avail-

able in [69]. However in the projective Calabi-Yau 3-fold case, it is even not known that

whether Stab(X) is non-empty or not. The first issue in solving Conjecture 3.6 is to con-

struct stability conditions, which we discuss in the next subsection.

3.3. Existence problem. It has been a serious issue to construct Bridgeland stability condi-

tions on projective Calabi-Yau 3-folds. Contrary to the one dimensional case, it turns out that

there is no stability condition σ ∈ Stab(X) of the form σ = (Z,Coh(X)) if dimX ≥ 2.
From the arguments in string theory, we expect the following conjecture:
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Conjecture 3.7. LetX be a smooth projective variety and take B+ iω ∈ H2(X,C) with ω
ample class. Then there exists the heart of a bounded t-structure AB,ω on DbCoh(X) such
that the pair σB,ω = (ZB,ω,AB,ω) determines a point in Stab(X), where ZB,ω is given by

ZB,ω(E) = −
∫
X

e−iωchB(E).

Here chB(E) is defined to be e−Bch(E).

The resulting stability conditions are expected to form a neighborhood at the large vol-
ume limit in terms of string theory. The above conjecture is known to hold if dimX ≤ 2. In
the dimX = 2 case, the heart AB,ω is constructed to be a certain tilting of Coh(X), which
we are going to review.

Let X be a d-dimensional smooth projective variety and take B + iω ∈ H2(X,C) with
ω ample. The ω-slope function on Coh(X) is defined to be

μω(E) =
ch1(E) · ωd−1

rank(E)
∈ R ∪ {∞}.

Here μω(E) = ∞ if rank(E) = 0.

Definition 3.8. An object E ∈ Coh(X) is μω-(semi)stable if for any non-zero subobject

0 �= F 
 E, we have μω(F ) < (≤)μω(E/F ).

We define the pair of subcategories (TB,ω,FB,ω) of Coh(X) to be

TB,ω = 〈E ∈ Coh(X) : E is μω-semistable with μω(E) > Bωd−1〉
FB,ω = 〈E ∈ Coh(X) : E is μω-semistable with μω(E) ≤ Bωd−1〉.

Here 〈∗〉 means the extension closure. The existence of Harder-Narasimhan filtrations with

respect to the μω-stability implies that the pair (TB,ω,FB,ω) is a torsion pair (cf. [33]) of

Coh(X). Its tilting defines another heart

BB,ω = 〈FB,ω[1], TB,ω〉 ⊂ DbCoh(X).

The following result is due to [1, 17, 85].

Proposition 3.9. If dimX = 2, then (ZB,ω,BB,ω) ∈ Stab(X).

Proof. Here is a rough sketch of the proof: if dimX = 2, then ZB,ω(E) is written as

ZB,ω(E) = −chB2 (E) + chB0 (E)ω2/2 + ichB1 (E)ω.

The construction of BB,ω immediately implies ImZB,ω(E) ≥ 0 for any 0 �= E ∈ BB,ω .
We need to check that ImZB,ω(E) = 0 implies ReZB,ω(E) < 0. This property can be

easily deduced from the the classical Bogomolov-Gieseker (BG) inequality in Theorem 3.10

below.

The following BG inequality played an important role:

Theorem 3.10 ([13, 29]). Let X be a d-dimensional smooth projective variety, and E a
torsion free μω-semistable sheaf on X . Then we have the following inequality:(

chB1 (E)2 − 2chB0 (E)chB2 (E)
)
· ωd−2 ≥ 0.
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3.4. Double tilting construction for 3-folds. Suppose thatX is a smooth projective 3-fold,

and B, ω are defined over Q. In this case, the central charge ZB,ω is written as

ZB,ω(E) = −chB3 (E) + chB1 (E)ω2/2 + i
(
chB2 (E)ω − chB0 (E)ω3/6

)
.

Contrary to the surface case, the heart BB,ω does not fit into a stability condition with central

charge ZB,ω . In [12], Bayer, Macri and the author constructed a further tilting of BB,ω in

order to give a candidate of AB,ω in Conjecture 3.7. The key observation is the following

lemma, which also relies on Theorem 3.10:

Lemma 3.11 ([12]). For any 0 �= E ∈ BB,ω , one of the following conditions hold:
(i) chB1 (E)ω2 > 0.

(ii) chB1 (E)ω2 = 0 and ImZB,ω(E) > 0.

(iii) chB1 (E)ω2 = ImZB,ω(E) = 0 and ReZB,ω(E) < 0.

The above lemma indicates that the vector (chB1 (E)ω2, ImZB,ω(E),−ReZB,ω(E)) be-
haves as if it were (rank, c1, ch2) on coherent sheaves on surfaces. In [12], this observation

led to the following slope function on BB,ω:

νB,ω(E) =
ImZB,ω(E)

chB1 (E)ω2
∈ Q ∪ {∞}.

Here νB,ω(E) = ∞ if chB1 (E)ω2 = 0. The above lemma shows that νB,ω satisfies the weak

see-saw property, and it defines a slope stability condition on BB,ω . In [12], it was called

tilt-stability:

Definition 3.12. An object E ∈ BB,ω is tilt (semi)stable if for any subobject 0 �= F 
 E,

we have νB,ω(F ) < (≤)νB,ω(E/F ).

We can show the existence of Harder-Narasimhan filtrations with respect to the tilt sta-

bility. Similarly to the surface case, the pair of subcategories (T ′
B,ω,F ′

B,ω) of BB,ω defined

to be

T ′
B,ω = 〈E ∈ BB,ω : E is tilt semistable with νB,ω(E) > 0〉

F ′
B,ω = 〈E ∈ BB,ω : E is tilt semistable with νB,ω(E) ≤ 0〉

is a torsion pair. By tilting, we have another heart

AB,ω = 〈F ′
B,ω[1], T ′

B,ω〉 ⊂ DbCoh(X).

By the construction, we have ImZB,ω(E) ≥ 0 for any E ∈ AB,ω . In [12], we proposed the

following conjecture:

Conjecture 3.13 ([12]). If dimX = 3, we have (ZB,ω,AB,ω) ∈ Stab(X).
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3.5. Conjectural BG inequality for 3-folds. Our double tilting construction led to a BG

type inequality conjecture evaluating the third Chern characters of tilt semistable objects.

Conjecture 3.14 ([12]). Let X be a smooth projective 3-fold. Then for any tilt semistable
object E ∈ BB,ω with νB,ω(E) = 0, i.e. chB2 (E)ω = chB0 (E)ω3/6, we have the inequality

chB3 (E) ≤ 1

18
chB1 (E)ω2.

Remark 3.15. In order to show (ZB,ω,AB,ω) satisfies the property (3.1), it is enough to

show the weaker inequality chB3 (E) < chB1 (E)ω2/2. If this is true, the existence of HN

filtrations is proved in [12], while the support property remains open. The stronger bound

in Conjecture 3.14 was obtained by the requirement that the equality is achieved for tilt

semistable objects with zero discriminant.

It seems to be a hard problem to show Conjecture 3.14 even in concrete examples. So far,

it is proved when X = P3 by Macri [46], X is a quadric 3-fold by Schmidt [61], and X is

a principally polarized abelian 3-fold with Picard rank one by Maciocia-Piyaratne [49, 50].

Another kind of evidence is that assuming Conjecture 3.14 implies some open problems in

other research fields. In [4], it was proved that Conjecture 3.14 implies (almost) Fujita con-

jecture for 3-folds: for any polarized 3-fold (X,L), KX + 4L is free and KX + 6L is very

ample. In [83], it was also proved that Conjecture 3.14 implies a conjectural relationship

between two kinds of DT type invariants inspired by string theory. This result will be re-

viewed in Theorem 4.5. It may be worth pointing out that, in both of the above applications,

assuming a weaker inequality, say chB3 (E) < chB1 (E)ω2/2, does not imply anything. The

stronger evaluation in Conjecture 3.14 is crucial for the proofs of the applications.

3.6. The space of weak stability conditions. Although the existence of Bridgeland sta-

bility conditions on projective Calabi-Yau 3-folds remains open, we are able to modify the

definition of Bridgeland stability conditions so that the story in Subsection 1.5 works. The

notion of weak stability conditions in [77] is one of them. In the situation of Subsection 3.1,

we further fix a filtration 0 
 Γ0 
 · · · 
 ΓN = Γ such that each subquotient Γj/Γj−1 is a

free abelian group. Instead of considering a group homomorphism Z : Γ → C, we consider
an element

Z = {Zi}Nj=0 ∈
N∏
j=0

Hom(Γj/Γj−1,C). (3.3)

Given an element (3.3), we set Z(v) ∈ C for v ∈ Γ as follows: there is a unique 0 ≤ m ≤ N
such that v ∈ Γm \ Γm−1, where Γ−1 = ∅. Then Z(v) is defined to be Zm([v]) ∈ C where

[v] is the class of v in Γm/Γm−1.

Definition 3.16. A weak stability condition on D with respect to the filtration Γ• is data

(Z, {P(φ)}φ∈R), where Z is as in (3.3), P(φ) ⊂ D is a full subcategory, satisfying the same

axiom in Definition 3.1.

Similarly to Lemma 3.2, giving a weak stability condition is equivalent to giving (Z,A),
where Z is as in (3.3), A ⊂ D is the heart of a bounded t-structure, satisfying the same

conditions in Lemma 3.2. We denote by StabΓ•(D) the set of weak stability conditions on

D with respect to Γ• with a support property. This set also has a structure of a complex
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manifold, and coincides with StabΓ(D) if N = 0, i.e. the filtration Γ• is trivial. In general,

it is easier to show the non-emptiness for the space StabΓ•(D) with a non-trivial filtration

Γ•. The result of Theorem 2.9 was obtained by the wall-crossing formula in the space of

weak stability conditions on the following triangulated category

DX = 〈OX ,Coh≤1(X)〉tr ⊂ DbCoh(X).

Here Coh≤1(X) is the category of one or zero dimensional sheaves on X , and 〈∗〉tr is the
triangulated closure. The relevant data is

Γ0 = Z⊕H2(X,Z)⊕ {0} ⊂ Γ1 = Γ = Z⊕H2(X,Z)⊕ Z

with the map cl given by cl(E) = (ch3(E), ch2(E), ch0(E)). Here H2(X,Q) is identified
with H4(X,Q) via Poincaré duality. The result of Theorem 2.9 is proved along with the

wall-crossing argument of Subsection 1.5 with respect to the one parameter family of weak

stability conditions on DX

σθ = (Zω,θ,AX) ∈ StabΓ•(DX), 1/2 ≤ θ < 1

from θ = 1/2 to θ → 0. Here ω is an ample divisor on X , Zω,θ,j are given by

Zω,θ,0 : Γ0 8 (n, β) !→ n− (ω · β)i, Zω,θ,1 : Z 8 r !→ r exp(iπθ).

The heartAX ⊂ DX is obtained as the extension closure of objectsOX andCoh≤1(X)[−1].
We are able to construct DT type invariant

DTσθ
(1, 0,−β,−n) ∈ Q

which counts σθ-semistable objects E ∈ AX with ch(E) = (1, 0,−β,−n). It is shown that

DTθ→1(1, 0,−β,−n) = Pn,β , DTθ=1/2(1, 0,−β,−n) = Ln,β

where Ln,β is the invariant in Theorem 2.9. The wall-crossing formula describes the dif-

ference between Pn,β and Ln,β . A similar wall-crossing phenomena also implies the rela-

tionship between In,β and Pn,β in Theorem 2.13. Combined them, we obtain the result of

Theorem 2.9. Some more detail is also available in [81].

4. Further results and conjectures

4.1. Multiple cover formula conjecture. Although Conjecture 2.8 (i) is proved, a stronger

version of the rationality conjecture remains open. It was proposed by Pandharipande-

Thomas [59], and predicts the product expansion (called Gopakumar-Vafa form) of the gen-
erating series of PT invariants:

1 +
∑

n∈Z,β>0

Pn,βq
ntβ

=
∏
β>0

⎛
⎝ ∞∏
j=1

(1− (−q)jtβ)jn
β
0

∞∏
g=1

2g−2∏
k=0

(1− (−q)g−1tβ)
(−1)k+gnβ

g

(
2g−2
k

)
⎞
⎠

for some nβg ∈ Z. Using Theorem 2.9 and Theorem 2.13, the above strong rationality

conjecture is proved in [81] to be equivalent to the following conjecture:
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Conjecture 4.1 ([36, 81]). We have the following identity:

Nn,β =
∑

k∈Z≥1,k|(n,β)

1

k2
N1,β/k.

The invariant N1,β is always integer, and the above conjecture is stronger then the inte-

grality conjecture by Kontsevich-Soibelman [40].

4.2. Gepner type stability conditions. Let W ∈ A = C[x1, · · · , xn] be a homogeneous

polynomial of degree d. By definition, a graded matrix factorization consists of data

P 0 p0→ P 1 p1→ P 0(d)

where P i are graded free A-modules of finite rank, pi are homomorphisms of graded A-
modules, P i !→ P i(1) is the shift of the grading, satisfying p1 ◦ p0 = p0 ◦ p1 = ·W . The

triangulated categoryHMF(W ) is defined to be the homotopy category of graded matrix fac-

torizations of W . It has a structure of a triangulated category, and related to DbCoh(X) for
the hypersurfaceX = (W = 0) ⊂ Pn−1. For instance if d = n, there is an equivalence [56]

HMF(W )
∼→ DbCoh(X). (4.1)

As an analogy of Gieseker stability onCoh(X), we expect the existence of a natural stability
condition on HMF(W ). Based on the earlier works [41, 87], the following conjecture is

proposed in [71]:

Conjecture 4.2. There is a Bridgeland stability condition σG = (ZG, {PG(φ)}φ∈R) on
HMF(W ) whose central charge ZG is given by

ZG

(
N⊕
i=1

A(mi) 
N⊕
i=1

A(ni)

)
=

N∑
i=1

(
e

2πmi
√−1

d − e
2πni

√−1

d

)

and the set of semistable objects satisfy τPG(φ) = PG(φ+2/d), where τ is the graded shift
functor P • !→ P •(1).

If n = d = 5, i.e. X is a quintic 3-fold, a stability condition above is expected to

correspond to the orbifold point 0 ∈ MK in Conjecture 3.6 called Gepner point. By this

reason, a stability condition in Conjecture 4.2 is called Gepner type. Some evidence of

Conjecture 4.2 is available in [41, 70, 71]. Suppose that Conjecture 4.2 is true for n = d = 5.
Then as an analogy of Fan-Jarvis-Ruan-Witten theory [26] in GW theory, we may define the

DT type invariant

DTG(γ) ∈ Q, γ ∈ HH0(W ) (4.2)

which counts σG-semistable graded matrix factorizations P • with ch(P •) = γ. Here

HH0(W ) is the zero-th Hochschild homology of HMF(W ), and ch is the Chern charac-

ter map on graded matrix factorizations (cf. [60]). Because of the property of σG, the in-

variant (4.2) should satisfy DTG(γ) = DTG(τ∗γ). Under the Orlov equivalence (4.1),

the equivalence τ on the LHS corresponds to the equivalence STOX
◦ OX(1) on the RHS,

where STOX
is the Seidel-Thomas twist [62] associated to OX . Along with the argument in

Subsection 1.5, the existence of the invariant (4.2) should imply a hidden symmetry of the

generating series of the original DT invariants on the quintic hypersurface X = (W = 0)
with respect to the equivalence STOX

◦ OX(1).
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4.3. S-duality conjecture for DT invariants. Let us recall the original S-duality conjec-

ture by Vafa-Witten [86]. It predicts the (at least almost) modularity of the generating series

of Euler characteristics of moduli spaces of stable torsion free sheaves on algebraic surfaces

with a fixed rank and a first Chern class. We refer to [28] for the developments on the S-

duality conjecture so far. Instead of stable torsion free sheaves on algebraic surfaces, we

consider semistable pure two dimensional torsion sheaves on Calabi-Yau 3-folds, and DT

invariants counting them. Let X be a smooth projective Calabi-Yau 3-fold, H an ample

divisor on X and fix a divisor class P ∈ H2(X,Z). We consider the following generating

series

DTH(P ) =
∑

β∈H2(X),n∈Q
DTH(0, P,−β,−n− P · c2(X)/24)qntβ . (4.3)

Here each coefficient counts H-semistable E ∈ Coh(X) whose Mukai vector (not Chern
character) satisfies ch(E) · √tdX = (0, P,−β,−n). As a 3-fold version of the S-duality

conjecture, we expect that the series (4.3) satisfies a modular transformation property of

(almost) Jacobi forms. (We refer to [25] for a basic of Jacobi forms.) Some computations of

the invariantsDTH(0, P,−β,−n) are available in [30, 31]. Also the transformation formula

of the series (4.3) under a flop is obtained in [68]. Let us consider a flop diagram (2.2) with

Y projective, and ω an ample divisor on Y . We assume that the exceptional locus C, C† of
f , f† are isomorphic to P1 with p = f(C) = f†(C†). Let l be the scheme theoretic length

of f−1(p) at the generic point of C.

Theorem 4.3 ([68]). There exist nj ∈ Z≥1 for 1 ≤ j ≤ l such that we have the following
formula:

DTf†∗ω(φ∗P ) = φ∗DTf∗ω(P )

·
l∏

j=1

{
ijP ·C−1η(q)−1ϑ1,1(q, ((−1)φ∗P t)jC

†
)
}jnjP ·C

.

Here φ∗ is the variable change (n, β) !→ (n, φ∗β), η(q) is the Dedekind eta function and
ϑ1,1(q, t) is the Jacobi theta function, given as follows:

η(q) = q
1
24

∏
k≥1

(1− qk), ϑ1,1(q, t) =
∑
k∈Z

q
1
2 (k+

1
2 )

2

(−t)k+
1
2 . (4.4)

Although f∗ω is not ample, it is shown that the invariants DTf∗ω(v) are well-defined.
Recall that η(q) is a modular form of weight 1/2, ϑ1,1(q, t) is a Jacobi form of weight 1/2
and index 1/2. The result of Theorem 4.3 shows that the series (4.3) transforms under a flop

by a multiplication of a meromorphic Jacobi form, which gives evidence of the S-duality

conjecture for DT invariants.

4.4. Mathematical approach toward OSV conjecture. In string theory, the OSV conjec-

ture [57] predicts a certain approximation

ZBH ∼ |Ztop|2 (4.5)

where the LHS is the partition function of black hole entropy, and the RHS is the partition

function of topological string. A version of the above conjecture is mathematically stated as
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an approximation between the generating series of DT invariants counting torsion sheaves

on Calabi-Yau 3-folds, and the generating series of GW invariants. In [23], Denef-Moore

proposed a relationship among the series (4.3) and the generating series of In,β , Pn,β in

order to give a derivation of (4.5). A mathematical refinement of Denef-Moore conjecture is

stated in [83]. For simplicity, suppose that Pic(X) is generated by an ample divisor H . For

m ∈ Z>0, we define the following cut off series

Im(q, t) =
∑

(β,n)∈C(m)

In,βq
ntβ , Pm(q, t) =

∑
(β,n)∈C(m)

Pn,βq
ntβ .

Here C(m) = {(β, n) : βH < mH3/2, |n| < m2H3/2}. Moreover, we define the cut off

generating series of D6-anti-D6 brane counting

ZD6−D6(q, t, w) =
∑

m2−m1=m

qH
3(m3

1−m3
2)/6tH

2(m2
1−m2

2)/2wH3m3/6+Hc2(X)m/12

Im(qw−1, qm2Htw−mH)Pm(qw−1, q−m1Ht−1w−mH).

Conjecture 4.4 ([23, 83]). Form ) 0, we have the equality

DTH(mH) =
∂

∂w
ZD6−D6(q, t, w)|w=−1

modulo terms of qntβ with

−H3

24
m3

(
1− 1

m

)
≤ n+

(β ·H)2

2mH3
.

In [83], we proved the following:

Theorem 4.5 ([83]). The unweighted version of Conjecture 4.4 is true if we assume Conjec-
ture 3.14.

Even if Conjecture 4.4 is proved, still the relationship (4.5) is not obvious. If we follow

the arguments in [23], at least we need to prove S-duality conjecture for DT invariants in

the previous subsection and MNOP conjecture. Moreover we need to make a mathematical

understanding of the approximation ∼ in (4.5). Although the relationship (4.5) is motivated

by string theory, it seems to involve deep and interesting mathematics.
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Derived algebraic geometry and deformation
quantization

Bertrand Toën

Abstract. This is a report on recent progress concerning the interactions between derived algebraic

geometry and deformation quantization. We present the notion of derived algebraic stacks, of shifted

symplectic and Poisson structures, as well as the construction of deformation quantization of shifted

Poisson structures. As an application we propose a general construction of the quantization of the

moduli space of G-bundles on an oriented space of arbitrary dimension.
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structures, derived categories.

1. Introduction

Quantization is an extremely vast subject, particularly because it has a long-standing physi-

cal origin and history. Even from the more restrictive point of view of a pure mathematician,

quantization possesses many facets and connects with a wide variety of modern mathemat-

ical domains. This variety of interactions explains the numerous mathematical incarnations

that the expression quantization finds in the existing literature, though a common denomina-

tor seems to be a perturbation of a commutative structure into a non-commutative structure.
For a commutative objectX (typically a commutative algebra or a manifold), a quantization

is most often realized as a familyX�, of objects depending on a parameter �, which recovers
X when � = 0 and which is non-commutative for general values of �. The existence of the
familyX� is in most cases related to the existence of certain additional geometric structures,

such as symplectic or Poisson structures.

The purpose of this manuscript is to present a new approach to quantization, or more

specifically to the construction and the study of interesting non-commutative deformations

of commutative objects of geometrico-algebraic origins. This new approach is based on the

derived algebraic geometry, a version of algebraic geometry that has emerged in the last

decade (see [31, 32]), and which itself consists of a homotopical perturbation of algebraic
geometry. Derived algebraic geometry not only leads to a unified geometric interpretation

of most of the already existing quantum objects (e.g. it treats the quantum group and defor-

mation quantization of a Poisson manifold on an equal footing), but also opens up a whole

new world of quantum objects which, as far as we know, have not been identified in the

past even though they seem to appear naturally in algebraic geometry, algebraic topology, or

representation theory.

Proceedings of the International Congress of Mathematicians, Seoul, 2014



770 Bertrand Toën

Convention. All varieties, algebras, schemes, stacks, algebraic groups etc . . . will be over a

ground field k of characteristic zero.

2. Quantization as deformed categories: three motivating examples

In this first section we briefly recall three well known important examples of “quantization

in action” in different domains: quantum groups, skein algebras and Donaldson-Thomas

invariants. We identify the natural moduli spaces behind each of these examples and explain

how they all can be considered from the unified point of view of deformations of categories

and monoidal categories of sheaves.

Quantum groups. Probably the most famous and most fundamental of quantum objects are

quantum groups. For an algebraic group G, with lie algebra g, and a choice of a G-invariant
element p ∈ Sym2(g), Drinfeld constructs a quantum group (see [10]). Algebraically the

quantum group is a deformation of the Hopf algebra A = O(G) of functions on G, into a

non-commutative Hopf algebra A�.

Skein algebras. Skein algebras appear in low dimensional topology (see [38]). They are

associated with a given Riemann surface Σ, and are explicitly defined in terms of generators

and relations. The generators are given by simple curves traced on the surface Σ, and the

relations are given by the so-called skein relations, which possess natural deformations by a

parameter q = e2iπ�. The skein algebra associated with Σ, K�(Σ), is a non-commutative

deformation of the ring of functions on the character variety of Σ for the group Sl2 (i.e. the
affine algebraic variety whose points describe Sl2-representations of the fundamental group

π1(Σ)).

Donaldson-Thomas invariants. For X a Calabi-Yau algebraic variety of dimension 3, we
denote by MX the moduli space of stable vector bundles with fixed numerical invariants. It

is a singular variety in general but with a very specific local structure. Indeed, it is known

that locally around each point, X embeds into a smooth ambient variety Z as the critical

points of a function f : Z → A1. Each of these locally defined functions f define a (per-

verse) sheaf νf of vanishing cycles on X , which under an orientability assumption glue to

a globally defined perverse sheaf E on X (see [2, 7, 8] for more on the subject). The sheaf

E is a quantization of the space X , in the sense that it can be seen to be a deformation of

the line bundle of virtual half forms on X (we refer here to the next section for more about

virtual structures). This deformation is again a non-commutative deformation, but this time

in a dramatic way as the multiplicative structure itself is lost and E only exists as a sheaf of

(complexes of) vector spaces on X .

Despite their different origins and differences in appearance these three examples of

quantization can be considered in a striking unified way: they all are deformations of cate-

gories of sheaves on natural moduli spaces, where the categories eventually come equipped

with monoidal structures. More is true, these deformations are all induced by the same

type of structures on the corresponding moduli spaces, at least when they are appropriately

viewed as derived algebraic stacks as we will explain later. The moduli spaces related to

these three examples are easy to guess: they are respectively the moduli space BunG(∗)
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of G-bundles on a point ∗, the moduli space BunSl2(Σ) of Sl2-bundles on the surface Σ,
and the moduli space MX of algebraic Gln-bundles on X , also denoted BunGln(X). In

the case of the quantum group, there is no non-trivial G-bundles on a point, but the triv-

ial G-bundle possesses many automorphisms. The moduli space BunG(∗) is thus trivial
from the point of view of algebraic varieties but can be realized as a non-trivial algebraic

stack BG. Quasi-coherent sheaves on BG are nothing else than linear representations of

G, QCoh(BG) = Rep(G). The quantum group A� can then be realized as a deforma-

tion of QCoh(BG) considered as a braided monoidal category. For the case of skein al-

gebras, we already mentioned that K�=0(Σ) is the ring of functions on the moduli space

χ(Σ) = BunSl2(Σ). The moduli space BunSl2(Σ) is an affine algebraic variety and thus

its category of quasi-coherent sheaves is equivalent to modules over its ring of functions,

QCoh(BunSl2(Σ)) = K�=0(Σ) −Mod. The deformation K�(Σ) can thus be realized as

a deformation of the category QCoh(BunSl2(Σ)), simply considered as a linear category.

Finally, the perverse sheaf E on MX can itself be considered as a deformation of a natural

object ω
1/2,virt
X , of virtual half top forms on X , which is almost a quasi-coherent sheaf on

X (it is a complex of such). The quantized object E is thus not a deformation of QCoh(X),
but is rather a deformation of one of its objects.

To summarize, all of the three examples discussed above have an interpretation in terms

of deformations of categories, possibly with monoidal structures, of quasi-coherent sheaves

on certain moduli spaces. Monoidal categories can be organized in a hierarchy, correspond-

ing to the degree of symmetry imposed on the monoidal structure. For instance, a monoidal

category can come equipped with a braiding, or a symmetry constraint. Monoidal categories

will be referred to as 1-fold monoidal categories, braided monoidal categories as 2-fold
monoidal categories, and symmetric monoidal categories as ∞-fold monoidal categories.

We will moreover see that when categories are replaced by ∞-categories there is a notion

of n-fold monoidal ∞-categories for 2 < n < ∞ (also called En-monoidal ∞-categories),

interpolating between braided and symmetric monoidal categories. When n = 0, a 0-fold
category can be defined to simply be a category, a (−1)-monoidal category can be declared

to be an object in a category, and a (−2)-monoidal category can be defined as an endomor-

phism of an object in a category. This hierarchy is rather standard in the setting of higher

category theory in which a monoidal category is often considered as a 2-category with a

unique object, and a braided monoidal categories as a 3-category with unique object and

unique 1-morphism (see for instance [26, §V-25]).

In our examples above, quantum groups are deformations of QCoh(BunG(∗)) as a 2-
fold monoidal category. Skein algebras are deformations of QCoh(BunSl2(Σ)) as 0-fold
monoidal categories. Finally, the perverse sheaf E is a deformation of QCoh(BunGln(X))
considered as (−1)-fold monoidal category. The purpose of the present paper is to explain

that this is only a very small part of a bigger coherent picture, which we present here as a

key principle.

Principle 2.1. For any oriented manifold of dimension d (understood either in the topolog-
ical or in the algebraic sense), and any reductive group G, the moduli space of G-bundles
on X , BunG(X), possesses a quantization which is a deformation of QCoh(BunG(X))
considered as an (2− d)-fold monoidal ∞-category.

We will see how this principle can becomes a theorem, after a suitable interpretation of

BunG(X),QCoh(BunG(X)), and a suitable understanding of (2−d)-fold monoidal struc-

tures. We will also see how this principle follows from the general framework of symplectic
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and poisson structures in derived algebraic geometry, and a general quantization procedure.

3. Moduli spaces as derived stacks

The concept of an algebraic variety is not quite enough to encompass all the aspects of the

moduli problems appearing in algebraic geometry. Starting in the 50’ and continuing until

this day, several successive generalizations of algebraic varieties were introduced in order

to understand more and more refined aspects of moduli spaces. As a first step nilpotent

functions have been allowed as it is well known that many interesting moduli spaces are

non-reduced and must be considered as schemes instead of algebraic varieties. Secondly

algebraic stacks have been introduced in order to take into account the fact that in most

examples, moduli spaces classify objects only up to isomorphisms, and in many situations

non-trivial automorphisms prevent the existence of any reasonable moduli spaces. Unfortu-

nately algebraic stacks are still not enough to capture all aspects of moduli problems, as even

though they see non-trivial automorphisms the so-called higher structures remain invisible.

We will explain in this section what the higher structures are and how the notion of derived
algebraic stacks is needed in order to incorporate them as part of the refined moduli space.

3.1. Higher structures I: higher stacks. A first type of higher structure concerns higher
homotopies, which appear naturally each time objects are classified not only up to isomor-

phism but up to a weaker notion of equivalences. A typical example is the extension of the

moduli space of vector bundles on a given smooth and projective algebraic variety X , by

also allowing complexes of vector bundles, now considered up to quasi-isomorphism1. The

moduli space of vector bundles on X can be realized as an algebraic stack, but the moduli

of complexes of vector bundles taken up to quasi-isomorphism can not be represented by

an algebraic stack in the sense of [1]. The reason for this is the existence of higher homo-

topies between maps between complexes, which is reflected in the fact that a complex E
on X can have non-trivial negative self extension groups Ext−i(E,E). The vector spaces
Ext−i(E,E) for i > 0 are higher analogues of automorphism groups of vector bundles and

their existence prevent the representability by an algebraic stack for the exact same reason

that the existence of non-trivial automorphisms of vector bundles prevent the representabil-

ity of the moduli problem of vector bundles onX by a scheme. In his manuscript “Pursuing

stacks”, A. Grothendieck brought forward the idea of higher stack, which is an extension of

the notion of stacks of groupoids usually considered in moduli theory to a higher categorical

or higher homotopical setting. This idea has been made concrete in [27] by the introduction

of a notion of algebraic n-stacks (see also [31]). These algebraic n-stacks behave in a very

similar way to algebraic stacks, and most of the standard notions and techniques of alge-

braic geometry remain valid in this new setting (they have derived categories, cohomology,

tangent spaces, dimensions . . . ). Fundamental examples of algebraic n-stacks include the

Eilenberg-McLane stacks of the formK(A, n), for A a commutative algebraic group, which

are higher analogues of classifying stacks BG. Another important example for us are the

so-called linear stacks: for a scheme X and a complex of vector bundles E∗ on X concen-

trated in degrees [−n, 0], there is a linear stack V(E∗) −→ X , which is a generalization of

the total space of a vector bundle. Finally, for X a smooth and projective variety, there is an

1This appears typically in Donaldson-Thomas theory for which moduli spaces of objects in the bounded coherent

derived categoryDb
coh(X) must be considered.



Derived algebraic geometry and deformation quantization 773

algebraic n-stack of complexes of vector bundles onX , which also possesses many possible

non-commutative generalizations (see [31, 32] for more on the subject).

3.2. Higher structures II: derived algebraic stacks. A second type of higher structure

attached to moduli problems is called the derived structure. These derived structures are

somehow dual to the higher homotopies we have just mentioned and exist even in absence of

any stacky phenomenon (i.e. even when there are no non-trivial automorphisms). They have

been introduced through the eye of deformation theory and originally were only considered

at the formal level of moduli spaces. The derived deformation theory, also referred to as

DDT, is a collection of ideas going back to the 80’s, stipulating that moduli spaces, formally

around a given fixed point, can be described in terms of Mauer-Cartan elements in a suitable

dg-Lie algebra associated to this point. The most famous example is the deformation theory

of a given smooth projective variety X , for which the natural dg-Lie algebra is C∗(X,TX),
the cochain complex computing the cohomology of the tangent sheaf, endowed with its dg-

Lie structure coming from the bracket of vector fields. This example is not special, and in

fact all possible moduli problems come with natural dg-Lie algebras describing their formal

completions.

A striking consequence of the DDT is the existence of virtual sheaves on moduli spaces.

Indeed, according to the DDT, for a point x ∈ M in some moduli space M, we can find a

dg-Lie algebra gx controlling the formal local ring of M at x. There is moreover an explicit

formula reconstructing formal functions at x:

ÔM,x � H0(C∗(gx)) � H0(gx, k),

where C∗(gx) = Ŝymk(g
∗
x[−1]) is the (completed) Chevalley complex of gx, which also

computes the cohomology of k considered as a the trivial gx-module. An important obser-

vation is that the Chevalley complex C∗(gx) is a commutative dg-algebra which can have

non trivial cohomology in non-positive degrees. These cohomology groups,Hi(C∗(gx)) for
i < 0, provide non-trivial coherent sheaves over the formal neighborhood of x, which are by
definition the derived structures of M around x. These local coherent sheaves are quite im-

portant, as they control for instance the smoothness defect of the moduli space M, and lead

to the so-called virtual fundamental class (see [16]). Incorporating these higher structures as

an intrinsic part of the moduli space itself has lead to the theory of derived algebraic geom-
etry, and to introduction of derived schemes and derived algebraic (n−)stacks as the correct
geometrico-algebraic notion to fully represent moduli problems in algebraic geometry.

3.3. Derived schemes and derived algebraic stacks. The foundations of the theory of

derived algebraic geometry can be found in [36, 37] and [18]. We will not give precise

definitions here, as the details easily become technical, and will rather concentrate on some

basic definitions and basic facts.

3.3.1. Derived schemes. As objects derived schemes are rather easy to define and under-

stand. We display below one possible definition of derived schemes (specific to the charac-

teristic zero case, recall that everything is over a base field k of zero characteristic).

Definition 3.1. A derived scheme (over the field k) consists of a pair (X,OX), where X is
a topological space and OX is a sheaf of commutative differential graded k-algebras onX ,
satisfying the following conditions.
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• The sheaves Hi(OX) vanish for i > 0.

• The ringed space (X,H0(OX)) is a k-scheme.

• For all i, Hi(OX), considered as a sheaf of H0(OX)-modules, is a quasi-coherent
sheaf.

The above definition makes derived schemes look as rather simple objects, but things get

more sophisticated when morphisms between derived schemes are introduced. The sheaf of

dg-algebras OX must only be considered up to quasi-isomorphisms, and quasi-isomorphic

derived schemes have to be considered as equivalent. Therefore, there is a derived category
of derived schemes, which is a non-linear analogue of the derived category of a ring, and for
which quasi-isomorphic sheaves of dg-algebras define the same derived scheme. There are

two possible constructions of the category of derived schemes, a first one relies on model

category structures and includes the quasi-isomorphisms as the weak equivalences of a cer-

tain model category. A more modern approach, powerful in practice but more demanding in

terms of foundations, is to use ∞-categories, and to define the category of derived schemes

directly as an ∞-category (see for instance [26]). Concretely this means that morphisms

between two given derived schemes do not form a set anymore but are topological spaces,

or a simplicial sets. This allows to consider homotopies between morphisms of derived

schemes, and thus to define equivalences between derived schemes as morphisms having

inverses up to homotopy. The ∞-category dSch of derived schemes is then defined so that

quasi-isomorphisms become homotopy equivalences in dSch. We refer to [32, §2.1] for

more details on these two approaches, and we will consider dSch as an ∞-category in what

follows.

There have been a certain number of works on the notion of derived schemes, making

many of the basic aspects of scheme theory available in the derived setting. Derived schemes

behave in a very similar fashion to schemes, they have a notion of (quasi-coherent) sheaves,

cohomology, smooth, flat and étale maps etc . . . . Special among the derived schemes are

the affine derived schemes, which are completely characterized by their functions, which

themselves form a non-positively graded cdga. There is a Spec construction, sending a

cdga A to an affine derived scheme SpecA, whose underlying space is SpecH0(A) and
whose structure sheaf is given by the various localizations A[f−1] in a very similar manner

as for un-derived schemes. The Spec functor produces a full embedding of the (opposite)

∞-category of cdga into dSch. Here the∞-category of cdga can be presented concretely as

the category whose objects are quasi-free cdga together with the standard simplicial sets of

morphismsMap(A,B)2. A general derived scheme X is locally equivalent to SpecA for

some cdga A, and many of the notions defined for cdga can be extended to arbitrary derived

scheme by sheafification. This is for instance the case for the notions of smooth, flat and

étale maps, as well as for the notion of cotangent complexes of derived schemes, etc.

3.3.2. Derived algebraic stacks. The reader should have already guessed that derived

schemes are not quite enough for our purpose and that we will need the notion of derived al-

gebraic stacks (including derived higher stacks in some cases). These are defined in a similar

fashion as algebraic stacks and higher algebraic stacks (see [32, 37] for details). In a nutshell

a derived algebraic stack is given by a quotient of a derived scheme X by an action of a

smooth groupoid. Concretely a derived algebraic stack is associated to a simplicial object

2Whose set of n-simplicies is Hom(A,B ⊗k DR(Δn)), where DR(Δn) is the algebraic de Rham complex

of the algebraic n-dimensional simplex {∑xi = 1} ⊂ An+1.
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X∗ made of derived schemes satisfying some smooth Kan lifting conditions (see [24]). A

typical example is the action of an algebraic group G on a derived scheme Y , for which the

simplicial objects is the standard nerve of the action ([n] ∈ Δ) !→ Y × Gn, where the face
maps are defined by the action of G on Y and the multiplication on G, and the degeneracies
are induced by the unit in G. The derived algebraic stack obtained this way will be denoted

by [Y/G], and it should be noted that already some interesting derived algebraic stacks are

of this form (but these are not enough to represent all moduli problems).

Derived algebraic stacks are good objects to do algebraic geometry with, and many of

the standard notions and results known for underived algebraic stacks can be extended to

the derived setting. One construction of fundamental importance for us is the (dg-)category

(see [15]) of quasi-coherent complexes on a given derived algebraic stack. For an affine

derived scheme X = SpecA, the quasi-coherent complexes over X are declared to be the

A-dg-modules. The A-dg-modules form a nice k-linear dg-category L(A), for which one

explicit model consists of the dg-category of quasi-freeA-dg-modules. For a general derived

algebraic stackX the dg-category of quasi-coherent complexes is defined by approximating

X by affine derived schemes

L(X) = Lqcoh(X) := lim
SpecA→X

L(A),

where the limit is taken inside a suitable ∞-category of dg-categories (see [34]), or equiv-

alently is understood as a homotopy limit inside the homotopy theory of dg-categories of

[29].

Another important notion we will use is the cotangent complex. Any derived alge-

braic stack possesses a canonically defined object LX ∈ L(X), which is the derived ver-

sion of the sheaf of Kalher 1-forms. When X is a smooth scheme then LX is the vector

bundle Ω1
X considered as an object in the quasi-coherent derived category of X . When

X = SpecA is an affine derived scheme, LA is the A-dg-module representing the so-

called André-Quillen homology, and can be defined as the left derived functor of A !→ Ω1
A.

For a scheme X , LX coincides with Illusie’s cotangent complex. For a general derived

algebraic stack X the cotangent complex LX ∈ Lqcoh(X) is obtained by gluing the cotan-

gent complexes of each stage in a simplicial presentation, but can also be characterized

by a universal property involving square zero extensions (see [32, §3.1]). The dual object

TX := HomOX
(LX ,OX) ∈ Lqcoh(X) is called the tangent complex ofX and is a derived

version of the sheaf of derivations.

To finish with general facts about derived algebraic stacks, we would like to mention

a specific class of objects which are particularly simple to describe in algebraic terms, and

which already contains several non-trivial examples. This class consists of derived algebraic

stacks of the formX = [Y/G], where Y is an affine derived scheme andG a linear algebraic

group acting on Y . The derived affine scheme Y is the spectrum of a commutative dg-algebra

A, which up to a quasi-isomorphism can be chosen to be a cdga inside the category Rep(G)
of linear representations ofG (andA can even be assumed to be free as a commutative graded

algebra). The cdga A, together with its strict G-action, can be used in order to describe

Lqcoh(X) as well as LX ∈ Lqcoh(X). A model for the dg-category Lqcoh(X) is the dg-

category of cofibrant and fibrant A-dg-modules inside Rep(G), where here fibrant refers to
a model category structure on the category of complexes of representations ofG (and fibrant

means K-injective complex of representations). In particular the homs in the dg-category

Lqcoh(X) computeG-equivariant ext-groups ofA-dg-modules. The object LX ∈ Lqcoh(X)
can be described as follows. The G-action on A induces a morphism of A-dg-modules
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LA −→ g∨ ⊗k A, where g is the Lie algebra of G, which is a morphism of A-dg-modules

inside Rep(G). The cone of this morphism, or more precisely a cofibrant and fibrant model

for this cone, is a model for LX as an object in Lqcoh(X).

3.4. Representability of derived mapping stacks. As for the case of derived schemes,

derived algebraic stacks form an ∞-category denoted by dArSt (where “Ar” stands for

“Artin”). This ∞-category is itself a full sub-∞-category of dSt, the ∞-category of (pos-

sibly non-algebraic) derived stacks. The objects of dSt are ∞-functors F : cdga −→ S
satisfying étale descent conditions, and are also called derived moduli problems. The de-

rived moduli problems can sometimes be represented by schemes, by derived schemes, or

by derived algebraic stacks, in the sense that there exists a derived algebraic stackX together

with functorial equivalences F (A) �MapdArSt(SpecA,X). Proving that a given derived
moduli problem is representable is in general not a trivial task, and the following theorem

provides a way to construct new derived algebraic stacks.

Theorem 3.2 ([37, Thm. 2.2.6.11]). LetX be a smooth and proper scheme and Y a derived
algebraic stack which is locally of finite presentation over the base field k. Then, the derived
moduli problem A !→ MapdSt(X × SpecA, Y ) is representable by a derived algebraic
stack denoted byMap(X,Y ).

One important aspect of the theorem above lies in the fact that the (co-)tangent com-

plexes of the derived mapping stacks Map(X,Y ) are easy to compute: there is a diagram

of derived algebraic stacks Y X ×Map(X,Y )
ev�� p �� Map(X,Y ), where ev is

the evaluation map and p is the natural projection, and we have

TMap(X,Y ) � p∗ev∗(TY ) ∈ Lqcoh(Map(X,Y )). (3.1)

At a given point f ∈ Map(X,Y ), corresponding to a morphism f : X −→ Y , the
formula states that the tangent complex at f is C∗(X, f∗(TY )), the cochain complex of co-

homology ofX with coefficients in the pull-back of TY by f . This last formula is moreover

compatible with the dg-Lie structures: the formal completion of Map(X,Y ) corresponds,
via the DDT correspondence, to the dg-Lie algebra C∗(X, f∗(TY ))[−1] (here TY [−1] is
equipped with its natural dg-Lie structure, see [12]). This provides a nice and efficient way

to understand the derived moduli space Map(X,Y ) at the formal level.

The above theorem also possesses several possible variations, which often can be reduced

to the statement 3.2 itself. For instance X can be replaced by a finite homotopy type (e.g.

a compact smooth manifold), or by formal groupoids such as XDR or XDol (see [28, §9]).

This provides existence of derived moduli stacks for maps X −→ Y understood within

different settings (e.g. locally constant maps, maps endowed with flat connections or with a

Higgs field etc . . . ). The formula for the tangent complex remains correct for these variants

as well, with a suitable definition of the functors p∗ and ev∗ involved. Pointwise this is

reflected in the fact that C∗(X, f∗(TY )) is replaced with the appropriate cohomology theory

(cohomology with local coefficients when X is a finite homotopy type, algebraic de Rham

cohomology for XDR etc . . . ).

The main examples of applications of theorem 3.2 will be for us when Y = BG, the
classifying stack of G-bundles, in which case Map(X,BG) is by definition the derived

moduli stack of G-bundles on X . Other interesting instances of applications arise when

Y = Perf is the derived stack of perfect complexes (in which case Map(X,Y ) is the
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derived moduli stack of perfect complexes on X), or when Y is the total space of a shifted

total cotangent bundle (see below).

4. Symplectic and Poisson structures in the derived setting

In the previous section we saw why and how moduli problems can be represented by derived

schemes and derived algebraic stacks. In the sequel we will be further interested in the rep-

resentability of derived mapping stacks provided by our theorem 3.2, as well as the formula

for their tangent complexes. This formula is the key for the construction of symplectic struc-

tures on derived mapping stacks, by using cup products in cohomology in order to define

pairing on tangent complexes. This brings us to the notions of shifted symplectic structures,
and of shifted poisson structures, of major importance in order to achieve the goal proposed

by our principle 2.1.

4.1. Algebraic de Rham theory of derived algebraic stacks. Let X be a derived alge-

braic stack locally of finite presentation over our ground field k. We have seen that X
possesses a cotangent complex LX , which is a quasi-coherent complex on X . In our situ-

ation LX is moreover a perfect OX -module (see [37, Def. 1.2.4.6]) because of the locally

finite presentation condition, and is thus a dualizable object in Lqcoh(X). Its dual (dual

here as an OX -module), is the tangent complex TX := L∨X . A p-form on X is simply de-

fined as an element in H0(X,∧pOX
LX), or equivalently as a homotopy class of morphisms

w : ∧pOX
TX −→ OX in Lqcoh(X). More generally, if n ∈ Z, a p-form of degree n

on X is an element in Hn(X,∧pOX
LX), or equivalently a homotopy class of morphisms

w : ∧pOX
TX −→ OX [n] in Lqcoh(X). For p fixed, p-forms of various degrees form a com-

plex of k-vector spaces Ap(X) = Γ(X,∧pOX
LX)3, whose n-th cohomology space is the

space of p-forms of degree n.
The total complex of differential forms on X is defined as an infinite product

A(X) :=
∏
i≥0

Ai(X)[−i],

and except in the very special case whereX is a smooth scheme, this infinite product does not

restrict to a finite product in general (i.e. Ap(X) �= 0 for arbitrary large p’s in general). The

complexA(X) can be shown to carry an extra differential called the de Rham differential and
denoted by dR4. The differential dR commutes with the cohomological differential, and the

complexA(X) will be always considered endowed with the corresponding total differential.
When X is a smooth scheme A(X) is simply the algebraic de Rham complex of X . When

X is a singular scheme A(X) is the derived de Rham complex of X , which is known to

compute the algebraic de Rham cohomology of X (see [3]). When X is a derived algebraic

stack the complex A(X) is by definition the (algebraic and derived) de Rham complex of

X , and it can be shown to compute the algebraic de Rham cohomology of the underlying

algebraic stack, and thus the Betti cohomology of its geometric realization when k = C.
The de Rham complex comes equipped with a standard Hodge filtration, which is a

decreasing sequence of sub-complexes F pA(X) ⊂ F p−1A(X) ⊂ A(X), where F pA(X)

3Here and in the sequel Γ(X,−) stands for the ∞-functor of global sections, and thus computes hyper-

cohomology on X .

4The existence of this differential is not a trivial fact because of the stackyness of X , see [22].
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consists of the sub-complex
∏
i≥pAi(X)[−i] ⊂ ∏i≥0 Ai(X). The complex F pA(X)[p]

is also denoted by Ap,cl(X) and is by definition the complex of closed p-forms on X . We

note here that an n-cocycle in Ap,cl(X) consists of a formal series
∑

i≥0 ωi · ti, where ωi an
element of degree n− i in Ap+i(X), and satisfies the infinite number of equations

dR(ωi−1) + d(ωi) = 0 ∀ i ≥ 0,

where dR is the de Rham differential, d is the cohomological differential and ωi is declared
to be 0 when i < 0. With this notation, ω0 is the underlying p-form and the higher forms ωi
are the closeness structures, reflecting that ω0 is closed up to homotopy.

By definition a closed p-form of degree n on X is an element in Hn(Ap,cl(X)). Any

closed p-form
∑

i≥0 ωi · ti of degree n has an underlying p-form ω0 of degree n, and thus

defines a morphism ∧pOX
TX −→ OX [n] in Lqcoh(X). We note here that a given p-form of

degree n can come from many different closed p-forms of degree n, or in other words that

the projection map Ap,cl(X) −→ Ap(X), sending
∑

i≥0 ωi · ti to ω0, needs not be injective
in cohomology. This aspect presents a major difference with the setting of differential forms

on smooth schemes, for which a given p-forms is either closed or not closed. This aspect

can also be understood in the setting of cyclic homology, as differential forms on X can

be interpreted as elements in Hochschild homology of X (suitably defined to encode the

eventual stackyness of X), and closed forms as elements in negative cyclic homology.

4.2. Shifted symplectic structures.

Definition 4.1 ([22, Def. 1.18]). An n-shifted symplectic structure onX consists of a closed
2-form of degree n whose underlying morphism

∧2
OX

TX −→ OX [n]

is non-degenerate: the adjoint map TX −→ LX [n] is an equivalence of quasi-coherent
complexes on X .

There are some basic examples of n-shifted symplectic structures which are the building

blocks of more evolved examples. A 0-shifted symplectic structure on a smooth scheme is

simply a symplectic structure understood in the usual sense. For a reductive algebraic group

G, the 2-shifted symplectic structures on the stack BG are in one-to-one correspondence

with non-degenerate and G-invariant scalar products on the Lie algebra g of G. Such a

structure always exists and is even unique up to a constant when G is a simple reductive

group. When G = Gln, there is a canonical choice for a 2-shifted symplectic structure on

BG by considering the standard invariant scalar product on the space of matrices given by

(A,B) !→ Tr(A.B).
Another source of examples is provided by shifted cotangent bundles. For X a derived

algebraic stack and n an arbitrary integer we define the n-shifted total cotangent derived

stack of X by

T ∗X[n] := V(LX [n]) = Spec (SymOX
(TX [−n])),

as the linear derived algebraic stack over X determined by the perfect complex LX [n]. The
derived algebraic stack T ∗X[n] comes equipped with a standard Liouville 1-form of degree

n5, whose de Rham differential provides an n-shifted symplectic structure on X . This is

5This form represents the universal 1-form of degree n on X .
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already interesting for X a smooth scheme as it provides instances of n-shifted symplectic

structures for arbitrary values of n. Note here that whenX is a smooth scheme, then T ∗X[n]
is either a smooth (and thus non-derived) algebraic n-stack if n ≥ 0, or a derived scheme

when n < 0. Another interesting and useful example is when X = BG and n = 1, as
T ∗X[1] is then identified with the quotient stack [g∗/G], for the co-adjoint action of G. The
quotient stack [g∗/G] is thus equipped with a canonical 1-shifted symplectic structure, which

sheds new light on symplectic reduction (we refer to [9, §2.2] for more on the subject). A

third important example is the derived algebraic stack of perfect complexes Perf (see [22,
§2.3]), which is a generalization of the stack BGln (BGln sits as an open in Perf ).

More evolved examples of shifted symplectic structures can be constructed by means of

the following existence theorem. This result can be seen as a geometrico-algebraic counter

part of the so-called AKSZ formalism.

Theorem 4.2 ([22, Thm. 2.5]). Let X be either a connected compact oriented topological
manifold of dimension d, or a connected smooth and proper scheme of dimension d equipped
with a nowhere vanishing top form s ∈ ΩdX . Let Y be a derived algebraic stack endowed
with an n-shifted symplectic structure. Then the derived algebraic stack Map(X,Y ) is
equipped with a canonical (n− d)-shifted symplectic structure.

An important special case is when Y = BG forG a reductive algebraic group, equipped

with the 2-shifted symplectic structure corresponding to a non-degenerate element in

Sym2(g∗)G. We find this way that the derived moduli stack of G-bundles onX , BunG(X)
:= Map(X,BG) carries a canonical (2 − d)-shifted symplectic structure, which is a first

step towards a mathematical formulation of our principle 2.1.

Corollary 4.3. With the above notations, BunG(X) carries a canonical (2 − d)-shifted
symplectic structure.

When d = 2 the above corollary recovers the well known symplectic structures on mod-

uli spaces of G-local systems on a compact Riemann surface and of G-bundles on K3 and

abelian surface. However, even in this case, the corollary is new and contains more as the

0-shifted symplectic structure exists on the whole derived moduli stack, not only on the nice

part of this moduli stack which is a smooth scheme (see for instance our comments in §6.1).

In dimension 3 the corollary states that BunG(X) is equipped with a natural (−1)-
shifted symplectic structure. The underlying 2-form of degree −1 is an equivalence of per-

fect complexes TBunG(X) � LBunG(X)[−1]. When restricted to the underived part of the

moduli stack this equivalence recovers the symmetric obstruction theory used in Donaldson-

Thomas theory (see [8, Def. 1.1]). However, here again the full data of the (−1)-shifted
symplectic structure contains strictly more than the underlying symmetric obstruction theory,

essentially because of the fact that a shifted symplectic structure is not uniquely determined

by its underlying 2-form (see [21]).

Finally, when the dimension d is different from 2 and 3 the content of the corollary

seems completely new, thought in dimension 1 it essentially states that [G/G] is 1-shifted
symplectic, which can be used in order to provide a new understanding of quasi-hamiltonian

actions (see [9, §2.2]).

The idea of the proof of theorem 4.2 is rather simple, and at least the underlying 2-form
can be described explicitly in terms of the formula for the tangent complexes (formula (3.1)

of §3.4). We define a pairing of degree (n − d) on this complex by the composition of the
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natural maps and the pairing of degree n on TY

∧2p∗(ev∗(TY )) �� p∗(ev∗(∧2TY )) �� p∗(O)[n] �� O[n− d],

where the last map comes from the fundamental class in Hd(X,OX) � k. This defines a
non-degenerate 2-form on Map(X,Y ), and the main content of the theorem 4.2 is that this

2-form comes from a canonically defined closed 2-form of degree (n− d).
For variants and generalizations of theorem 4.2 we refer to [9, 22, 32] in which the reader

will find non-commutative generalizations as well as versions with boundary conditions, but

also several other possible admissible sources.

4.3. Derived critical loci. To finish the part on n-shifted symplectic structures let us men-

tion critical loci and their possible generalizations. We have already seen that for a given

derived algebraic stack X the shifted cotangent T ∗X[n] carries a canonical n-shifted sym-

plectic structure. Moreover, the zero section X −→ T ∗X[n] has a natural Lagrangian

structure (see [22, Def. 2.8]). More generally, if f ∈ Hn(X,OX) is a function of de-

gree n onX , its de Rham differential dR(f) defines a morphism of derived algebraic stacks

dR(f) : X −→ T ∗X[n] which is also equipped with a natural Lagrangian structure. There-
fore, the intersection of the zero section with the section dR(f) defines a natural (n − 1)-
shifted derived algebraic stack (see [22, Thm. 2.9]) denoted by RCrit(f) and called the

derived critical locus of f . When f = 0 the derived critical locus RCrit(f) is simply

T ∗X[n − 1] together with its natural (n − 1)-shifted symplectic structure. When X is a

smooth scheme and f is a function of degree 0 (i.e. simply a function X −→ A1), then the

symplectic geometry of RCrit(f) is closely related to the singularity theory of the function

f . From a general point of view derived critical loci provide a nice source of examples of

n-shifted symplectic derived algebraic stacks, which contain already examples of geometric

interests. It is shown in [5, 6] that every (−1)-shifted symplectic derived scheme is locally

the derived critical locus of a function defined on a smooth scheme.

Derived critical loci are important because they are easy to describe and their quantiza-

tions can be understood explicitly. Moreover, derived critical loci and their generalizations

can be used to provide local models for n-shifted symplectic structures by means of a formal

Darboux lemma we will not reproduce here (see for instance [2, 5, 6]).

4.4. Shifted polyvector fields and poisson structures. The notion of shifted Poisson struc-

ture is the dual notion of that of shifted symplectic structure we have discussed so far. The

general theory of shifted Poisson structures has not been fully settled down yet and we will

here present the basic definitions as well as its, still hypothetical, relations with shifted sym-

plectic structures. They are however a key notion in the existence of quantization that will

be presented in the next section.

4.4.1. Shifted polyvectors on derived algebraic stacks. A derived algebraic stack X (as

usual assumed locally of finite presentation over the ground field k) has a tangent com-

plex TX , which is the OX -linear dual to the cotangent complex. The complex of n-shifted
polyvector fields on X is defined by

Pol(X,n) :=
⊕
i

Γ(X,Symi
OX

(TX [−1− n])).
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The complex Pol(X,n) has a natural structure of a graded commutative dg-algebra, for

which the piece of weight i is Γ(X,Symi
OX

(TX [−1−n])) and the multiplication is induced

by the canonical multiplication on the symmetric algebra. We note here that depending of

the parity of n we either have Symi
OX

(TX [−1 − n]) � (∧iTX)[−i − ni] (if n is even), or

Symi
OX

(TX [−1−n]) � (SymiTX)[−i−ni] (if n is odd). WhenX is a smooth scheme and

n = 0, Pol(X, 0) = ⊕iΓ(X,∧iTX)[−i] is the standard complex of polyvector fields of X .

When n = 1, and still X a smooth scheme, Pol(X, 1) coincides with Γ(T ∗X,OT∗X), the
cohomology of the total cotangent space of X with coefficients in O. In general, Pol(X,n)
can be interpreted as the graded cdga of cohomology of the shifted cotangent derived stack

T ∗X[n+ 1] with coefficients in O (that is “functions” on T ∗X[n+ 1]).
WhenX is a smooth scheme, TX is a sheaf (say on the small étale site ofX) of k-linear

Lie algebras with the bracket of vector fields. This extends easily to the case where X is a

derived Deligne-Mumford stack, TX can be made into a sheaf of k-linear dg-Lie algebras for
the bracket of dg-derivations. Therefore, polyvector fields Pol(X,n) can also be endowed

with a k-linear dg-Lie bracket of cohomological degree −1 − n, making it into a graded

Poisson dg-algebra where the bracket has cohomological degree (−1−n) and weight (−1).
In particular Pol(X,n)[n + 1] always comes equipped with a structure of a graded dg-Lie

algebra over k. It is expected that this fact remains valid for a general derived algebraic stack

X , but there is no precise construction at the moment. One complication when considering

general algebraic stacks comes from the fact that vector fields can not be pulled-back along

smooth morphisms (as opposed to étale maps), making the construction of the Lie bracket

on Pol(X,n)much more complicated than for the case of a scheme. For a derived algebraic

stack of the form [SpecA/G], for G linear, there are however two possible constructions.

A first very indirect construction uses natural operations on the derived moduli stacks of

branes (see [33]). A more direct construction can be done as follows. We can take A to be a

cofibrant and fibrant cgda inside the category of representations Rep(G). We let TA be the

A-dg-module of dg-derivations fromA to itself. The action ofG onA induces a morphism of

dg-Lie algebras g⊗kA −→ TA representing the infinitesimal action ofG onA. We consider

the co-cône T of the morphism g⊗k A −→ TA. The complex T is obviously a k-linear Lie
algebra for the bracket induced from the brackets on TA and on g, but this lie structure is not
compatible with the cohomological differential and thus is not a dg-Lie algebra. However,

its fixed points by G (assume G reductive for simplicity) is a dg-Lie algebra over k, which
is a model for Γ(X,TX) where X = [SpecA/G]. This construction can be also applied

to the G-invariant of the various symmetric powers of shifts of T in order to get the desired

dg-Lie structure on Pol(X,n)[n+ 1] in this special case.

4.4.2. Shifted Poisson structures. Let X be a derived algebraic stack and fix an integer

n ∈ Z. We can define n-shifted Poisson structures as follows. We let Pol(X,n)[n + 1] be
the shifted polyvector fields on X , endowed with the structure of a graded dg-Lie algebra

just mentioned. We let k(2)[−1] be the graded dg-Lie algebra which is k in cohomological

degree 1, with zero bracket and k is pure of weight 2. An n-shifted Poisson structure on X
is then defined to be a morphism of graded dg-Lie algebras

p : k(2)[−1] −→ Pol(X,n)[n+ 1].

Here, a morphism of graded dg-Lie algebras truly means a morphism inside the ∞-category

of graded dg-Lie algebras, or a morphism in an appropriate homotopy category. Using the

dictionary between dg-Lie algebras and formal moduli problems (see [19]), such a morphism
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p is determined by a Mauer-Cartan element in Pol(X,n)[n+1]⊗ tk[[t]], which is of weight
2 with respect to the grading on Pol(X,n). Such an element can be described explicitly as

a formal power series
∑

i≥1 pi · ti, where pi is an element of cohomological degree n+2 in

Γ(X,Symi+1(TX [−1− n])), and satisfies the equations

d(pi) +
1

2
·
∑
a+b=i

[pa, pb] = 0 ∀i ≥ 1.

As we already mentioned, shifted Poisson structures can be developed along the same

lines as shifted symplectic structures (e.g. there is a notion of co-isotropic structures on a

map with an n-shifted Poisson target, and a Poisson version of the existence theorem 4.2), but

at the moment this work has not been carried out in full details. It is believed that for a given

X and n ∈ Z, there is a one-to-one correspondence between n-shifted symplectic structures

on X and n-shifted Poisson structures on X which are non-degenerate in an obvious sense.

However, this correspondence has not been established yet, except in some special cases,

and remains at the moment an open question for further research (see §6.2).

5. Deformation quantization of n-shifted Poisson structures

In this section we finally discuss the existence of quantization of n-shifted Poisson struc-

tures, a far reaching generalization of the existence of deformation quantization of Poisson

manifolds due to Kontsevich. For this we first briefly discuss the output of the quantization,

namely the notion of deformation of categories and iterated monoidal categories, which al-

ready contains some non-trivial aspects. We then present the formality conjecture, which

is now a theorem except in some very particular cases, and whose main corollary is the

fact that every n-shifted Poisson structure defines a canonical formal deformation of the

En-monoidal category of quasi-coherent complexes. We also discuss the case n < 0 by

presenting the red shift trick consisting of working with a formal parameter � living in some

non-trivial cohomological degree.

5.1. The deformation theory of monoidal dg-categories. As we have seen in §2, a de-

rived algebraic stackX has a dg-category of quasi-coherent complexes L(X). It is a k-linear
dg-category which admits arbitrary colimits. We will assume in this section that L(X) is a
compactly generated dg-category, or equivalently that it can be realized as the category of

dg-modules over a small dg-category. More generally we will assume that X is a perfect
derived algebraic stack, in the sense that perfect complexes on X are compact generators of

L(X). This is known to be the case under the assumption thatX can be written as a quotient

[SpecA/G] for a linear algebraic G acting on a cdga A.

5.1.1. Deformations of dg-categories. We let T0 := L(X) and we would like to study the
deformation theory of T0. For this, we define a first naive deformation functor

Defnaive(T0) : dg − art∗ −→ S,

from the ∞-category of augmented local artinian cdga to the ∞-category of spaces as fol-

lows. To A ∈ dg − art∗ we assign the ∞-category Dgc(A), of cocomplete and com-

pactly generated A-linear dg-categories and A-linear colimit preserving dg-functors (see
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[34, §3.1]). For a morphism of dg-artinian rings A→ B, we have a base change ∞-functor

−⊗̂AB : Dgc(A) −→ Dgc(B). We then set

Defnaive(T0)(A) := Dgc(A)×Dgc(k) {T0}.

Here Dgc(A)×Dgc(k) {T0} is the fiber taken at the point T0 of the∞-functor−⊗̂Ak induced
by the augmentation A → k. As is, Defnaive(T0)(A) is an ∞-category, from which we

extract a space by taking the geometric realization of its sub-∞-category of equivalences

(i.e. taking the nerve of the maximal sub-∞-groupoid). Intuitively, Defnaive(T0)(A) is the
classifying space of pairs (T, u), with T a compactly generated A-linear dg-category and u
a k-linear equivalence u : T ⊗̂Ak � T0.

As already observed in [14] the ∞-functor Defnaive(T0) is not a formal moduli prob-

lem, it does not satisfies the Schlessinger conditions of [19], and thus can not be equiv-

alent to the functor of Mauer-Cartan elements in a dg-Lie algebra. This bad behavior of

the ∞-functor Defnaive(T0) has been a longstanding major obstacle preventing the un-

derstanding of the deformation theory of dg-categories. There have been several tentative

modifications of Defnaive(T0) attempting to overcome this problem, for instance by al-

lowing curved dg-categories as possible deformations, however none of these were success-

ful. We propose here a new solution to this problem which provides the only complete

understanding of deformations of dg-categories that we are aware of. For this, we intro-

duce Def(T0) : dg − art∗ −→ S, which is the universal ∞-functor constructed out of

Defnaive(T0) and satisfying the Schlessinger conditions of [19] (in other words it is the

best possible approximation of Defnaive(T0) by an ∞-functor associated to a dg-Lie alge-

bra). By construction there is a natural transformation l : Defnaive(T0) −→ Def(T0), as
well as a dg-Lie algebra L such that Def(T0) is given by A !→ MC∗(L ⊗mA) (where as
usual mA ⊂ A is the augmentation dg-ideal in A, and MC∗ denotes the space of Mauer-

Cartan elements). Moreover the natural transformation l is universal for these properties,

and in particular the dg-Lie L is uniquely determined and only depends on Defnaive(T0).
The following theorem is folklore and known to experts. It appears for instance in a

disguised form in [23].

Theorem 5.1. Let T0 be a compactly generated dg-category.

(1) The dg-Lie algebra associated to the formal moduli problemDef(T0) isHH(T0)[1],
the Hochschild cochains on T0 endowed with its usual Gerstenhaber bracket (see e.g.
[15, §5.4]).

(2) The space Def(T0)(k[[t]]) is naturally equivalent to the classifying space of k[β]-
linear structures on T0, where k[β] is the polynomial dg-algebra over k with one
generator β in degree 2.

The above theorem subsumes the two main properties of the formal moduli problem

Def(T0), but much more can be said. The formla for the k[[t]]-points of Def(T0) can be

generalized to any (pro-)artinian augmented dg-algebra A, by using BA-linear structures on
T0, where nowBA is theE2-Koszul dual ofA (see [19], and theE2-Koszul dual of k[[t]] is of
course k[β]). By construction we have a map of spacesDefnaive(T0)(A) −→ Def(T0)(A).
This map is not an equivalence but can be shown to have 0-truncated fibers (so it induces

isomorphisms on πi for i > 1 and is injective on π1). It is interesting to note here that not

onlyDef(T0) contains more objects thanDefnaive(T0) but also contains more morphisms.

There are natural conditions one can impose on T0 in order to makeDefnaive(T0) closer to
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Def(T0). It is for instance believed that they coincide when T0 is a smooth and proper dg-

category, as well as for dg-categories of complexes in Grothendieck abelian categories. In

our situation, T0 = L(X), with X a derived algebraic stack which is not smooth in general,

it is not reasonable to expect any nice assumptions on T0, and the above theorem is probably

the best available result in order to understand formal deformations of L(X).

5.1.2. Deformations of monoidal dg-categories. Theorem 5.1 also possesses monoidal

and iterated monoidal versions as follows. First of all the ∞-category Dgc(A) of compactly

generated A-linear dg-categories is equipped with a tensor product ⊗̂A, making it into a

symmetric monoidal ∞-category. It is therefore possible to use the notion of an En-monoid

in Dgc(A) of [20], in order to define En-monoidal A-linear dg-categories (also called n-
fold monoidal A-linear dg-categories). In a nutshell, an En-monoidal A-linear dg-category
consists of a compactly generated A-linear dg-category T together with morphisms

μk : En(k)⊗ T ⊗̂A k −→ T,

where the tensor by the space En(k) and the tensor products are taken in the symmetric

monoidal ∞-category Dgc(A), and together with compatibilty conditions/structures. For

our derived algebraic stackX , the dg-categoryL(X) is equipped with a symmetric monoidal

structure and thus is naturally an En-monoidal dg-category for all n ≥ 0, where by conven-

tion an E0-monoidal dg-category simply is a dg-category.

For a cdga A, we set DgcEn
(A) for the∞-category of compactly generated En-monoidal

A-linear dg-categories. Here compactly generated also means that the compact objects

are stable by the monoidal structure, so objects in DgcEn
(A) can also be described as dg-

categories of dg-modules over small A-linear En-monoidal dg-categories. Morphisms in

DgcEn
(A) must be defined with some care as they involve higher dimensional versions

of Morita morphisms between algebras. For two En-monoidal dg-categories T and T ′

in DgcEn
(A), the dg-category of A-linear colimit preserving dg-functors can be written as

T∨⊗̂AT
′, where T∨ is the dual of T (i.e. we take the opposite of the sub-dg-category of

compact generators). The A-linear dg-category T∨⊗̂AT
′ is a new object in DgcEn

(A), and

in particular it makes sense to consider En-algebras inside the dg-category T
∨⊗̂AT

′. From
the point of view of dg-functors these correspond to En-lax monoidal A-linear colimit pre-

serving dg-functors T → T ′. For twoEn-algebrasM andN inside T∨⊗̂AT
′, we can form a

new En-algebraM
op⊗N . The A-linear dg-category ofMop⊗N -modules inside T∨⊗̂AT

′

is then En−1-monoidal, so the process can be iterated. We can consider two En−1-algebras

insideMop⊗N -modules, sayM ′ andN ′, as well as their tensor productM ′op⊗N ′ and the
A-linear dg-category of M ′op ⊗ N ′-modules, which is itself En−2-monoidal . . . and so on

and so forth. We are describing here DgcEn
(A) as an (∞, n+ 1)-category (see [26]), whose

objects are En-monoidal compactly generated A-linear dg-categories, whose 1-morphism

from T to T ′ are En−1-algebras inside T
∨⊗̂AT

′, whose 2-morphisms betweenM ′ and N ′

are En−2-algebras insideM
′op ⊗N ′-modules, etc . . . . The (∞, n+ 1)-category DgcEn

(A)
produces a space by considering the geometric realization of its maximal sub-∞-groupoid

(i.e. realizing the sub-∞-category of equivalences).

For T0 = L(X), assuming that L(X) is compactly generated and that its compact ob-

jects are the perfect complexes, we define a naive deformation functor DefnaiveEn
(T0), of T0

considered as an En-dg-category, by sending an augmented dg-artinian ringA ∈ dg − art∗
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to the fiber at T0 of the restriction map

−⊗̂Ak : Dg
c
En

(A) −→ DgcEn
(k).

The spaceDefnaiveEn
(T0) is the space of pairs (T, u), where T is an En-monoidal compactly

generated A-linear dg-category, and u : T ⊗̂Ak � T0 an equivalence in DgcEn
(k). Similar

to the case n = 0 we already discussed, the ∞-functor DefnaiveEn
(T0) does not satisfy the

Schlessinger’s conditions, and the bigger n is, the more this fails. We denote byDefEn(T0)
the formal moduli problem generated by DefnaiveEn

(T0). The following theorem is the gen-

eralization of 5.1 to the iterated monoidal setting.

Theorem 5.2. Let T0 be a compactly generated En-monoidal dg-category.

(1) The dg-Lie algebra associated to the formal moduli problem DefEn(T0) is
HHEn+1(T0) [n+ 1], the En+1-Hochschild cochains on T0 of [11].

(2) The spaceDefEn(T0)(k[[t]]) is naturally equivalent to the classifying space of k[βn]-
linear structures on T0, where k[βn] is the commutative polynomial dg-algebra over
k with one generator βn in degree 2 + n.

Theorems 5.1 and 5.2 provides a way to understand the relations between (higher)

Hochschild cohomology and formal deformations of dg-categories and iterated monoidal

dg-categories. They state in particular that the correct manner to define a formal deformation

of a given dg-category T0, parametrized by k[[t]], is by considering k[β]-linear structures on
T0, and similarly for the iterated monoidal setting with k[βn]-linear structures. In the sequel,
we will freely use the expression “formal deformation of the dg-category L(X) considered
as an En-monoidal dg-category”, by which we mean an element in DefEn

(L(X))(k[[t]]),
and thus a k[βn]-linear structure on T0. We however continue to think of these deformations

as actual deformations of L(X) over k[[�]] for a formal parameter �, even thought they are

not quite as naive objects.

5.2. The higher formality conjecture. We have just seen that formal deformations of a

given En-monoidal compactly generated dg-category T0 is controlled by its higher

Hochschild cochain complex HHEn+1(T0)[n + 1], endowed with its natural structure of

a dg-Lie algebra. We now turn to the specific case where T0 = L(X), the quasi-coherent

dg-category of a derived algebraic stack X . We continue to assume that X is nice enough

(e.g. of the form [SpecA/G]) so that L(X) is compactly generated by the perfect com-

plexes). The higher Hochschild cohomology of T0 can then be described in geometric terms

as follows. We let n ≥ 0, and let Sn = ∂Bn+1 be the topological n-sphere considered as a

constant derived stack. We consider the derived mapping stack L(n)(X) := Map(Sn, X),
also called the n-dimensional derived loop stack of X . There is a constant map morphism

j : X −→ L(n)(X), and thus a quasi-coherent complex j∗(OX) ∈ L(L(n)(X)). The

En+1-Hochschild cohomology of the dg-category L(X) can be identified with

HHEn+1(X) � EndL(L(n)(X))(j∗(OX)).

Note that when n = 0 and X is a scheme this recovers the description of the Hochschild

complex of X as the self extension of the diagonal. Because of the stackyness of X this

definition can be modified by replacing L(n)(X) by its formal completion ̂L(n)(X) along
the map X −→ L(n)(X), which is called the formal n-dimensional derived loop space



786 Bertrand Toën

(when X is a derived scheme the formal and non-formal versions of the derived loop stacks

coincide). We then have the formal version of Hochschild complex

ĤH
En+1

(X) � End
L( ̂L(n)(X))

(j∗(OX)).

Note that we have a natural morphism ĤH
En+1

(X) −→ HHEn+1(X).

The complexe ĤH
En+1

(X) has a structure of an En+2-algebra, as predicted by the so-

called Deligne’s conjecture which is now a theorem (see [11, 20]). In particular ĤH
En+1

(X)

[n+1] is a dg-Lie algebra. The formality conjecture asserts that the dg-Lie algebra ĤH
En+1

(X)[n+ 1] can be described in simple terms involving shifted polyvector fields.

Conjecture 5.3 (Higher formality). For a nice enough derived algebraic stack X , and n ≥
0, the dg-Lie algebra ĤH

En+1

(X)[n + 1] is quasi-isomorphic to Pol(X,n)[n + 1]. The
quasi-isomorphism is canonical up to a universal choice of a Drinfeld associator.

Note that when X is a smooth scheme and n = 0 the conjecture 5.3 is the so-called

Kontsevich’s formality theorem. The conjecture has been proven in already many cases.

Theorem 5.4 ([33, Cor. 5.4]). The above higher formality conjecture is true for all n > 0
and for all derived algebraic stacks X of the form [SpecA/G] for G a linear algebraic
group acting on the cdga A. When X is a derived Deligne-Mumford stack it is also true for
n = 0.

The theorem above provides many cases in which conjecture 5.3 is satified. We believe

it is also true in the remaining case when n = 0 and for non Deligne-Mumford stacks. We

also believe that the restriction forX being of the form [SpecA/G] in the theorem 5.4 is not

necessary, and that the theorem should be true for a large class of derived higher algebraic

stacks as well.

5.3. Existence of deformation quantization. We finally arrive at the existence of quan-

tization of derived algebraic stacks X endowed with n-shifted Poisson structures, and its

consequence: the mathematical incarnation of our principle 2.1. Let X be a derived alge-

braic stack, and n ≥ 0 to start with (the case of negative values will be treated below). We

assume thatX is nice enough and that the conjecture 5.4 is satisfied (e.g. under the hypothe-

sis of theorem 5.4). Let p be an n-shifted Poisson structure onX . By definition it provides a

morphism of dg-Lie algebras p : k[−1] −→ Pol(X,n)[n+ 1]. Using the conjecture 5.4 we

find a morphism of dg-Lie algebras p : k[−1] −→ ĤH
En+1

(X)[n + 1], which composed

with the natural morphism ĤH
En+1

(X) −→ HHEn+1(X) provides a morphism of dg-Lie

algebras

p : k[−1] −→ HHEn+1(X)[n+ 1].

The derived deformation theory (see [19]) and theorem 5.2 tell us that the morphism p pro-
vides a formal deformation of L(X) as an En-monoidal dg-category, denoted by L(X, p).
This is the deformation quantization of the pair (X, p).

Assume now that n < 0 and that X is equipped with an n-shifted Poisson structure p
such that the conjecture 5.4 is satisfied forX and −n. The n-shifted Poisson structure p is a
morphism of graded dg-Lie algebras k(2)[−1] −→ Pol(X,n)[n+ 1] where k(2)[−1] is the
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abelian dg-Lie algebra which is k in cohomological degree 1 and pure weight 2. The category
of Z-graded complexes has a tensor auto-equivalence, sending a complex E pure of weight i
to E[−2i] again pure of weight i. This auto-equivalence induces an auto-equivalence of the

∞-category of graded dg-Lie algebras, and sends Pol(X,n)[n+1] to Pol(X,n+2)[n+3]
and k(2)[−1] to k(2)[−3]. Iterated n times, the morphism p goes to a new morphism of

dg-Lie algebras p′ : k(2)[−2n − 1] −→ Pol(X,−n)[−n + 1], which by conjecture 5.3

induces a morphism of dg-Lie algebras

p′ : k[−2n− 1] −→ HHE−n+1(X)[−n+ 1].

The abelian dg-Lie algebra k[−2n − 1] corresponds to the formal derived scheme

Spec k[[�2n]], where now �2n has cohomological degree 2n. By the general DDT and

theorem 5.2 we do find a formal deformation of L(X), considered as an E−n-monoidal dg-

category, over k[[�2n]]. This deformation will be denoted by L(X, p). This trick to deal

with cases where n < 0 is called the red shift trick. It is not new, and already appears in

the conjecture [13, Page 14] where Z/2-graded derived categories are considered instead of

Z-graded derived categories, and canceling out the red shift.

Definition 5.5. The formal deformation L(X, p) constructed above is the deformation quan-

tization of (X, p). It is a formal deformation of L(X) considered as an En-monoidal dg-
category if n ≥ 0, and a formal deformation of L(X) considered as an E−n-dg-category
over k[[�2n]] if n < 0.

Definition 5.5 applies in particular to the caseX = BunG(Y ), making our principle 2.1

into a mathematical statement.

6. Examples and open questions

We present here some examples as well as some further questions.

6.1. Three examples. We start by coming back to the three situations we mentioned in §2.

Quantum groups. We let X = BG, for G reductive. We have seen that X has a 2-shifted
symplectic structure given by the choice of non-degenerate G-invariant scalar product on g.
The dg-category L(X) here is the dg-category of complexes of representations of G. Our
quantization is then a formal deformation of L(X) as an E2-monoidal dg-category, and is

simply realized by taking the dg-category of complexes of representations of the quantum

group.

Skein dg-algebras. We now let X = BunG(Σ) be the derived moduli stack of G-bundles
on a compact oriented surface Σ. We know that X carries a natural 0-shifted symplec-

tic structure (depending on a choice of a non-degenerate G-invariant scalar product on g),
whose quantization L(X, p) in our sense is a deformation of the dg-category L(X)6. The

dg-category L(X, p) is an interesting refinement of the skein algebra of Σ which, as far

as the author is aware, has not been considered before. The structure sheaf OX ∈ L(X)

6Note however that here n = 0 and the formality conjecture 5.3 is not established yet, so this situation is still

conjectural at the moment.
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deforms to a uniquely defined object ÕX ∈ L(X, p), whose endormophisms form a dg-

algebra B� = End(ÕX) over k[[�]], which is a deformation of OX(X) the dg-algebra of
functions on X . The skein algebra is recovered as H0(B�), but B� is not cohomologically

concentrated in degree 0 in general and contains strictly more than K�(Σ). The higher co-
homology groups of B� are directly related to the non-trivial derived structure of X , which

is concentrated around the singular points corresponding to G-bundles with many automor-

phisms. Outside these bad points the dg-category L(X, p) is essentially given by complexes

ofK�(Σ)-modules. Formally around a given singular point ρ ∈ X , the dg-category L(X, p)
has a rather simple description as follows. The formal completion ofX at ρ is controlled by
the formal dg-Lie algebra Lρ := H∗(Σ, gρ), where gρ is the local system of Lie algebras

associated to theG-bundle ρ. The dg-Lie algebra Lρ is endowed with a non-degenerate pair-
ing of degree 2 induced by the choice of a G-invariant scalar product on g which defines a

non-degenerate pairing p : L∨ρ [−1] ∧ L∨ρ [−1] −→ k. The pairing p defines itself a Poisson

structure on the completed Chevalley complex ÔX,ρ � Ŝymk(L
∨
ρ [−1]), which is the cdga

of formal functions on X around ρ. The quantization of this Poisson cdga, which can be

described in simple terms as the Weyl dg-algebra associated to Lρ with the pairing p, is the
quantization of X around ρ and can be used to describe the full sub-dg-category of L(X, p)
generated by objects supported at ρ.

Donaldson-Thomas theory. We now turn to the case where X = BunG(Y ) for a Calabi-
Yau 3-fold Y , which is endowed with a (−1)-shifted symplectic form. Our quantization

L(X, p) here is a formal deformation of L(X) as a monoidal dg-category with a formal pa-

rameter �−2 of degree −2. To simplify a bit we can consider this as a formal deformation

of LZ/2(X), the 2-periodic dg-category of quasi-coherent complexes on X , considered as

a monoidal dg-category and with a formal parameter � sitting now in degree 0. Locally,

X is essentially given as the critical locus of a function f , whose category of matrix fac-

torizations MF (f) provides a natural L(X, p)-module (i.e. MF (f) is enriched over the

monoidal dg-category L(X, p)). In a precise sense,MF (f) can be viewed as an object M
in the quantization of X 7. The object M only exists locally, but when X is endowed with

orientation data we can expect more and maybe an existence globally onX (for instance, the

class of M in a suitable Grothendieck group has been constructed in [17]). This suggests a

possible relation with the perverse sheaf E we mentioned in §2, as E should be somehow the

Betti realization of the sheaf of dg-categories M. Our quantization should thus refine and

reinterpret some already known constructions in Donaldson-Thomas theory.

6.2. Further questions. We finish by a sample of further possible research directions.

Symplectic to Poisson and formality for n=0. As already mentioned in the text the precise

way to obtain an n-shifted Poisson structure out of an n-shifted symplectic structure is not

clear at the moment, except in some special case (e.g. for derived scheme for which a version

of the Darboux lemma holds and can be used, see [5, 6]). Also recall that our conjecture 5.3

remains open for non Deligne-Mumford derived algebraic stacks.

Quantization of Lagrangian morphisms. For a morphism between derived algebraic

stacks, the correct analog of a shifted symplectic structure is that of a Lagrangian structure

7This is so when monoidal dg-categories are considered through their (∞, 2)-category of modules.



Derived algebraic geometry and deformation quantization 789

(see [22]). These are the maps that are candidates to survive after the deformation quantiza-

tion. For this a version of the formality conjecture 5.3 must be stated and proved (if at all

true). The basic idea here is that a Lagrangian morphim f : X −→ Y , with Y n-shifted
symplectic (n > 0), should deform L(X) as an En−1-monoidal dg-category enriched over

the deformation quantization of L(Y ). According to [9], fully extended TQFT should be

obtained this way, by quantization of fully extended TQFT with values in a certain category

of n-shifted symplectic derived algebraic stacks and Lagrangian correspondences between

them.

Quantization for n = −1,−2. When n = −1, and n = −2 the output of our quanti-

zation is respectively a monoidal dg-category and braided monoidal dg-category. There are

other possible interpretations of the quantization in these two specific cases, as the expres-

sion “E−1-monoidal dg-category” can be understood as “an object in a dg-category”, and

“E−2-monoidal dg-category” as “an endomorphism of an object in a dg-category”. In par-

ticular, the quantization of a derived algebraic stack X endowed with a (−1)-shifted (resp.

(−2)-shifted) Poisson structure could also be interpreted as the construction of a deforma-

tion of an object in L(X) (resp. the deformation of an endomorphism in L(X)). For n = −1
this is the point of view taken by Joyce and his coauthors (see [2, 7, 8]). Note that in this

setting the existence of quantization is predicated on the existence of orientation data which

may not exist. The precise relations with the quantization of 5.5 remains to be investigated,

and at the moment there is no precise explanations of the construction of the constructible

sheaf of [2, 7, 8] in term of derived deformation theory.

Motivic aspects. Deformation quantization possesses an interesing interaction with the mo-

tivic world. This is particularly clear when n = −1 (e.g. in the setting of Donaldson-Thomas

theory): DT are made “motivic” in [17], and the constructible sheaf E we mentioned above

is expected to be the Betti realization of a certain “motive” over BunG(X). Because of

deformation quantization these motives most probably are instances of “non-commutative

motives” over non-commutative schemes (“E2-schemes” in the setting of DT theory). For

commutative base schemes non-commutative motives have been studied in [25], for which

the constructions of [4] provides a possible Betti realization functor. From a general point of

view, the specific example of Donaldson-Thomas theory suggests the notion of En-motives,
related to our deformation quantization for arbitrary values of n, as well as En-motives over

a base En−1-scheme (or stack), which is worth studying along the same lines as [25, 30]

Geometric quantization. Only deformation quantization has been considered in this text.

However, derived algebraic geometry can also interact nicely with geometric quantization, a

direction currently investigated in [39].
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Teichmüller spaces, ergodic theory and global
Torelli theorem

Misha Verbitsky

Abstract. A Teichmüller space Teich is a quotient of the space of all complex structures on a given

manifoldM by the connected components of the group of diffeomorphisms. The mapping class group

Γ ofM is the group of connected components of the diffeomorphism group. The moduli problems can

be understood as statements about the Γ-action on Teich. I will describe the mapping class group and

the Teichmüller space for a hyperkähler manifold. It turns out that this action is ergodic. We use the

ergodicity to show that a hyperkähler manifold is never Kobayashi hyperbolic.

Mathematics Subject Classification (2010). Primary 32G13; Secondary 53C26.

Keywords. Torelli theorem, hyperkähler manifold, moduli space, mapping class group, Teichmüller

space, ergodicity.

This talk is based on two papers, [46] and [47]. In these papers one can find details,

examples, and rigorous proofs omitted here.

1. Teichmüller spaces

1.1. Teichmüller spaces and period maps. The notion of Teichmüller spaces has a long

history since its discovery by Teichmüller in 1944 ([38]) and further development by Ahlfors,

Bers and others. However, it is rarely applied to complex manifolds of dimension > 1. It
turns out that this notion is interesting and useful for many purposes of complex geometry

in any dimension.

Definition 1.1. LetM be a smooth manifold. An almost complex structure is an operator

I : TM −→ TM which satisfies I2 = − IdTM . An almost complex structure is integrable
if ∀X,Y ∈ T 1,0M , one has [X,Y ] ∈ T 1,0M . In this case I is called a complex structure
operator. A manifold with an integrable almost complex structure is called a complex
manifold.

Definition 1.2. The space of almost complex structures is an infinite-dimensional Fréchet

manifoldXM of all tensors I ∈ End(TM) satisfying I2 = − IdTM . Similarly, one consid-

ers the group of diffeomorphisms as a Fréchet Lie group.

Remark 1.3. Definition of Fréchet manifolds and Fréchet spaces and many results on the

geometry of infinite-dimensional manifolds can be found in [18].

Proceedings of the International Congress of Mathematicians, Seoul, 2014



794 Misha Verbitsky

Definition 1.4. LetM be a compact complex manifold, and Diff0(M) a connected compo-

nent of its diffeomorphism group (the group of isotopies). Denote by Comp the space of

complex structures onM , considered with the topology induced from a Fréchet manifold of

almost complex structures, and let Teich := Comp /Diff0(M) be the quotient space with
the quotient topology. We call it the Teichmüller space.

Remark 1.5. When the complex manifold M admits a certain geometric structure, such

as Kähler, or hyperkähler structure, it is natural to consider the Teichmüller space of com-

plex structure compatible with (say) Kähler structure. Consider the open subset CompK ⊂
Comp of all complex structures I such that (M, I) admits a Kähler structure. The corre-

sponding Teichmüller space is TeichK := CompK /Diff0. When working with the Te-

ichmüller space of hyperkähler manifolds, or a torus, we shall always restrict ourselves to

CompK and TeichK .

Results of Kuranishi about local structure of deformation spaces can be summarized as

a statement about local structure of Comp as follows ([14, 24, 25]).

Theorem 1.6. Let M be a compact complex manifold and I ∈ Comp. Then there exists
an open neighbourhood U 8 I in Comp and a neighbourhood R of unit in Diff0 satisfying
the following. Consider the quotient U/R of U by an equivalence relation generated by
x ∼ wy, for all x, y ∈ U and w ∈ R. Then U/R is a complex analytic stack, equipped with
a natural holomorphic embedding to the stacky quotient H1(TM)/Aut(M). In particular,
when Aut(M) is finite, the space U/R is a complex variety, embeddable to an orbifold
H1(TM)/Aut(M).

Remark 1.7. The quotient space U/R obtained by Kuranishi is called the Kuranishi space.
LetTeich(U) be an image ofU in the Teichmüller space. Clearly, the Kuranishi space admits

a surjective, continuous map to Teich(U). It is not entirely clear whether this map is always

a homeomorphism. However, if it is always a homeomorphism, for a given M , the space

Teich acquires a structure of a complex variety.

As shown by F. Catanese ([11, Proposition 15]), for Kähler manifolds with trivial canon-

ical bundle, e.g. for the hyperkähler manifolds, the Teichmüller space is locally isomorphic

to the Kuranishi moduli space, hence it is a complex variety. In this case it is actually a

complex manifold, by Bogomolov-Tian-Todorov theorem ([7, 39, 42]).

It is not clear if this is true for a general complex manifold; in the present work we deal

with hyperkähler manifolds, which are Calabi-Yau.

Question 1.8. Consider a compact complex manifold M , and let Teich be its Teichmüller
space. Can we equip Teich with a structure of a complex variety (possibly non-Hausdorff),
in a way which is compatible with the local charts obtained from the Kuranishi theorem?

When M is a torus, or a hyperkähler manifold, Teich is a complex manifold which

can be described explicitly (Theorem 2.1, Theorem 4.5). However, even for a hyperkähler

manifold, Teich is not Hausdorff.

Claim 1.9. Assume thatM is Kähler, and Teich the Teichmüller space of all complex struc-
tures of Kähler type onM . For a given I ∈ Teich, choose a representative Ĩ ∈ Comp. Then
the Hodge decomposition H∗(M) =

⊕
Hp,q(M, Ĩ) is independent from the choice of Ĩ .

Proof. The ambiguity of a choice of Ĩ lies inDiff0. However,Diff0 acts trivially onH
∗(M).
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This elementary claim allows one to define the period map.

Definition 1.10. LetM be a Kähler manifold, Teich its Teichmüller space, and Per the map

associating to I the Hodge decomposition H∗(M) =
⊕
Hp,q(M, I). Then Per is called

the period map ofM .

Remark 1.11. Consider the product Comp×M trivially fibered over Comp. The fibers

of π : M × Comp −→ Comp can be considered as complex manifolds, with complex

structure at I ∈ Comp given by I . This complex structure is clearly Diff0-invariant, giving

a complex structure on the fibers of the quotient fibration (M × Comp)/Diff0 −→ Teich.
At each I ∈ Teich, the fiber of this fibration (called the universal fibration) is isomorphic

to (M, I).

1.2. Marked moduli spaces. Amore conventional approach to the moduli problem goes as

follows. Given a complex manifoldM , one defines the deformation functor from marked

complex spaces to sets as a functor mapping a complex space (B, x) to the set of equivalence
classes of deformations π : X −→B ofM over B withM identified with the fiber of π at

x.
If the deformation functor is representable by a complex space, this space is called the

fine moduli space of deformations ofM .

Usually, the fine moduli space does not exist. In this case, one considers the category of

natural transformations from the deformation functor to representable functors. The initial

object in this category is called the coarse moduli space. The points of coarse moduli are

identified with equivalence classes of deformations ofM .

In this setup, an analogue of Teichmüller space can be defined as follows. Fix an abelian

group which is isomorphic to H∗(M,Z), and define a marked manifold as a pair (M,ϕ :
V −̃→H∗(M,Z)), where M is a complex manifold, and ϕ a group isomorphism. In the

same way as above, one defines a coarse moduli space of deformations of marked manifolds.

To compare this space with Teichmüller space, consider a subgroup group Γ0 of mapping

class group which acts trivially on cohomology. Clearly, the points of Teich /Γ0 are in

bijective correspondence with the equivalence classes of marked complex structures onM .

Given a coarse marked moduli space W , one obtains the tautological map W −→
Teich /Γ0, by construction continuous. For hyperkähler manifolds (or compact tori), this

map is a diffeomorphism on each connected component ([46, Corollary 4.31]).

2. Torelli theorem

2.1. Torelli theorem: an introduction. Torelli theorems are a broad class of results which

describe the Teichmüller spaces in terms of the period maps (Definition 1.10).

The name originates with Ruggiero Torelli, who has shown that it is possible to recon-

struct a Riemann surface from its Jacobian [43]. The term “Torelli theorems” is due to

André Weil [50], who gave a modern proof of this classical result, and explained its possible

generalizations.

One may distinguish between the “local Torelli theorem”, where a local structure of de-

formation space is described in terms of periods, and “global Torelli”, where the Teichmüller

space is described globally.

Weil, who was the first to define and study K3 surfaces, spent much time trying to prove
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the Torelli theorem for K3 surfaces, but it was notoriously difficult. Its local version is due

to Tjurina, Piatetski-Shapiro and Shafarevich [35, 40]. The local Torelli was generalized by

Bogomolov to hyperkähler manifolds [6] and by Bogomolov-Tian-Todorov to Calabi-Yau

manifolds [7, 39, 42], building foundation for the theory of Mirror Symmetry.

In dimension > 1, the global Torelli theorem was known only for compact tori (where it

is essentially trivial) and the K3 surfaces, where it was proven by Kulikov in 1977 [23], and

then improved many times during the 1980-ies [3, 15, 27, 41, 44].

2.2. Birational Teichmüller space. In what follows, a hyperkähler manifold is a com-

pact complex manifold admitting a Kähler structure and a holomorphic symplectic form.

In generalizing global Torelli to more general hyperkähler manifolds, two problems were

apparent. First of all, bimeromorphic hyperkähler manifolds have the same periods, hence

the period map cannot distinguish between them. However, for dimCM > 0, birational
holomorphically symplectic manifolds can be non-isomorphic [12].

Another (mostly psychological) difficulty is based on attachment to moduli spaces, as

opposed to marked moduli or Teichmüller spaces. For a K3, one can reconstruct a K3 from

its Hodge structure, and this gives an identification between the moduli and the space of

Hodge structures. In bigger dimension, one has to use the Teichmüller space. Indeed, for

some classes of hyperkähler manifolds, the group O(H2(M,Z) of Hodge isometries of co-

homology is strictly bigger than the image of the mapping class group. This gives elements

γ ∈ O(H2(M,Z) acting non-trivially on the Teichmüller space in such a way that the com-

plex manifolds (M, I) and (M,γ(I)) are not birationally equivalent ([30, 33]). However,

their Hodge structures are equivalent, by construction. This example explains the necessity

of using the Teichmüller spaces (or marked moduli) to state the Torelli theorem: its Hodge-

theoretic version is often false.

For Teichmüller spaces, the Torelli theorem is a statement about the period map (Defini-

tion 1.10). Ideally, we want the period map to give a diffeomporphism between Teich and

the corresponding space of Hodge structures. This is what happens for a compact torus.

Theorem 2.1. LetM be a compact torus, dimRM = 2n, and Teich the Teichmüller space
of all complex structures of Kähler type onM . Denote by Per the space SL(2n,R)/SL(n,C)
of all Hodge structures of weight one on H1(M,C), that is, the space of all complex opera-
tors onH1(M,R) compatible with the orientation. Then the period mapPer : Teich−→ Per
is a diffeomorphism on each connected component of Per.

Unfortunately, this ideal situation is almost never realized. Even in the simplest cases

(such as for hyperkähler manifolds), the Teichmüller space is no longer Hausdorff. However,

in some situations it is still possible to deal with non-Hausdorff points.

Remark 2.2. A non-Hausdorff manifold is a topological space locally diffeomorphic to

Rn (but not necessarily Hausdorff).

Definition 2.3. Let X be a topological space, and X
ϕ−→ X0 a continuous surjection.

The space X0 is called a Hausdorff reduction of X if any continuous map X −→X ′ to a

Hausdorff space is factorized through ϕ.

Definition 2.4. Let M be a topological space. We say that x, y ∈ M are non-separable
(denoted by x ∼ y) if for any open sets V 8 x, U 8 y, one has U ∩ V �= ∅.
Remark 2.5. Suppose that∼ is an equivalence relation, and the quotientM/ ∼ is Hausdorff.

ThenM/ ∼ is a Hausdorff reduction ofM .
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Unfortunately, this notion cannot be applied universally. Firstly, ∼ is not always an

equivalence relation; and secondly, even if ∼ is equivalence, theM/ ∼ is not always Haus-

dorff. Fortunately, for Teichmüller space of a hyperkähler manifold, Hausdorff reduction can

be defined, using the following theorem due to D. Huybrechts ([19]).

Theorem 2.6. If I1, I2 ∈ Teich are non-separate points, then (M, I1) is birationally equiv-
alent to (M, I2).

Using this result and geometry of the period map (Bogomolov’s local Torelli theorem),

it is elementary to show that the quotient Teichb := Teich / ∼ is a Hausdorffmanifold. This

quotient is called the birational Teichmüller space of a hyperkähler manifold.

Global Torelli theorem implies that for hyperkähler manifolds the period map induces a

diffeomorphism between the Hausdorff reduction of the Teichmüller space and the appropri-

ate period domain.

3. Hyperkähler manifolds and Bogomolov-Beauville-Fujiki form

3.1. Hyperkähler manifolds: definition and examples. The standard definition of hyper-

kähler manifolds is rather differential geometric. It is, indeed, synonymous with “holomor-

phic symplectic”, but this synonymity follows from Calabi-Yau theorem. For more details

about hyperkähler manifolds, please see [2] or [4].

Definition 3.1. A hyperkähler structure on a manifoldM is a Riemannian structure g and
a triple of complex structures I, J,K, satisfying quaternionic relations I ◦J = −J ◦ I = K,

such that g is Kähler for I, J,K.

Remark 3.2. This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation along the

connection preserves I, J,K.

Remark 3.3. A hyperkähler manifold has three symplectic forms: ωI :=g(I·,·), ωJ :=g(J ·,·),
ωK := g(K·, ·).
Definition 3.4. Let M be a Riemannian manifold, x ∈ M a point. The subgroup of

GL(TxM) generated by parallel translations (along all paths) is called the holonomy group
ofM .

Remark 3.5. A hyperkähler manifold can be defined as a manifold which has holonomy in

Sp(n) (the group of all endomorphisms preserving I, J,K).

Definition 3.6. A holomorphically symplectic manifold is a complex manifold equipped

with non-degenerate, holomorphic (2, 0)-form.

Remark 3.7. Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
1ωK is a holomorphic symplectic form on (M, I).

Theorem 3.8 (Calabi-Yau). A compact, Kähler, holomorphically symplectic manifold ad-
mits a unique hyperkähler metric in any Kähler class.

Remark 3.9. For the rest of this talk, a hyperkähler manifold means a compact complex

manifold admitting a Kähler structure and a holomorphically symplectic structure.
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Definition 3.10. A hyperkähler manifold M is called simple, or IHS, if π1(M) = 0,
H2,0(M) = C.

The rationale for this terminology comes from Bogomolov’s decomposition theorem.

Theorem 3.11 (Bogomolov, [5]). Any hyperkähler manifold admits a finite covering which
is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

Remark 3.12. A hyperkähler manifold is simple if and only if its holonomy group is Sp(n),
and not a proper subgroup of Sp(n) [4].

Example 3.13. Take a 2-dimensional complex torus T , then the singular locus of T/±1 is

16 points locally of form C2/±1. Its resolution by blow-up is called a Kummer surface. It
is not hard to see that it is holomorphically symplectic.

Definition 3.14. A K3 surface is a hyperkähler manifold which is diffeomorphic to a Kum-

mer surface.

In real dimension 4, the only compact hyperkähler manifolds are tori and K3 surfaces,

as follows from the Kodaira-Enriques classification.

Definition 3.15. A Hilbert scheme M [n] of a complex surfaceM is a classifying space of

all ideal sheaves I ⊂ OM for which the quotient OM/I has dimension n over C.

Remark 3.16. A Hilbert scheme is obtained as a resolution of singularities of the symmetric

power SymnM .

Theorem 3.17 (Fujiki, Beauville). A Hilbert scheme of a hyperkähler manifold of real di-
mension 2 is hyperkähler.

Example 3.18. Let T be a torus. Then T acts on its Hilbert scheme freely and properly by

translations. For n = 2, the quotient T [n]/T is a Kummer K3-surface. For n > 2, a universal
covering of T [n]/T is called a generalized Kummer variety.

Remark 3.19. There are 2 more “sporadic” examples of compact hyperkähler manifolds,

constructed by K. O’Grady ([34]). All known simple hyperkaehler manifolds are these 2

and the two series: Hilbert schemes of K3 and generalized Kummer.

3.2. Bogomolov-Beauville-Fujiki form and the mapping class group.

Theorem 3.20 (Fujiki, [16]). Let η ∈ H2(M), and dimM = 2n, whereM is hyperkähler.
Then

∫
M
η2n = cq(η, η)n, for some primitive integer quadratic form q on H2(M,Z), and

c > 0 a positive rational number, called Fujiki constant.

Definition 3.21. This form is called Bogomolov-Beauville-Fujiki form. It is defined by the

Fujiki’s relation uniquely, up to a sign. The sign is determined from the following formula

(Bogomolov, Beauville)

λq(η, η) =

∫
X

η ∧ η ∧ Ωn−1 ∧ Ω̄n−1−

− n− 1

n

(∫
X

η ∧ Ωn−1 ∧ Ω̄n
)(∫

X

η ∧ Ωn ∧ Ω̄n−1

)

where Ω is the holomorphic symplectic form, and λ > 0.
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Remark 3.22. The BBF form q has signature (b2 − 3, 3). It is negative definite on primitive

forms, and positive definite on 〈Ω, Ω̄, ω〉, where ω is a Kähler form.

Using the BBF form, it is possible to describe the automorphism group of cohomology

in a very convenient way.

Theorem 3.23. LetM be a simple hyperkähler manifold, and G ⊂ GL(H∗(M)) a group
of automorphisms of its cohomology algebra preserving the Pontryagin classes. Then G
acts on H2(M) preserving the BBF form. Moreover, the map G−→O(H2(M,R), q) is
surjective on a connected component, and has compact kernel.

Proof.

Step 1 : Fujiki formula v2n = q(v, v)n implies that Γ0 preserves the Bogomolov-Beauville-

Fujiki up to a sign. The sign is fixed, if n is odd.

Step 2 : For even n, the sign is also fixed. Indeed, G preserves p1(M), and (as Fujiki

has shown in [16]), v2n−2 ∧ p1(M) = q(v, v)n−1c, for some c ∈ R. The constant c is
positive, because the degree of c2(B) is positive for any non-trivial Yang-Mills bundle with

c1(B) = 0.

Step 3 : o(H2(M,R), q) acts on H∗(M,R) by derivations preserving Pontryagin classes

([45]). Therefore Lie(G) surjects to o(H2(M,R), q).

Step 4 : The kernel K of the map G−→G
∣∣
H2(M,R) is compact, because it commutes with

the Hodge decomposition and Lefschetz sl(2)-action, hence preserves the Riemann-Hodge

form, which is positive definite.

Using this result, the mapping class group can also be computed. We use a theorem of

D. Sullivan, who expressed the mapping group in terms of the rational homotopy theory, and

expressed the rational homotopy in terms of the algebraic structure of the de Rham algebra.

Theorem 3.24 (Sullivan, [37, Theorem 10.3, Theorem 12.1, Theorem 13.3]). Let M be
a compact, simply connected Kähler manifold, dimCM � 3. Denote by Γ0 the group of
automorphisms of an algebraH∗(M,Z) preserving the Pontryagin classes pi(M). Then the
natural map Diff(M)/Diff0 −→ Γ0 has finite kernel, and its image has finite index in Γ0.

As a corollary of this theorem, we obtain a similar result about hyperkähler manifolds.

Theorem 3.25. Let M be a simple hyperkähler manifold, and Γ0 the group of automor-
phisms of an algebra H∗(M,Z) preserving the Pontryagin classes pi(M). Then

(i) Γ0

∣∣
H2(M,Z) is a finite index subgroup of O(H2(M,Z), q).

(ii) The map Γ0 −→O(H2(M,Z), q) has finite kernel.

We obtained that the mapping group is arithmetic (commensurable to a subgroup of

integer points in a rational Lie group).

As follows from [20, Theorem 2.1], there are only finitely many connected components

of Teich. Let ΓI be the group of elements of mapping class group preserving a connected

component of Teichmüller space containing I ∈ Teich. Then ΓI is also arithmetic. Indeed,

it has finite index in Γ.
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Definition 3.26. The image of ΓI in GL(H2(M,Z)) is called monodromy group of a
manifold.

Remark 3.27. The monodromy group can also be obtained as a group generated by mon-

odromy of all Gauss-Manin local system for all deformations of M ([46, Theorem 7.2]).

This explains the term. This notion was defined and computed in many special cases by E.

Markman [29, 30].

4. Global Torelli theorem

4.1. Period map. To study the moduli problem, one should understand the mapping class

group (described above) and the Teichmüller space. It turns out that the birational Teich-

müller space has a very simple description in terms of the period map, inducing a diffeomor-

phism

Teichb −→ SO(b2 − 3, 3)

SO(b2 − 3, 1)× SO(2)
on each connected component of Teichb.

Definition 4.1. LetPer : Teich −→ PH2(M,C)map J to a lineH2,0(M,J) ∈ PH2(M,C).
The map Per : Teich −→ PH2(M,C) is called the period map.

Remark 4.2. Per maps Teich into an open subset of a quadric, defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l̄) > 0}.
The manifold Per is called the period space ofM .

As follows from Proposition 4.8 below, Per = SO(b2−3,3)
SO(b2−3,1)×SO(2) .

Theorem 4.3 (Bogomolov, [6]). Let M be a simple hyperkähler manifold, and Teich its
Teichmüller space. Then the period map Per : Teich −→ Per is etale (has invertible
differential everywhere).

Remark 4.4. Bogomolov’s theorem implies that Teich is smooth. It is non-Hausdorff even

in the simplest examples.

Now the global Torelli theorem can be stated as follows. Recall that the birational Teich-

müller space Teichb is a Hausdorff reduction of the Teichmüller space of the holomorphic

symplectic manifolds of Kähler type.

Theorem 4.5. Let M be a simple hyperkähler manifold, and Per : Teichb −→ Per the
period map. Then Per is a diffeomorphism on each connected component.

The following proposition is proven in a straghtforward manner using 1950-ies style

arguments of geometric topology.

Proposition 4.6 (The Covering Criterion). Let X
ϕ−→ Y be an etale map of smooth mani-

folds. Suppose that each y ∈ Y has a neighbourhood B 8 y diffeomorphic to a closed ball,
such that for each connected component B′ ⊂ ϕ−1(B), B′ projects to B surjectively. Then
ϕ is a covering.
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Now, the Global Torelli implied by the following result, which is proven in Subsection

4.2 using hyperkähler structures.

Proposition 4.7. In assumptions of Theorem 4.5, the period map satisfies the conditions of
the Covering Criterion.

4.2. Moduli of hyperkähler structures and twistor curves.

Proposition 4.8. The period space

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l̄) > 0}

is identified with SO(b2−3,3)
SO(2)×SO(b2−3,1) , which is a Grassmannian of positive oriented 2-planes

in H2(M,R).

Proof.

Step 1 : Given l ∈ PH2(M,C), the space generated by Im l,Re l is 2-dimensional, because

q(l, l) = 0, q(l, l̄) implies that l ∩H2(M,R) = 0.

Step 2 : This 2-dimensional plane is positive, because q(Re l,Re l) = q(l + l̄, l + l̄) =
2q(l, l̄) > 0.

Step 3 : Conversely, for any 2-dimensional positive plane V ∈ H2(M,R), the quadric

{l ∈ V ⊗R C | q(l, l) = 0} consists of two lines; a choice of a line is determined by

orientation.

Remark 4.9. Two hyperkähler structures (M, I, J,K, g) and (M, I ′, J ′,K ′, g) are called

equivalent if there exists a unitary quaternion h such that I ′ = hIh−1, J ′ = hJh−1,
K ′ = hKh−1. From the holonomy characterization of simple hyperkähler manifolds (Re-

mark 3.12) it follows that two hyperkähler structures are isometric if and only if they are

equivalent.

Definition 4.10. Let (M, I, J,K, g) be a hyperkähler manifold. A hyperkähler 3-plane
in H2(M,R) is a positive oriented 3-dimensional subspace W , generated by three Kähler

forms ωI , ωJ , ωK .

Definition 4.11. Similarly to the Teichmüller space and period map of complex structures,

one can define the period space of hyperkähler metrics. Denote it by TeichH . The corre-

sponding period map is

Per : TeichH −→ PerH ,

where PerH = SO(b2−3,3)
SO(3)×SO(b2−3) is the space of positive, oriented 3-planes, and Per maps a

hyperkähler structure to the corresponding hyperkähler 3-plane.

Remark 4.12. There is one significant difference between Teich and the hyperkähler Te-

ichmüller space TeichH : the latter is Hausdorff, and, in fact, metrizable. Indeed, we could

equip the space TeichH of hyperkähler metrics with the Gromov-Hausdorff metric.

Let I ∈ Teich be a complex structure, and K(I) its Kähler cone. The set of hyperkähler
metrics compatible with I is parametrized byK(I), by Calabi-Yau theorem. The correspond-

ing 3-dimensional subspaces are generated by Per(I)+ω, where ω ∈ K(I). The local Torelli
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theorem implies that locally I ∈ Teich is uniquely determined by the 2-plane generated by

ωJ and ωK ; Calabi-Yau theorem implies that the hyperkähler metric is uniquely determined

by the complex structure and the Kähler structure. This gives the following hyperkähler

version of the local Torelli theorem.

Theorem 4.13. LetM be a simple hyperkähler manifold, andTeichH its hyperkähler Teich-
müller space. Then the period map Per : Teich −→ PerH mapping an equivalence class
of hyperkähler structures to is its 3-plane is etale (has invertible differential everywhere).

Remark 4.14. LetW ⊂ H2(M,R) be a positive 3-dimensional plane. The set SW ⊂ Per of
oriented 2-dimensional planes inW is identified with S2 = CP 1. WhenW is a hyperkähler

3-plane, SW is called the twistor family of a hyperkähler structure. A point in the twistor

family corresponds to a complex structure aI + bJ + cK ∈ H, with a2 + b2 + c2 = 1. We

call the corresponding rational curves CP 1 ⊂ Teich the twistor lines. It is not hard to see

that the twistor lines are holomorphic.

Definition 4.15. LetW ∈ PerH be a positive 3-plane, SW ⊂ Per the corresponding rational
curve, and x ∈ SW be a point. It is called liftable if for any point y ∈ Per−1(x) ⊂ Teich
there exists H ∈ TeichH such that the corresponding twistor line contains y.

WhenW is generic, the corresponding line SW is liftable, as indicated below.

Definition 4.16. The Neron-Severi lattice NS(I) of a hyperkähler manifold (M, I) is

H1,1(M, I) ∩H2(M,Z).

The following theorem, based on results of [13], was proven by D. Huybrechts.

Theorem 4.17 ([19]). Let M be a hyperkaehler manifold with NS(M) = 0. Then its
Kaehler cone is one of two components of the set

{ν ∈ H1,1(M,R) | q(ν, ν) � 0}.
Definition 4.18. Let S ⊂ Teich be a CP 1 associated with a twistor family. It is called

generic if it passes through a point I ∈ Teich with NS(M, I) = 0. Clearly, a hyperkähler
3-planeW ⊂ H2(M,R) corresponds to a generic twistor family if and only if its orthogonal

complement W⊥ ⊂ H2(M,R) does not contain rational vectors. A 3-plane W ∈ PerH is

called generic if W⊥ ⊂ H2(M,R) does not contain rational vectors. The corresponding

rational curve SW ⊂ Per is called a GHK line. GHK lines are liftable, which is very useful

for many purposes, including the proof of Torelli theorem (see also [1], where GHK lines

were used to study Kähler cones of hyperkähler manifolds).

The following theorem immediately follows from the Calabi-Yau theorem and the de-

scription of the Kähler cone given in Theorem 4.17.

Theorem 4.19. Let W ∈ PerH be a generic plane, SW ⊂ Per the corresponding rational
curve, and x ∈ SW a generic point. Then (SW , x) is liftable.

Assumptions of the covering criterion (Proposition 4.7) immediately follow from Theo-

rem 4.19. Indeed, it is not hard to see that any two points on a closed ball B ⊂ Per can be

connected inside B by a sequence of GHK curves intersecting in generic points of B. Since
these curves are liftable, any connected component of Per−1(B) is mapped toB surjectively.
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5. Teichmüller spaces and ergodic theory

5.1. Ergodic complex structures. After the Teichmüller space and the mapping class

group are understood, it is natural to consider the quotient space Comp /Diff = Teich /Γ
of the Teichmüller space by the mapping class group Γ := Diff /Diff0.

Claim 5.1. LetM be a simple hyperkähler manifold, Γ its mapping class group, and Teichb
the birational Teichmüller space. Then the quotient Teichb /Γ parametrizes the birational
classes of deformations ofM .

One could call the quotient Teichb /Γ “the moduli space”, but, unfortunately, this is

not a space in any reasonable sense. Indeed, as we shall see, non-trivial closed subsets of

Teichb /Γ are at most countable, making Teichb /Γ terribly non-Hausdorff. This means that

the concept of “moduli space” has no meaning, and all interesting information about moduli

problems is hidden in dynamics of Γ-action on Teich.
Let I ∈ Teich be a point, and TeichI ⊂ Teich its connected component. Since Teich

has finitely many components, a subgroup mapping class group fixingTeich has finite index.

Its image in Aut(TeichI) is called monodromy group and denoted ΓI (Definition 3.26). It

is a finite index subgroup in SO(H2(M,Z)).
All that said, we find that the moduli problem for hyperkähler manifold is essentially

reduced to the dynamics of the ΓI -action on the space Per, which is understood as a Grass-

mannian of positive, oriented 2-planes in H2(M,R).
It is natural to study the dynamics of a group action from the point of view of ergodic

theory, ignoring measure zero subsets. However, the quotient map Teich −→ Teichb is

bijective outside of a union of countably many divisors, corresponding to complex struc-

tures I with NS(M, I) non-zero. This set has measure 0. Therefore, the quotient map

Teich −→ Teichb induces an equivalence of measured spaces. For the purposes of ergodic

theory, we shall identify TeichI with the corresponding homogeneous space Per.
Ths first observation, based on a theorem of C. Moore, implies that the monodromy

action on Per is ergodic.

Definition 5.2. Let (M,μ) be a space with measure, and G a group acting on M . This

action is ergodic if all G-invariant measurable subsets M ′ ⊂ M satisfy μ(M ′) = 0 or

μ(M\M ′) = 0.

Claim 5.3. LetM be a manifold, μ a Lebesgue measure, and G a group acting on (M,μ)
ergodically. Then the set of non-dense orbits has measure 0.

Proof. Consider a non-empty open subset U ⊂ M . Then μ(U) > 0, hence M ′ := G · U
satisfies μ(M\M ′) = 0. For any orbit G · x not intersecting U , one has x ∈ M\M ′.
Therefore, the set of such orbits has measure 0.

Definition 5.4. Let I ∈ Comp be a complex structure on a manifold. It is called ergodic if

its Diff-orbit is dense in its connected component of Comp.

Remark 5.5. This is equivalent to density of Γ-orbit of I in its Teichmüller component.

5.2. Ergodicity of the monodromy group action.

Definition 5.6. LetG be a Lie group, and Γ ⊂ G a discrete subgroup. Consider the pushfor-

ward of the Haar measure to G/Γ. We say that Γ has finite covolume if the Haar measure

of G/Γ is finite. In this case Γ is called a lattice subgroup.
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Remark 5.7. Borel and Harish-Chandra proved that an arithmetic subgroup of a reductive

group G is a lattice whenever G has no non-trivial characters over Q (see e.g. [48]). In

particular, all arithmetic subgroups of a semi-simple group are lattices.

Theorem 5.8 (Calvin C. Moore, [31, Theorem 7]). Let Γ be an arithmetic subgroup in a
non-compact simple Lie group G with finite center, and H ⊂ G a non-compact subgroup.
Then the left action of Γ on G/H is ergodic.

Theorem 5.9. Let Teich be a connected component of a Teichmüller space, and ΓI its
monodromy group. Then the set of all non-ergodic points of Teich has measure 0.

Proof. Global Torelli theorem identifies Teich (as a measured space) and G/H , where G =
SO(b2 − 3, 3),H = SO(2)×SO(b2 − 3, 1). Since ΓI is an arithmetic lattice, ΓI -action on
G/H is ergodic, by Moore’s theorem.

Moore’s theorem implies that outside of a measure zero set, all complex structures on

Teich are ergodic. If we want to determine which exactly complex structures are ergodic,

we have to use Ratner’s theorem, giving precise description of a closure of a ΓI -orbit in a

homogeneous space.

Now I will state some basic results of Ratner theory. For more details, please see [22]

and [32].

Definition 5.10. Let G be a Lie group, and g ∈ G any element. We say that g is unipotent
if g = eh for a nilpotent element h in its Lie algebra. A groupG is generated by unipotents
if G is multiplicatively generated by unipotent elements.

Theorem 5.11 ([32, 1.1.15 (2)]). LetH ⊂ G be a Lie subroup generated by unipotents, and
Γ ⊂ G a lattice. Then a closure of any H-orbit in G/Γ is an orbit of a closed, connected
subgroup S ⊂ G, such that S ∩ Γ ⊂ S is a lattice.

When this lattice is arithmetic, one could describe the group S very explicitly.

Claim 5.12 ([22, Proposition 3.3.7] or [36, Proposition 3.2]). Let x ∈ G/H be a point in a
homogeneous space, and Γ · x its Γ-orbit, where Γ is an arithmetic lattice. Then its closure
is an orbit of a group S containing stabilizer of x. Moreover, S is a smallest group defined
over rationals and stabilizing x.

For the present purposes, we are interested in a pair SO(3, k) ⊃ SO(1, k)×SO(2) ⊂ G
(or, rather, their connected componentsG = SO+(3, k) andH = SO(1, k)×SO(2) ⊂ G).
In this case, there are no intermediate subgroups.

Claim 5.13. Let G = SO+(3, k), and H ∼= SO+(1, k) × SO(2) ⊂ G. Then any closed
connected Lie subgroup S ⊂ G containing H coincides with G or with H .

Corollary 5.14. Let J ∈ Per = G/H . Then either J is ergodic, or its Γ-orbit is closed in
Per.

By Ratner’s theorem, in the latter case theH-orbit of J has finite volume inG/Γ. There-
fore, its intersection with Γ is a lattice in H . This brings

Corollary 5.15. Let J ∈ Per be a point such that its Γ-orbit is closed in Per. Consider its
stabilizer St(J) ∼= H ⊂ G. Then St(J) ∩ Γ is a lattice in St(J).
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Corollary 5.16. Let J be a non-ergodic complex structure on a hyperkähler manifold, and
W ⊂ H2(M,R) be a plane generated by ReΩ, ImΩ. Then W is rational. Equivalently,
this means that Pic(M) has maximal possible dimension.

Similar results are true for a torus of dimension > 1; we refer the reader to [47] for

precise statements and details of the proof.

6. Applications of ergodicity

6.1. Ergodic complex structures, Gromov-Hausdorff closures, and semicontinuity. The

ergodicity theorem (Subsection 5.2) has some striking and even paradoxical implications.

For instance, consider a Kähler cone Kah of a hyperkähler manifold (or a torus of dimen-

sion > 1) equipped with an ergodic complex structure. By Calabi-Yau theorem, each point

of Kah corresponds to a Ricci-flat metric on M . If we restrict ourselves to those metrics

which satisfy diam(M, g) � d (with bounded diameter), then, by Gromov’s compactness

theorem ([17]), the setXd of such metrics is precompact in the Gromov’s space of all metric

spaces, equipped with the Gromov-Hausdorff metric. It is instructive to see what kind of

metric spaces occur on its boundary (that is, on X̄d\Xd). To see this, let νi be a sequence of
diffeomorphisms satisfying limi νi(I) = I

′. By Kodaira stability theorem, the Kähler cone

of (M, I) is lower continuous on I . Therefore, there exists a family of Kähler classes ωi on
(M,νi(I)) which converge to a given Kähler class ω

′ on (M, I ′). This implies convergence

of the corresponding Ricci-flat metrics. We obtain that any Ricci-flat metric on (M, I ′) (for
any I ′ in the same deformation class as I) is obtained as a limit of Ricci-flat metrics on

(M, I).
This gives the following truly bizzarre theorem.

Theorem 6.1. Let (M, I) be an ergodic complex structure on a hyperkähler manifold,X ∼=
Kah the set of all Ricci-flat Kähler metrics on (M, I), and g′ another Ricci-flat metric onM
in the same deformation class. Then g′ lies in the closure of X with respect to the Gromov
topology on the space of all metrics.

This result is very strange, because Kah is a smooth manifold of dimension b2(M)− 2.
By Theorem 4.13, the space TeichH of all hyperkähler metrics is a smooth manifold of

dimension
b2(b2−1)(b2−2)

6 , clearly much bigger than dimKah. Obviously, the boundary of

X is highly irregular and chaotic.

For another application, consider some numerical quantity μ(I) associated with an equiv-
alence class of complex structures. Suppose that μ is continuous or semi-continuous on

Teich. Then μ is constant on ergodic complex structures. To see this, suppose that μ is

upper semicontinuous, giving

μ(lim
k
Ik) � lim

k
(μ(Ik)). (6.1)

Given an ergodic complex structire I , find a sequence Ik = νk(I) converging to a complex

structure I ′. Then (6.1) gives μ(I) � μ(I ′). This implies that any ergodic complex structure

satisfies μ(I) = infI′∈Teich μ(I ′).
This observation can be applied to Kobayashi pseudometric and Kobayashi hyperbolicity.
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6.2. Kobayashi non-hyperbolicity of hyperkähler manifolds.

Definition 6.2. Pseudometric onM is a function d : M×M −→ R�0 which is symmetric:

d(x, y) = d(y, x) and satisfies the triangle inequality d(x, y) + d(y, z) � d(x, z).

Remark 6.3. LetD be a set of pseudometrics. Then dmax(x, y) := supd∈D d(x, y) is also a
pseudometric.

Definition 6.4. The Kobayashi pseudometric on a complex manifoldM is dmax for the set

D of all pseudometrics such that any holomorphic map from the Poincaré disk to M is

distance-non-increasing.

In other words, a Kobayashi pseudo-distance between two points x, y is an infimum of

distance from x to y in Poincare metric for any sequence of holomorphic disks connecting x
to y.

The following observation is not difficult to see.

Claim 6.5. Let π : M −→X be a smooth holomorphic family, which is trivialized as a
smooth manifold: M =M ×X , and dx the Kobayashi metric on π−1(x). Then dx(m,m′)
is upper continuous on x.

Corollary 6.6. Denote the diameter of the Kobayashi pseudometric by

diam(dx) := sup
m,m′

dx(m,m
′).

Then the Kobayashi diameter of a fiber of π is an upper continuous function: diam :
X −→ R�0.

For a projective K3 surface, the Kobayashi pseudometric vanishes ([49, Lemma 1.51]).

However, all non-projective K3 surfaces are ergodic (Corollary 5.16). This proves the van-

ishing of Kobayashi pseudodistance for all K3 surfaces. A more general version of this result

is due to due to Kamenova-Lu-Verbitsky.

Theorem 6.7 ([21]). LetM be a Hilbert scheme of K3. Then the Kobayashi pseudometric
onM vanishes.

Definition 6.8. A complex manifold is called Kobayashi hyperbolic if the Kobayashi pseu-
dometric is a metric.

Definition 6.9. An entire curve is a non-constant map C−→M .

Brody has shown that a compact manifold is Kobayashi hyperbolic if and only if it admits

no entire curves. The same argument also proves semicontinuity.

Theorem 6.10 ([8]). Let Ii be a sequence of complex structures onM which are not hyper-
bolic, and I its limit. Then (M, I) is also not hyperbolic.

With ergodicity, this can be used to prove that all hyperkähler manifolds are non-hyperbol-

ic. Recall that a twistor family of complex structures on a hyperkähler manifold (M, I, J,K)
is a family of complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1}.
F. Campana has obtained a remarkable partial result towards non-hyperbolicity.
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Theorem 6.11 ([10]). Let M be a hyperkähler manifold, and S ⊂ Teich a twistor family.
Then there exists an entire curve in some I ∈ S.
Claim 6.12. There exists a twistor family which has only ergodic fibers.

Proof. There are only countably many complex structures which are not ergodic; however,

twistor curves move freely through the Teichmüller space of a hyperkähler manifold, as seen

from Theorem 4.19.

Applying Campana’s theorem to the family constructed in Claim 6.12, we obtain an

ergodic complex structure which is non-hyperbolic. Then the Brody’s theorem implies that

all complex structures in the same deformation class are non-hyperbolic.

Theorem 6.13. All hyperkähler manifolds are non-hyperbolic.

6.3. Symplectic packing and ergodicity. I will finish this talk with a list of open problems

of hyperkähler and holomorphically symplectic geometry which might be solvable with er-

godic methods.

Question 6.14. Let M be a hyperkähler manifold, and Teich its Teichmüller space. Con-
sider the universal fibration X −→ Teich (Remark 1.11). The mapping class group Γ acts
on X in a natural way. Is this action ergodic?

This question (suggested by Claire Voisin) seems to be related to the following conjec-

ture.

Conjecture 6.15. LetM be a K3 surface. Then for each x ∈ M and v ∈ TxM there exists
an entire curve C 8 x with TxC 8 v.

The symplectic packing problem is a classical subject of symplectic geometry ([28]).

However, its holomorphically symplectic version seems to be completely unexplored.

Definition 6.16. A holomorphic symplectic ball Br of radius r is a complex holomorphi-

cally symplectic manifold admitting a holomorphic symplectomorphism to an open ball in

C2n of radius r with the standard holomorphic symplectic form
∑n

i=1 dz2i−1 ∧ dz2i.
Notice that by a holomorphic symplectic version of Darboux theorem, any holomorphi-

cally symplectic manifold is locally symplectomorphic to a holomorphic symplectic ball.

Definition 6.17. Let M be a holomorphically symplectic manifold. Symplectic packing
of radii r1, ..., rk ofM is a set of holomorphic symplectomorphisms ϕi : Bri ↪→ M with

images of ϕi not intersecting.

Obviously, in these assumptions,
∑

Vol(Bri) � VolM , where Vol denotes the symplec-

tic volume of a holomorphic symplectic manifold (M,ΩM ):

Vol(M) =

∫
M

(ΩM ∧ Ω̄M ), 2n = dimCM.

The volume inequality puts certain restrictions on the possible symplectic packing. Are there

any other restrictions?

For the usual (smooth) symplectic packing, some additional restrictions are obtained

from the Gromov’s symplectic capacity theorem and from the study of pseudoholomorphic
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curves. However, it seems that in holomorphic symplectic situation these restrictions are

also trivial. For a general compact torus of real dimension 4, volume is known to be the

only restriction to existence of symplectic packing ([26]). It seems that a similar result

about the smooth symplectic packings is true for K3 surfaces as well, and, possibly, for any

hyperkähler manifold.

The arguments used to treat the usual (smooth) symplectic packings don’t work for the

holomorphic symplectic case. However, the set of possible radii for symplectic packing is

obviously semicontinous, hence it can be studied by ergodic methods, in the same way as

one studies the Kobayashi pseudometric.

The following classical question was treated Buzzard and Lu in [9].

Definition 6.18. A complex manifoldM of dimension n is called dominated by Cn if there

exists a holomorphic map ϕ : Cn −→M which has non-degenerate differential in generic

point.

Buzzard and Lu proved that Kummer K3 surfaces are dominated by C2. So far, there

is not a single example of a hyperkähler manifold M for which it is proven that M is not

dominated. This leads to the following conjecture

Conjecture 6.19. Any compact hyperkähler manifold is dominated by Cn.

There is no semicontinuity in dominance, because Brody lemma fails to produce domi-

nating maps Cn −→M for n > 1 as limits of sequences of dominating maps. In the proof

of Brody’s lemma (showing that a limit of a sequence of entire curves contains an entire

curve) one takes a reparametrizations of each of the curves in the sequence. Starting from

a sequence of dominating maps, one could apply the same argument, but each subsequent

reparametrization can lead to smaller Jacobian of the differential, and the differential of the

limit could be zero.

It seems that more of the Brody’s argument can be retained if we restrict ourselves to

symplectomorphisms.

Question 6.20. Consider a flat holomorphically symplectic structure on C2. Is there a holo-
morphic mapC2 −→M to a K3 surface which is compatible with the holomorhic symplectic
form?

Probably not. However, a quantitative version of this question makes sense. LetM be a

hyperkähler manifold, and K(M) the supremum of all r such that there exists a symplectic

immersion from a symplectic ball of radius r to M . It is not hard to see that K(M) is

semicontinuous in families, hence constant on ergodic complex structures.

Question 6.21. For a given hyperkähler manifold, findK(M).

It is not clear if K(M) is finite or infinite, even for a K3 surface (it is clearly infinite for

a torus).
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Family Floer cohomology and mirror symmetry

Mohammed Abouzaid

Abstract. Ideas of Fukaya and Kontsevich-Soibelman suggest that one can use Strominger-Yau-

Zaslow’s geometric approach to mirror symmetry as a torus duality to construct the mirror of a sym-

plectic manifold equipped with a Lagrangian torus fibration as a moduli space of those simple objects

of the Fukaya category which are supported on the fibres. In the absence of singular fibres, the con-

struction of the mirror is explained in this framework, and, given a Lagrangian submanifold, a (twisted)

coherent sheaf on the mirror is constructed.
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1. Introduction

1.1. Overview. Mirror symmetry is a prediction from string theory identifying invariants

associated to the complex geometry of a family of Calabi-Yau manifolds with invariants as-

sociated to the Kähler geometry of a possibly different Calabi-Yau manifold that is called the

mirror. In our setting, we take as definition of a Calabi-Yau manifold a complex manifold

equipped with a nowhere vanishing holomorphic volume form. The original focus in math-

ematics was on the dualities of Hodge diamonds which gave a straightforward though non-

trivial check, and on the enumerative predictions for the number of curves of a given genus

and degree that went beyond the computations which could be performed using rigourous

methods. While it is not reasonable to expect the existence of a mirror partner to every

Calabi-Yau manifold, there are large classes of examples (e.g. toric complete intersections

[6, 17]) for which various original forms of the conjecture have been verified.

In [22], Kontsevich introduced a homological version of the conjecture: the invariants

to be related would be the derived category of coherent sheaves on the complex side and

the Fukaya category of Lagrangian submanifolds on the symplectic side. Strominger, Yau,

and Zaslow [28] later introduced a geometric version of the conjecture: mirror pairs should

arise as dual torus fibrations over the same base; these are often called SYZ fibrations. The

degenerating family can then be understood as arising from rescaling the fibres.

It is easier to state precise versions of the SYZ conjecture (which still hold in a large

class of examples) if one analyses the two sides of mirror symmetry separately, i.e. fixing

a Kähler form on a Calabi-Yau manifold X whose symplectic topology will be related to

the complex geometry of a Calabi-Yau variety Y over the ring of power series C[[T ]] or
the analogous rings appearing naturally in symplectic topology in which real exponents are

Proceedings of International Congress of Mathematicians, 2014, Seoul
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allowed; weakening one side to a formal family is related to a convergence problem in Floer

theory.

In this context, the starting point of a reformulation of the SYZ conjecture is the existence

of a Lagrangian fibration π : X → Qwith singularities (there is still no good approach to the

class of allowable singularities). The space Y should then be constructed from the Fukaya

category Fuk(X) as a moduli space of objects supported on fibres of this map [11]. While

the moduli space of such objects can be described locally over the base as the dual torus

fibration, the fact that we consider them as objects of the Fukaya category introduces non-

trivial identifications of the local charts given by the sum of a classical term with instanton
corrections that arise from the moduli space of holomorphic discs bounded by such fibres.

These corrections are expected to be expressible in terms of the geometry of the base via

wall-crossing formulae [23, 19].
In this setting, the homological mirror conjecture asserts the existence of a derived equiv-

alence DFuk(X) ∼= DCoh(Y ), where both categories are linear over the appropriate ver-

sion of power series rings. Much effort has gone in verifying this conjecture in certain ex-

amples [26, 1, 27], and extracting some of the classical statements of mirror symmetry from

it [8, 20].

Unfortunately, all the current proofs of mirror symmetry rely on ad hoc methods to con-

struct the mirror functor, neglecting the construction of the mirror as a moduli space of

objects of the Fukaya category. To address this issue, Fukaya has introduced family Floer

cohomology [10,11,12,13] as a strategy for directly assigning a sheaf on Y to a Lagrangian

L in X; as noted in [11], the main difficulty arises from the caustics of L, i.e. the singu-

larities of its projection to the base. In Section 4, we use the invariance properties of Floer

cohomology under continuation maps to bypass the difficulties arising from caustics (as in

[10, Section 6]), and prove convergence in the rigid analytic sense.

1.2. A twisted example. Since the problem is sufficiently complicated in the absence of

singular fibres, we shall henceforth only consider symplectic manifolds that admit smooth

Lagrangian torus fibrations. This class includes, for example, a codimension
n(n−1)

2 sub-

space of the n(2n− 1)-dimensional space of linear symplectic structures on R2n/Z2n, cor-

responding to those structures that can be represented as the quotient of R2n by a lattice

which intersects some Lagrangian plane in a rank n subgroup. It also includes the following

twisted example due to Thurston [30]:

Equip R4 with coordinates (x1, x2, x3, x4), and symplectic structure

dx1 ∧ dx2 + dx3 ∧ dx4. (1.1)

This form is invariant under the transformation

(x1, x2, x3, x4) → (x1 + 1, x2, x3, x4 + x3) (1.2)

as well as under translation by integral vectors of the form (0, x2, x3, x4). The Thurston

manifold is the quotient of R4 by the group generated by these transformations.

Thurston considered the symplectic fibration obtained by forgetting the (x3, x4) coordi-
nates, which gives a description of this space as a twisted (flat) torus bundle over the torus.

In joint work with Auroux, Katzarkov, and Orlov [2] we noticed the existence of two (in-

equivalent) Lagrangian fibrations on this space:

(1) The fibration obtained by forgetting the x2 and x4 coordinates is a principal bundle on
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which the (x2, x4)-torus acts. Since the total space is not trivial, this fibration admits

no continuous section, and hence, in particular, no Lagrangian section.

(2) The fibration obtained by forgetting the x1 and x4 coordinates admits a Lagrangian

section (0, x2, x3, 0).

The above two examples show that one can have Lagrangian fibrations with completely

different behaviour on the same symplectic manifold. The first fibration is mirror to a gerbe

on an abelian variety, while the second is mirror to a Kodaira surface. To see this, write the

first fibration as the quotient of [0, 1]2 × (R/Z)2 by the equivalence relation

(0, x3, x2, x4) ∼ (1, x3, x2, x4 + x3) (1.3)

(x1, 0, x2, x4) ∼ (x1, 1, x2, x4). (1.4)

Note that the gluing maps act trivially on the homology of the fibre, so the action on the

space of local systems is trivial. Since the fibres bound no holomorphic disc, the mirror is

the moduli space of such local systems; it agrees with the mirror of the symplectic manifold

obtained via the trivial identifications. This symplectic manifold is simply the product of

two tori of area 2π, hence the mirror is a product of two (families of) elliptic curves as is

well-understood by now [1].

At this stage, it is clear that additional data are needed to implement mirror symmetry

from this point of view. At the most basic level, the Lagrangian fibres are null-homologous,

which implies that Floer cohomology has vanishing Euler characteristic whenever one of the

two inputs is a fibre. Under mirror symmetry the fibres map to skyscraper sheaves of point,

and there are therefore many coherent sheaves (e.g. vector bundles of non-vanishing rank)

whose mirrors would be expected to have Floer cohomology groups with a fibre whose Euler

characteristic does not vanish.

The additional data arise naturally on both sides: by obstruction theory, the failure of this

torus fibration to be trivial is detected by a second cohomology group of the base as one can

easily construct a Lagrangian section in the complement of a point. This obstruction class

is constructed in Section 2.1 using a Čech cover, and a simple exponentiation procedure in

Section 2.4 then yields an O∗-valued second cohomology class on the mirror space; i.e. a

gerbe. The correct statement of mirror symmetry involves sheaves twisted by this gerbe.

For completeness, we elaborate on the description of the mirror of the second fibration:

a convenient starting point is the vector bundle (R/Z)2 × R2 over the torus in the (x2, x3)
coordinates whose fibre is the plane spanned by (x1, x4). The key observation is that the

Thurston manifold is obtained by taking the quotient of the fibre over (x2, x3) by the lattice

spanned by (1, x3) and (0, 1). The corresponding family of lattices in R2 has non-trivial

monodromy (given by an elementary transvection) around a loop in the x3 direction. Con-

structing the mirror (complex) manifold by dualising the fibres, we conclude that the under-

lying smooth manifold is also a torus fibration over the torus with total Betti number 3, hence
a primary Kodaira surface [21, p. 787-788]. With a bit more care, one can avoid appealing

to the classification of surfaces and identify the (complex) mirror as the degenerating family

of quotients of C∗ × C∗ by the groups of automorphisms

(z1, z2) !→ (z1, T · z2) (1.5)

(z1, z2) !→ (T · z1, z1z2) (1.6)

parametrised by a variable T . To obtain a precise statement of Homological mirror symmetry
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in this setting, one then interprets the above as giving a rigid analytic primary Kodaira surface

[33, p. 788].

One interesting outcome of this observation is that the two homological mirror symmetry

statements imply the existence of a derived equivalence between twisted coherent sheaves

on the mirror abelian variety and coherent sheaves on the mirror primary Kodaira surface.

Such a result can be proved independently of mirror symmetry by exhibiting a Fourier-Mukai

kernel [2].

1.3. Statement of the results. Let (X,ω) be a compact symplectic manifold, equipped

with a fibration π : X → Q over a smooth manifold Q with Lagrangian fibres; the triple

(X,ω, π) is called a Lagrangian fibration; write Fq for the fibre at a point q, and assume that

π2(Q) = 0.

Remark 1.1. The vanishing of the second homotopy group of Q implies that π2(X,Fq)
vanishes, and hence that Fq bounds no holomorphic disc, which implies that there are no

instanton corrections, i.e. that the mirror should be the space of rank-1 unitary local systems

on the fibres. There seem to be no known examples where this condition fails (though this

can be arranged if X is not assumed to be compact, or if singular fibres are allowed).

The symplectic topology of such fibrations is reviewed in Section 2.1, but for now, recall

that the tangent space ofQ at a point q is naturally isomorphic toH1(Fq,R)≡H1(Fq;Z)⊗ R.
Arnol’d’s Liouville theorem implies that the corresponding lattice in TQ arises from an in-

tegral affine structure on Q. In particular, Q can be obtained by gluing polytopes in Rn by

transformations whose differentials lie in SL(n,Z).
To this integral affine structure, one associates a rigid analytic space (in the sense of

Tate), which we denote Y (this is the same construction used in [23, 15, 32]): fix a field k,
and consider the Novikov field

Λ =
{ ∞∑
i=1

ait
λi |ai ∈ k, λi ∈ R, λi → +∞

}
. (1.7)

This is a non-archimedian field with valuation val : Λ− {0} → R

∞∑
i=1

ait
λi !→ min(λi|ai �= 0). (1.8)

Denote by UΛ the units of Λ, i.e. those elements with 0-valuation.
As a set, the space Y is the union

∐
q∈QH1(Fq;UΛ). This description makes explicit the

fact that Y parametrises Lagrangian fibres together with the datum of a rank-1 Λ-local system
with monodromy in UΛ. The analytic structure on Y arises from the natural identifications

of the first cohomology groups of nearby fibres; the explicit construction appears in Section

2.2.

Given a Lagrangian L ⊂ X , satisfying the technical conditions required to make Floer

cohomology well-defined, one obtains Floer cohomology groups HF k((Fq, b), L; Λ) for

each q ∈ Q, and b ∈ H1(Fq;UΛ).
These groups are locally the fibres of coherent sheaves on Y , as can be seen by adapting

an argument of Fukaya [12] who studied the case of self-Floer cohomology. In order to

encode the full data of the global Floer theory of X on the Y -side, an analytic gerbe αX on

Y is introduced in Section 2.4.
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Theorem 1.2. There is an αX -twisted coherent sheaf on Y whose dual fibre at the point of
Y corresponding to a pair (q, b) isHF k((Fq, b), L; Λ).

Remark 1.3. One can interpret this theorem as an attempt to make rigourous the strategy in-

troduced in Fukaya’s announcement [10], which assigns to a Lagrangian a complex analytic

sheaf assuming convergence. In the special case of Lagrangian surfaces constructed by Hy-

perkähler rotation, analytic continuation may provide an alternative approach for bypassing

the problem arising from caustics, as noted in [11]. As part of an ongoing project to study

mirror symmetry from the point of view of family Floer cohomology [31,32], Junwu Tu has

an independent argument to prove a similar result.

1.4. Difficulties lying ahead. While the above result points in the right direction, it is un-

fortunately not adequate for serious applications. The last section of this paper outlines the

construction of an object L in a category of αX -twisted sheaves of perfect complexes that is
a differential graded enhancement of the derived category of αX -twisted coherent sheaves

on Y . The twisted sheaf in Theorem 1.2 is obtained from L by passing to cohomology.

The following conjecture makes clear why L, rather than its cohomology sheaves, is the

right object to study:

Conjecture 1.4. If L1 and L2 are Lagrangians in X with corresponding twisted sheaves of
perfect complexes L1 and L2, there is an isomorphism

HF ∗(L1, L2) ∼= H∗(Hom∗(L1,L2)). (1.9)

There are two essential difficulties that arise in applying these techniques to the SYZ

fibrations X → Q that are expected to exist, for example, on Calabi-Yau hypersurfaces in

toric varieties:

(1) In general, some smooth fibres may bound non-constant holomorphic discs. Assuming

such fibres are unobstructed, which essentially means that the counts of holomorphic

discs with boundary on a single fibre algebraically vanish, Tu constructed the candi-

date (open subset) of the mirror in [31]. The basic idea, following Fukaya [11] and

Kontsevich and Soibelman [23], is that we should obtain the mirror space by gluing

affinoids as in the uncorrected case, but the gluing maps take into account moduli

spaces of holomorphic discs. One can interpret part of the program of Gross and

Siebert [19] as providing such a construction for fibrations arising from toric degen-

erations, though it is not yet known how to prove that their construction agrees with

the one intrinsic to symplectic topology. Given the appropriate technical tools (i.e.

a theory of virtual fundamental chains on moduli spaces of holomorphic discs, as in

[14]), the extension of our results to this setting should be straightforward.

(2) The construction of the mirror space from an SYZ perspective also requires under-

standing the Floer theory of singular fibres. Whenever the fibre is immersed, this
Floer theory is well-understood [4]. In the simplest situation, such a fibre is an im-

mersed Lagrangian 2-sphere with a single double point in a 4-manifold, and the nearby

Lagrangian (torus) fibres are obtained by Lagrangian surgery [24]. Using the relation

between moduli spaces of holomorphic discs before and after surgery [14], Fukaya

[13] has announced the construction of the mirror space in this setting. In particu-

lar, for a symplectic structure on aK3-surface admitting a Lagrangian torus fibration,
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Fukaya’s method provides a construction of the mirror space using family Floer co-

homology. Unfortunately, in higher dimensions, SYZ fibrations are expected to have

singular fibres which cannot be described as Lagrangian immersions, putting them

beyond the reach of current techniques.

2. Background

2.1. Lagrangian torus fibrations. LetQ be the base of a Lagrangian fibration as in Section

1.3. The Arnol’d-Liouville theorem implies that we have canonical identifications

TqQ = H1(Fq;R) and T
∗
qQ = H1(Fq;R). (2.1)

Write TZ
q Q for the image of H1(Fq;Z) in TqQ under the first isomorphism above, TZQ

for the corresponding rank-n local system on Q, and T ∗ZQ for the dual. The key property

satisfied by this sublattice of T ∗Q is that its (local) flat sections are closed, hence exact. On

a subset P ofQ, a choice of n functions whose differentials span T ∗ZP at every point defines

an immersion into Rn mapping the fibres of TZP to the standard lattice Zn in the tangent

space of Rn. By choosing P sufficiently small, we obtain a coordinate patch for the integral
affine structure on Q induced by TZQ.

The inverse image XP of such a subset under π is fibrewise symplectomorphic to

T ∗P/ T ∗ZP . Given sets P, P ′ ⊂ Q which intersect, the restrictions of the two symplec-

tomorphisms induce a fibrewise symplectomorphism

T ∗ (P ∩ P ′) /T ∗Z (P ∩ P ′) → XP∩P ′ → T ∗ (P ∩ P ′) /T ∗Z (P ∩ P ′) . (2.2)

Such a symplectomorphism can be written as fibrewise addition by a closed 1-form which is

uniquely defined up to an element of T ∗Z (P ∩ P ′).
In order to classify symplectic fibrations which induce a given integral affine structure,

choose a finite partially ordered set A labelling a simplicial triangulation of Q, i.e. there are

vertices labelled by elements of A, and every cell is the span of a unique ordered subset I of

A. Assume that this triangulation is sufficiently fine that there is a cover ofQ by codimension

0 submanifolds with boundary {Pi}i∈A so that Pi contains the open star of the vertex i and
all iterated intersections are contractible. Let

PI =
⋂
i∈I

Pi (2.3)

and note that PI contains the open star of the cell corresponding to I .
Choose a trivialisation τi of the inverse image XPi , i.e. a fibrewise symplectic identifi-

cation with T ∗Pi/T ∗ZPi. If i < j, the restrictions of τi and τj to XPij differ by fibrewise

addition of a closed 1-form; choose a primitive for this 1-form

fij : Pij → R. (2.4)

If i < j < k, the cyclic sum

αX(ijk) = fij + fjk − fik (2.5)

is function on Pijk whose differential lies in T ∗ZPijk; i.e. an integral affine function. Such

functions define a sheaf onQ that will be denotedAff , andαX yields a cocycle in Č2(Q; Aff).
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Write [αX ] for the corresponding cohomology class. Here, the Čech complex associated to

a sheaf F on Q is given by

Č∗A(Q;F) =
⊕

I=(i0,...,ir)⊂A
i0<...<ir

F(PI)[−r] (2.6)

with differential given by restriction.

The importance of the sheaf Aff was noted by Gross and Siebert [18], who related it to

classical invariants of affine structures. In that spirit, the following is a reformulation of a

result of Duistermaat [9, Equation (2.6)]:

Proposition 2.1 (c.f. p. 476 of [5]). X is determined up to fibrewise symplectomorphism by
the triple (Q, T ∗ZQ, [αX ]).

Proof. The fibrewise symplectic automorphisms of XP are given by Ω1
c(P )/T ∗ZP , where

Ω1
c is the sheaf of closed 1-forms. As noted by Duistermaat, this implies that Lagrangian

fibrations which induce the integral affine structure T ∗ZQ are classified up to fibrewise sym-

plectomorphism by H1(Q,Ω1
c/T

∗
ZQ).

To obtain the desired result, note that the identification of Ω1
c with C∞/R induces an

isomorphism of sheaves

C∞/Aff ∼= Ω1
c/T

∗
ZQ. (2.7)

Since C∞ is a soft sheaf, this implies the existence of a canonical isomorphism

H1(Q,Ω1
c/T

∗
ZQ) ∼= H2(Q,Aff). (2.8)

Remark 2.2. The differentiable type of X is determined by a Chern class with values in

H2(Q, T ∗ZQ). The short exact sequence R → Aff → T ∗ZQ induces a long exact sequence

· · · → H2(Q,R) → H2(Q,Aff) → H2(Q, T ∗ZQ) → · · · (2.9)

which has the following interpretation: once a smooth torus fibration over Q which is com-

patible with its affine structure is fixed, the set of symplectic structures on the total space for

which this fibration is Lagrangian is either empty or an affine space over H2(Q,R), where
the action is given by adding the pullback of a 2-form on Q.

2.2. Construction of the mirror space. The next step is to associate a rigid analytic space

Y to the integral affine structure TZQ on Q. As a set, Y is simply the flat bundle over Q

Y = TZQ⊗Z UΛ (2.10)

where UΛ is the multiplicative subgroup of the units in the Novikov ring as in Section 1.3.

Write

val : Y → Q (2.11)

for the projection. The fibre of val at a point q ∈ Q is H1(Fq;UΛ).
To construct an analytic structure on Y , start by considering the valuation

H1(Fq; Λ
∗) → H1(Fq;R), (2.12)



820 Mohammed Abouzaid

whose fibre isH1(Fq;UΛ). Splitting the above map by taking a real number λ to Tλ, yields
an isomorphism

H1(Fq;UΛ)×H1(Fq;R) ∼= H1(Fq; Λ
∗). (2.13)

If P is a sufficiently small neighbourhood of q ∈ Q, it can be identified using parallel

transport with respect to TZQ with a neighbourhood of the origin in TqQ. This gives rise to

a natural embedding

YP ≡ val−1(P ) =
∐
p∈P

H1(Fp;UΛ) ⊂ H1(Fq; Λ
∗). (2.14)

Assume now that P ⊂ H1(Fq;R) is a polytope defined by integral affine equations, i.e.

that there exist integral homology classes {αi}di=1, and real numbers {λi}di=1 such that

P = {v ∈ H1(Fq;R)|〈v, αi〉 ≤ λi for 1 ≤ i ≤ d}. (2.15)

If P is such a polytope, YP is a special affine subset in the sense of Tate [29, Definiton 7.1];

these are now usually studied as examples of the more general class of affinoid domains [7].
The affinoid ring OP corresponding to YP in this case consists of formal series∑

A∈H1(Fq,Z)

fAz
A
q , fA ∈ Λ (2.16)

which T -adically converge at every point of YP , i.e. so that

lim
|A|→+∞

val(fA) + 〈v,A〉 = +∞ (2.17)

whenever v lies in P .

Remark 2.3. Despite the fact that Equation (2.16) refers to the basepoint q, the ring OP
does not depend on it. One way to see this is to construct a natural isomorphism of the rings

associated to different choices of basepoints. Say that p ∈ Q is obtained by exponentiating

v′ ∈ H1(Fq;R) = TqQ. Using parallel transport to identify the tangent space of q with that

of p, associate to P the polytope

P − v′ ⊂ H1(Fp;R) = H1(Fq;R). (2.18)

Note that the transformation

zAq !→ t〈v
′,A〉zAp (2.19)

maps series in zq coordinates which are convergent inP bijectively to series in zp coordinates
which are convergent in P − v′.

We now assume that the cover of Q chosen in Section 2.1 has the property that

for each ordered subset I ⊂ A, PI is an integral affine polytope. (2.20)

Covers satisfying this property exist for the following reason: every point in Q has a neigh-

bourhood which is an integral affine polytope, and two such polytopes intersect along an

integral affine polytope whenever they are sufficiently small. Using such a cover, we see that

Y is obtained by gluing affinoid sets; it is therefore an affinoid variety.
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2.3. Sheaves as functors. Consider the category OA whose objects are the ordered subsets

of A. The morphisms in OA are given by

O(I, J) =

{
OJ if I ⊂ J

0 otherwise.
(2.21)

where OI is the ring of functions on YI (and YI denotes YPI
). Composition is defined as

O(J,K)⊗ O(I, J) ∼= OK ⊗ OJ → OK ⊗ OK → OK ∼= O(I,K), (2.22)

where the middle two arrows are respectively given by restriction (from YJ to YK), and by

multiplication (in OK).

Definition 2.4. A pre-sheaf of O-modules on Y is a functor from OA to the category of

Λ-vector spaces.

To see that this definition is reasonable, recall that a functor F assigns to each set I a

Λ-vector space we denote F(I). Since the endomorphisms of the object I in OA is the ring

of functions on YI , F(I) is equipped with an OI module structure. Since O(I, J) = OJ
whenever I ⊂ J , we obtain a map

OJ ⊗Λ F(I) → F(J). (2.23)

The associativity equation implies that this is a map of OJ modules, and that it descends to

a map

OJ ⊗OI
F(I) → F(J), (2.24)

which exactly implies that we have pre-sheaf of O-modules in the usual sense.

Definition 2.5. A sheaf of O-modules on Y is a presheaf such that the structure maps in

Equation (2.24) are isomorphisms.

The key point here is that the category of modules over the ring OI is equivalent to the

category of sheaves of O-modules on the affinoid space YI (see, e.g. [7, Section 9.4.3]). The
datum of a sheaf on YI can therefore be replaced by that of a single module F(I). As in the

usual description, a sheaf is therefore a presheaf satisfying an additional property.

Remark 2.6. Since the ring of regular functions on an affinoid domain is Noetherian [7, p.

222], the notions of coherence and finite generation agree. So we may define a sheaf of

coherent modules on Y to be a sheaf of O-modules such that each module F(I) is finitely
generated; i.e. admits a surjection from a finite rank free module. A standard argument

implies that the cohomology modules of finite rank free cochain complexes over OI are

coherent modules; it is in this way that coherent sheaves on Y will arise from the mirror.

2.4. Rigid analytic gerbes and twisted sheaves. There is a natural map

exp: Aff(P ) → O∗(YP ) (2.25)

F !→ tF (q)zdFq , (2.26)

which induces a map

H2(Q,Aff) → H2(Y,O∗). (2.27)

This map assigns to each Lagrangian fibration over Q an (analytic) gerbe on Y .
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Remark 2.7. The above map is not surjective, but it is reasonably to expect surjectivity by

considering deformations of Floer theory inX by the pullback of classes inH2(Q,UΛ). For
the subgroupsH2(Q,Z2) andH

2(Q, 1+Λ+), such deformations were considered separately

in [14] as background class and bulk deformation.

To define a twisted module over this gerbe, one needs a model for sheaf cohomology on

Y : choose a cocycle αX in Č2
A(Q,Aff) as in Equation (2.5); this consists of an assignment

αX(ijk) ∈ Aff(Pijk) for every triple i < j < k, satisfying the cocycle condition. Given a

triple I ⊂ J ⊂ K of ordered subsets of A with final elements (i, j, k), define

Aff(PK) 8 αX(IJK) =

{
αX(ijk)|PK if i < j < k

1 otherwise.
(2.28)

Associated to this cocycle, we define a new category OαX

A with the same objects and

morphisms as OA. The composition is given by

O(J,K)⊗ O(I, J) → O(I,K) (2.29)

fK ⊗ fJ !→ exp(αX(ijk)) · fJ |YK
· fK . (2.30)

The cocycle property of αX implies that composition is associative. As in the untwisted

case, a functor F from OαX

A to VectΛ induces a map of OJ modules

OJ ⊗OI
F(I) → F(J). (2.31)

Definition 2.8. An αX -twisted O-module is a functor from OαX

A to Λ-vector spaces such
that the map in Equation (2.31) is an isomorphism for every pair I ⊂ J .

The above definition unwinds into something more familiar: an αX -twisted O-module

over Y is a collection F(I) of OI modules, together with isomorphisms of OJ modules

FIJ : OJ ⊗OI
F(I) → F(J), (2.32)

defined whenever I ⊂ J , such that

FJK ◦ FIJ |YK
= exp(αX(IJK)) · FIK (2.33)

for an ordered triple I ⊂ J ⊂ K. Here, FIJ |YK
denotes the map induced by FIJ :

OK ⊗OI
F(I)

= �� OK ⊗OJ
OJ ⊗OI

F(I)
FIJ �� OK ⊗OI

F(J). (2.34)

3. Local constructions

3.1. Basics of Floer theory. Assume we are given a Lagrangian L so that

L is tautologically unobstructed, i.e. there exists a tame almost complex struc-

ture JL on X so that L bounds no JL-holomorphic disc.
(3.1)

This is a technical condition, which will allow us to avoid discussing virtual fundamental

chains, and should be replaced by the condition that L is unobstructed in the sense of [14].
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Given a Hamiltonian diffeomorphism φ mapping L to a Lagrangian transverse to Fq ,
there is an ungraded Floer complex

CF ∗(Fq, φ(L)), (3.2)

generated over ΛF2 by the intersection points of φ(L) and Fq . To define the differential,

choose a generic family of almost complex structures {Jt ∈ J}t∈[0,1] so that J0 = φ∗(JL).
For each pair (x, y) of intersection points between φ(L) and Fq , the space of Jt-holomorphic

maps from the strip B = R × [0, 1] to X satisfying the following boundary and asymptotic

conditions

u(s, 1) ∈ φ(L) u(s, 0) ∈ Fq (3.3)

lim
s→−∞

u(s, t) = x lim
s→+∞

u(s, t) = y (3.4)

admits a natural R-action by translation in the s-coordinate. The quotient by this action of

the space of such maps is the moduli space of strips Mq(x, y), and the matrix coefficient of

x in dy is the count of rigid elements of this moduli space. The key point here is that this

moduli space is regular for generic almost complex structures, so the count of such isolated

elements gives a differential by standard methods.

In order for the mirror of L to be an object of the bounded derived category and to

be defined away from fields of characteristic 2, this construction must be refined to a chain

complex of free abelian groups which is Z graded. Combining the discussions of orientations

in [14] and [25], assume that

w2(L) = π∗(w2(Q)). (3.5)

Under this assumption, one could make an arbitrary choice of Pin+ structure on the

bundles TFq⊕π∗(T ∗Q⊗|Q|⊕3) and TL⊕π∗(T ∗Q⊗|Q|⊕3) to define the Floer cohomology

of L and Fq . It will be important to make a global choice, i.e. one obtained by restriction

fromX . To this end, identify the restriction of π∗(T ∗Q) to Fq with its tangent space via the
Arnol’d-Liouville theorem. In particular, a Pin+ structure on

T ∗Q⊕ T ∗Q⊕ |Q|⊕3 (3.6)

will induce one by the pullback to all fibres. The above bundle has vanishing second Stiefel-

Whitney class, which is the obstruction to such a structure.

Upon fixing Pin+ structures on TL ⊕ π∗(T ∗Q ⊗ |Q|⊕3) and in Equation (3.6), index

theory assigns a rank 1 free abelian group δx to each intersection point x ∈ φ(L) ∩ Fq , with
the property that every rigid element of Mq(x, y) induces a canonical map

du : δy → δx, (3.7)

which should be thought of as the signed contribution of u to the differential.

It remains to lift the grading of the Floer complex to a Z-grading. Equipped with any

almost complex structure for which the fibres are totally real, there is a natural isomorphism

of vector bundles TX ∼= π∗(TQ)⊗R C. This implies that a density on Q induces an almost

complex quadratic volume form on X . Evaluating such a form on a basis for the tangent

space of a Lagrangian defines the phase function

ηΩ : L → S1. (3.8)
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By assuming that the phase function on L is null homotopic and fixing a lift to R, index
theory assigns a degree deg(x) ∈ Z to every intersection point x ∈ φ(L) � Fq with the

property that the moduli spaceMq(x, y) has pure dimension

dim(Mq(x, y)) = deg(x)− deg(y)− 1. (3.9)

The differential defined in Equation (3.7) then raises degree by 1 on the Floer complex

CF d(Fq, φ(L)) =
⊕

deg(x)=d

δx ⊗ Λ. (3.10)

3.2. Convergence of the Floer differential and restriction. Let P be a polytope in Q
containing q and OP denote the affinoid ring of YP . This section adapts an argument of

Fukaya showing that, whenever P is sufficiently small, the Floer complex in Equation (3.10)

is the fibre of a complex of vector bundles on YP⊕
x∈Fq∩L

OP ⊗Z δx. (3.11)

More precisely, choosing P small enough, there is a differential on Equation (3.11) which

specialises to the Floer complex

CF ∗((Fp, b), φ(L)) (3.12)

for every point (p, b) ∈ YP .
In order to define the differential using this moduli space, it is useful to think of the

intersection point x ∈ Fq ∩ φ(L) as a sheet of φ(L) over P . Fixing a trivialisation

τP : XP
∼= T ∗P/T ∗ZP, (3.13)

this can be written as the differential of a function gx : P → R which is well-defined up to

an integral affine function.

Definition 3.1. A collection of Floer dataDP consists of the choices (τP , φ, J, {gx}). They
are tame in P if there is a (smooth) map ψ : P → Diff(X) which maps q to the identity,

such that ψp maps Fq to Fp and preserves φ(L) and the tameness of the almost complex

structures {Jt}t∈[0,1].
Choosing the functions {gx} yields for each strip u with sides mapping to L and Fq a

class

[∂u] ∈ H1(Fq,Z). (3.14)

In order to define this class explicitly, note that the choice of trivialisation ofXP determines

a 0-section of XP , and hence a basepoint on Fq . The linear path tdgx has endpoints the

basepoint at t = 0 and x at t = 1. Define [∂u] to be the homology class of the loop obtained

by concatenating the paths associated to dgx, dgy , and the restriction of u to the boundary.

Letting z[∂u] be the exponential of the unique linear function on Q which vanishes at q
and whose differential is given by [∂u] under the identification of Equation (2.1), define

d|δy =
⊕
x

∑
u∈Mq(x,y)

T E(u)z[∂u] ⊗ du, (3.15)
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where Mq(x, y) is the moduli space of strips defining the Floer differential, du is the map

induced on determinant lines by u, and E(u) is the energy of u:

E(u) =
∫

u∗ω. (3.16)

We shall presently use an idea of Fukaya to show that the infinite sum in the expression of

the differential lies in OP .

Recall from Equation (2.14) that every element z′ ∈ YP can be written as a pair (p, b′),
with p ∈ P and b′ ∈ H1(Fp;UΛ). There is a natural isomorphism of Λ-modules⊕

x

OP ⊗
z=z′

Λ⊗Z δx =
⊕
x

Λ⊗Z δx = CF ∗((Fp, b
′), φ(L)). (3.17)

If q = p, this map commutes with the differential defined using J , which in particular

proves that the series in Equation (3.15) are convergent at such points. By defining the right

hand side of Equation (3.17) using the almost complex structure (ψ−1
p )∗J (c.f. [12]) so that

composition with ψp gives a bijection between holomorphic strips with boundary on Fq and
φ(L), and those with boundary on Fp and φ(L), convergence is achieved when q �= p. This
is where Definition 3.1 is used. To state the result, define p − q as the point in TqQ which

exponentiates to p.

Lemma 3.2. If u lies inMq(x, y), the energy of ψp ◦ u is

E(ψp ◦ u) = E(u) + 〈p− q, [∂u]〉+ gx(q)− gy(q) + gy(p)− gx(p). (3.18)

Proof. Consider the linear path in Q from q to p. The term 〈p − q, [∂u]〉 is the area of a

cylinder in X , lying over this path, and which intersects each fibre in a circle of homotopy

class [∂u]. The terms gx(p) − gx(q) and gy(p) − gy(q) are respectively the areas of strips

over this path whose intersections with each fibre are the paths from the basepoint to the

intersection of each fibre with the local sheets of φ(L) labelled x and y. The right hand side

is therefore the sum of the area of u with that of a strip in X , which intersects each fibre

along the segment from q to p in a path from the intersection with x to the intersection with

y, lying in the homotopy class of u|R× {0}.
The result of gluing these two strips is homotopic to ψp ◦ u, and Equation (3.18) fol-

lows from the invariance of the topological energy under homotopies with fixed Lagrangian

boundary conditions.

By the previous result, the contributions of a curve u to the differentials on the two sides

of Equation (3.17) differ by multiplication by

T gx(q)−gy(q)+gy(p)−gx(p). (3.19)

This readily implies that the pre-composition of the isomorphism in Equation (3.17) with

multiplication by

T gx(q)−gx(p) (3.20)

on theΛ⊗Zδx factor is a cochain isomorphism (the disappearance of 〈p−q, [∂u]〉 is explained
by Remark 2.3). Gromov compactness applied for all fibres Fp over the polygon P implies:
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Proposition 3.3 (c.f. [12]). For every pair of intersections (x, y) the series∑
u∈Mq(x,y)

T E(u)z[∂u] (3.21)

is convergent in YP .

As a consequence, Equation (3.15) defines a differential on the complex

L(YP ;DP ) ≡
⊕

x∈Fq∩φ(L)
OP ⊗Z δx. (3.22)

It will be convenient to drop the Floer data from the notation whenever they are unambigu-

ously given.

Given an inclusion of polytopes P ′ → P , with basepoints q on P and q′ on P ′, there are
restricted data

DP |P ′ ≡ (τP |XP ′ , φ, (ψ
−1
q′ )

∗J, {gx}). (3.23)

Multiplication of each summand by Equation (3.20) defines a cochain map

L(YP ;DP ) → L(YP ′ ;DP |P ′). (3.24)

3.3. Change of trivialisation. Any pair of fibrewise identifications

τi : XP
∼= T ∗P/T ∗ZP, i ∈ {1, 2}. (3.25)

differ by the differential of a function f : P → R. With respect to two such trivialisations,

choose functions g1x and g2x defining every local section of φ(L), and consider the two sets

of data

Di = (τi, φ, J, {gix}), i ∈ {1, 2}. (3.26)

Define the change of trivialisation cochain map

L(YP ;D1) → L(YP ;D2) (3.27)

as a diagonal map given on the factor δx by multiplication with T f(q)z
df−dg1x+dg2x
q .

Since this map does not entail counting any holomorphic curves, it is easy to check that

given an inclusion P ′ ⊂ P , we have a commutative diagram

L(YP ;D1) ��

��

L(YP ;D2)

��
L(YP ′ ;D1|P ′) �� L(YP ′ ;D2|P ′).

(3.28)

3.4. Continuation maps. Let D+ and D− denote Floer data (τ, φ±, J±, {gx±}), which
share a common trivialisation. This section recalls the construction of the continuation map

CF ∗(Fq, φ
+(L)) → CF ∗(Fq, φ

−(L)) (3.29)
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as a count of pseudo-holomorphic sections of the projection X ×B → B.

Pick a path of Hamiltonian diffeomorphisms φs such that

φs =

{
φ+ if 0 2 s

φ− if s 2 0.
(3.30)

Recall that there is a unique function H on X × R which generates this flow such that∫
X

Hsω
n = 0, (3.31)

and pick a compactly supported function

G : X ×B → R, (3.32)

which agrees with H on X × R× {1}.
If α is a symplectic form on B of finite area, the 2-form

ωX − dG ∧ ds+ Cα (3.33)

defines a symplectic structure on X × B whenever C is a sufficiently large constant. We

denote by J̃ the space of almost complex structures J̃ on B ×X which are of the form

J̃ =

(
J K
0 j

)
(3.34)

with J ∈ J, andK vanishes outside a compact set in B. Any such almost complex structure

will be tamed by the symplectic structure in Equation (3.33) wheneverC is sufficiently large.

We choose an almost complex structure J̃ ∈ J̃ whose restrictions to 0 2 s and s 2 0
agree with

J̃± =

(
J± 0
0 j

)
. (3.35)

Definition 3.4. An elementary continuation datum D+− from D+ to D− is a choice of the

pair of data ({φs}, J̃) above.
For each pair (x−, x+) of intersections points, we then define Mq

κ(x−, x+) with respect

to the data D+− to be the moduli space of maps v : B → X with J̃-holomorphic graph

ṽ : B → B ×X such that

v(s, 0) ∈ Fq (3.36)

v(s, 1) ∈ φsL (3.37)

lim
s→±∞

v(s, t) = x±. (3.38)

For a generic almost complex structure J̃ , these moduli spaces are regular. Computing

the linearisation of the index of a solution shows that

dim(Mq
κ(x−, x+)) = deg(x−)− deg(x+). (3.39)

The (topological) energy of a solution to the continuation equation is

E(v) =
∫
B

v∗(ω)−
∫
R

Hs(v(s, 1))ds =

∫
B

ṽ∗ (ω − dG ∧ ds) (3.40)
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Lemma 3.5. If deg(x−) = deg(x+), then for any real number E, there are only finitely
many elements v ofMq

κ(x−, x+) such that

E(v) ≤ E. (3.41)

Proof. By adding to E the total area of the form Cα in Equation (3.33), we obtain the area of

ṽ with respect to a symplectic structure onX×B for which J̃ is tame. A standard application

of Gromov compactness therefore implies that the energy is proper on the Gromov-Floer

compactification.

Having excluded bubbling via Assumption (3.1), the only broken curves in the limit

arise when some energy escapes along the ends, which gives rise to components of hypo-

thetical broken curves that are graphs of Floer trajectories. Since the moduli space of Floer

trajectories is assumed to be regular, this is impossible whenever the moduli space we are

considering has vanishing virtual dimension.

As in the setting of Floer trajectories, an element v ∈ Mq
κ(x−, x+) induces a canonical

map

κv : δx+
→ δx− (3.42)

whenever deg(x+) = deg(x−). Taking the sum over all elements of such rigid moduli

spaces defines the continuation map

κ : CF ∗(Fq, φ
+(L)) → CF ∗(Fq, φ

−(L)) (3.43)

κ|δx+
=

∑
deg(x+)=deg(x−)
v∈Mq

κ(x−,x+)

T E(v)κv. (3.44)

3.5. Convergence of continuation maps. Let P be a polytope based at q, with the property
that L(YP ;D±) are well defined. Pick diffeomorphisms ψ± as in Definition 3.1, and extend

them to a family

Ψ: P ×B → Diff(X) (3.45)

{q} ×B !→ Id (3.46)

such that the following properties hold for all p ∈ P (see Figure 3.1):

Ψp,s,t = ψ+
p if 0 2 s (3.47)

Ψp,s,t = ψ−p if s 2 0 (3.48)

Ψp,s,0(Fq) = Fp (3.49)

Ψp,s,1 = Id if Hs �≡ 0. (3.50)

For each p ∈ P , denote by Ψ̃p the fibrewise diffeomorphism of B ×X

(s, t, x) !→ (s, t,Ψp,s,t(x)). (3.51)

Define J̃p =
(
Ψ̃−1
p

)∗
J̃ . This is an almost complex structure on B×X which has the upper

triangular form required in Equation (3.35).
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ψ+
pψ−p

id

Figure 3.1.

Definition 3.6. The continuation data D+− are tame in P if J̃p lies in J̃ for all p ∈ P .

Of course, tameness depends on the choice of the fibrewise diffeomorphismΨ ofB×X ,

but as this will be clear from the context, it is omitted. Condition (3.50) ensures that the

off-diagonal term in J̃p vanishes outside a compact set. Openness of the taming condition

implies:

Lemma 3.7. If P is sufficiently small the data D+− are tame in P .

DefineMp
κ(x−, x+) to be the space of maps from a strip toX , with boundary conditions

Fp and φ
s(L), converging to x± at the respective ends, whose graphs are J̃p-holomorphic.

Lemma 3.8. Composition with Ψ̃p defines a bijection

Mq
κ(x−, x+) ∼= Mp

κ(x−, x+). (3.52)

Proof. The key point is that the diffeomorphism Ψ̃p is compatible with the Lagrangian

boundary conditions. In particular, given v ∈ Mq
κ(x−, x+), Equation (3.50) ensures that

the boundary condition of Ψ̃p ◦ ṽ along R × {1} is the path φs(L), and Equation (3.49)

ensures that the boundary condition along R× {0} is Fp.

The advantage of introducing both moduli spaces is that we have independent energy

estimates:

Lemma 3.9. If deg(x−) = deg(x+), the topological energy defines a proper map on
Mp

κ(x−, x+).

Proof. Condition (3.50) ensures that the off-diagonal term in J̃p vanishes outside a compact

set, so escape of energy along the ends gives rise to Floer trajectories as in the proof of

Lemma 3.5. The remainder of that proof applies mutatis mutandis.

These results imply the existence of a cochain map

κ : L(YP ;D+) → L(YP ;D−) (3.53)

by counting solutions to continuation maps as follows: recall that the construction of the

differential on the two OP modules relied on choosing primitives defining the sheets of

φ+(L) and φ−(L) over P . These primitives define a class [∂v] ∈ H1(Fq,Z) associated to

the boundary of v ∈ Mq
κ(x−, x+).

The continuation map is defined on each factor by the formula

κ|δx+ =
⊕
x−

∑
v∈Mκ(x−,x+)

T E(v)z[∂v] ⊗ κv (3.54)

The argument proving the convergence of the differential applies verbatim in this case.
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Remark 3.10. It is important to note that κ is not defined over Λ0 since the energy E(v)
for a solution to the continuation equation is not necessarily positive. This raises obstacles

to using the methods developed here to detect quantitative information about Lagrangians in

X , e.g. displacement energy as in [16].

3.6. Families of continuation maps. LetΔ be a compact manifold with boundary parame-

trising a family {({φsδ}, J̃δ)}δ∈Δ of continuation data as in Definition 3.4.

For each pair (x−, x+) of intersections points, letM
q
κδ(x−, x+) denote the moduli space

of continuation maps corresponding to δ ∈ Δ, and consider the parametrised space

M
q
κΔ(x−, x+) ≡

∐
δ∈Δ

M
q
κδ(x−, x+). (3.55)

Assuming the data are chosen generically, this is a manifold with boundary of dimension

deg(x−)− deg(x+) + dim(Δ). (3.56)

In particular, if this moduli space is rigid, we may consider the series:∑
v∈Mq

κΔ (x−,x+)

T E(v)z[∂v], (3.57)

where the class [∂v] ∈ H1(Fq,Z) is defined as in Equation (3.14).

Proposition 3.11. There is a polytope PΔ ⊂ Q so that Equation (3.57) defines an element
of OPΔ .

Proof. Condition (3.30) and the compactness of Δ imply that there is a constant SΔ so that

for all δ ∈ Δ,Hs
δ agrees withH+ if SΔ ≤ s, and withH− if s ≤ −SΔ. Consider a smooth

familyΨδ,p,s,t of diffeomorphisms ofX parametrised by (δ, p, s, t) ∈ Δ×P ×B satisfying,

for fixed δ ∈ Δ, Conditions (3.46)-(3.50). The assumption that these diffeomorphisms are

the identity for p = q and the compactness of Δ imply that the corresponding fibrewise

diffeomorphisms Ψ̃δ,p of B × X preserve the tameness of the almost complex structure

whenever p lies in a sufficiently small neighbourhood of q. This yields the analogue of

Lemma 3.9, and hence convergence in this neighbourhood.

3.7. Composition of continuation map. Let (φ+, J+), (φ0, J0) and (φ−, J−) denote three
choices of Hamiltonian diffeomorphisms and almost complex structures, and pick (regular)

continuation data D+0, D0− and D+− which define cochain maps

L(YP ;D+)
κ+− ��

κ+0

��

L(YP ;D−)

L(YP ;D0),

κ0−
		

(3.58)

whenever P is sufficiently small.

Gluing the dataD+0 andD0−, defines a continuation map fromL(YP ;D+) toL(YP ;D−)
which agrees with the composition κ0− ◦ κ+0. Choosing a homotopy betweenD+− and the
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glued data yields a family parametrised by an interval. Possibly upon shrinking P , Equation

(3.57) and Proposition 3.11 produce a map

κ1 : L(YP ;D+) → L(YP ;D−)[1]. (3.59)

For each pair of intersections (x−, x+) between φ±(L) and F so that deg(x+) = deg(x−),
the moduli space M

q
κ1(x−, x+) had dimension 1, and its boundary consists of the strata

Mq
κ(x−, x+) (3.60)∐

x0∈φ0(L)∩F
Mq

κ(x−, x0)×Mq
κ(x0, x+) (3.61)

∐
x′+∈φ+(L)∩F

Mq
κ(x−, x

′
+)×Mq(x′+, x+) (3.62)

∐
x′−∈φ−(L)∩F

Mq(x−, x
′
−)×Mq

κ(x
′
−, x+). (3.63)

Counting elements of the first two moduli spaces corresponds to the two compositions in

Diagram (3.58). The second two moduli spaces respectively define the composition of κ1

with the differentials in L(YP ;D+) and L(YP ;D−).

Proposition 3.12. If P is sufficiently small, κ1 defines a homotopy between the two compo-
sitions in Diagram (3.58).

Applying the above construction to the null-homotopy for the concatenation of a path

and its inverse implies:

Corollary 3.13. If P is sufficiently small, κ is a chain equivalence.

3.8. Compatibility of restriction, continuation, and change of trivilisations. Choose

data (φ±, J±) as in Section 3.4, and trivalisations {τi}i=1,2. These yield four sets of Floer

data

D±
i ≡ (τi, φ

±, J±, {gix±}). (3.64)

Using the same continuation equation to map the Floer complexes defined from the dataD+
i

to those defined from the data D−
i , we have:

Lemma 3.14. The following diagram, in which the vertical arrows are continuation maps
and the horizontal ones are changes of coordinates, commutes

L(YP ;D+
1 )

��

��

L(YP ;D+
2 )

��
L(YP ;D−

1 )
�� L(YP ;D−

2 ).

(3.65)

Proof. The class in H1(Fq,Z) associated to a continuation map v depends on the choices

of local primitives. We write [∂v]i for the choice associated to i. With this in mind, the

commutativity of the diagram reduces to the equality

[∂v]1 + dg1x+
− dg1x− − df = [∂v]2 + dg2x+

− dg2x− − df ∈ H1(Fq,Z) ⊂ T ∗q P. (3.66)
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Similarly, given a subpolytope P ′ ⊂ P with basepoint q′, define κ|P ′ to be the continu-

ation map associated to the data

({φs}, J̃q′). (3.67)

As in Lemma 3.14, there is a commutative diagram

L(YP ;D+)
κ ��

��

L(YP ;D−)

��
L(YP ′ ;D+|P ′)

κ|P ′ �� L(YP ′ ;D−|P ′).

(3.68)

4. From Lagrangians to twisted sheaves

4.1. Homological patching. In this section, Floer cohomology groups are used to define

an αX -twisted sheaf H∗L associated to a Lagrangian L.
Start by choosing a simplicial triangulation as in Section 2.1, with associated cover Pi

satisfying Condition (2.20). Denoting by OI the ring of functions on the inverse image YI
of PI , this cover should be sufficiently fine that:

1. for each vertex i ∈ A, there are Floer data Di defining complexes of Oi modules

L(i) ≡ L(Yi;Di).

2. for each pair of vertices i < j, there are continuation data Dij defining chain equiva-

lences

Lij : L(Yij ;Di|Pij) → L(Yij ;Dj |Pij). (4.1)

3. for each triple of vertices i < j < k, there are homotopies Dijk of continuation data

between Dik and the gluing of Dij and Djk defining a chain homotopy Lijk in the

diagram

L(Yijk;Di|Pijk) ��

��

L(Yijk;Dk|Pijk)

L(Yijk;Dj |Pijk).

��
(4.2)

Lemma 4.1. If the triangulation of Q is sufficiently fine, there are choices of data satisfying
the above properties.

Proof. Start with a finite coverU1 by polytopes equipped with tame Floer data. Then choose

a second cover U2, subordinate to U1, so that, for each element of U2 contained in a pair of

elements of U1, there are convergent continuation data between the two Floer data obtained

by restriction, and fix a choice of such data for pairs. Finally, we pick a cover U3, subordi-

nate to U2, so that there are convergent chain homotopies between all compositions of the

continuation data chosen for U2.

Now, assume that the triangulation ofQ labelled byA is subordinate toU3 (i.e. so that all

open stars of all vertices are contained in an element of the cover), and choose the polytope

Pi for each element i ∈ A to also be subordinate to this cover and contain the open star of i.
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Pick the dataDi arbitrarily among the Floer data associated to elements of U3 which contain

Pi. The above choices determine continuation maps and homotopies satisfying the desired

properties.

Lemma 4.2. The modules H∗L(i) and the structure maps Lij define an αX -twisted sheaf
on Y .

Proof. It suffices to show that the restriction maps commute up to multiplication by

exp(αX(ijk)). Lemma 3.14 reduces the proof to the case in which the Floer data (φj , Jj)
and (φk, Jk) are obtained by restricting common data (φi, Ji). Let (fij , fjk, fik) denote the
transition functions between the three different trivialisations fixed on Pi, Pj and Pk. The
composition Ljk ◦ Lij is given on δx by multiplication with

T fjk+fijzdfjk+dfij−dg
k
x+dg

i
x = exp(fjk + fij)T

dgix−dgkx , (4.3)

while the restriction of Lik to δx agrees with

T fikzdfik−dg
k
x+dg

i
x = exp(fik)T

dgix−dgkx . (4.4)

The result now follows immediately from Equation (2.5).

4.2. Towards the mirror functor. To each ordered subset I = (i0, . . . , ir) ⊂ A corre-

sponding to an r-dimensional simplex in Q, Adams’ construction [3] associates an r − 1-
dimensional cube σI of paths in Q from the initial to the final vertex. Paths parametrised by

the boundary of this cube are given by (i) the family of paths associated to codimension 1
subsimplices, and (ii) the product of the cubes associated to a pair of complementary sim-

plices in I . The homotopy constructed in Section 3.7 for a triple arose from a family of

continuation maps associated to such a 1-dimensional cube in the case r = 2.
By gluing and induction on dimension, one obtains a family DI of continuation maps

fromDi0 toDir parametrised by σI , whose restriction to the boundary strata of σI are given
either by the continuation maps associated to a subsimplex, or the concatenation of continu-

ation maps associated to complementary simplices. We are in the setting of Section 3.6 so,

assuming the parametrised data are chosen generically and the triangulation is sufficiently

fine, the count of rigid elements of such a moduli space defines a map

LI : L(Yi0 ;Di0) → L(YI ;Dir |PI) (4.5)

of degree −r. Adopting the convention that

L(I) ≡ L(YI ;Dir |PI), (4.6)

the maps in Equation (4.5) naturally extend to an A∞ module over OαX

A , i.e an A∞ functor

L : OαX

A → VectΛ . (4.7)

This data is exactly that of an αX -twisted A∞-presheaf of O-complexes on Y . Keeping in

mind the fact that L(I) is a finite rank free OI module, and that the map associated to an

inclusion is a quasi-isomorphism (after restriction), L in fact defines an object of the A∞-

category of αX -twisted sheaves of perfect complexes on Y , with respect to the cover A. In

this sense, the assignment L → L gives, at the level of objects, the mirror functor between

the derived Fukaya category of X and the derived category of αX -twisted coherent sheaves

on Y .
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Remark 4.3. It is easy in this setting to implement one of the standard equivalences between

A∞ and dg-modules, and replace L by a quasi-equivalent dg-module over OαX

A , see e.g.

[10, Theorem 6.15]. Since the Fukaya category is an A∞ category, such a replacement does

not seem to particularly simplify this approach to Homological mirror symmetry.
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Abstract. Volume is a natural measure of complexity of a Riemannian manifold. In this survey, we

discuss the results and conjectures concerning n-dimensional hyperbolic manifolds and orbifolds of
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1. Volume in hyperbolic geometry

A hyperbolic manifold is an n-dimensional manifold equipped with a complete Riemannian

metric of constant sectional curvature −1. Any such manifold M can be obtained as the

quotient of the hyperbolic n-space Hn by a torsion-free discrete group Γ of isometries of

Hn:

M = Hn/Γ.

If we allow more generally the discrete group to have elements of finite order, then the

resulting quotient space O = Hn/Γ is called a hyperbolic n-orbifold.
We can descend the volume form fromHn to O and integrate it over the quotient space.

This defines the hyperbolic volume of O. The generalization of the Gauss-Bonnet theorem

says that in even dimensions the volume is proportional to the Euler characteristic. More

precisely, we have for n even:

Vol(M) =
Vol(Sn)

2
· (−1)n/2χ(M), (1.1)

whereVol(Sn) is the Euclidean volume of the n-dimensional unit sphere and χ(M) denotes
the Euler characteristic. This formula generalizes to hyperbolic n-orbifolds with the orbifold
Euler characteristic in place of χ. Conceptually it says that the hyperbolic volume is a topo-

logical invariant and, like for the Euler characteristic, its value is a measure of complexity

of the space. In odd dimensions the Euler characteristic vanishes but the volume is still a

non-trivial topological invariant that measures the complexity of M. Indeed, the Mostow–

Prasad rigidity theorem implies that every geometric invariant of a finite volume hyperbolic

n-manifold (or orbifold) of dimension n ≥ 3 is a topological invariant. One particular exam-

ple of an application of the volume of the hyperbolic 3-manifolds as a measure of complexity

appears in knot theory — see [15] and [16] where all knots up to a certain complexity are

enumerated. Note that although many knots in the tables of Callahan–Dean–Weeks and

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Champanerkar–Kofman–Patterson have the same number of simplexes in the minimal tri-

angulations, only very few of them share the same volume. For large volume the picture is

different (see [41] for the recent results in dimension 3 and [21] for higher dimensions and

other symmetric spaces), but nevertheless, in practice, hyperbolic volume has proven to be

very effective in distinguishing manifolds.

The main purpose of this report is to discuss what is currently known about the simplest

(i.e. minimal volume) hyperbolic n-manifolds and orbifolds. More information about this

topic with a particular emphasis on a connection with hyperbolic reflection groups can be

found in a recent survey paper by Kellerhals [32].

The minimal volume problem for hyperbolic n-orbifolds goes back to the paper of Siegel
[50] where the general setup is described and the solution to the problem for n = 2 is given.
In fact, the solution of the 2-dimensional problem can be traced back to the earlier work

of Hurwitz [29], which is briefly mentioned in Siegel’s paper. The qualitative solution to

Siegel’s problem in general was obtained by Kazhdan and Margulis in [31] (the title of [31]

refers to a conjecture of Selberg about the existence of unipotent elements in non-uniform

lattices which was also resolved in the same 5-page paper). We are going to come back to the

discussion of the Kazhdan–Margulis theorem in Section 5, but before that we shall consider

the sharp lower bounds for the volumes of arithmetic orbifolds.

2. Arithmeticity and volume

The group of isometries of the hyperbolic n-space is isomorphic to the real Lie group

PO(n, 1). Its subgroup of orientation preserving isometries corresponds to the identity com-

ponent H = PO(n, 1)◦, which can be further identified with the matrix group SO0(n, 1)
– the subgroup of SO(n, 1) that preserves the upper half space. We shall mainly consider

orientable finite volume hyperbolic n-orbifolds

O = Hn/Γ, Γ is a lattice in H.

LetG be an algebraic group defined over a number field k which admits an epimorphism

φ : G(k ⊗Q R)◦ → H whose kernel is compact. Then, by the Borel–Harish-Chandra

theorem [13], φ(G(Ok)) is a finite covolume discrete subgroup of H (here and further on

Ok denotes the ring of integers of k). Such subgroups and all the subgroups ofH which are

commensurable with them are called arithmetic lattices (or arithmetic subgroups), and the

field k is called their field of definition.
It can be shown that to define all arithmetic subgroups of H it is sufficient to consider

only simply connected, absolutely simple k-groups G of absolute type Bn/2, if n is even,

or D(n+1)/2, if n is odd. In this case G(k ⊗Q R) ∼= H̃ × K, where H̃ = Spin(n, 1) is the
simply connected covering of H and K is a compact Lie group. We shall call such groups

G and corresponding fields k admissible. The Godement compactness criterion implies that

for n ≥ 4 the quotient Hn/Γ is noncompact if and only if it is defined over k = Q.

From the classification of semisimple algebraic groups [55] it follows that if n is even

then G has to be the spinor group of a quadratic form of signature (n, 1) defined over a

totally real field k, i.e. in even dimensions the arithmetic subgroups are commensurable with

the groups of units of the quadratic forms. For odd n there is another family of arithmetic

subgroups corresponding to the groups of units of appropriate Hermitian forms over quater-
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nion algebras. Moreover, if n = 7 there is also the third type of arithmetic subgroups of H
which are associated to the Cayley algebra.

The number theoretic local-global principle gives us a way to construct arithmetic lattices

that is particularly suitable for the volume computations. Let P = (Pv)v∈Vf
be a collection

of parahoric subgroups Pv ⊂ G(kv), where v runs through all finite places of k and kv
denotes the non-archimedean completion of the field (see e.g. [43, Sec. 0.5] for the definition

of parahoric subgroups). The family P is called coherent if
∏
v∈Vf

Pv is an open subgroup

of the finite adèle groupG(Af (k)). Following [43], the group

Λ = G(k) ∩
∏
v∈Vf

Pv

is called the principal arithmetic subgroup of G(k) associated to P. We shall also call

Λ′ = φ(Λ) a principal arithmetic subgroup ofH . This construction is motivated by a simple

observation that the integers Z = Q ∩ ∏p prime Zp, where Q is embedded diagonally into

the product of p-adic fields
∏
p prime Qp, and can be understood as its generalization to the

algebraic groups defined over number fields. We refer to the books by Platonov–Rapinchuk

[42] andWitte Morris [59] for more material about arithmetic subgroups and their properties.

The Lie group H carries a Haar measure μ that is defined uniquely up to a scalar factor.

We can normalize μ so that the hyperbolic volume satisfies

Vol(Hn/Γ) = μ(H/Γ).

The details of this normalization procedure are explained, for instance, in Section 2.1 of [8].

If Γ is a principal arithmetic subgroup, its covolume can be effectively computed. The first

computations of this kind can be traced back to the work of Smith, Minkowski and Siegel

on masses of lattices in quadratic spaces. After the work of Kneser, Tamagawa and Weil

these computations were brought into the framework of algebraic groups and number theory.

More precisely, if Γ is an arithmetic subgroup ofG defined over k, then its covolume can be

expressed through the volume of G(Ak)/G(k) with respect to a volume form ω associated

naturally to Γ, and one can relate ω to the Tamagawa measure ofG(Ak) by virtue of certain
local densities. Assuming that the Tamagawa number of G is known, the computation of

the covolume of Γ is thus reduced to the computation of these local densities. The precise

expressions of this form are known as the volume formulas, among which we would like to

mention the Gauss–Bonnet formula of Harder [26], Borel’s volume formula [12], Prasad’s

formula [43], and its motivic extension by Gross [25]. In his paper, Harder worked out

an explicit formula for the split groups G but in our case, if n > 3, the corresponding

algebraic groups are never split. In Borel’s influential paper the case of the semisimple

groups of type A1 is covered in full generality. This corresponds to the hyperbolic spaces

of dimensions 2 and 3 and their products. Our primary interest lies in higher dimensions,

where the computations can be carried out via Prasad’s volume formula.

Let us recall Prasad’s formula adapted to our setup. Let Λ be a principal arithmetic sub-

group of an admissible groupG/k associated to a coherent collection of parahoric subgroups

P. Following [8, Section 2.1], assuming Λ does not contain the center of G, we have

μ(H/Λ′) = Vol(Sn) · D 1
2dim(G)

k

(
D�

D[�:k]
k

) 1
2 s
(

r∏
i=1

mi!

(2π)mi+1

)[k:Q]

τk(G) E(P), (2.1)

where
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(i) Vol(Sn) =
2π

n+1
2

Γ(n+1
2 )

is the volume of the unit sphere in Rn+1;

(ii) DK denotes the absolute value of the discriminant of the number field K;

(iii) � is a Galois extension of k defined as in [43, 0.2] (if G is not a k-form of type 6D4,

then � is the splitting field of the quasi-split inner k-form of G, and if G is of type
6D4, then � is a fixed cubic extension of k contained in the corresponding splitting

field; in all cases [� : k] ≤ 3);

(iv) dim(G), r andmi denote the dimension, rank and Lie exponents of G:

- if n is even, then r = n
2 , dim(G) = 2r2 + r, andmi = 2i− 1 (i = 1, . . . , r);

- if n is odd, then r = 1
2 (n + 1), dim(G) = 2r2 − r, and mi = 2i − 1 (i =

1, . . . , r − 1),mr = r − 1;

(v) s = 0 if n is even and s = 2r − 1 for odd dimensions (cf. [43, 0.4]);

(vi) τk(G) is the Tamagawa number of G over k (since G is simply connected and k is a

number field, τk(G) = 1); and

(vii) E(P) =∏v∈Vf
ev is an Euler product of the local densities ev = e(Pv) which can be

explicitly computed using Bruhat–Tits theory.

When Λ contains the center ofG its covolume is twice the above value.

In even dimensions the right-hand side of the volume formula is related to the generalized

Euler characteristic of the quotient (cf. [14, Section 4.2]) and we obtain a variant of the

classical Gauss–Bonnet theorem.

If O = Hn/Γ is a minimal volume hyperbolic orbifold then Γ is a maximal lattice inH .

It is known that any maximal arithmetic subgroup Γ can be obtained as the normalizer in H
of some principal arithmetic subgroup Λ, and that the index [Γ : Λ] can be evaluated or es-

timated using Galois cohomology. We refer for more details and some related computations

to the corresponding sections of [5], [6] and [8]. The upshot is that this technique allows us

to study the minimal volume arithmetic hyperbolic n-orbifolds using volume formulas.

3. Minimal volume arithmetic hyperbolic orbifolds

The minimal volume 2-orbifold corresponds to the Hurwitz triangle group Δ(2, 3, 7) (cf.
[50]). This group is arithmetic and defined over the cubic field k = Q[cos(π7 )], which
follows from Takeuchi’s classification of arithmetic triangle groups [53]. The smallest non-

compact 2-orbifold corresponds to the modular group PSL(2,Z). In dimension 3 the min-

imal covolume arithmetic subgroup was found by Chinburg and Friedman [17], who used

Borel’s volume formula [12]. Much later Gehring, Martin and Marshall showed that this

group solves Siegel’s minimal covolume problem in dimension 3 [24, 38]. The noncompact

hyperbolic 3-orbifold of minimal volume was found by Meyerhoff [40], it corresponds to

the arithmetic Bianchi group PSL(2,O3), with O3 the ring of integers in Q[
√−3]. For even

dimensions n ≥ 4 the minimal volume problem for arithmetic hyperbolic n-orbifolds was
solved in my paper [5] (with addendum [6]). The odd dimensional case of this problem for

n ≥ 5 was studied by Emery in his thesis [20] and appeared in our joint paper [8]. These

results complete the solution of Siegel’s problem for arithmetic hyperbolic n-orbifolds. We

shall now review our work and discuss some corollaries.
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The main results of [5, 6, 8, 20] can be summarized in two theorems:

Theorem 3.1. For every dimension n ≥ 4, there exists a unique orientable compact arith-
metic hyperbolic n-orbifold On

0 of the smallest volume. It is defined over the field k0 =
Q[

√
5] and has Vol(On

0 ) = ωc(n).

Theorem 3.2. For every dimension n ≥ 4, there exists a unique orientable noncompact
arithmetic hyperbolic n-orbifold On

1 of the smallest volume. It is defined over the field
k1 = Q and has Vol(On

1 ) = ωnc(n).

The values of the minimal volume are as follows:

ωc(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4·5r2+r/2·(2π)r
(2r−1)!!

∏r
i=1

(2i−1)!2

(2π)4i ζk0(2i), if n = 2r, r even;

2·5r2+r/2·(2π)r·(4r−1)
(2r−1)!!

∏r
i=1

(2i−1)!2

(2π)4i ζk0(2i), if n = 2r, r odd;

5r
2−r/2·11r−1/2·(r−1)!

22r−1πr L�0|k0(r)
∏r−1
i=1

(2i−1)!2

(2π)4i ζk0(2i), if n = 2r − 1;

(3.1)

ωnc(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4·(2π)r
(2r−1)!!

∏r
i=1

(2i−1)!
(2π)2i ζ(2i), if n = 2r, r ≡ 0, 1(mod 4);

2·(2r−1)·(2π)r
(2r−1)!!

∏r
i=1

(2i−1)!
(2π)2i ζ(2i), if n = 2r, r ≡ 2, 3(mod 4);

3r−1/2

2r−1 L�1|Q(r)
∏r−1
i=1

(2i−1)!
(2π)2i ζ(2i), if n = 2r − 1, r even;

1
2r−2 ζ(r)

∏r−1
i=1

(2i−1)!
(2π)2i ζ(2i), if n = 2r − 1, r ≡ 1(mod 4);

(2r−1)(2r−1−1)
3·2r−1 ζ(r)

∏r−1
i=1

(2i−1)!
(2π)2i ζ(2i), if n = 2r − 1, r ≡ 3(mod 4).

(3.2)

(The fields �0 and �1 are defined by �1 = Q[
√−3] and �0 is the quartic field with a defining

polynomial x4 − x3 +2x− 1. The functions ζK(s), LL|K(s) and ζ(s) denote the Dedekind
zeta function of a field K, the Dirichlet L-function associated to a quadratic field extension

L/K, and the Riemann zeta function, respectively.)

The groups Γn0 and Γn1 can be described as the normalizers of stabilizers of integral

lattices in quadratic spaces (V, f),

f = dx2
0 + x2

1 + . . . x2
n,

where for Γn0 we take d = − 1
2 (1 +

√
5) if n is even and d = (−1)r3 − 2

√
5 if n =

2r − 1 is odd, and for Γn1 we have d = −1 except for the case when n = 2r − 1 is

odd and r is even where d = −3. In even dimensions the stabilizers of the lattices under

consideration appear to be maximal discrete subgroups so the index [Γ2r
i : Λ2r

i ] = 1 and

Γ2r
i are principal arithmetic subgroups (i = 0, 1). In the odd dimensional case the index is

equal to 2 except [Γ2r−1
1 : Λ2r−1

1 ] = 1 when r = 2m + 1 with m even. In the noncompact

case the corresponding covolumes (without proof of minimality) were previously computed

by Ratcliffe and Tschantz (cf. [45, 47]), who achieved this by explicitly evaluating the limit

in the classical Siegel’s volume formula [48, 49].
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The formulas (3.1)–(3.2) look scary but they are explicit and can be applied for compu-

tation and estimation of the volumes. As an example of such computation we can study the

growth of minimal volume depending on the dimension of the space. Figure 3.1 presents a

graph of the logarithm of the minimal volume of compact/noncompact arithmetic orbifolds

in dimensions n < 30. The logarithmic graph of the Euler characteristic in even dimensions

has a similar shape. By analyzing this image we come up with several interesting corollaries

which can be then confirmed analytically (as was done in [5] and [8]):

Corollary 3.3. The minimal volume decreases with n till n = 8 (resp. n = 17) in the
compact (resp. noncompact) case. After this it starts to grow eventually reaching a very fast
super-exponential growth. For every dimension n ≥ 5, the minimal volume of a noncompact
arithmetic hyperbolic n-orbifold is smaller than the volume of any compact arithmetic hy-
perbolic n-orbifold. Moreover, the ratio between the minimal volumes Vol(On

0 )/Vol(On
1 )

grows super-exponentially with n.

Figure 3.1. The logarithm of the minimal volume of noncompact (front) and compact (back) arithmetic

hyperbolic n-orbifolds for n = 2, 3, . . . , 29.

Another interesting corollary of the growth of minimal volume was obtained by Emery:

Theorem 3.4 (Emery, [19]). For n > 4 there is no compact arithmetic hyperbolic n-
manifold M with |χ(M)| = 2.

In particular, there do not exist arithmetically defined hyperbolic rational homology n-
spheres with n even and bigger than 4. We can remark that for n > 10 this theorem follows

from the results in [5] pertaining to Corollary 3.3, but smaller dimensions are harder and

require more careful analysis of the Euler characteristic of arithmetic subgroups.

It is conjectured that all results in this section are true without assuming arithmeticity.

We shall discuss this conjecture more carefully in Section 5.
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4. Minimal volume manifolds and cusps

An interesting and somewhat surprising corollary of the results about the minimal volume

arithmetic hyperbolic n-orbifolds is that for n ≥ 5 the minimum is attained on noncompact
hyperbolic n-orbifolds. In a joint work with Emery we observed that the picture becomes

even more interesting when we restrict our attention to manifolds. As a result we came up

with a conjecture [7]:

Conjecture 4.1. Let M be a compact hyperbolic manifold of dimension n �= 3. Then there
exists a noncompact hyperbolic n-manifold M1 whose volume is smaller than the volume of
M.

Dimension n = 3 is special because it is the only dimension in which we can perform

hyperbolic Dehn fillings on the cusps of a finite volume noncompact manifold M1 to ob-

tain compact hyperbolic manifolds of smaller volume. This follows from Thurston’s Dehn

surgery theorem (cf. [54, Sections 5 and 6]). Our conjecture essentially says that this is the

only way to produce very small compact hyperbolic n-manifolds.

The conjecture is known to be true in dimensions n ≤ 4 and 6. More precisely, for these

n there exist noncompact hyperbolic n-manifoldsMwith |χ(M)| = 1 [22, 46], whereas it is
a general fact that the Euler characteristic of a compact hyperbolic manifold is even (cf. [44,

Theorem 4.4]). The main result of [7] is a proof of the conjecture for arithmetic hyperbolic

n-manifolds of dimension n ≥ 30. In the next section we shall discuss the minimal volume

conjecture (MVC), which together with this result would imply Conjecture 4.1 for n ≥ 30,
however, the above conjecture is weaker than the MVC and we hope that it might be possible

to attack it directly.

The proof of the theorem in [7] is based on the results about minimal volume arithmetic

hyperbolic n-orbifolds discussed in the previous section combined with a certain control over

their manifold covers. For the latter we use explicit arithmetic constructions providing the

upper bounds and the orbifold Euler characteristic for the lower bounds. One of our findings

was that even in odd dimensions the Euler characteristic could provide an effective tool for

bounding the degree of the smooth covers. Indeed, if an orbifold O under consideration

has an even dimensional totally geodesic suborbifold S , then the denominator of χ(S) gives
a lower bound for the degrees of the manifold covers of O. It appears that small volume

hyperbolic n-orbifolds tend to contain many totally geodesic codimension-one suborbifolds

whose Euler characteristics we can use.

The main feature of noncompact finite volume hyperbolic orbifolds is that they have

infinite ends that are called cusps. Any such cusp is diffeomorphic to N × [0,+∞) for

some closed connected flat (n − 1)-orbifold N . Geometry of the cusps plays a major role

in the study of noncompact hyperbolic orbifolds and their volumes. For example, the cusp

volume was used by Meyerhoff in his work on the noncompact minimal volume hyperbolic

3-orbifold [40], and later by Hild in the proof of minimality for hyperbolic n-orbifolds in
dimensions n ≤ 9 [27].

Long and Reid showed that any closed flat (n − 1)-manifold N is diffeomorphic to a

cusp cross-section of a finite volume hyperbolic n-orbifold M [37]. It was later proved by

McReynolds that the same can be achieved with M being a manifold [39]. In both con-

structions the resulting n-orbifold or manifold can be chosen to be arithmetic. By Margulis

lemma, any finite volume hyperbolic n-orbifold has a finite number of cusps (cf. [54, Propo-

sition 5.11.1]). In the same paper Long and Reid raised a question about existence of 1-
cusped hyperbolic n-manifolds for n ≥ 4. In dimension 4 this problem was recently solved
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by Kolpakov and Martelli [35], who constructed infinite families of hyperbolic 4-manifolds

with any given number k ≥ 1 of cusps. The method of Kolpakov–Martelli is specific for

n = 4 and not applicable in higher dimensions. In particular, it is not known if there exists

a 5-dimensional 1-cusped hyperbolic manifold. On the other hand, Stover [52] has shown

that in dimensions n ≥ 30 there are no 1-cusped arithmetic hyperbolic n-orbifolds (or man-

ifolds). Following our yoga, this suggests that there should be no any 1-cusped hyperbolic

n-orbifolds in high dimensions. To conclude the discussion, let us mention that (arithmetic)

1-cusped hyperbolic n-orbifolds in dimensions n ≤ 9 appear, for example, in Hild’s paper

[27], and for n = 10 and 11 were constructed by Stover in [52]. The existence of 1-cusped
orbifolds in dimensions 12 ≤ n ≤ 29 is not known and there is not even a conjecture about

it.

A careful reader would notice that dimension bound 30 appeared in two independent

results discussed in this section. It is also the dimension bound in the celebrated Vinberg’s

theorem that says that there no arithmetic hyperbolic reflection groups in dimensions n ≥
30 [56]. There is no reason, however, to expect that any of these bounds is sharp. The

coincidence can be explain by the fact that arithmetic methods work very well in higher

dimensions and 30 is about the place where this starts to be noticeable. It might be possible

to push down the bounds using the same methods but it would require a considerable effort

and obtaining a sharp bound for any of these problems would most likely require some totally

new ideas.

5. Minimal volume without arithmeticity

By the Kazhdan–Margulis theorem [31] and the subsequent work of Wang [58], we know

that for n ≥ 4 there exists a minimal volume hyperbolic n-orbifold. The classical results

on uniformization of Riemann surfaces and classification of Fuchsian groups imply that the

same holds true for n = 2, while the work of Jørgensen–Thurston [54, § 5.12] implies

the same for n = 3. These papers also imply that there are smallest representatives in the

restricted classes of compact/noncompact orbifolds or manifolds. Thus for each dimension

n we have four positive numbers representing the minimal values in the volume spectra.

A folklore conjecture, which we call the MVC, says that the minimal volume is always

attained on arithmetic quotient spaces. This conjecture was known for a long time for n = 2.
(Note that the smallest volume for compact or noncompact manifolds in dimension 2 is

attained also on nonarithmetic surfaces, and conjecturally this is the only dimension when it

happens.) The MVC has now been completely confirmed for n = 3— see [1, 23, 24, 38, 40]

for the results covering each of the four cases. The smallest noncompact hyperbolic n-
orbifolds for n ≤ 9 were determined by Hild in his thesis [28] (see also [27]) and they are all

arithmetic. For n = 4 and n = 6 there are examples of noncompact arithmetic hyperbolic

n-manifolds M with |χ(M)| = 1 which is the smallest possible [22, 46]. The smallest

known compact orientable hyperbolic 4-manifolds have χ = 16. They were constructed

independently by Conder–Maclachlan [18] and Long [36] and can be described as finite-

sheeted covers of the smallest compact arithmetic hyperbolic 4-orbifold from [5], but it is

not known if there exist any smaller examples. In fact, the problem of finding a compact

hyperbolic 4-manifold of minimal volume was one of the main motivations for [5]. Most of

the small dimensional examples discussed here are ultimately related to hyperbolic reflection

groups and we refer to the survey paper by Kellerhals for more about this connection [32].
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So far, these are the only known results supporting the conjecture.

In this section we are going to discuss known general lower bounds for the volume that

do not require arithmeticity. These bounds come either from a quantitative analysis of the

proof of the Kazhdan–Margulis theorem or from the Margulis lemma and related estimates.

Let us recall the Margulis lemma for the case of hyperbolic spaces (cf. [54, Lemma

5.10.1]):

Lemma 5.1. For every dimension n there is a constant μ = μn > 0 such that for ev-
ery discrete group Γ < Isom(Hn) and every x ∈ Hn, the group Γμ(x) = 〈γ ∈ Γ |
dist(x, γ(x)) ≤ μ〉 has an abelian subgroup of finite index.

For a given discrete group Γ, the maximal value of μ such that Γμ(x) is virtually abelian
is called the Margulis number of Hn/Γ, and the constant μn from the lemma is called the

Margulis constant of G = Isom(Hn).
If M = Hn/Γ is a manifold, this result allows us to define its decomposition M =

M(0,μ] ∪M[μ,∞) into a thin and thick parts, and then to estimate from below the volume of

M by the volume v(ε) of a hyperbolic ball of radius ε = μ/2 which embeds into the thick

part M[μ,∞). The case of orbifolds is much more delicate but still it is possible to use the

Margulis lemma to give a lower bound for the volume. This was shown by Gelander in [9].

The resulting bound for the volume of On = Hn/Γ is

Vol(On) ≥ 2v(0.25ε)2

v(1.25ε)
, ε = min{μn

10
, 1}. (5.1)

The problem with this bound is that in higher dimensions we do not have a good estimate for

the value of μn. To my best knowledge the only appropriate general estimate can be found

in [4, p. 107]. It gives

μn ≥ 0.49

16
(
1 + 2

(
4π
0.49

)n(n−1)/2
) . (5.2)

In [34], Kellerhals gave a much better bound for the Margulis constant of hyperbolic n-
manifolds but it is not clear if her result should extend to orbifolds.

In connection with these results it would be interesting to understand how the Margulis

constant depends on the dimension of the hyperbolic space. All known bounds for μn de-

crease to zero exponentially fast when n goes to infinity, but does μn actually tend to zero?

Note that if we define the arithmetic Margulis constant μan as the minimal value of the Mar-

gulis numbers of arithmetic hyperbolic n-orbifolds, then a positive solution to Lehmer’s

problem about the Mahler measure of algebraic numbers (cf. [51]) would imply that there

is a uniform lower bound for μan. So conjecturally μan is bounded. The situation with μn is

different as it is shown by the following result, which I learnt from M. Kapovich:

Proposition 5.2. There exists a constant C > 0 such that μn ≤ C√
n
.

Proof. The argument is based on ideas from [30].

Let us fix ε > 0. We want to construct a discrete group of isometries Γ < Isom(Hn)
for which the Margulis number of Hn/Γ is less than ε. Let Γ = F2 = 〈f, g〉, a two-

generator free group. We would like to define a Γ-invariant quasi-isometric embedding of

the Cayley graph T of Γ into Hn such that the generators of Γ act by isometries with small

displacement. The graph T is a regular tree of degree four whose edges can be labeled by
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the generators f , g and their inverses (starting from the root of T ). Let us map the root to

p0 ∈ Hn and embed the edge corresponding to f as a geodesic segment [p0, p1] of length ε.
Now choose a geodesic through p1 orthogonal to [p0, p1] and map the g-edge adjacent to p1
as an ε-segment [p1, p2] of this geodesic. We can continue this process inductively each time

choosing a geodesic which is orthogonal to the subspace containing the previously embedded

edges. The process terminates when we get to pn as n is the dimension of the space. Along

the way we have defined the action of the generators f , g on the points p0, p1, . . . , pn which

can be extended to isometry of Hn. Now use these isometries to embed the rest of the tree.

The construction gives an embedding ρ : T → Hn and an isometric action of Γ on Hn

leaving invariant the image ρ(T ). It remains to check that ρ is a quasi-isometric embedding.

We need to estimate the distance in Hn between the images of different vertices x, y ∈
T and check that it satisfies the quasi-isometric property with respect to distT (x, y). Let

x = p0 and y = pm for some m > n — this is a typical case and all the other easily reduce

to it. Let bi = distHn(p0, pi), so b0 = ε and bn = distHn(p0, pn). By the hyperbolic

Pythagorean theorem we have

cosh(bi+1) = cosh(bi) cosh(ε),

therefore, cosh(bn) = (cosh(ε))n. We now can use the disjoint bisectors test (cf. [30, Sec-

tion 3]). If the length bn is bigger than a certain constant (which can be taken = 2.303
as in the proof of Lemma 3.2 [loc. cit.]), then the bisectors of [p0, pn] and [pn, p2n] do
not intersect and hence are separated by the distance δ = δ(ρ) > 0. Hence we have

distHn(p0, pm) ≥ δ[m/n], as the geodesic joining p0 and pm will have to intersect all

the intermediate bisectors. It follows that ρ is a quasi-isometry, provided

bn ≥ 2.303.

It remains to apply [30, Lemma 2.2], which shows that the isometric action of Γ on Hn

is discrete and hence

μn ≤ μ(Hn/Γ) = ε.

We conclude with an estimate for the constants:

cosh(bn) = (cosh(ε))n ≥ cosh(2.303).

When ε → 0, we have cosh(ε) ≈ 1 + ε2

2 , so there exists C > 0 (can take

C =
√
2 log(cosh(2.303)) = 1.799 . . .

if n is sufficiently large) such that if ε ≥ C√
n
then ρ is a quasi-isometric embedding.

The groups in Proposition 5.2 have infinite covolume. It is tempting to try a similar

argument on non-arithmetic lattices with small systole. Such lattices can be obtained by the

inbreeding construction found by Agol for n = 4 [3] and generalized to higher dimensions

in [10] and [11]. However, as it stands for now, it is not clear how to make this work and the

problem remains open. The other important open problem is to find a better lower bound for

μn. We can speculate that some kind of polynomially decreasing lower bound should exist.

The other approach is to bound the volume via quantitative version of the Kazhdan–

Margulis theorem. It goes back to the paper [57] by Wang, who found an explicit lower
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bound for the radius of a ball embedded into a Zassenhaus neighborhood of a Lie group G
(with G ∼= PO(n, 1)◦ in our case). Adeboye and Wei combined this bound with a bound

for the sectional curvature of G to obtain an explicit lower bound for the volume [2]. Their

main result is

Vol(On) ≥ 2[
6−n
4 ]π[n4 ](n− 2)!(n− 4)! · · · 1
(2 + 9n)[

n2+n
4 ]Γ(n

2+n
4 )

∫ min[0.08
√
2+9n,π]

0

sin
n2+n−2

2 ρ dρ. (5.3)

This lower bound decreases super-exponentially when n goes to infinity and it is currently

the best known general lower bound for the volume.

For the noncompact hyperbolic orbifolds and manifolds there is also another approach

to bounding the volume. It is based on estimating the density of Euclidean sphere packings

associated to cusps. It was used in the papers of Meyerhoff, Adams, and Hild that were men-

tioned above. For the case of arbitrarily large dimension n, Kellerhals applied this method to

obtain the best available lower bound for the volume of non-compact hyperbolic n-manifolds

[33]:

Vol(Mn
1 ) ≥ m

2n

n(n+ 1)
νn, (5.4)

wherem is the number of cusps of the manifold Mn
1 and νn denotes the volume of the ideal

regular simplex in Hn. Note that by Milnor’s formula for large n we have νn ≈ e
√
n

n! and

hence again we have a lower bound that decreases super-exponentially with n.
In conclusion, we see that for large dimensions there is a very large gap between the

known (super-exponentially decreasing) bound and the conjectural (super-exponentially in-
creasing) values of the minimal volume. This gap highlights our limited understanding of

the complexity and structure of high-dimensional hyperbolic manifolds and orbifolds, espe-

cially the non-arithmetic ones. I hope that the future research will shed more light onto this

problem.
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1. The Einstein equation

The Einstein equation reads

Ric(g) = Λg,

where g is a metric on a manifold Mn (in local coordinates g =
∑

gijdx
idxj), Λ is a real

number called the cosmological constant, and Ric(g) =
∑

Rijdx
idxj is the Ricci tensor of

the metric g.
Of course the equation comes from general relativity, in which case the manifold is 4-

dimensional and the metric g is Lorentzian, that is of signature (1,3). Here, we consider

the case a Riemannian Einstein metric (positive signature), which has deep connections with

geometry and topology, as is illustrated by the situation in low dimension that we now review

briefly.

In dimension 2, a metric is Einstein if it has constant curvature equal to λ; there always
exists an Einstein metric on a compact Riemann surface (this is equivalent to the uniformiza-

tion theorem), and one has the dichotomy

• Λ > 0: M is a sphere;

• Λ = 0: M is a torus;

• Λ < 0: M is a surface of genus g ≥ 2.

In dimension 3, again a metric is Einstein if it has constant curvature equal to 2Λ, so
we have a similar dichotomy between spherical, flat or hyperbolic geometry according to

the sign of Λ. The question of understanding which compact 3-manifolds carry an Einstein

metric is completely understood, and deeply connected with the topology: the case Λ > 0 is
that of a 3-sphere (and its finite quotients), and it is related to the Poincaré conjecture (proved

by Perelman) saying that a compact simply connected 3-manifold is a 3-sphere—this can be

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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phrased by saying that it carries a constant curvature metric, and the Einstein equation plays

an important role in the proof through its heat flow, the Ricci flow

dg

dt
= −2Ric(g).

The Ricci flow has been more generally used by Perelman to prove Thurston’s geometriza-

tion conjecture, according to which any compact 3-manifold is decomposed into pieces,

each of which carries one of eight homogeneous geometries (including the three constant

curvature ones).

In higher dimension, it is no more true that an Einstein metric has constant curvature: the

Ricci tensor is just a part of the Riemannian curvature, which contains another component

(the Weyl curvature). The questions of existence and uniqueness are far from being solved.

In dimension at least 5, there is no known obstruction to the existence of Einstein metrics.

In dimension 4, the situation is more interesting: there is a strong relation between Einstein

metrics and topology: this can be illustrated by the Hitchin-Thorpe inequality between the

Euler characteristic χ and the signature τ of a compact Einstein 4-manifold:

2χ(M) ≥ 3|τ(M)|. (1.1)

This gives a topological restriction on the manifold M . More subtle obstructions are based

on Gromov’s idea of minimal volume (Besson-Courtois-Gallot) or on Seiberg-Witten theory

(LeBrun), see the nice survey of LeBrun [16] and the references there.

The Riemannian Einstein equation is a nonlinear elliptic equation (transversely to the

action of the group of diffeomorphisms), and the linearization L is a selfadjoint operator, see

for example [5]. This means that one cannot extract much information on the deformations

of a solution:

• either kerL = 0, then the solution is rigid;

• either kerL �= 0, then there are infinitesimal deformations, but there is a space

cokerL = kerL of the same dimension of obstructions, so one cannot say anything in

general on the local structure of the deformation space. For example there is no known

bound on the dimension of the moduli space of Einstein metrics on a given manifold.

Except in the case of special structures (Kähler or other special holonomies like quaterni-

on-Kähler, hyper-Kähler, etc.) there is no general method to produce Einstein metrics (run-

ning the Ricci flow is of course a method, but it remains very difficult to analyze in higher

dimension). Things are better for Einstein metrics on manifolds with boundary: it turns out

that there exists a natural boundary problem for Einstein metrics, on which some general

features of Einstein metrics can be tested, and which has its own geometric interest, in rela-

tion with conformal geometry. We now explain these ideas which originated in the work of

Fefferman and Graham [11].

So let now (M, g) be a manifold with boundary ∂M = X , and choose on M a defining

function x ofX , so that x > 0 in the interior ofM , and vanishes at first order overX . Given

a metric γ on X , we consider metrics g in the interior of M such that, when x → 0,

g ∼ dx2 + γ

x2
. (1.2)

This behaviour depends only on the conformal class [γ] of g: indeed, if γ is transformed into

ϕ2γ, then for x̃ = ϕx one has dx2+γ
x2 = dx̃2+ϕ2γ

x̃2 + l.o.t. The conformal metric [γ] is called
the conformal infinity of g.
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For example, if g is the hyperbolic metric on the ball, then the conformal infinity is

the standard conformal metric on the boundary sphere. More generally, the behaviour (1.2)

implies that the sectional curvature of g goes to −1 when x → 0, hence the name of these

metrics, which are called asymptotically hyperbolic (AH).

Dirichlet problem at infinity. Given a conformal class [γ] on X , find an AH Einstein metric

g inM such that the conformal infinity of g is [γ].

The motivation of the original work of Fefferman and Graham is the study of conformal

geometry through the corresponding Einstein metrics. The idea is that the formal develop-

ment of g near the boundary captures invariant conformal properties of γ. This perspective
was very fruitful, see [6, 12]. The correspondance received a lot of attention because it

underlies a physical correspondance, the AdS/CFT correspondance [17, 24].

The global problem is well-behaved: when the metric g is non degenerate (meaning

that the linearization of the problem has trivial L2 kernel, which often happens), then one

can fill a small deformation of [γ] by a small deformation of g. This was first observed by

Graham and Lee [13]. Important ideas to solve the problem were introduced by Anderson

(see later in the text), but the main difficulty remains to analyze the compactness problem:

is the map which associates to the Einstein metric g its conformal infinity [γ] proper ? it is

clear that such a property, together with the nice local deformation property, enables to solve

the Dirichlet problem by a continuity method.

2. Compactness

So we now pass to compactness problems. We specialize to dimension 4. There is a very

good compactness result on Einstein metrics, which was obtained by Anderson [1] and by

Bando, Kasue and Nakajima [3].

Theorem 2.1. Suppose (Mi, gi) is a sequence of compact Einstein 4-manifolds, with cos-
mological constant ±1 or 0, satisfying the following hypothesis:

(1) the diameter of (Mi, gi) is bounded above;

(2) the volume of (Mi, gi) is bounded from below;

(3) the L2 norm of the curvature,
∫
Mi

|R(gi)|2dvol(gi), is bounded above.
Then a subsequence (Mi, gi) converges for the Gromov-Hausdorff distance to a 4-orbifold
(M0, g0) with isolated orbifold singularities. The convergence is C∞ outside the singulari-
ties.

Moreover, for each singularity, there is a rescaling gi
ti

with ti → 0 such that (Mi,
gi
ti
)

converges to a noncompact Ricci flat 4-manifold which is Asymptotically Locally Euclidean
(ALE), that is it has one end and this end is asymptotic to the flat metric on R4/Γ for some
finite subgroup Γ ⊂ SO4.

There has been a lot of progress recently to understand the limits of Einstein manifolds

in higher dimension, see the article by Naber in the same volume [18].

The first hypothesis of the theorem guarantees that there is no cusp formation; the sec-

ond hypothesis that there is no collapsing on a lower dimensional space; the third hypoth-

esis is topological, because for an Einstein metric g on a compact 4-manifold M , one has
1

8π2

∫
M

|R(g)|2d vol(g) = χ(M).
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The ALE spaces which appear at the limit are the “bubbles” of the problem. This no-

tion of bubble appears similarly in a lot of geometric problems (pseudo-holomorphic disks,

instantons, harmonic maps, etc.). Similarly to these problems, another bubble can appear

where a singularity forms, and one gets a tree of bubbles: the smooth ALE space mentioned

in the statement is the deepest bubble.

A basic problem in understanding the possible limits of Einstein 4-manifolds is to clas-

sify the possible bubbles, that is the Ricci flat ALE 4-manifolds. There is a well-known fam-

ily of hyper-Kähler (hence Ricci flat) ALE 4-manifolds (also called gravitational instantons),

constructed by Kronheimer [14], who also classified all hyper-Kähler ALE 4-manifolds [15].

The finite subgroups of SO4 which appear are the finite subgroups of SU2. Also some cyclic

subgroups of SO4 which are not contained into a SU2 appear as finite quotients of Kron-

heimer’s ALE spaces. It is an old open important question whether all simply connected

Ricci flat ALE 4-manifolds are hyper-Kähler (and therefore one of Kronheimer’s spaces).

Nakajima [19] proved that if one adds the condition that the manifold is spin for a spin

structure which is also ALE in some sense, then the answer is yes.

The simplest example of a Ricci flat ALE space is the Eguchi-Hanson space [10]: topo-

logically it is T ∗S2. The Eguchi-Hanson metric gEH is asymptotic to the flat metric on

R4/Z2. Actually T ∗S2 with the zero section removed is diffeomorphic to (R4 \ {0})/Z2;

from the complex geometry point of view it is a desingularization of the A1 singularity

C2/Z2; all Kronheimer’s spaces are deformations of desingularizations of the Kleinian sin-

gularities, that is of C2/Γ for Γ a finite subgroup of SU2. In this way one gets a short list of

singularities (Ak, Dk, E6, E7 and E8).

The kind of degeneration described in theorem 2.1 does occur. Actually Kähler geometry

provides lots of examples. The first one [20, 23] was the singular Kummer surface (M0, g0),
with

M0 = T4/Z2,

a quotient of the 4-torus by an involution with 16 singular points of type C2/Z2, and g0
is the flat metric. Then there is a family (Mt, gt) of smooth K3 surfaces with their Ricci

flat metrics gt (coming from Yau’s solution of the Calabi conjecture), which degenerate to

(M0, g0) exactly in the way described by the theorem. Moreover, one can describe quite

concretely the behaviour of gt when t → 0. Consider the two following regions in M0 and

in the Eguchi-Hanson space:

1. near a singular point p0 ∈ M0, note r the radius from p0, the region

At = {t 1
4 ≤ r ≤ 2t

1
4 };

2. at the end of the metric gEH, which is asymptotic to the coneC2/Z2, the region (where

R is the radius near infinity)

Bt = {t− 1
4 ≤ R ≤ 2t−

1
4 }.

(Actually gEH is close to the flat cone metric by a factor O(R−4)).

The homothety ht of factor
√
t identifies Bt with At, and sends the metric tgEH to a metric

which is very close to g0 when t → 0. So we can construct a new manifold M with a new

metric g0�tgEH by gluing at each singular point the region ({r ≥ t
1
4 }, g0) in M0 with the

region ({R ≤ 2t−
1
4 }, tgEH) in the Eguchi-Hanson space, identifying At and Bt by ht and
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interpolating between the (very close) metrics g0 and tgEH on At. The process is illustrated

by the figure below.

t

Bt

�

At

=

At

The metric g0�tgEH does not satisfy any more the Einstein equation in the damage area,

but one can prove that it is indeed a very good approximation of gt. In particular it illustrates
well the behaviour of gt when t → 0: on one hand, g0�tgEH → g0, on the other hand
1
t (g0�tgEH) → gEH.

The compactness theorem 2.1 says basically that all the limits arise in this way, but,

as mentioned before, there is no classification of the possible Ricci flat ALE spaces at the

limit. In the sequel, we will see that it is not true that any 4-orbifold with a singular Einstein

metric can be approximated by smooth Einstein metrics in a similar way. This leads to new

restrictions on the compactification of the moduli space of Einstein metrics.

3. Desingularization

It is a fundamental algebraic fact that the 2-forms in dimension 4 decompose into selfdual

and antiselfdual 2-forms:

Ω2 = Ω+ ⊕ Ω−. (3.1)

The Riemannian curvature tensor can be seen as a symmetric endomorphism of Ω2. There-

fore it decomposes on (3.1), and the various components are

R =

(
R+ Ric0
Ric0 R−

)
. (3.2)

Moreover, R± decompose into a scalar part and a trace free part, which can be identified

with the Weyl tensorW :

R± =
Scal

12
±W±. (3.3)

We now start from an Einstein 4-orbifold (M0, g0), which can be compact or AH. We

consider only the case of the simplest singularity R4/Z2. Let p0 be a singular point (so of

type R4/Z2). To simplify the statements, we assume that there is only one point, but the

results are unchanged if there are several ones.

The following says that there is an obstruction to the existence of a sequence of metrics

which desingularize g0:

Theorem 3.1 ([8]). Suppose that a sequence of Einstein manifolds (Mi, gi) converges to a
non degenerate (M0, g0), in such a way that gi is close to g0�tigEH for a sequence of real
numbers ti → 0. Then

detRg0
+ (p0) = 0. (3.4)

Here ‘close’ in the theorem refers to some weighted C1,α Hölder norm.



858 Olivier Biquard

In particular, the spaces of constant curvature R± = Scal
12 , so if the curvature is nonzero

then (3.4) cannot be satisfied. It follows that spherical or hyperbolic orbifolds cannot be

limits of Einstein manifolds as in the theorem:

Corollary 3.2 ([8]). Suppose (M4
0 , g0) satisfies the same hypothesis and has constant cur-

vature ±1. Then (M0, g0) is not the limit of a sequence of Einstein manifolds (Mi, gi) as in
theorem 3.1.

For example, the corollary applies to the round metric on S4/Z2, where the action of Z2

has two fixed points (the two poles), or to B4/Z2, the quotient of the hyperbolic 4-ball by Z2;

it was already known that there is no U2-invariant desingularization (U2-invariant Einstein

metrics in dimension 4 are explicitly understood).

Of course the corollary is still a partial result: a stronger result would be: if (Mi, gi) →
(M0, g0) in the Gromov-Hausdorff sense, and at each singularity a rescaling (Mi,

gi
ti
) con-

verges Gromov-Hausdorff to the Eguchi-Hanson space, then the obstruction (3.4) is satis-

fied, and in particular the limit cannot be spherical or hyperbolic. This statement requires to

strenghten the convergence of the metric to get the hypothesis of the theorem. Nevertheless

we believe that theorem 3.1 already exhibits a new type of restriction on the Einstein metrics

which can appear in the compactification of the moduli space of Einstein metrics.

One may also ask the question for the other singularities: for the other Kleinian singu-

larities and their finite quotients, the answer is that the obstruction (3.4) still holds, together

with other obstructions: actually the number of scalar obstructions equals the b2 of the cor-

responding ALE space (work in preparation). So the corollary should remain true for these

singularities. The case of other singularities depend on the question mentioned above of the

classification of all Ricci flat ALE spaces.

Now pass to some more precise remarks about theorem 3.1. First, note that if the Eguchi-

Hanson space is glued with the opposite orientation (which results in a different topological

space) then the condition (3.4) becomes detRg0
− (p0) = 0 (this is clear since the Einstein

equation does not depend on the orientation).

Also note that in the Kähler case, choosing a basis (ω1, ω2, ω3) of Ω+ such that ω1 is the

Kähler form, one has

R+ =

⎛
⎝Scal

4
0

0

⎞
⎠ , (3.5)

so the condition (3.4) is automatically satisfied. Indeed it is well known that there is no such

obstruction in the Kähler case.

When one considers the gluing g0�tgEH, there is an ambiguity which gives a gauge

parameter: indeed one can apply an element u ∈ SO4/Z2 when identifying the parts At and

Bt of the coneR4/Z2 (applying an orientation reversing element ofO4 amounts to changing

the orientation of the Eguchi-Hanson space and was considered just above). It turns out that

the isometry group of gEH is Isom(gEH) = (U2/±1)�Z2 (where U2 ⊂ SO4 is the standard

unitary subgroup, and the Z2 is generated by (z1, z2) !→ (−z̄2, z̄1), inducing the antipodal

map on S2). Taking u in Isom(gEH) does not change g0�tgEH, so the remaining parameter

is in SO4/(U2 � Z2) = PΩ+(R4).
This means that the ambiguity u can be interpreted as a real line in Ω+(R4). This is

related to the obstruction (3.4): note ui the gauge parameter used for g0�tigEH, then one can

add to the statement of the theorem the fact that the directions in Ω+(R4) corresponding to

the limits of the gauge parameters ui must be in the kernel of Rg0
+ (p0). (This also fits with
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the Kähler picture, since when Scal �= 0, this condition implies that the complex structure

of the orbifold must be glued with a complex structure of the Eguchi-Hanson space which

is orthogonal to that of T ∗CP 1, and in particular does not admit a holomorphic sphere; but

indeed a Kähler-Einstein metric with Scal �= 0 can not admit a holomorphic sphere of self

intersection −2).
In particular, if rkRg0

+ (p0) = 1, then the kernel ofRg0
+ (p0) gives a direction in Ω+(R4),

so a gauge parameter u = limui. This is of importance in the reverse construction, that we

now describe.

To see if the condition (3.4) is the only local obstruction to the desingularization, it is im-

portant to produce an Einstein desingularization (M, gt) from the singular (M, g0). It turns
out that this is not possible in general on a compact manifold, because, as mentioned earlier,

there are always global obstructions to deformation which make the problem untractable.

Fortunately, the problem becomes much better in the AH setting:

Theorem 3.3 ([8]). Suppose that (M0, g0) is a non degenerate AH Einstein orbifold, with a
singularity of type R4/Z2 at the point p0. If g0 satisfies the condition (3.4), then there exists
a family of AH Einstein metrics gt on a topological desingularizationM such that (M0, g0)
is the limit of (M, gt) when t → 0.

Again the theorem is still valid if there are several singular points: the topological desin-

gularization M is obtained by replacing each singular point by a sphere of self intersection

−2.
An important fact to note in the theorem is that the conformal infinity γt induced by gt

on ∂M depends on t, and converges to the conformal infinity γ0 of g0 on ∂M0 = ∂M : it is

this flexibility which enables to solve the problem in the AH case.

There is an explicit family [4, 21], called the AdS-Taub-Bolt family, of U2 invariant met-

rics on T ∗S2, which converge to an orbifold metric on B4/Z2. The limit is not the hyperbolic

metric (this is impossible by corollary 3.2), but a Z2 quotient of a selfdual Einstein metric

on B4, which is a member of a 1-parameter family found by Pedersen [22]; more precisely,

it is the unique member of this family which satisfies the obstruction (3.4).

4. Degree theory and wall crossing

We now consider the AH setting, and study the consequences of theorem 3.3 on the Dirichlet

problem at infinity stated in section 1.

Let (M0, g0) be an AH Einstein 4-orbifold, with conformal infinity [γ0] on the boundary
∂M0 = X . Again for simplicity, suppose that we have only one singular point. We still

restrict to the simplest singularity A1, and we ask g0 to be non degenerate (remind this

means that the L2 kernel of the linearization vanishes). This implies that, given a small

deformation γ of γ0, there exists a deformation gγ0 of g0, which is an AH Einstein orbifold

with conformal infinity γ.
We also suppose that condition (3.4) holds for g0. Then, inside the space C of all con-

formal metrics onX , we can consider, at least near γ0, the space of conformal metrics onX
such that the corresponding orbifold Einstein metric also satisfies (3.4):

C0 = {γ ∈ C , detR
gγ0
+ (p0) = 0}. (4.1)
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Therefore, all the metrics gγ0 with γ ∈ C0 can be desingularized by theorem 3.3, leading to

AH Einstein metrics gγt (t > 0) on the topological desingularizationM ofM0.

Theorem 4.1 ([8, 9]). Suppose that rkRg0
+ (p0) = 2 (this is a way to say that the vanishing

of detRg0
+ (p0) is non degenerate). Then

(1) The set C0 is a smooth hypersurface of C near γ0.

(2) For γ near C0, all the desingularized Einstein metrics have their conformal infinity on
the side of C0 determined by

detR
gγ0
+ (p0) > 0. (4.2)

This result means that C0 is a ‘wall’ for the Dirichlet problem at infinity on M : for a

conformal infinity on the side (4.2) of the wall, there is an AH Einstein metric with this

conformal infinity (one of the metrics gγt ); when the conformal infinity goes to the wall, the

Einstein metric degenerates, and disappears on the other side.

This is better understood in the setting of the degree theory proposed by Anderson [2]

for the Dirichlet problem at infinity. The idea is the following: let M be the space of all AH

Einstein metrics on M , and consider the map

Φ : M −→ C (4.3)

defined by: Φ(g) is the conformal infinity of g. Anderson proved that, in a suitable Banach

topology, if π1(M,X) = 0, the map Φ is Fredholm of index 0. If there exists some open

set U ⊂ C over which the map Φ is proper, then Sard-Smale theory gives a well-defined

notion of degree of Φ which counts the number of preimages of an element of U . A priori,

the degree is only defined in Z2, but there is a way to count the solutions with sign (the sign

is the number of negative eigenvalues of the linearization) and to define a degree with values

in Z. In some cases, one may hope to calculate the degree at some special points of U , and

if it does not vanish, this implies that the map Φ is surjective over U .

It turns out that the properness of the map (4.3) is a difficult problem, which is far from

being solved in general. The paper [2] is written under the following assumptions:

1. dimM = 4: this is to be able to use the strong compactness results for Einstein

metrics in dimension 4;

2. U = {γ on X, Scalγ > 0}: this is used to avoid cusp formation in the limits, and

is also natural from the point of view of the physicists; it replaces the hypothesis on

the volume in theorem 2.1; there are also counterexamples to to properness with flat

conformal infinities;

3. the map H2(X, k) → H2(M, k) is surjective for any field k: this is to avoid the

degeneration to an Einstein orbifold, because in that case some 2-homology must exist

in the interior of M (for example, the 2-sphere in the case of the degeneration to a

R4/Z2 singularity).

The general case to consider in dimension 4 is when one relaxes the third hypothesis.

Here, theorem 4.1 gives insight on what to expect. We are far from being able to prove

something here, but the following speculations may help to understand the meaning of the

theorem.

It is clear that in this general case, the map Φ is not proper: indeed we have explicit

examples of orbifold degenerations of AH Einstein metrics. But we at least understand what
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is happening when there is a degeneration of M to an orbifold M0 with an A1 singularity,

obtained by contracting a 2-sphere of self intersection −2: the number of preimages of

Φ changes when one goes through the wall C0 defined by (4.1), in the precise way given

by theorem 4.1. In this way, theorem 4.1 can be interpreted as a wall crossing formula

calculating the jump of the degree onM when one goes across C0.

Of course in general there are several (−2) spheres which can be contracted, so they give
rise to several walls in C : one can hope to have Φ proper in the regions delimited by these

walls, and jumping across the walls like in theorem 4.1.

Now, all this is for A1 singularities, so what is happening for the other singularities? the

other Kleinian singularities are obtained by contracting a number of (−2) spheres, say k, and
indeed one expects to obtain k obstructions to desingularization: so it seems that the generic

case is that of A1 singularities, the other Kleinian singularities being obtained when k walls

intersect in a certain way; so the wall crossing formula for the A1 case might be sufficient.

The case of finite quotients of Kleinian singularities is also similar.

To transform these speculations into a proof, one would need to prove the properness

of the map Φ outside the walls obtained from the various possible orbifolds obtained from

M : in particular, this requires the classification of the Ricci flat ALE spaces, mentioned in

section 2.1, and a better understanding of the behaviour of a degenerating Einstein metric.

5. Some ideas of the proofs

The beginning of the proof builds on usual ideas in ‘gluing problems’ appearing in geometric

analysis. For small t we have a metric g0�tgEH which is an approximate solution of the

Einstein equation, which is better and better when t → 0, and one wants to deform it into

a true solution if t is small enough. In general, this is possible if the two pieces (here g0
and gEH) are not obstructed for the deformation theory of the Einstein problem. The point

is that this is never true for gEH (or more generally for any ALE space), because gEH comes

in a 1-parameter family given by scaling. More precisely, the linearization of the Einstein

equation on the Eguchi-Hanson space (or more generally any hyper-Kähler space) is

L = d∗−d− : Ω−Ω+ −→ Ω−Ω+, (5.1)

where one uses the identification Ω−(R4)Ω+(R4) = Sym2
0(R

4) given by u ⊗ v !→ u ◦ v.
(The operator on the trace part is just the usual Laplacian). On a hyper-Kähler manifold,

the bundle Ω+ is a flat trivial bundle: Ω+ = R3. So the operator L is identified with the

Laplacian d∗−d− acting on Ω− ⊗ R3, and its L2-kernel is therefore the L2 cohomology of

the Eguchi-Hanson space:

kerL2 L = L2H2 ⊗ R3 � R3. (5.2)

Indeed the L2 cohomology of Eguchi-Hanson is generated by the Poincaré dual of the 2-

sphere. Let choose a basis (o1, o2, o3) of this obstruction space. Then usual techniques

enable to deform g0�tgEH into a (basically unique) solution of the Einstein equation modulo

these obstructions:

Ric(gt)− Λgt =
3∑
1

λi(t)oi. (5.3)



862 Olivier Biquard

(This is not the exact equation to be solved because one must respect the Bianchi identity,

but it gives the idea). The problem becomes to analyse the functions λi(t) and their possible
vanishing.

The way to do this is to refine the approximate metric g0�tgEH: if one has an approxima-

tion to a better order of a solution of (5.3), then gt will be closer to this new approximation

and this can give the first terms of the development of λi(t).
The idea here is to refine the ALE metric gEH into a metric ht before gluing it to g0: the

metric ht is a perturbation of gEH which should satisfy the equation

Ric(ht) = tΛht (5.4)

instead of Ric(gEH) = 0 (so that Ric(tht) = Λ(tht)); and it should match better g0
t near

infinity: denote euc the standard Euclidean metric, then near p0, in normal coordinates, one

has

g0 = euc+g2 +O(r4), (5.5)

where g2 is an order 2 term:

g2 =
∑

aijklx
ixjdxkdxl. (5.6)

We can ask ht to match these order 2 terms in the following way: when we perform the

homothety ht, we transfer the coordinates x
i near 0 into the coordinates Xi = t−

1
2xi near

infinity on Eguchi-Hanson, so

g2
t

= t
∑

aijklX
iXjdXkdX l. (5.7)

So it is natural to look for a first order deformation ht = gEH + th which satisfies at infinity

h ∼
∑

aijklX
iXjdXkdX l (5.8)

while (5.4) becomes

Lh = ΛgEH. (5.9)

The first order deformation gEH + th is not a metric on the whole Eguchi-Hanson space,

since the perturbation h blows up at infinity. Nevertheless it will define a metric on the

region which is considered in the gluing, that is R ≤ 2t−
1
4 .

Now it turns out that the system (5.8) (5.9) is obstructed and has no solution in general,

because of the cokernel of L (which equals its kernel). Actually, instead of (5.9), one can

only solve

Lh = ΛgEH +
3∑
1

λioi, (5.10)

where the real numbers λi are also unknown.
At the end, the system (5.8) (5.10) has a solution (h, λi), and the λi depends only on

the second order terms g2 of g0 at p0, that is on the curvature of g0 at p0. There are some

arguments using in particular the invariance of the system to calculate precisely the λi and
one finds (up to a constant)

λi = 〈Rg0
+ (p0)ω1, ωi〉, (5.11)
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where (ωi) is an orthonormal basis of Ω+. Then, using the approximate metric g0�t(gEH +
th), one can show that the coefficient λi(t) appearing in (5.3) has the expansion

λi(t) = tλi +O(t2). (5.12)

In particular, the vanishing of λi(t) forces λi = 0, which by (5.11) means

Rg0
+ (p0)ω1 = 0. (5.13)

Therefore Rg0
+ (p0) has a kernel; using the gauge freedom, one can reduce this condition to

detRg0
+ (p0) = 0, which proves theorem 3.1.

For the desingularization itself (theorem 3.3), the work is far from being finished, since

from the hypothesis Rg0
+ (p0)ω1 = 0 we have killed only the first term in the development

of λi(t). Here one uses the fact that (M0, g0) is an AH Einstein manifold, which gives the

flexibility to vary g0 varying its conformal infinity γ0. In particular, one considers the map

F = (F1, F2, F3) : C → R3 defined by

γ !−→ (λ1(g
γ
0 ), λ2(g

γ
0 ), λ3(g

γ
0 )), (5.14)

where gγ0 is the Einstein orbifold metric on M0 with conformal infinity γ, and the λi are
defined by (5.11). Then one proves that the map F is submersive at γ0: despite the fact

that the space C is infinite dimensional, this is not an obvious fact, and the proof relies

in particular on a unique continuation theorem proved in [7]. This means that there exist

directions γi in the space of conformal structures, such that

dγ0Fi(γj) = δij . (5.15)

Consider now the metric gt and the functions λi(t) in (5.3) as depending also of the confor-

mal infinity γ, and note this dependence as gt(γ), λi(t, γ). From equations (5.12) and (5.15)

it is now immediate that there exist functions ai(t) = O(t) such that

λi(t, γ0 +

3∑
1

aj(t)γj) = 0, (5.16)

which means that the metric gt(γ0 +
∑3

1 aj(t)γj) is the expected solution of the Einstein

equation.

Proving theorem 4.1 requires substantially new arguments. The first step is to refine the

previous arguments.

If rkRg0
+ (p0) = 2, one can show that actually λ2(t) and λ3(t) can be killed just by

varying the gauge parameter, so there is no need to deform the conformal infinity in the

directions γ2 and γ3, the direction γ1 is sufficient. So one can obtain a solution gt(γ0 +
a1(t)γ1).

Moreover one can construct a more refined deformation of gEH which matches even

better g0 at infinity before gluing, by obtaining the coincidence not only of the terms of

order 2, but also the terms of order 4; the whole construction is then refined to obtain a better

expansion of λ1(t):
λ1(t) = tλ1 + t2μ1 +O(t3), (5.17)
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where μ1 is some a priori non explicit number, obtained when finding the second order terms

of the solution modulo obstructions of the equation (5.4). Then it is clear that the function

a1(t) such that gt(γ0 + a1(t)γ1) is the expected Einstein metric satisfies

a1(t) ∼ −μ1t (5.18)

when t → 0. If μ1 has a sign, then all the solutions are exactly on the side of C0 determined

by the direction −μ1γ1 at γ0.
Calculating μ1 is difficult. Up to now, the analysis used essentially the linearization the

Einstein equation (and some global properties). But calculating μ1 involves understanding

the second order terms of the equation, in order to find the second order terms of the solution

of (5.4). We will not give any detail here, see [9], except to say that the hyper-Kähler nature

of gEH helps a lot to get insight on these second order terms and on the calculation of μ1.

From this theorem 4.1 is deduced.

Finally let us say that the proofs of both theorems do not rely on the precise form of

the Eguchi-Hanson metric, but more on the fact that the Eguchi-Hanson space has a one

dimensional L2-cohomology and has a Hamiltonian circle action which rotates the other

complex structures. There are lots of other spaces with the same geometric properties, if

one allows orbifold singularities inside. For example, the Ak singularity C2/Zk+1 has a

partial desingularization satisfying the same properties, but with an orbifold point with a

Ak−1 singularity. Using the same techniques as above, one can calculate an expansion for

detR+ at the singular point and find an obstruction to continuing the desingularization. So it

seems that an inductive process can be started, leading to k obstructions to desingularization.

Unfortunately this process can not be carried out so easily, because the non degeneracy

hypothesis seems difficult to prove for the partial desingularizations. Nevertheless the author

believes he is able to overcome this technical problem using some refined analysis.
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Abstract. We explain a surprising passage from non-negatively curved manifolds with polar actions
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1. From non-negative curvature to topology, a brief review

The interest in positively/non-negatively curved manifolds goes back to the 19-th century.

From the Gauss-Bonnet theorem, a compact surface with a positively curved metric is either

diffeomorphic to S2 or RP2. But it was not known untill the early 1980’s, after the funda-

mental work of Hamilton, that all compact 3-dimensional manifolds with positively curved

metrics are diffeomorphic to spherical space forms. In dimensions larger than 24, there are no
known examples of compact simply connected manifolds with positive sectional curvature

other than the rank one symmetric spaces. Surprisingly, infinitely many positively (pinched)

curved simply connected manifolds were found only in dimensions 7 and 13, among others,

e.g.,

• the Aloff-Wallach spaces SU(3)/ip,q(S
1), where ip,q(S

1) ⊂ T2 is a family of circles

in the maximal torus T2 parameterized by pairs of coprime integers p, q;

• the Bazaikin spaces iq1,··· ,q6(S
1) \ SU(6)/ Sp(3), where iq1,··· ,q6(S

1) ⊂ SU(6) is a
diagonal circle subgroup parameterized by six odd integers q1, · · · , q6 such that the

biquotients are manifolds.

The structure of positively/non-negatively curved manifolds has not yet been well-un-

derstood, except for a few well-known general topological constraints, such as the Bonnet-

Meyer theorem, the Synge theorem, Gromov’s Betti number theorem, and the vanishing of

the Â-genus (α-invariant) for Spin manifolds with positive scalar curvature.

For a compact riemannian manifold, one can always normalize the metric so that the

maximum of the sectional curvature is 1. The curvature is said to be δ-pinched if δ < sec ≤ 1
everywhere. A very challenging conjecture is (cf. Berger [Be]):

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Conjecture (Optimal pinching constant). For any given integer n > 1, there is a positive
constant δ(n) depending only on n, such that, every compact positively curved n-manifold
admits a δ(n)-pinched metric.

For positively pinched manifolds, the following finiteness theorem of Cheeger (Wein-

stein obtained homotopy type finiteness) explains how small the class is:

Theorem 1.1 (Cheeger, Weinstein). For any given positive constant δ < 1, up to diffeomor-
phism, there are only finitely many 2n-dimensional riemannian manifolds with δ-pinched
curvature.

The same statement can not be true in any odd dimensions, because there are infinitely

many spherical space forms in every odd dimension 2n + 1. Furthermore, in dimension 7
(also 13), the Aloff-Wallach (also Bazaikin) spaces indeed contain infinitely many curvature

uniformly pinched manifolds with pairwisely different topological types (cf. Puttmann [Pu]),

hence the same statement fails even for simply connected positively δ-pinched curved man-

ifolds. However, one has the following analogue of the above Cheeger-Weinstein theorem:

Theorem 1.2 (Fang-Rong [14, 15], Petrunin-Tuschmann [25]). For any given positive con-
stant δ < 1, up to diffeomorphism, there are only finitely many (2n + 1)-dimensional posi-
tively δ-pinched curved, simply connected riemannian manifolds with trivial second rational
Betti numbers.

In contrast, there are many more examples of manifolds with non-negatively curved met-

rics. Products of non-negatively curved manifolds are still non-negatively curved. All com-

pact Lie groups, and in fact all symmetric spaces of compact type have non-negative sec-

tional curvature. By Cheeger, the connected sums of two complex/quaternionic projective

spaces admit non-negatively curved riemannian metrics. Starting from cohomogeneity one

actions, Grove-Ziller found infinitely many new examples of non-negatively curved mani-

folds, which includes in particular 10 of the 14 unoriented exotic 7-spheres (cf. [GZ]). It is
natural to ask whether this sort of construction can be extended to higher cohomogeneity to

create new families of examples. As we will see in later sections, it is much more rigid for

polar actions in higher cohomogeneity.

We finally mention a few important conjectures:

• (Hopf) There exists no metric with positive sectional curvature on S2 ×S2. More gen-

erally, there are no positively curved metrics on the product of two compact manifolds,

or on a symmetric space of rank at least two.

• (Hopf) A compact manifold with sec ≥ 0 has non-negative Euler characteristic. An

even dimensional manifold with positive curvature has positive Euler characteristic.

• (Bott-Grove-Halperin) A compact simply connected manifold M with sec≥ 0 is ratio-
nal elliptic, i.e., the sequence of rational Betti numbers of the loop space ofM grows

at most polynomially.

• (Klingenberg-Sakai-Yau) There are only finitely many diffeomorphism classes of pos-

itively curved manifolds in a given homotopy type.
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2. Reflection groups in Non-negatively curved manifolds

The theory of discrete groups of motions generated by reflections originates in the study of

plane regular polygons and space polyhedra. An extensive account of the history of the the-

ory of reflection groups in euclidean and spherical spaces appeared in Bourbaki, Groupes et

Algèbres de Lie, Chapters IV-VI [5]. According to this account the modern theory originates

from the works of geometers A. Möbius and L. Schläfli in the middle of the 19th century,

then was extended and applied to the theory of Lie algebras in the works of E. Cartan and W.

Killing at the end of the same century, and culminated in the works of H. S. M. Coxeter [8].

Reflection groups in the hyperbolic plane were described at least back in 1882 by Poincaré

in a memoir on Fuchsian groups [28], and by von Dyck [11]. A complete classification of

reflection groups in hyperbolic 3-space was achieved by Andreev [2] (cf. also [30]). Hy-

perbolic reflection groups in higher dimensions are very rich and far from being classified.

A surprising theorem of Vinberg [37] asserts there are no co-compact hyperbolic reflection

groups in dimensions ≥ 30. An extended non-existence theorem was established by Kho-

vanskii [20] for co-finite volume hyperbolic reflection groups in dimension at least 995.
In this section we present a joint work with Karsten Grove [12].

Assume Σ is an n-dimensional nonnegatively curved complete manifold with a discrete

reflection groupW, such that the orbit spaceΣ/W is compact (equivalent to finite covolume).
Here a reflection refers to an isometric involution with a codimension 1 fixed point set, and

a mirror refers to a codimension 1 component. In this generality, a mirror may not separate

the manifold. We will give a complete description not only of the reflection group, but also

of the equivariant structure of the manifold.

Note, if Σ is non compact but Σ/W is compact, it follows from Cheeger-Gromoll soul

theorem that Σ splits into a metric product of a flat Rk with the soul, a compact totally

geodesic submanifold. Therefore, Σ/W splits into a metric product of eucledian simplices

and the orbit space of a reflection group on the soul.

The mirrors of all reflections inW form a configuration in Σ. A Dirichlet domain will be

called an open chamberwhich is a locally convex set. We point out that, it often happens that

there are more faces in the closure of the chamber than the minimal number of generators of

W. For instance, A2 acts on the tiling of a flat torus T2 by six equilateral flat triangles, A2 is

generated by any two of the three reflections.

To explain the appearance of building blocks, we say that the action W × Σ → Σ is

decomposable if the orbitspace Σ/W metrically is a finite quotient of a product, and in-
decomposable otherwise. With this terminology one of our main results is the following

Rigidity Theorem

Theorem 2.1 (Fang-Grove [12]). A nonnegatively curved manifold Σn with an indecom-
posable cocompact action by a reflection group W is isometric to either Rn, or Tn, or
equivariantly diffeomorphic to either Sn, or RPn with a linear action, unless all mirrors in
Σ meet.

Here the spherical case relies on showing that the orbit space is a simplex, whereas the

part where the universal cover of Σ is non-compact also relies on Cheeger- Gromoll splitting

results for cocompact actions and for compact manifolds with infinite fundamental group,

as well as on Bieberbach’s celebrated Theorem (cf. [12]). Recall, that by the latter, any

compact flat manifold is finitely covered by a flat torus, i.e., Σ = Tn/G, where G ⊂ O(n) is
the holonomy. In particular, Theorem 2.1 shows that the holonomy group G must be trivial
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when the action is indecomposible. More generally, we point out that, if the orbit space splits

as a metric product of eucledian simplices, then Tn/Gmust be an iterated torus bundle, with

holonomy group G a very special elementary abelian 2-group in GL(Z, n). The Klein bottle

serves as the simplest example.

To describe the structure that arises when all mirrors meet let us introduce the fibre

product ∏
(ν1 ⊕ εk1 , · · · , ν� ⊕ εk�)

of the sphere bundles S(ν1 ⊕ εk1), · · · , S(ν� ⊕ εk�) over a compact manifold X: the subset

of the product S(ν1⊕εk1)×· · ·×S(ν�⊕εk�) which projects to the diagonalΔ inX�, where

ν1, · · · , ν� are vector bundles and ε is a trivial line bundle. Notice,
∏
(ν1 ⊕ εk1 , · · · , ν� ⊕

εk�), admits a fiberwise product linear action by the product of spherical Coxeter groups

W1 × · · · ×W�.

Theorem 2.2 (Fang-Grove [12]). Given a spherical reflection group W, a nonnegatively
curved compact simply connected W-manifold whose all mirrors meet is equivariantly dif-
feomorphic to ∏

(ν1 ⊕ εk1 , · · · , ν� ⊕ εk�)
where ν1, · · · , ν� are vector bundles with non-negative sectional curvature over a soul X .

When passing to the universal cover, the above results in particular lead to the following

general Splitting Theorem

Theorem 2.3 (Fang-Grove [12]). Let Σ be a complete non negatively curved manifold with
co-compact reflection groupW. Then the lifted reflection group Ŵ on the universal cover Σ̃
is a product of Coxeter groups,

Ŵ = Ŵ0 × Ŵ1 × · · · × Ŵ�−1 × Ŵ�,

where Ŵ0 is affine, and the remaining factors are spherical. Correspondingly, Σ̃ admits a
Ŵ invariant metric splitting,

Σ̃ = Rk × Sk1 × · · · × Sk�−1 ×Θ� ×N ,

whereN can be any simply connected compact manifold of nonnegative curvature on which
all Ŵi act trivially, Ski is a non negatively curved standard sphere with a linear Ŵi action,
and Θ� is a compact simply connected non-negatively curved manifold as in Theorem B.

As a consequence we derive the following Group Structure Theorem,

Corollary 2.4 (Fang-Grove [12]). A groupW is a co-compact reflection group of a complete
non negatively curved manifold if and only if

W ∼= Ŵ0 × · · · × Ŵ�/N,

where Ŵ0 is an affine Coxeter group, Ŵi, 1 ≤ i ≤ �, is a spherical Coxeter group, and
N�Ŵ a normal subgroup isomorphic to a product of a torsion free lattice and an elementary
abelian 2-group.

The overall strategy in our approach is based on the fact that follows from the work of

Wörner [39] that the chamberC for a Coxeter action is a productC = C0×C1×C2×. . .×C�
where C0 is a manifold without boundary (typically a point), and each Ci, i ≥ 1 is a smooth

non negatively curved convex manifold with corners, and either
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(1) Ci has more than ni = dimCi faces, but any ni faces of Ci meet,

or

(2) Ci has ki ≤ ni faces and they all meet.

Based on critical point theory of distance functions we can prove that, if there is only

one factor and it is of type (1) then C is a simplex, which is a key to prove theorem 2.1.

3. Polar actions

Introduced by Szenthe [Sz] and independently Palais-Terng [PTe], an isometric action of a

Lie group G on a compact Riemannian manifoldM is said to be polar if there is a complete

isometrically immersed submanifold Σ �M , called a section, that meets all orbits of G and

all intersections of Σ with orbits of G are perpendicular. It is clear that the dimension of Σ
is equal to the cohomogeneity of the action. Observe that

• a section is always totally geodesic.

A polar action is called hyperpolar if the section Σ is flat.

Simple examples of polar Actions are

• The rotation of SO(2) on R2. A line passing through the origin is a section.

• Every isometric action of cohomogeneity 1. A normal geodesic that starts perpendic-

ularly to a principal orbit is a section.

• The linear conjugation action of SO(n) on the vector space V of real symmetric n×n
matrices with trace zero. The subspace of diagonal matrices in V serves as a section.

• The conjugation action of a compact Lie group G on itself with a bi-invariant Rieman-
nian metric. The maximal tori are the sections.

• The left action of K on the symmetric space G /H, and vice-versa left H-action on
G /K where (G,K) and (G,H) are symmetric pairs. Such actions are called Hermann
actions.

• The isotropy representation of K of a symmetric space G /K.

We recall that isometric actions of Lie groups G1 and G2 on Riemannian manifoldsM1

andM2 respectively are said to be orbit equivalent if there is an isometry betweenM1 and

M2 under which the orbits of G1 and G2 correspond.

Theorem 3.1 (Dadok [9]). Let K be a connected compact Lie group and ρ : K → SO(n) a
polar representation. Then there is a symmetric spaceM such that ρ is orbit equivalent to
the isotropy representation ofM .

An easy but basic lemma due to Palais and Terng is

Lemma 3.2 (Palais-Terng [24]). For any polar action of a Lie group G on a riemannian
manifold, all of its slice representations are polar.
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Therefore, given a polar G action, by Dadok’s theorem there is a symmetric space asso-

ciated to the slice of every singular orbit. Moreover, given a section Σ through a singular

point p, the tangent space TpΣ is the section of the slice representation of the isotropy group

Gp. LetWp be the Weyl group of the symmetric space, a linear reflection group on TpΣ.

Definition 3.3 (Reflection Group). The reflection groupWΣ associated to a section Σ is the

group generated byWp for all singular orbit p ∈ Σ.

For a polar G action it is natural to make a

Definition 3.4 (Generalized Weyl group). Let G be a compact connected Lie group acting

on a riemannian manifoldM in a polar fashion. For a section Σ, the generalized Weyl group

ΠΣ(G) = NΣ(G)/ZΣ(G), where NΣ(G) = {g ∈ G : g(Σ) = Σ} is the stabilizer of Σ, and
ZΣ(G) is the kernel of NΣ(G) action on Σ.

It is clear that the generalized Weyl group does not depend on the choice of a particular

section. In the case the polar action is the conjugation action of a Lie group on itself, the

generalized Weyl group is exactly the Weyl group of the Lie group.

Lemma 3.5 (Alexandrino [1]). IfM is simply connected, then ΠΣ = WΣ.

• Coisotropic actions and polar actions. Recall that a submanifold N of a symplectic

manifold (M ;ω) is called coisotropic if

(TpN)⊥ω ⊂ TpN

for all p ∈ N , where (TpN)⊥ω denotes the subspace of TpM that is ω-orthogonal to TpN .

In the special case that (M,ω) is a Kähler manifold it is easy to see that a submanifoldN of

M is coisotropic if and only if J(νpN) ⊂ TpN for all p ∈ N , where J denotes the complex

structure ofM , and νpN the normal space of N in p.
A symplectic G-action on (M,ω) is called Poisson if there is a Lie algebra homomor-

phism λ : g → C∞(M) such that the hamiltonian vector field Xλ(ξ) agrees with the in-

finitesimal action of ξ on M. The moment map of a Poisson action is defined as

Φ :M → g∗,Φ(p)(ξ) = λ(ξ)(p)

For a compact Kähler manifold (M,ω), an isometric G action is called multiplicity-free
([18]) or coisotropic ([19]) if the principal G-orbits are coisotropic with respect to ω.

Let t∗+ be the Weyl chamber of the dual abelian Lie algebra t∗. General convexity theo-

rem established in [18, 21] claims thatΦ(M)∩t∗ is a convex polytope. The following result,
essentially due to [27], identifies a chamber of a polar action with the image of the moment

map.

Theorem 3.6 (Podesta-Thorbergsson [27]). LetM ⊂ Pn(C) be an irreducible smooth pro-
jective variety with the Fubini-Study metric. If G is a compact connected Lie group acting
isometrically onM in a polar fashion. Then the orbit spaceM/G is homeomorphic to the
convex polytope Φ(M) ∩ t∗+.
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4. Polar actions and chamber systems

LetM be a compact, simply connected Riemannian manifold with a polar action by a com-

pact Lie group G. LetΣ be a section. By 3.5 the generalized Weyl groupΠ (:=ΠΣ) coincides

with the reflection groupW, and hence acts on Σ by reflections. Let C be a closed chamber.

Notice that C is isometric to M/G = Σ/W. Moreover, W may not be a Coxeter group in

this generality, but is generated by finitely many reflections s1, s2, · · · , sk satisfying
• (sisj)

mij = 1 wheremii = 1, andmij = mji ∈ N≥2 ∪ ∞.

LetM = (mij) denote the symmetric k×k matrix. In this special case whereW is a Coxeter

group, M is the Coxeter matrix. In general W may have additional relations. The codimen-

sion 1 faces of C are named as types in I = {1, 2, · · · , k}, corresponding to s1, · · · , sk.
One can associate a (homogeneous) chamber system C(M ;G) of type I by setting

C(M ;G) =
⋃

g∈G
gC

with adjacency relations as follows: chambers g1C and g2C are called i-adjacent, denoted
by g1C ∼i g2C, if they share a face of type i. It is clear that every point ofM is contained

in some chamber gC.
We now recall some basic concepts from Tits geometry (cf. [30, 36]).

A chamber system C is called connected if any two chambers can be joint by a (finite)

sequence of adjacent chambers, a gallery. In our circumstance, if C(M ;G) is a connected

chamber system, we can have a length metric dH onM , namely, dH(x, y) being the length

of shortest horizontal curves connecting x and y.

• J-Residue. For a subset J ⊂ I , a J-residue in a chamber subsystem of C is a set

of chambers maximal with respect to being connected by J-galleries, i.e, galleries of
types i1 · · · i� where all ij ∈ J , it is, in particular, a connected chamber system over

J .

• Generalizedm-gon. For any integerm ≥ 1, or form = ∞, a generalizedm-gon is a

connected, bipartite graph of diameterm and girth 2m, in which each vertex lies on at

least two edges. Recall that a graph is bipartite if its set of vertices can be partitioned

into two disjoint subsets such that no two vertices in the same subset lie on a common

edge; the diameter is the maximum distance between two vertices, and the girth is the

length of a shortest circuit. Ifm = ∞, this is simply a tree with no end points.

A generalized m-gon can be considered as a chamber system by taking the edges as

chambers, and adjacency to mean having a common vertex, of one of the two appropriate

types.

• Geometry of Type M. By definition a chamber system C is of type M, if for every

i �= j, the residue of type {i, j} is a generalizedmij-gon.

• Buildings of TypeM. LetW be a Coxeter group with Coxeter matrixM. For a gallery

of type f = i1 · · · i� there is an associated element si1 · · · si� ∈ W. A building of type
M is a chamber system C over I such that each codim. one face lies on at least two

chambers, and having a W-distance function

δ : C × C → W
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such that if f is a reduced word (i.e., minimal), then δ(C1, C2) = sf if and only if C1

and C2 can be joined by a gallery of type f . In particular, any two chambers can be

joined by a minimal gallery.

Example 4.1 (Polar Representations). The chamber system, C(Sn;K) associated to the re-

striction of a polar representation of a compact Lie group K to the unit sphere Sn (without

fixed points) is a fundamental example of a (spherical) Tits building (see [9, 35]).

Example 4.2 (Thin building). For a spherical Coxeter group W generated by reflections

s1, · · · , sk, the Coxeter complex is a (k − 1)-dimensional simplicial complex which is a

tiling of the sphere Sk−1 by spherical simplices isometric to Δk−1. Coxeter complex is a

thin building.

For a chamber system C, there is a canonical associated complex |C|, called the geometric
realization. In particular, if C is a building, then |C| is a simplcial complex. A subcomplex

of |C| isomorphic to a Coxeter complex (thin building) is called an apartment. We refer [4]

for an equivalent definition of buildings in terms of axioms on apartments.

In the case that all proper residues are buildings, the so-called universal cover C̃ can be

viewed in the thin (length metric) topology on C as the usual topological universal cover.

This cover clearly inherits the structure of a chamber system, and its fundamental group

(deck transformations) acts freely as a group of automorphisms on it.

By invoking the following corollary of a profound theorem of Tits [36], Corollary 3 in

Section 5.3 (cf. also [30], Theorem 4.9), we get

Theorem 4.3 (Tits). The universal cover C̃ of a connected chamber system C of typeM over
I is a building if and only if all residues of rank three are covered by buildings.

From this we conclude that

Theorem 4.4 (Fang-Grove-Thorbergsson [13]). SupposeM is a simply connected positively
curved polar G manifold with orbit spaceM/G a simplex. If M is the Coxeter matrix of a
spherical Coxeter group of rank at least 4, then the universal cover C̃(M ;G) of the chamber
system C(M ;G) is a spherical building.

We remark that the connectedness of the chamber system C(M ;G) in the above theorem
follows from a result of B. Wilking on dual foliations. Similarly, we have

Theorem 4.5. SupposeM is a compact simply connected hyperpolar G manifold with orbit
spaceM/G a simplex. IfM is the Coxeter matrix of an affine Coxeter group of rank at least
3, then the universal cover C̃(M ;G) of the chamber system C(M ;G) is an affine building,
provided C(M ;G) is connected.

Remark 4.6. The reflection group W in the above theorems may not be a Coxeter group,

but its lifting Ŵ is a Coxeter group of spherical type or affine type.

5. Polar actions on positively curved manifolds

In this section we present the rigidity theorem in [13] on polar actions on compact posi-

tively curved riemannian manifolds. The rigidity theorem completely classifies positively
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curved polar manifolds of cohomogeneity at least 2, which in particular, broke the dream

of constructing new examples of positively curved manifolds from polar actions in higher

cohomogeneity.

Theorem 5.1 (Fang-Grove-Thorbergsson [13]). A polar action on a simply connected, com-
pact, positively curved manifold of cohomogeneity at least two is equivariantly diffeomorphic
to a polar action on a compact rank one symmetric space.

Remark 5.2. This is reminiscent of the situation for isoparametric submanifolds in eu-

clidean spheres, where many isoparametric hypersurfaces are not homogeneous, whereas in

higher codimensions by [34] they are the orbits of linear polar actions if they are irreducible

or equivalently the orbits of isotropy representations of compact symmetric spaces by [9].

Remark 5.3. The above theorem is not true for cohomogeneity one actions. In fact infinite

subfamilies of the Escheburg as well as of the Bazaikin spaces support cohomogeneity one

actions as does a new example, non of which are even homogeneous spaces.

Remark 5.4. All polar actions on the simply connected, compact rank one symmetric

spaces, i.e., the spheres and projective spaces, Sn,CPn,HPn and OP2 were classified in

[9] and [26]. In all cases but the Cayley plane OP2 they are either linear polar actions on a

sphere or they descend from such actions to a projective space.

For a polar G action on a positively curved manifold, notice that, since the sections are

totally geodesic, hence positively curved as well. As a special case discussed in section 2 we

have

Theorem 5.5 (Fang-Grove-Thorbergsson [13]). The polar group W of a simply connected
positively curved polar manifold of cohomogeneity at least two is a spherical Coxeter group
or a Z2 quotient thereof. Moreover, the section with this action is equivariantly diffeomor-
phic to a sphere, respectively a real projective space with a linear action.

• Topological Tits Buildings of spherical type. Recall, that a compact (spherical) building

according to [BSp] is a Tits building C̃ with a Hausdorff topology on the set Vert(C̃) = V1 ∪
· · · ∪ Vk+1 of all vertices such that the set C̃i1,··· ,ir+1 of all simplices of type (i1, · · · , ir+1)
is closed in the product Vi1 × · · · × Vir+1 . With the induced topology on the k simplices

C̃1,··· ,k+1, C̃ is called compact, locally connected, infinite, metric if C̃1,··· ,k+1 has the appro-

priate property.

Example 5.6 (Classical Buildings). Let (U,K) be a symmetric pair, where U is a connected

non-compact real semisimple Lie group without center. The isometric action of U on the

symmetric space induces an action on the boundary sphere at infinity, S∞, orbit equivalent to

the subaction byK. The building at infinity of (U,K), or equivalently, the building associated
to the polar K action on S∞, is called the classical building.

The following main result of [6] is important for the proof of Theorem 5.1:

Theorem 5.7 (Burns-Spatzier). An infinite, irreducible, locally connected, compact, metric,
topologically Moufang building of rank at least 2 is classical.

A key step in the proof of Theorem 5.1 is to endow a thick topology on the universal

covering C̃(M,G) using the Hausdorff topology on compact subsets ofM . We have
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Theorem 5.8 (Fang-Grove-Thorbergsson [13]). Whenever the universal cover C̃(M,G) of
C(M,G) is a building, it admits the structure of a compact topological Moufang building.

When the Coxeter diagram forM is connected of rank at least 4, by Theorem 4.4 and the

above work of Burns and Spatzier [6], C̃(M ;G) is a classical building. Our original polar G-
action on the chamber system C(M,G) lifts to an action of G̃ on the universal cover C̃(M ;G),
where G̃ is a normal extension of the fundamental group π (of the chamber system C(M ;G))
by G. In the thick topology it turns out that both π and G̃ are compact Lie subgroups of the

topological automorphism group of the topological building C̃(M,G). Therefore, C̃(M,G)
is homeomorphic to the sphere S∞, and the action of G̃ is orbit equivalent to a linear polar

representation of the maximal compact subgroup of the topological automorphism group. In

particular, π acts freely on the sphere in a continuous fashion, hence π is trivial, S1 or S3.
From this Theorem 5.1 follows in the caseM is irreducible of rank at least 4.

As a by-product we have the following simply connected C3 geometry which is not

building:

Theorem 5.9 (Fang-Grove-Thorbergsson [13]). The universal cover C̃ of the chamber sys-
tem C(OP2, SU(3) SU(3)) for the exceptional action on OP2 is a C3 geometry which is not
a building.

The existence of such C3 geometries is well known in the “real estate community” (see

[23]), but this particular example which arises very naturally in our context was not known

until now (see also [22]).

6. Bruhat-Tits buildings and hyperpolar actions on non-negatively curved
manifolds

It is more flexible to construct hyperpolar actions on non-negatively curved manifolds using

simple operations, e.g., the componentwise product of hyperpolar actions onM and N will

be a hyperpolar action on the product M × N ; moreover, given a hyperpolar action by a

compact Lie group K onM , and a compact Lie group G ⊃ K, the balanced product G×KM
with the action of G is again hyperpolar, with induced metric from the product metric on

G×M . In order to concentrate to some fundamental building blocks, it is necessary to

introduce

Definition 6.1. A hyperpolar G-action onM is irreducible if the lifted affine Coxeter group
Ŵ is irreducible.

The following is a special and more precisely stated version of a conjecture from [13]:

Conjecture. An irreducible hyperpolar action of cohomogeneity at least 2 on a simply con-
nected nonnegatively curved compact manifold is equivariantly diffeomorphic to a quotient
of a polar action on a symmetric space.

Remark 6.2. Recall that the conjugation action of a Lie group on itself, as well as the

Hermann actions are all hyperpolar. An affirmative answer to the above conjecture provides

essentially a riemannian geometric characterization of irreducible symmetric spaces. The

conjecture however is not true for cohomogeneity 1 actions.
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The following confirms the conjecture when the Coxeter diagram does not have double

bonds of rank at least 3:

Theorem 6.3. Assume (M,G) is an irreducible hyperpolar manifold of rank at least 3. If
the chamber system C(M ;G) is connected of types Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8. Then, there is a
G-equivariant principal L-bundle M̂ →M , such that M̂ is G× L-equivariant diffeomorphic
to a compact Lie group with a hyperpolar isometric action.

Remark 6.4. Results in the above theorem can be made more precisely, depending on the

multiplicitym, as follows

(I) Assume C(M ;G) is of type Ãn;

• (M̂,G× L) = (SU(n), SO(n)× SO(n)) ifm = 1.

• (M̂,G× L) = (SU(n); SU(n)) or (SU(2n); Sp(n)× SO(2n)) ifm = 2.

• (M̂,G× L) = (SU(2n); Sp(n)× Sp(n)) ifm = 4.

(II) Assume C(M ;G) is of type D̃n;

• (M̂,G× L) = (SO(2n), SO(n)× SO(n)× SO(n)× SO(n)) ifm = 1.

• (M̂,G× L) = (SO(2n), SO(2n)) ifm = 2.

(III) Assume C(M ;G) is of type Ẽ6;

• (M̂,G× L) = (E6, Sp(4)/Z2 × Sp(4)/Z2) ifm = 1.

• (M̂,G× L) = (E6,E6) ifm = 2.

(IV) Assume C(M ;G) is of type Ẽ7;

• (M̂,G× L) = (E7, SU(8)/Z2 × SU(8)/Z2) ifm = 1.

• (M̂,G× L) = (E7,E7) ifm = 2.

(V) Assume C(M ;G) is of type Ẽ8;

• (M̂,G× L) = (E8, SO(16)/Z2 × SO(16)/Z2) ifm = 1.

• (M̂,G× L) = (E8,E8) ifm = 2.

Remark 6.5. For the remaining types B̃n, C̃n, F̃4 it is more difficult, but work is in progress.

Remark 6.6. If the chamber system C(M ;G) is not connected, thenM = G×KN , where

K is a compact Lie subgroup, N is a polar K manifold whose chamber system C(N ;K) is a
gallery connected component of C(M ;G). For this reason it suffices to consider connected

chamber system.

According to Theorem 4.5, the universal cover C̃(M ;G) of the chamber system C(M ;G),
associated to a hyperpolar G action onM , is an affine Bruhat-Tits building, if the rank is at

least 3. However, we do not have an analouge of the Burns-Spatzier theory for “topological"
Bruhat-Tits buildings.

• Bruhat-Tits buildings of types Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8.
For the affine building C̃(M ;G), consider the maximal apartment system, the union of all

Coxeter subbuildings in C̃(M ;G). According to Bruhat-Tits ([30, 38]), there is a complete



878 Fuquan Fang

discrete valuation field K associate to the building C̃(M ;G), whose residue field k is deter-
mined by the spherical residues. It is obvious, in our cases, since the spherical residues are

the buildings associated to the slice representations of compact Lie groups, that the residue

field k must be R,C or H. Moreover, the non-commutative division algebra H occurs only

when the type is Ãn (since our diagram is simply laced, cf. [30, 35]). It follows from algebra

that the complete discrete valuation field K = k((t)), the field (division algebra) of formal

Laurent series, and the valuation v(f) ∈ Z is the lowest degree of f with nonzero coefficient.
According to Bruhat-Tits, given a special type vertex o in the Coxeter diagram, the equiv-

alence classes of sectors of type o defines a spherical building of type Π − {o} where Π is

the Coxeter diagram, called the spherical building at infinity. The spherical building at ∞
depends on the field K. By Bruhat-Tits, if K is complete, then an affine building C of rank at

least 4 is determined by the spherical building at ∞, denoted by C(∞). The automorphism

group A of the building C is the same as the automorphism group of the spherical building

C(∞), which is an algebraic group over K.

It is an important feature of the affine buildings of types Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8, that they

are uniquely determined by the valuation field (K, v). Moreover, the residue field k is com-

mutative unless the type is Ãn. The group A must be a split algebraic group over K of the

same type. We point out that this is no longer true if the diagram has double bonds! In

particular, for an Ãn building, A contains SLn+1(K) as a normal subgroup with quotient the

automorphism group of the field K and diagram automorphism Z2.

• Bruhat-Tits buildings and polar actions on Hilbert spaces. As noticed above, spherical
buildings over the classical fields are in 1-1 correspondence with polar representations. It

is not completely clear yet, what should be the analogous correspondence for Bruhat-Tits

buildings, but polar actions on Hilbert spaces first studied by Terng, seems to provide a

model.

LetG be a compact connected semi-simple Lie group. The action ofH1-loopsH1(S1,G)
on the Hilbert space V = H1(S1, g) given by the gauge transformation

g · u = gug−1 − g′g−1

is polar, and the constant loops with values in a Cartan subalgebra t is a section. More

generally, we have the following

Theorem 6.7 (Terng [33]). Let G be a compact Lie group and H ⊂ G×G be a closed
Lie subgroup. Assume the biaction of H on G is polar with a flat torus section A. Let a
denote the Lie algebra of A. Let P (G;H) = {g ∈ H1([0, 1];G)|(g(0); g(1)) ∈ H} and
V = H0([0, 1]; g). Then the gauge action of P (G;H) on V is polar with section â, the
constant loops in a.

We conjecture that every gallery connected component of the chamber system associated

to the P (G;H) action on V is an affine Bruhat-Tits building.
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Loop products, Poincaré duality, index growth and
dynamics

Nancy Hingston

Abstract. A metric on a compact manifold M gives rise to a length function on the free loop space

ΛM whose critical points are the closed geodesics onM in the given metric. Morse theory gives a link

between Hamiltonian dynamics and the topology of loop spaces, between iteration of closed geodesics

and the algebraic structure given by the Chas-Sullivan product on the homology of ΛM . Poincaré

Duality reveals the existence of a related product on the cohomology of ΛM .

A number of known results on the existence of closed geodesics are naturally expressed in terms of

nilpotence of products. We use products to prove a resonance result for the loop homology of spheres.

There are interesting consequences for the length spectrum. We discuss briefly related results in Floer

and contact theory.

Mark Goresky and Hans-Bert Rademacher are collaborators.
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1. Introduction

The search for closed geodesics on metric spheres has a long and very interesting history

[10, 36, 51, 55, 57]. It features a number of beautiful and simple ideas whose details took

decades to work out correctly. The history is also rich because of the variety of methods

used to attack to the problem. The approach of dynamics is to look among the geodesics for

those that close up, that is, to look for periodic orbits of the geodesic flow. The variational

approach is to look among the closed curves for those that are geodesic. This latter method

was developed extensively byMorse and is based on the fact that closed geodesics are critical

points of the length or energy function.

Let M be a compact, simply connected manifold of dimension n with a Riemannian

metric g. Let ΩM be the based loop space and ΛM the free loop space of M :

Ω = ΩM = H1,2((S1, ∗), (M, ∗))
⊂ Λ = ΛM = H1,2(S1,M).

For technical reasons it turns out best to use not the length or the energy function, but the

square-root of the energy:

F : Λ → R

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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F (γ) =

√∫
| ·γ|2dt.

Then F (γ) has units of length, and F (γ) ≥ length(γ), with equality if and only if γ has

constant speed. The reader will not go wrong in thinking that F is the length function. The
critical points of F are precisely the closed gedesics on (M, g), and thus one can walk in

the footsteps of Morse [55] and use the topology of Λ to find closed geodesics onM . The

(approximate) correspondence between the topology of Λ and critical points/values of F
works more specifically like this:

Hk(Λ) ≈ critical points of index k

(A critical point of F is a loop γ ∈ Λ where all the first partial derivatives of F vanish. The

index of γ is the maximal dimension of a subspace of the tangent space to Λ at γ where the

second derivative is negative definite.) We get a map

X ∈ Hk(Λ) → Cr(X) ∈ R

where

Cr(X) =: inf{a ∈ R : X has a representative in Λ≤a =: F−1[0, a]}
is the critical level of the homology class X .

The “correspondence” follows from the fact that Cr(X) is a critical value of F ; and
there is a critical point (or points) γ ∈ Λ of length Cr(X) with

index(γ) ≤ degX ≤ index(γ) + nullity(γ)
on which the homology class X is said to “lie hanging”. Thus one can hope to get a rough

“count” of closed geodesics by taking a “count” of homology classes. There is however

a major difficulty: iteration. If γ ∈ Λ is a closed geodesic, then so is each of its iterates

γm ∈ Λ, where
γm(t) = γ(mt).

These iterates are geometrically indistinguishable, and should together contribute just 1 to

our count of geodesics. But they are very different points in Λ; they have different lengths,

�(γm) = m�(γ)

and in general they have different indices as critical points. From the point of view of critical

point theory, one closed geodesic looks like an army!

Bott [11] proved that the index of the iterates grows approximately linearly, and Gromoll

and Meyer [34] that the contributions to the homology from the iterates of a single closed

geodesic are bounded. Together these results led to the Theorem of Gromoll and Meyer: If

the rank ofHk(Λ;Q) is unbounded, then for any metric onM there must be infinitely many

closed geodesics.

Sullivan and Vigué-Poirrier [66] proved that (for M compact and simply connected)

the rank of Hk(Λ;Q) is unbounded if and only if the cohomology ring H∗(M ;Q) is not a
truncated polynomial ring in one generator; thus the Theorem of Gromoll and Meyer applies

to “most” such manifolds. However for spheres and projective spaces the rank ofHk(Λ;Q)
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is bounded (the groups Hk(Λ;Q) are periodic in k for large k), and the Theorem does

not apply. While for the standard metric on these spaces all geodesics are closed, it is not

known whether there is a metric on a sphere or projective space of dimension > 2 with

closed geodesics, or a metric with only one closed geodesic! It is known ([6, 8, 10, 27, 33,

39, 51]) that for any metric on S2, and [38, 59] for a genericmetric on a sphere or projective

space, there are infinitely many closed geodesics. There are Finsler metrics on spheres and

projective spaces with only finitely many closed geodesics [46, 68]. For our purposes the

difference between Finsler metrics and Riemannian metrics is that for a Finsler metric the

metric is not required to be reversible; thus reversing the direction will likely change the

length of a path. Most of the methods from Riemannian geometry for proving the existence

of closed geodesics also work for Finsler metrics, but “curve-shortening” [33] may introduce

self-intersections.

If we hope to count closed geodesics on M via the correspondence between homology

and critical points, we are led to the question: Is there an algebraic operation onHk(Λ) that
corresponds to iteration of closed geodesics? In some critical cases the answer is yes.

2. Products

We begin with the Pontryagin product [58]

•Ω : Hj(Ω)×Hk(Ω) → Hj+k(Ω).

It is induced by the concatenation product on loops

• = : •Ω : Ω× Ω → Ω

(α, β) → α •Ω β

(First go around α, then β.) We (abusively) think of cycles X,Y in Ω as subsets:

X = {α} ⊂ Ω, Y = {β} ⊂ Ω; then in H∗(Ω) the product is given by

[X] •Ω [Y ] = : [X •Ω Y ]
= : [{α •Ω β}α∈X;β∈Y ]

Example 2.1. Let M = Sn be the round sphere of radius 1 in Rn+1 Then every geodesic

on M is closed, and the critical values of F are the numbers 2mπ, m ∈ Z≥0 A circle on
Sn is the intersection of Sn with a 2-plane in Rn+1, parameterized with constant speed and

with minimal period 1 (unless constant). Pick a vector
−→
V at the basepoint ∗ in Sn. Let

A be the (n− 1)-dimensional cycle on ΛSn consisting of all circles on Sn beginning at (∗)
with tangent vector λ

−→
V for some λ ≥ 0, and let U be the 0-dimensional cycle on ΛSn

consisting of the constant loop at (∗). We invite the reader to check that

Cr[U ] =0

Cr[A] =2π

[U ] •Ω [A] =[A] •Ω [U ] = [A],

and that [U ] is the identity element in the Pontryagin ring.
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Next what is

[A] •Ω [A] =: [A]2 ?

It should be clear that

Cr([A]2) ≤ 2Cr[A] = 4π;

indeed using the fact that [A] •Ω [A] = [A] •Ω [A′], where A′ is the cycle on ΛSn consisting

of all circles on Sn beginning at (∗) with tangent vector λ−→V ′ with −→
V ′ �= −→

V , and the fact that

every loop in A •Ω A′ of length ≥ 2π has a “corner” that can be cut to make it shorter, we

see that Cr[A •Ω A] < 4π, from which it follows that Cr[A •Ω A] ≤ 2π (since Cr[A •Ω A]
is a critical value of F ). In fact [A •Ω A] = [B], where B is the (2n − 1)-cycle consisting
of all circles beginning at (∗), and the Pontryagin ring is the polynomial ring

H∗(ΩS
n) = Z[A].

Note that [A] is nonnilpotent, that is for allm we have [A]m �= [0], but [A] is level nilpotent,
by which we mean that, for somem > 1, Cr [A]m < mCr [A]: One can show that

Cr [A]2m−1 = Cr [A]2m = Cr [B]m = 2mπ.

So [B] is level nonnilpotent.

Chas Sullivan product. This is a product on the homology of the free loop space H∗(Λ),
with degree −n :

•CS : Hj(Λ)×Hk(Λ) → Hj+k−n(Λ)

We give here the intuitive idea of the definition from the original paper [16] of Chas and

Sullivan; for a more rigorous definition see [18, 19]. Let

e : Λ →M

e(γ) = γ(0)

be the evaluation map. Let X = {α} and Y = {β} be cycles in Λ. Assume that eX and

eY intersect transversally inM . Then

[X] •CS [Y ] =: [{α • β : α ∈ X, β ∈ Y , and eα = eβ}].

Example 2.2. Let M = Sn be the round sphere of radius 1 in Rn+1 Let A, B, U ⊂ Ω ⊂ Λ
be as above. (But for degree reasonsU is not the unit in the Chas-Sullivan ring, andA2 �= B.)
Let C be the (3n − 2)− dimensional cycle in Λ consisting of all (parameterized) circles on

Sn (“all circles great and small”), and E the n− dimensional cycle in Λ consisting of all

constant loops. We invite the reader to verify the following

(1) [C] •CS [E] = [C]

(2) [E] is the identity element in the Chas-Sullivan ring.

(3) [A] •CS [A] = 0

(4) If X ,Y ⊂ Ω, then [X] •CS [Y ] = 0

(5) [U ] •CS [C] = [B]
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The Chas-Sullivan rings of spheres and projective spaces, which do not depend on the

metric, were computed by [20], using somewhat more algebraic techniques. These rings are

finitely generated (the generators listed above are almost enough) and the product is highly

nontrivial; for example the element [C] is nonnilpotent: [C]m �= 0, and with the standard

metric onM the generator [C] is level-nonnilpotent:

Cr [C]m = mCr [C] = 2mπ.

3. Poincaré duality

These cycles, and their Chas-Sullivan products, would have looked very familiar to Morse

[55], who studied the topology of ΛSn in the hope of finding closed geodesics. The cycles

and products are also reminiscent of the work of of Bott-Samelson on manifolds all of whose

geodesics are closed, which beautifully rounds out the Bott-Gromoll-Meyer-Vigué-Poirrier-

Sullivan circle of ideas. When I first heard the definition of the Chas-Sullivan product (at the

lunch table at the Institute for Advanced Study in 2005) I recognized it right away because I

knew well these examples. I asked, “Where is the other product?”

There is a pervasive symmetry in the study of loop spaces and closed geodesics that can

be thought of as Poincaré duality in the free loop space. If F is a Morse function on an

oriented, compact manifold X of dimension N , then Poincaré duality can be thought of as

“turningX upside down” like an hourglass: Following Milnor [54] we take the vertical axis

to be the F -axis; thus turning the spaceX upside down is the same as replacing F with −F .
The homology ofX is computed by the cell complex of Morse-chains; for each critical point

γ of index λ we have a disk of dimension λ that “hangs down” from γ and is attached below.
The cohomology is computed by the cell complex of Morse cochains; for each critical point

of coindex μ there is a a disk of dimension μ that “hangs up” from a critical point. The

Kronecher product between homology and cohomology is given by the intersection pairing

on Morse cycles and Morse cocycles. A homology class in dimension λ, when turned

upside down, becomes the cohomology class of dimension N − λ that is its Poincaré dual.

As the free loop space is infinite dimensional, there is no duality map between homology and

cohomology groups in complementary dimensions. However many things “work the same”

if you “turn the free loop space upside down”, that is if you do Morse theory on the free loop

space with the function −F instead of F . The guiding principle that every phenomenon in

the free loop space has an dual counterpart has proven to be very powerful in a variety of

contexts. We will present evidence of this duality principle and let you decide for yourself.

Mark Goresky and the author [32] looked for and found the product that is Poincaré dual

to the Chas-Sullivan product, and investigated its properties. It was clear from the duality

principle that the product should be of the form1

� : Hj(Λ)⊗Hk(Λ) → Hj+k+n−1(Λ). (∗)

1 In [32] the product is of the form

Hj(Λ,Λ0)⊗Hk(Λ,Λ0) → Hj+k+n−1(Λ,Λ0)

but there is a way to extend the product to the form (∗).
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The associated homology coproduct

∨ : Hi(Λ) → Σj+k=i+1−nHj(Λ)⊗Hk(Λ)

had been previously introduced by Sullivan [62].

The “1” in the degree (n − 1) of the cohomology product is related to the index of the

iterates of closed geodesics (see below), and to the observed fact that the duality principle

works best not in the space Λ of (parameterized) H2,1 loops, but in the space of optimally
parameterized loops, the loops that are parameterized proportional to arclength. In this space

F and −F are on a more even footing, since we have thrown out all the nonoptimal parame-

terizations. These nonoptimal parameterizations are all directions in which F increases, for

(arguably) no interesting reason if one is concerned with the geometry of loops. There is

also a product on the based loops

�Ω : Hj(Ω)⊗Hk(Ω) → Hj+k+n−1(Ω).

whose relationship with the loop cohomology product � reflects the relationship [20] be-

tween the Chas-Sullivan and Pontryagin products. In [32] Goresky and the author showed

that whenM has a metric with all geodesics closed (for example ifM is a sphere or projec-

tive space) and n > 2, the products � and �Ω are highly nontrivial; in particular the rings

are finitely generated, as are the Pontryagin ring and the Chas-Sullivan rings computed by

Cohen Jones and Yan [20]. Moreover the associated graded rings from the grading induced

by the energy function (or F ) in these cases can be computed by a general method based

on Morse theory and geometry, and are also finitely generated and nontrivial. The complete

ring structure is computed for spheres in [32]; they have the remarkable property that the

rings are independent of the dimension n when n is odd, or when the coefficients are Z/2Z.
The critical level of a cohomology class is the reflected version of the critical level of a

homology class:

Cr(x) = sup{a : x has support in Λ≥a}
where Λ≥a = F−1[a,∞). The Chas-Sullivan product • and the loop cohomology product

� satisfy the following dual basic inequalitites:

Cr(X • Y ) ≤Cr(X) + Cr(Y ) (homology)

Cr(x� y) ≥Cr(x) + Cr(y) (cohomology)

On the based loop space, the Pontryagin product and the loop cohomology products satisfy

the same inequalities. The cup-product does not satisfy such an inequality; see [32] 16.1.

A cohomology class x is level nilpotent if for some m, Cr(x�m) > mCr(x). The level

nilpotence of a homology or cohomology product is related to the index growth of the critical
point on which it lies hanging. Bott [11] proved, using a beautiful argument based on

intersection theory in the symplectic group, that the index and nullity of the iterates γm of a

closed geodesic γ satisfy the inequalities

m · index(γ)− (m− 1)(n− 1) ≤index(γm)

≤index+ nullity(γm)

≤m · index(γ) + (m− 1)(n− 1) (∗∗)
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If equality
m · index(γ)− (m− 1)(n− 1) = index(γm)

holds for m = m0, then if holds for 1 ≤ m ≤ m0, and we say the index growth is minimal
up tom = m0. If equality

index+ nullity(γm) = m · index(γ) + (m− 1)(n− 1)

holds form = m0, then if holds for 1 ≤ m ≤ m0, and we say the index growth is maximal
up to m = m0. In the extreme cases the Chas-Sullivan powers, and the loop cohomology
powers correspond to the iteration of closed geodesics: When a homology class X lies

hanging on a closed geodesic γ with minimal index growth, the Chas-Sullivan productX∗m

lies hanging on the iterate γm; when a cohomology class x lies hanging on a closed geodesic
γ with maximal index growth, the cohomology product x∗m lies hanging on the iterate γm.

As further evidence of Poincaré Duality here are some restatements of old theorems

in terms of loop products. When these theorems were proved, the products had not been

discovered. In retrospect it is clear that these theorems are naturally expressed in terms of

products.

Bott [11]: Let M be a compact Riemannian manifold. If all closed geodesics are non-
degenerate (in the sense of Morse theory), then every homology class in H∗(Λ) is level-
nilpotent, and every cohomology class in H∗(Λ) is level-nilpotent.

Hingston [39]: Let M be a compact Riemannian manifold. If there is a homology
class in H∗(Λ) that is not level nilpotent, thenM has infinitely many closed geodesics. In
particular, there is a closed geodesic of length L,m0 ∈ Z+, and a sequence σm ↓ 0 so that
if m ≥ m0, M has a closed geodesic with length � ∈ (mL,mL+ σm).

Hingston [40]:Let M be a compact Riemannian manifold. If there is a cohomology
class in H∗(Λ) that is not level nilpotent, thenM has infinitely many closed geodesics. In
particular, there is a closed geodesic of length L,m0 ∈ Z+, and a sequence σm ↓ 0 so that
if m ≥ m0, M has a closed geodesic with length � ∈ (mL− σm,mL).

The proofs in [39] and [40] are quite different, and the second is much more difficult.

They are both variations on “Bangert’s Lemma” [7]. There are many possibilities for the

local geometry of a closed geodesic whose index for large m lies between the two bounds

in (∗∗). But in the limiting cases the geometry is forced into a rigid mold which can be

described exactly. The proof in [39] was discovered by accident; the guiding light of the

Poincaré Duality principle then motivated the author to find the proof of [40].

Many of the early work on loop spaces was done not in the infinite dimensional setting,

but in the finite dimensional approximation described by Morse [55] and refined by Bott

[12] and Milnor [54]. The finite dimensional approximation space is a space of piecewise

geodesic loops consisting of N minimal geodesic pieces, and parameterized by the vertices

{(x1, , , , , xN )} ⊂MN . The finite dimensional approximation space is a finite dimensional

manifold that for N large enough carries the topology and the Morse theory of Λ≤L for L
arbitrarily large. The Chas-Sulllivan product and the loop cohomology product are almost
Poincaré dual in the finite dimensional approximation. The catch is that duality works best

in the optimally parameterized loops, but the space of optimally parameterized piecewise

geodesic loops (i.e. those for which the N pieces all have the same length) has singularities

and (worse) spurious critical points. The loop cohomology product was originally defined

by Goresky and the author using Poincaré duality in the finite dimansional approximation.

When transformed to the infinite dimensional setting, the definition took it current form.
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4. Applications to dynamics

In the search for periodic points it often turns out that the (necessarily degenerate) cases of

minimal and maximal index growth for all m are precisely the cases not covered by other

methods and thus the last cases to be proved. One example is the earlier mentioned Theo-

rem [6, 8, 10, 27, 33, 39, 51]: Any Riemannian metric on S2 has infinitely many closed

geodesics. This was first proved by arguments of Lusternick-Schnirelmann/Ballmann/

Grayson, Birkhoff, Bangert, and Franks. The last case to be proved was the case of ex-

tremal index growth. The author in [39] gave an alternative argument for the last step using

the ideas outlined above. In his beautiful 2005 Annals paper [5] Angenent gives a new

proof of the existence of infinitely many closed geodesics on S2 except in the cases covered

in [39]. Another example: The arguments in [39] and [40] are also valid for Finsler metrics.

In 2010 Bangert and Long [9] proved the existence of at least two closed geodesics for any

Finsler metric on S2 by reducing the proof to the case of extremal growth.This result is sharp

due to the wonderful examples of Katok [46, 69].

5. Related ideas in Floer / symplectic / contact theory

We mention briefly some related results and refer the reader to the references for detail

[4, 22, 23, 26].

(1) Let M be a closed, symplectic manifold of dimension 2n with (for the sake of sim-

plicity, though this is just the tip of the iceberg) π2M = 0. Let

H : S1 ×M → R

be a periodic Hamiltonian. Following Arnold, Conley, Zehnder, Salamon, Floer, and

many others, we look for periodic points of the Hamiltonian flow, which is given in

local coordinates by
·
x = J∇H(x, t).

These periodic points are critical points of the action function A : ΛM → R. The

critical points all have infinite index and coindex, but Floer theory was invented to

circumvent this difficulty. When M is a torus, one can use a finite dimensional ap-

proximation. It was proved by Conley-Zehnder (in the case whereM is a torus), and

Salamon-Zehnder, that if all period 1 orbits are nondegenerate, then there are periodic

orbits of arbitrarily high minimal integer period. The role of the nondegeneracy hy-

pothesis is to ensure that the growth of the index (the Conley-Zehnder index in this

case) is not extremal. An argument in the spirit of Bangert’s Lemma, and in the spirit

of [39, 40], applies in the case of extremal index growth, and was used by the author

[41] (in the case whereM is a torus) and by Ginzburg [28] to prove Conley’s Conjec-

ture: There are always periodic orbits of arbitrarily high minimal integer period. In

[30] Ginzburg and Gürel state these results in terms of the pair-of-pants product on the

Floer homology of the free loop space, and nonnilpotence of certain level homology

classes occurs precisely when there is maximal or minimal index growth. One also has

the exact analogs of the statements regarding the critical values: � ∈ (mL,mL+ σm)
and � ∈ (mL− σm,mL) in the cases of slow and fast growth.
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(2) IfM is a compact manifold, the cotangent bundle T ∗M carries a natural symplectic

structure. Let H : S1 × T ∗M → R be a periodic Hamiltonian of quadratic type.

(The geodesic flow on T ∗M is given by the Hamiltonian H = |p|2.) There is an

isomorphism between the Floer homology of the cotangent bundle ofM and the ho-

mology of the free loopspace of M , in which the pair-of-pants product corresponds

to the Chas-Sullivan product. [1, 2, 60, 64]. Abbondandolo and Schwarz [3] have

described the product on the Floer side that corresponds to the loop coproduct.

(3) The contact setting. A contact form on M gives rise to an action function A on

the free loop space ΛM , whose critical points are the closed Reeb orbits. Contact

homology is the associated Morse homology, introduced using Floer theoretic tools by

Eliashberg-Giventhal-Hofer in [25]. The iteration properties of local Floer homology

were studied by Ginzburg-Gurel [30] and analogs of the theorem of Gromoll-Meyer

were found in [45], McLean [1, 2, 17, 53, 60, 64, 65]. There are analogs of the theorem

of Bangert-Long [9] mentioned above by reducing to the case of extremal growth:

[31, 48]. See also [24, 29]. There are products in this context; see [17].

6. Critical levels of spheres

IfM is compact and simply connected and carries a Riemannian metric, Gromov [35] (see

also [56]) proved that the set of points

(C, d) = (Cr(X), degX) ∈ R2,

whereX ∈ Hd(Λ), Cr(X) is the critical level ofX , and Cr(X) > 0, lie between two lines:
There are numbers μ, ν > 0 so that

μCr(X) < degX < νCr(X).

Note the critical levels have units of length. For simplicity all homology and cohomology

will have rational coefficients. In [42] the author and Rademacher prove the

Theorem 6.1 (Resonance Theorem for Spheres). IfM is a sphere of dimension > 2, with a
fixed Riemannian or Finsler metric g , then the points (Cr(X), degX) lie at a finite distance
from a line: there are constantsα and β > 0 so that

αCr(X)− β < degX < αCr(X) + β.

The slope

α = αg

is called the global mean frequency of of (M, g) and has units of conjugate points per unit

length. While we have a proof of this theorem we still lack an explanation, and the theorem

still seems quite surprising!

There is a spectral sequence bigraded by (length, degree), converging to H∗(Λ), whose
E1 page is a direct sum of the local level homology of the all the iterates of all the closed

geodesics onM in the given metric. By a theorem of Bott [11] mentioned earlier (∗∗), the
contributions of all the iterates of a single closed geodesic γ to the E1 page lie at a finite

distance from the line

d = αγC
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whose slope is the mean frequency

αγ =
αγ
�(γ)

,

where

αγ = lim
m→∞

index(γm)

m

is the average index of γ.
If the sectional (or, in the Finsler case, flag) curvature K of M is bounded between

constants

K1 < K < K2

then the mean frequency is bounded as follows:

√
K1(n− 1)

π
< αγ <

√
K2(n− 1)

π

For the round metric, and for the Katok metrics [46, 69] the curvatureK is constant and thus

the mean frequency of every closed geodesic satisfies

αγ = αg =

√
K(n− 1)

π
,

though in general the closed geodesics in the Katok metrics have different lengths and differ-

ent average indices. For these metrics all nonzero terms in the E1 page lie at a finite distance

from the line

d =

√
K(n− 1)

π
C

and the theorem follows immediately. However an open mapping theorem [42] tells us

that the average indices of geometrically distinct closed geodesics can be perturbed inde-

pendently. Thus we expect that for a generic metric the E1 page has entries lying (approx-

imately) along a union of lines, one line for each closed geodesic γ, with the spacing along

each line determined by �(γ). One proceeds from one page of the spectral sequence to the

next by allowing certain generators to “cancel out” in pairs. Somehow in this process the

generators that remain at the E∞ page all lie with in a finite distance of the line d = αC. Un-

less a closed geodesic γ has mean frequency αγ exactly equal to the global mean frequency

α, only a finite number of homology classes can lie hanging on the iterates of γ.
The Katok examples include nondegenerate Finsler metrics on spheres with only finitely

many closed geodesics. IfM = Sn with n > 2 odd, it is proved in [42] :

Corollary 6.2. For a metric g in a neighborhood of the Finsler metrics, and not too far from
the round metric, at least one of the following holds:

(1) There are at least two closed geodesics γ with mean frequency αγ = αg .

(2) There is a sequence of closed geodesics {γj} with mean frequencies αj �= αg , satis-
fying

lim
j→∞

αj = αg.
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This is reminiscent of the conjecture of Hofer-Wysocki-Zehnder [44] to the effect that

every Reeb flow for the tight 3-sphere has exactly two or infinitely many closed Reeb orbits.

There is a conjecture that on S2 a Finsler metric carries exactly two or infinitely many closed

geodesics. This is proved in [37] near the standard metric. For n > 2 there is hope that the

number “two” in the Corollary could be improved to the minimal number of geodesics for

a Katok metric on Sn. A famous open problem is to prove the existence of infinitely many

closed geodesics for any Riemannian metric on a sphere of dimension n > 2. As mentioned

above, when n = 2 this statement has been proved for Riemannian metrics and is false for

Finsler metrics by the Katok examples. An even more beautiful theorem would include the

Finsler metrics and say that the only exceptions to the existence of infinitely many closed

geodesics are very simple metrics in the Katok model.
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1. Introduction

1.1. The surface subgroup theorem. One of the corollaries of the Geometrization Theo-

rem is that most 3-manifolds admit hyperbolic structure. Therefore when studying topol-

ogy of a 3-manifold one can often assume that the manifold is endowed with a hyperbolic

structure. This greatly expands the tool-kit that is available bringing hyperbolic geometry,

analysis and dynamics into play.

An essential step in the eventual proof of the Virtual Haken and the Virtual Fibering

Conjectures is the Surface Subgroup Theorem:

Theorem 1.1 (Kahn-Markovic). Every closed hyperbolic 3-manifold contains a quasifuch-
sian surface subgroup.

Recall that every hyperbolic manifold M3 can be represented as the quotient M3 =
H3/G, where H3 is the hyperbolic 3-ball and G a Kleinian group. Using geometry and

relying on fine statistical properties of the frame flow on hyperbolic manifolds we proved in

[14] the following result which implies the Surface Subgroup Theorem:

Theorem 1.2 (Kahn-Markovic). Let M3 = H3/G denote a closed hyperbolic 3-manifold.
Given any ε > 0, there exists a (1 + ε)-quasifuchsian group G < G.

(Recall that a group isK-quasifuchsian if it isK-quasiconformal deformation of a Fuch-

sian group.)

The nearly geodesic surfaces we constructed in [14] have large genus (it can be shown

that the genus of S grows polynomially with 1
ε ). Moreover, each such surface f(S) ⊂ M3

represents the trivial homology class in H2(M
3,Z).

A three holed sphere with a hyperbolic metric and geodesic boundary is called a pair of

pants (after Thurston). GivenR > 0, the pair of pants whose all 3 cuffs have the same length

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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2R is called the R-perfect pair of pants. Let S(R) denote a genus 2 Riemann surface that is

obtained by gluing two R-perfect pairs of pants along their cuffs with the twist of +1. The
induced orbifold is denoted by Orb(R).

Theorem 1.2 is proved by the showing that for a given closed hyperbolic 3-manifoldM3

and for every ε > 0 and every large enough R, there exists a Riemann surface S = S(ε, R)
and a continuous map f : S → M3 such that the induced map between universal covers ∂f :
∂H2 → ∂H3 is (1 + ε)-quasisymmetric. Moreover, the surface S admits a decomposition

into R-perfect pants that are glued to each other with the twist of +1. In particular, such a

Riemann surface S is a regular holomorphic cover of the Model Orbifold Orb(R).
For fixed ε, R > 0, a good pair of pants (in a given hyperbolic 3-manifold) is a pair of

pants whose cuffs have complex half-length ε close to R (see Section 3). In order to find the

map f : S → M3 one is guided by the following principles:

1. Do not start by trying to specify the surface S.

2. Instead, consider the good pants Π immersed in M3 as the building blocks and even-

tually construct the surface f(S) ⊂ M3 by appropriately assembling together all the

good pants fromΠ.

Typically there are many ways in which one can assemble the pants and get an immersed

surface.

Consider any finite formal sum W ∈ NΠ. Taking two copies of each pair of pants

(with opposite orientations) one obtains the new formal sum 2W ∈ NΠ. Then along every

geodesic in M3 that appears as a boundary curve of some of the pants from 2W one can

pair off the pairs of pants that contain that geodesic as a boundary component (there may be

many ways in which one can pair off these pants and we choose one way of doing it for each

such geodesic). One can now assemble these pairs of pants according to the instructions to

construct a closed surface in M3.

So, we have constructed a closed surface S and a map f : S → M3, but the induced map

between fundamental groups is not necessarily injective. For example, ifW denotes a single

pair of good pants then the surface S is a genus two surface obtained by gluing together two

pairs of pants. However, the corresponding map f : S → M3 collapses one pair of pants

onto the other and therefore the induced map between fundamental groups is not injective.

Observe that every such surface f(S) ⊂ M3 represents the trivial homology class in

H2(M
3,Z). This is because each pair of pants from W is used twice and with different

orientations.

It is clear from the previous discussion that if one wants to glue pairs of good pants in

M3 to get a nearly geodesic surface (and thus a quasifuchsian surface) then any two pairs of

pants that are glued along a geodesic should meet at an angle that is close to π. It turns out
that in order to assemble good pants and construct a nearly geodesic surface in M3, what is

needed is that the good pants are equidistributed inM3, which follows from the exponential

mixing of the frame flow. We will explain this in more details in the next section, but here

we state the mixing principle:

Lemma 1.3 (Exponential Mixing). Let M3 denote a closed hyperbolic manifold (in par-
ticular a hyperbolic surface). There exists q > 0 that depends only on M3 such that the
following holds. Let ψ, φ : F(M3) → R be two C1 functions (here F(M3) denotes the
frame bundle, if M3 is a Riemann surface this is just the tangent bundle). Then assuming
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that the volume of the frame bundle F(M3) is equal to 1, for every r ∈ R the inequality∣∣∣∣∣∣∣
∫

F(M3)

(g∗rψ)(x)φ(x) dΛ(x)−
∫

F(M3)

ψ(x) dΛ(x)

∫
F(M3)

φ(x) dΛ(x)

∣∣∣∣∣∣∣ ≤ Ce
−q|r|,

holds, where C > 0 only depends on the C∞ norm of ψ and φ.

2. The Ehrenpreis conjecture

The Ehrenpreis conjecture was an old conjecture in the theory of Riemann surfaces. The

idea is that although two Riemann surfaces S and T do not have a common finite cover (all

covers in this proposal are regular and unbranched) one should still be able to interpolate

between certain finite covers of S and T respectively (according to Gromov this statement

goes back to Riemann). The precise formulation of the conjecture is as follows:

Conjecture 2.1 (Ehrenpreis Conjecture). Let S and T denote two closed Riemann surfaces
of genus at least 2 and let ε > 0. Then there exists finite covers S1 and T1 of S and T
respectively, such that S1 and T1 are (1 + ε) quasiconformal to each other (that is there
exists (1 + ε)-quasiconformal map f : S1 → T1).

In [16] J. Kahn and I have announced a proof of this conjecture.

Remark 2.2. The Enhrenpreis Conjecture is harder to prove because there may be more

pants on one side of a closed geodesic than the other. So we need to add in a signed sum of

pants so that there are an equal number on both sides of every good geodesic. Computing

this correction requires the “good pants homology”, which we develop in [16].

In fact, we prove this conjecture by proving the statement that every closed hyperbolic

Riemann surface has a virtual decomposition into good pairs of pants that are glued by a twist

that is nearly equal to+1. Recall that (ε, R)-good pair of pants is a pair of pants whose cuffs
have the length ε-close to R. We prove the following virtual decomposition type theorem:

Theorem 2.3 (Kahn-Markovic). Let S be a hyperbolic surface and let ε > 0. Then for
every large enough R > 0, the surface S has a finite cover S1 that can be decomposed into
(ε, R)-good pants such that every two adjacent pairs of good pants are glued with the twist
that is ε

R close to +1.

We then show that this surface S1 is quasiconformally close to a finite cover of the model

orbifold Orb(R) (see above for the definition of the Model orbifold Orb(R)):

Theorem 2.4 (Kahn-Markovic). Let S be a closed hyperbolic Riemann surface. Then for
everyK > 1, and every large enough R > 0 there are finite covers S1 and O1 of the surface
S and the model orbifold Orb(R) respectively, and aK-quasiconformal map f : S1 → O1.

The Ehrenpreis conjecture is an immediate corollary of this theorem.

Theorem 2.5 (Kahn-Markovic). Let S and M denote two closed Riemann surfaces. For
anyK > 1, one can find finite degree covers S1 andM1 of S andM respectively, such that
there exists aK-quasiconformal map f : S1 →M1.
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The proof of the above Virtual Decomposition theorem follows from the equidistribution

of the good pants (in much the same way as in the proof of the Surface Subgroup Theorem)

and from the Correction theory that we will outline below.

3. The setup and main ideas

3.1. The feet of a pair of pants. A pair of pants is a compact hyperbolic Riemann surface

with geodesic boundary that is homeomorphic to the sphere minus three disjoint round open

disks. Any such pair of pants is determined by the lengths of the three boundary components,

which are called cuffs. For reasons which will become clear in the next section, we will

prefer to work with the half-lengths, which of course are half the lengths of the three cuffs.

In particular, an R-perfect pair of pants is a pair of pants whose three half-lengths are equal
to R (for a given R > 0).

An orthogeodesic for a compact hyperbolic surface S with geodesic boundary is a proper

geodesic arc which is orthogonal to the boundary of S at both endpoints. The long ortho-

geodesics for a pair of pants are the three embedded orthogeodesics which divide S into

two components—these are the embedded orthogeodesics from a cuff to itself. The short

orthogeodesics are the three other embedded orthogeodesics (from one cuff to another); the

three short orthogeodesics together divide S into two right-angled hexagons. Because a

right-angled hexagon is determined by the lengths of three alternating sides, these two right-

angled hexagons must be isometric. It follows that the six endpoints of the three short or-

thogeodesics divide the three cuffs into six segments such that each cuff is divided into two

equal segments. At each endpoint of an orthogeodesic η, there is a unique normal vector to

the boundary that generates η (via the geodesic flow); we call this normal vector the foot of

η at that endpoint. We say that the feet of a pair of pants at a given cuff are the feet of the

two short orthogeodesics from that cuff to the two other cuffs. Thus there are two feet of a

pair of pants in the normal bundle of each cuff of the pants.

3.2. Good and perfect panted surfaces. Now suppose that we are given a closed hyper-

bolic Riemann surface S of genus g > 1, and a maximal collection C of disjoint curves on S.
(By a curve we mean an (smooth) isotopy class of smoothly embedded closed curves). Each

of these curves can be uniquely realized as a closed geodesic on S; together they divide S
into 2g − 2 pairs of pants. For each closed geodesic γ, there are two of these pairs of pants

with γ as boundary (or γ appears as two boundaries of the same pair of pants). We can then

find two pairs of feet, and holding up the (universal cover of the) cuff vertically, we see that

the two feet on the right are a certain distance above the two feet on the left—except that

this distance is only defined up to the half-length of the cuff. Therefore, to each cuff C, we
have two invariants: the positive real half-length of the geodesic representative γ of C, and
the shear, which is defined up to the half-length of γ. There is a natural topology on panted

surfaces (of a given genus), for which these 6g − 6 invariants provide local coordinates.

AnR-perfect panted surface is one for which all of the cuffs of the pants have half-length
R, and all of the shears are equal to 1. An R, ε-good pair of pants is one for which all three

cuffs have half-length within ε of R, and an R, ε-good panted surface is one made of out of

good pants, for which all of the shears are within ε/R of 1. (Sometimes we will write perfect

for R-perfect, and good for R, ε-good). For any good panted surface S, C, there is a path

through good panted surfaces to a perfect panted panted surface S′, C′ and a homeomorphism
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h : S → S′ determined (up to isotopy) by that path. (The path is determined up to homotopy

rel endpoints, and hence the homeomorphism is determined up to isotopy). We say that

S′, C′ is the perfect version of S, C, and that h is the perfecting homeomorphism.
We prove the following theorem which provides a criterion for two large genus surfaces

to be close to each other in the corresponding Moduli space with respect to the Teichmüller

metric.

Theorem 3.1. There exists R0, K0, and ε0 > 0 such that the following holds. Suppose that
S, C is an R, ε good panted surface, and R > R0, ε < ε0. Let S′, C′ be the perfect version
of S, C. Then there is a K0ε-quasiconformal diffeomorphism h : S → S′ that is homotopic
to the perfecting homeomorphism.

The proof of this theorem is very delicate and we omit it here (the reader can see Section

2 in [14]). It should be stressed that the requirement that pants are glued with the twist by

+1 plays a vital and subtle role and the criterion would not hold without it.

Theorem 2.5 follows if we can prove the following:

Theorem 3.2. For every closed hyperbolic Riemann surface S we can find a finite cover Ŝ
and a maximal set C of disjoint curves on Ŝ such that Ŝ, C is a good panted surface.

or, more precisely, if we can prove the following:

Theorem 3.3. For every closed hyperbolic Riemann surface S, ε > 0, and R > R0(S, ε),
we can find a finite cover Ŝ and a maximal set C of disjoint curves on Ŝ such that Ŝ, C is an
R, ε good panted surface.

Let us briefly explain this implication. We glue twoR-perfect pairs of pants together with
a shear of 1 at each cuff to obtain an R-perfect surface SR with an orientation-preserving

isometry group of size 12. The model orbifold OR is the quotient of SR by this group of

isometries; the three cuffs of half-length R on SR map to a single segment ηR of length R/2
on OR connecting two of the the order 2 points on OR. Any R-perfect panted surface S is a
finite cover of OR in such a way that the R-cuffs of S are the components of the pre-image

of ηR by the cover. It follows that any two R-perfect panted surfaces have a common finite

cover. Then given two surfaces S and T , and ε > 0, we find R, ε/2K0 good panted covers

Ŝ and T̂ (for any R sufficiently large). By Theorem 3.1, these are each ε/2 close to perfect

surfaces, which then have a common cover. Therefore Ŝ and T̂ have common covers within

ε of each other in the Teichmüller metric, and we are finished.

Recall that the Teichmüller metric on the moduli space of compact Riemann surfaces of

genus g is defined so that the distance between S and S′ is logK, where K is the infimum

of K for which there exists a K-quasiconformal diffeomorphism h : S → S′. We will

often write 1 + ε-quasiconfomal when we should really be writing eε-quasiconformal, and

so forth—the reader can make the necessary modifications.

3.3. Building a good cover. We can now begin to describe how we prove Theorem 3.3.

Recall that S is our given closed hyperbolic Riemann surface. A good curve for S (really an

R, ε good curve) will be a closed geodesic γ (or the associated free homotopy class) whose

half-length hl(γ) is within ε of R. We will denote the set of R, ε good curves by Γε,R; it is
a finite set, with size asymptotic to 4εe2R/2R when R is large.

Now let Π be a topological pair of pants, and let f : Π → S be a π1 injective immersion.

Then there is a unique hyperbolic metric on Π (up to pullback by a diffeomorphism isotopic
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to the identity) such that Π becomes a geometric pair of pants (with geodesic boundary) and

f is isotopic to an isometric immersion. If Π is then a good pair of pants (for some R, ε),
then we say that f represents an immersed good pair of pants in S. For any R and ε, there
is a finite set Πε,R ≡ Πε,R(S) of good pairs of pants in S. Using the exponential mixing of

the geodesic flow on S, and the consequent estimates on the number of long orthogeodesic

segments connecting a pair of geodesic segments on S, we prove that the feet of good pants

are evenly distributed in the normal bundle of every good geodesic:

Theorem 3.4. Suppose that γ ∈ Γε,R, and let I be an interval in the (square root of the)
normal bundle for γ. The number n(γ, I) of feet of pants in Πε,R that lie in I is estimated by

n(γ, I) =
n(γ)|I|
2l(γ)

+O(e(1−α)R),

where n(γ) is the total number of pairs of feet on both sides on γ, and α ≡ α(S). Moreover,

n(γ) ∼ 2ε2ReR/Area(S),

for R large given S and ε.

What is important in this statement is that the error term for n(γ, I) is exponentially small

(in R) compared to n(γ). Up to this error term, the feet of the pants with γ as a boundary

are evenly distributed on the normal bundle of γ. Let us suppose, by some miracle, that

the distribution of feet is also balanced: that there are exactly as many feet on one side of

γ as the other. (By the two sides of γ we mean the two components of the unit normal

bundle for γ). Then it is a simple and elementary exercise to show that there is a bijection

σ : Π+
γ → Π−γ (where Π+

γ and Π−γ are the pants with feet on the left and right sides of the

unit normal bundle of the oriented geodesic γ) such that for any pair of pants π ∈ Π+
γ , the

feet of σ(π) on γ are 1 + O(e−αR) above the feet of π on γ. We then use this bijection to

glue the pants in Π−γ to the pants of Π+
γ (along the cuffs that map to γ), and doing this with

every γ ∈ Γε,R, we obtain a closed surface, made of the pants in Πε,R, that is a finite cover

of S. Because the shears are exponentially close to 1, and an exponentially small number is

less than ε/R when R is large, we have obtained a good panted cover of S, and have thereby
proven Theorem 3.3.

Of course, we have no reason to believe that there are exactly the same number of pants

on the two sides of γ. We will describe in a few paragraphs how to correct this imbalance,

but first we will describe the analogous construction in a closed hyperbolic three-manifold

M , and we will see that in three dimensions, the work is a bit easier, because there is no

imbalance to correct.

3.4. Working in three dimensions. Suppose that f : Π →M is a π1-injective map from a

topological pair of pants Π toM . We are interested in describing f up to homotopy. We can

assume that f maps the boundaries of Π to closed geodesics γ0, γ1, γ2 in M . We can also

assume that f maps three disjoint arcs inΠ (connecting the three boundary components) into

three geodesic segments η0, η1, η2 such that η0 connects γ1 and γ2 and meets both geodesics

orthogonally (and similarly for η1 and η2). These three arcs will divide Π into two (filled)

hexagons, and f will map the boundary of each of these hexagons into skew right-angled

hexagons.

Skew right-angled hexagons inH3 are very much like right-angled hexagons inH2, with

R replaced by C. That is, a skew right-angled hexagon is determined by the complex length
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of three alternating sides. The real part of the complex length is the real length, and the

imaginary part, which is defined up to multiples of 2πi, is the amount of rotation from one

adjacent side to the other adjacent side, after one adjacent side has been translated along the

given side to meet the other adjacent side. Because the complex lengths of the ηi are the

same in both skew right-angled hexagons, the two hexagons are isometric, and hence each

γi is divided into two segments by the endpoints of ηi±1, and these two segments have equal

complex length (with respect to the ηi±1). We call this complex length the complex half-

length hl(γ) of γ. The feet or initial vectors of the orthogeodesics ηi±1 are elements of the

unit normal bundle N1(γ), which is a torsor for C/(2πiZ + 2hl(γ)Z), and the difference

of between the two feet is exactly hl(γ). Thus we can think of the unordered pair of feet as

living inN1(
√
γ), the set of unordered pairs that differ by hl(γ); it is a torsor for C/(2πZ+

hl(γ)Z).
We let Γε,R be the good closed geodesics inM (so γ ∈ Γε,R if the complex length l(γ)

satisfies |l(γ) − 2R| < 2ε), and we let Πε,R be the good pants inM (so f : Π → M is in

Πε,R if for each γ ∈ f(∂Π) we have |hl(γ)−R| < ε).
We can then prove the analogue of Theorem 3.4 for distribution of the feet of good pants:

Theorem 3.5. Suppose that γ ∈ Γε,R, and let I×J be a rectangle in the (square root of the)
normal bundle for γ. The number n(γ, I) of feet of pants in Πε,R that lie in I is estimated
by

n(γ, I) =
n(γ)|I × J |
2π.(hl(γ)) +O(e

(1−α)R),

where n(γ) is the total number of pairs of feet in N1(
√
γ), and α ≡ α(M). Moreover,

n(γ) ∼ 8ε4Re2R/Vol(M)

for R large givenM and ε.

It then follows that if Aγ ⊂ N1(
√
γ) is the set of pairs of feet of good pants on γ, then

we can find a permutation σ : Aγ → Aγ such that

|σ(x)− x− πi− 1| < ε/R
for every x ∈ A.

Then we can assemble the pants of Πε,R into a “good panted surface group represen-

tation” using the “doubling trick”. We take two copies of every pair of pants in Πε,R, and

give them the two possible orientations. Then for any γ ∈ Γε,R, we have two sets, Π+
γ

and Π−γ , of oriented pants with γ as boundary, where each pair of pants in Π+
γ induces a

“positive” orientation on γ (arbitrarily chosen), and the opposite holds for Π−γ . We then find

σ̂ : Π+
γ → Π−γ such that the pair of feet of σ̂(Π) on γ is σ applied to the pair of feet of Π

on γ. In this way we pair off all of the boundary components of the two copies of the good

pants.

We then obtain an immersed panted surface f : S →M (with a maximal set C of curves

on S). It is an ε, R good panted surface group representation in the following sense: the

restriction of f to every component of S −⋃ C is a pair of good pants, and for every C ∈ C,
the complex shear coordinates—the difference (inN1(

√
γ)) between the feet of the pants on

one side of C and the other—is within ε of iπ + 1.
It follows that f is essential by the following theorem (closely analogous to Theorem

3.1), which gives a way to certify the injectivity of the induced homomorphism ρ : π1(S) →
Isom(H3).
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Theorem 3.6. There exists R0, K0, and ε0 > 0 such that the following holds. Suppose that
ρ : π1(S) → Isom(H3) is an R, ε good panted surface group representation, and R > R0,
ε < ε0. Then we can find an R-perfect panted Fuchsian group (which we then think of as
acting onH3), and an equivariant map h : H3 → H3 that extends to beK0ε-quasiconformal
on the boundary. In particular, ρ is a faithful, discrete, and quasifuchsian representation.

3.5. The good pants homology and the Ehrenpreis conjecture. We now return the the

problem of proving Theorem 3.3, which implies the Ehrenpreis conjecture. We will let Γε,R
denote the set of oriented geodesics, and we will let ZΓε,R denote the set of integral formal

sums of elements of Γε,R, where we will think of opposite orientations of the same geodesic

as summing to zero. Let ∂ : Πε,R → ZΓε,R be the obvious boundary map. We prove that

when R is large given S and ε, there is a map q : QΓε,R → QΠ300ε,R such that, for any

α ∈ QΠε,R,

1. ∂q(∂α) = ∂α, and

2. ||q(α)||∞ ≤ e−RP (R)||α||∞ for any weighted sum α of good curves.

(Where P (R) is a polynomial inR that depends only on S and ε). Letting α ≡ ΣΠε,R be the

formal sum of the good pants, we replace α with α′ = α−q(∂α) to obtain a “balanced” sum
of pants (∂α′ = 0) with the same equidistribution properties1 as in Theorem 3.4 (because

q(∂α) is small compared to α). We can then pair these pants across every good geodesic

to obtain an immersed (or covering) panted surface which, by Theorem 3.1, is 1 + ε qua-
siconformally equivalent to the corresponding perfect surface, thus proving the Ehrenpreis

conjecture.

We will briefly outline the construction of the map q and the demonstration of the esti-

mate (2). We define the “good pants homology” as QΓε,R/∂QΠε,R; if two sums of good

curves differ by an element of ∂QΠε,R, we will say that they are Πε,R homologous. We

prove that, if Ai, Bj , U, V (i, j = 0, 1) are elements of π1(S, ∗) such that the broken closed

geodesic [·Ai · U · Bj · V ·] has “bounded inefficiency” and the geodesic segments ·U · and
·V · are sufficiently long, then ∑

i,j=0,1

(−1)i+j [AiUBjV ] ≡ 0

in Πε,R (really Π300ε,R) homology, provided, of course, that the [AiUBjV ] are the free

homotopy classes (or, if you like, conjugacy classes in π1(S, ∗)) of good curves.
This then permits us to define, for A, T ∈ π1(S, ∗),

AT ≡ 1

2

(
[TAT−1U ]− [TA−1T−1U ]

)
,

where U is fairly arbitrary. Then AT in good pants homology is independent of the choice

of U . We can show through a series of lemmas (see [16]) that (XY )T ≡ XT + YT in good

pants homology; this then implies that any element of QΠε,R that is zero in H1(S) is zero
inΠε,R homology.

We have not yet said anything about the function q. The idea is that whenever we prove
that two formal sums of curves are equal in good pants homology, we produce a sum of good

1We should observe as well that α′ is positive!
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pants (the “witness” to the homology) whose boundary is equal to the difference of the two

formal sums. When we make an arbitrary choice in determining the sum of good pants, we

take the average of the results of our choices as our witness. When one identity in good pants

homology is proved using another one, the witness for the latter is used to build the witness

for the former. In this way, when we prove that

(XY )T ≡ XT + YT

in good pants homology, we can explicitly produce a function g : π1(S)× π1(S) → QΠε,R

such that (XY )T −XT − YT = ∂g(X,Y ).
We then let g1, . . . g2n be a standard set of generators for π1(S, ∗); then [g1], . . . , [g2n]

also form a basis for H1(S), and so does g = {(g1)T , . . . , (g2n)T }, because X ≡ XT in

H1. For any γ ∈ Γε,R, we can find a unique γ̂ ∈ Zg that is equal to γ inH1(S). Then in the
course of proving that γ ≡ γ̂ inΠε,R homology, we produce q : QΓε,R → QΠε,R such that

∂q(γ) = γ − γ̂.

The identity (1) then follows for q, because ∂̂α = 0 (because ∂α ≡ 0 in H1) for any

α ∈ QΠε,R (where we have extended γ !→ γ̂ to QΠε,R).

It remains only to show the estimate (2) for this q. Again, for each identity that we prove
in [16], and each resulting implicit definition of a witness, we produce a corresponding

estimate for the “witness function”, using the previous estimates. Is this manner we produce

the desired inequality.

4. Applications

4.1. Virtual classification of 3-Manifolds. A subsurface S ⊂ M3 (here S is a compact

surface, possibly with boundary) is essential if the induced map between fundamental groups

is an injection. The surface is incompressible inM3 if it is embedded inM3 and if every ho-

motopically non-trivial simple loop on S is mapped onto a homotopically non-trivial closed

curve in M3. Every essential embedded surface is incompressible, and the converse is a

well-known theorem.

Machinery has been developed to study hyperbolic 3-manifolds that are Haken. A man-

ifold is Haken if it contains an incompressible surface. If M3 is Haken, one can cut M3

along its incompressible surface to obtain a 3-manifold with boundary (which may be dis-

connected). Furthermore, hyperbolic 3-manifolds with boundary are known to be Haken so

one can continue to cut until arriving at indecomposable pieces. This is known as the Haken

hierarchy and it is a cornerstone of 3-dimensional topology. Although many 3-manifolds are

not Haken it was conjectured by Thurston that every such manifold has a finite degree cover

that is. This was known as the Virtual Haken Conjecture.

Thurston made an even stronger conjecture called the Virtual Fibering Conjecture. Let

Sg denote a closed surface of genus g ≥ 2. Given a homeomorphism f : Sg → Sg , let M3
f

denote the corresponding mapping torus. Then M3
f is a closed 3-manifold that fibers over

the circle. Thurston proved thatM3
f is hyperbolic if and only if f is homotopic to a pseudo-

Anosov homeomorphism of Sg . The Virtual Fibering Conjecture Thurston stated that every

hyperbolic 3-manifold has a finite degree cover that fibers over the circle.
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These two conjectures were major driving forces behind the research in three dimen-

sional topology in recent decades. Building on the Surface Subgroup Theorem of Kahn-

Markovic and the work by Wise [23] and Haglund-Wise [12], Agol [2] completed the proofs

of both conjectures. Below we state the main steps in the proof.

A group is cubulated if it is acting properly and co-compactly on a CAT(0) cube com-

plex. It turns out that each cubulated hyperbolic group has a rich (hidden) underlying stuc-

ture. Wise developed this theory [23], although in his work he used an additional assumption

that cubulated hyperbolic groups have a certain Haken hierarchy. Under this assumption he,

and in collaboration with Haglund, Hruska, Hsu and others, showed that such groups can

be embedded in Right Angled Artin groups which implies that such cubulated hyperbolic

groups have many deep properties like being linear, LERF (that is, finitely generated sub-

roups are separable), etc. In particular, if the fundamental group of a hyperbolic 3-manifold

satisfies these assumption, it follows from Wise’s theory that this 3-manifold is Virtually

Haken. Moreover, using the Agol’s criterion for virtual fibering [1], it also follows that such

a 3-manifold virtually fibers over the circle.

In order for Wise’s theory to be applied to hyperbolic 3-manifolds it has to be shown that

3-manifold groups are cubulated and that Wise’s assumption on the Haken hierarchy can be

dropped.

In the course of proving the Surface Subgroup Theorem we proved that given any two

points on the 2-sphere there is a surface subgroup whose limit set separates these two points.

Combining this fact and the Sageev construction [22], Bergeron-Wise showed:

Theorem 4.1 (Bergeron-Wise). The fundamental group of a closed hyperbolic 3-manifold
is cubulated.

Finally, Agol [1] proved Wise’s conjecture that cubulated hyperbolic groups are virtually

special (which in particular means that Wise’s assumption on the Haken hierarchy is not

needed for his theory to work), and thus he was able to prove the Virtual Haken Theorem

and the Virtual Fibering Theorem:

Theorem 4.2 (Agol). Every closed hyperbolic 3-manifold has a finite cover that fibers over
the circle. In particular, every hyperbolic 3-manifold has a finite cover that is Haken.

The reader may want to consult the comprehensive survey article [3] by Aschenbrenner-

Friedl-Wilton for a complete overview of these theories.

4.2. Counting Problems for Essential Surfaces and Moduli spaces. Counting closed

geo-desics in negatively curved manifold is an old and profound subject. Standard results

(that are essentially corollaries of the mixing properties of geodesic flows on negatively

curved manifolds) state that the number of closed geodesics of length at most L grows ex-

ponentially with L. For hyperbolic manifolds (and in particular for Riemann surfaces) this

asymptotic is precisely known (Margulis [19]) with excellent bounds on error terms.

Analogously, in a given hyperbolic 3-manifoldM3 one can count the number of essential

surfaces (up to homotopy) live insideM3. Let s(M3, g) denote the number (up to homotopy)

of genus g incompressible surfaces ofM3. The following counting result was proved in [15]:

Theorem 4.3 (Kahn-Markovic). Let M3 be a closed hyperbolic 3-manifold. There exist
constants 0 < c1 ≤ c2, such that the inequality (c1g)2g ≤ s(M3, g) ≤ (c2g)

2g , holds for
every large g.
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• A difficult (and perhaps deep) conjecture is to prove that for some constant c =
c(M3) > 0 the formula

lim
g→∞

2g
√
s(M3, g)

g
= c

holds. A positive answer to this conjecture would represent a kind of the Prime Num-

ber Theorem for counting essential surfaces in 3-manifolds analogous to the Margulis’

Prime Number Theorem for counting closed geodesics [19].

• Another important question is: What does a random essential surface of genus g (for
some large g) inside M3 look like? Is this a quasifuchsian surface or is it a geomet-

rically infinite surface (according to Thurston, Bonahon and Canary a geometrically

infinite closed surface in M3 is a virtual fiber)?

4.3. Homology Of curves And surfaces in hyperbolic 3-Manifolds. In manifolds of neg-

ative curvature each homotopy class of closed curves can be realized by a unique geodesic.

Given that closed curves have such nice geometric representatives, Thurston recently asked

if one can represent each homology class inH2(M
3,Z) by a nearly geodesic representative.

The following theorem is proved using the methods from [14].

Theorem 4.4 (Liu-Markovic). Every rational second homology class of a closed hyperbolic
3-manifold has a positive integral multiple represented by an oriented connected closed
quasi-Fuchsian subsurface.

It is well known that every homology class in H2(M
3,Z) can be represented as a sum

(with integer coefficients) of connected incompressible surfaces inM3. Such an incompress-

ible surface may be quasifuchsian but it also can be a non-geometrically finite (and thus non

quasifuchsian) incompressible surface. At any rate, this result shows that we can replace

any such sum of incompressible surfaces with a connected quasifuchsian surface without

changing the homology class.

Let γ1 and γ2 denote two oriented closed curves inside a closed hyperbolic 3-manifold

M3. Moving into a general position one can show that if γ1 and γ2 are homologous in

M3 then γ1 and −γ2 bound an immersed surface in M3. Topologically it is much more

significant when two homologous closed curves γ1 and−γ2 bound an essential surface inside
M3 (a surface, possibly with boundary, is essential in M3 if its fundamental group injects

into the fundamental group of M3). The following claim asserts that this property is always

true in the rational homology H1(M
3,Q). In particular, every closed homologically trivial

curve in a closed hyperbolic 3-manifold M3 rationally bounds an essential surface in M3.

This answers a question of D. Calegari in the case of hyperbolic 3-manifolds (this problem

is wide open for hyperbolic groups for example).

Theorem 4.5 (Liu-Markovic). Every rationally null-homologous, π1 injectively immersed
oriented closed 1-submanifold in a closed hyperbolic 3-manifold has an equidegree finite
cover which bounds an oriented connected compact immersed quasi-Fuchsian subsurface.

The following two very recent results by Hongbin Sun are heavily dependent on the

Virtual Haken Theorem and Theorem 4.5.

Theorem 4.6 (Sun). LetA be a finite Abelian group. Then every closed hyperbolic 3-manifold
M3 has a finite degree coverM3

1 such that A is a direct summand in Tor
(
H1(M

3,Z)
)
.
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Theorem 4.7 (Sun). For any closed oriented hyperbolic 3-manifold M3, and any closed
oriented 3-manifold N3, there exists a finite cover M3

1 of M3, and a degree-2 map f :
M3

1 → N3, i.e. M3 virtually 2-dominatesN3.

Very recently, Ursula Hamenstead (see [13]) showed that most closed, rank-one locally

symmetric spaces contain surface subgroups. In particular, she proves that every closed

complex hyperbolic contains a surface subgroup.
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folds with lower and bounded Ricci curvature.

Mathematics Subject Classification (2010). Primary 53-02.

Keywords. ricci, curvature, regularity, path space,

1. Introduction

This paper overviews various recent developments in analysis and geometry related to Ricci

curvature. To begin with, if one were to consider a Riemannian manifold (Mn, g) then

its curvature operator Rm may best be interpreted as the hessian of the metric. This is of

course not literal, the actual hessian of the metric vanishes, but in many ways one can expect

from a Riemannian manifold with bounded sectional curvature the same type of control one

expects from a function with a C2 bound. It is therefore not surprising a fairly complete

understanding of such spaces exists.

The Ricci curvature Ric of the Riemannian manifold is the trace of the curvature. If

we therefore interpret the curvature as the hessian of the metric, we should then interpret

the Ricci curvature as the laplacian of the metric. Ricci curvature is a prevalent concept

in geometric analysis, and by this interpretation one can understand why. Everywhere in

analysis one deals with the laplacians of functions, it is therefore not surprising that one

would want to deal with the laplacian of the metric. This intuition only goes so far, but it

makes for a good starting point.

Though much of this paper will describe recent results in the development of Ricci cur-

vature, we will see that many of the themes and ideas have applications to a broader class

of equations, geometric and not. For good reviews on older developments in Ricci curvature

we refer the reader to [6],[36].

Let us begin by breaking down the layout of this overview. Section 2 begins with a

brief background and overview of Ricci curvature. This includes basic definitions and pre-

vious results in the literature which are of importance. Section 3 discusses recent results

for spaces with bounded Ricci curvature. In particular, new analytic estimates are discussed

which are equivalent to the corresponding bounds on Ricci curvature. Section 4 discusses

recent advances in the structure of spaces with lower Ricci curvature bounds. This includes

an outline of the constant dimension conjecture, and Hölder continuity of tangent cones.

Section 5 discusses a recent technique in the proving of a priori estimates for solutions of

nonlinear equations. The notion is that of quantitative stratification, and though the primary

Proceedings of International Congress of Mathematicians, 2014, Seoul
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application discussed is to prove a priori curvature estimates for Einstein manifolds, there

have since been applications in many unrelated areas, for instance minimal surfaces, mean

curvature flow, harmonic maps between Riemannian manifolds, and critical sets of elliptic

equations. Section 6 ends the paper with a list of some open problems and conjectures from

the area of Ricci curvature.

2. Background and Overview of Ricci Curvature

There are many ways in which the Ricci tensor arises in both geometry and physics, but

the primary interest of this article is in how Ric is tied in with the analysis and geometric

structure ofM . In this section we review some results, new and old, which help to give the

appropriate intuition for the Ricci curvature.

2.1. Lower Ricci Curvature and The Heat Flow. In this section we review the results

of Bakry-Emery-Ledoux on characterizing lower Ricci curvature bounds in terms of the

behavior of the heat flow. These estimates, and related estimates, not only play a crucial

role in the structure theory of sections 2.3 and 4, but are also the first motivation for related

estimates for bounded Ricci curvature given in section 3.

Recall first that given a Riemannian manifold (Mn, g) we have associated to it the

laplace operator Δ. From this we have the heat flow operator Ht : L2(M) → L2(M)
induced by 1

2Δ, and the corresponding heat kernel ρt(x, dy) = ρt(x, y)dvg(y) defined by

Htu(x) =

∫
M

u(y)ρt(x, dy) . (2.1)

To understand the role of the Ricci curvature tensor on the analysis ofM one begins with

a simple computation with the laplacian and gradient to obtain the Bochner formula

Δ|∇u|2 = 〈∇u,∇Δu〉+ 2|∇2u|2 + 2Ric(∇u,∇u) , (2.2)

from which if we assume the lower Ricci bound Ric ≥ −κg we get the Bochner inequality

Δ|∇u|2 ≥ 〈∇u,∇Δu〉 − 2κ|∇u|2 . (2.3)

These inequalities are equivalent to the lower bounds on the Ricci curvature, and are the

basis for the definition of lower Ricci curvature given by Bakry-Emery [4]. It should be

pointed out that their precise condition applies to a much broader situation.

From the Bochner formula many important estimates on the heat flowHt can be proved,

which themselves turn out to be equivalent to the lower Ricci bound. We summarize the

results of [4],[5] in the following theorem.

Theorem 2.1 (Bakry-Emery-Ledoux). Let (Mn, g) be a smooth Riemannian manifold, then
the following are equivalent:

(1) Ric ≥ −κg.
(2) |∇Htu| ≤ eκ

2 tHt|∇u|.
(3) |∇Htu|2 ≤ eκtHt|∇u|2.
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(4) λ1(−Δx,t) ≥ κ(eκt − 1)−1.

(5)
∫
M
u2 lnu2ρt(x, dy) ≤ 2κ−1 (eκt − 1)

∫
M

|∇u|2ρt(x, dy) if
∫
M
u2 ρt = 1.

In condition (4) above we are using the heat kernel laplacian, defined as the laplace

operator associated to the metric measure space (Mn, g, ρt(x, dy)). Explicitly, we have that

Δx,tu = Δu− 〈∇yρt(x, y),∇u〉 . (2.4)

There are various consequences of Theorem 2.1, the most important of which is that a

solution of the heat flow has a priori gradient estimates. There are dimensional versions of

Theorem 2.1 which give rise to laplacian bounds as well.

2.2. Rigidity Theorems for Lower Ricci Curvature. In the previous subsection we dis-

cussed the relationship between lower Ricci curvature and the heat flow. This will eventually

give the analytic control needed in the structure theory. However, as for many areas, struc-

ture theories for lower Ricci curvature also require a notion of rigidity. In this subsection we

briefly review the two main such rigidities that play a role for lower Ricci curvature, namely

volume monotonicity and the splitting theorem. Throughout the paper various generaliza-

tions of these rigidity theorems will be presented, and in essence we will see that each time

one can improve on the rigidity it allows one to prove stronger structure theorems.

We begin with the Bishop-Gromov volume monotonicity and the associated rigidity

statement. Throughout let us consider a manifold (Mn, g) with the lower Ricci bound

Ric ≥ (n − 1)κ. Then we denote by Mn
κ the space form of curvature κ. That is, Mn

κ

is the unique simply connected n-manifold whose sectional curvatures are all κ. We denote

by Volκ(Br) the volume of a ball of radius r > 0 inMn
κ .

To explain the result in its full strength let us discuss the notion of a metric cone space.

Namely, let Y be a compact Riemannian manifold, and let Cκ(Y ) ≡ Y × [0,∞)/
{
Y ×{0}}

be the topological cone of Y . We can equipped Cκ(Y ) with a natural metric given by

gκ ≡ dr ⊗ dr + snκ(r)2gY , where

snκ(r) ≡

⎧⎪⎨
⎪⎩

|κ|−1/2sinh(
√|κ|r), if κ < 0

r, if κ = 0

|κ|−1/2sin(
√|κ|r), if κ > 0

(2.5)

When κ ≡ 0 we will sometimes just write C(Y ) = C0(Y ) as the cone space. It is not so
hard to generalize this construction when Y is an arbitrary metric space. Let us now state

the Bishop-Gromov volume monotonicity, and the rigidity statement associated to it:

Theorem 2.2 (Bishop-Gromov). Let (Mn, g) be complete with Ric ≥ (n − 1)κ. Then
for each x ∈ M if we consider the volume ratio Vr(x) ≡ Vol(Br(x))

Volκ(Br)
, then we have that

d
drVr(x) ≤ 0. Further, if there exists 0 < r0 < r1 such that Vr0(x) = Vr1(x), then the
annulus Ar0,r1(x) is isometric to an annulus Ar0,r1(0κ) inM

n
κ .

A quantitative version of the above is the basis for the stratification theory of the next

section, as well as the starting point for the quantitative stratification and curvature estimates

for Einstein manifolds of section 5.

To exploit the volume monotonicity and its associated rigidity of Theorem 2.2, one will

need to be in the noncollapsed setting. That is, if (Mn, g, p) is a pointed Riemannian man-

ifold with a lower Ricci bound, the estimates and structure of sections 2.3 and 5 depend on
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a lower volume bound Vol(B1(p)) > v > 0 of the unit ball around p. On the other hand,

there is another form of rigidity which will allow one to prove structure theorems even in the

collapsed setting. The Cheeger-Gromoll splitting theorem is the starting point for this point

of view:

Theorem 2.3 (Cheeger-Gromoll). Let (Mn, g) be a complete Riemannian manifold with
Ric ≥ 0. Assume there exists a line γ : (−∞,∞) → M , that is, γ is a minimizing geodesic
satisfying d(γ(s), γ(t)) = |t − s| for all s, t ∈ (−∞,∞). Then there exists a smooth
manifold N with Ric ≥ 0 such thatM is isometric to the product space R×N .

The first structure theorems for spaces with lower Ricci curvature bounds follow in [7]

by first proving an effective version of the splitting theorem, see section 2.3. The proofs

of several conjectures remaining in [7] are proved by first building further refinements of

the splitting theorem, see section 4 for more on this. Recently the splitting theorem has been

proved in [22] for general metric-measure spaces which satisfy a nonnegative Ricci curvature

assumption in the weak sense. In the paper [29], this is used to prove a structure theory for

such spaces which extends the results of section 2.3 and 4.

2.3. Limit Spaces and Basic Structure Theory of Lower Ricci Curvature. In this sec-

tion we review the basic structure of spaces with lower Ricci curvature bounds. If one

wants to study the structure of such spaces, then it is equally important to study limits of

sequences of such spaces. The right notion of limit here is given by Gromov-Hausdorff con-

vergence. That is, let (X, dX , p), (Y, dY , q) be pointed metric spaces. We call a mapping

f : Bε−1(p) → Bε−1(q) an ε-isometry if

(1) f
(
Bε−1(p)

)
is ε-dense in Bε−1(q)

(2) |dX(x, y)− dY (f(x), f(y))| < ε for all x, y ∈ Bε−1(p).

Then we say

dGH(X,Y ) ≤ ε , (2.6)

if there exists ε-isometries f : Bε−1(p) → Bε−1(q) and h : Bε−1(q) → Bε−1(p). See [31]
for a good introduction to the subject. The importance of the Gromov-Hausdorff convergence

in the subject begins with the following classical compactness theorem by Gromov:

Theorem 2.4 (Gromov). Let (Mn
j , gj , pj) be a sequence of complete, pointed Riemannian

manifolds with Ricj ≥ −(n−1), then there exists a subsequence and a pointed metric space
(X, d, p) such that

(Mn
j , gj , pj) → (X, d, p) , (2.7)

where the convergence is in the (pointed) Gromov-Hausdorff sense.

In the above theorem X is a priori just an arbitrary metric space. The regularity and

structure theory of spaces with lower Ricci curvature bounds comes down to the ability to

say more about X . The beginning point is the following result by Cheeger and Colding [7],

which gives quantitative refinements of Theorems 2.2 and 2.3, which in particular allow one

to conclude the results for limit spaces.

Theorem 2.5 (Cheeger-Colding). Let (Mn, g) be a complete manifold. Then for each ε > 0
there exists δ(n, ε) > 0 such that if Ric ≥ −δ with x ∈M , then the following hold:
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(1) (Almost Volume Cone) If |Vδ−1(x) − Vδ(x)| < δ, then there exists a metric space Y
with diam ≤ π such that dGH

(
Bε−1(x), Bε−1(0y)

)
< ε, where 0y ∈ C(Y ) is the

cone point.

(2) (Almost Splitting Theorem) If γ : (−δ−1, δ−1) → M is a minimizing geodesic with
γ(0) = x, then there exists a metric space Y such that dGH

(
Bε−1(x), Bε−1(y)

)
< ε,

where y ∈ R× Y .
When combined with some geometric measure theory there are many applications to the

above statement. To discuss them let us separate into cases, the collapsed and noncollapsed:

2.3.1. Noncollapsed Limit Spaces. In this subsection we consider a limit space (Mn
j ,gj ,pj)

→ (X, d, p) where Ricj ≥ −(n− 1) and Vol(B1(pj)) > v > 0. We call such a limit space

noncollapsed. This is the scenario in which the strongest regularity results are available. The

regularity theorems of [7] take two forms. The first is about the stratification of the singular

set of X , and the second is about regular part of X . The results of sections 4 and 5 will

generalize these, so we will discuss both.

Stratifying a limit space is based on the classical idea of blow up. Namely:

Definition 2.6. Given a metric space (Xx, dx, x), we callXx a tangent cone forX at x ∈ X
if there exists a sequence rj → 0 such that (X, r−1

j d, x) → (Xx, dx, x).

By Gromov’s theorem we have that for every sequence rj → 0 there exists a convergent
subsequence. In particular, tangent cones exist at every point. Unfortunately, they may be

highly non-unique, which is to say the we can get different tangent cones at the same point

by taking different blow up sequences. For instance, in [14] examples of limit spaces are

constructed where the tangent cones at a fixed point are not only not isometric, they are

not homeomorphic and the dimension of the singular set varies, see section 4.1. However,

the following is an important structural theorem for noncollapsed spaces, and it follows

immediately from theorem 2.5 and the volume monotonicity:

Theorem 2.7. In a noncollapsed limit X every tangent cone Xx is a metric cone. That is,
there exists a compact metric space Yx such that Xx = C(Yx).

This is the starting point for the notion of a stratification. The idea of a stratification is

a pretty standard one in the study of geometric nonlinear equations. In spirit, the idea is to

separate points of X based on how singular the points are. To make this more precise we

define the notion of k-symmetric:

Definition 2.8. Consider the following definitions:

(1) We call a metric space Y k-symmetric for k ≥ 0 if there exists a metric space Z such

that Y = C(Z)×Rk.

(2) Given a metric space X , we define for each k ∈ N the closed strata

Sk(X) ≡ {x ∈ X : no tangent cone at x is k-symmetric} . (2.8)

Note then that theorem 2.7 is the statement that every tangent cone is 0-symmetric. Stan-

dard blow up techniques from geometric measure theory can now be used to prove the fol-

lowing:
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Theorem 2.9 ([7]). If (Mn
j , gj , pj) → (X, d, p) where Ricj ≥ −(n−1) and Vol(B1(pj)) >

v > 0, then we have the following Hausdorff dimension estimate:

dimH S
k(X) ≤ k . (2.9)

In section 5 an entirely new proof of theorem 2.9 will be described which will allow for a

quantitative refinement. This quantitative refinement is crucial in the proof of Lp-curvature
estimates for Einstein manifolds.

Let us end this section with the following regularity statement from [7]. By generaliz-

ing an argument of Reifenberg, combined with volume convergence and theorem 2.5 one

obtains:

Theorem 2.10 ([7]). If (Mn
j , gj , pj) → (X, d, p)where Ricj ≥ −(n−1) and Vol(B1(pj)) >

v > 0, then there exists an open dense subset X0 ⊆ X which is a topological manifold.

2.3.2. Collapsed Limit Spaces. The case of collapsed limits is much worse. In the noncol-

lapsed scenario one focused on theorem 2.5.1 and the volume monotonicity. For collapsed

limits the only rigidity theorem one can exploit is the almost splitting of theorem 2.5.2.

Now we are considering a sequence (Mn
j , gj , pj) → (X, d, p) satisfying Ricj ≥ −(n − 1).

Now in the case when Vol(B1(pj)) → 0, it is better to consider the normalized measure

νj ≡ Vol(B1(pj))
−1dvgj onM . In this case the notion of Gromov-Hausdorff convergence

can be extended to measured Gromov-Hausdorff convergence to give us a limit (after possi-

ble passing to a subsequence)

(Mn
j , gj , νj , pj) → (X, d, ν, p) , (2.10)

where ν is a measure on X with the property that if fj : Bε−1
j
(pj) → Bε−1

j
(p) is the

sequence of Gromov Hausdorff maps with εj → 0, then

fj,∗νj → ν . (2.11)

To prove structural theorems on X one begins by showing that almost every point of x
lies in the interior of a minimizing geodesic. Note then that by theorem 2.5.2 this implies that

every tangent cone at such points split anR-factor. Then one starts to iterate this construction

by applying it to the tangent cone itself to see that almost every double tangent cone splits

R2. By repeating this process one can prove the following:

Theorem 2.11 ([7]). If X is a potentially collapsed limit, then for ν-a.e. x ∈ X we have
that the tangent cone at x is unique and isometric to Rkx .

It was conjectured that kx could be taken independent of x in the above. In section 4 we
will explain how this conjecture is proved.

3. Bounded Ricci Curvature and Analysis on Path Space

In this section we overview recent results of [30] concerned with a new class of estimates

for spaces with bounded Ricci curvature. Recall from Section 2.1 the results of Bakry-

Emery-Ledoux, which showed that lower bounds on the Ricci curvature are equivalent to
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certain estimates on the heat flow on M . These estimates took several forms, but all were

essentially concerned with the gradient behavior of functions on M . These estimates, and

similar such estimates, play a hugely important role in the structure theory of spaces with

lower Ricci curvature bounds. These estimates may also be used to make sense of lower

Ricci curvature bounds on general metric measure spaces, see [3] in particular.

Using the results of Bakry-Emery-Ledoux as a moral starting point, the goal of this

section is to explain how to generalize these estimates to the context of two sided bounds on

the Ricci curvature. That is, we want estimates of an analytical nature, which are not only

implied by bounds on the Ricci curvature, but are sufficiently strong that they are equivalent

to bounds on the Ricci curvature. It will turn out that for each of the estimates of Theorem

2.1, there will be a corresponding stronger estimate which is equivalent to bounded Ricci

curvature. In particular, we see how bounded Ricci curvature onM controls the analysis of

path space P (M) in a manner analogous to how lower Ricci curvature controls the analysis

onM . Though we will not discuss it, we refer the reader to [30] to see how these ideas may

be used to make sense of a notion of bounded Ricci curvature on metric-measure spaces.

In more detail, in this section we see that bounded Ricci curvature can be characterized in

terms of the metric-measure geometry of path space P (M). The correct notion of geometry

on path space is one induced by what we call the parallel gradient, and the measures on

path space of interest are the classical Wiener measures. Our first such characterization is in

section 3.2 and shows that bounds on the Ricci curvature are equivalent to certain parallel

gradient estimates on path space. These turn out to be infinite dimensional analogues of the

Bakry-Emery gradient estimates, which are the finite dimensional gradient estimates on the

heat flow well known to characterize lower Ricci bounds. Our second characterization is

in section 3.3 and relates bounded Ricci curvature to the stochastic analysis of path space.

In particular, we see that bounds on the Ricci curvature are equivalent to the appropriate

C
1
2 -time regularity of martingales on P (M). Our final characterization of bounded Ricci

curvature relates Ricci curvature to the analysis on path space. Specifically, in section 3.4

we study the Ornstein-Uhlenbeck operator Lx, a form of infinite dimensional laplacian on

path space, and prove sharp spectral gap and log-sobolev estimates under the assumption

of bounded Ricci curvature. Further we show these estimates on Lx are again equivalent

to bounds on the Ricci curvature. For analogous results for d-dimensional bounded Ricci

curvature see [30].

3.1. Basics of Path Space. Given a Riemannian manifold (Mn, g) we have associated to

it the laplace operator Δ. From this we have the heat flow operator Ht : L
2(M) → L2(M)

induced by 1
2Δ, and the corresponding heat kernel ρt(x, dy) = ρt(x, y)dvg(y) defined by

Htu(x) =

∫
M

u(y)ρt(x, dy) . (3.1)

Now recall that path space

P (M) ≡ C0([0,∞),M) , (3.2)

comes equipped with a canonical collection of mappings. Namely, for each partition

t ≡ {0 ≤ t1 < t2 < · · · < tk < ∞} we have an induced mapping et : P (M) → Mk

given by

et(γ) = (γ(t1), . . . , γ(tk)) . (3.3)
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These evaluation maps play two important roles. The first is to define a class of functions

on P (M) that one can work with to do analysis, the cylinder functions. That is, given

u : Mk → R and a partition t we define the cylinder function U : P (M) → R by the

formula U(γ) ≡ e∗t u(γ) ≡ u(γ(t1), . . . , γ(tk)).
The second role of the evaluation maps is in the construction of the Wiener measure.

Namely, for each x ∈M it is possible to prove the existence of a measure Γx on path space

P (M) which is uniquely determined by the pushforwards

e	t,∗Γx = ρt1(x, dy1)ρt2−t1(y1, dy2) · · · ρtk−tk−1
(yk−1, dyk) . (3.4)

The complicated aspect of this theorem is that the measure Γx does in fact concentrate on

the continuous curves, however it turns out this may be proved in vast generality, see [21].

Finally, let us recall that if we consider the L2 functions on path space L2(Px(M),Γx),
then this Hilbert space comes canonically equipped with a weakly continuous, nested, 1-
parameter family of closed subspaces L2

t (Px(M)) ⊆ L2(Px(M)) defined by F ∈ L2
t iff

F (γ) = F (σ) whenever γ(s) = σ(s) for s ≤ t. We may equivalently describe the sub-

spaces L2
t (Px(M)) in the following manner. Note that path space comes equipped with a

one parameter family of σ-algebras Ft, where Ft is the weak σ-algebra generated by the

valuation maps et with t a partition of [0, t]. Then L2
t (Px(M)) is the closed subspace of

L2(Px(M)) of Ft-measurable functions. With this in mind, we say a one parameter family

of functions F t ∈ L2(P (M)) is a martingale iff for each s < t we have that Fs is the pro-
jection of F t to L2

s. One can often view a martingale as the appropriate generalization of the

heat flow on path space.

3.2. The Gradient Estimate.

3.2.1. The Parallel Gradient. In order to explain the estimates in [30] we have to define

the right notion of geometry on path space. More specifically, we need to define the right

notion of gradient. As in any situation, a gradient requires two pieces of information. First

we need a notion of a directional derivative. However since P (M) is a Banach manifold

whose tangent space at γ may be identified with the continuous vector fields at γ, the notion
of a directional derivative is well defined. Additionally, to define a gradient we need a

restricted class of vectors, for instance those of norm 1 in some sense or another, in order to

turn the directional derivative into a gradient.

The notion introduced in [30], and the one relevant to Ricci curvature, is that of the

parallel gradient. In fact, there are a 1-parameter family of such gradients. In essence, each

is a gradient which depends on only a finite dimensional amount of information. However,

the whole family can be used to recover some more standard infinite dimensional notions of

gradient. More specifically, given a cylinder function F : P (M) → R we define the norm

of its 0-parallel gradient |∇0F | : P (M) → R+ by

|∇0F |(γ) ≡ sup
V

{DV F : V̇ = 0 , |V |(0) = 1} . (3.5)

That is, we are looking at all parallel translation invariant vector fields along γ of norm 1,
and taking the supremum of the directional derivatives. This is a n-dimensional space of

directions. Though we will not discuss this point, it should be pointed out that there is a

subtlety in the above definition. Namely, the curves γ are continuous, and thus it may not

be clear what is meant by a parallel translation invariant vector field. This issue can be
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resolved, though it requires the notion of the stochastic parallel translation map, which we

will not discuss here.

Similarly, let us introduce the notion of the t-parallel gradient. We call a left continuous

vector field V along γ a t-parallel vector field if V (s) = 0 if s < t, and if V̇ (s) = 0
for s ≥ t. Note that for a cylinder function F the directional derivative DV F is still well

defined. Then we define

|∇tF |(γ) ≡ sup
V

{DV F : V is t-parallel , |V |(t) = 1} . (3.6)

Note that though we have only defined the norm, it is easy to see that this supremem is

obtained for some t-parallel translation invariant vector field, which we may define as being

the t-parallel gradient ∇tF . It is not so hard to check that these all extend to closed linear

operators on L2(P (M),Γx), see [30] for more on the parallel gradient.

3.2.2. The Estimate. Now we are in a position to discuss our first characterization of

bounded Ricci curvature on M . Let us begin by recalling the classic gradient estimates of

Bakry-Emery on the heat flow. Their estimates tell us that the lower Ricci curvature bound

Ric ≥ −κ is equivalent to the gradient estimate on the heat flow given by

|∇Htu| ≤ eκ
2 tHt|∇u| , (3.7)

where Ht is the heat flow associated to the operator 1
2Δ on M . The first characterization

of bounded Ricci curvature will be a path space version of this estimate. In fact, one may

recover (3.7) by applying the path space estimate to essentially the simplest type of function

on path space.

To describe the characterization let F ∈ C0(P (M)) be a continuous function on path

space, for instance a smooth cylinder function. In section 3.1 we described for each x ∈ M
the construction of the Wiener measure Γx on path space. Let us observe that by letting the

measures Γx act on F we can construct a continuous function onM by considering∫
P (M)

F dΓx , (3.8)

as a function of x. This method takes continuous functions on P (M) to continuous functions
onM , and it is reasonable to ask what else we know about

∫
F dΓx as a function onM in

terms of F as a function on P (M). In particular, when is it a lipschitz function onM , and

can we control the gradient of
∫
F dΓx as a function onM in terms of the gradient of F as

a function on P (M). In this case it of course matters a great deal what we mean by gradient
of F on P (M). It turns out that if we mean the parallel gradient as defined in section 3.2.1,

then the estimate

|∇
∫
P (M)

F dΓx| ≤
∫
P (M)

|∇0F | dΓx , (3.9)

is equivalent to the smooth metric measure space being Ricci flat. That is, we have that (3.9)

holds if and only if Ric ≡ 0. More generally, we have that |Ric| ≤ κ if and only if

|∇
∫
P (M)

F dΓx| ≤
∫
P (M)

|∇0F |+
∫ ∞

0

κ

2
e

κ
2 s|∇sF | ds · dΓx . (3.10)
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As a first application, it is a worthwhile computation to see what happens when we

apply the above estimate to the simplest function on path space, namely a cylinder function

F (γ) ≡ u(γ(t)) where u is a smooth function onM and t > 0 is fixed. In this case we see

that we exactly recover (3.7), see [30].

3.3. The C1/2-Martingale Estimate. Our second characterization of bounded Ricci cur-

vature relates the bounds on the Ricci curvature to the stochastic analysis on M . Re-

call from section 3.1 that a family of functions F t : Px(M) → R on based path space

Px(M) ≡ {γ ∈ P (M) : γ(0) = x} is a martingale if for each s < t we have that F s

is the projection of F t to the Fs-measurable functions. Again, one should view this as an

appropriate extension of the heat flow onM to path space.

A particularly natural construction of a martingale is to begin with an L2 function

F : Px(M) → R and let F t be the projection of F to L2
t (Px(M). The martingale F t

is then a measurement of how much of F , as a function on path space, depends only on first

[0, t] of a curve. As a family of functions F t is highly nondifferentiable. To see this note that
for any partition t = {0 ≤ t1 < · · · < t|t| <∞} we have the identity

||F ||2L2 =
∑

||F tk+1 − F tk ||2L2 . (3.11)

From this it is clear that not only is the family F t not differentiable in the t-variable, but
what we may hope to converge is the quadratic limit

lim
s→0

(
F t+s − F t)2

s
= [dF t] , (3.12)

for at least a.e. t > 0 in L1. One should be very careful that this is not a pointwise limit.

One may rephrase this for a martingale as follows. If we consider the quadratic variation

[F t] ≡ lim
t

∑(
F tj+1 − F tj)2 , (3.13)

where the limit is taken over partitions of [0, t], then for a martingale [F t] is of bounded vari-
ation and is Ft-measurable. In particular, its time derivative [dF t] exists for almost every

time. This is highly nontrue for general stochastic processes.

The infinitesmal quadratic variation [dF t] is the correct replacement for the time deriva-

tive of F t. A reasonable question then is what properties of F control the quadratic variation

[F t] and its infinitesmal [dF t]. The main estimate of this section is that the estimate

∫
P (M)

[dF t] dΓx ≤
∫
P (M)

|∇tF |2 dΓx , (3.14)

is equivalent toM being Ricci flat Rc ≡ 0. More generally, the estimate

∫
P (M)

√
[dF t] dΓx ≤

∫
P (M)

|∇tF |+
∫ T

t

κ

2
e

κ
2 (s−t)|∇sF | dΓx , (3.15)

∫
P (M)

[dF t] dΓx ≤ eκ
2 (T−t)

∫
P (M)

|∇tF |2 +
∫ T

t

κ

2
e

κ
2 (s−t)|∇sF |2 dΓx , (3.16)
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is equivalent to the bound −κg ≤ Ric ≤ κg on the Ricci curvature. There are several

stronger versions of this estimate, but we refer the reader to [30] for more on this.

As a last remark let us compare these estimates to the lower Ricci curvature context,

and in particular let us note that (3.16) implies a generalization of the Bakry-Emery gradient

estimate when applied to the simplest functions on path space. Specifically, when we apply

(3.16) to the functions of the form F (γ) ≡ u(γ(t)), where u is a smooth function onM and

t is fixed, then we will get the estimate

Ht|∇HT−tu|2(x) ≤ eκ(T−t)HT |∇u|2(x) , (3.17)

for every smooth u and all times 0 ≤ t ≤ T . It is not hard to see that (3.17) is equivalent to

(3.7), and in particular is itself equivalent to the Ricci curvature lower bound Rc ≥ −κg.

3.4. Spectral Gap and Log-Sobolev Estimates on the Ornstein-Uhlenbeck Operator.
The third characterization of bounded Ricci curvature shows how to equate bounds on the

Ricci curvature of a smooth manifold with the analysis on path space. Specifically, we

will recall below how to define the Ornstein-Uhlenbeck operators Lx : L2(Px(M),Γx) →
L2(Px(M),Γx), which are infinite dimensional laplacians on path space, and see how the

spectral properties of Lx are equivalent to bounds on the Ricci tensor.

Spectral gap and log-Sobolev inequalities for the Ornstein-Uhlenbeck operator on path

space have a long history. In the context of path space onRn they were first proved by Gross

[23]. In this case one can approximate in a very strong sense the Ornstein-Uhlenbeck opera-

tor by finite dimensional operators and thus prove the estimate rather directly by more clas-

sical arguments. In the case of path space on a smooth Riemannian manifold the Ornstein-

Uhlenbeck operator was first defined in [17], and its spectral gap and log-sobolev properties

were first studied in [18, 24] and [1]. In [1] it was proven that such estimates existed for an

arbitrary compact Riemannian manifold. To prove the result the manifold was isometrically

embedded in Euclidean space, and therefore the spectral gap itself depended on the embed-

ding. In [18, 24] it was first understood that Ricci curvature could also be used to control

the spectral gap and log-Sobolev inequalities. The proof in [18] was based on a clever ma-

nipulation of the martingale representation formula for manifolds, which itself was based

on a combination of the classic Clark-Ocone-Haussmann formula and Driver’s integration

by parts formula for the Malliavin gradient. The proof in [24] is based on a more inductive

procedure. We refer the reader to the useful book [25] for a more complete reference.

In this section we will discuss the estimates of [30], which give sharp spectral gap and

log-sobolev estimates, and show these estimates are equivalent to Ricci curvature bounds.

To explain all of this more carefully let us briefly discuss the H1
x-gradient on path space,

which was first introduced by Malliavin. We will be interested in what’s to come in studying

functions F which are defined on based path space Px(M). Normally it is easier to consider

the constructions on smooth cylinder functions first, and then to extend more arbitrarily.

Classically, one defines the H1
x-gradient on based path space in a manner similar to the

parallel gradient of section 3.2.1 by

|∇F |H1
x
(γ) ≡ sup

{
DV F :

∫
γ

|V̇ |2 = 1, V (0) = 0
}
. (3.18)

Now on based path space Px(M) we have introduced both a natural geometry given by

the H1
x-gradient, and we have a canonical measure given by the Wiener measure Γx. This

allows us to define a Dirichlet form, from which the Ornstein-Uhlenbeck operator will be
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defined. Namely, we define the closed symmetric bilinear form on L2(Px(M),Γx) by the

formula

E[F ] ≡ 1

2

∫
Px(M)

|∇F |2H1
x
dΓx . (3.19)

In fact, we have that the energy functional E[F ] on a smooth manifold is a Dirichlet form,

see [17]. In particular, by the standard theory of Dirichlet forms [28], there exists a unique,

closed, nonnegative, self-adjoint operator

Lx : L2(Px(M),Γx) → L2(Px(M),Γx) , (3.20)

such that

E[F ] =

∫
Px(M)

〈F,LxF 〉 dΓx . (3.21)

The operator Lx is the Ornstein-Uhlenbeck operator on Px(M). Let us remark that it is not

hard to show that Lx preserves FT -measurable functions F on Px(M). One can rephrase

this by saying that Lx restricts to a well defined operator on time restricted based path space

PTx (M) ≡ {γ ∈ C0([0, T ],M) : γ(0) = x} . (3.22)

It is clear from the definition that Lx1 = 0, and since Lx is a self-adjoint operator it has a
well defined spectral theory. It is then reasonable to ask about the behavior of this spectrum,

and in particular whether or not there exists a spectral gap for the operator. It is shown in [30]

thatM satisfies the Ricci curvature bound |Ric| ≤ κ if and only if the Ornstein-Uhlenbeck

operator Lx on time restricted path space PTx (M) satisfies the spectral gap

λ1(Lx) ≥ 2

(
eκT + 1

)−1

. (3.23)

In fact, it turns out to also be the case that a smooth metric measure space satisfies the

Ricci curvature eigenvalue bound |Ric| ≤ κ if and only if we have the seemingly stronger

log-Sobolev estimate∫
Px(M)

F 2 lnF 2 dΓx ≤
(
eκT + 1

)∫
Px(M)

|∇F |2H1
x
dΓx , (3.24)

where F is any FT -measurable function on path space such that
∫
Px(M)

F 2 dΓx = 1. It is

fairly standard that a log-Sobolev estimate of the form (3.24) implies the spectral gap (3.23).

A consequence of Theorem 3.1 is the converse statement.

We end the section by discussing the relationship between this estimate and the lower

Ricci curvature version. As in the previous estimates, the goal is to apply the estimates

(3.23) and (3.24) to a function F (γ) ≡ u(γ(t)), where u is a fixed function onM and t is
fixed. In this case we recover the spectral gap

λ1(−Δx,t) ≥ κ (eκt − 1
)−1

, (3.25)
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on the heat kernel laplacian, as well as the log-Sobolev estimate∫
M

u2 lnu2ρt(x, dy) ≤ 2κ−1
(
eκt − 1

) ∫
M

|∇u|2ρt(x, dy) , (3.26)

where u is any function such that
∫
M
u2(y)ρt(x, dy) = 1. A consequence of [5] is that these

estimates are themselves equivalent to the lower Ricci bound Rc ≥ −κg, and therefore we

have again easily recovered the lower Ricci curvature from the path space estimate.

3.5. Summary of Main Results. In this section we simply summarize the results of the

previous sections. Let us remark that the results of [30] are more general in several direc-

tions. To begin with, in [30] it is seen that the results hold for metric-measure spaces, not

just Riemannian manifolds. Additionally, a dimensional version of the inequalities is proved.

However, for simplicity sake we restrict ourselves to the context of a Riemannian manifold

for the next statement:

Theorem 3.1. Let (Mn, g) be a smooth complete metric measure space, then the following
are equivalent:

(R1) The Ricci curvature satisfies the bound

−κg ≤ Ric ≤ κg . (3.27)

(R2) For any function F ∈ L2(P (M),Γg) on the total path space P (M) we have the
estimate∣∣∣∣∣∇

∫
P (M)

F dΓx

∣∣∣∣∣ ≤
∫
P (M)

(
|∇0F |+

∫ ∞

0

κ

2
e

κ
2 s |∇sF | ds

)
dΓx , (3.28)

(R3) For any function F ∈ L2(P (M),Γg) on the total path space P (M) which is FT -
measurable we have the estimate∣∣∣∣∣∇

∫
P (M)

F dΓx

∣∣∣∣∣
2

≤ eκ
2 T

∫
P (M)

|∇0F |2 +
∫ T

0

κ

2
e

κ
2 s|∇sF |2 ds · dΓx . (3.29)

(R4) For any function F ∈ L2(P (M),Γx) on based path space Px(M) we have the esti-
mate ∫

P (M)

√
[dF t] dΓx ≤

∫
P (M)

|∇tF |+
∫ T

t

κ

2
e

κ
2 (s−t)|∇sF | dΓx , (3.30)

(R5) For any function F ∈ L2(P (M),Γx) on based path space Px(M) which is FT -
measurable we have the estimate∫

P (M)

[dF t] dΓx ≤ eκ
2 (T−t)

∫
P (M)

|∇tF |2 +
∫ T

t

κ

2
e

κ
2 (s−t)|∇sF |2 dΓx , (3.31)
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(R6) The Ornstein-Uhlenbeck operator Lx : L2(PTx (M),Γx) → L2(PTx (M),Γx) on
based path space PTx (M) satisfies the spectral gap estimate

λ1(Lx) ≥ 2

(
eκT + 1

)−1

. (3.32)

(R7) On based path space Px(M), equipped with the Wiener measure Γx and the H1
x-

gradient, if F is a FT measurable function then we have the log-Sobolev inequality

∫
Px(M)

F 2 lnF 2 dΓx ≤ 2e
κ
2 T

∫
P (M)

(∫ T

0

cosh(
κ

2
t)|∇tF |2 dt

)
dΓx (3.33)

≤
(
eκT + 1

)∫
Px(M)

|∇F |2H1
x
dΓx ,

whenever F satisfies
∫
Px(M)

F 2 dΓx = 1.

An obvious but interesting corollary of the above is the following characterization of

Ricci flat manifolds.

Corollary 3.2. Let (Mn, g, e−fdvg) be a smooth complete metric measure space, then the
following are equivalent:

(1) The space is Ricci flat, that is, Ric+∇2f = 0

(2) For any function F on the total path space P (M) we have the estimate∣∣∣∣∣∇
∫
P (M)

F dΓx

∣∣∣∣∣ ≤
∫
P (M)

|∇0F | dΓx.

(3) For any function F on based path space Px(M) we have the estimate∫
P (M)

√
[dF t] dΓx ≤

∫
P (M)

|∇tF | dΓx.

(4) The Ornstein-Uhlenbeck operator Lx : L2(Px(M),Γx) → L2(Px(M),Γx) on based
path space satisfies the spectral gap estimate λ1(Lx) ≥ 1.

(5) For any function F ∈ L2(Px(M),Γx) with
∫
Px(M)

F 2 dΓx = 1 on based path space
we have the estimate∫

Px(M)

F 2 lnF 2 dΓx ≤ 2

∫
Px(M)

|∇F |2H1
x
dΓx.

Remark 3.3. By twisting the Wiener measure one can find versions of the above estimates

which characterize general Einstein manifolds.
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4. Structure of Lower Ricci Curvature

In this section we discuss some recent results of [15] which prove various conjectures from

[7, 20] on the structure of limit spaces with lower Ricci curvature bounds. In particular, we

discuss how such limits have a well defined dimension and have isometry groups which are

lie groups. The proofs revolve around new estimates, which in short state that the geometry

of metric balls can only change at a Holder rate along minimizing geodesics. In particular,

tangent cones at the same scale change along a geodesic at most at a Hölder rate. This

Hölder rate turns out to be sharp. The following is the main estimate of [15].

Theorem 4.1 ([15]). Let (Mn, g) be a Riemannian manifold which satisfies Ric ≥ −(n−1)
with γ : [0, �] →M a minimizing geodesic. There there exists C(n), α(n) > 0 such that for
any s, t ∈ (δ, (1− δ)�) and r ≤ r(n)� we have that

dGH(Br(γ(s)), Br(γ(t))) <
C

δ�
r |s− t|α(n) . (4.1)

Remark 4.2. The most direct application of the above is to see that tangent cones at the

same scale along minimizing geodesics in limit spaces X must change at a continuous rate,

see [15].

In fact the Hölder exponent α(n) is effectively 1
2 , and examples are constructed to show

that the result fails for α > 1
2 , see Theorem 4.10. The proof of Theorem 4.1 involves many

new estimates which we will not discuss here and we refer the reader to [15] for more on

this.

Theorem 4.1 can be compared to an important theorem of Petrunin in [32], where it is

shown that on Alexandrov spaces (i.e. spaces with lower sectional bounds), tangent cones

on minimizing geodesics are unique. Here we see that we can’t expect uniqueness under

only a lower Ricci assumption, but that at least tangent cones do change at a continuous

rate along a minimizing geodesics. Let us state the main applications of this estimate. The

following was a conjecture from [7], which informally states that limit spaces have a well

defined dimension.

Theorem 4.3 ([15]). LetMn
i → X be a limit of manifolds satisfying Ric ≥ −(n − 1). Let

Rk ⊆ X be defined by x ∈ Rk iff the tangent cone at x is unique and equal to Rk. Then
there exists a unique constant k ≤ n such that X \ Rk has measure zero.
Remark 4.4. More precisely, the measure μX in the above theorem is the canonical limit

measure on X gotten by limiting the normalized volume forms onMi, see [CoNa1].

Proof. Instead of giving the full proof let us consider a simple example. The moral of the

construction gives the idea for the general proof without the necessary technical compli-

cations needed for the general case. Thus let X be a trumpet space. That is, let X ≡
(−∞, 0] ∪(0,0c) C(S

1), where we have identified the end of the interval (−∞, 0] with the

cone point 0c ofC(S
1). SoX is a connected space with a one dimensional part and a two di-

mensional part. Let us see why X cannot arise as a limit of spaces with lower Ricci bounds

by using Theorem 4.1. Indeed, assume it is, and let x0 ∈ (−∞, 0) be a point in the one

dimensional part and x1 ∈ C(S1)/0c be a point in the two dimensional part. Let γ be a

minimizing geodesic connecting x0 to x1. Now part of γ lives in (−∞, 0) and the other part
in C(S1), hence there is t0 such that γ(t) ∈ (−∞, 0) for t < t0 and γ(t) ∈ C(S1)/{0c}
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for t > t0. In particular, for t < t0 we have the tangent cone at γ(t) is unique and isomet-

ric to R, and for t > t0 the tangent cone at γ(t) is unique and isometric to R2. However,

by Theorem 4.1, and the remark following it, the tangent cones of γ(t) must be changing

continuously along γ, which is a contradiction.

Now that we have seen that limit spacesX have a well defined regular set Rk, the struc-

ture of this regular set is of interest. It is known that if X is a limit space of manifolds with

bounded sectional then the regular set R is totally convex. Under only a lower Ricci curva-

ture assumption we prove that R is weakly convex (see [15] for a precise definition). Under

the additional assumptions of bounded Ricci curvature and noncollapsing we can improve

this to the statement that R is totally convex.

Theorem 4.5 ([15]). Let Mn
i → X be a limit of manifolds satisfying |Ric| ≤ n − 1 and

Vol(B1(p)) > v > 0. Then the regular set Rn is totally geodesic. That is, if p, q ∈ R and γ
is a minimizing geodesic connecting p and q, then γ ⊆ R.

Finally, we state one last application of Theorem 4.1. Namely, it is conjectured in [20]

and [7] that the isometry group of a limit space X is a Lie group. This conjecture is based

on the proof in [20] of this statement when X is Alexandrov, and the proof in [7] of this

statement when X is a noncollapsed limit of manifolds with a lower Ricci bound. Using

Theorem 4.1 we can prove this conjecture. Essentially, it is a consequence of the weak

convexity of the regular set which was alluded to before:

Theorem 4.6 ([15]). LetMn
i → X be a limit of manifolds satisfying Ric ≥ −(n− 1). Then

the isometry group of X is a Lie group.

4.1. Examples with Lower Ricci Curvature. Throughout this section we letMn
i → Y be

a limit of manifolds satisfying the lower Ricci bound Ric ≥ −(n− 1) and the noncollapsing
assumption Vol(B1(p)) > v > 0.

In a different direction than the previous subsection we want to understand to what extent

examples of limit spaces Y can be as degenerate as possible. Unlike the Alexandrov case,

e.g. limits with lower sectional curvature, it is not the case that tangent cones even need to be

unique anymore, though it is always an open question as to what extent this nonuniqueness

can be pushed. In [14] we give a characterization for the families of tangent cones which

may appear at a point in a noncollapsed limit. To make this precise note that it does hold that

every tangent cone Yp at p ∈ Y in a noncollapsed limit is a metric cone, so Yp = C(Xp)
where Xp ∈ MGH is a compact metric space. Given this we let

ΩY,p ≡ {X ∈ MGH : some tangent cone Yp at p satisfies Yp = C(X)} , (4.2)

be the space of all such cross sections. It is easy to check that ΩY,p is closed and path

connected in MGH with respect to the Gromov-Hausdorff topology. It also holds that if

X ∈ ΩY,p then

Ric(X) ≥ n− 1 , (4.3)

and that

Vol(X) = V (p) , (4.4)
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is independent of X ∈ Ω̄Y,p. The second statement is a consequence of the Bishop-Gromov

monotonicity. In fact, we see in [14] that this almost characterizes subsets ofMGH which can

appear as ΩY,p for some limit space Y . All that is missing is what we call Ricci closability.

We will not give a precise definition here, but essentially this is nothing more than a form of

geometric cobordism statement. The precise characterization is the following.

Theorem 4.7 ([14]). Let Ω be an open connected manifold, our parameter space. Let
{(Xn−1, gs)}s∈Ω ⊆ MGH , with n ≥ 3, be a smooth family of closed manifolds such that
(4.3) and (4.4) hold and such that for some s0 we have thatXs0 is Ricci closable. Then there

exists a sequence of complete manifolds (Mn
α , gα, pα)

GH→ (Y, dY , p) which satisfy Ricα ≥ 0
and Vol(B1(p)) > v > 0 for which {Xs} = ΩY,p, where {Xs} is the closure of the set {Xs}
in the Gromov-Hausdorff topology.

We have two primary applications of this. First, we construct limit spaces whose tangent

cones at a point have singular sets of varying dimensions. In particular, this rules out the

possibility of stratifying limit spaces based on tangent cones. Secondly, we construct exam-

ples where differing tangent cones at a point may not even be homeomorphic. Specifically

we have

Theorem 4.8 ([14]). For every n ≥ 3, there exists a limit space (Mn
α , gα, pα)

GH→ (Y, dY , p)
where each Mα satisfies Ric ≥ 0 and Vol(B1(pα)) > v > 0, and such that for each
0 ≤ k ≤ n− 2 there exists a tangent cone at p which is isometric to Rk × C(X), where X
is a smooth closed manifold not isometric to the standard sphere.

This example tells us that stratifying limit spaces Y by the singular behavior of tangent

cones is not possible. The next example gives even more degenerate behavior.

Theorem 4.9 ([14]). There exists a limit space (M5
α, gα, pα)

GH→ (Y 5, dY , p) of a sequence
Mα satisfying Ric ≥ 0 and Vol(B1(pα)) > v > 0, and such that there exists distinct tangent
conesC(X0),C(X1) at p ∈ Y withX0 homeomorphic toCP 2'CP

2
andX1 homeomorphic

to S4.

The final example shows that Theorem 4.1 is sharp.

Theorem 4.10 ([15]). For every ε > 0 there exists a noncollapsed limit space Yε with a
minimizing geodesic γ ⊆ Yε such that
(1) The tangent cones Yγ(s) at each of the points γ(s) are unique.

(2) The path B1Yγ(s) in the set of compact metric spaces MGH with the Gromov Haus-
dorff topology is C1/2-Hölder continuous.

(3) The path B1Yγ(s) in the set of compact metric spaces MGH with the Gromov Haus-
dorff topology is not C1/2+ε-Hölder continuous.

5. Quantitative Stratification and Regularity of Nonlinear PDE’s

In this section we will outline new methods for proving Lp-estimates on the solutions of

nonlinear equations. The method originated in [12] with the proving of a priori curvature
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estimates for Einstein manifolds, however the technique is very general and has since been

applied to minimal surfaces [11], harmonic maps between Riemannian manifolds [11], mean

curvature flow [9], harmonic map flow, and the study of critical sets of elliptic equations [10].

In spirit, the new ideas involve improvements on the idea of stratification, and combining

these improvments with ε-regularity theorems that exploit the symmetry produced by the

stratification.

In the study of nonlinear partial differential equations, and in particular the study of

geometric pde’s, a very common tool is that of a stratification. We saw an example of this

in section 2.3, and the general philosophy remains the same in other cases. That is, typically

solutions of such nonlinear equations are not smooth and there is some singular set Sing

of the solution. However, as a general principle it is helpful to not only separate out the

smooth points from the singular points, but also to separate points based on the degree of

the singularity. Thus, one usually has a stratification S0 ⊆ S1 ⊆ · · · ⊆ Sn−1 ≡ Sing of

the singular set where Sk is defined as the set of points which are not of degree k + 1. The
precise meaning of this varies from situation to situation, see section 2.3 for an example of

this in the context of lower Ricci curvature.

The typical result of a stratification theory of a nonlinear pde is to prove an estimate of

the form

dimSk ≤ k , (5.1)

where almost always the meaning of dimension is in the Hausdorff sense. As powerful as

such results are, there is an underlying weakness to them. Fundamentally, this stems from

the simple fact that the rationals are a dense subset of Euclidean space which have Hausdorff

dimension zero. In particular, (5.1) cannot prevent the singular set from being dense, or from

being arbitrarily dense. Thus, despite the many applications of (5.1), any questions which

involve control of a more effective nature cannot be answered with (5.1).

In particular, what one typically would like to prove for solutions of differential equations

are Schauder type estimates. In the context of Ricci curvature this means one would like

to conclude a priori Lp curvature bounds for Einstein manifolds, for minimal surfaces this

means showing Lp bounds on the second fundamental form, and for harmonic maps between

Riemannian manifolds this means proving a priori Lp estimates on the gradient or hessian

of such a map. We will see how to prove such estimates in this section. In the spirit of this

article we will focus on the proof for Einstein manifolds, however the basic outline is the

same in each situation (even if the details vary).

The outline of this section is the follows. In section 5.1 we give the rigorous definition of

the quantitative stratification, and a statement of the main results concerning it. In section 5.2

we outline the proof of these estimates. The ideas involved turn out to be different from the

standard proof of (5.1) by dimension reduction, and interestingly enough can be used to give

a new proof of (5.1). In section 5.3 we apply these results to Einstein manifolds to conclude

apriori Lp estimates on the curvature. In fact, we will see that the results are significantly

stronger than this, and actually give estimates for the regularity scale. Finally in section 5.4

we outline the proof of the estimates of section 5.3.

5.1. Quantitative Stratification and Statement of Main Results. The goal of the quanti-

tative stratification is to see that under reasonable circumstances, most points have balls of

some definite size around them which contain a lot of symmetries. Of course we will make

this more precise. The standard notion of stratification, which is reviewed in section 2.3, is
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based on the idea of grouping points of a limit space X by the number of symmetries of its

tangent cones. This is an infinitesmal notion which depends on the blow up behavior at a

point. In particular, on a smooth manifold the stratification is always trivial as every tangent

cone isRn and thus has maximal symmetry. On the other hand, the quantitative stratification

introduced in this section is based on grouping points based on the number of almost sym-

metries of balls of definite size. In particular, this stratification is not based on infinitesmal

behavior, and even for a smooth manifold the quantitative stratification is nontrivial. The

applications of section 5.3 depend on this.

To define the quantitative stratification we proceed by making rigorous the notion of

almost symmetries:

Definition 5.1. Let (X, d) be a metric space, we make the following definitions:

(1) Given x ∈ X we say X is k-symmetric at x if there exists a compact metric space Y
such that X ≡ C(Y ) × Rk is isometric to a cone space over Y cross Rk, and if x is

the cone tip under this isometry.

(2) Given x ∈ X and 0 < r ≤ 1 and ε > 0 we say that X is (k, ε, r)-symmetric at x if

there exists a metric space Z which is k-symmetric at z ∈ Z such that

dGH
(
Bε−1r(x), Bε−1r(z)

)
< εr . (5.2)

To state the second definition in words, we say that X is (k, ε, r)-symmetric if the ball

Br(x) looks very close to having k-symmetries. The quantitative stratification is then de-

fined as follows:

Definition 5.2. Given a metric spaceX with ε, r > 0 fixed and k ∈ N, we define the closed

(k, ε, r)-strata Skε,r(X) by

Skε,r(X) ≡ {x ∈ X : for no r ≤ s ≤ 1 is X (k + 1, ε, s)− symmetric at x} . (5.3)

Thus, the strata Skε,r(X) is the collection of points such that no ball of size at least r is
almost k + 1-symmetric. The first main result of [12] is to show that for manifolds which

are noncollapsed and have lower Ricci curvature bounds, the set Skε,r(X) is small in a very

strong sense. To say this a little more carefully, if one imagines the k-strata as being a well

behaved k-dimensional submanifold (for simplicity sake), then one would expect the volume

of the r-tube around the set to behave like rn−k. We show this almost holds:

Theorem 5.3 ([12]). Let (Mn, g, p) be a complete manifold with Rc ≥ −(n − 1) and
Vol(B1(p)) > v > 0. Then for every ε > 0 there exists C(n, v, ε) such that

Vol(Br(Skε,r(M)) ∩B1(p)) ≤ Crn−k−ε . (5.4)

Remark 5.4. Though one can take ε > 0 to be arbitrarily small, there is an ε loss in the

power rn−k−ε beyond what one might hope for. In fact, some loss is necessary as if one

only assumes a lower bound on the Ricci curvature then the result fails for rn−k. Under a
full bound on the Ricci curvature it is conceivable the result may be improved however.
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5.2. Outline of Proof of Theorem 5.3. We now give an outline of the proof of Theorem

5.3. The classical dimension estimates on the singular set (5.1) are given by a dimension

reduction argument. Such an argument cannot be quantified. Morally, this is because the

basis for the argument is to take multiple tangent cones. The quantification of such an ar-

gument leads to the comparison of scales which are not comparible, and a loss of effective

control. Instead, we give an entirely new proof of (5.1) which is more adaptable to being

made quantitative. The next subsections will outline the proof and the main ideas involved.

5.2.1. Cone Splitting. The essence of any stratification is symmetry. A stratification is a

measurement of how many points (and scales) do not have a lot of symmetry. To provide

estimates on such things one needs a way of producing symmetry. The basic idea in [12] is

that of cone splitting.

To explain this, recall that a metric space X is 0-symmetric if X = C(Y ) is a cone

space over another metric space. More generally X is 0-symmetric with respect to x ∈ X
if X = C(Y ) such that x is the cone point of C(Y ). Imagine now that X is 0-symmetric

with respect to two distinct points x0, x1 ∈ X . In fact, it is not a hard exercise that this

is only possible if X ≡ R × C(Y ′) is 1-symmetric with x0 and x1 cone points lying on

the same R-factor. Said more simply, two 0-symmetries imply a 1-symmetry. This may be

generalized simply into a process we call cone splitting:

Cone Splitting: Let X = Rk × C(Y ) be k-symmetric, and assume there exists x0 �∈
Rk × {0y}, where 0y is the cone point of C(Y ), such thatX is 0-symmetric with respect to

x0. Then X is k + 1-symmetric.

Thus the key step in producing symmetry of a metric space is simply to produce lots of

0-symmetry. More simply, k independent 0-symmetries imply a k-symmetry. We will see in

the next subsection how to do this. Let us end this subsection with the effective version of

the above cone splitting for spaces with lower Ricci curvature bounds:

Theorem 5.5 ([12]). Let (Mn, g) be a Riemannian manifold with Ric ≥ −(n − 1). For
every ε, τ > 0 there exists δ(n, ε, τ) > 0 such that the following holds. IfM is (10r, k, δ)-
symmetric at x ∈M with Gromov-Hausdorff map φ : B10r(x) → Rk × C(Y ), and if there
exists x0 ∈ Br(x) such that φ(x0) �∈ Bτ (Rk × {0y}) withM being (10r, 0, δ)-symmetric
at x0, thenM is (5r, k + 1, ε)-symmetric at x.

5.2.2. Energy Decomposition. In this last subsection we saw the key to forcing k-symmetries

was to construct k indepedent 0-symmetries. To begin this process we want to consider the

case of just finding which scales are 0-symmetric. The key ingredient here is the existence

of a monotone quantity. Namely, if M satisfies Ric ≥ −(n − 1) then for each x ∈ M we

have the monotone quantity

Vr(x) = − ln
Vol(Br(x))

Vol−1(Br)
, (5.5)

where Br is a ball of radius r in hyperbolic space. One can rephrase theorem 2.5.2 in the

following manner:

A consequence of the Cheeger-Colding theory is the following quantitative form of the

rigidity of theorem 2.2:
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Theorem 5.6. Let (Mn, g) be a Riemannian manifold with Ric ≥ −(n − 1), then for each
ε > 0 there exists δ(n, ε) > 0 such that if for r < δ we have that |Vr(x)−Vδr(x)| < δ , then
M is (r, 0, ε)-symmetric at x.

Now let us denote by rα = 2−α the sequence of scales which drop by a factor of 1
2 . For a

given point x ∈M we will call the scale rα a good scale if x is (rα, 0, ε)-symmetric at scale

rα, and a bad scale otherwise. Now let us check the following easy, but highly important,

consequence of the monotone quantity:

Theorem 5.7 ([12]). Let (Mn, g, p) be a Riemannian manifold with Ric ≥ −(n − 1) and
Vol(B1(p)) > v > 0. Then for each ε > 0 there exists N(n, ε, v) > 0 such that for every
x ∈ B1(p) we have that there are at most N bad scales at x.

Proof. Note first that if Vol(B1(p)) > v > 0, then the doubling property of the volume tells

us that Vol(B1(x)) > C(n)
−1v > 0 for each x ∈ B1(p). Now it follows from theorem

5.6 that for rα to be a good scale it suffices that Vrα(x)− Vrα+β
(x) < δ, where β(n, ε) and

δ(n, ε) are fixed constants. But now let us observe that∑
|Vrα(x)− Vrα+1

(x)| =
∑
Vrα(x)− Vrα+1

(x) = V1(x)− V0(x) ≤ − log(C−1v) .

(5.6)

On the other hand imagine there are at least N scales for which Vrα(x) − Vrα+β
(x) > δ.

Then we get that

∑
|Vrα(x)− Vrα+1

(x)| ≥ Nδ

β
. (5.7)

Combining the last two inequalities gives the required upper bound on N .

The last Theorem tells us that at every point most scales are almost 0-symmetric. What

we want to see now is that at most points and scales there are other points nearby which are

also good scales. By the cone-splitting this would give us our desired symmetries.

We begin with the following, for each x ∈ B1(p) let us associate to x the infinite Z2-

tuple given by

Tα(x) =

{
0, if x is (rα, 0, ε)− symmetric

1, otherwise
(5.8)

The content of the last Theorem is that∑
Tα(x) ≤ N(n, v, ε) . (5.9)

Now the energy decomposition of M is as follows. Let us fix β ∈ N, and for each

β-tuple of Z2, T ∈ Z
β
2 , let us define

MT ≡ {x ∈ B1(p) : Tα(x) = Tα for all 0 ≤ α ≤ β} . (5.10)

That is, we are grouping points of M by which scales they are good and bad on. Now the

key result is the following:
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Theorem 5.8 ([12]). Let (Mn, g, p) be a Riemannian manifold with Ric ≥ −(n − 1) and
Vol(B1(p)) > v > 0. Then for each ε, ε′ > 0 and T ∈ Z

β
2 there exists C(n, ε) > 0 such that

Vol(Br(Skε,r ∩MT )) < Cr
n−k−ε′ , (5.11)

for r ≥ rβ .
The proof is involved, and based on an induction on β. The key idea which brings the

energy decomposition into play is that by only comparing points which are good on the

same scales, either we can locally coverMT by a sufficiently small number of balls for the

estimate, or if we cannot then this forces splitting by the cone-splitting principle.

5.2.3. Proof of Theorem 5.3. The proof of Theorem 5.3 now follows almost immediately

from Theorem 5.8. There is no harm in assuming r = rβ for some β, otherwise there exists a
unique rβ such that rβ ≤ r < rβ−1 and by volume doubling we can still use the rβ covering.

Now for each β-tuple T ∈ Z
β
2 we have the desired estimate

Vol(Brβ (S
k
ε,rβ

∩MT )) < Cr
n−k−ε′
β , (5.12)

from Theorem 5.8. In general, to estimate Vol(Br(S
k
ε,r ∩ B1(p))) we would then need to

multiply this estimate by the number of β-tuples T , which is 2β = r−1
β . Of course this is too

large a loss. However, by Theorem 5.7 we only need to consider those β-tuples T for which∑
Tα ≤ N , which is on the order of ≈ βN ≈ C log rβ . Thus if we let ε

′ = ε/2 we have

that

Vol(Brβ (S
k
ε,rβ

∩B1(p))) ≤
∑
T

Vol(Brβ (S
k
ε,rβ

∩MT )) < Cr
n−k−ε/2
β log rβ ≤ Crn−k−εβ ,

(5.13)

which proves Theorem 5.3.

5.3. Application to Einstein Manifolds. Now let us outline how Theorem 5.3 may be used

to prove a priori Lp bounds on the curvature, and in fact for the regularity scale, for Einstein
manifolds. As was discussed, the same moral works in many other areas to provide the first

Schauder estimates for various nonlinear pde’s.

To begin with, so that we may state the result in its full strength, let us define the notion

of regularity scale:

Definition 5.9. Given a smooth Riemannian manifold (Mn, g), for each point x ∈M let us

define the regularity scale r|Rm|(x) as

rx = r|Rm|(x) ≡ max

{
0 < r ≤ 1 : sup

Br(x)

|Rm| ≤ r−2

}
. (5.14)

Let us begin with some remarks on the regularity scale. For starters, note the easy es-

timate |Rm|(x) ≤ r−2
x , and thus lower bounds on the regularity scale correspond to upper

bounds on the curvature. However, control over the curvature at a single point gives no a pri-

ori control of the geometry in a neighborhood of that point. On the other hand, the regularity

scale bounds the curvature in a definite size neighborhood, which tells us everything about
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the possible geometries. In particular, ifM is Einstein we can immediately conclude that on

a ball of half the size we have control over all derivatives of the curvature, that is:

sup
Brx/2(x)

|∇(k)Rm| ≤ Ckr−kx . (5.15)

Additionally it is worth remarking that the definition of the regularity scale is chosen to

be scale invariant. That is, if we rescale the geometry by r−1
x , so thatBrx(x) → B1(x), then

we have that the curvature |Rm| ≤ 1 is bounded by one on the ball B1(x) of radius one.
Now the main result of this section and the main application of the quantitative stratifi-

cation is the following:

Theorem 5.10 ([12]). Let (Mn, g, p) be an Einstein manifold with |Ric| ≤ n − 1 and
Vol(B1(p)) > v > 0. Then the following hold:

(1) For each p < 1 we have that∫
B1(p)

|Rm|p ≤
∫
B1(p)

r−2p < C(n, v, p) , (5.16)

and in particular we have the Minkowski estimate

Vol(Br({x : rx ≤ r})) < C(n, v, p)r2p . (5.17)

(2) IfM is Kähler, then for each p < 2 we have that∫
B1(p)

|Rm|p ≤
∫
B1(p)

r−2p < C(n, v, p) , (5.18)

and in particular we have the Minkowski estimate

Vol(Br({x : rx ≤ r})) < C(n, v, p)r2p . (5.19)

(3) Finally if we assume
∫ |Rm|p ≡ Λ < ∞, then we can conclude the much stronger

estimate

Vol(Br({x : rx ≤ r})) < C(n,Λ, p)r2p . (5.20)

Theorem 5.10.3 is particularly useful for Kähler Einstein manifolds, where one has the

L2 bound based on topological assumptions.

5.4. Outline of Proof of the Quantitative Estimates. Now we end this section by out-

lining the proof of Theorem 5.10. In particular we focus on Theorem 5.10.2, the proofs

of the other statements are similar up to technical details. The idea is very straightforward

given the quantitative stratification of Theorem 5.3 and the ε-regularity of Cheeger-Tian.

Namely, let us state their theorem in the following manner: If Mn is Kähler Einstein with

|Rc| ≤ n − 1 and Vol(B1(p)) > v > 0, then there exists ε(n, v) > 0 such that if p is

(n− 3, ε, 2r)-symmetric, then rx ≥ r.
Now let us fix r > 0 and ε > 0 from the above statement and δ > 0 aribitrarily. Then

Theorem 5.3 tells us in particular that

Vol(Br(S
n−4
ε,2r (M) ∩B1(p))) < C(n, ε, δ)r

4−δ . (5.21)
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However, if x �∈ Sn−4
ε,2r then this is exactly the statement that there exists s ≥ 2r such that x

is (n − 3, ε, s)-symmetric. In particular, by the ε-regularity theorem this immediately gives

rx ≥ r. Combining this with the volume estimate (5.21) immediately gives the estimate

(5.19), as claimed.

6. Open Problems and Conjectures

We end this write up with a small list of open problems and conjectures involving spaces

with lower Ricci curvature bounds. Some of these are old and some are new. Let us begin

with the basic issue of regularity of spaces with lower Ricci curvature bounds:

Open Question. Let X be a Gromov-Hasudorff limit of manifolds Mn
j satisfying Ric ≥

−(n−1). More generally letX be a metric-measure space satisfying a lower Ricci curvature
bound in the generalized sense, for instanceX could be aRCD(n,K)-space as in [3]. Then
is X a topological manifold on an open dense subset?

In a recent paper [29] it has been shown that such a RCD(n,K) space is rectifiable,

which is roughly the statement that X may be obtained from gluing together subsets of

Euclidean space. The statement of manifold roughly requires these subsets to be open. This
is still unknown, and one of the more interesting problems in the area.

In another direction it has been discussed that even for noncollapsed limit spaces the

tangent cones need not be unique, and in fact by [15] pretty much any subset which could be

the collection of tangent cones at a point in some limit is. However, it would be of interest

to understand how big a subset of a limit space does have unique tangent cones. One might

hope for the following:

Conjecture 6.1. Let (X, d, p) be a Gromov-Hasudorff limit of manifolds (Mn
j , gj , pj) sat-

isfying Ricj ≥ −(n− 1) and Vol(B1(pj)) > v > 0. Then the set of points of X which have
nonunique tangent cones has dimension ≤ n− 3.

It is a corollary of [7] that away from a set of dimension ≤ n − 2 the tangent cones are

unique and Rn. It is also known that away from a set of dimension ≤ n− 3 that there exists
some tangent cone which is Rn−2 × C(S1(r)), where S1(r) is the circle of radius r ≤ 1.
An equivalent version of the above conjecture is therefore the following

Conjecture 6.2. Let (X, d, p) be a Gromov-Hasudroff limit of manifolds (Mn
j , gj , pj) sat-

isfying Ricj ≥ −(n − 1) and Vol(B1(pj)) > v > 0. Then away from a set of Hausdorff
dimension ≤ n− 3 the tangent cone is unique and isometric to Rn−2 × C(S1(r)) for some
r ≤ 1.

A corollary of the above would be the n− 2-rectifiability of the singular set.

Instead of considering just spaces with a lower Ricci curvature bound we could con-

sider Einstein manifolds, and in particular noncollapsed Einstein manifolds. There are many

structural conjectures out there at the moment, and the following is a strengthened version

which would imply many of them:

Conjecture 6.3. Let (Mn, g, p) be an Einstein manifold satisfying |Ric| ≤ n − 1 and
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Vol(B1(p)) > v > 0. Then there exists C(n, v) > 0 such that∫
B1(p)

|Rm|2 < C . (6.1)

Note that ifMn is Kähler then the conjecture is known if we further assume topological

restrictions onM . Without any such topological restrictions it has been proved in Theorem

5.10 that
∫
B1(p)

|Rm|2−ε < Cε for any ε > 0. On the other hand, for four dimensional

Einstein manifolds the conjecture is again known to hold under topological restrictions (in

this case the L2 norm of the curvature is equivalent to the Euler characteristic). Finally, if

M4 is Kähler and four dimensional, then the above conjecture can be shown to hold in full.

We end with the following structural conjecture for noncollapsed limits of Einstein man-

ifolds:

Conjecture 6.4. Let (X, d, p) be a Gromov-Hasudorff limit of Einstein manifolds (Mn
j , gj, pj)

satisfying |Ricj | ≤ n − 1 and Vol(B1(pj)) > v > 0. Then X is homeomorphic to a real-
analytic variety.

A great deal of progress has been made recently in the above conjecture, in particular it

has been proven for compact Kähler manifolds with positive first chern class, see [35],[16].
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Abstract. I will talk about my recent work with Fernando Marques where we used Almgren–Pitts

Min-max Theory to settle some open questions in Geometry: The Willmore conjecture, the Freedman–

He–Wang conjecture for links (jointly with Ian Agol), and the existence of infinitely many minimal

hypersurfaces in manifolds of positive Ricci curvature.
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1. Introduction

I will start by introducing three problems in Geometry which, while quite distinct, have in

common the fact that their solution comes from understanding unstable critical points in

the space of all embedded hypersurfaces on a given manifold. A panoramic overview of

variational methods in Geometry can be found in the contribution of Fernando C. Marques

[36].

1.1. Willmore Conjecture. A central question in Mathematics has been the search for the

“optimal” representative within a certain class of objects. Partially motivated by this princi-

ple, Thomas Willmore started in the 60’s the quest for the “optimal” immersion of a surface

in space.

With that in mind, he associated to every compact surface Σ ⊂ R3 the quantity (now

known as the Willmore energy),

W(Σ) =

∫
Σ

(
k1 + k2

2

)2

dμ,

where k1, k2 are the principal curvatures of Σ.
The Willmore energy is invariant under rigid motions, scaling, and is large when the

surface contains long thin tubes or long thin holes thus detecting how “bended” the surface

Σ is in space. Less obvious, is the fact that the Willmore energy is also invariant under the

inversion x !→ x/|x|2 and thus invariant under conformal transformations. Willmore himself

only found this some years later but, as we explain soon, this was know already since the

twenties.

It is worthwhile to remark that in applied sciences the Willmore energy had already made

its appearance a long time ago, under the name of bending energy, in order to study vibrating

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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properties of thin plates. In 1810’s, Marie-Sophie Germain proposed, as the bending energy

of a thin plate, the integral with respect to the surface area of an even, symmetric function of

the principal curvatures, in which case the Willmore energy is the simplest possible example

(excluding the area). Similar quantities were also considered by Poisson around the same

time.

Moreover, the Willmore energy had also appeared in Mathematics through the work of

Thomsen [52] and Blaschke [7] in the 1920’s but their findings were forgotten and only

brought to light after the interest in the Willmore energy increased. In particular, Thomsen

and Blaschke were already aware of the conformal invariance of the Willmore energy.

Back to Willmore’s quest for the “best” possible immersion, he showed that round

spheres have the least possible Willmore energy among all compact surfaces in space. More

precisely, ever compact surface Σ ⊂ R3 has

W(Σ) ≥ 4π

with equality only for round spheres.

Having found the compact surface with least possible energy, he tried to find the torus in

space with smaller energy than any other tori. It is interesting to note that, just by looking at

the shape of tori in space, no obvious candidate stands out. Hence, Willmore fixed a circle

on a plane and considered tubes Σr of a constant radius r around that circle. When r is very
small, Σr is a thin tube around the planar circle and thus its energy W(Σr) will be very

large. If we keep increasing the value of r, the “hole” centered at the axis of revolution of

the torus decreases and eventually disappears for some r0. Thus W(Σr) will be arbitrarily
large for r close to r0. Therefore W(Σr) must have an absolute minimum as r ranges from
0 to r0, which Willmore computed to be 2π2.

Up to scaling, the “optimal” torus that Willmore found has generating circle with radius

1 and center at distance
√
2 from the axis of revolution:

(u, v) !→ (
(
√
2 + cos u) cos v, (

√
2 + cos u) sin v, sin u) ∈ R3.

In light of his findings, Willmore conjectured [55]:

Willmore Conjecture (1965). Every compact surface Σ of genus one has∫
Σ

(
k1 + k2

2

)2

dμ ≥ 2π2.

It seems at first rather daring to make such conjecture after having tested it only on a

very particular one parameter family of tori. On the other hand, the torus Willmore found is

special and had already appeared in Geometry: Inside the unit 3-sphere S3 in R4 there is a

highly symmetric torus, the Clifford torus, which is given by S1( 1√
2
) × S1( 1√

2
). There is

a stereographic projection from the 3-sphere onto space that sends the Clifford torus to the

“optimal” torus found by Willmore.

The richness of the Willmore conjecture derives partially from the fact that the Willmore

energy is invariant under conformal maps. One immediate consequence is that the conjecture

can be restated for surfaces in the unit 3-sphere S3. Indeed, if Σ is a compact surface in S3

and Σ̃ its image in R3 under stereographic projection, then one has

W(Σ̃) =

∫
Σ

1 +

(
k1 + k2

2

)2

dμ,
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where k1, k2 are the principal curvatures of Σ with respect to the standard metric on S3. For

this reason, one calls the left-hand side of the above equation the Willmore energy W(Σ) of
Σ ⊂ S3.

The conjecture had been verified in many special cases borrowing inspiration from sev-

eral distinct areas such as integral geometry, algebraic geometry, minimal surfaces, analysis

or conformal geometry. We refer the reader to [38] for the history of partial results and

mention simply the ones relevant to our work.

In 1982 it was proven by Li and Yau [33] that the Willmore energy of any non-embedded

surface must be at least 8π (which is strictly bigger than 2π2. In particular, it suffices to

check the Willmore conjecture for embedded tori.

Ros [46] proved in 1999 the Willmore conjecture for tori in S3 that are preserved by the

antipodal map and his method motivated our approach.

Curiously, two biologists, Bensimon and Mutz [40], verified the Willmore conjecture

with the aide of a microscope while studying the physics of membranes! They produced

toroidal vesicles in a laboratory and observed that they assumed the shape, which according

to the Helfrich model [23] should be the minimizer for the Willmore energy, of the Clifford

torus or its conformal images (called Dupin cyclides).

Jointly with Fernando Marques [38] we showed that

Theorem 1.1. Every embedded compact surface Σ of S3 with positive genus has

W(Σ) ≥ 2π2.

Equality only holds, up to rigid motions, for stereographic projections of the Clifford torus.

The rigidity statement characterizing the equality case in Theorem 1.1 is optimal be-

cause, as we have mentioned, the Willmore energy is conformal invariant.

Using the Li–Yau result previously mentioned we obtain

Corollary. The Willmore conjecture holds.

1.2. Energy of links. The second application comes from the theory of links in R3. Let

γi : S
1 → R3, i = 1, 2, be a 2-component link, i.e., a pair of closed curves in Euclidean

three-space with γ1(S
1) ∩ γ2(S1) = ∅.

A 2-component link is said to be nontrivial if it cannot be deformed without intersecting

itself into two curves contained in disjoint balls. To every link (γ1, γ2) one associates an

integer invariant, called the linking number lk(γ1, γ2), that intuitively measures how many

times each curve winds around the other.

To every 2-component link (γ1, γ2), O’Hara [44] associated an energy, called theMöbius
cross energy. Its definition is reminiscent of the electrostatic potential energy and is given

by ([15, 44]):

E(γ1, γ2) =

∫
S1×S1

|γ′1(s)||γ′2(t)|
|γ1(s)− γ2(t)|2 ds dt.

Freedman, He, and Wang studied this energy in detail and found that it has the remarkable

property of being invariant under conformal transformations of R3 [15], just like the Will-

more energy.

Using Gauss formula for the linking number, one can see that

E(γ1, γ2) ≥ 4π|lk(γ1, γ2)|
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and so it is then natural to search for optimal configurations, i.e., minimizers of the Möbius

energy. This question can be given the following nice physical interpretation (see [44]). As-

suming that each curve in the link is non-conductive, charged uniformly and subject to a

Coulomb’s repulsive force, the equilibrium configuration the link will assume should mini-

mize the Möbius energy.

Freedman, He and Wang [15] considered this question and after looking at the particu-

lar the case where one of the link components is a planar circle, they made the following

conjecture.

Freedman–He–Wang Conjecture (1994). The Möbius energy is minimized, among the
class of all nontrivial links in R3, by the stereographic projection of the standard Hopf link
in S3.

The standard Hopf link (γ̂1, γ̂2) in S
3 is described by

γ̂1(s) = (cos s, sin s, 0, 0) ∈ S3 and γ̂2(t) = (0, 0, cos t, sin t) ∈ S3,

and it is simple to check that E(γ̂1, γ̂2) = 2π2.
In a joint work with Ian Agol and Fernando Marques [1] we showed that:

Theorem 1.2. Let (γ1, γ2) be a 2-component link in R3 with |lk(γ1, γ2)| = 1. Then
E(γ1, γ2) ≥ 2π2.

Equality only holds, up to rigid motions and orientation, for stereographic projections
of the Hopf link.

It follows from a result of He [22] that it suffices to prove the conjecture for links (γ1, γ2)
with linking number lk(γ1, γ2) = ±1. Thus, we obtained the following corollary

Corollary. The conjecture made by Freedman, He, and Wang holds.

1.3. Existence of embedded minimal hypersurfaces. A question lying at the core of Dif-

ferential Geometry, asked Poincaré [41] in 1905, is whether every closed Riemann surface

always admits a closed geodesic.

If the surface is not simply connected then we can minimize length in a nontrivial ho-

motopy class and produce a closed geodesic. Therefore the question becomes considerably

more interesting on a two-sphere, and the first breakthrough was in 1917, due to Birkhoff

[6], who found a closed geodesic for any metric on a two-sphere.

Later, in a remarkable work, Lusternik and Schnirelmann [35] showed that every metric

on a 2-sphere admits three simple (embedded) closed geodesics (see also [4, 17, 27, 30, 34,

51]). This result is optimal because there are ellipsoids which admit no more than three

simple closed geodesics.

This suggests the question of whether we can find an infinite number of geometrically

distinct closed geodesics in any closed surface. It is not hard to find infinitely many closed

geodesics when the genus of the surface is positive.

The case of the sphere was finally settled in 1992 by Franks [14] and Bangert [5]. Their

works combined imply that every metric on a two-sphere admits an infinite number of closed

geodesics. Later, Hingston [24] estimated the number of closed geodesics of length at most

L when L is very large.

Likewise, one can ask whether every closed Riemannian manifold admits a closed min-

imal hypersurface. When the ambient manifold has topology one can find minimal hyper-

surfaces by minimization and so, like in the surface case, the question is more challenging



New applications of Min-max Theory 943

when every hypersurface is homologically trivial. Using min-max methods, and building on

earlier work of Almgren, Pitts [42] in 1981 proved that every compact Riemannian (n+ 1)-
manifold with n ≤ 5 contains a smooth, closed, embedded minimal hypersurface. One year

later, Schoen and Simon [48] extended this result to any dimension, proving the existence of

a closed, embedded minimal hypersurface with a singular set of Hausdorff codimension at

least 7.
When M is diffeomorphic to a 3-sphere, Simon–Smith [49] showed the existence of a

minimal embedded sphere using min-max methods (see also [8]).

Motivated by these results, Yau made the following conjecture [58] (first problem in the

Minimal Surfaces section):

Yau’s Conjecture (1982). Every compact 3-manifold (M, g) admits an infinite number of
smooth, closed, immersed minimal surfaces.

Lawson [32] showed in 1970 that the round 3-sphere admits embedded minimal surfaces

of every possible genus.

WhenM is a compact hyperbolic 3-manifold, Khan and Markovic [28] found an infinite

number of incompressible surfaces inM of arbitrarily high genus. One can then minimize

energy in their homotopy class and obtain an infinite number of smooth, closed, immersed

minimal surfaces.

Jointly with Fernando Marques [39] we showed

Theorem 1.3. Let (Mn+1, g) be a compact Riemannian manifold with 2 ≤ n ≤ 6 and a
metric of positive Ricci curvature.

Then M contains an infinite number of distinct, smooth, embedded, minimal hypersur-
faces.

Until Theorem 1.3 was proven, it was not even known whether metrics on the 3-sphere
arbitrarily close to the round metric also admit an infinite number of minimal surfaces.

I find a fascinating problem to shed some light into the asymptotic behaviour of the

minimal surfaces given by Theorem 1.3.

2. Almgren–Pitts Min-max Theory

As mentioned in the Introduction, Theorem 1.1, Theorem 1.2, and Theorem 1.3, follow from

understanding the topology of the space of all embedded hypersurfaces.

In very general terms, the guiding principle of Morse Theory is that given a space and a

function defined on that space, the topology of the space forces the function to have certain

critical points. For instance, if the space has a k-dimensional nontrivial cycle, then the

function should have a critical point of index at most k.
The space we are interested is Zn(M), the space of all orientable compact hypersurfaces

with possible multiplicities in a compact Riemannian (n+ 1)-manifold (M, g) with n ≥ 2.
If we allow for non-orientable hypersurfaces as well, the space is denoted by Zn(M ;Z2).

These spaces are studied in the context of Geometric Measure Theory and come with

a well understood topology (flat topology) and equipped with a natural functional which

associates to every element in Zn(M) (or Zn(M ;Z2)) its n-dimensional volume.

I will try to keep the discussion with as little technical jargon as possible in order to

convey the main ideas and thus ignore almost all technical issues.
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Critical points of the volume functional are called minimal hypersurfaces and their index
is the number of independent deformations that decrease the area. For instance, on the 3-
torus with the flat metric, there is a natural flat 2-torus which minimizes area in its homology

class and thus it is a minimal surface of index zero. Likewise, on the 3-sphere with the round
metric, the equator (which has area 4π) is a minimal sphere and has the property that if we

“push” it up into the northern hemisphere then its area is decreased. Hence, its index is at

least one. On the other hand, one can check that a deformation of the equator that preserves

the enclosed volume is never area decreasing. Thus the equator has index one.

Almgren [3] started in the 60’s the study of Morse Theory for the volume functional

on Zn(M) (or Zn(M ;Z2)) and that continued through the 70’s jointly with Pitts, his Phd

student. I present now the basic principles of Almgren–Pitts Min-max Theory.

SupposeX is a topological space andΦ : X → Zn(M) a continuous function. Consider

[Φ] = {Ψ : X → Zn(M) : Ψ homotopic to Φ relative to ∂X}.
Note that if Ψ ∈ [Φ] then Φ = Ψ on ∂X . To the homotopy class [Φ] we associate the

number, called the width,

L([Φ]) = inf
Ψ∈[Φ]

sup
x∈X

vol(Ψ(x)).

The Almgren-Pitts Min-max Theorem [42] can be stated as

Theorem 2.1 (Min-max Theorem). Assume that L([Φ]) > supx∈∂X vol(Φ(x)).
There is a compact embedded minimal hypersurfaceΣ (with possible multiplicities) such

that
L([Φ]) = vol(Σ).

The theorem also holds for Zn(M ;Z2) with no modifications.

The support of Σ is smooth outside a set of codimension 7 and thus smooth if n ≥ 6 (for
n ≥ 5 the regularity theory was done by Schoen and Simon [48]). The Min-max Theorem

allows for Σ to be a union of disjoint hypersurfaces, each with some multiplicity. More

precisely

Σ = n1Σ1 + . . .+ nkΣk,

where ni ∈ N, i = 1, . . . , k, and {Σ1, . . . ,Σk} are embedded minimal surfaces with disjoint

supports.

Naturally, if the space of parameters X is a k-dimensional, we expect the index of Σ to

be at most k but this fact has not been proven.
The condition L([Φ]) > supx∈∂X vol(Φ(x))means that [Φ] is capturing some nontrivial

topology of Zn(M). The guiding philosophy behind Min-max Theory consists in finding

examples of homotopy classes satisfying this condition and then use the Min-max Theorem

to deduce geometric consequences.

The next example illustrates well this methodology. Given f : M → [0, 1] a Morse

function, consider the continuous map

Φ : [0, 1] → Zn(M), Φ(t) = ∂{x ∈M : f(x) < t}.
We have Φ(0) = Φ(1) = 0 because all elements in Zn(M) with zero volume are identified

to be the same and Almgren showed in [2] that L([Φ]) > 0, i.e., [Φ] is a nontrivial ele-

ment of π1(Zn(M), {0}). Using Min-max Theorem one obtains the existence of a minimal
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hypersurface in (M, g) whose volume realizes L([Φ]) and thus (M, g) admits a minimal em-

bedded hypersurface which is smooth outside a set of codimension 7. This application was

one of the motivations for Almgren and Pitts to develop their Min-max Theory.

3. The 2π2 Theorem

Let Ik denote a closed k-dimensional cube and Br(p) denote the geodesic ball in S3 of

radius r centered at p.
We present a criteria due to Marques and myself [38] to ensures that a map Φ : I5 →

Z2(S
3) determines a nontrivial 5-dimensional homotopy class in Z∈(S ).

Let Go be the set of all oriented geodesic spheres in Z2(S
3). Each nonzero element in

Go is determined by its center and radius. Thus this space is homeomorphic to S3 × [−π, π]
with an equivalence relation that identifies S3 × {−π} and S3 × {π} all with the zero in

Z2(S
3).

The maps Φ we consider have the property that

Φ(I4 × {1}) = Φ(I4 × {0}) = {0} and Φ(I4 × I) ⊂ Go.

Hence Φ(I5) can be thought of a 5-cycle in Z2(S
3) whose boundary lies in Go and thus [Φ]

can be seen as an element of π5(Z2(S
3),Go). The next theorem gives a condition under

which [Φ] �= 0 in π5(Z2(S
3),Go), i.e., the image of Φ cannot be homotoped into the set of

all geodesic spheres.

Theorem 3.1. Let Φ : I5 → Z2(S
3) be a continuous map such that:

(1) Φ(x, 0) = Φ(x, 1) = 0 for any x ∈ I4;
(2) for any x ∈ ∂I4 fixed we can find Q(x) ∈ S3 such that

Φ(x, t) = ∂Bπt(Q(x)), 0 ≤ t ≤ 1.

In particular, Φ(I5) ⊂ Go.
(3) the center map Q : ∂I4 → S3 has deg(Q) �= 0.

Then
L([Φ]) > 4π = sup

x∈∂I5
M(Φ(x)).

Condition (3) is crucial, as the next example shows. Consider

Φ : I5 → Z2(S
3), Φ(x, t) = ∂Bπt(p),

where p is a fixed point in S3. Conditions (1) and (2) of Theorem 3.1 are satisfied but

L([Φ]) = 4π because Φ(I5) ⊂ Go.
Sketch of proof. The idea for the proof is, in very general terms, the following. Let R ⊂ Go
denote the space of all oriented great spheres (which is homeomorphic to S3). With this

notation, note that from condition (2) we have that

Φ(∂I5 × {1/2}) ⊂ R.
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Moreover, the map Φ : ∂I5 × {1/2} → R ≈ S3 has degree equal to deg(Q) and thus

nonzero by condition (3). For simplicity, suppose we can find Ψ ∈ [Φ] so that

L([Φ]) = 4π = sup
x∈I5

area(Ψ(x)).

Then S = Ψ−1(R) should be a 4-dimensional cycle in I5 with ∂S = ∂I4 × {1/2}. Thus

Ψ∗[∂S] = ∂[Ψ(S)] = ∂[R] = 0 in H3(R,Z).

On the other hand, Φ = Ψ on ∂S = ∂I4 × {1/2} and so

Ψ∗[∂S] = Φ∗[∂I
4 × {1/2}] = deg(Q)[R] �= 0

and this is a contradiction.

Suppose now that Φ is a map satisfying the hypothesis of Theorem 3.1. From the

Min-max Theorem we obtain the existence of Σ, an embedded minimal surface, such that

L([Φ]) = area(Σ) > 4π. Moreover, it is natural to expect thatΣ has index at most 5 because
we are dealing with a 5-parameter family of surfaces.

Urbano [54] in 1990 classified minimal surface of S3 with low index and he gave a rather

elegant and short proof of

Theorem 3.2 (Urbano’s Theorem). Assume S is a closed embedded minimal surface in S3

having index(S) ≤ 5.
Then, up to ambient isometries, S is either a great sphere (index one) or the Clifford

torus (index five) up to ambient isometries.

Remark 3.3. We already argued that the great sphere has index one. The Clifford torus has

index five because unit speed normal deformations decreases area, the four parameter space

of conformal dilations (to be seen later) also decrease area, and these five deformations are

linearly independent.

Going back to our discussion, we see that Σ cannot be a great sphere because its area

is L([Φ]) > 4π and so it has to be a Clifford torus with area 2π2. This heuristic discussion
motivates the

Theorem 3.4 (2π2 Theorem). Assume that Φ satisfied the hypothesis of Theorem 3.1. Then

sup
x∈I5

area(Φ(x)) ≥ 2π2.

A proof can be found in [38]. Because the Almgren–Pitts theory does not provide us

with the fact that the index of Σ is at most 5, we had to use a new set of arguments to prove

the index estimate in the case we were interested.

4. Strategy to prove Theorem 1.1

We sketch the proof of the inequality in Theorem 1.1. The complete argument can be found

in [38].
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The conformal maps of S3 (modulo isometries) can be parametrized by the open unit

4-ball B4, where to each nonzero v ∈ B4 we consider the conformal dilation Fv centered at
v
|v| and − v

|v| . Composing with the stereographic projection π : S3 \ {− v
|v|} → R3, the map

π ◦ Fv ◦ π−1 : R3 → R3

corresponds to a dilation in space centered at the origin, where the dilation factor tends to

infinity as |v| tends to one.
Given a compact embedded surface S ⊂ S3 and −π ≤ t ≤ π, we denote by St the

surface at distance |t| from S, where St lies in the exterior (interior) of S if t ≥ 0 (t ≤ 0).
Naturally, St might not be a smooth embedded surface due to the existence of possible focal

points but it will always be well defined in the context of Geometric Measure Theory.

We can now define the following 5-parameter family {Σ(v,t)}(v,t)∈B4×[π,π] of surfaces

in S3 given by

Σ(v,t) = (Fv(Σ))t ∈ Z2(S
3).

One crucial property of this 5-parameter family is the following.

Theorem 4.1 (Heintze–Karcher Inequality). For every (v, t) ∈ B4 × [π, π] we have

area(Σ(v,t)) ≤ W(Σ).

A related result was proven by Ros in [46].

In order to apply the 2π2 Theorem it is important that we understand the behaviour

Σ(v,t) as (v, t) approaches the boundary of B4 × [π, π]. The fact that the diameter of S3 is

π implies that Σ(v,±π) = 0 for all v ∈ B4 and so we are left to analyze what happens when

v approaches S3.

Assume v in the 4-ball tends to p ∈ S3. If p does not belong to Σ, then Fv(Σ) is

“pushed” into {−p} as v tends to p and so area(Fv(Σ)) tends to zero. When p lies in Σ the

situation is considerably more subtle. Indeed, if v approaches p radially, i.e., v = sp with
0 < s < 1, then Fsp(Σ) converges, as s tends to 1, to the unique great sphere tangent to

Σ at p. Thus the continuous function in S3 given by p !→ area (Σsp) tends, as s → 1, to a

discontinuous function that is zero outside Σ and 4π along Σ. Hence, for any 0 < α < 4π,
there must exist a sequence {vi}i∈N in B4 tending to Σ so that area (Σvi) tends to α and so

it is natural to expect that the convergence of Fv(Σ) depends on how v approaches p ∈ Σ.
A careful analysis revealed that, depending on the angle at which v tends to p, Fv(Σ) tends
to a geodesic sphere tangent to Σ at p, with radius and center depending on the angle of

convergence.

Initially this behaviour was a source of perplexity but then we realized that, even if the

parametrization was becoming discontinuous near the boundary of the parameter space, the

closure of the family {Σ(v,t)}(v,t)∈B4×[π,π] in Z2(S
3) was a “nice” continuous 5-cycle in

Z2(S
3). Hence, we were able to reparametrize this family and obtain a continuous map

Φ : I5 → Z2(S
3) with Φ(I5) equal to the closure of {Σ(v,t)}(v,t)∈B4×[π,π] in Z2(S

3) and
satisfying conditions (1) and (2) of Theorem 3.1.

Finally, and most important of all, we showed that the degree of the center map Q in

condition (2) of Theorem 3.1 is exactly the genus of Σ. This point is absolutely crucial

because it showed us that the map Φ “remembers” the genus of the surface Σ. Thus, when
the genus is positive, condition (3) of Theorem 3.1 is also satisfied and we obtain from the

2π2 Theorem that

2π2 ≤ sup
x∈I5

area((Φ(x)).
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On the other hand, becauseΦ(I5) is equal to the closure of {Σ(v,t)}(v,t)∈B4×[π,π] inZ2(S
3),

we obtain from the Heintze–Karcher Inequality that

sup
x∈I5

area(Φ(x)) ≤ W(Σ).

This means that W(Σ) ≥ 2π2, which is the statement we wanted to prove.

5. Strategy to prove Theorem 1.2

The approach to prove Theorem 1.2 is similar to the one used in Theorem 1.1. The conformal

invariance of the energy implies that it suffices to consider links (γ1, γ2) in S
3. For each link

(γ1, γ2) in S
3 we construct a suitable family Φ : I5 → Z2(S

3) that satisfies conditions (1)
and (2) of Theorem 3.1. Moreover, we will also show that if |lk(γ1, γ2)| = 1 then condition

(3) of Theorem 3.1 is will also be satisfied. Hence we can apply the 2π2 Theorem and

conclude that

sup
x∈I5

area(Φ(x)) ≥ 2π2.

On the other hand, the mapΦ is constructed so that area(Φ(x)) ≤ E(γ1, γ2) for each x ∈ I5
and this implies the inequality in Theorem 1.2.

We give a brief indication of how the map Φ is constructed.

To every pair of curves in R4 there is a natural way to construct a “torus” in S3. More

precisely, given two curves (γ1, γ2) in R4, the Gauss map is denoted by

G(γ1, γ2) : S
1 × S1 → S3, (s, t) !→ γ1(s)− γ2(t)

|γ1(s)− γ2(t)|
and we consider G(γ1, γ2)#(S

1 × S1) in Z2(S
3). Furthermore, one can check that

area(G(γ1, γ2)#(S
1 × S1)) ≤ E(γ1, γ2).

For instance, if (γ1, γ2) is the Hopf link then G(γ1, γ2)#(S
1 × S1) is the Clifford torus and

the inequality above becomes an equality.

Given v ∈ B4, we consider the conformal map Fv of R4 given by an inversion centered

at v. The conformal map Fv sends the unit 4-ball B4 to some other ball centered at c(v) =
v

1−|v|2 . We consider

g : B4 × (0,+∞) → Z2(S
3)

given by

g(v, z) = G (Fv ◦ γ1, λ(Fv ◦ γ2 − c(v)) + c(v))# (S1 × S1).

Intuitively, g(v, z) is the image of the Gauss map of the link obtained by applying the con-

formal transformation Fv to (γ1, γ2) and then dilating the curve Fv ◦ γ2 with respect to the

center c(v) by a factor of λ. Note that both curves Fv ◦ γ1 and λ(Fv ◦ γ2 − c(v)) + c(v) are
contained in spheres centered at c(v).

The 5-parameter family we just described also enjoys a Heintze–Karcher type-inequality,

meaning that for all (v, λ) ∈ B4 × (0,+∞) we have

area(g(v, z)) ≤ E(γ1, γ2).
The map Φ is constructed via a reparametrization of g.
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6. Gromov–Guth families

In order to apply the Min-max Theorem on a general manifold M , it is important that one

understands the homotopy groups of the space Zn(M ;Z2). This was done by Almgren [2]

in 1962 and he showed that

π1(Zn(M ;Z2)) = Z2 and πi(Zn(M ;Z2)) = 0 if i > 1.

Thus Zn(M ;Z2) is weakly homotopic equivalent to RP∞ and so we should expect that

Zn(M,Z2) contains, for every p ∈ N, an homotopically nontrivial p-dimensional projective

space.

From the weak homotopy equivalence with RP∞, we have that

Hk(Zn(M ;Z2)) = Z2 for all k ∈ N with generator λ̄k.

We are interested in studying maps Φ : X → Zn(M ;Z2) whose image detects λ̄p for some

p ∈ N.
Given a simplicial complex X , a continuous map Φ : X → Zn(M ;Z2) is called a

p-sweepout if Φ∗(λ̄p) �= 0 in Hp(X;Z2). Heuristically, a continuous map Φ : X →
Zn(M ;Z2) is called a p-sweepout if for every set {x1, . . . , xp} ⊂ M , there is θ ∈ X
so that {x1, . . . , xp} ⊂ Φ(θ).

Gromov [18–20] and Guth [21] studied p-sweepouts ofM .

We now check that p-sweepouts exists for all p ∈ M . Let f ∈ C∞(M) be a Morse

function and consider the map

Φ : RPp → Zn(M ;Z2),

given by

Φ([a0, . . . , ap]) = ∂ {x ∈M : a0 + a1f(x) + . . .+ apf
p(x) < 0} .

Note that the map Φ is well defined because opposite orientations on the same hypersurface

determine the same element in Zn(M ;Z2). A typical element of Φ([a0, . . . , ap]) will be
f−1(r1) ∪ . . . ∪ f−1(rj) where r1, . . . , rj are the real roots of the polynomial p(t) = a0 +
a1t+ . . .+ apt

p. It easy to see that Φ satisfies the heuristic definition of a p-sweepout given
above and in [39] we check that the map is indeed a p-sweepout.

Denoting the set of all p-sweepouts ofM by Pp, the p-width ofM is defined as

ωp(M) = inf
Φ∈Pp

sup{vol(Φ(x)) : x ∈ dmn(Φ)},

where dmn(Φ) is the domain of Φ.
It is interesting to compare the p-width with the min-max definition of the pth-eigenvalue

of (M, g). Set V =W 1,2(M) \ {0} and recall that

λp = inf
(p+1)−plane P⊂V

max

{∫
M

|∇f |2dVg∫
M
f2dVg

: f ∈ P
}
.

Hence one can see {ωp(M)}p∈N as a nonlinear analogue of the Laplace spectrum ofM , as

proposed by Gromov [18].

The asymptotic behaviour of wp(M) is governed by the following result proven by Gro-
mov [18] and Guth [21].
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Theorem 6.1 (Gromov and Guth’s Theorem). There exists a positive constantC = C(M, g)
so that, for every p ∈ N,

C−1p
1

n+1 ≤ ωp(M) ≤ Cp 1
n+1 .

The idea to prove the lower bound is, roughly speaking, the following. Choose p disjoint

geodesic balls B1, . . . , Bp with radius proportional to p−
1

n+1 . For every p-sweepout Φ one

can find θ ∈ dmn(Φ) so that Φ(θ) divides each geodesic ball into two pieces with almost

identical volumes. Hence, when p is sufficiently large, the isoperimetric inequality implies

that Φ(θ) ∩ Bi has volume no smaller than c(n)p−
n

n+1 for all i = 1, . . . , p, where c(n) is a

universal constant. As a result Φ(θ) has volume greater or equal than c(n)p
1

n+1 .

The upper bound can be proven using a very nice bend-and-cancel argument introduced

by Guth [21]. In the case when M is a n + 1-dimensional sphere Sn+1, the upper bound

has the following simple explanation. If we consider the set of all homogenous harmonic

polynomials in Sn+1 with degree less or equal than d ∈ N, we obtain a vector space of

dimension p(d) + 1, where p(d) grows like dn+1. Considering the zero set of all these poly-

nomials we obtain a map Φ from a p(d)-dimensional projective plane into Zn(S
n+1;Z2).

Crofton formula implies that the zero-set of each of these polynomials has volume at most

ωnd, where ωn is the volume of an n-sphere. Thus, for every θ ∈ RPp(d), vol(Φ(θ)) is at

most a fixed multiple of p(d)
1

n+1 .

7. Strategy to prove Theorem 1.3

The idea to find an infinite number of minimal surfaces consists in applying the Min-max

Theorem to the family of p-sweepouts Pp for all p ∈ N.
The first thing we show is that if ωp(M) = ωp+1(M) for some p ∈ N, thenM admits

an infinite number of minimal embedded hypersurfaces. We achieve this using Lusternick-

Schnirelman and, roughly speaking, the idea is as follows (for details see [39]):

Suppose for simplicity that ωp(M) = ωp+1(M) = supx∈X vol(Φ(x)) for some p + 1-
sweepout Φ. We argue by contradiction and assume that Ω, the set of all embedded minimal

hypersurfaces (with possible multiplicities) and volume at most ωp+1(M), is finite.
LetK = Ψ−1(Ω) and λ = Φ∗(λ̄), where λ̄ generates H1(Zn(M ;Z2);Z2).
We must have λ vanishing on K because otherwise there would exist a curve γ in K so

that λ(γ) = λ̄(Φ ◦ γ) �= 0, i.e. Φ ◦ γ would be a nontrivial element of π1(Zn(M ;Z2)).
But Φ ◦ γ has image contained in the finite set Ω, which implies it is constant, and thus

contractible.

Therefore λp cannot vanish on X \ K because otherwise λp+1 = λp ( λ would be

zero on (X \ K) ∪ K = X and this is impossible because Φ is a p + 1-sweepout. As a

resultΦ|X\K is a p-sweepout whose image contains no minimal hypersurfaces (with possible

multiplicities), and so we pull-tight the family to obtain another p-sweepout Ψ so that

ωp(M) ≤ sup
x∈X\K

vol(Ψ(x)) < sup
x∈X\K

vol(Φ(x)) ≤ sup
x∈X

vol(Φ(x)) = ωp(M).

This gives us the desired contradiction.

Hence we can assume that the sequence {ωp(M)}p∈N is strictly increasing.

We then argue again by contradiction and assume that there exist only finitely many

smooth, closed, embedded minimal hypersurfaces with multiplicity one, and we call this set



New applications of Min-max Theory 951

Λ. Using the Min-max Theorem we have that

ωp(M) = np,1vol(Σp,1) + . . .+ np,kvol(Σp,k), np,1, . . . , np,k ∈ N,

where {Σp,1, . . . ,Σp,k} are multiplicity one minimal hypersurfaces with disjoint support.

Because M has positive Ricci curvature, Frankel’s Theorem [13] says that any two mini-

mal embedded hypersurfaces intersect and so ωp(M) = npvol(Σp) for some Σp ∈ Λ and

np ∈ N. The fact that ωp(M) is strictly increasing and a counting argument shows that Λ
being finite implies that ωp(M) must grow linearly in p. This is in contradiction with the

sublinear growth of ωp(M) in p given by the Gromov and Guth’s Theorem.

8. Open problems

Min-max Theory is an exciting technique which I think can be used not only to solve other

open questions in Geometry but also to provide some new directions. Some of these ques-

tions are well-known and others arose from extensive discussions with Fernando Marques.

Min-max questions. The Almgren-Pitts Min-max Theory does not provide index estimates

for the min-max minimal hypersurface. The importance of this issue was already clear to

Almgren [3] who wrote

“The chief utility of the homology approach would lie in the attempt to assign
a topological index to stationary integral varifolds in some analytically useful
way.”

A folklore conjecture states that the if the homotopy class in the Min-max Theorem is

defined with k-parameters, then the minimal hypersurface given by the Min-max Theorem

has index at most k. It is implicit in the conjecture that one finds a meaningful way of

assigning an index to a minimal embedded hypersurface with multiplicities. When k =
1, the conjecture was confirmed by Marques and myself if the ambient manifold is three

dimensional and the metric has positive Ricci curvature [39]. Later this was extended to the

case where the ambient manifold has dimension between three and seven and the metric has

positive Ricci curvature [60].

Naively, one should also expect that for bumpy metrics the index is bounded from below

by the number of parameters.

Many of the subtle issues in Min-max Theory are related with the fact that the min-max

minimal hypersurface can have multiplicities. That said, one does not know an example

where the width of some homotopy class is realized by an unstable minimal hypersurface

with multiplicity. For instance, does the equator with multiplicity two (and so area 8π)
realizes the width of some homotopy class in the round 3-sphere? It is highly conceivable

that unstable minimal surfaces with higher multiplicity can be approximated (in the varifold

norm) by a sequence of embedded minimal surfaces with smaller area and this is one of the

reasons the question is interesting.

Old questions. We now mention four well known open problems which could be answered

using Min-max Theory.

The first two are natural generalizations of the Willmore conjecture.
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The Willmore conjecture in S4 states that among all tori in S4, the Clifford torus min-

imizes the Willmore energy. It is interesting that in this case there are minimal embedded

projective planes (Veronese surface) which have area (6π) smaller than the Clifford torus and

bigger than the equator.

For higher genus surfaces, Kusner [31] conjectured that the Lawson minimal surface

ξ1,g minimizes the Willmore energy among all surfaces of genus g (numerical evidence

was provided in [25]). It would be extremely interesting to find the index of ξ1,2. Wishful

thinking would suggest 9 but there is no real evidence.
The third problem consists of finding, among all non-totally geodesic minimal hypersur-

faces in the unit n-sphere Sn, the one with least possible volume. The conjecture, due to

Solomon, is that these minimal hypersurface are given by

Sm−1

(√
m− 1

2m− 1

)
× Sm

(√
m

2m− 1

)
⊂ Sn

if n = 2m, and by

Sm−1

(
1√
2

)
× Sm−1

(
1√
2

)
⊂ Sn

if n = 2m − 1. In S3 this conjecture was confirmed by Marques and myself in [38] and in

the general case there was some progress due to White and Ilmanen [26].

It would be desirable to have a sharp index characterization similar Urbano’s Theorem

for each of these three problems. In the third problem, Perdomo [45] achieved that assuming

the hypersurfaces are preserved by the antipodal map.

The fourth and final problem is a beautiful conjecture of White [56] which says that any

metric on a 3-sphere has five distinct minimal embedded tori and he proved this for small

perturbations of the round metric [57]. An easier conjecture would be to say that any metric

on a 3-sphere has nine distinct minimal surfaces of genus either zero or one.

Some new questions. For the purpose of applications in Geometry and Topology, it is im-

portant to estimate the topology of the minimal hypersurface given by the Min-max Theo-

rem.

For ambient 3-manifolds, due to the combined work of Simon–Smith [49], De Lellis–

Pellandini [10], and Ketover [29], it is now known that, roughly speaking, if the Min-max

technique is applied to continuous one-parameter family of embedded surfaces of genus g,
then the min-max minimal surface has at most genus g.

In higher dimensions it is not so clear how to control the topology of the min-max mini-

mal hypersurface by the same methods.

An alternative approach would be to try to characterize the topology of the min-max

minimal hypersurface via its index. Note that if the minimal hypersurfaces are produced via

Min-max methods then one should expect some control on the index.

For ambient 3-manifolds, Ejiri–Micallef [12] showed that the index of a minimal ori-

entable surface is bounded from above by a multiple of area plus genus and if the metric

has positive Ricci curvature then it is known [59] that index one orientable minimal surfaces

have genus 3 at most (a conjecture that I heard from Rick Schoen states that the genus should

be two at most).

For higher dimensions, Rick Schoen conjectured that index one embedded orientable

compact minimal hypersurfaces in ambient manifolds with positive Ricci curvature have
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bounded first Betti number. We conjecture that if the ambient manifold has positive Ricci

curvature then an index k embedded orientable compact minimal hypersurface has first Betti

number bounded by fixed multiple of k. Savo [47] showed this holds on round spheres of

any dimension.

Another direction of research would be to understand the p-widths ωp(M) of (Mn+1, g)
for n ≥ 2. The sequence {ωp(M)}p∈N can be thought of as a nonlinear spectrum for

the manifold and we would expect it to be asymptotically related with the spectrum of the

Laplacian. Taking this perspective, many interesting questions arise.

For instance, does the nonlinear spectrum satisfy a Weyl Law? More precisely, can we

find a universal constant a(n) so that

lim
p→∞

ωp(M)p−
1

n+1 = a(n)(vol(M, g))
n

n+1 ?

This question has been suggested by Gromov in [19, Section 8] and in [20, Section 5.2].

A classical result of Uhlenbeck [53] states that generic metrics have simple eigenvalues.

Likewise, we expect that for generic metrics at least, ωp(M) is achieved by a multiplicity

one minimal hypersurface with index p. Can we say anything about how they look like? For

instance, are they becoming equidistributed in space? The proof of Gromov-Guth’s Theorem

suggests that. Do they behave like nodal sets of eigenfunctions? Is their first betti number

proportional to p?
Nodal sets of eigenfunctions provide a natural upper bound for ωp(M). Making this

more precise, denote by φ0, . . . , φp the first (p+1)-eigenfunctions for the Laplace operator,
where φ0. Consider

Φp : RP
p → Zn(M ;Z2),

Φp([a0, . . . , ap]) = ∂{x ∈M : a0φ0(x) + . . .+ apφp(x) < 0}.

and set

ω̄p(M) = sup
θ∈RPp

vol(Φp(θ)) ≥ ωp(M).

It seems a challenging question to determine how close to one
ω̄p(M)
ωp(M) is getting as p tends

to infinity. If the quotient is bounded, that would imply a conjecture of Yau regarding the

asymptotic growth of the volume of nodal sets (which was proven in the analytic case by

Donnelly and Fefferman [11] and for recent progress see [9, 50]). Can we determine that

quotient on an n-sphere?
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1. Introduction

In the last three decades, symplectic topology has had an astonishing amount of fruitful

interactions with other fields of mathematics, including complex and algebraic geometry,

dynamical systems, Hamiltonian PDEs, transformation groups, and low-dimensional topol-

ogy; as well as with physics, where, for example, symplectic topology plays a key role in the

rigorous formulation of mirror symmetry.

In this survey paper, we present some recent works that take first steps toward estab-

lishing novel interrelations between symplectic geometry and several fields of mathematics,

namely, asymptotic geometric analysis, classical convex geometry, and the theory of normed

spaces. In the first part of this paper (Sections 2 and 3) we concentrate on the theory of

symplectic measurements, which arose from the foundational work of Gromov [34] on pseu-

doholomorphic curves; followed by the seminal works of Ekeland and Hofer [24] and Hofer

and Zehnder [42] on variational theory in Hamiltonian systems, and Viterbo on generating

functions [89]. This theory – also known as the theory of “symplectic capacities” – lies

nowadays at the core of symplectic geometry and topology.

In Section 2, we focus on an open symplectic isoperimetric-type conjecture proposed by

Viterbo in [88]. It states that among all convex domains with a given volume in the classical

phase space R2n, the Euclidean ball has the maximal “symplectic size” (see Section 2 below

for the precise statement). In a collaboration with S. Artstein-Avidan and V. D. Milman [6],

we were able to prove an asymptotic version of Viterbo’s conjecture, that is, we proved the

conjecture up to a universal (dimension-independent) constant. This has been achieved by

adapting techniques from asymptotic geometric analysis and adjusting them to a symplectic

context, while working exclusively in the linear symplectic category.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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The fact that one can get within a constant factor to the full conjecture using only linear

embeddings is somewhat surprising from the symplectic-geometric point of view, as in sym-

plectic geometry one typically needs highly nonlinear tools to estimate capacities. However,

this fits perfectly into the philosophy of asymptotic geometric analysis. Finding dimension

independent estimates is a frequent goal in this field, where surprising phenomena such

as concentration of measure (see e.g. [67]) imply the existence of order and structures in

high dimensions, despite the huge complexity it involves. It would be interesting to explore

whether similar phenomena also exist in the framework of symplectic geometry. A natural

important source for the study of the asymptotic behavior (in the dimension) of symplec-

tic invariants is the field of statistical mechanics, where one considers systems with a large

number of particles, and the dimension of the phase space is twice the number of degrees of

freedom. It seems that symplectic measurements were overlooked in this context so far.

In Section 3 we go in the opposite direction: we show how symplectic geometry could

potentially be used to tackle a 70-years-old fascinating open question in convex geometry,

known as the Mahler conjecture. Roughly speaking, Mahler’s conjecture states that the

minimum of the product of the volume of a centrally symmetric convex body and the volume

of its polar body is attained (not uniquely) for the hypercube. In a collaboration with S.

Artstein–Avidan and R. Karasev [8], we combined tools from symplectic geometry, classical

convex analysis, and the theory of mathematical billiards, and established a close relation

between Mahler’s conjecture and the above mentioned symplectic isoperimetric conjecture

by Viterbo. More preciesly, we showed that Mahler’s conjecture is equivalent to a special

case of Viterbo’s conjecture (see Section 3 for details).

In the second part of the paper (Section 4), we explain how methods from functional

analysis can be used to address questions regarding the geometry of the group Ham(M,ω)
of Hamiltonian diffeomorphisms associated with a symplectic manifold (M,ω). One of the
most striking facts regarding this group, discovered by Hofer in [40], is that it carries an

intrinsic geometry given by a Finsler bi-invariant metric, nowadays known as Hofer’s met-

ric. This metric measures the time-averaged minimal oscillation of a Hamiltonian function

that is needed to generate a Hamiltonian diffeomorphism starting from the identity. Hofer’s

metric has been intensively studied in the past twenty years, leading to many discoveries

covering a wide range of subjects from Hamiltonian dynamics to symplectic topology (see

e.g., [43, 59, 75] and the references therein). A long-standing question raised by Eliashberg

and Polterovich in [26] is whether Hofer’s metric is the only bi-invariant Finsler metric on the

group Ham(M,ω). Together with L. Buhovsky [17], and based on previous results by Os-

trover and Wagner [72], we used methods from functional analysis and the theory of normed

function spaces to affirmatively answer this question. We proved that any non-degenerate

bi-invariant Finsler metric on Ham(M,ω), which is generated by a norm that is continuous

in the C∞-topology, gives rise to the same topology on Ham(M,ω) as the one induced by

Hofer’s metric.

As mentioned before, the outlined interdisciplinary connections described above are just

the first few steps in what seems to be a promising new direction. We hope that further explo-

ration of these connections will strengthen the dialogue between these fields and symplectic

geometry, and expand the range of methodologies alongside research questions that can be

tackled through these means.

We end this paper with several open questions and speculations regarding some of the

mentioned topics (see Section 5).
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2. A symplectic isoperimetric inequality

A classical result in symplectic geometry (Darboux’s theorem) states that symplectic man-

ifolds - in a sharp contrast to Riemannian manifolds - have no local invariants (except, of

course, the dimension). The first examples of global symplectic invariants were introduced

by Gromov in his seminal paper [34], where he developed and used pseudoholomorphic

curve techniques to prove a striking symplectic rigidity result. Nowadays known as Gro-

mov’s “non-squeezing theorem”, this result states that one cannot map a ball inside a thinner

cylinder by a symplectic embedding. This theorem paved the way to the introduction of

global symplectic invariants, called symplectic capacities which, roughly speaking, measure

the symplectic size of a set.

We will focus here on the case of the classical phase space R2n � Cn equipped with the

standard symplectic structure ω = dq∧dp. We denote byB2n(r) the Euclidean ball of radius
r, and by Z2n(r) the cylinder B2(r) × Cn−1. Gromov’s non-squeezing theorem asserts

that if r < 1 there is no symplectomorphism ψ of R2n such that ψ(B2n(1)) ⊂ Z2n(r).
The following definition, which crystallizes the notion of “symplectic size”, was given by

Ekeland and Hofer in their influential paper [24].

Definition 2.1. A symplectic capacity on (R2n, ω) associates to each subset U ⊂ R2n a

number c(U) ∈ [0,∞] such that the following three properties hold:

(P1) c(U) ≤ c(V ) for U ⊆ V (monotonicity);

(P2) c
(
ψ(U)

)
= |α| c(U) for ψ ∈ Diff(R2n) such that ψ∗ω = αω (conformality);

(P3) c
(
B2n(r)

)
= c
(
Z2n(r)

)
= πr2 (nontriviality and normalization).

Note that (P3) disqualifies any volume-related invariant, while (P1) and (P2) imply that

for U, V ⊂ R2n, a necessary condition for the existence of a symplectomorphism ψ with

ψ(U) = V , is c(U) = c(V ) for any symplectic capacity c.
It is a priori unclear that symplectic capacities exist. The above mentioned non-squeezing

result naturally leads to the definition of two symplectic capacities: the Gromov radius,

defined by c(U) = sup{πr2 |B2n(r)
s
↪→ U}; and the cylindrical capacity, defined by

c(U) = inf{πr2 |U s
↪→ Z2n(r)}, where s

↪→ stands for symplectic embedding. It is easy

to verify that these two capacities are the smallest and largest possible symplectic capacities,

respectively. Moreover, it is also known that the existence of a single capacity readily implies

Gromov’s non-squeezing theorem, as well as the Eliashberg-Gromov C0-rigidity theorem,

which states that for any closed symplectic manifold (M,ω), the symplectomorphism group

Symp(M,ω) is C0-closed in the group of all diffeomorphisms of M (see e.g., Chapter 2

of [43]).

Shortly after Gromov’s work, other symplectic capacities were constructed, such as the

Hofer-Zehnder [43] and the Ekeland-Hofer [24] capacities, the displacement energy [40], the

Floer-Hofer capacity [27, 28], spectral capacities [29, 70, 89], and, more recently, Hutch-

ings’s embedded contact homology capacities [44]. Nowadays, symplectic capacities are

among the most fundamental objects in symplectic geometry, and are the subject of inten-

sive research efforts (see e.g., [45, 47, 52, 55–57, 60, 63, 82], and [20] for a recent detailed

survey and more references). However, in spite of the rapidly accumulating knowledge re-

garding symplectic capacities, they are notoriously difficult to compute, and there are no

general methods even to effectively estimate them.
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In [88], Viterbo investigated the relation between the symplectic way of measuring the

size of sets using symplectic capacities, and the classical approach using volume. Among

many other inspiring results, in that work he conjectured that in the class of convex bodies

in R2n with fixed volume, the Euclidean ball B2n maximizes any given symplectic capacity.

More precisely,

Conjecture 2.2 (Viterbo’s volume-capacity inequality conjecture). For any convex body K
in R2n and any symplectic capacity c,

c(K)

c(B)
≤
(
Vol(K)

Vol(B)

)1/n

, where B = B2n(1).

Here and henceforth a convex body of R2n is a compact convex set with non-empty

interior. The isoperimetric inequality above was proved in [88] up to a constant that depends

linearly on the dimension using the classical John ellipsoid theorem. In a joint work with S.

Artstein-Avidan and V. D. Milman (see [6]), we made further progress towards the proof of

the conjecture. By customizing methods and techniques from asymptotic geometric analysis

and adjusting them to the symplectic context, we were able to prove Viterbo’s conjecture up

to a universal (i.e., dimension-independent) constant. More precisely, we proved that

Theorem 2.3. There is a universal constant A such that for any convex domain K in R2n,
and any symplectic capacity c, one has

c(K)

c(B)
≤ A

(
Vol(K)

Vol(B)

)1/n

, where B = B2n(1).

We emphasize that in the proof of Theorem 2.3 we work exclusively in the category of

linear symplectic geometry. It turns out that even in this limited category of linear sym-

plectic transformations, there are tools which are powerful enough to obtain a dimension-

independent estimate as above. While this fits with the philosophy of asymptotic geometric

analysis, it is less expected from a symplectic geometry point of view, where one expects that

highly nonlinear methods, such as folding and wrapping techniques (see e.g., the book [82]),

would be required to effectively estimate symplectic capacities.

The proof of Theorem 2.3 above is based on two ingredients. The first is the following

simple geometric observation (see Lemma 3.3 in [6], cf. [1]).

Lemma 2.4. If a convex bodyK ⊂ Cn satisfiesK = iK, then c(K) ≤ 4
π c(K).

Sketch of Proof. Let rB2n be the largest multiple of the unit ball contained in K, and let

x ∈ ∂K ∩ rS2n−1 be a contact point between the boundary ofK and the boundary of rB2n.

It follows from the convexity assumption that the body K lies between the hyperplanes

x + x⊥ and −x + x⊥. Moreover, since K = iK, it lies also between −ix + ix⊥ and

ix + ix⊥. Thus, the projection of K onto the plane spanned by x and ix is contained in a

square of edge length 2r. This square can be turned into a disc with area 4r2, after applying
a non-linear symplectomorphism which is essentially two-dimensional. Therefore, K is

contained in a symplectic image of the cylinder Z2n(
√
4/π r), and the lemma follows.

Since by monotonicity, Conjecture 2.2 trivially holds for the Gromov radius c, it follows
from Lemma 2.4 that
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Corollary 2.5. Theorem 2.3 holds for convex bodiesK ⊂ Cn such thatK = iK.

The second ingredient in the proof is a profound result in asymptotic geometric analysis

discovered by V.D. Milman in the mid 1980’s called the “reverse Brunn-Minkowski inequal-

ity” (see [65, 66]). Recall that the classical Brunn-Minkowski inequality states that if A and

B are non-empty Borel subsets of Rn, then

Vol(A+B)1/n ≥ Vol(A)1/n +Vol(B)1/n,

where A + B = {x + y |x ∈ A, y ∈ B} is the Minkowski sum. Although at first glance

it seems that one cannot expect any inequality in the reverse direction (consider, e.g., two

very long and thin ellipsoids pointing in orthogonal directions in R2), it turns out that for

convex bodies, if one allows for an extra choice of “position”, i.e., a volume-preserving

linear image of the bodies, then one can reverse the Brunn-Minkowski inequality up to a

universal constant factor.

Theorem 2.6 (Milman’s reverse Brunn-Minkowski inequality). For any two convex bodies
K1,K2 in Rn, there exist linear volume preserving transformations TKi (i = 1, 2), such
that for K̃i = TKi(Ki) one has

Vol(K̃1 + K̃2)
1/n ≤ C

(
Vol(K̃1)

1/n +Vol(K̃2)
1/n
)
,

for some absolute constant C.

We emphasize that the transformation TKi
(i = 1, 2) in Theorem 2.6 depends solely on

the body Ki, and not on the joint configuration of the bodies K1 and K2. For more details

on the reverse Brunn-Minkowski inequality see [66, 75].

We can now sketch the proof of Theorem 2.3 (for more details see [6]). Since every

symplectic capacity is bounded above by the cylindrical capacity c, it is enough to prove the
theorem for c. For the sake of simplicity, we assume in what follows that K is centrally

symmetric, i.e., K = −K. This assumption is not too restrictive, since by a classical result

of Rogers and Shephard [79] one has that Vol(K + (−K)) ≤ 4nVol(K). After adjusting
Theorem 2.6 to the symplectic context, one has that for any convex body K ⊂ R2n, there

exists a linear symplectomorphism S ∈ Sp(2n) such that SK and iSK satisfy the reverse

Brunn-Minkowski inequality, that is, the volume Vol(SK + iSK)1/n is less than some

constant times Vol(K)1/n. Combining this with the properties of symplectic capacities and

Corollary 2.5, we conclude that

c(K)

c(B)
≤ c(SK + iSK)

c(B)
≤ A

(
Vol(SK + iSK)

Vol(B)

) 1
n

≤ A′
(
Vol(K)

Vol(B)

) 1
n

,

for some universal constant A′, and thus Theorem 2.3 follows.

In the next section we will show a surprising connection between Viterbo’s volume-

capacity conjecture and a seemingly remote open conjecture from the field of convex geo-

metric analysis: the Mahler conjecture on the volume product of centrally symmetric convex

bodies.
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3. A symplectic view on Mahler’s conjecture

Let (X, ‖ · ‖) be an n-dimensional normed space and let (X∗, ‖ · ‖∗) be its dual space. Note
that the product space X ×X∗ carries a canonical symplectic structure, given by the skew-

symmetric bilinear form ω
(
(x, ξ), (x′, ξ′)

)
= ξ(x′) − ξ′(x), and a canonical volume form,

the Liouville volume, given by ωn/n!. A fundamental question in the field of convex geom-

etry, raised by Mahler in [58], is to find upper and lower bounds for the Liouville volume of

B ×B◦ ⊂ X ×X∗, where B and B◦ are the unit balls of X and X∗, respectively. In what

follows we shall denote this volume by ν(X). The quantity ν(X) is an affine invariant of

X , i.e. it is invariant under invertible linear transformations. We remark that in the context

of convex geometry ν(X) is also known as the Mahler volume or the volume product of X .

The Blaschke-Santaló inequality asserts that the maximum of ν(X) is attained if and

only if X is a Euclidean space. This was proved by Blaschke [14] for dimensions two and

three, and generalized by Santaló [81] to higher dimensions. The following sharp lower

bound for ν(X) was conjectured by Mahler [58] in 1939:

Conjecture 3.1 (Mahler’s volume product conjecture). For any n-dimensional normed space
X one has ν(X) ≥ 4n/n!.

The conjecture has been verified by Mahler [58] in the two-dimensional case. In higher

dimensions it is proved only in a few special cases (see e.g., [33, 49, 64, 69, 76–78, 80, 86]).

A major breakthrough towards answering Mahler’s conjecture is a result due to Bourgain

and Milman [16], who used sophisticated tools from functional analysis to show that the

conjecture holds asymptotically, i.e., up to a factor γn, where γ is a universal constant. This
result has been re-proved later on, with entirely different methods, by Kuperberg [51], using

differential geometry, and independently by Nazarov [68], using the theory of functions of

several complex variables. A new proof using simpler asymptotic geometric analysis tools

has been recently discovered by Giannopoulos, Paouris, and Vritsiou [32]. The best known

constant today, γ = π/4, is due to Kuperberg [51].

Despite great efforts to deal with the general case, a proof of Mahler’s conjecture has

been insistently elusive so far, and is currently the subject of intensive research. A possible

reason for this, as pointed out for example by Tao in [87], is that, in contrast with the above

mentioned Blaschke-Santaló inequality, the equality case in Mahler’s conjecture, which is

obtained for example for the space ln∞ of bounded sequences with the standard maximum

norm, is not unique, and there are in fact many distinct extremizers for the (conjecturally)

lower bound of ν(X) (see, e.g., the discussion in [87]). This practically renders impossi-

ble any proof based on currently known optimisation techniques, and a radically different

approach seems to be needed.

We refer the reader to Section 5 below for further discussion on the characterization of the

equality case of Mahler’s conjecture, and its possible connection with symplectic geometry.

In a recent work with S. Artstein-Avidan and R. Karasev [8], we combined tools from

symplectic geometry, convex analysis, and the theory of mathematical billiards, and estab-

lished a close relationship between Mahler’s conjecture and Viterbo’s volume-capacity con-

jecture. More precisely, we proved in [8] that

Theorem 3.2. Viterbo’s volume-capacity conjecture implies Mahler’s conjecture.

In fact, it follows from our proof that Mahler’s conjecture is equivalent to a special case of
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Viterbo’s conjecture, where the latter is restricted to the Ekeland-Hofer-Zehnder symplectic

capacity, and to domains in the classical phase space of the form Σ×Σ◦ ⊂ R2n = Rnq ×Rnp
(for more details see [8], and in particular Remark 1.9 ibid.). Here, Σ ⊂ Rnq is a centrally

symmetric convex body, the space Rnp is identified with the dual space (Rnq )
∗, and

Σ◦ = {p ∈ Rnp | p(q) ≤ 1 for every q ∈ Σ}

Theorem 3.2 is a direct consequence of the following result proven in [8].

Theorem 3.3. There exists a symplectic capacity c such that c(Σ × Σ◦) = 4 for every
centrally symmetric convex body Σ ⊂ Rnq .

With Theorem 3.3 at our disposal, it is not difficult to derive Theorem 3.2.

Proof of Theorem 3.2. Assume that Viterbo’s volume-capacity conjecture holds. From The-

orem 3.3 it follows that there exists a symplectic capacity c such that for every centrally

symmetric convex body Σ ⊂ Rnq one has

4n

πn
=
cn(Σ× Σ◦)

πn
≤ Vol(Σ× Σ◦)

Vol(B2n)
=
n! Vol(Σ× Σ◦)

πn
,

which is exactly the bound for Vol(Σ× Σ◦) required by Mahler’s conjecture.

In the rest of this section we sketch the proof of Theorem 3.3 (see [8] for a detailed

exposition). We remark that an alternative proof, based on an approach to billiard dynam-

ics developed in [11], was recently given in [3]. We start with recalling the definition of

the Ekeland-Hofer-Zehnder capacity, which is the symplectic capacity that appears in Theo-

rem 3.3.

The restriction of the standard symplectic form ω = dq∧dp to a smooth closed connected

hypersurface S ⊂ R2n defines a 1-dimensional subbundle ker(ω|S), whose integral curves
comprise the characteristic foliation of S . In other words, a closed characteristic of S is an

embedded circle in S tangent to the canonical line bundle

SS = {(x, ξ) ∈ TS | ω(ξ, η) = 0 for all η ∈ TxS}.

Recall that the symplectic action of a closed curve γ is defined by A(γ) =
∫
γ
λ, where

λ = pdq is the Liouville 1-form. The action spectrum of S is

L(S) = { |A(γ) | ; γ closed characteristic on S} .

The following theorem, which is a combination of results from [24] and [43], states that

on the class of convex domains in R2n, the Ekeland-Hofer capacity cEH and Hofer-Zehnder

capacity c
HZ coincide, and are given by the minimal action over all closed characteristics on

the boundary of the corresponding convex body.

Theorem 3.4. Let K ⊆ R2n be a convex bounded domain with smooth boundary. Then
there exists at least one closed characteristic γ̃ ⊂ ∂K satisfying

cEH(K) = cHZ(K) = A(γ̃) = minL(∂K).
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We remark that although the above definition of closed characteristics, as well as The-

orem 3.4, were given only for the class of convex bodies with smooth boundary, they can

naturally be generalized to the class of convex sets in R2n with non-empty interior (see [7]).

In what follows, we refer to the coinciding Ekeland-Hofer and Hofer-Zehnder capacities on

this class as the Ekeland-Hofer-Zehnder capacity.

We turn now to show that for every centrally symmetric convex body Σ ⊂ Rnq , the
Ekeland–Hofer–Zehnder capacity satisfies cEHZ(Σ × Σ◦) = 4. For this purpose, we now

switch gears and turn to mathematical billiards in Minkowski geometry.

It is folklore to people in the field that billiard flow can be treated, roughly speaking, as

the limiting case of geodesic flow on a boundaryless manifold. Indeed, let Ω be a smooth

plane billiard table, and consider its “thickening”, i.e. an infinitely thin three dimensional

body whose boundary Γ is obtained by pasting two copies of Ω along their boundaries and

smoothing the edge. Thus, a billiard trajectory in Ω can be viewed as a geodesic line on the

boundary of Γ, that goes from one copy of Ω to another each time the billiard ball bounces

off the boundary. The main technical difficulties with this strategy is the rigorous treatment

of the limiting process, and the analysis involved with the dynamics near the boundary.

One approach to billiard dynamics and the existence question of periodic trajectories is an

approximation scheme which uses a certain “penalization method” developed by Benci and

Giannoni in [10] (cf. [5, 48]). In what follows we present an alternative approach, and use

characteristic foliation on singular convex hypersurfaces in R2n (see e.g., [21, 23, 50]) to

describe Finsler type billiards for convex domains in the configuration space Rnq . The main

advantage of this approach is that it allows one to use the natural one-to-one correspondence

between the geodesic flow on a manifold and the characteristic foliation on its unit cotangent

bundle, and thus provides a natural “symplectic setup” in which one can use tools such as

Theorem 3.4 above in the context of billiard dynamics. In particular, we show that the

Ekeland-Hofer-Zehnder capacity of certain Lagrangian product configurations K×T in the

classical phase space R2n is the length of the shortest periodic T -billiard trajectory in K
(see e.g., [7, 88]), which we turn now to describe.

The general study of billiard dynamics in Finsler and Minkowski geometries was ini-

tiated by Gutkin and Tabachnikov in [36]. From the point of view of geometric optics,

Minkowski billiard trajectories describe the propagation of light in a homogeneous anisotropic

medium that contains perfectly reflecting mirrors. Below, we focus on the special case of

Minkowski billiards in a smooth convex body K ⊂ Rnq . We equip K with a metric given by

a certain norm ‖ · ‖, and consider billiards inK with respect to the geometry induced by ‖ · ‖.
More precisely, let K ⊂ Rnq , and T ⊂ Rnp be two convex bodies with smooth boundary, and

consider the unit cotangent bundle

U∗T K := K × T = {(q, p) | q ∈ K, and gT (p) ≤ 1} ⊂ T ∗Rnq = Rnq × Rnp .

Here gT is the gauge function gT (x) = inf{r |x ∈ rT }. When T = −T is centrally

symmetric one has gT (x) = ‖x‖T . For p ∈ ∂T , the gradient vector ∇gT (p) is the outer

normal to ∂T at the point p, and is naturally considered to be in Rnq = (Rnp )
∗.

Motivated by the classical correspondence between geodesics in a Riemannian manifold

and characteristics of its unit cotangent bundle, we define (K, T )-billiard trajectories to be

characteristics in U∗T K such that their projections to Rnq are closed billiard trajectories in K
with a bouncing rule that is determined by the geometry induced from the body T ; and vice

versa, the projections to Rnp are closed billiard trajectories in T with a bouncing rule that

is determined by K. More precisely, when we follow the vector fields of the dynamics, we
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move in K × ∂T from (q0, p0) to (q1, p0) ∈ ∂K × ∂T following the inner normal to ∂T at

p0. When we hit the boundary ∂K at the point q1, the vector field changes, and we start to

move in ∂K × T from (q1, p0) to (q1, p1) ∈ ∂K × ∂T following the outer normal to ∂K at

the point q1. Next, we move from (q1, p1) to (q2, p1) following the opposite of the normal

to ∂T at p1, and so on and so forth (see Figure 1). It is not hard to check that when one

of the bodies, say T , is a Euclidean ball, then when considering the projection to Rnq , the
bouncing rule described above is the classical one (i.e., equal impact and reflection angles).

Hence, the above reflection law is a natural variation of the classical one when the Euclidean

structure on Rnq is replaced by the metric induced by the norm ‖ · ‖T . We continue with a

more precise definition.

Definition 3.5. Given two smooth convex bodies K ⊂ Rnq and T ⊂ Rnp . A closed (K, T )-
billiard trajectory is the image of a piecewise smooth map γ : S1 → ∂(K × T ) such that for
every t /∈ Bγ := {t ∈ S1 | γ(t) ∈ ∂K × ∂T } one has

γ̇(t) = dX(γ(t)),

for some positive constant d and the vector field X given by

X(q, p) =

{
(−∇gT (p), 0), (q, p) ∈ int(K)× ∂T ,
(0,∇gK(q)), (q, p) ∈ ∂K × int(T ).

Moreover, for any t ∈ Bγ , the left and right derivatives of γ(t) exist, and
γ̇±(t) ∈ {α(−∇gT (p), 0) + β(0,∇gK(q)) | α, β ≥ 0, (α, β) �= (0, 0)}.

Although in Definition 3.5 there is a natural symmetry between the bodies K and T , in

what follows we shall assume that K plays the role of the billiard table, while T induces the

geometry that governs the billiard dynamics in K. We will use the following terminology:

for a (K, T )-billiard trajectory γ, the curve πq(γ), where πq : R2n → Rnq is the projection

of γ to the configuration space, shall be called a T -billiard trajectory in K. Moreover,

similarly to the Euclidean case, one can check that T -billiard trajectories in K correspond

to critical points of a length functional defined on the j-fold cross product of the boundary

∂K, where the distances between two consecutive points are measured with respect to the

support function hT , where hT (u) = sup{〈x, u〉 ; x ∈ T }.
Definition 3.6. A closed (K, T )-billiard trajectory γ is said to be proper if the setBγ is finite,
i.e., γ is a broken bicharacteristic that enters and instantly exits the boundary ∂K×∂T at the

reflection points. In the case where Bγ = S1, i.e., γ is travelling solely along the boundary

∂K × ∂T , we say that γ is a gliding trajectory.

The following theorem was proved in [7].

Theorem 3.7. Let K ⊂ Rnq , T ⊂ Rnp be two smooth convex bodies. Then, every (K, T )-
billiard trajectory is either a proper trajectory, or a gliding one. Moreover the Ekeland-
Hofer-Zehnder capacity cEHZ(K × T ) of the Lagrangian product K × T is the length of the
shortest periodic T -billiard trajectory in K measured with respect to the support function
hT .

This theorem provides an effective way to estimate (and sometimes compute) the Ekeland-

Hofer-Zehnder capacity of Lagrangian product configurations in the phase space. For exam-

ple, in [8] (see Remark 4.2 therein) we used elementary tools from convex geometry to show
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∇‖q2‖K

∇‖q1‖K

q2

q1

q0K

∇‖p1‖T

∇‖p0‖T

p0

p2 p1

T

Figure 3.1. A proper (K, T )-Billiard trajectory.

q̃

−q̃

K

r T ◦

∇‖q̃‖K

∇‖−q̃‖K

rK◦

Tp̃

−p̃

∇‖p̃‖T

∇‖−p̃‖T

Figure 3.2. T -billiard trajectory in K of length 4 inradT ◦(K).

that for centrally symmetric convex bodies, the shortest T -billiard trajectory in K is a 2-

periodic trajectory connecting a tangency point q0 of K and a homotetic copy of T ◦ to −q0
(see Figure 2). This result extends a previous result by Ghomi [31] for Euclidean billiards.

In both cases, the main difficulty in the proof is to show that the above mentioned 2-periodic

trajectory is indeed the shortest one. With this geometric observation at our disposal, we

proved in [8] the following result: denote by inradT (K) = max{r | rT ⊂ K}.
Theorem 3.8. If K ⊂ Rnq , T ⊂ Rnp are centrally symmetric convex bodies, then

cEHZ(K × T ) = c(K × T ) = 4 inradT ◦(K)

Note that Theorem 3.8 immediately implies Theorem 3.3 above, which in turn implies

Theorem 3.2. Thus, we have shown that Mahler’s conjecture follows from a special case

of Viterbo’s conjecture. In fact, it follows immediately from the proof of Theorem 3.2 that

Mahler’s conjecture is equivalent to Viterbo’s conjecture when the latter is restricted to the

Ekeland-Hofer-Zehnder capacity, and to convex domains of the formΣ×Σ◦, whereΣ ⊂ Rnq
is a centrally symmetric convex body. We hope that further pursuing this line of research will

lead to a breakthrough in understanding both conjectures.
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3.1. Bounds on the length of the shortest billiard trajectory. Going somehow in the

opposite direction, one can also use the theory of symplectic capacities to provide several

bounds and inequalities for the length of the shortest periodic billiard trajectory in a smooth

convex body in Rn. In [7] we prove the following theorem, which for the sake of simplicity

we state only for the case of Euclidean billiards (for several other related results see [3, 5,

11, 31, 47, 48, 88]).

Theorem 3.9. LetK ⊂ Rn be a smooth convex body, and let ξ(K) denote the length of the
shortest periodic billiard trajectory inK. Then,

(i) ξ(K1) ≤ ξ(K2), for any convex domainsK1 ⊆ K2 ⊆ Rn (monotonicity);

(ii) ξ(K) ≤ C√
nVol(K)

1
n , for some universal constant C > 0;

(iii) 4inrad(K) ≤ ξ(K) ≤ 2(n+ 1)inrad(K);

(iv) ξ(K1 +K2) ≥ ξ(K1) + ξ(K2) (Brunn-Minkowski type inequality).

We remark that the inequality 4inrad(K) ≤ ξ(K) in (iii) above was proved already

in [31], the monotonicity property was well known to experts in the field (although it has

not been addressed in the literature to the best of our knowledge), and all the results in

Theorem 3.9 were later recovered and generalized by different methods (see [3, 47, 48]).

Moreover, in light of the “classical versus quantum” relation between the length spectrum in

Riemannian geometry and the Laplace spectrum, via trace formulae and Poisson relations,

Theorem 3.9 can be viewed as a classical counterpart of some well-known results for the

first Laplace eigenvalue on convex domains. It is interesting to note that, to the best of the

author’s knowledge, the exact value of the constantC in part (ii) of Theorem 3.9 is unknown

already in the two-dimensional case.

4. The Uniqueness of Hofer’s Metric

One of the most striking facts regarding the group of Hamiltonian diffeomorphisms associ-

ated with a symplectic manifold is that it can be equipped with an intrinsic geometry given

by a bi-invariant Finsler metric known as Hofer’s metric [40]. In contrast to the case of finite-

dimensional Lie groups, the existence of such a metric on an infinite-dimensional group of

transformations is highly unusual due to the lack of local compactness. Hofer’s metric is

exceptionally important for at least two reasons: first, Hofer showed in [40] that this metric

gives rise to an important symplectic capacity known as “displacement energy”, which turns

out to have many different applications in symplectic topology and Hamiltonian dynamics

(see e.g., [18, 40, 43, 52, 53, 74, 75]). Second, it provides a certain geometric intuition for

the understanding of the long-time behaviour of Hamiltonian dynamical systems.

In [26], Eliashberg and Polterovich initiated a discussion on the uniqueness of Hofer’s

metric (cf. [25, 75]). They asked whether for a closed symplectic manifold (M,ω), Hofer’s
metric is the only bi-invariant Finsler metric on the group of Hamiltonian diffeomorphisms.

In this section we explain (following [17] and [72]) how tools from classical functional

analysis and the theory of normed function spaces can be used to positively answer this

question, and show that up to equivalence of metrics, Hofer’s metric is unique. For this

purpose, we now turn to more precise formulations.
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Let (M,ω) be a closed 2n-dimensional symplectic manifold, and denote by C∞0 (M) the
space of smooth functions that are zero-mean normalized with respect to the canonical vol-

ume form ωn. With every smooth time-dependent Hamiltonian functionH :M×[0, 1] → R,
one associates a vector fieldXHt via the equation iXHt

ω = −dHt, whereHt(x) = H(t, x).
The flow ofXHt is denoted by φ

t
H and is defined for all t ∈ [0, 1]. The group of Hamiltonian

diffeomorphisms consists of all the time-one maps of such Hamiltonian flows, i.e.,

Ham(M,ω) = {φ1H | φtH is a Hamiltonian flow}.
When equipped with the standard C∞-topology, the group Ham(M,ω) is an infinite-

dimensional Fréchet Lie group. Its Lie algebra, denoted here by A, can be naturally identi-

fied with the space of normalized smooth functions C∞0 (M). Moreover, the adjoint action

of Ham(M,ω) on A is the standard action of diffeomorphisms on functions, i.e., Adφf =
f ◦φ−1, for every f ∈ A and φ ∈Ham(M,ω). For more details on the group of Hamiltonian

diffeomorphisms see e.g., [43, 62, 75].

Next, we define a Finsler pseudo-distance on Ham(M,ω). Given any pseudo-norm ‖ · ‖
on A, we define the length of a path α : [0, 1] → Ham(M,ω) as

length{α} =

∫ 1

0

‖α̇‖dt =
∫ 1

0

‖Ht‖dt,

where Ht(x) = H(t, x) is the unique normalized Hamiltonian function generating the path

α. Here H is said to be normalized if
∫
M
Htω

n = 0 for every t ∈ [0, 1]. The distance

between two Hamiltonian diffeomorphisms is given by

d(ψ,ϕ) := inf length{α},
where the infimum is taken over all Hamiltonian paths α connecting ψ and ϕ. It is not hard
to check that d is non-negative, symmetric, and satisfies the triangle inequality. Moreover,

any pseudo-norm on the Lie algebra A that is invariant under the adjoint action yields a bi-

invariant pseudo-distance function onHam(M,ω), i.e., d(ψ, φ) = d(θ ψ, θ φ) = d(ψ θ, φ θ),
for every ψ, φ, θ ∈ Ham(M,ω).

From here forth we deal solely with such pseudo-norms and we refer to d as the
pseudo-distance generated by the pseudo-norm ‖ · ‖.

We remark in passing that a fruitful study of right-invariant Finsler metrics on Ham(M,ω),
motivated in part by applications to hydrodynamics, was initiated by Arnold [4]. In addi-

tion, non-Finslerian bi-invariant metrics on Ham(M,ω) have been intensively studied in the
realm of symplectic geometry, starting with the works of Viterbo [89], Schwarz [84], and

Oh [70], and followed by many others.

Remark 4.1. When one studies geometric properties of the group of Hamiltonian diffeo-

morphisms, it is convenient to consider smooth paths [0, 1] → Ham(M,ω), among which

those that start at the identity correspond to smooth Hamiltonian flows. Moreover, for a

given Finsler pseudo-metric on Ham(M,ω), a natural geometric assumption is that every

smooth path [0, 1] → Ham(M,ω) has finite length. As it turns out, the latter assumption is

equivalent to the continuity of the pseudo-norm on A corresponding to the pseudo-Finsler

metric in the C∞-topology (see [17]). Thus, in what follows we shall mainly consider such

pseudo-norms.
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It is highly non-trivial to check whether a distance function on the group of Hamilto-

nian diffeomorphisms generated by a pseudo-norm is non-degenerate, that is, d(Id, φ) > 0
for φ �= Id. In fact, for closed symplectic manifolds, a bi-invariant pseudo-metric d on

Ham(M,ω) is either a genuine metric or identically zero. This is an immediate corollary

of a well-known theorem by Banyaga [9], which states that Ham(M,ω) is a simple group,

combined with the fact that the null-set

null(d) = {φ ∈ Ham(M,ω) | d(Id, φ) = 0}
is a normal subgroup of Ham(M,ω). A renowned result by Hofer [40] states that the L∞-

norm on A gives rise to a genuine distance function on Ham(M,ω) known now as Hofer’s

metric. This was proved by Hofer for the case of R2n, then generalized by Polterovich [74],

and finally proven in full generality by Lalonde and McDuff [53]. In a sharp contrast to

the above, Eliashberg and Polterovich showed in [26] that for a closed symplectic manifold

(M,ω) ons has

Theorem 4.2 (Eliashberg and Polterovich). For 1 ≤ p < ∞, the pseudo-distances on
Ham(M,ω) corresponding to the Lp-norms on A vanish identically.

The following question was asked in [26] (cf. [25, 75]):

Question 4.3. What are the Ham(M,ω)-invariant norms on A, and which of them give rise
to genuine bi-invariant metrics on Ham(M,ω)?

It was observed in [17] that any pseudo-norm ‖ · ‖ on the space A can be turned into a

Ham(M,ω)-invariant pseudo-norm via a certain invariantization procedure ‖f‖ !→ ‖f‖inv.
The idea behind this procedure is based on the notion of infimal convolution (or epi-sum),

from convex analysis. Recall that the infimal convolution of two functions f and g on Rn is

defined by (f�g)(z) = inf{f(x)+ g(y) | z = x+ y}. This operator has a simple geometric

interpretation: the epigraph (i.e., the set of points lying on or above the graph) of the infimal

convolution of two functions is the Minkowski sum of the epigraphs of those functions. The

invariantization ‖ · ‖inv of ‖ · ‖ is obtained by taking the orbit of ‖ · ‖ under the group action,

and consider the infimal convolution of the associated family of norms. More preciesly,

define

‖f‖inv = inf
{∑

‖φ∗i fi‖ ; f =
∑
fi, and φi ∈ Ham(M,ω)

}
.

We remark that in the above definition of ‖f‖inv the sum
∑
fi is assumed to be finite. Note

that ‖ · ‖inv ≤ ‖ · ‖. Thus, if ‖ · ‖ is continuous in the C∞-topology, then so is ‖ · ‖inv.
Moreover, if ‖ · ‖′ is a Ham(M,ω)-invariant pseudo-norm, then:

‖ · ‖′ ≤ ‖ · ‖ =⇒ ‖ · ‖′ ≤ ‖ · ‖inv.
In particular, the above invariantization procedure provides a plethora of Ham(M,ω)-invariant
genuine norms on A, e.g., by applying it to the ‖ · ‖Ck -norms.

In [72] we made a first step toward answering Question 4.3 using tools from the the-

ory of normed spaces and functional analysis. More precisely, regarding the first part of

Question 4.3, we proved

Theorem 4.4 (Ostrover and Wagner). Let ‖ · ‖ be a Ham(M,ω)-invariant norm on A such
that ‖·‖ ≤ C‖·‖∞ for some constant C. Then ‖·‖ is invariant under all measure preserving
diffeomorphisms ofM .
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In other words, any Ham(M,ω)-invariant norm on A that is bounded above by the L∞-

norm, must also be invariant under the much larger group of measure preserving diffeomor-

phisms. Theorem 4.4 plays an important role in the proof of the following result, which

gives a partial answer to the second part of Question 4.3.

Theorem 4.5 (Ostrover and Wagner). Let ‖ · ‖ be a Ham(M,ω)-invariant norm on A such
that ‖ · ‖ ≤ C‖ · ‖∞ for some constant C, but the two norms are not equivalent.1 Then the
associated pseudo-distance d on Ham(M,ω) vanishes identically.

Although Theorem 4.5 gives a partial answer to the second part of Question 4.3, prima

facie, there might be Ham(M,ω)-invariant norms on A which are either strictly bigger than

the L∞-norm, or incomparable to it. In a joint work with L. Buhovsky [17] we showed that

under the natural continuity assumption mentioned in Remark 4.1 above, this cannot happen.

Hence, up to equivalence of metrics, Hofer’s metric is unique. More precisely,

Theorem 4.6 (Buhovsky and Ostrover). Let (M,ω) be a closed symplectic manifold. Any
C∞-continuous Ham(M,ω)-invariant pseudo-norm ‖ · ‖ on A is dominated from above by
the L∞-norm i.e., ‖ · ‖ ≤ C‖ · ‖∞ for some constant C.

Combining Theorem 4.6 and Theorem 4.5 above, we obtain:

Corollary 4.7. For a closed symplectic manifold (M,ω), any bi-invariant Finsler pseudo-
metric on Ham(M,ω), obtained by a pseudo-norm ‖ · ‖ on A that is continuous in the
C∞-topology, is either identically zero, or equivalent to Hofer’s metric. In particular, any
non-degenerate bi-invariant Finsler metric on Ham(M,ω) which is generated by a norm
that is continuous in the C∞-topology gives rise to the same topology on Ham(M,ω) as the
one induced by Hofer’s metric.

In the rest of this section we briefly describe the strategy of the proof of Theorem 4.6

in the two-dimensional case. For the proof of the general case see [17]. We start with two

straightforward reduction steps. First, for technical reasons, we shall consider pseudo-norms

on the space C∞(M), instead of the space A. The original claim will follow, since any

Ham(M,ω) invariant pseudo-norm ‖ · ‖ on A can be naturally extended to an invariant

pseudo-norm ‖ · ‖′ on C∞(M) by

‖f‖′ := ‖f −Mf‖, whereMf = 1
Vol(M)

∫
M
fωn.

Note that if ‖ · ‖ is continuous in the C∞-topology, then so is ‖ · ‖′, and that the two norms

coincide on the spaceA. Second, by using a standard partition of unity argument, we can re-

duce the proof of Theorem 4.6 to a “local result”, i.e., it is sufficient to prove the theorem for

Hamc(W,ω)-invariant pseudo-norms on the space of compactly supported smooth functions

C∞c (W ), whereW = (−L,L)2 is an open square in R2 (see [17] for the details).

The next step, which is one of the key ideas of the proof, is to define the “largest pos-

sible” Hamc(W,ω)-invariant norm on the space of compactly supported smooth functions

C∞c (W ). To this end, we fix a (non-empty) finite collection of functions F ⊂ C∞c (W ), and
define:

LF :=
{∑
i,k

ci,kΦ
∗
i,kfi | ci,k ∈ R,Φi,k ∈ Hamc(W,ω), fi ∈ F , and #{(i, k) | ci,k �= 0}<∞

}
.

1Two norms are said to be equivalent if 1
C

‖ · ‖1 � ‖ · ‖2 � C‖ · ‖1 for some constant C > 0.
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We equip the space LF with the norm

‖f‖LF = inf
∑

|ci,k|,

where the infimum is taken over all the representations f =
∑
ci,k Φ

∗
i,kfi as above.

Definition 4.8. For any compactly supported function f ∈ C∞c (W ), let

‖f‖F,max = inf
{
lim inf
i→∞

‖fi‖LF
}
,

where the infimum is taken over all subsequences {fi} in LF which converge to f in the

C∞-topology. As usual, the infimum of the empty set is set to be +∞.

The main feature of the norm ‖ · ‖F,max is that it dominates from above any other

Hamc(W,ω)-invariant pseudo-norm that is continuous in the C∞-topology.

Lemma 4.9. Let F ⊂ C∞c (W ) be a non-empty finite collection of smooth compactly sup-
ported functions inW . Then any Hamc(W,ω)-invariant pseudo-norm ‖ · ‖ on C∞c (W ) that
is continuous in the C∞-topology satisfies

‖ · ‖ � C‖ · ‖F,max,

for some absolute constant C.

Proof of Lemma 4.9. Since the collection F is finite, set C = max{‖g‖; g ∈ F}. For any
f =

∑
ci,k Φ

∗
i,kfi ∈ LF , one has

‖f‖ ≤
∑

|ci,k|‖Φ∗i,kfi‖ ≤ C
∑

|ci,k|. (4.1)

By the definition of ‖ · ‖LF , this immediately implies that ‖f‖ ≤ C‖f‖LF . The lemma now

follows by combining (4.1), the definition of ‖ · ‖F,max, and the fact that the pseudo-norm

‖ · ‖ is assumed to be continuous in the C∞-topology.

The next step, which is the main part of the proof, is to show that for a suitable collection

of functions F ⊂ C∞c (W ), the norm ‖ · ‖F,max is in turn bounded from above by the

L∞-norm. In light of the above, this would complete the proof of Theorem 4.6 in the two-

dimensional case.

There are two independent components in the proof of this claim. First, we show that

one can decompose any f ∈ C∞c (W 2) with ‖f‖∞ � 1 into a finite combination f =∑N0

i=1 εjΨ
∗
jgj . Here, εj ∈ {−1, 1}, Ψj ∈ Hamc(W

2, ω), and gj are smooth rotation-

invariant functions whose L∞-norm is bounded by an absolute constant, and which satisfy

certain other technical conditions (see Proposition 3.5 in [17] for the precise statement). In

what follows we call such functions “simple functions”. We emphasize thatN0 is a constant

independent of f . Thus, we can restrict ourselves to the case where f is a “simple function”.

In the second part of the proof, we construct an explicit collection F = {f0, f1, f2}, where
fi ∈ C∞c (W 2), and i = 0, 1, 2. Using an averaging procedure (see the proof of Theorem

3.4 in [17]), one can show that every “simple function” f ∈ C∞c (W 2) can be approximated

arbitrarily well in the C∞-topology by a sum of the form∑
i,k

αi,kΨ̃
∗
i,kfk, where Ψ̃i,k ∈ Hamc(W

2, ω), k ∈ {0, 1, 2},
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and such that
∑ |αi,k| ≤ C‖f‖∞ for some absolute constant C. Combining this with the

above definition of ‖ · ‖F,max, we conclude that ‖f‖F,max ≤ C‖f‖∞ for every

f ∈ C∞c (W 2). Together with Lemma 4.9, this completes the proof of Theorem 4.6 in

the 2-dimensional case.

5. Some open questions and speculations

Do symplectic capacities coincide on the class of convex domains? As mentioned above,

since the time of Gromov’s original work, a variety of symplectic capacities have been

constructed and the relations between them often lead to the discovery of surprising con-

nections between symplectic geometry and Hamiltonian dynamics. In the two-dimensional

case, Siburg [85] showed that any symplectic capacity of a compact connected domain with

smooth boundary Ω ⊂ R2 equals its Lebesgue measure. In higher dimensions symplec-

tic capacities do not coincide in general. A theorem by Hermann [37] states that for any

n ≥ 2 there is a bounded star-shaped domain S ⊂ R2n with cylindrical capacity c(S) ≥ 1,
and arbitrarily small Gromov radius c(S). Still, for large classes of sets in R2n, includ-

ing ellipsoids, polydiscs and convex Reinhardt domains, all symplectic capacities coin-

cide [37]. In [88] Viterbo showed that for any bounded convex subset Σ of R2n one has

c(Σ) ≤ 4n2c(Σ). Moreover, one has (see [37, 41, 88]) the following:

Conjecture 5.1. For any convex domain Σ in R2n one has c(Σ) = c(Σ).

This conjecture is particularly challenging due to the scarcity of examples of convex

domains in which capacities have been computed. Moreover, note that Conjecture 5.1 is

stronger than Viterbo’s conjecture (Conjecture 2.2 above), as the latter holds trivially for the

Gromov radius.

A somewhat more modest question in this direction is whether Conjecture 5.1 holds

asymptotically, i.e., whether there is an absolute constant A such that for any convex domain

K ⊂ R2n one has c(K) ≤ Ac(K). It would be interesting to explore whether methods from

asymptotic geometric analysis can be used to answer this question.

Are Hanner polytopes in fact symplectic balls in disguise? Recall that Mahler’s con-

jecture states that the minimum possible Mahler volume is attained by a hypercube. It is

interesting to note that the corresponding product configuration, when looked at through

symplectic glasses, is in fact a Euclidean ball in disguise. More precisely, it was proved

in §7.9 of [82] (cf. Corollary 4.2 in [56]) that the interior of the product of a hyper-

cube Q ⊂ Rnq and its dual body, the cross-polytope Q◦ ⊂ Rnp , is symplectomorphic

to the interior of a Euclidean ball B2n(r) ⊂ Rnq × Rnp with the same volume. On the

other hand, as mentioned in Section 3 above, if Mahler’s conjecture holds, then there are

other minimizers for the Mahler volume aside of the hypercube. For example, consider

the class of Hanner polytopes. A d-dimensional centrally symmetric polytope P is a Han-

ner polytope if either P is one-dimensional (i.e., a symmetric interval), or P is the free

sum or direct product of two (lower dimensional) Hanner polytopes P1 and P2. Recall

that the free sum of two polytopes, P1 ⊂ Rn, P2 ⊂ Rm is a n + m polytope defined by

P1 ⊕P2 = Conv({P1 ×{0}}∪{{0}×P2}) ⊂ Rn+m. It is not hard to check (see e.g. [80])

that the volume product of the cube is the same as that of Hanner polytopes. Thus every

Hanner polytope is also a candidate for a minimizer of the volume product among symmet-
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ric convex bodies. In light of the above mentioned result from [82], a natural question is the

following:

Question 5.2. Is every Hanner polytope a symplectic image of a Euclidean ball?

More precisely, is the interior of every Hanner polytope symplectomorphic to the interior

of a Euclidean ball with the same volume? A negative answer to this question would give a

counterexample to Conjecture 5.1 above, since it would show that the Gromov radius must

be different from the Ekeland-Hofer-Zehnder capacity.

Symplectic embeddings of Lagrangian products. Since Gromov’s work [34], questions

about symplectic embeddings have lain at the heart of symplectic geometry (see e.g., [12, 13,

35, 45, 56, 60, 61, 63, 82, 83]). These questions are usually notoriously difficult, and up to

date most results concern only the embeddings of balls, ellipsoids and polydiscs. Note that

even for this simple class of examples, only recently has it become possible to specify exactly

when a four-dimensional ellipsoid is embeddable in a ball (McDuff and Schlenk [63]), or in

another four-dimensional ellipsoid (McDuff [60]). For some other related works we refer the

reader to [15, 19, 22, 30, 38, 39, 71].

Since symplectic capacities can naturally be used to detect symplectic embedding ob-

structions, and in light of the results mentioned in Section 3 (in particular, Theorem 3.8), it

is only natural to try to extend the above list of currently-known examples, and study sym-

plectic embeddings of convex “Lagrangian products” in the classical phase space. The main

advantage of this class of bodies is that the action spectrum can be computed via billiard dy-

namics. This property would presumably make it easier to compute or estimate the Ekeland-

Hofer capacities [24], or Hutchings’ embedded contact homology capacities [44, 45], in this

setting. A natural first step in this direction would be to consider the embedding of the La-

grangian product of two balls into a Euclidean ball. More precisely, to study the function

σ : N → R defined by

σ(n) = inf
{
a |Bnq (1)×Bnp (1)

symp
↪→ B2n(a)

}
.

To the best of the author’s knowledge, the value of σ(n) is unknown already for the case

n = 2.
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On the future stability of cosmological solutions to
Einstein’s equations with accelerated expansion

Hans Ringström

Abstract. The solutions of Einstein’s equations used by physicists to model the universe have a high

degree of symmetry. In order to verify that they are reasonable models, it is therefore necessary to

demonstrate that they are future stable under small perturbations of the corresponding initial data. The

purpose of this contribution is to describe mathematical results that have been obtained on this topic.

A question which turns out to be related concerns the topology of the universe: what limitations do

the observations impose? Using methods similar to ones arising in the proof of future stability, it is

possible to construct solutions with arbitrary closed spatial topology. The existence of these solutions

indicate that the observations might not impose any limitations at all.
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1. Introduction

In 1915, the interpretation of gravitational forces was fundamentally altered by the introduc-

tion of Einstein’s general theory of relativity. The underlying mathematical structures of the

theory were not well understood at the time, and as a consequence, some of the fundamental

questions have only recently been phrased in the form of mathematical problems. Since Ein-

stein’s equations are not as commonly studied in mathematics as many other equations that

appear in physics, we here wish to give a brief description of their origin and of how different

perspectives on them have developed since the inception of general relativity. However, the

main purpose of this contribution is more specific. Recent observational data indicate that

the universe is expanding at an accelerated rate. As a consequence, physicists nowadays use

solutions to Einstein’s equations with accelerated expansion to model the universe. Since

the model solutions are highly symmetric (they are spatially homogeneous and isotropic), a

natural question to ask is: are they stable? In order to phrase this question in a more precise

way, it is necessary to formulate Einstein’s equations (coupled to various matter equations)

as an initial value problem. It turns out that there is a natural and geometric notion of initial

data, and that, given initial data, there is a uniquely associated maximal Cauchy develop-

ment. A more precise formulation of the question of stability is then: given initial data

corresponding to one of the standard models, do small perturbations thereof yield maximal

Cauchy developments that are globally similar? The currently preferred models have a big

bang type singularity and an expanding direction. Proving stability in the direction of the
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singularity is quite difficult (there are some results in the case of special matter fields), but

there are several results on stability in the expanding direction. For that reason we shall focus

on the expanding direction here, and we shall think of it as corresponding to the future.

The outline of this contribution is as follows. We begin, in Section 2, by giving a brief

description of the origin of the general theory of relativity. Moreover, we explain how the

present contribution fits into the general context of mathematical studies of Einstein’s equa-

tions. In Sections 3 and 4, we then discuss the formulation of the initial value problem,

which is needed in order for us to be able to state a stability result. In Section 5, we then dis-

cuss the topic of stability in general. We give a rough description of some of the results that

have been obtained in the past, as well as of some of the methods. However, we shall only

formulate a theorem in the case of the Einstein-Vlasov system. In order to be able to do so,

we devote Section 6 to a discussion of this system. In Sections 7 and 8, we then describe the

background solutions we are interested in proving stability of, and state the relevant results.

Finally, in Section 9, we discuss a construction which indicates that the observations do not

impose any restrictions on the topology of the universe.

2. General relativity

In order to discuss the general theory of relativity, it is natural to begin with Einstein’s paper

on special relativity [6]. The starting point of the paper is the contemporary interpretation of

electrodynamics. Noting that this interpretation involves asymmetries, and postulating that

the speed of light is independent of inertial observer, Einstein was led to the Poincaré group

of transformations, relating the observations of inertial observers. Due to the added insight

of Poincaré and Minkowski, it was realized that this group is the group of isometries of

Minkowski space; recall that Minkowski space is R4 with the inner product 〈x, y〉 = xtηy,
where η = diag(−1, 1, 1, 1). This interpretation indicates the importance of geometry. As

a next step, it is clear that Newtonian gravity has to be modified. Two important principles

that guided Einstein in his search for a modified theory were the equivalence principle (the
equality between inert and gravitational mass; this is roughly speaking the idea that it is not

possible to distinguish between a coordinate system at rest in a uniform gravitational field

and a uniformly accelerated coordinate system far away from all matter, for example) and

the principle of general covariance, the idea that the equations should be independent of

the choice of coordinate system. By a simple thought experiment involving rotating coordi-

nate systems, it can be argued (heuristically) that acceleration distorts the geometry; cf. [7,

pp. 58–59]. Combining this observation with the equivalence principle indicates that gravi-

tation should affect the geometry. In fact, it is not unnatural to equate gravitation with distor-

sion of the geometry. Since the geometry at a point should be described by the Minkowski

metric (with respect to a suitable choice of coordinates), the natural underlying object in

general relativity is a Lorentz manifold; in other words, a manifold M on which a smooth

symmetric covariant two-tensor field g is defined, where g is such that it, at each point of

M , equals the Minkowski metric with respect to suitable coordinates. The standard notions

and constructions in Riemannian geometry (Levi-Civita connection, curvature tensor, Ricci

tensor, scalar curvature, geodesics etc.) can be defined in the same way in Lorentz geometry,

and we shall use them below without further comment. The one question that remains is:

what equation should (M, g) satisfy? In some way, the geometry should be related to the

matter sources. On the level of special relativity, it was already clear that the matter should
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be combined into the so-called stress-energy tensor; a symmetric covariant two-tensor field,

the exact form of which depends on the specific matter model. Let us denote this object by T .
It should be the source term in Einstein’s equations (it can be thought of as a generalization

of the matter density in Poisson’s equation in Newtonian gravity). As a consequence, what

remains is to determine what the left hand side of the equation should be. To begin with, it

should clearly be symmetric. Due to the equations for the matter, the stress-energy tensor

should be divergence free. As a consequence, the left hand side should be as well. Moreover,

it should be such that the resulting equations are independent of the choice of coordinates.

Finally, it is natural (for the sake of simplicity, and in analogy with the Poisson equation) to

require that the left hand side should contain at most second order derivatives of the gravi-

tational field (i.e., the metric). However, the only equations fulfilling these requirements are

the ones of the form

G+ Λg = αT, (2.1)

where Λ and α are constants and

G = Ric− 1

2
Sg

is the Einstein tensor, defined in terms of the Ricci tensor, Ric, and the scalar curvature,

S, of the metric g (the reader interested in a justification of this statement is referred to the

corollary of [15, Theorem 1, p. 500]). In (2.1), we shall, for simplicity, assume α = 1.
Moreover, we shall refer to Λ as the cosmological constant. The resulting equations are

G+ Λg = T, (2.2)

and we shall refer to them as Einstein’s equations.

2.1. Historical development. It is of interest to say a few words concerning how different

perspectives on these equations have developed over time. In the intial phase, physicists

tried to find explicit solutions to the equations. In order to do so, they imposed symmetry

assumptions adapted to the physical situation of interest. When considering physical objects

such as a star, a galaxy, a globular cluster etc. (i.e., an isolated system), a natural first sym-

metry assumption to make is that of spherical symmetry. This assumption led to the class of

Schwarzschild spacetimes, which can be used to model the gravitational field outside a non-

rotating star or black hole. Much later, the Kerr family of solutions was found, describing the

rotating case. When modelling the universe as a whole, another type of symmetry assump-

tion is required. Guided by the Copernican principle, a natural starting point in this case is

the assumption of spatial homogeneity and isotropy; this is the assumption that at ’one mo-

ment in time’, it is not possible to distinguish between two points in space, nor is it possible

to distinguish between two directions. Symmetry assumptions of this type (corresponding

to the so-called cosmological setting) led to the Friedman-Lemaître-Robertson-Walker met-

rics, which are still used to this very day when modelling the universe (though the preferred

matter models have changed over time). Even though mathematicians nowadays consider

significantly less symmetric solutions, the problems considered can still be divided into ones

concerning isolated systems and ones concerning the cosmological setting.

In the initial stages of the development of general relativity, when the emphasis was on

finding explicit solutions, the geometry remained somewhat obscure. As a consequence,

some of the features of, e.g., the Schwarzschild solutions were misunderstood for several
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decades. In the 50’s and 60’, the geometry received more attention, and the so-called sin-
gularity theorems were proven. In order to give an idea of the statements of these results,

it is necessary to introduce the notion of causal geodesics. To begin with, a vector v in

Minkowski space is said to be timelike if 〈v, v〉 < 0; lightlike or null if 〈v, v〉 = 0 and v �= 0;
and spacelike if 〈v, v〉 > 0 or v = 0. A vector which is either timelike or null is said to be

causal. These notions can be generalized to Lorentz manifolds. Moreover, it makes sense to

speak of timelike curves etc. as well as spacelike hypersurfaces. In particular, the character

of a geodesic (timelike, null, spacelike) is preserved, so that it is meaningful to speak of

timelike geodesics etc. In the interpretation of general relativity, a causal curve corresponds

to an observer that travels at a speed less than or equal to that of light. Moreover, a timelike

geodesic corresponds to a freely falling test particle, and a null geodesics corresponds to a

light ray. Thus causal geodesics are of particular importance in general relativity. A notion

which is also of importance is that of a time orientation. At a given spacetime point, the set

of causal vectors based at that point has two components. A continuous choice of component

corresponds to a time orientation (and we shall, from now on, assume all Lorentz manifolds

to be time oriented). Vectors belonging to the chosen component will be referred to as future
oriented.

The singularity theorems of Hawking and Penrose give general conditions that ensure

the existence of incomplete causal geodesics. Since the existence of such a geodesic means

that there is a freely falling test particle (or a light ray) which exits the spacetime in finite

parameter time, Hawking and Penrose equated causal geodesic incompleteness with the ex-

istence of a singularity (examples illustrate that this is not always reasonable). Due to the

results, it is to be expected that singularities, in the sense of causal geodesic incompleteness,

occur generically in solutions to Einstein’s equations. These results changed the perspective

concerning the occurrences of singularities. Moreover, due to the methods used to prove

them, the importance of the subject of Lorentz geometry became apparent.

In the early 50’s, Yvonne Choquet-Bruhat formulated Einstein’s equations as an initial

value problem [8]. It took a significant amount of time before this perspective became a

natural starting point in the subject. Since the initial data cannot be specified freely (they

have to satisfy an underdetermined, non-linear system of elliptic PDE’s, referred to as the

constraint equations), and since, given initial data, the evolution problem typically involves

proving global existence of solutions to a non-linear system of hyperbolic PDE’s, this is

perhaps not so surprising. In particular, the relevant PDE tools were not so well developed

in the early 50’s. Nevertheless, this perspective has become more and more important in the

subject. This is, in particular, due to the fact that central questions such as that of stability

are most naturally formulated using it.

With the above description in mind, the present contribution can be said to be concerned

with the initial value formulation of Einstein’s equations in the cosmological setting. More-

over, the precise notion of stability we shall use is highly dependent on a Lorentz geometric

interpretation of the outcome of the PDE analysis.

3. On the character of Einstein’s equations

In order to justify that it is meaningful to formulate Einstein’s equations as an initial value

problem, let us begin by focusing on the vacuum equations with a vanishing cosmological

constant. Since these equations can be written Ric = 0, it is of interest to know if Ric,
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considered as a differential operator acting on the components of the metric, has a particular

character (elliptic, hyperbolic etc.). Due to the diffeomorphism invariance of the equations,

this is not to be expected. On the other hand, it is possible to break the diffeomorphism

invariance by making a special choice of coordinates. In fact, choosing coordinates such that

the contracted Christoffel symbols vanish, the Ricci tensor (schematically) takes the form

Ricαβ = −1

2
gμν∂μ∂νgαβ + Fαβ(g, ∂g), (3.1)

where F is a quadratic expression in the first derivatives of the metric components. In this

equation, we assume Greek indices to range from 0 to n, where n+1 is the dimension of the

Lorentz manifold, and we tacitly assume that repeated indices are summed over (the Einstein

summation convention). With respect to these coordinates, Einstein’s vacuum equations can

thus be thought of as a system of non-linear wave equations for the metric components. As

a consequence, it seems natural to formulate a corresponding inital value problem.

It is of interest to note that the above issues arise not only in general relativity, but also

in Riemannian geometry and in Ricci flow. In Riemannian geometry, it is sometimes conve-

nient to think of the Ricci tensor as an elliptic differential operator acting on the components

of the metric; this yields good control of the metric components, given information concern-

ing the Ricci tensor. It is therefore of interest to consider the so-called harmonic coordinates,
defined by the condition that the contracted Christoffel symbols vanish. The reason for re-

ferring to these coordinates as harmonic is that their defining requirement is equivalent to

Δgx
μ = 0,

whereΔg is the scalar covariant Laplacian associated with the metric g and xμ are the com-

ponents of the coordinate system. The analogous coordinates in the Lorentzian setting are

sometimes, by analogy, referred to as harmonic coordinates (and sometimes as wave coordi-

nates). In Ricci flow, the relevant equation is ∂tg = −2Ric[g], and when dealing with this

equation analytically, it would be convenient if Ric were an elliptic operator. Hamilton’s

original idea concerning how to prove local existence was to appeal to the Nash-Moser in-

verse function theorem. However, later proofs instead relied on breaking the diffeomorphism

invariance in order to obtain a strictly parabolic equation.

4. The initial value problem

With the above observations in mind, it seems natural to formulate an initial value prob-

lem. However, it is not so clear what the initial data should be, nor where they should be

specified. It turns out that there are several ways of proceeding, but we shall here focus

on the perspective that arises in analogy with the standard Cauchy problem for the ordinary

wave equation. In that setting, the initial data are specified on a t = const hypersurface
in Minkowski space. These hypersurfaces are special in several ways. First of all, they

are spacelike, meaning that the induced metric is Riemannian (in this particular case, they

are in fact the ordinary Euclidean metric). Moreover, they are intersected exactly once by

every inextendible causal curve; cf. the above terminology. Hypersurfaces in Lorentz man-

ifolds which are intersected exactly once by every inextendible casual curve are referred to

as Cauchy hypersurfaces. They are natural surfaces on which to specify initial data, since

given initial data on a Cauchy hypersurface (for the linear wave equation on the Lorentz
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manifold), there is a unique corresponding solution. A Lorentz manifold which admits a

Cauchy hypersurface is called globally hyperbolic.
Turning to the choice of the intial data, it would seem natural to specify the metric com-

ponents and their normal derivative at the initial hypersurface (keeping (3.1) in mind). How-

ever, since Einstein’s equations are geometric in nature, the initial data should be geometric

as well. On the other hand, the induced metric and second fundamental form are geometric

in nature and correspond to a part of the desired information; with respect to local coordi-

nates, they yield some of the metric components and the normal derivative of some metric

components. The induced metric and second fundamental form would thus seem to con-

stitute minimal information needed in order to construct a solution. On the other hand, it

unfortunately turns out that these initial data cannot be specified freely. In order to be more

specific, let Σ be a spacelike hypersurface in a Lorentz manifold on which Einstein’s equa-

tions (2.2) are satisfied. Contracting the equations twice with respect to the future directed

unit normal, say N , yields

1

2
[S̄ − k̄ij k̄ij + (trḡk̄)

2] = ρ+ Λ, (4.1)

where ḡ and k̄ are the induced metric and second fundamental form on the hypersuface Σ
respectively; cf. [18, Proposition 13.3, p. 149]. Moreover, S̄ is the scalar curvature of the

metric ḡ, indices are raised and lowered with ḡ and ρ = T (N,N). In particular, all the

ingredients in (4.1) are intrinsic to the hypersurface. Contracting (2.2) once with respect

to the future directed unit normal and once with respect to a tangential vector yields the

equation

∇j
k̄ji − ∇itrḡk̄ = −Ji, (4.2)

where ∇ is the Levi-Civita connection associated with the metric ḡ and J is the one-form

field defined by J = −T (N, ·); cf. [18, Proposition 13.3, p. 149]. Again, the ingredients

of (4.2) are intrinsic to the hypersurface Σ. Clearly, the initial data have to satisfy (4.1)

and (4.2), which are referred to as the Hamiltonian and momentum constraints respectively;
collectively, we shall refer to them as the constraint equations. It is natural to ask whether

the constraint equations are sufficient in order to guarantee the existence of a corresponding

development. In the vacuum setting, this question was settled in the seminal result of Yvonne

Choquet-Bruhat [8], which we now formulate.

Theorem 4.1. Let (Σ, ḡ, k̄) be initial data for Einstein’s vacuum equations; i.e., Σ is an
n-dimensional manifold, ḡ is a Riemannian metric and k̄ is a symmetric covariant 2-tensor
field satisfying the vacuum constraint equations; i.e., (4.1) and (4.2) with Λ = 0, ρ = 0
and J = 0. Then there is a globally hyperbolic development of the initial data. In other
words, a Lorentz manifold (M, g) satisfying Einstein’s vacuum equations and an embedding
i : Σ →M such that i∗g = ḡ and i∗κ = k̄, where κ is the second fundamental form of i(Σ)
in (M, g). Moreover, i(Σ) is a Cauchy hypersurface in (M, g).

This result has been generalized to include many different types of matter models. We

shall not list them, but for all the matter models discussed in this contribution, there is a

result analogous to Theorem 4.1.

Even though Theorem 4.1 is important, it does have one deficiency; there is no unique-

ness statement. Given initial data, there are infinitely many inequivalent globally hyperbolic

developments associated with it. In order to obtain uniqueness, it is necessary to require
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some sort of maximality. In fact, the fundamental result, due to Yvonne Choquet-Bruhat and

Robert Geroch [4], is the following.

Theorem 4.2. Let (Σ, ḡ, k̄) be initial data for Einstein’s vacuum equations. Then there is a
unique maximal globally hyperbolic development.

Due to this theorem, it is clear that the notion of initial data introduced in the statement of

Theorem 4.1 is meaningful. Unfortunately, there are examples of maximal globally hyper-

bolic developments that are extendible in the class of all (not necessarily globally hyperbolic)

developments. In fact, there might even be inequivalent maximal developments, indicating

that the general theory of relativity is not deterministic. Since the examples are very special,

one is led to the strong cosmic censorship conjecture. However, that is not the main topic

of this contribution. In fact, we shall here be content with the maximal globally hyperbolic

development as the development of the intial data.

5. Stability

Since Einstein’s equations can be formulated as an initial value problem, it is possible to

phrase the stability question: Given initial data corresponding to a specific solution, do small

perturbations thereof yield maximal globally hyperbolic developments which are globally

similar? The question is still somewhat vague, since we have not specified what is meant by

globally similar, nor what is meant by small perturbations. However, the precise meaning in

practice depends on the particular solution under consideration, and even for a given solution

it is sometimes possible to take different perspectives.

Turning to the stability results that have been obtained in the past, the first one is due

to Helmut Friedrich; cf. [9], which contains a proof of stability of de Sitter space. In the

same paper, he also proved future stability of Minkowski space, starting with hyperboloidal

initial data. Later on, Demetrios Christodoulou and Sergiu Klainerman proved stability

of Minkowski space [5]. That stability holds when using harmonic coordinates was only

demonstrated much later by Hans Lindblad and Igor Rodnianski [13]. Another perspective

on the stability of Minkowski space is given by the work of Lydia Bieri; cf. [3]. Even

though all of the references [3, 5, 9, 13] pertain to the problem of stability of Minkowski

space, they are very different in nature; the assumptions and conclusions are different in all

of these references, and the results correspond to different notions of ‘smallness’ and ’global

similarity’.

Minkowski space is a natural solution to start with when one is interested in isolated

systems. However, the topic of the present contribution is cosmology. Of the references

mentioned above, the one which is of interest in that setting is [9], in which Friedrich proves

stability of de Sitter space. For an appropriate value of the cosmological constant, Λ, the
metric of de Sitter space is given by

gdS = −dt⊗ dt+ cosh2(t)ḡS3

on R × S3, where ḡS3 is the standard metric on S3. The de Sitter space is a solution to

Einstein’s vacuum equations with a positive cosmological constant; i.e.,

G+ Λg = 0.
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The result of Friedrich is peculiar to 3 + 1-dimensions, but Michael Anderson later gener-

alized it to n + 1-dimensions, with n odd; cf. [1]. Friedrich also generalized [9] to include

matter of Maxwell and Yang-Mills type; cf. [10]. All of these references yield stability of

cosmological solutions with accelerated expansion. They thus belong to the class of results

we wish to discuss here. It is of interest to note that the proofs given in [1, 9, 10] are based

on conformal reformulations of the equations. The idea is to first rescale the background

spacetime by a conformal factor, so that what corresponds to past and future infinity in the

physical spacetime is at a finite distance away with respect to the rescaled metric. The second

step is then to derive a suitable system of equations for the rescaled metric and conformal

factor (in reality, the variables might be quite different). This step can be expected to be very

difficult, and the only cases in which it is known to be possible is when the matter sources

have suitable conformal invariance properties. However, when it is possible, the problem

of global existence and stability becomes an issue of continuous dependence on initial data.

Assuming the conformally rescaled equations admit a well posed initial value problem (with

respect to an appropriately chosen gauge; i.e., an appropriate choice of how to break the

diffeomorphism invariance), this is, however, immediate, so that the desired result follows.

It is of interest to note that, even though [1] yields stability in the case of higher dimensions,

it can be used to prove stability in 3 + 1-dimensions for spacetimes with a special type of

matter source; cf. [12]. The results mentioned above are appealing due the the geometric

nature of the arguments involved. However, the methods used seem to suffer from a lack of

robustness. This leads us to the different perspective developed in [17].

In [17], we considered the case of Einstein’s equations coupled to a non-linear scalar

field. The relevant stress-energy tensor in that case is

T = dφ⊗ dφ−
[
1

2
g(gradφ, gradφ) + V (φ)

]
g, (5.1)

where φ is a scalar valued function on the manifold (the so-called scalar field) and V is a

smooth function on R referred to as the potential. The relevant matter field equations are

�gφ− V ′ ◦ φ = 0, (5.2)

where�g is the scalar wave operator associated with g (defined in the same way as the scalar

Laplacian in the case of Riemannian geometry). Note that (5.1) is divergence free if (5.2)

holds. In [17], it is assumed that V (0) > 0, V ′(0) = 0 and V ′′(0) > 0; in other words, that

0 is a positive non-degenerate local minimum of the potential. Moreover, the scalar field is

assumed to be small initially.

The motivation for studying non-linear scalar fields is partly due to their interest in phys-

ics. Once it became clear that the observational data indicate that the universe is expanding

at an accelerated rate, it was natural to try to find matter models that induce accelerated ex-

pansion. One possibility is to include a positive cosmological constant. Another is to add

matter of non-linear scalar field type. The types of potentials considered above specialize to

the case of a positive cosmological constant when demanding that φ = 0 (a case which can

already be handled using conformal methods). However, they are more general, and only

in the case of special relations between V (0) and V ′′(0) do the conformal methods seem to

work; cf. [11].

Following the appearance of [17], there were several results obtained using similar meth-

ods; cf. [19] (treating the case of an exponential potential and generalizing the results of
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[12]), [16, 23] (in which an electromagnetic field was added), [21, 22] (in which the Euler-

Einstein system was considered). However, the situation we focus on in what follows is the

Einstein-Vlasov setting, discussed in [20].

6. The Einstein-Vlasov system

The physical situation matter of Vlasov type is supposed to represent is that of a gas. The

fundamental assumption is that collisions are sufficiently rare that they can be negelected

(including binary collisions would, e.g., lead to the Boltzmann equation, which we do not

consider here). In the case of general relativity, each particle in the gas can thus be expected

to behave as a freely falling test particle. A test particle with a non-zero rest mass (also

referred to as a massive particle) can thus be expected to travel along a timelike geodesic.

In the case of a zero rest mass (i.e., a massless) particle, the relevant curves are the null

geodesics. On the other hand, the particles collectively generate a gravitational field which,

in its turn, affects the geometry (and thereby the geodesics). In order to describe the gas, it is

convenient to use a distribution function. The natural space on which this function is defined

is the space of states of particles. Assuming all the particles to have rest mass 1, the space
of states is given by the set of future directed unit timelike vectors. We shall denote this set

by P , and we shall refer to it as the mass shell. The distribution function, say f , is then a

function from P to the non-negative real numbers.

In order to couple Vlasov matter to Einstein’s equations, it is necessary to explain how

to construct a stress-energy tensor, given a distribution function. Moreover, it is necessary

to formulate an evolution equation for the distribution function. The relevant stress-energy

tensor is defined by

T |TξM×TξM =

∫
Pξ

f(p)p! ⊗ p!μPξ
(p). (6.1)

In this equation, ξ is a spacetime point (i.e., an element of the spacetime manifold M ); Pξ
is the mass shell above ξ (i.e., the elements of P based at ξ); p is an element of Pξ; p

! is

the one-form metrically associated with p (i.e., p!(X) = g(p,X) for X ∈ TξM ); and μPξ

is a volume form defined on Pξ in the following way: the metric g induces a Lorentz metric

gξ on TξM , the Lorentz metric gξ induces a Riemannian metric on Pξ, and this Riemannian

metric induces a volume form on Pξ (which we denote by μPξ
). It is important to note

that it is necessary to impose fall-off conditions on the distribution function in order for

(6.1) to make sense. Often the requirement of compact support in the momentum directions

is imposed, but we here prefer to demand that the distribution function belong to Sobolev

spaces with appropriate weights in the momentum directions.

Turning to the equation for the distribution function, it is given by

Lf = 0, (6.2)

and it is referred to as the Vlasov equation. Here L is a vector field on P defined as follows.

Given an element of P , say v, there is a unique geodesic γ such that γ̇(0) = v. Moreover,

γ̇(s) is a curve in P , and its tangent vector at 0 (considered as a curve in P ) is Lv , the vector
field L at the point v. Note that the Vlasov equation is equivalent to the requirement that

f(γ̇) be constant for each geodesic γ with initial values on P . Moreover, this requirement

corresponds to the assumption that collisions can be neglected, so that the particles travel
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along timelike geodesics. It is of interest to note that (6.2) implies that the stress energy

tensor defined by (6.1) is divergence free (regardless of whether Einstein’s equations are

satisfied or not).

Summing up the above discussion, the Einstein-Vlasov system with a positive cosmolog-

ical constant is given by the equations

G+ Λg =T,

Lf =0,

where T is defined by (6.1). It is also possible to couple this system to a non-linear scalar

field, but we shall focus on the above equations in what follows. There are results corre-

sponding to Theorems 4.1 and 4.2 in this setting. We shall not write them down in detail, but

it is of some interest to clarify what the initial data are.

Initial data for the Einstein-Vlasov system. For the geometry, the relevant initial data are

the induced metric and second fundamental form, just as before. Since the Vlasov equation

is a first order equation, we only need one initial datum for the distribution function. In order

to explain how it is related to the spacetime picture, let us assume that we have a solution

(M, g, f) and a spacelike hypersurface Σ in (M, g). Then there is a diffeomorphism from

PΣ (the mass shell above Σ) to TΣ obtained by projecting orthogonally to the normal of

Σ. Let us denote it by projΣ. The initial datum for the distribution function is given by

f̄ = f ◦ proj−1
Σ , and it is defined on TΣ. In the case of the Einstein-Vlasov system, the rel-

evant initial data are (Σ, ḡ, k̄, f̄), where Σ is an n-dimensional manifold, ḡ is a Riemannian

metric on Σ, k̄ is a symmetric covariant 2-tensor field on Σ and f̄ is a smooth, non-negative

function on TΣ. Moreover, these data should satisfy the constraint equations (4.1) and (4.2)

(where the matter quantities should be expressed in terms of ḡ and f̄ , something which can

be done; cf. [20, (7.20) and (7.21), p. 92]). In order to phrase a stability result, we also need

a notion of distance between initial data sets.

Distance between initial data sets. Let us assume Σ to be a closed manifold. Then we

can use ordinary Sobolev norms on manifolds to measure the distance between two metrics

and between two symmetric covariant 2-tensor fields. Since the tangent space of Σ is non-

compact, we do, however, need a different norm to measure the difference between initial

data for the distribution function. We shall use

‖f̄‖Hl
Vl,μ

=

⎛
⎝ j∑
i=1

∑
|α|+|β|≤l

∫
x̄i(Ui)×Rn

〈&̄〉2μ+2|β|χ̄i(ξ̄)(∂
α
ξ̄ ∂

β
#̄ f̄x̄i)

2(ξ̄, &̄)dξ̄d&̄

⎞
⎠

1/2

. (6.3)

In this expression, (Ui, x̄i), i = 1, . . . , j, is a covering of Σ by coordinate neighbourhoods,

and {χ̄i} is a partition of unity subordinate to the covering {Ui}. The expression f̄x̄i is

the distribution function expressed with respect to the local coordinates on TΣ induced by

(Ui, x̄i); in particular, it is a function on x̄i(Ui) × Rn, where the Rn-factor corresponds to
the tangential directions. Finally, we use the notation

〈&̄〉 = (1 + |&̄|2)1/2.
Considering the norm (6.3), there are two contributions to the power of the weight 〈&̄〉; 2μ
and 2|β|. The reason for including μ is that it yields an overall decay (assuming it to be pos-

itive). In fact, for μ > n/2 + 1, the relevant matter quantities are well defined, assuming the
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right hand side of (6.3) to be bounded (for a high enough l). The reason for including 2|β| is
that it ensures that the notion of smallness obtained using (6.3) is geometrically meaningful;

the exact value of the right hand side of (6.3) depends on the coordinates and the partition of

unity, but different choices lead to equivalent norms, assuming we include 2|β| in the power
of the weight. We shall refer to the space of functions f̄ such that (6.3) is bounded for all l
by D̄∞

μ (TΣ) (this space can also be defined in case Σ is not compact; we then only require

the integrals appearing in the definition of the norm to be bounded on compact subsets of

Σ). The reader interested in a more detailed discussion of norms such as (6.3) is referred

to [20]. In this reference, there is also a description of the relevant function spaces for the

corresponding distribution functions on the maximal globally hyperbolic development asso-

ciated with the initial data. The final ingredient we need before phrasing a stability result is

a description of the relevant background solutions. We turn to this topic next.

7. Background solutions

Let us begin by describing the class of solutions to Einstein’s equations which is currently

preferred by physicists when modelling the universe. The geometry is taken to be spatially

homogeneous and isotropic, as well as spatially flat. In other words, the relevant metrics take

the form

gmodel = −dt⊗ dt+ a2(t)ḡE
on I × R3 (or I × T3), where I is an open interval, ḡE is the standard Euclidean metric on

R3, and a is a positive smooth function on I . Concerning the matter sources, they are usually

taken to be a combination of so-called perfect fluids. In the case of a perfect fluid (and the

above type of symmetry conditions), the stress energy tensor is of the form

T = (ρ+ p)dt⊗ dt+ pgmodel.

Here the functions ρ and p are referred to as the energy density and the pressure respectively.
In order to obtain evolution equations for p and ρ, it is common to introduce an equation of
state, giving p in terms of ρ. The condition that T be divergence free then yields an evolution

equation for ρ. Two equations of state that are often used by physicists are dust (in which

case p = 0) and radiation (in which case p = ρ/3). In fact, the early universe is expected

to have been radiation dominated, and at late times, the matter is expected to behave as dust.

Physicists often study one of these situations at at time, and then they include only dust

or only radiation. However, it is possible to include both at the same time, and we shall

take the matter content of the standard model to consist of a radiation fluid and dust. The

corresponding stress energy tensors are required to be divergence free individually, and this

yields evolution equations for the corresponding energy densities. Finally, a mechanism is

required in order to produce the observed accelerated expansion. One possibility is to include

a non-linear scalar field, but we shall here simply add a positive cosmological constant Λ to

the above description. The relevant equations are then

G+ Λgmodel =Trad + Tdust,

Trad =(ρrad + prad)dt⊗ dt+ pradgmodel,

Tdust =ρdustdt⊗ dt,
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ρ̇rad =− 4
ȧ

a
ρrad,

ρ̇dust =− 3
ȧ

a
ρdust,

where prad = ρrad/3 and G is the Einstein tensor of gmodel. It should be pointed out that

solutions of the above type are only relevant models after decoupling (i.e., the time at which

matter and radiation decoupled). In particular, inflationary phases etc. are not included.

The above matter models are not of Vlasov type. However, it turns out to be possible to

approximate the above solutions arbitrarily well with solutions to the Einstein-Vlasov system

with a positive cosmological constant and the above type of symmetry; cf. [20, Chapter 28].

Moreover, Vlasov matter is such that it naturally behaves as a radiation fluid close to the

singularity and as dust in the expanding direction. In other words, it is not necessary to

put in a dust and a radiation fluid by hand; Vlasov matter is such that this emerges naturally.

Finally, Vlasov matter is conceptually natural in the later part of the evolution of the universe.

As a consequnce, we shall prefer it here.

Spatial homogeneity. It is of interest to put the above example into a slightly bigger con-

text, namely that of spatially homogeneous solutions. In [24], Robert Wald presented general

ideas for how to analyze the future asymptotics of spatially homogeneous solutions to Ein-

stein’s equations with a positive cosmological constant (assuming the matter sources satisfy

certain energy conditions). He did not address the issue of future global existence; this was

taken for granted. However, he did obtain quite general results. The most fundamental

ingredient of the argument is the Hamiltonian constraint (4.1). This equation can be written

(trḡk̄)
2 = −3

2
S̄ +

3

2
σ̄ij σ̄

ij + 3ρ+ 3Λ, (7.1)

where σ̄ij are the components of the trace free part of the second fundamental form. Assum-

ing the matter to satisfy the dominant energy condition (i.e., the requirement that T (u, v) ≥ 0
for future directed timelike vectors), the energy density ρ is non-negative. Considering (7.1),
it is thus clear that the only term on the right hand side which might be negative is the first

one. However, the sign of the scalar curvature of the metric induced on the hypersurfaces of

spatial homogeneity is intimately connected with the symmetry type. Before describing this

connection in detail, let us give a formal definition of a spatially homogeneous spacetime:

it is the maximal globally hyperbolic development of homogeneous initial data (we assume

the relevant matter model to be such that the initial value problem is well posed). Initial data,

given by a manifold Σ, a metric ḡ, a symmetric covariant 2-tensor field, as well as matter

fields, are said to be homogeneous if there is a smooth transitive Lie group action onΣwhich

leaves the initial data invariant. In the 3-dimensional case, there are two possibilities. Fo-

cusing on the simply connected setting for simplicity, Σ is either a Lie group or S2 ×R. The
latter case is referred to as Kantowski-Sachs in the physics community, and we shall ignore

it in what follows, since the corresponding metrics have positive scalar curvature; cf. (7.1).

That is not to say that it is not possible to obtain results in the Kantowski-Sachs setting, but

rather that the statements of the corresponding results would be more involved. Turning to

the Lie group setting, SU(2) constitutes a particular case; it is the only simply connected

3-dimensional Lie group which admits a left invariant metric with positive scalar curvature.

Again, there are results in the SU(2) setting, but the statements of the results are more in-

volved. Ignoring Kantowski-Sachs and SU(2) for the moment, the remaining symmetry
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types are such that the corresponding invariant metrics have non-positive scalar curvature.

Returning to (7.1), we conclude that the right hand side has a positive lower bound. On

the other hand, since the left hand side is zero when the volume is at a local maximum (or

minimum), this indicates that there is no local maximum or minimum. Naively, one would

then expect that there is a big bang in one time direction and infinite expansion in the other.

In fact, the corresponding solutions all have an expanding direction (which we shall refer to

as the future). Moreover, it is possible to say something concerning the future asymptotics:

the solution isotropizes and the matter content becomes irrelevant.

Spatially homogeneous solutions to the Einstein-Vlasov system. As mentioned above,

the results in [24] were based on the assumption that the solution exists globally to the future.

When studying a particular case, it thus has to be verified that this holds. In the case of the

Einstein-Vlasov equations with a positive cosmological constant, this was done in [14] (the

result was later extended to the case of non-compact support in the momentum directions

in [20]). Moreover, asymoptotic information concerning the solution was obtained. In what

follows, we wish to describe a stability result for these solutions.

8. Stability in the Einstein-Vlasov setting

Before stating the main stability result, let us define the relevant background initial data;

the definition below is a specialization of [20, Definition 7.21, p. 107] to the case of the

Einstein-Vlasov system with a positive cosmological constant.

Definition 8.1. Let G be a 3–dimensional Lie group and 5/2 < μ ∈ R. Let ḡ and k̄ be a

left invariant Riemannian metric and a left invariant symmetric covariant 2–tensor field onG
respectively. Furthermore, let f̄ ∈ D̄∞

μ (TG) be left invariant; in other words, if h ∈ G, then
f̄ ◦Lh∗ = f̄ . Then (G, ḡ, k̄, f̄) are referred to as Bianchi initial data for the Einstein–Vlasov
system with a positive cosmological constant, assuming they constitute initial data in the

ordinary sense.

As discussed in the previous section, the corresponding solutions have an expanding

direction (if the universal covering group of the Lie group is not isomorphic to SU(2)), and
it is of interest to prove global non-linear stability in that direction. It is also important to

keep in mind that by letting G = R3 (or G = T3); taking ḡ and k̄ to be suitable multiples of

the standard Euclidean metric; and by making an appropriate choice of f̄ , one obtains initial
data corresponding to a solution which is consistent with observations. Future stability of

solutions consistent with observations is thus a corollary of the result below. The following

theorem is a specialization of [20, Theorem 7.22, p. 108] to the case of the Einstein-Vlasov

system with a positive cosmological constant.

Theorem 8.2. Let 5/2 < μ ∈ R and (G, ḡbg, k̄bg, f̄bg) be Bianchi initial data for the
Einstein–Vlasov system with a positive cosmological constant, where

• the universal covering group of G is not isomorphic to SU(2),

• trk̄bg = ḡijbgk̄bg,ij > 0.

Assume that there is a cocompact subgroup Γ of the isometry group of the initial data. Let
Σ be the compact quotient. Then the initial data induce initial data on Σ which, by abuse
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of notation, will be denoted by the same symbols. Make a choice of Sobolev norms ‖ · ‖Hl

on tensor fields on Σ and a choice of norms ‖ · ‖Hl
Vl,μ

. Then there is an ε > 0 such that

if (Σ, ḡ, k̄, f̄) are initial data for the Einstein–Vlasov system with a positive cosmological
constant with the property that

‖ḡ − ḡbg‖H5 + ‖k̄ − k̄bg‖H4 + ‖f̄ − f̄bg‖H4
Vl,μ

≤ ε,

then the maximal globally hyperbolic development of (Σ, ḡ, k̄, f̄) is future causally geodesi-
cally complete.

It is perhaps worth commenting on the requirement that there be a cocompact subgroup of

the isometry group of the initial data. We expect this requirement to be unnecessary (though

we have not proven this statment). However, it would then be necessary to introduce a more

complicated notion of distance between initial data sets in the formulation of stability. The

reason for focusing on future causal geodesic completeness in the conclusions is the physical

interpretation that freely falling test particles (light) follow timelike (null) geodesics. Future

causal geodesic completeness thus implies that freely falling test particles do not exit the

spacetime in finite proper time to the future. In this geometric sense, the solution is thus

future global. It is of course also of interest to write down estimates characterizing the

asymptotic behaviour. This has been done in [20, Theorem 7.16, p. 104–106]; cf. [20,

Theorem 7.22, p. 108]. We shall not repeat the technical details here.

In the presence of a positive cosmological constant, solutions are expected to homogenize

and isotropize at late times. In fact, they are expected to appear de Sitter like, and this

rough expectation goes under the name of the cosmic no-hair conjecture. A more precise

formulation of this expectation is given in [2, Definition 8, p. 7]. We shall not write down the

formal definition here, as it requires a somewhat technical discussion of the causal structure

of solutions (the main point is to focus on the parts of the spacetime that can actually be seen

by observers). However, the solutions that arise as a result of Theorem 8.2 become de Sitter

like asymptotically to the future, in the sense of [2, Definition 8, p. 7].

Even though we have excluded Lie groups whose universal covers are isomorphic to

SU(2), there are results in that setting. However, it is then necessary to impose additional

conditions. An example of a result which holds when perturbing isotropic solutions is given

in [20, Theorem 7.28, p. 109].

The T3-Gowdy symmetric setting. Beyond the above stability results concerning spatially

homogeneous solutions, there are results in the T3-Gowdy symmetric setting. The main

assumption that characterizes this symmetry class is the requirement that the initial data be

invariant under a 2-torus action. In practice, the effective number of spacetime dimensions is

thus 2. On the other hand, the symmetry class admits both inhomogeneities and anisotropies.

Nevertheless, it turns out that solutions to the Einstein-Vlasov system in the T3-Gowdy

symmetric setting homogeneize and isotropize. In fact, they are future asymptotically de

Sitter like. Moreover, perturbing the initial data corresponding to a T3-Gowdy symmetric

solution in the class of all solutions yields maximal globally hyperbolic developments with

the same properties. The reader interested in a more detailed description is referred to [2].



Stability of cosmological models 997

9. On the topology of the universe

In Section 7, we described the solutions that physicists normally use to model the universe.

Note that the justification for using them is based not only on observations, but also on the

philosophical idea that all observers should see something which is roughly similar (an as-

sumption which cannot be tested). In practice, the assumption that leads to the standard

models is that every observer sees exactly the same spatially homogeneous and isotropic

solution. Clearly, this is asking too much, since what we see is not exactly spatially homo-

geneous and isotropic. An assumption which would be slightly more reasonable would be to

fix a standard model and to say that every observer should see something which is very close

to that standard model. It is of interest to ask what limitations on the topology such an as-

sumption imposes; note that the standard perspective, which implies a locally homogeneous

and isotropic spatial geometry, is only consistent with a topology which is the 3-sphere, hy-
perbolic space or Euclidean space, or a quotient thereof. However, using methods similar to

ones on which the future global non-linear stability result is based, it turns out to be possible

to prove that, given

• a closed 3-manifold, say Σ,

• a standard solution (with flat spatial geometry and R3 spatial topology),

• a time t0 in the existence interval of the standard solution (note that the matter models

discussed here are only valid after decoupling, and we shall think of t0 as representing
decoupling),

• a choice of norm (say Ck-norm) and ε > 0,

there is a solution to the Einstein-Vlasov system with a positive cosmological constant, such

that

• it is the maximal globally hyperbolic development of initial data,

• it is future causally geodesically complete,

• it has spatial topologyΣ (globally hyperbolic Lorentz manifolds have topologyR×Σ,
where Σ is a Cauchy hypersurface; Σ is referred to as the spatial topology),

• every observer considers the solution to be at distance ε away from the chosen standard

solution to the future of t0 and with respect to the chosen C
k-norm,

• the solution is stable with all these properties (in other words, if we perturb the corre-

sponding initial data, we obtain a maximal globally hyperbolic development with the

same properties).

Under the given assumptions, it is thus not possible to draw any conclusions concerning the

topology of the universe.

The statement is still somewhat imprecise; it is not so clear how to measure the distance

(as percieved by an observer) between the solution and the background solution. This is

a somewhat technical issue, and we refer the interested reader to [20, Section 7.9] for a

discussion.

The above description is somewhat brief, and we refer the reader interested in more

details to [20, Section 7.9] for a mathematical statement of the result, and to [20, Chapter 34]

for a proof.



998 Hans Ringström

Acknowledgements. The author would like to acknowledge the support of the Göran

Gustafsson Foundation for Research in Natural Sciences and Medicine, and the Swedish

Research Council.

References

[1] Anderson, M. T., Existence and Stability of even-dimensional asymptotically de Sitter
spaces, Ann. Henri Poincaré 6 (2005), 801–820.

[2] Andréasson, H. and Ringström, H., Proof of the cosmic no-hair conjecture in the T3-
Gowdy symmetric Einstein-Vlasov setting, arXiv, (2013), http://de.arxiv.org/abs/1306.
6223.

[3] Bieri, L. and Zipser, N., Extensions of the stability theorem of the Minkowski space in
general relativity, AMS/IP Studies in Advanced Mathematics, 45, American Mathe-

matical Society, Providence, RI; International Press, Cambridge, MA, 2009.

[4] Choquet-Bruhat, Y. and Geroch, R., Global aspects of the Cauchy problem in general
relativity, Commun. Math. Phys. 14 (1969), 329–335.

[5] Christodoulou, D. and Klainerman, S., The global non-linear stability of the Minkowski
space, Princeton University Press, Princeton, N.J., 1993.

[6] Einstein, A., Zur Elektrodynamik bewegter Körper, Annalen der Physik 322 (10)

(1905), 891–921.

[7] , The Meaning of Relativity, sixth edition, Methuen & Co. Ltd., London, 1956.

[8] Fourès-Bruhat, Y., Théorème d’existence pour certains systèmes d’équations aux de-
rivées partielles non linéaires, Acta Math. 88 (1952), 141–225.

[9] Friedrich, H., On the existence of n-geodesically complete or future complete solutions
of Einstein’s field equations with smooth asymtptotic structure, Commun. Math. Phys.

107 (1986), 587–609.

[10] , On the global existence and the asymptotic behavior of solutions to the
Einstein–Maxwell–Yang–Mills equations, J. Differential Geom. 34, no. 2, (1991), 275–
345.

[11] , Non-zero rest-mass fields in cyclic cosmologies, arXiv (2013), http://de.arxiv.

org/abs/1311.0700.

[12] Heinzle, J. M. and Rendall, A. D., Power-law Inflation in Spacetimes without Symme-
try, Commun. Math.Phys. 269 (2007), 1–15.

[13] Lindblad, H. and Rodnianski, I., The global stability of Minkowski space-time in har-
monic gauge, Ann. of Math. (2) 171 (2010), no. 3, 1401–1477.

[14] Lee, H., Asymptotic behaviour of the Einstein–Vlasov system with a positive cosmolog-
ical constant, Math. Proc. Camb. Phil. Soc. 137 (2004), 495–509.



Stability of cosmological models 999

[15] Lovelock, D., The Einstein Tensor and Its Generalizations, J. Mathematical Phys. 12
(1971), 498–501.

[16] Luo, X. and Isenberg, J., Power Law Inflation with Electromagnetism, arXiv (2012),

http://de.arxiv.org/abs/1210.7566

[17] Ringström, H., Future stability of the Einstein non-linear scalar field system, Invent.
math. 173 (2008), 123–208.

[18] , The Cauchy Problem in General Relativity, European Mathematical Society,

Zürich, 2009.

[19] , Power law inflation, Commun. Math. Phys. 290 (2009), 155–218.

[20] , On the Topology and Future Stability of the Universe, Oxford University

Press, Oxford, 2013.

[21] Rodnianski, I. and Speck, J., The nonlinear future stability of the FLRW family of so-
lutions to the irrotational Euler-Einstein system with a positive cosmological constant,
J. Eur. Math. Soc. (JEMS) 15, no. 6, (2013), 2369–2462.

[22] Speck, J., The nonlinear future stability of the FLRW family of solutions to the Euler-
Einstein system with a positive cosmological constant, Selecta Math. (N.S.) 18, no. 3,
(2012), 633–715.

[23] Svedberg, C., Future Stability of the Einstein–Maxwell–Scalar Field System, Ann.
Henri Poincaré 12, No. 5, (2011), 849–917.

[24] Wald, R., Asymptotic behaviour of homogeneous cosmological models in the presence
of a positive cosmological constant, Phys. Rev. D 28 (1983), 2118–2120.

Department of Mathematics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

E-mail: hansr@kth.se





Solitons in geometric evolution equations

Natasa Sesum

Abstract. We will discuss geometric properties and classification of special solutions to geometric

evolution equations called solitons. Our focus will be on the Ricci flow and the Yamabe flow solitons.

These are very special solutions to considered geometric evolution equations that move by diffeomor-

phisms and homotheties. Solitons are very important solutions to our equations because very often

they arise as singularity models. Therefore classifying the solitons helps us understand and classify

encountered singularities in geometric flows.

Mathematics Subject Classification (2010). 53C44.

Keywords. Ricci flow, Yamabe flow, solitons.

1. Introduction

We will focus on two geometric evolution equations. The first one is the Ricci flow equation,

that is,

∂

∂t
gij = −2Rij ,

g(·, 0) = g0(·),
(1.1)

where (M, g0) is an arbitrary Riemannian manifold. The second one is the Yamabe flow

equation, that is,

∂

∂t
gij = −Rgij ,

g0(·, 0) = g0(·).
(1.2)

In both geometric equations a singularity is most likely to occur in finite time. The singu-

larity in both flows is characterized by the norm of the curvature operator blowing up at a

singular time. In order to understand any of those singularities one defines a sequence of

parabolic dilations in a space-time neighborhood of a considered singularity. The limit of

that sequence is called a singularity model and turns out to be either an ancient solution,
which means a solution that lives from (−∞, T ) where T < ∞, or an eternal solution,
which is a solution that lives for all times, from (−∞,∞). Hence, understanding the ancient
and eternal solutions help us understand the singularities in geometric flows, which is crucial

if we want to use the flow in order to better understand topological and geometric properties

of our manifoldM .

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Special examples of ancient and eternal solutions are given by solitons. These are the so-
lutions to the considered flow equations that move just by diffeomorphisms and homotheties.

In this article we focus on solitons, their classification if possible and also their geometric

and topological properties.

2. Ricci solitons

There has been a lot of interest in Ricci solitons recently. They are natural generalizations

of Einstein metrics and play important role in the singularity analysis of the Ricci flow. The

concept of Ricci solitons was introduced by Hamilton in mid 80’s.

Definition 2.1. A complete Riemannian metric g on a smooth Riemannian manifold M is

called a Ricci soliton if there exists a smooth vector field V such that

Rij + (LV g)ij = λgij ,

for some constant λ and (LV g)ij = 1
2 (∇iVj+∇jVi). If V = ∇f for some smooth function

f then

Rij +∇i∇jf = λgij , (2.1)

and we say we have a gradient Ricci soliton. We call it expanding, steady or shrinking,
depending on whether λ < 0, λ = 0 or λ > 0, respectively.

By a suitable rescaling of metric g, we can normalize λ = − 1
2 , 0 or 1

2 . Below we focus

on gradient Ricci solitons and we will be denoting them as a triple (M, g, f) and refer to a

function f as to the potential function.

2.1. Examples of Ricci solitons. There are not so many examples of Ricci solitons so far.

Below we describe a few well known examples.

1. (Gaussian solitons) (Rn, g) with the flat Euclidean metric can be equipped with both,

the shrinking and the expanding Ricci soliton. More precisely (Rn, g, |x|
2

4 ) is a gradi-

ent Ricci shrinker and (Rn, g,− |x|2
4 ) is a gradient Ricci expander.

2. The generalized round cylinders Sk × Rn−k are gradient Ricci shrinkers.

3. (The cigar soliton) In dimension two, Hamilton [32] discovered the first example of

complete, noncompact steady soliton on R2, called the cigar soliton, where

ds2 =
dx2 + dy2

1 + x2 + y2
, with f = − log(1 + x2 + y2).

4. (The Bryant soliton) Higher dimensional (n ≥ 3) noncompact gradient steady soli-

tons onRn were discovered by Bryant. They are rotationally symmetric, have positive

sectional curvature and the geodesic sphere Sn−1 of radius s has the diameter of order√
s. Recently Brendle ([5]) showed they are the only steady κ-noncollapsed solitons

with positive sectional curvature (noncollapsing here is in the sense of Perelman [44]).



Solitons in geometric evolution equations 1003

2.2. Ricci solitons as singularity models. In order to study the Ricci flow and its singular-

ity models Perelman ([44]) introduced the W-functional

W(g, f, τ) =

∫
M

[τ(R+ |∇f |2) + f − n](4πτ)−n
2 e−f dVg,

where g is a Riemannian metric, f is a smooth function onMn and τ a positive scale param-

eter. It is easy to see that the functional W is invariant under scaling and diffeomorphisms,

that is, W(αφ∗g, φ∗f, ατ) = W(g, f, τ), for any positive number α and any diffeomor-

phism φ. Perelman showed the Ricci flow is up to diffeomorphisms the gradient flow of

functional W , which is also monotone along the flow. More precisely, he finds that

d

dt
W = 2τ

∫
M

|Rij +∇i∇jf − gij
2τ

|2(4πτ)−n
2 e−f dV,

under the flow

∂

∂t
gij = −2Rij ,

∂f

∂t
= −Δf + |∇f |2 −R+

n

2τ
, τ̇ = −1.

It is now even more apparent that Ricci solitons whose equation appears in the evolution

of the monotone quantity W play an important role in the study of the Ricci flow. The soli-

tons are related to the Li-Yau-Hamilton inequality, also called differential Harnack estimate.

More precisely, the Li-Yau-Hamilton quantity vanishes on expanding solitons. More im-

portantly, Ricci solitons often appear as blow-up limits around the singularities in the Ricci

flow.

A complete solution g(t) to (1.1) is called ancient if it is defined for −∞ < t < T . It
turns out that Type I and Type II singularity models are ancient (those singularity models

are defined to be the limits of dilations of solutions to the Ricci flow around their Type I

and Type II space-time singularities, respectively, which are to be defined below). Steady

and shrinking Ricci solitons are special examples of ancient solutions. Using Perelman’s

monotonicity formula for W in [48] we showed that if a singularity model is compact, it

has to be a gradient shrinking Ricci soliton. In [42], Naber removed our assumption that

a singularity model is compact but did not show the singularity model is always non-flat.

Nonflatness of the singularity model has been obtained in [29] and [13] independently.

Consider a solution (M, g(·, t)) to (1.1) for t ∈ [0, T ) and T ≤ ∞, where either M is

compact or at each time the metric is complete and has bounded curvature. Hamilton [34]

showed that if T is a maximal singularity time then either T = ∞ or the curvature tensor

|Rm| is unbounded as t→ T . More precisely we have showed that

Theorem 2.2 ([47]). Let (M, g(·, t)) be a compact solution to (1.1) for t ∈ [0, T ) and
T ≤ ∞. Then if T is a maximal singularity time we have either T = ∞ or the Ricci
curvature tensor |Ric| is unbounded as t→ T .

Intuitively it is clear that if we take a dumbbell metric in S3 with a neck like S2×B1, we

expect the neck will shrink because the positive curvature in the S2 direction will dominate

the slightly negative curvature in theB1 direction. These intuitive picture of a neck pinching

off in some finite time and having the sequence of dilations around the singularity converging

to a round infinite cylinder S2 × R was justified in [1] (they actually showed the same

phenomenon occurs in higher dimensions as well). They considered an open set of initial
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metrics of rotationally symmetric metrics evolving on Sn+1. These are Type I singularities,
meaning that

lim sup
t→T

sup
M

(T − t) |Rm(·, t)| <∞.
If the above quantity is equal to infinity we say we have a Type II singularity. In [37] we

have recently considered the generalized Berger warped product metrics on S1 ×S3 and we

have constructed open sets of initial metrics (not necessarily rotationally symmetric) of the

form

g = ds2 + f(s)2w1 ⊗ w1 + g(s)2 (w2 ⊗ w2 + w3 ⊗ w3),

where s is the arc length from an arbitrary, but a fixed point s0 on S
1 and where w1, w2, w3

is a coframe, algebraically dual to a fixed Milnor frame on S3 = SU(2). The behavior of the
Ricci flow around the singularities is the same as the one in the intuitive picture of a Ricci

flow behavior on a dumbbell. More precisely we have the following result.

Theorem 2.3 ([37]). The eccentricity of every warped Berger solution of Ricci flow is uni-
formly bounded: there exists C0 depending only on the initial data such that the estimate

|f − g| ≤ C0 min{f, g} (2.2)

holds pointwise for as long as the solution exists, without additional assumptions.

(i) There exist open sets of warped Berger metrics satisfying certain assumptions such
that all solutions originating in these sets develop local neckpinch singularities at
some T <∞. Each such solution has the properties that

(a) the ordering f ≤ g is preserved;
(b) the singularity is Type-I, with |Rc| ≤ C(min f(·, t))−2

, and

1

C

√
T − t ≤ min f(·, t) ≤ C√

T − t;

(c) the diameter is bounded as t↗ T .

(ii) There exist open sets of warped Berger metrics satisfying certain assumptions such
that as solutions originating in these sets become singular, they become asymptotically
round at rates that break scale invariance. Specifically, in addition to the properties
above, they satisfy the following C0, C1, and C2 bounds at the neck:

(T − t)−1/2|f − g| ≤ C√
T − t, (2.3)

(T − t)|κ12 − κ23| ≤ C
√
T − t, (2.4)

(T − t)|κ01 − κ02| ≤ C
√
T − t. (2.5)

In a neighborhood of each smallest neck, where κ01 < 0, there is the further bound

(T − t) (|κ01|+ |κ02|
) ≤ C

| log(T − t)| , (2.6)

where κ12, κ31, κ23 are the curvatures of the corresponding vertical planes in the to-
tal space and κ01, κ02, κ03 are the curvatures of mixed vertical-horizontal planes in
the total space. As a corollary of the cylindrical estimate (2.6) we have that Type-I
blowups G̃ = (T − t)−1G of the solution converge near each neck to the shrinking
cylinder soliton.
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We say the examples constructed in [1] and [37] develop non-degenerate neckpinch
singularities and the round cylinder, which is an example of a Ricci shrinking soliton, is

their singularity model. In [34] Hamilton also described the intuitive picture of a degenerate

neckpinch singularity. Imagine the dumbbell is not symmetric and that one side is much

bigger than the other. If we choose the sizes of the spheres on both sides appropriately,

we expect a degenerate singularity, which means pinching off the little sphere and there is

nothing left on one side. In [31] it was verified that such a degenerate neck-pinching Type II

singularity can be formed on Sn with suitable rotationally symmetric metric for all n ≥ 3.
The precise singularity formation of those Type II singularities was discussed in [2]. One of

the conclusions is that the sequence of dilations around this Type II singularity converges to

the Bryant soliton.

2.3. Classification results for Ricci solitons. Aswe have discussed above, gradient shrink-

ing Ricci solitons arise as singularity models of Type I singularities of the Ricci flow and that

is why understanding of those is important in studying the singularities of the Ricci flow.

Classification of gradient shrinking Ricci solitons has been a subject of interest for many

people.

Hamilton [32] showed that the only closed gradient shrinking Ricci solitons in two di-

mensions are Einstein. In the case of three dimensions, Ivey proved that all compact, gra-

dient shrinking Ricci solitons must have constant positive curvature. The recent work of

Böhm and Wilking [4] implies the compact gradient shrinking Ricci solitons with positive

curvature operator in any dimension have to be of constant curvature, generalizing Ivey’s

result. Koiso ([38]), H.-D.Cao [8], Feldman, Ilmanen and Knopf [30] constructed examples

of both, compact and complete non-compact gradient shrinking Ricci solitons that are not

Einstein. Some properties of compact shrinking Ricci solitons have been proved in [28].

The classification of complete, noncompact gradient shrinking Ricci solitons has been

recently studied by many people. The Hamilton-Ivey estimate shows that those three di-

mensional solitons have nonnegative sectional curvatures. Combining this with the results

of Perelman yields that the three dimensional gradient shrinking solitons with bounded sec-

tional curvatures are S3, R3, S2 × R and the quotients of those. Recently Ni and Wallach

([43]) studied the classification of complete gradient shrinking Ricci solitons with vanishing

Weyl curvature tensor, in any dimension, under the assumptions of nonnegative Ricci curva-

ture and at most exponential growth of the norm of curvature operator. They showed under

their assumptions we can only have Sn, Rn, Sn−1 × R and the quotient of those. In [14]

the assumption on nonnegative Ricci curvature has been relaxed to having the Ricci curva-

ture bounded from below. In [45] Petersen and Wylie obtained the same classification under

a different assumption. Besides the vanishing of the Weyl tensor they assumed a certain

integral bound involving the potential function f ,∫
M

|Ric|2e−f dV <∞. (2.7)

The question whether certain integral curvature estimates including (2.7) for complete

gradient shrinking Ricci solitons are true has been raised in [45] and [14]. The motivation,

as pointed out also in [9], is to prove a classification result for complete gradient shrinkers

which are locally conformally flat, thus extending a theorem of Perelman. In [50] Zhang

proved that gradient shrinking Ricci solitons with vanishing Weyl tensor must have nonneg-

ative curvature operator, which proved the classification of such solitons as finite quotients
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of Rn, Sn−1 × R or Sn.
Besides being interesting on their own, proving that certain curvature integral quantities

(including (2.7)) are finite would have as a consequence an alternate, simpler proof for this

classification. In [39] we prove the following.

Theorem 2.4. LetMn be a complete gradient shrinking Ricci soliton normalized such that

Ric+Hessf =
1

2
g

Then we have ∫
M

|Ric|2 e−f <∞.
Moreover, for any λ > 0 we have ∫

M

|Ric|2 e−λf <∞.

As a consequence of Theorem 2.4 we have the following classification result for com-

plete gradient shrinking Ricci solitons.

Theorem 2.5. Any n−dimensional complete shrinking gradient Ricci soliton with harmonic
Weyl tensor (meaning divW = 0) is a finite quotient of Rn, Sn−1 × R or Sn.

In [39] we show that the volume of a gradient steady soliton is infinite. More precisely,

we show there are uniform constants c, r0 > 0 so that for any r > r0,

V ol(Bp(r)) ≥ cr.
In [13] it was proved that a complete non-compact gradient shrinking Ricci soliton has at

most Euclidean volume growth. In [40] was obtained that the volume of a non-compact

shrinking Ricci soliton must be of at least linear growth and this is the best we can expect

due to the examples of shrinking cylinders on which the volume of geodesic balls grow

exactly linearly. This linear lower bound on volume was obtained as an application of the

spectral analysis of weighted laplacian to the study of the geometry and topology of gradient

Ricci solitons.

Under a restrictive assumption on scalar curvature we also show that a gradient shrinking

Kähler-Ricci soliton is connected at infinity, that is, it has one end. In a recent work [41],

Munteanu and Wang show that any shrinking Kähler-Ricci soliton must be connected at

infinity.

Recall that a gradient shrinking Ricci soliton (M, g, f) satisfies the equation (after rescal-
ing)

Rij +∇i∇jf =
1

2
gij .

An important ingredient we used in [39] and that has been used in some of above mentioned

results is the asymptotic behavior of the potential function f . It has been showed in [13] that
the potential function f satisfies the estimate

1

4
(r(x)− c1)2 ≤ f(x) ≤ 1

4
(r(x) + c2)

2,

where r(x) = dist(x0, x) is the distance from some fixed point x0 ∈ M , c1 and c2 are

positive constants depending only on n and the geometry of gij on a unit ball Bx0(1).
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2.4. Eternal solutions in two dimensions. In [22] we have considered eternal solutions
(the ones that live for all t ∈ R) of the logarithmic fast diffusion equation

∂u

∂t
= Δ log u on R2 × R. (2.8)

This equation represents the evolution of the conformally flat metric gij = u Iij under the
Ricci Flow

∂gij
∂t

= −2Rij .

The equivalence follows from the observation that the metric gij = u Iij has scalar curvature
R = −(Δ log u)/u and in two dimensions Rij =

1
2 Rgij .

In [21] we introduced the width w of the metric g = u Iij . Let F : R2 → [0,∞)
denote a proper function F , such that F−1(a) is compact for every a ∈ [0,∞). The width
of F is defined to be the supremum of the lengths of the level curves of F , namely w(F ) =
supc L{F = c}. The width w of the metric g is defined to be the infimum

w(g) = inf
F
w(F ).

Theorem 2.6. Assume that u is a positive smooth eternal solution of equation (2.8) which
defines a complete metric and satisfies conditions

w(g(t)) <∞, ∀t ∈ R, (2.9)

‖R(·, t)‖L∞(R2) <∞, ∀t ∈ R. (2.10)

Then, u is a gradient soliton of the form

U(x, t) =
2

β (|x− x0|2 + δ e2βt) (2.11)

for some x0 ∈ R2 and some constants β > 0 and δ > 0. It is known as the cigar soliton on
R2.

It is shown in [21] that maximal solutions u of the initial value problem ut = Δ log u
on R2 × [0, T ), u(x, 0) = f(x) which vanish at time T < ∞ satisfy the width bound

c (T − t) ≤ w(g(t)) ≤ C (T − t) and the maximum curvature bound c (T − t)−2 ≤
Rmax(t) ≤ C (T − t)−2 for some constants c > 0 and C < ∞, independent of t. Hence,
one may rescale u near t→ T and pass to the limit to obtain an eternal solution of equation

(2.8) which satisfies the bounds (2.9) and (2.10). Theorem 2.6 provides then a classification

of the limiting solutions.

The bounded width assumption (2.9) is necessary for the conclusion of the Theorem.

If this condition is not satisfied, then (2.8) admits for example the flat (constant) solutions.

This has been discussed in [18]. He shows that all eternal solutions with bounded curvature

at each time slice are either the plane or the cigar soliton.

In [25] we consider ancient compact solutions to the Ricci flow in dimension two. We

show the following result.

Theorem 2.7. Let g(·, t) be an ancient compact two dimensional solution to the Ricci flow.
Then, it is either one of the contracting spheres or one of the King-Rosenau solutions.
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3. Yamabe solitons

We start with the definition of a Yamabe soliton.

Definition 3.1. A Riemannian manifold (Mn, gij) is called a Yamabe gradient soliton if

there exists a smooth scalar (potential) function f : Mn → R and a constant ρ ∈ R such

that

(R− ρ) gij = ∇i∇jf. (3.1)

If ρ > 0, ρ < 0 or ρ = 0, then g is called a Yamabe shrinker, Yamabe expander or Yamabe

steady soliton respectively. By scaling the metric, we may assume with no loss of generality

that ρ = 1,−1, 0 respectively.

When f is a constant function in (3.1) we say that the corresponding Yamabe soliton is a

trivial Yamabe soliton. It has been known (see [17], [27], [36]) that every compact Yamabe

soliton is of constant scalar curvature, hence trivial, since in this case the potential function

f turns out to be constant.

Yamabe solitons are special solutions to the Yamabe flow

∂

∂t
gij = −Rgij . (3.2)

This flow was introduced by R. Hamilton [35] as an approach to solve the Yamabe problem
on manifolds of positive conformal Yamabe invariant. It is the negative L2-gradient flow of

the total scalar curvature, restricted to a given conformal class. Hamilton [35] showed the

existence of the normalized Yamabe flow (which is the re-parametrization of (3.2) to keep

the volume fixed) for all time; moreover, in the case when the scalar curvature of the initial

metric is negative, he showed the exponential convergence of the flow to a metric of constant

scalar curvature.

Since then, a number of works have been established on the convergence of the Yamabe

flow on a compact manifold to a metric of constant scalar curvature. Chow [16] showed the

convergence of the flow under the conditions that the initial metric is locally conformally flat

and of positive Ricci curvature. The convergence of the flow for any locally conformally flat

initial metric was shown by Ye [49]. Inspired by this result, Del Pino and Saez [26] proved

the convergence to the sphere of a conformally flat metric on Rn evolving by the Yamabe

flow and satisfying a decay condition at infinity.

More recently, Schwetlick and Struwe [46] obtained the convergence of the Yamabe

flow on a general compact manifold under a suitable Kazdan-Warner type of condition that

rules out the formation of bubbles and that is verified (via the positive mass Theorem) in

dimensions 3 ≤ n ≤ 5. The convergence result for any general compact manifold was

established by Brendle [6] and [7] (up to a technical assumption, in dimensions n ≥ 6, on
the rate of vanishing of Weyl tensor at the points at which it vanishes): starting with any

smooth metric on a compact manifold, the normalized Yamabe flow converges to a metric of

constant scalar curvature.

Even though the analogue of Perelman’s monotonicity formula is still lacking for the

Yamabe flow, one expects that Yamabe soliton solutions model finite time singularities. One

of results in [23] indicates that in certain cases of Type II singularities one may expect the

steady Yamabe solitons to be the singularity models.

Although the Yamabe flow on compact manifolds is well understood, the complete non-

compact case is unsettled. In [24] the authors showed that in the conformally flat case and
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under certain conditions on the initial data, which in particular imply that the initial metric

admits the asymptotic behavior of the cylindrical metric at infinity, complete non-compact

solutions to the Yamabe flow develop a finite time singularity and after re-scaling the metric

converges to the Barenblatt solution (a certain type of a shrinker, corresponding to the Type

I singularity). The general case even when the solution is conformally equivalent to Rn is

not well understood. In fact in [24] we show there exist infinitely many shrinking solitons

which behave as cylinders at infinity and they are all different than the Barenblatt solution

(which unlike other Yamabe shrinkers is given in the explicit form).

All such solutions are prototypes of Type I singularities of the complete non-compact

Yamabe flow.

3.1. Classification of Yamabe solitons. One of our results in [24] establishes the rotational

symmetry of locally conformally flat Yamabe solitons.

Theorem 3.2 (Rotational symmetry of Yamabe solitons). All locally conformally flat com-
plete Yamabe gradient solitons with positive sectional curvature have to be rotationally sym-
metric.

Our proof of Theorem 3.2 is inspired by the proof of the analogous theorem for com-

plete gradient steady Ricci solitons in [10]. Some time after posting our paper [24], a related

work by Cao, Sun and Zhang [11] was posted. Inspired by our work, it was shown in [11]

that every complete nontrivial gradient Yamabe soliton admits a special global warped prod-

uct structure with an one-dimensional base. Consequently, locally conformally flat com-

plete gradient Yamabe solitons with nonnegative Ricci curvature are rotationally symmetric.

There is also a related work by Catino, Mantegazza and Mazzieri [15].

One of the goals in [24] was to classify rotationally symmetric Yamabe solitons on Rn.

In order to state the theorem which deals with that question lets first state the following

proposition.

Proposition 3.3 (PDE formulation of Yamabe solitons). Let gij = u
4

n+2 dx2 be a confor-
mally flat rotationally symmetric Yamabe gradient soliton. Then, u is a smooth solution to
the elliptic equation

n− 1

m
Δum + β x · ∇u+ γ u = 0, on Rn (3.3)

where β ≥ 0 and

γ =
2β + ρ

1−m , m =
n− 2

n+ 2
.

In the case of expanders β > 0. In addition, any smooth solution to the elliptic equation
(3.3) with β and γ as above defines a gradient Yamabe soliton.

To simplify the notation, we will assume from now on that ρ = 1 in (3.1) in the case of

the Yamabe shrinkers, and that ρ = −1 in the case of the Yamabe expanders. This can be

easily achieved by scaling our metric g. The following result provides the classification of

radially symmetric and smooth solutions of the elliptic equation (3.3).

Theorem 3.4 (Classification of radially symmetric Yamabe solitons). Letm = (n−2)/(n+
2). The elliptic equation (3.3) admits non-trivial radially symmetric smooth solutions if and
only if β ≥ 0 and γ := (2β + ρ)/(1−m) > 0. More precisely, we have:
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(1) Yamabe shrinkers ρ = 1: For any β > 0 and γ = (2β + 1)/(1 − m), there
exists an one parameter family uλ, λ > 0, of smooth radially symmetric solutions to
equation (3.3) on Rn of slow-decay rate at infinity, namely uλ(x) = O(|x|−2/(1−m))
as |x| → ∞. This asymptotic behavior of uλ gives the asymptotic cylindrical behavior

of the corresponding metric gλ = u
4

n+2

λ dx2. We will refer to those solutions as to cigar
solutions. In the case γ = βn the solutions are given in the closed form

uλ(x) =

(
Cn

λ2 + |x|2
) 1

1−m

, Cn = (n− 2)(n− 1) (3.4)

and will refer to them as to the Barenblatt solutions. When β = 0 and γ = 1/(1−m)
equation (3.3) admits the explicit solutions of fast-decay rate

uλ(x) =

(
Cn λ

λ2 + |x|2
) 2

1−m

, Cn = (4n(n− 1))
1
2 . (3.5)

We will refer to them as to the spheres.

(2) Yamabe expanders ρ = −1: For any β > 0 and γ = (2β−1)/(1−m) > −1/(1−m)
there exists an one parameter family uλ, λ > 0, of smooth radially symmetric solutions
to equation (3.3) on Rn.

(3) Yamabe steady solitons ρ = 0: For any β > 0 and γ = 2β/(1−m) > 0 there exists
an one parameter family uλ, λ > 0, of smooth solutions to equation (3.3) onRn which
satisfy the asymptotic behavior uλ(x) = O((log |x|/|x|2)1/(1−m)), as |x| → ∞. We
will refer to them as to logarithmic cigars. For β = γ = 0, the solution uλ is a
constant, defining the euclidean metric on Rn.

In all of the above cases the solution uλ is uniquely determined by its value at the origin.

Most of the Yamabe solitons we find in Theorem 3.4 have nonnegative sectional curva-

ture.

3.2. Yamabe solitons as singularity models. We consider a complete non-compact metric

g = u4/(N+2) dx2 which is conformally equivalent to the standard euclidean metric of RN

and evolves by the Yamabe flow
∂g

∂t
= −Rg (3.6)

where R denotes the scalar curvature with respect to metric g. Our goal is to study the

singularity formation of metric g at a singular time T , under the assumption that the initial

metric g0 has cylindrical behavior at infinity.
By observing that the conformal metric g = u4/(N+2) dx2 has scalar curvature

R = −4(N − 1)

N − 2
u−1 Δu

N−2
N+2

it follows that the function u evolves by the fast diffusion equation ut = N−1
m Δum, with

exponentm = (N − 2)/(N +2). Therefore studying the Yamabe flow equation (3.6) in the

conformally flat case is equivalent to studying the fast diffusion equation on RN .

We would like to relate the singularity profile of conformally flat solutions to the Yamabe

flow whose conformal factors have cylindrical behavior at infinitywith a class of self-similar
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shrinking Yamabe solitons that have matched asymptotic behavior at infinity. One special re-

sult in this direction was previously shown for example in [24] where the L1 stability around

the explicit Barenblatt profile was established (Barenblatt solution is a complete Yamabe

shrinker given by an explicit formula as in Proposition 3.4).

We will assume that the initial metric g0 = u
4/(N+2)
0 dxidxj is complete, non-compact

and has cylindrical behavior at infinity, namely

u0(x) =

(
C∗T

|x|2
)1/n (

1 + o(1)
)
, as |x| → ∞ (3.7)

with C∗ given by

C∗ :=
2
(
((1−m)N − 2

)
n

, n = 1−m, m =
N − 2

N + 2
(3.8)

and T > 0 any positive constant. In [19] we show that if the initial data u0(x) satisfies (3.7)
then for the solution u we have

u(x, t) =

(
C∗(T − t)

|x|2
)1/n

(1 + o(1)), as |x| → ∞. (3.9)

We have seen in [19] that the solution u starting at u0 that satisfies (3.7) may or may not
become extinct at time T , depending on the second order asymptotic behavior, as |x| → ∞,

of the cylindrical tail of the initial data. In either case the metric g(t) = u4/(N+2)(·, t) dx2
will develop a singularity at time T . Our goal is to study these singularities. We showed that

rescaled limits of solutions u with initial condition satisfying (3.7) behave near a singularity
at time T as self-similar shrinking solutions (Yamabe shrinkers). These can be viewed as

special solutions of the fast-diffusion equation

ut = Δu
N−2
N+2 (3.10)

of the form

U(x, t) = (T − t)α f(y), y = x (T − t)β , α =
1 + 2β

n
, β > 0, (3.11)

where the function f satisfies the elliptic equation

Δf
N−2
N+2 + β y · ∇f + α f = 0. on RN (3.12)

In order to study the singularities of a metric g = u4/(N+2)dx2 evolving by (2.8) and with

initial data satisfying (3.7) we need to understand the second order asymptotic behavior at

infinity of the self-similar profiles fλ. We will achieve this by linearizing equation (3.12)

around the cylindrical solution.

Let γ1,2 be the solutions to the characteristic equation of the corresponding linearized

equation. They satisfy

γ2 + β(N − 2)γ + (N − 2) = 0, (3.13)

which gives

γ1,2 =
β(N − 2)∓√β2(N − 2)2 − 4(N − 2)

2
. (3.14)
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We see that we need to have β ≥ 2/
√
N − 2 in order for γ1,2 to be real and the corresponding

solution to have non-oscillatory behavior.

One of our results in [19] concerns the second order asymptotics of smooth profiles f on
RN which appear to model the singular behavior of some evolving metrics g = u4/(N+2)dx2

that become extinct at a singular time T . We already know the first order asymptotics is given

by a cylindrical behavior at infinity.

Theorem 3.5. Letm = (N − 2)/(N +2), n = 1−m,N ≥ 3, C∗ = 2 ((1−m)N − 2)/n,
β0 := 2/

√
N − 2 and β1 := 1/(2m) (this particular parameter corresponds to having the

Barenblatt solution given by (3.4). The following hold:

• Let N ≥ 6 and β > β0 or 3 ≤ N < 6 and β > β1: For any B > 0 there exists a
unique radially symmetric smooth solution fβ,B of (3.12) that satisfies

fβ,B(y) =

(
C∗

|y|2
)1/n (

1−B |y|−γ + oB(|y|−γ)
)

(3.15)

with γ = γ1 given by (3.14).

• Let 3 ≤ N < 6 and β0 < β < β1: For any B < 0 there exists a unique radially
symmetric smooth solution fβ,B of (3.12) that satisfies (3.15) with γ = γ1 given by
(3.14).

• Let 3 ≤ N < 6 and β = β1: For any B < 0 there exists a unique radially symmetric
smooth solution fβ,B of (3.12) that satisfies (3.15) with γ = γ2 = 2 and which is
given in closed form by (3.4).

In all of the above cases we will denote by Uβ,B the self-similar solution of equation (3.10).
It is given in terms of fβ,B by (3.11) where fβ,B solves (3.12).

In describing the asymptotic profile of the solution slightly before time T we will con-

sider the rescaling from the left defined by

ū(y, τ) := (T − t)−αu(y (T − t)−β , t)|t=T (1−e−τ ), (y, τ) ∈ RN × (0,∞). (3.16)

Here we discuss only the case when the solution with the cylindrical behavior at infinity

becomes extinct at the time T which is the vanishing time of its cylindrical tail as well (in

[19] other cases have been considered as well). We will assume in this case that either

• N ≥ 3 and β ≥ β1 (or equivalently Nβ ≥ α), or
• N ≥ 6 and β0 < β < β1.

The condition β ≥ β0 := 2/
√
N − 2 is imposed so that the self similar solution Uβ,B has

non-oscillating behavior as |x| → +∞. The common feature in both considered cases is that

the difference of two self-similar solutions

|Uβ,B1 − Uβ,B2 | /∈ L1(RN ), if B1 �= B2.

The next theorem generalizes the result proved in [22] in the special case when β = β1
(see also in [3] for an improvement of the result in [22] shown independently). Our first

result is concerned with the case β ≥ β1 in all dimensions N ≥ 3.
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Theorem 3.6. Let β ≥ β1 and let u : RN × [0, T ) → R be a solution to (2.8) with the initial
data u0 satisfying 0 ≤ u0 ≤ Uβ,B1(·, 0), for some B1 > 0. Assume in addition that

u0 − Uβ,B ∈ L1(RN ) (3.17)

for some B > 0. Then, the rescaled solution ū given by (3.16) converges as τ → ∞
uniformly on compact subsets of RN to the self-similar solution Uβ,B . Moreover, we also
have convergence in the L1(RN ) norm. If β > β1 the convergence is exponential.

In [19] we also consider the case when β < β1.
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of the fast diffusion equation via entropy estimates, Arch. Ration. Mech. Anal. 191
(2009), no. 2, 347–385.

[4] C. Böhm and B. Wilking,Manifolds with positive curvature operators are space forms,
Ann. of Math. (2), 167(3) (2008), 1079–1097.

[5] Brendle, S., Rotational symmetry of self-similar solutions to the Ricci flow, Invent.
Math. 194 (2013), no. 3, 731–764.

[6] , Convergence of the Yamabe flow for arbitrary initial energy, J. Differential
Geom. 69 (2005), 217–278.

[7] , Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math. 170
(2007), 541–576.

[8] Cao, H.-D., Existence of gradient Kähler-Ricci solitons, Elliptic and Parabolic Methods

in Geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, MA. (1996), 1–16.

[9] , Geometry of complete gradient shrinking Ricci solitons, Geometry and anal-

ysis, No. 1, 227–246, Adv. Lect. Math. (ALM) 17, Int. Press, Somerville, MA, 2011.

[10] Cao, H.-D. and Chen, Q., On locally conformally flat gradient steady Ricci solitons,
Trans. Amer. Math. Soc. 364 (2012), no. 5, 2377–2391.

[11] Cao, H.-D., Sun, X., and Zhang, Y., On the structure of gradient Yamabe solitons,
Math. Res. Lett. 19 (2012), no. 4, 767–774.

[12] Cao, H.-D. and Zhou, D., On complete gradient shrinking Ricci solitons, J. Differential
Geom. 85 (2010), no. 2, 175–185.

[13] Cao, X., Zhang, and Qi S., The conjugate heat equation and ancient solutions of the
Ricci flow, Adv. Math. 228 (2011), no. 5, 2891–2919.



1014 Natasa Sesum

[14] Cao, X., Wang, B., and Zhang, Z., On locally conformally flat gradient shrinking Ricci
solitons, Commun. Contemp. Math. 13 (2011), no. 2, 269–282.

[15] Catino, G., Mantegazza, C., and Mazzieri, L., On the global structure of conformal
gradient solitons with nonnegative Ricci tensor, Commun. Contemp. Math. 14 (2012),

no. 6, 1250045, 12p.

[16] Chow, B., The Yamabe flow on locally conformally flat manifolds with positive Ricci
curvature, Comm. Pure Appl. Math. 65 (1992), 1003–1014.

[17] Chow, B., Lu, P., and Ni, L., Hamilton’s Ricci flow, Graduate Studies in Mathematics

77, American Mathematical Society, Providence, RI; Science Press, New York, 2006.

[18] Chu, S.-C., Type II ancient solutions to the Ricci flow on surfaces, Comm. Anal. Geom.

15 (2007), no. 1, 195–215.

[19] Daskalopoulos, P., King, J.R., and Sesum, N., Extinction profile of complete non-
compact solutions to the Yamabe flow, arXiv:1306.0859.

[20] Daskalopoulos, P. and del Pino M.A., On a Singular Diffusion Equation, Comm. in

Analysis and Geometry, Vol. 3, 1995, 523–542.

[21] Daskalopoulos, P. and Hamilton, R., Geometric Estimates for the Logarithmic Fast
Diffusion Equation, Comm. in Analysis and Geometry 12 (2004), 143–164.

[22] Daskalopoulos, P. and Sesum, N., Eternal solutions to the Ricci flow on R2, Int. Math.

Res. Not. 2006.

[23] , The classification of locally conformally flat Yamabe solitons, Adv. Math. 240
(2013), 346–369.

[24] , On the extinction profile of solutions to fast-diffusion, J. Reine Angew. Math.

622 (2008), 95–119.

[25] Daskalopoulos, P., Hamilton, R., and Sesum, N., Classification of ancient compact
solutions to the Ricci flow on surfaces, J. Differential Geom. 91 (2012), no. 2, 171–

214.

[26] del Pino, M. and Sáez, M., On the extinction profile for solutions of ut =
Δu(N−2)/(N+2), Indiana Univ. Math. J. 50 (2001), 611–628.

[27] Di Cerbo, L. and Disconzi, M., Yamabe solitons, determinant of the Laplacian and the
uniformization theorem for Riemannian surfaces, Lett. Math., Phys. 83 (2008), no. 1,

13–18.

[28] Eminenti, M., La Nave, G., and Mantegazza, C., Ricci solitons: the equation point of
view, Man. Math. 127 (2008), 345-367.

[29] Enders, J., Mller, R., and Topping, P., On type-I singularities in Ricci flow, Comm.

Anal. Geom. 19 (2011), no. 5, 905–922.

[30] Feldman, M., Ilmanen, T., and Knopf, D., Rotationally symmetric shrinking and ex-
panding gradient Kähler-Ricci solitons, J. Diff. Geom., 65 (2003), 169–209.



Solitons in geometric evolution equations 1015

[31] Gu, H. L. and Zhu, X. P., The Existence of Type II Singularities for the Ricci Flow on
Sn+1, Comm. Anal. geom. (2008), 467–494.

[32] Hamilton, R.S., The Ricci flow on surfaces, Contemporary Mathematics 71 (1988),

237–261.

[33] , The Harnack estimate for the Ricci flow, J. Diff. Geom. 37 (1993), 225–243.

[34] , The formation of singularities in the Ricci flow, Surveys in Differential Ge-

ometry (Cambridge, MA, 1993), 2, 7-136, International Press, Combridge, MA, 1995.

[35] , Lectures on geometric flows (1989), unpublished.

[36] Hsu, S.-Y., A note on compact gradient Yamabe solitons, J. Math. Anal. Appl. 388
(2012), no. 2, 725–726.

[37] Isenberg, J., Knopf, D., and Sesum, N., Ricci flow neckpinches without rotational sym-
metry, arXiv:1312.2933.

[38] Koiso, N., On rotationally symmmetric Hamilton’s equation for Kaḧler-Einstein met-
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1. Introduction

A basic problem in differential geometry is to find “best” or “canonical” metrics on smooth

manifolds. The most famous example is the classical uniformization theorem, which says

that every closed 2-dimensional manifold admits a metric with constant curvature, and more-

over this metric is essentially unique in its conformal class. Calabi’s introduction of extremal

Kähler metrics [10] is an attempt at finding a higher dimensional generalization of this result,

in the setting of Kähler geometry.

There are of course other ways in which one could attempt to generalize the uniformiza-

tion theorem to higher dimensional manifolds. One possibility is the Yamabe problem in the

context of conformal geometry. This says [31] that on a closed manifold of arbitrary dimen-

sion, every conformal class admits a metric of constant scalar curvature. Moreover this met-

ric is often, but not always, unique up to scaling. A different generalization to 3-dimensional

manifolds is given by Thurston’s geometrization conjecture, established by Perelman [41].

In this case the goal is to find metrics of constant curvature on a 3-manifold, but this is too

ambitious. Instead it turns out that every 3-manifold can be decomposed into pieces each of

which admits one of 8 model geometries.

The search for extremal Kähler metrics can be thought of as a complex analogue of the

Yamabe problem, where we try to find canonical representatives of a given Kähler class,

rather than a conformal class. In both cases the effect of restricting the space of metrics

that we allow results in the problems reducing to scalar equations involving the conformal

factor, and the Kähler potential, respectively. We will see, however, that in contrast with the

Yamabe problem extremal metrics do not always exist, and in these cases one can hope to

find a canonical “decomposition” of the manifold into pieces somewhat reminiscent of the

geometrization of 3-manifolds.

In order to define extremal metrics, letM be a compact complex manifold of dimension

n, equipped with a Kähler class Ω ∈ H2(M,R). Denote by KΩ the set of Kähler metrics in

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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the class Ω.

Definition 1.1. An extremal metric is a critical point of the Calabi functional

Cal : KΩ → R

ω !→
∫
M

(S(ω)− S)2 ωn, (1.1)

where S(ω) is the scalar curvature of ω, and S is the average of S(ω) with respect to the

volume form ωn. Note that S is independent of the choice of ω ∈ KΩ.

Calabi [10] has shown that ω is an extremal metric if and only if the gradient ∇S(ω)
is a holomorphic vector field. Since most complex manifolds do not admit any non-trivial

holomorphic vector fields, most extremal metrics are constant scalar curvature Kähler (cscK)

metrics. A particularly important special case is when the first Chern class c1(M) is propor-
tional to the Kähler class Ω. If c1(M) = λΩ, and ω ∈ KΩ is a cscK metric, then it follows

that

Ric(ω) = λω, (1.2)

and so ω is a Kähler-Einstein metric.

It is known that any two extremal metrics in a fixed Kähler class are isometric (see Chen-

Tian [16]), which makes extremal metrics good candidates for being canonical metrics on

Kähler manifolds. On the other hand, not every Kähler class admits an extremal metric, the

first examples going back to Levine [32] of manifolds which do not admit extremal metrics

in any Kähler class. The basic problems are therefore to understand which Kähler classes

admit extremal metrics, and what we can say when no extremal metric exists.

The most interesting case of the existence question is when Ω = c1(L) is the first Chern
class of a line bundle, and consequently M is a projective manifold. In this case the Yau-

Tian-Donaldson conjecture predicts that the existence of an extremal metric is related to the

stability of the pair (M,L) in the sense of geometric invariant theory. In Section 2 we will

discuss two such notions of stability: K-stability, and a slight refinement of it which we call

K̂-stability.

As a consequence of work of Tian [54], Donaldson [18, 20], Mabuchi [34], Stoppa [44],

Stoppa-Székelyhidi [45], Paul [39], Berman [7], and others, there are now many satisfactory

results that show that the existence of an extremal metric implies various notions of stability.

The converse direction, however, is largely open. In Section 3 we will discuss two results

in this direction. One is the recent breakthrough of Chen-Donaldson-Sun [12] on Kähler-

Einstein metrics with positive curvature, and the other is work of the author on extremal

metrics on blowups.

Finally in Section 4 we turn to what is to be expected when no extremal metric exists,

i.e. when a pair (M,L) is unstable. It is still a natural problem to try minimizing the Calabi

functional in a Kähler class, and we will discuss a conjecture due to Donaldson relating this

to finding the optimal way to destabilize (M,L). We will give an example where this can be

interpreted as the canonical decomposition of the manifold alluded to above.

2. The Yau-Tian-Donaldson conjecture

It is a conjecture going back to Yau (see e.g. [60]) that if M is a Fano manifold, i.e. the

anticanonical line bundle K−1
M is ample, then M admits a Kähler-Einstein metric if and
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only if M is stable in the sense of geometric invariant theory. Tian [54] introduced the

notion of K-stability as a precise candidate of such a stability condition and showed that it is

necessary for the existence of a Kähler-Einstein metric. Donaldson [17, 19] generalized the

conjecture to pairs (M,L) where L → M is an ample line bundle, not necessarily equal to

the anticanonical bundle. More precisely, Donaldson formulated a more algebraic version of

K-stability, and conjectured that K-stability of the pair (M,L) is equivalent to the existence

of a cscK metric in the class c1(L). We start by giving a definition of Donaldson’s version

of K-stability.

Definition 2.1. A test-configuration for (M,L) of exponent r is a C∗-equivariant, flat, po-
larized family (M,L) over C, with generic fiber isomorphic to (M,Lr).

The central fiber (M0, L0) of a test-configuration has an induced C∗-action, and we

write Ak for the infinitesimal generator of this action on H0(M0, L
k
0). In other words, the

eigenvalues of Ak are the weights of the action. There are expansions

dimH0(M0, L
k
0) = a0k

n + a1k
n−1 +O(kn−2)

Tr(Ak) = b0k
n+1 + b1k

n +O(kn−1)

Tr(A2
k) = c0k

n+2 +O(kn+1).

(2.1)

Definition 2.2. Given a test-configuration χ of exponent r for (M,L) as above, its Futaki
invariant is defined to be

Fut(χ) =
a1b0 − a0b1

a20
. (2.2)

The norm of χ is defined by

‖χ‖2 = r−n−2

(
c0 − b20

a0

)
, (2.3)

where the factor involving r is used to make the norm unchanged if we replace L by a power.

With these preliminaries, we can give a definition of K-stability.

Definition 2.3. The pair (M,L) is K-stable if Fut(χ) > 0 for all test-configurations χ with

‖χ‖ > 0.

The condition ‖χ‖ > 0 is required to rule out certain “trivial” test-configurations. An

alternative definition by Li-Xu [33] requires M to be a normal variety distinct from the

product M × C, but the condition using the norm ‖χ‖ will be more natural below, when

discussing filtrations.

The central conjecture in the field is the following.

Conjecture 2.4 (Yau-Tian-Donaldson). Suppose thatM has no non-zero holomorphic vec-
tor fields. ThenM admits a cscK metric in c1(L) if and only of (M,L) is K-stable.

WhenM admits holomorphic vector fields which can be lifted to L, then it is never K-

stable according to the previous definition, since in that case one can find test-configurations

with total space M = M × C, with a non-trivial C∗-action whose Futaki invariant is non-

positive. In this case a variant of K-stability, called K-polystability, is used, which rules

out such “product test-configurations” and is conjecturally equivalent to the existence of a
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cscKmetric, even whenM admits holomorphic vector fields. A further variant of K-stability,

called relative K-stability, was defined by the author [49], and it is conjecturally related to the

existence of extremal metrics. In relative K-stability one only considers test-configurations

which are orthogonal to a maximal torus of automorphisms ofM in a suitable sense.

Example 2.5. Let (M,L) = (P1,O(1)). The family of conics xz = ty2 for t ∈ C gives

a test-configuration χ for (M,L) of exponent 2, degenerating a smooth conic into the union

of two lines (see Figure 2.1). A small computation gives Fut(χ) = 1/8. It is not surprising
that this is positive, since the Fubini-Study metric on P1 has constant scalar curvature.

xz = ty2

t→ 0

xz = 0

Figure 2.1. A test-configuration degenerating a conic into two lines.

Calculations in Apostolov-Calderbank-Gauduchon-Tønnesen-Friedman [1] suggest that

K-stability might not be sufficient to ensure the existence of a cscK metric in general. Indeed

they construct examples where the existence of an extremal metric is equivalent to the posi-

tivity of a certain function F on an interval (a, b), while relative K-stability only ensures that
F is positive at rational points (a, b) ∩Q. It is thus natural to try to work with a completion

of the space of test-configurations in a suitable sense in order to detect when this function F
vanishes at an irrational point. This motivates the the author’s work [47] on filtrations.

Definition 2.6. Let R =
⊕

k�0H
0(M,Lk) denote the homogeneous coordinate ring of

(M,L). A filtration of R is a family of subspaces

C = F0R ⊂ F1R ⊂ . . . ⊂ R, (2.4)

satisfying

1. (FiR)(FjR) ⊂ Fi+jR,
2. If s ∈ FiR, and s has degree k piece sk ∈ H0(M,Lk), then sk ∈ FiR.
3. R =

⋃
i�0 FiR.

Witt Nyström [58] showed that every test-configuration for (M,L) gives rise to a filtra-

tion. In fact the Rees algebra of the filtration is the coordinate ring of the total space of the

test-configuration. On the other hand given any filtration χ of the homogeneous coordinate

ring of (M,L), we obtain a flag of subspaces

{0} = F0Rr ⊂ F1Rr ⊂ . . . ⊂ Rr (2.5)

of the degree r piece Rr = H0(M,Lr) for all r > 0. In turn, such a flag gives rise to a

test-configuration of exponent r for (M,L) – by embeddingM into projective space using
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a basis of H0(M,Lr), and acting by a C∗-action whose weight filtration is given by our

flag. Therefore any filtration χ induces a sequence of test-configurations χ(r), where χ(r)

has exponent r. It is natural to think of χ as the limit of the χ(r), and thus to define

Fut(χ) = lim inf
r→∞

Fut(χ(r))

‖χ‖ = lim
r→∞

‖χ(r)‖,
(2.6)

where the limit can be shown to exist. The main difference between filtrations arising from

test-configurations, and general filtrations, is that the Rees algebras of the latter need not be

finitely generated.

In terms of filtrations we define the following stability notion, which is stronger than

K-stability.

Definition 2.7. The pair (M,L) is K̂-stable, if Fut(χ) > 0 for all filtrations of the homo-

geneous coordinate ring of (M,L) satisfying ‖χ‖ > 0.

In view of the examples of Apostolov-et. al. that we mentioned above, it may be that

in the Yau-Tian-Donaldson conjecture one should assume K̂-stability instead of K-stability.

One direction of this modified conjecture has been established by Boucksom and the au-

thor [47].

Theorem 2.8. Suppose that M has no non-zero holomorphic vector fields. If M admits a
cscK metric in c1(L), then (M,L) is K̂-stable.

The analogous result for K-stability was shown in Stoppa [44], building on work of

Donaldson [20] which we will see in Theorem 4.1, and Arezzo-Pacard [2] which we will

discuss in Section 3. In the proof of Theorem 2.8 the main additional ingredient is the use

of the Okounkov body [8, 29, 37, 58]. Note that when L = K−1
M , then related results were

shown by Tian [54] and Paul-Tian [40]. It is likely that a result analogous to Theorem 2.8

can be shown for extremal metrics along the lines of [45].

3. Some existence results

In this section we discuss two special cases, where the Yau-Tian-Donaldson conjecture has

been verified.

Kähler-Einstein metrics. We first focus on Kähler-Einstein metrics, i.e. when c1(M) is
proportional to c1(L). When c1(M) = 0, or c1(M) < 0, then the celebrated work of

Yau [59] implies thatM admits a Kähler-Einstein metric, and a stability condition does not

need to be assumed (see also Aubin [6] for the case when c1(M) < 0).
In the remaining case, when c1(M) > 0, i.e. M is Fano, it was known from early on

(see e.g. Matsushima [35]) that a Kähler-Einstein metric does not always exist, and Yau

conjectured that the existence is related to stability of M in the sense of geometric invari-

ant theory. Tian [53] found all two-dimensional M which admit a Kähler-Einstein metric,

and in [54] he formulated the notion of K-stability, which he conjectured to be equivalent

to the existence of a Kähler-Einstein metric. The main difference between Tian’s notion of

K-stability and the one in Definition 2.3 is that Tian’s version of K-stability only requires
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Fut(χ) > 0 for very special types of test-configurations with only mild singularities. In par-

ticular their Futaki invariants can be computed differential geometrically using the formula

Futaki [24] originally used to define his invariant. By the work of Li-Xu [33] it turns out that

in the Fano case Tian’s notion of K-stability is equivalent to the a priori stronger condition

of Definition 2.3.

Recently, Chen-Donaldson-Sun [12–15] have proved Conjecture 2.4 for Fano manifolds:

Theorem 3.1. Suppose that M is a Fano manifolds and (M,K−1
M ) is K-polystable. Then

M admits a Kähler-Einstein metric.

To construct a Kähler-Einstein metric, the continuity method is used, with a family of

equations of the form

Ric(ωt) = tωt +
1− t
m

[D], (3.1)

where D is a smooth divisor in the linear system |mK−1
M |, and [D] denotes the current of

integration. More precisely, a metric ωt is a solution of (3.1) if Ric(ωt) = tωt on M \ D,

while ωt has conical singularities along D with cone angle 2π
m (1 − t). One then shows that

Equation 3.1 can be solved for t ∈ [t0, T ) for some t0, T > 0 (see Donaldson [22] for the

openness statement), and the question is what happens when t→ T .
One of the main results of the work of Chen-Donaldson-Sun is, roughly speaking, that

along a subsequence the manifolds (M,ωti) have a Gromov-Hausdorff limit W which is a

Q-Fano variety, such that the divisor D ⊂ M converges to a Weil divisor Δ, andW admits

a weak Kähler-Einstein metric with conical singularities along Δ (defined in an appropriate

sense). Moreover, there are embeddings φi :M → PN and φ :W → PN into a sufficiently

large projective space, such that the pairs (φi(M), φi(D)) converge to (φ(W ), φ(Δ)) in an

algebro-geometric sense. In this case either (φ(W ), φ(Δ)) is in the SL(N + 1,C)-orbit of
the (φi(M), φi(D)) in which case we can solve Equation (3.1) for t = T , or otherwise we
can find a test-configuration for (M,D) with central fiber (W,Δ) to show that (M,K−1

M ) is
not K-stable. Note that here one needs to extend the theory described in Section 2 to pairs

(M,D) resulting in the notion of log K-stability [22].

The fact that a sequence of solutions to Equation (3.1) has a Gromov-Hausdorff limit

which is a Q-Fano variety originates in work of Tian [53] on the 2-dimensional case, and it

is essentially equivalent to what Tian calls the “partial C0-estimate” being satisfied by such a

sequence of solutions. This partial C0-estimate was first shown in dimensions greater than 2

by Donaldson-Sun [23] for sequences of Kähler-Einstein metrics, and their method has since

been generalized to many other settings: Chen-Donaldson-Sun [14, 15] to solutions of (3.1);

Phong-Song-Sturm [42] for sequences of Kähler-Ricci solitons; Tian-Zhang [55] along the

Kähler-Ricci flow in dimensions at most 3; the author [48] along Aubin’s continuity method;

Jiang [28] using only a lower bound for the Ricci curvature, in dimensions at most 3. Note

that Tian’s original conjecture on the partial C0-estimate is still open in dimensions greater

than 3 – namely we do not yet understand Gromov-Hausdorff limits of Fano manifolds under

the assumption of only a positive lower bound on the Ricci curvature.

To close this subsection we mention a possible further result along the lines of Chen-

Donaldson-Sun’s work. As we described above, if M does not admit a Kähler-Einstein

metric, then a sequence of solutions to Equation (3.1) will converge to a weak conical Kähler-

Einstein metric on a pair (W,Δ) as t → T . Suppose T < 1. We can think of this metric as

a suitable weak solution to the equation

Ric(ωt) = tωt +
(1− t)
m

[Δ] (3.2)
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for t = T on the spaceW . Since the pair (W,Δ) necessarily has a non-trivial automorphism

group, we cannot expect to solve this equation for t > T , however it is reasonable to expect

that we can still find weak conical Kähler-Ricci solitons, i.e. we can solve

Ric(ωt) + LXtωt = tωt +
(1− t)
m

[Δ], (3.3)

for some range of values t > T , with suitable vector fields Xt fixing Δ. An extension of

Chen-Donaldson-Sun’s work to Kähler-Ricci solitons, generalizing Phong-Song-Sturm [42],

could then be used to extract a limit (W1,Δ1) as t → T1, with yet another (weak) conical

Kähler-Ricci soliton, and so on. Based on this heuristic argument we make the following

conjecture.

Conjecture 3.2. We can solve Equation (3.3) up to t = 1 by passing through finitely many
singular times, changing the pair (W,Δ) each time. At t = 1 we obtain a Q-Fano vari-
ety Wk admitting a weak Kähler-Ricci soliton. Moreover, there is a test-configuration for
(M,K−1

M ) with central fiberWk.

A further natural expectation would be that the Kähler-Ricci soliton obtained in this way

is related to the limiting behavior of the Kähler-Ricci flow onM . Indeed, according to the

Hamilton-Tian conjecture (see Tian [54]), the Kähler-Ricci flow is expected to converge to a

Kähler-Ricci soliton with mild singularities.

Blow-ups. Beyond the Kähler-Einstein case there are very few general existence results for

cscK or extremal metrics. One example is the case of toric surfaces, where Conjecture 2.4

has been established by Donaldson [21], with an extension to extremal metrics by Chen-Li-

Sheng [11]. In this section we will discuss a perturbative existence result for cscK metrics

on blow-ups.

Suppose that ω is a cscK metric on a compact Kähler manifold M , and choose a point

p ∈M . For all sufficiently small ε > 0 the class

Ωε = π
∗[ω]− ε2[E] (3.4)

is a Kähler class on the blowupBlpM , where π : BlpM →M is the blowdown map, and [E]
denotes the Poincaré dual of the exceptional divisor. A basic question, going back to work

of LeBrun-Singer [30], is whether BlpM admits a cscK (or extremal) metric in the class Ωε
for sufficiently small ε. This problem was studied extensively by Arezzo-Pacard [2, 3], and

Arezzo-Pacard-Singer [4]. See also Pacard [38] for a survey. The following is the most basic

result in this direction.

Theorem 3.3 (Arezzo-Pacard [2]). Suppose thatM admits a cscK metric ω, and it admits
no non-zero holomorphic vector fields. Then there is an ε0 > 0 such that BlpM admits a
cscK metric in the class Ωε for all ε ∈ (0, ε0).

This result not only provides many new examples of cscK metrics, but it is also a key

ingredient in the proofs of results such as Theorem 2.8. The construction of cscK metrics on

blowups is a typical example of a gluing theorem in geometric analysis. First, one obtains

a metric ωε ∈ Ωε on the blowup, by gluing the metric ω to a scaled down version ε2η of

the scalar flat Burns-Simanca [43] metric η on Bl0C
n. This is shown in Figure 3.1. In a

suitable weighted Hölder space the metric ωε is sufficiently close to having constant scalar
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scalar flat metric η (Burns-

Simanca)

BlpM
Bl0C

n

ωε = ω glued to ε2η

Figure 3.1. The construction of the approximate metric ωε.

curvature, that one can perturb it to a cscK metric using a contraction mapping argument, for

sufficiently small ε.
When M admits non-zero holomorphic vector fields, then the problem becomes more

subtle, since then BlpM may not admit a cscK (or even extremal) metric for every point p.
The problem was addressed by Arezzo-Pacard [3] and Arezzo-Pacard-Singer [4] in the case

of extremal metrics, as well as the author [46, 51]. For the case of cscK metrics the sharpest

result from [46] is as follows, showing that the Yau-Tian-Donaldson conjecture holds for the

pair (BlpM,Ωε) for sufficiently small ε.

Theorem 3.4. Suppose that dimM > 2,M admits a cscK metric ω, and p ∈ M . Then for
sufficiently small ε > 0, the blowup BlpM admits a cscK metric in the class Ωε if and only
if (BlpM,Ωε) is K-polystable.

For K-polystability to be defined algebraically, the class Ωε should be rational, but in

fact a very weak version of K-polystability, which can be defined for Kähler manifolds, is

sufficient in this theorem. Indeed what we can prove is that if BlpM does not admit a cscK

metric in the class Ωε for sufficiently small ε, then there is a C∗-action λ onM such that if

we let

q = lim
t→0

λ(t) · p, (3.5)

then theC∗-action on BlqM induced by λ has non-positive Futaki invariant. In other words
when ε is sufficiently small, then it is enough to consider test-configurations forBlpM which

arise from one-parameter subgroups in the automorphism group ofM . While there are also

existence results for cscK metrics when dimM = 2, and also for general extremal metrics,

in these cases the precise relation with (relative) K-stability has not been established yet.

In the remainder of this section we will give a rough idea of the proof of these existence

results. The basic ingredient is the existence of a scalar flat, asymptotically flat metric η on
Bl0C

n due to Burns-Simanca [43], of the form

η =
√−1∂∂

[
|w|2 + ψ(w)

]
(3.6)
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on Cn \ {0}, where

ψ(w) = −|w|4−2n +O(|w|2−2n), as |w| → ∞ (3.7)

for n > 2. Under the change of variables w = ε−1z, we have

ε2η =
√−1∂∂

[
|z|2 + ε2ψ(ε−1z)

]
. (3.8)

At the same time there are local coordinates near p ∈ M for which the metric ω is of the

form

ω =
√−1∂∂

[
|z|2 + φ(z)

]
, (3.9)

where φ(z) = O(|z|4). One can then use cutoff functions to glue the metrics ω and ε2η on
the level of Kähler potentials on the annular region rε < |z| < 2rε for some small radius rε.
The result is a metric ωε ∈ Ωε on BlpM , which in a suitable weighted Hölder space is very

close to having constant scalar curvature if ε is small. It is important here that η is scalar flat,
since if it were not, then ε2η would have very large scalar curvature once ε is small.

WhenM has no holomorphic vector fields, then one can show that for sufficiently small

ε this metric ωε can be perturbed to a cscK metric in its Kähler class, and this proves The-

orem 3.3. Analytically the main ingredient in this proof is to show that the linearization of

the scalar curvature operator is invertible, and to control the norm of its inverse in suitable

Banach spaces as ε→ 0.
The difficulty whenM has holomorphic vector fields, or more precisely when when the

Hamiltonian isometry group G of (M,ω) is non-trivial, is that the linearized operator will

no longer be surjective, since its cokernel can be identified with the Lie algebra g of G. One
way to overcome this issue is to try to solve a more general equation of the form

F (u, ξ) = 0, (3.10)

where ωε +
√−1∂∂u is a Kähler metric and ξ ∈ g. The operator F is constructed so that if

F (u, ξ) = 0 and ξ ∈ gp is in the stabilizer of p, then ωε +
√−1∂∂u is an extremal metric,

which has constant scalar curvature if ξ = 0. At the same time the linearization of F is

surjective. One can then show that for sufficiently small ε, for every point p ∈ M we can

find a solution (uε,p, ξε,p) of the corresponding equation. The search for cscK metrics is then

reduced to the finite dimensional problem of finding zeros of the map

με :M → g

p !→ ξε,p,
(3.11)

since if με(p) = 0, then we have found a cscK metric on BlpM in the class Ωε. More

generally to find extremal metrics we need to find p such that με(p) ∈ gp.
At this point it becomes important to understand better what the map με is, and for this

one needs to construct better approximate solutions than our crude attempt ωε above. In

turn this requires more precise expansions of the metrics ε2η and ω than what we had in

Equations (3.8) and (3.9). For the Burns-Simanca metric, according to Gauduchon [25] we

have

ε2η =
√−1∂∂

[
|z|2 − d0ε2m−2|z|4−2m + d1ε

2m|z|2−2m +O(ε4m−4|z|6−4m)
]
, (3.12)
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where d0, d1 > 0, while for the metric ω we have

ω =
√−1∂∂

[
|z|2 +A4(z) +A5(z) +O(|z|6)

]
, (3.13)

where A4 and A5 are quartic and quintic expressions. Essentially A4 is the curvature of ω at

p, while A5 is its covariant derivative at p. The way to obtain better approximate solutions

than ωε is to preserve more terms in these expansions rather than multiplying them all with

cutoff functions. In practice this involves modifying the metric ω on the punctured manifold

M \ {p} and ε2η on Bl0C
n to incorporate new terms in their Kähler potentials that are

asymptotic to −d0ε2m−2|z|4−2m + d1ε
2m|z|2−2m and A4(z) +A5(z) respectively.

The upshot is that we can obtain an expansion for με which is roughly of the form

με(p) = μ(p) + ε
2Δμ(p) +O(εκ) (3.14)

for some κ > 2, where μ : M → g is the moment map for the action of G onM , and Δμ
is its Laplacian. At this point one can exploit the special structure of moment maps to show

that if μ(p) + ε2Δμ(p) is in the stabilizer gp, and ε is sufficiently small, then there is a point

q ∈ Gc · p in the orbit of p under the complexified group such that με(q) ∈ gq . Since BlpM
is biholomorphic to BlqM in this case, we end up with an extremal metric on BlpM . Under

the K-polystability assumption this extremal metric is easily seen to have constant scalar

curvature.

Finally, if μ(q) + ε2Δμ(q) �∈ gq for any q ∈ Gc · p and sufficiently small ε, then the

Kempf-Ness principle [36] relating moment maps to GIT stability can be exploited to find a

C∗-action onM which induces a destabilizing test-configuration for BlpM .

There are several interesting problems which we hope to address in future work.

1. One should extend Theorem 3.4 to the case when dimM = 2 and to general extremal

metric. In principle both of these extensions should follow from a more refined ex-

pansion of the function με than what we have in Equation (3.14), but it may be more

practical to find a different, more direct approach.

2. Can one obtain similar existence results for blow-ups along higher dimensional sub-

manifolds?

3. IfM is an arbitrary compact Kähler manifold, is it possible to construct a cscK metric

on the blowup ofM in a sufficiently large number of points? This would be analogous

to Taubes’s result [52] on the existence of anti-self-dual metrics on the blowup of a

4-manifold in sufficiently many points. See Tipler [56] for a related result for toric

surfaces, where iterated blowups are also allowed.

4. What if no extremal metric exists?

Even ifM does not admit an extremal metric in a class c1(L), it is natural to try minimizing

the Calabi functional. That this is closely related to the algebraic geometry of (M,L) is
suggested by the following result, analogous to a theorem due to Atiyah-Bott [5] in the case

of vector bundles.

Theorem 4.1 (Donaldson [20]). Given a polarized manifold (M,L), we have

inf
ω∈c1(L)

‖S(ω)− S‖L2 � sup
χ

−cnFut(χ)‖χ‖ , (4.1)
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where the supremum runs over all test-configurations for (M,L) with ‖χ‖ > 0, and cn is an
explicit dimensional constant.

Donaldson also conjectured that in fact equality holds in (4.1). When M admits an

extremal metric ωe ∈ c1(L), then it is easy to check that

‖S(ωe)− S‖L2 = −cnFut(χe)‖χe‖ , (4.2)

where χe is the product configuration built from theC∗-action induced by∇S(ωe). In other
words equality holds in (4.1) in this case. When (M,L) admits no extremal metric, there

is little known, except for the case of a ruled surface [50] where we were able to perform

explicit constructions of metrics and test-configurations to realize equality in (4.1). Note

that in the case of vector bundles the analogous conjecture is known to hold (i.e. equality in

(4.1)) by Atiyah-Bott [5] over Riemann surfaces, and Jacob [27] in higher dimensions.

To describe our result, let Σ be a genus 2 curve, andM = P(O ⊕ O(1)), where O(1)
denotes any degree one line bundle over Σ. For any real number m > 0, we have a Kähler
class Ωm onM , defined by

Ωm = [F ] +m[S0], (4.3)

where [F ], [S0] denote Poincaré duals to the homology classes of a fiber F and the zero

section S0. Up to scaling we obtain all Kähler classes onM in this way. Depending on the

value ofm, in [50] we observed 3 qualitatively different behaviors of a minimizing sequence

for the Calabi functional in Ωm. There are explicitly computable numbers 0 < k1 < k2 and
minimizing sequences ωi for the Calabi functional in Ωm with the following properties:

1. When m < k1, then the ωi converge to the extremal metric in Ωm whose existence

was shown by Tønnesen-Friedman [57].

2. When k1 � m � k2 then suitable pointed limits of the ωi are complete extremal

metrics onM \ S0 andM \ S∞. Here S∞ is the infinity section, and the volumes of

the two complete extremal metrics add up to the volumes of the ωi.

3. When m > k2, then suitable pointed limits of the ωi are either Σ × R, or complete

extremal metrics onM \S0 orM \S∞. In the first case a circle fibration collapses, and

the sum of the volumes of the two complete extremal metrics is strictly less than the

volume of the ωi. Figure 4.1 illustrates the behavior of the metrics ωi when restricted

to a P1 fiber.

ωi

i→ ∞
collapsed S1 fibration

complete extremal metrics

Figure 4.1. The fiber metrics of a minimizing sequence whenm > k2.

We interpret cases 2 and 3 as saying that a minimizing sequence breaks the manifold

into several pieces. Some of the pieces admit complete extremal metrics, but others display
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more complicated collapsing behavior. Having such infinite diameter limits, and possible

collapsing is in stark contrast with the case of Fano manifolds that we discussed in Section 3.

The sequences of metrics ωi above can be written down explicitly using the momentum

construction developed in detail by Hwang-Singer [26]. To show that these sequences ac-

tually minimize the Calabi energy, one needs to consider the right hand side of (4.1), and

construct corresponding sequences of test-configurations χi such that

lim
i→∞

‖S(ωi)− S‖L2 = lim
i→∞

−cnFut(χi)‖χi‖ . (4.4)

For this to make sense we need to assume that m is rational, so that a multiple of Ωm
is an integral class. Such a sequence χi can be constructed explicitly, and in the case when

m > k2, the exponents of the test-configurations χi tend to infinity with i. In other words,

we need to embed M into larger and larger projective spaces in order to realize χi as a

degeneration in projective space. The reason is that the central fiber of χi is a normal crossing

divisor consisting of a chain of a large number of components isomorphic to M , with the

infinity section of each meeting the zero section of the next one. The number of components

goes to infinity with i. Figure 4.2 illustrates χi restricted to a P1-fiber ofM .

more and more compo-

nents as i→ ∞

Figure 4.2. The test-configuration χi restricted to a P1 fiber.

From Equation (4.4) together with Theorem 4.1 we obtain the following.

Theorem 4.2. For the ruled surfaceM equality holds in Equation 4.1 for any polarization
L.

To conclude this section we point out that already in this example we cannot take a limit

of the sequence χi in the space of test-configurations, because the exponents go to infinity.

However there is a filtration χ, such that χi is the induced test-configuration of exponent i,
and in this sense the limit of the χi exists as a filtration. This filtration achieves the supremum

on the right hand side of (4.1) and it is natural to ask whether such a “maximally destabi-

lizing” filtration always exists. In view of the work of Bruasse-Teleman [9] this filtration, if

it exists, should be viewed as analogous to the Harder-Narasimhan filtration of an unstable

vector bundle.
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Ricci flows with unbounded curvature

Peter M. Topping

Abstract. Until recently, Ricci flow was viewed almost exclusively as a way of deforming Riemannian

metrics of bounded curvature. Unfortunately, the bounded curvature hypothesis is unnatural for many

applications, but is hard to drop because so many new phenomena can occur in the general case. This

article surveys some of the theory from the past few years that has sought to rectify the situation in

different ways.
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Keywords. Ricci flow, well-posedness, unbounded curvature, uniformization, geometrization, flowing

beyond singularities.

1. Introduction

Since its inception in 1982 [16], Ricci flow has supported the development of a remarkable

and elegant theory. The flow has become well-known as a way of deforming a Riemannian

metric in order to improve it, or turn it into a special metric that might satisfy a geometrically

rigid condition or simply a natural PDE, and indeed up until now, most applications fit within

the following general strategy.

• First we take a space that we do not understand very well, perhaps a Riemannian

manifold satisfying a curvature condition, or a metric space with some weak geometric

structure.

• Next we deform the space under Ricci flow, keeping track of its properties, for example

its topology, its curvature or its conformal structure, until it develops into a very special

space, for example sometimes one of constant curvature.

• Such special spaces we can hope to classify, and if the Ricci flow can be sufficiently

well understood then we can go back and classify or better understand the space with

which we started.

As an example, Hamilton’s original insight was that a simply connected three-dimensional

closed Riemannian manifold of positive Ricci curvature will flow smoothly under a suitably

normalised Ricci flow through a family of manifolds of positive Ricci curvature to a mani-

fold of constant curvature, which can then be identified as a round sphere. He deduced that

the original manifold of positive Ricci curvature must be diffeomorphic to the three-sphere.

Dramatic further development of Ricci flow theory by Hamilton and then Perelman ulti-

mately extended this principle to handle all closed three-manifolds, leading to a resolution

of the conjectures of Poincaré and Thurston ([19, 23, 27–29]).

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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This general strategy has clearly been very effective, but its scope has nevertheless been

severely limited by the Ricci flow existence and asymptotics theory only applying in very

special cases, meaning that we are only scratching the surface of the potential applicability of

the method. In particular, the vast majority of applications require the underlying manifold

to be closed, and without that hypothesis we are not even able in general to start the flow

going, even for a short time, without imposing further conditions such as boundedness of the

curvature that may damage potential applications.

This article surveys part of the programme to extend the theory of Ricci flow to handle

general manifolds or even metric spaces. The central point will be the necessity to handle

flows with unbounded curvature; until recently we have had no idea how to even start the

flow going starting with a manifold of unbounded curvature, let alone understand its long-

time existence and asymptotics or uniqueness. In this unrestricted situation, the flow interacts

with itself ‘at spatial infinity’ in an unfamiliar way that is interesting both geometrically and

in terms of the pure PDE questions it raises. Since classical solutions to the Ricci flow are

characterised as existing until the curvature becomes unbounded, and we want to consider

unbounded curvature from the outset, we now need to understand the issue of long-time

existence in much more detail. This also brings to the fore the subtle issue of asymptotics of

the flow, and we will witness how Ricci flow organises itself to find a special metric, even

when there appear to be obstructions.

2. Why is Ricci flow with unbounded curvature so difficult?

We call a smooth one-parameter family of Riemannian metrics g(t) on a manifoldM a Ricci

flow when
∂g

∂t
= −2Ricg(t) (2.1)

where Ric is the Ricci tensor (see [16, 38]). One should interpret the right-hand side of the

equation as some sort of Laplacian of the metric, and thus interpret this equation as some

sort of heat equation, although ultimately this is a nonlinear equation, and is even not quite

parabolic, which causes problems when trying to establish existence of solutions even to this

day, except in relatively simple situations.

One way of trying to pose this flow is to consider an initial Riemannian metric g0, and
then look for a family g(t), t ∈ [0, T ) satisfying (2.1), with g(0) = g0. In due course, we

will see that this is rather naive in general, but it works well in special situations such as

on closed manifolds (Hamilton [16]) or more generally when the initial metric is complete

and of bounded curvature (Shi [36]). The following hybrid of their work also incorporates

a uniqueness assertion of Chen-Zhu [4]; the proofs have been clarified and simplified by

DeTurck/Hamilton [10, 19] and Kotschwar [24].

Theorem 2.1 (The Hamilton-Shi flow). Given a smooth, complete Riemannian manifold
(M, g0) of bounded curvature, there exist a unique T ∈ (0,∞] and Ricci flow g(t) for
t ∈ [0, T ) satisfying the equation (2.1), the initial condition g(0) = g0, and the properties
that the curvature remains bounded for t ∈ [0, T0], for any T0 ∈ [0, T ), and that if T < ∞
then

sup
M

|Rmg(t)| → ∞ as t ↑ T,
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where Rmg(t) is the curvature tensor of g(t). Moreover, (M, g(t)) is complete for all t ∈
[0, T ).

We will call the Ricci flow whose existence is asserted by this theorem the Hamilton-Shi
Ricci flow.

The final assertion here that the Ricci flow is complete is more or less obvious. Indeed

completeness of a Riemannian manifold is equivalent to the assertion that the length of any

smooth proper curve γ : [0, 1) → M (i.e. any curve heading off to infinity in M) is

infinite, but the boundedness of the curvature in this theorem guarantees that lengths of

curves can only grow or decrease at most exponentially (see, for example, [38, Lemma

5.3.2]) and so an infinitely long curve at time t = 0 will remain infinitely long at a later time

t ∈ [0, T0]. However, this principle emphatically fails for flows of unbounded curvature.

Loosely speaking,

Unbounded curvature allows Ricci flow to feel spatial infinity.

In particular, an unbounded curvature Ricci flow can pull ‘points at infinity’ to within a finite

distance in finite time, as we now illustrate.

Theorem 2.2 (Pulling in points at infinity; Special case of [41]). There exists a smooth Ricci
flow for t ∈ [0,∞), starting at a smooth, complete Riemannian metric of bounded curvature,
that is incomplete for all t > 0.

In particular, if T 2 is a torus equipped with an arbitrary conformal structure, p ∈ T 2 is
any point, and we write h for the unique complete, conformal, hyperbolic metric on T 2\{p},
then there exists a smooth Ricci flow g(t) on T 2 for t > 0 such that g(t) → h smoothly
locally on T 2\{p} as t ↓ 0.

Of course, the Ricci flow g(t) on T 2 can be restricted to T 2\{p} to give the desired Ricci
flow that starts complete, but instantaneously becomes incomplete. Intuitively the point p is
being pulled in from infinity as t lifts off from zero – see Figure 2.1.

This example also illustrates the subtleties of uniqueness in Ricci flow in the presence of

possibly unbounded curvature, since we could have flowed the initial manifold (T 2\{p}, h)
using the Hamilton-Shi flow instead. In this example that flow would simply dilate the

metric, and could be written explicitly as g(t) = (1 + 2t)h.
Examples such as this run somewhat counter to the classical intuition in Ricci flow,

and the failure to recognise that they can arise in practice has previously led to errors in

important parts of the literature – see the discussion in [42]. We will return later to see how

incompleteness can be dealt with, and also how to impose a condition at infinity (analogous

to a boundary condition) in order to make the problem well posed.

3. A clear picture of Ricci flow on surfaces

Both the nature of the evolution equation and the existence theory above become crystal

clear when the dimension of the underlying manifold M is two.

In this case, the Ricci tensor can be written in terms of the Gauss curvature K as Ric =
K.g, so the flow equation is

∂

∂t
g(t) = −2K.g(t).
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(T 2\{p}, h) (T 2, g(t1)) (T 2, g(t2))

p

p

Figure 2.1. Pulling in points at infinity in Theorem 2.2

Thus the flow will always make a conformal deformation of the metric, and we may take

local isothermal coordinates x and y, and write the flow g(t) = e2u|dz|2 := e2u(dx2+dy2)
for some locally-defined, scalar, time-dependent function u, which can then be shown to

satisfy the local equation
∂u

∂t
= e−2uΔu = −K. (3.1)

In particular, in this form, we are dealing with a strictly parabolic PDE. Up to a change of

variables, this is the so-called logarithmic fast diffusion equation, which has an extensive

literature – see [9, 45] and the references therein.

Theorem 3.1 (Closed surfaces. Hamilton [18], Chow [7]). Let M be a closed, oriented
surface and g0 any smooth metric. Define T = ∞ unless M = S2 (topologically) in which
case we set T =

volg0 M
8π . Then there exists a unique Ricci flow g(t) on M for t ∈ [0, T ) so

that g(0) = g0. Depending on the genus of M, we have

M = S2 :
g(t)

2(T − t) → G+1, a metric of const. curvature + 1, as t ↑ T.

M = T 2 : g(t) → G0, a flat metric, as t→ ∞.

M �= S2, T 2 :
g(t)

2t
→ G−1, a metric of const. curvature − 1, as t→ ∞.

The well-posedness theory on closed surfaces was thus completed in the 1980s. An

alternative approach to Theorem 3.1 that provides a model for the trickier argument required

to prove the Poincaré conjecture can be found in [44].



Ricci flows with unbounded curvature 1037

It is apparent from Theorem 3.1 that Ricci flow geometrises a closed surface; more pre-

cisely it finds a conformal metric of constant curvature on an arbitrary closed Riemann sur-

face, which is enough to establish the Uniformisation theorem in the restricted case of closed

surfaces [6]. It is then a natural question to ask whether Ricci flow performs the same ge-

ometrisation task on a general surface. Of course, to be able to even ask this question, we

have to be able to start the Ricci flow with a more general metric, and continue it until the

flow has had a chance to organise itself into a special metric, whereas the Hamilton-Shi flow

from Theorem 2.1 flows restricted metrics, and in general will stop (as we will see) before

the flow has achieved anything.

In fact, as we shall demonstrate shortly, Ricci flow is perfectly capable of flowing a

completely general surface with possibly unbounded curvature in a uniquely defined way,

without even requiring the initial metric to be complete. Before stating the result, we dwell

on some issues that such a result must address.

Those unfamiliar with PDE theory often misinterpret existence theory as presumably

being obvious. Surely if we are trying to solve an equation ∂g
∂t = −2Kg, then we should

simply keep moving g by tiny amounts in the direction −2Kg and a solution should result.

The most naive aspect of that suggestion is that it would appear to apply to the problem

of solving backwards in time from a given smooth metric, whereas this is certainly not

possible. Indeed, Ricci flow has the dramatic smoothing effect of parabolic equations, and

immediately makes any metric real analytic [25]. Therefore we could never flow backwards

in time starting from a general smooth metric that is not also real analytic.

A more subtle issue that arises once we drop the hypothesis that the underlying manifold

is closed, is that we have to worry about boundary conditions. To illustrate this issue, con-

sider simply the problem of starting the Ricci flow on the open disc D2 ⊂ R2 with a metric

g0 = e2u0(dx2+ dy2) that is smooth up to the boundary ∂D2. From (3.1), this results in the

PDE problem ⎧⎨
⎩
∂u

∂t
= e−2uΔu D2

u(0) = u0 ∂D2.
(3.2)

Even amongst solutions that remain continuous up to the boundary at later times, this PDE

problem is ill-posed owing to nonuniqueness. Indeed, standard parabolic theory tells us that

we are free to specify the restriction of u to ∂D2 at later times, and only then would we obtain

uniqueness. In fact, we will shortly solve the well-posedness problem without resorting to

specifying any more data.

A third way we can see that existence theory should be a subtle issue is to consider what

it should imply. Geometric flows are typically designed to find special objects, for example

constant curvature metrics in the present discussion. On the other hand, it is often possible

to give a geometric flow initial data that for some reason cannot be deformed globally and

smoothly into a special object – occasionally one does not even exist. Any assertion of global

existence of solutions in such cases is also asserting that the geometric flow must organise

itself in such a way to resolve this issue, often finding an ingenious way of decomposing

the object being flowed into multiple special objects (see [40] and [33, 34] for some other

contexts in which this occurs).

We shall shortly see how these issues are resolved in practice by the Ricci flow, but first

we give the main well-posedness result in the two-dimensional case. The existence part is

joint work with G. Giesen.
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Theorem 3.2 (Ricci flows on surfaces, without restriction; [13, 39, 43]). Let (M, g0) be
any smooth (connected) Riemannian surface, possibly incomplete and/or with unbounded
curvature. Depending on the conformal type, we define T ∈ (0,∞] by1

T :=

{
1

4πχ(M) volg0 M if (M, g0) ∼= S2,C or RP 2,

∞ otherwise.

Then there exists a smooth Ricci flow g(t) on M, defined for t ∈ [0, T ) such that

(1) g(0) = g0, and

(2) g(t) is instantaneously complete, i.e. complete for all t �= 0 at which it is defined.

The flow g(t) is unique in the sense that if g̃(t) is any other smooth Ricci flow, defined now
for t ∈ [0, T̃ ), satisfying (1) and (2) above, then T̃ ≤ T and g(t) = g̃(t) for all t ∈ [0, T̃ ).

In addition, this Ricci flow g(t) is maximally stretched (see Remark 3.3), and the Gauss
curvatureKg(t) satisfies

Kg(t) ≥ − 1

2t

for t ∈ (0, T ). If T <∞, then we have

volg(t) M = 4πχ(M)(T − t) → 0 as t ↑ T,
and in particular, T is the maximal existence time.

Related results can be found in the literature of the logarithmic fast diffusion literature

(e.g. [9, 45]) and the work of Mazzeo, Sesum, Ji and Isenberg [21, 22].

Remark 3.3 ([13] and [15, Remark 1.5]). The maximally stretched assertion of the theorem

means that g(t) lies ‘above’ any another Ricci flow with the same or lower initial data. More

precisely, if 0 ≤ a < b ≤ T and g̃(t) is any Ricci flow on M for t ∈ [a, b) with g̃(a) ≤ g(a)
(with g̃(t) not necessarily complete or of bounded curvature) then g̃(t) ≤ g(t) for every
t ∈ [a, b).

The mechanism by which this Ricci flow makes an incomplete metric immediately com-

plete is somewhat similar to how the example from Theorem 2.2 made a complete metric

immediately incomplete. Unbounded curvature allows points at a finite distance to be sent

out to infinity, and vice versa.

Given the unusual nature of these flows, some examples are in order. Although Theorem

3.2 can handle arbitrary initial metrics, with arbitrarily wild behaviour at spatial infinity, we

pick the two simplest possible examples [39], both of which start completely flat but have

no choice but to have unbounded curvature immediately.

Example 3.4. Let (M, g0) be the punctured plane. The metric is incomplete since we can

take a curve asymptoting to the origin, of finite length, and the flowwill have to do something

about this in order to make the metric complete immediately. The flow we construct in

Theorem 3.2 deals with this by stretching the metric near the puncture to be asymptotically

a hyperbolic cusp, scaled to have Gauss curvature − 1
2t . See Figure 3.1. (In fact, in this

extremely special case, one could compute the flow explicitly as a so-called Ricci soliton, up

to the solution of an ODE.)

1Note that in the case that M = C, we set T = ∞ if volg0 C = ∞. Here χ(M) is the Euler characteristic.
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R2

Cusp of curvatureK ∼ − 1
2t

Figure 3.1. Puncture turns into a hyperbolic cusp in Example 3.4

Example 3.5. Now let (M, g0) be the Euclidean unit two-dimensional disc. Again, the flow

must blow up the metric to make it complete immediately, and it does this by stretching it

near to the ‘boundary’ circle into a Poincaré metric, also scaled to have Gauss curvature− 1
2t .

See Figure 3.2.

D2

u

Asymptotically constant

Almost flat

curvature − 1
2t

Figure 3.2. Metric stretches at infinity in Example 3.5

This example fits directly into the discussion above on flowing smooth metrics on the

disc D2, where we decided that the addition of boundary data would be the standard way of

achieving well-posedness. In Theorem 3.2, the condition on solutions that they are instanta-

neously complete can be viewed as a substitute for a boundary condition.



1040 Peter M. Topping

Intuitively, the flow from Theorem 3.2 is finding a way of feeding in volume at infinity

where the metric is incomplete. The notable feature here is not just that this can be done in

order to give a solution, but that it can be done uniquely: If we try to feed in less volume,

then the metric will fail to become complete. On the other hand, if we try to feed in more,

then the damping within the equation, arising from the e−2u factor in the equation (3.1) is

preventing the extra volume from arriving in the interior.

Naively, one might view a common feature of both these examples to be that the con-

formal factor u in the most obvious, Euclidean coordinates is immediately asymptotically

infinity at spatial infinity. However, the conformal factor u depends on the coordinates cho-

sen, and in different coordinates this property will not hold.

Given that Theorem 3.2 makes the metric complete immediately, and also makes the

curvature bounded from below, it is reasonable to speculate that maybe the flow also makes

the curvature bounded from above immediately, and that therefore after an arbitrarily short

time we are in the classical situation of Theorem 2.1 and could make do from then on with

the Hamilton-Shi flow. We will see that this suggestion is wrong in two ways. To begin

with, we cannot hope ever to be able to construct a complete Ricci flow solution that makes

the curvature bounded from above, because our flow is the unique instantaneously complete

solution, and carefully chosen initial metrics will have unbounded curvature for all time:

Theorem 3.6 (Ricci flows with unbounded curvature; [14]). Given any noncompact Rie-
mann surface M, there exists a smooth, complete, conformal metric g0 such that the unique
complete Ricci flow g(t) given by Theorem 3.2 exists for all t ≥ 0 and (M, g(t)) has un-
bounded curvature for each t ≥ 0.

As we will see in Theorem 4.2, Ricci flows with unbounded curvature at later times were

first constructed in higher dimensions in the context of flows with nonnegative complex

sectional curvature.

To see a second way in which the classical Hamilton-Shi flow cannot be a substitute for

the flow from Theorem 3.2, consider for a moment the restricted situation that (M, g0) is
both complete and of bounded curvature. We can flow such a metric not only with Theorem

3.2 but also with the Hamilton-Shi flow. By the uniqueness of complete Ricci flows asserted

in Theorem 3.2, they must agree – at least while the Hamilton-Shi flow exists. By Theorem

2.1, the Hamilton-Shi flow exists for all time unless the curvature blows up, so one might

naively think that this should be when the flow from Theorem 3.2 stops too. However, this

more general flow can typically keep going.

Theorem 3.7 (Flowing beyond curvature blow-up; [15]). There exists a complete surface
(M, g0) of bounded curvature such that the subsequent Ricci flow g(t) given by Theorem
3.2 exists for all time t ≥ 0, and that for some times 0 < T̃ < t0 <∞ we have:

• The curvature of g(t) is unbounded as t ↑ T̃ , but bounded on [0, T0] for all T0 ∈ [0, T̃ ).

• The curvature is unbounded for each t ≥ t0.
Clearly, the Hamilton-Shi flow will agree with g(t) above until time T̃ , when it stops,

leaving g(t) to continue alone.
An earlier result of Cabezas-Rivas and Wilking that we state in Theorem 4.2 constructs

examples of Ricci flows in dimensions four and higher, with nonnegative complex sectional

curvature, with unbounded curvature precisely for t ≥ 1. In fact, more exotic behaviour can

be engineered in which the flow passes back and forth between periods in which the curvature

of the flow is unbounded and bounded, such as in the following theorem and Figure 3.3.
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Theorem 3.8 (Bursts of unbounded curvature; [15]). There exists a complete surface (M, g0)
of bounded curvature such that the subsequent Ricci flow g(t) given by Theorem 3.2 exists
for all time t ≥ 0, and such that for some times 0 < T̃ < t0 < t1 < t2 <∞ we have:

• The curvature of g(t) is bounded on [0, T0] for all T0 ∈ [0, T̃ ), but unbounded on
[0, T̃ ).

• The curvature is unbounded for each t ∈ [t0, t1].

• The curvature is bounded for t ≥ t2.

supM |K|

tT̃ t2

curvature

unbounded

t0 t1

Figure 3.3. The flow in Theorem 3.8 switches back and forth between bounded and unbounded curva-

ture, remaining always complete. The Hamilton-Shi flow ends at t = T̃ .

Of course, by uniqueness, the only lever we have to engineer this behaviour is the choice

of the initial metric. Once the flow starts, it is determined forever.

Now we have a Ricci flow starting with an arbitrary initial surface, we can return to the

question of whether this Ricci flow will geometrise the surface, finding a metric of constant

curvature. If we restrict our discussion to initial surfaces (M, g0) that are conformal to a

hyperbolic metric H , then by definition of T in Theorem 3.2, our Ricci flow must exist for

all t ≥ 0 and we can ask the question as to whether the flow will manage to converge to H .

We find that it does:

Theorem 3.9 (Ricci flow geometrises general hyperbolic surfaces; [13]). If (M, g0) has a
conformally equivalent, complete, hyperbolic metric H , then the Ricci flow g(t) from Theo-
rem 3.2 exists for all t ≥ 0 and finds H in the sense that

g(t)

2t
→ H

smoothly locally as t→ ∞.

We view this type of result not as a route to giving an alternative proof of the Uni-

formisation theorem for general surfaces, but partly as a stepping stone to proving higher-

dimensional uniformisation results, partly as a way of comparing the geometry of general

metrics to that of conformal constant curvature metrics – for example the determinant of

the Laplacian behaves well under Ricci flow [1] – and partly as a means for understanding

how Ricci flow organises itself in order to find a special metric. In the latter direction, it is

interesting to apply Theorem 3.9 in the case that M is noncompact (for example, the open

disc) and g0 is a metric supplied from Theorem 3.6. In this case we know on one hand that
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g(t)
2t converges to a hyperbolic metric, i.e. one of constant curvature −1, and on the other

hand that it remains with unbounded curvature for all time. These two assertions are not

contradictory because the convergence to a hyperbolic metric is smooth local convergence.
In other words, the Ricci flow cannot prevent unbounded curvature, but it does organise itself

to force regions of large curvature out towards spatial infinity.

4. Flows with unbounded curvature in higher dimensions

It is interesting to speculate as to how many of the results of the last section generalise

to higher dimensions. Certainly the existence theory in Theorem 3.2 cannot possibly be

expected to hold in such generality because one can choose smooth, complete, three-

dimensional Riemannian manifolds of unbounded curvature that we cannot hope to evolve

under Ricci flow, even for a short time. For example, one could take the underlying manifold

to be S2 × R and endow it with a warped product metric so that metrically it consists of

an infinite chain of three-spheres connected by thinner and thinner (and longer and longer)

necks, as in Figure 4.1. However small we take ε > 0, if we pick a neck that is sufficiently

thin and long, then the Ricci flow will be inclined to pinch it within time ε. (See [38, §1.3.2]
for more about this type of neck-pinch singularity.)

Figure 4.1. S2 × R with thinner and thinner necks

One can, however, hope to flow manifolds of unbounded curvature that also satisfy an

appropriate nonnegative curvature condition that can rule out neck-pinch type singularities

happening in an arbitrarily short time. An interesting scenario would be to consider complete

three-dimensional manifolds of nonnegative Ricci curvature. It is very likely that Ricci flow

knows how to flow such manifolds, preserving the nonnegativity of the Ricci curvature, in a

unique way.

In 1989, Shi [35] classified complete three manifolds of nonnegative Ricci curvature that

have bounded curvature. The key step, following Hamilton [17], was to flow forwards using

the Ricci flow and prove that either the Ricci curvature becomes strictly positive immedi-

ately, or the manifold splits locally as a product. Being able to drop the bounded curvature

assumption while still being able to flow even for a short time would have yielded a classifi-

cation of all three manifolds of nonnegative Ricci curvature, which is the most natural class

to consider. This classification had to wait over twenty years, and the development of alter-

native minimal surface techniques by Liu [26]. The natural Ricci flow question of existence

with unbounded curvature remains open.

A very natural situation in which the existence side of the theory has been successfully

developed is the case that we flow manifolds of nonnegative complex sectional curvature.

This curvature condition implies nonnegative sectional curvature, and is implied by nonneg-

ative curvature operator; it is preserved under Ricci flow [3]. Cabezas-Rivas and Wilking

proved existence of solutions in this situation, retaining the curvature condition.
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Theorem 4.1 (Cabezas-Rivas and Wilking [3, Theorem 1]). Given any complete Rieman-
nian manifold (M, g0) with nonnegative complex sectional curvature, there exists a Ricci
flow g(t) for t ∈ [0, ε), some ε > 0, with g(0) = g0 and with g(t) having nonnegative
complex sectional curvature for each t ∈ [0, ε).

It is an interesting open question to prove uniqueness of this solution – conceivably there

could be many other solutions with the same initial metric. Indeed, a priori the Ricci flow
could have infinitely many nonunique branches at each instant of time, as is the case for

parabolic equations on bounded domains.

Except in low dimensions, the restriction of nonnegative complex sectional curvature

does not in itself enforce boundedness of the curvature of a Ricci flow as time advances:

Theorem 4.2 (Cabezas-Rivas and Wilking [3, Theorem 4, Corollary 3]). There exist Ricci
flows with nonnegative complex sectional curvature for t ∈ [0,∞)with unbounded curvature
for all time, and others with unbounded curvature precisely for t ≥ 1. On the other hand,
if for an n-dimensional Riemannian manifold (M, g0) with nonnegative complex sectional
curvature there exists v0 > 0 such that

volg0(Bg0(x, 1)) ≥ v0
for all x ∈ M, then we may assume that the curvature of the Ricci flow arising in Theorem
4.1 is bounded above by C(n,v0)

t .

The existence theory above is not explicit about the length of time for which the solution

will persist. However, by virtue of the nonnegativity of the complex sectional curvature, a

lower bound for the existence time can be read off from the initial geometry of the flow:

Theorem 4.3 (Cabezas-Rivas and Wilking [3, special case of Corollary 5]). Given an n-
dimensional manifold M, there exists ε > 0 depending only on n such that we may assume
that a Ricci flow arising from Theorem 4.1 exists for t ∈ [0, T ) where

T = ε. sup

{
volg0(Bg0(x, r))

rn−2

∣∣∣∣ x ∈ M, r > 0

}
∈ (0,∞].

Finally we remark that perhaps the most natural context in which one might hope to

generalise the results of Section 3 is that of higher dimensional Kähler Ricci flow. We leave

this discussion for another occasion.

5. Flowing rough metrics or Alexandrov spaces

The entire discussion so far has considered only Ricci flows starting with smoothRiemannian

metrics. One can also ask whether it is possible to start flowing from a metric that is not

smooth, or is possibly not even a Riemannian metric at all, but perhaps a metric space with

some basic structure. A Ricci flow arising in this way would generally have unbounded

curvature at least in the limit t ↓ 0.
One might naively think that if we can view Ricci flow as a parabolic equation, then it

should be irrelevant what the regularity of an initial Riemannian metric is because Ricci flow

should instantly smooth it out. However, Ricci flow will not smooth in the same quantified
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way as the ordinary heat equation. The Harnack inequality, in the sense of [20, Section 1],

can be used to prove that positive solutions of the heat equation on, say, Euclidean space

must smear out at a certain rate, with the heat kernel being the extreme case. By contrast, the

coefficient e−2u in (3.1) can interrupt this behaviour, as is exploited implicitly in the proofs

of Theorems 3.6 and 3.8. This effect from a PDE perspective says that a delta-mass for e2u

will remain a delta-mass for a while under the evolution equation (3.1), and will not spread

out like a heat kernel. See the discussion in [45, Section 8.2].

Nevertheless, there are several situations in which it is possible to start the Ricci flow

with a very rough object, perhaps a certain type of metric space. The general principle

behind most results of this form, as well as some of the results we have discussed earlier in

this survey, is that one approximates the initial data by a sequence of smooth Riemannian

manifolds (Mi, gi), flows each of these, and then tries to take a limit of these smooth Ricci

flows. The real art is to prove uniform estimates on the sequence of smooth Ricci flows and

their existence time so that this limit can be taken. A number of estimates of this form could

be summarised loosely as

Initial metric g0 has
(i) lower curvature bound, and (ii)

noncollapsing hypothesis

=⇒ Curvature decays like

|Rmg(t)| ≤ C
t

Without the noncollapsing condition (ii), no such uniform estimate can hold as we see by

returning to the ‘contracting cusp’ example of Theorem 2.2 where the curvature decay is

expected to be like C/t2.
Although we do not attempt a complete survey of such results, we do wish to highlight

one of the results of M. Simon [37] of this form.

Theorem 5.1 (Special case of [37, Theorem 7.1]). Given a closed three or two-dimensional
manifold (M, g0) that satisfies

(i) Ricg0 ≥ k ∈ R, and

(ii) volg0(Bg0(x, 1)) ≥ v0 > 0 for all x ∈ M,

there exist constants T = T (k, v0) > 0 andK = K(k, v0) > 0 such that the Ricci flow g(t)
with g(0) = g0 exists for t ∈ [0, T ) and satisfies, for each t ∈ (0, T ), the inequalities

(i) Ricg(t) ≥ −K,

(ii) volg(t)(Bg(t)(x, 1)) ≥ v0
2 for all x ∈ M,

(iii) |Rmg(t)| ≤ K
t , and

(iv) eK(t−s)dg(s)(p, q) ≥ dg(t)(p, q) ≥ dg(s)(p, q) − K(
√
t − √

s) for all s ∈ (0, t] and
p, q ∈ M, where dg(s)(p, q) is the Riemannian distance between p and q with respect
to g(s).

As a consequence, Simon [37] was able to run the Ricci flow for a definite amount of

time, starting with any metric space arising as a Gromov-Hausdorff limit of smooth closed

three-manifolds satisfying (a) and (b) of Theorem 5.1 uniformly.

Of course, we would like to be able to describe synthetically the metric spaces that can

be flowed, rather than describe them as limit points under Gromov-Hausdorff convergence.

A clean situation in which this can be done was described by T. Richard [31]. The starting
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point for his work is the notion of Alexandrov space, which for our purposes is a type of

metric space (X, d) that satisfies a very weak notion of curvature bounded below. Such

spaces automatically have integral (or infinite) Hausdorff dimension, and we require this

dimension to be two. The resulting object turns out to be topologically a surface (possibly

with boundary), and we require this surface to be closed. These constraints define the notion

of Alexandrov surface – see [30] and [2] for a more precise definition and further details.

Following Alexandrov, Richard [30, 31] proved that Alexandrov surfaces can be approx-

imated by smooth Riemannian surfaces satisfying (a) and (b) of Theorem 5.1 uniformly, and

hence showed that Ricci flow smooths out an Alexandrov surface. He also proved that it

does this in a unique way.

Theorem 5.2 (Flowing Alexandrov surfaces [31]). Given an Alexandrov surface (X, d) with
curvature bounded below by −1, there exists a Ricci flow g(t) on a closed surface M, for
t ∈ (0, T ), some T > 0, with Kg(t) ≥ −1 and such that the distance function dg(t) : M ×
M → [0,∞) of g(t) converges uniformly to some distance function d0 : M×M → [0,∞)
as t ↓ 0, where (M, d0) is isometric to (X, d).

Moreover, the Ricci flow is unique up to isometry in the sense that if (M̂, ĝ(t)), defined
for t ∈ (0, T̂ ), is any other Ricci flow with curvature uniformly bounded from below, for
which dĝ(t) → d̂0 as t ↓ 0 with (M̂, d̂0) isometric to (X, d), then there exists a smooth map
ϕ : M → M̂ that is an isometry from (M, g(t)) to (M̂, ĝ(t)) for each t ∈ (0,min{T, T̂}).

A curious consequence of this theorem is that Ricci flow knows again how to organise

itself, this time to uniquely and instantaneously endow such metric spaces with a conformal

structure.
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Isoperimetric inequalities and asymptotic
geometry
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Abstract. Them-th isoperimetric or filling volume function of a Riemannian manifold or a more gen-

eral metric space X measures how difficult it is to fill m-dimensional boundaries in X of a given vol-

ume with an (m+1)-dimensional surface inX . The asymptotic growth of the isoperimetric functions

provides large scale invariants of the underlying space. They have been the subject of intense research

in past years in large scale geometry and especially geometric group theory, where the isoperimetric

functions appear as Dehn functions of a group.

In this paper and the accompanying talk, I survey relationships between the asymptotic growth of

isoperimetric functions and the large scale geometry of the underlying space and, in particular, fine

properties of its asymptotic cones. I will furthermore describe recently developed tools from geometric

measure theory in metric spaces and explain how these can be used to study the asymptotic growth of

the isoperimetric functions.
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1. Introduction

The filling area (or first isoperimetric) function of a simply connected Riemannian manifold

M measures, roughly speaking, how difficult it is to fill a closed curve inM by a disk-type

surface inM . More precisely, it is defined by

FA0(M, r) := sup {Fillarea0(γ) : γ closed curve inM of length ≤ r} ,

where Fillarea0(γ) is the least area of a C1-smooth (or Lipschitz) disk in M bounding γ.
The filling area function is closely related to the important Dehn function widely studied

in geometric group theory. Indeed, if a finitely presented group Γ acts properly discontinu-

ously and cocompactly by isometries on a simply connected Riemannian manifoldM then

the Dehn function δΓ of Γ and the filling area function FA0 have the same growth, thus

δΓ(n) � FA0(M,n), as asserted in [37] and proved in [14], [18]. Here, given functions

f, g : [0,∞) → [0,∞) one writes f = g if there exists C > 0 such that

f(r) ≤ Cg(Cr + C) + Cr + C
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for all r ≥ 0 and one writes f � g if f = g and g = f . The Dehn function of a finitely

presented group gives a measure of the complexity of the word problem in a given group. Its

growth is a quasi-isometry invariant of groups and thus, under suitable conditions, the same

holds true for the filling area function. Higher dimensional filling volume (or isoperimetric)

functions in M can be defined analogously. If one uses m-spheres in M as boundaries

and (m + 1)-dimensional disk-type surfaces as fillings, one obtains a homotopical filling

function δmM (r), sometimes called m-th order Dehn function of M . If one uses m-cycles

as boundaries and (m + 1)-chains inM one obtains a homological filling volume function

FVm+1(M, r). See Section 2 below for the precise definitions and relationships between

δmM (r) and FVm+1(M, r). Like their one-dimensional sibling, the higher dimensional filling

functions are quasi-isometry invariants under suitable conditions on the underlying space.

They have been intensely studied in large scale geometry and in geometric group theory,

where they appear as higher Dehn functions.

The purpose of the present article and the accompanying talk is to survey recent results

relating the growth of the filling volume functions to the large scale geometry of the under-

lying space and to fine properties of its asymptotic cones. In particular, I will explain results

from [49, 71–73]. The proofs of these results rely on recently developed tools from geo-

metric measure on metric spaces. I will describe some of these tools, including Ambrosio-

Kirchheim’s theory [5] of metric currents and the main compactness theorem from [74].

In the rest of this introduction, I briefly describe two results in this direction which can

be proved with these techniques. The main results will be explained in Sections 3 and 5.

In the seminal paper [37], Gromov proved a fundamental theorem which shows that

linear growth of the filling area function for a Riemannian manifoldM (or more generally,

for a metric space) is equivalent toM having negative curvature on a large scale, that is, toM
being hyperbolic in the sense of Gromov. In fact, Gromov even proved that if FA0(M, r) ≤
λr2 for all sufficiently large r and a sufficiently small constant λ > 0 then M is Gromov

hyperbolic. This shows, in particular, that the filling area function can not have intermediate

growth between quadratic and linear. In [71], I proved the following optimal result.

Theorem 1.1 ([71]). LetM be a Riemannian manifold. If there exist r0, ε > 0 such that

FA0(M, r) ≤ 1− ε
4π

r2

for all r ≥ r0 thenM is Gromov hyperbolic and, in particular, FA0(M, r) � r.
The constant 1

4π is optimal in view of the classical isoperimetric inequality in the Eu-

clidean plane. Theorem 1.1 actually holds in the complete generality of geodesic metric

spaces and an analogous version holds for Cayley graphs, see Theorem 3.2 and Corollary 3.3

below.

A class of groups for which the Dehn function has been particularly well-studied is that

of nilpotent groups. While many techniques have been developed to obtain upper bounds for

the growth of the Dehn function, only few techniques are known to produce lower bounds. A

basic question which had remained open for a long time asks whether the Dehn function δΓ
of every finitely generated nilpotent group Γ grows exactly polynomially, that is, δΓ(n) � nα
for some α ∈ N. In [72], I answered this question in the negative.

Theorem 1.2 ([72]). There exists a finitely generated nilpotent group Γ such that

n2&(n) = δΓ(n) = n2 log n
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for a function & satisfying &(n) → ∞ as n→ ∞.

The higher filling volume functions have recently also started to attract attention in re-

lationship with large scale geometry and groups. Interesting questions remain, in particular,

concerning the relationship between the growth and the existence of flats in Riemannian

manifolds of non-positive curvature and more generally CAT(0)-spaces. They have also

recently been studied in the context of geometric group theory for various classes of groups,

see Sections 3 and 5 for some results.

The proofs of the results above (and further results which I will describe) rely on pow-

erful tools from geometric measure theory in metric spaces, in particular, on Ambrosio-

Kirchheim’s theory [5] of currents in metric spaces. This theory provides a suitable notion

of chains in the generality of complete metric spaces. One of the main observations used in

the proofs of the results relating filling volume and asymptotic geometry is a compactness

theorem for a sequence of chains in a sequence of metric spaces, see Theorem 4.1. When

applied to a sequence Mn of compact, connected and oriented Riemannian m-manifolds,

this theorem says that if the diameters, the volumes and the volumes of the boundaries are

uniformly bounded, then there exist a subsequence Mnj , a complete metric space Z, and
isometric embeddings ϕj : Mnj

↪→ Z such that the images ϕj(Mnj
), viewed as integral

currents, converge with respect to the flat norm to an integral current in Z. This theorem can

for example be used to show that if the (m+ 1)-th filling volume function of a metric space

X (satisfying a weak non-positive curvature condition) has growth FVm+1(X, r) � rm+1
m

then there is an asymptotic cone ofX which contains a copy of a normed space of dimension

m+ 1, see Section 5.
The plan of the paper is as follows. In Section 2, I briefly recall the definition of the

Dehn and filling volume functions in a metric space, using Lipschitz maps and Lipschitz

chains. Section 3 describes some of the main results which I would like to discuss in this talk,

including generalizations of the theorems above. Section 4 outlines some of the analytic tools

used in the proofs of the main results. Finally, Section 5 explains how the theory of currents

and the compactness theorem mentioned above can be used to prove some relationships

between the growth of filling volume functions and fine (Lipschitz) properties of asymptotic

cones.

2. Filling volume and Dehn functions

There exist various definitions of filling volume functions in a Riemannian manifold or,

more generally, in a metric space X . Depending on the type of boundaries and fillings

which are admitted one obtains different notions of filling functions. For example, one may

usem-dimensional spheres as boundaries and (m+ 1)-dimensional balls as fillings in order

to obtain a homotopical filling function. Or one may uses singular m-cycles and singular

(m + 1)-chains in order to obtain a homological filling function. Here, I will define the

filling volume functions using Lipschitz spheres and Lipschitz cycles. If X is a simplicial

complex, one may alternatively define the filling volume functions using simplicial maps or

simplicial chains.

2.1. Volume of Lipschitz maps. Let X be a metric space and Ω an open subset of an

m-dimensional Riemannian manifold (e.g. Rm or Sm). The volume of a Lipschitz map
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ϕ : Ω → X is defined by

Vol(ϕ) =

∫
X

#{z ∈ Ω : ϕ(z) = y} dHm(y),

where Hm denotes the Hausdorff m-measure on X . If ϕ is injective then Vol(ϕ) is just the
Hausdorffm-measure of ϕ(Ω). Ifm = 1 and Ω is an interval then Vol(ϕ) = length(ϕ), the
length of the Lipschitz curve ϕ. If X is a Riemannian manifold or simplicial complex with

piecewise Riemannian metric then ϕ is almost everywhere differentiable by Rademacher’s

theorem. Thus, by the area formula, Vol(ϕ) is the integral over Ω of the jacobian of the

derivative of ϕ. If X is a general metric space, then ϕ is “metrically” differentiable almost

everywhere and Vol(ϕ) is the integral over Ω of the jacobian of the metric derivative of ϕ by

[40].

2.2. Homotopical filling functions. The m-th order Dehn function δmX of a metric space

X measures how much volume is needed to fill anm-sphere inX by an (m+1)-ball. More

precisely, it is defined by

δmX (r) := sup{Fillvol0,X(ϕ) : ϕ : Sm → X Lipschitz, Vol(ϕ) ≤ r},
where Fillvol0,X(ϕ) is the smallest volume of a Lipschitz map from the (m+1)-dimensional

unit ball in Rm+1 extending ϕ; respectively, infinity if no Lipschitz extension exists. If

m = 1 one often uses the more suggestive notation

FA0(X, r) := δ
1
X(r).

If X is a Riemannian manifold then this is just the filling area function already defined in

Section 1.

2.3. Homological filling functions. The (m+1)-th filling volume function FVm+1(X, r)
of a metric spaceX is defined analogously to the function δmX but employs cycles and chains

instead of spheres and balls. For many purposes, a suitable notion of chains is given by the

singular Lipschitz chains of [36]. In Section 4, a more involved notion of m-chains will be

described which gives rise to powerful analytic tools.

By definition, a (singular) Lipschitzm-chain inX is a formal finite sum c =
∑k

i=1 aiϕi,
where ai ∈ Z and ϕi : Δ

m → X are Lipschitz maps. Here, Δm denotes the standard

Euclideanm-simplex. The mass (or volume) of c is defined by

M(c) :=
k∑
i=1

|ai|Vol(ϕi).

The boundary of c is the (m− 1)-chain given by ∂c =
∑k

i=1 aiϕi|∂Δm . If ∂c = 0 then c is
called cycle. The (m+ 1)-th filling volume function FVm+1(X, r) of X is then defined by

FVm+1(X, r) := sup {FillvolX(z) : z Lip.m-cycle in X withM(z) ≤ r} ,
where FillvolX(z) is the smallest mass of a Lipschitz (m + 1)-chain c in X with ∂c = z;
respectively infinity if no such chain exists. We furthermore define the filling area function

for curves by Lipschitz 2-chains by

FA(X, r) := sup
{
FillvolX(γ) : γ : S1 → X Lipschitz with length(γ) ≤ r} .
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It follows that FA(X, r) ≤ FV2(X, r) and FA(X, r) ≤ FA0(X, r). The notation used here

differs from the notation used in some of the existing literature.

Suppose thatX has the structure of a finite-dimensional simplicial complex with finitely

many isometry types of cells. Then one may equivalently define the (m + 1)-th filling

volume function of X by using simplicial chains instead of Lipschitz chains. This results

in a function whose growth is �-equivalent to that of FVm+1(X, r) by the deformation

theorem of geometric measure theory [27], see also [26].

If X is an m-connected Riemannian manifold or simplicial complex then the Dehn and

filling volume functions are related as follows. One has

δ2X(r) = FV3(X, r)

and

δmX (r) � FVm+1(X, r)

when m ≥ 3, see [13, 36, 76]. For m ≤ 2 the two functions are different in general, by the

results in [1, 77].

2.4. Filling in a larger space. Various notions of coarse filling functions exist in the liter-

ature. Their purpose is to make sense of filling functions which are independent of the local

structure of a given space. One may take a somewhat different approach to coarse filling

functions by allowing fillings in a suitably enlarged space as follows. LetX and Y be metric

spaces and ι : X ↪→ Y an isometric (i.e. distance preserving) embedding. The generalized

filling area function (by disks) of X with respect to Y is defined by

FA0(X,Y, r) := sup{Fillvol0,Y (ι ◦ γ) : γ : S1 → X Lipschitz, length(γ) ≤ r}.
One may define generalized higher order Dehn functions analogously but they will not ap-

pear in this paper. Note that the spaceX isometrically embeds into the Banach space �∞(X)
of bounded functions on X , endowed with the supremum norm, via a Kuratowski embed-

ding. Since �∞(X) is an injective metric space it follows that

FA0(X, �
∞(X), r) ≤ FA0(X,Y, r) ≤ FA0(X, r) (2.1)

for every r ≥ 0 and every metric space Y into which X embeds isometrically. Moreover,

one has

FA0(X, �
∞(X), r) ≤ 1

2π
r2 (2.2)

for every r ≥ 0 and every metric space X . Note that X itself need not admit “fillings”

of Lipschitz curves. Inequality (2.2) applies, in particular, to the Cayley graph of a finitely

presented group. One defines analogously

FA(X,Y, r) := sup
{
FillvolY (ι ◦ γ) : γ : S1 → X Lipschitz with length(γ) ≤ r}

and obtains FA(X,Y, r) ≤ FA0(X,Y, r) and the inequalities in (2.1) hold with FA0 re-

placed by FA. The generalized higher filling volume functions are defined by

FVm+1(X,Y, r) := sup {FillvolY (ι#z) : z Lip.m-cycle in X withM(z) ≤ r} ,
where ι#z is z when viewed as a Lipschitz cycle in Y . One obtains again (2.1) with FA0

replaced by FVm+1.
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2.5. Dehn functions of groups. As already mentioned in the introduction, the filling area

function FA0 is closely related to the Dehn function from geometric group theory. Given

a finitely presented group Γ with presentation Γ = 〈a1, . . . , ad | r1, . . . , rs〉, the Dehn

function of Γ is defined by

δΓ(n) := max δ(ω),

where the maximum is taken over all words ω in the letters ai of length at most n representing
the identity in Γ. Furthermore, the “area" δ(ω) of ω is the smallest number k such that ω can

be written as

ω =
k∏
i=1

gir
±1
ji
g−1
i

for some gi and rji , where equality is taken to be in the free group generated by the ai.
A different presentation results in a function whose growth is �-equivalent to δΓ. If Γ is a

group acting properly discontinuously and cocompactly by isometries on a simply connected

Riemannian manifold M then FA0(M,n) � δΓ(n), see [14] and [18]. The Dehn function

can also be seen as a generalized filling function FA0(X,Y, r) as follows. Let X be the

Cayley graph of Γ with respect to the presentation above, endowed with the length metric,

and let Y be the universal cover of the 2-presentation complex of Γ. Endow Y with a metric

such that each 2-cell is a spherical cap. Then Y is a thickening of X , that is, Y contains X
isometrically and is at finite Hausdorff distance from X . The Dehn function of Γ then has

the same growth as the generalized filling function FA0(X,Y, r).
Higher dimensional analogs of the Dehn function of a group can be defined for groups

satisfying certain finiteness properties. Them-th order Dehn function δmΓ can be defined for

any group Γ of type Fm+1, that is, so that Γ has aK(Γ, 1) with finitely many (m+1)-cells.
Roughly speaking, δmΓ (n) measures how many (m+1)-cells are needed to fill (by a cellular
(m+1)-ball) a cellularm-sphere in aK(Γ, 1) made of at most n cells of dimensionm. See

[4, 14], and [13] for a precise definition and [33, 34] for a comparison with the homotopical

and homological filling functions defined above.

3. Growth of filling volume functions

This section describes results which relate the growth of the filling volume and Dehn func-

tions to the large scale geometry of the underlying space. Some more general results in this

direction will also be given in Section 5.

3.1. Gromov hyperbolic spaces. The concept of δ-hyperbolicity of a metric space was

first introduced and studied by Gromov in his seminal article [37]. It provides a notion of

negative curvature on a large scale. A geodesic metric space X is called δ-hyperbolic if

every geodesic triangle in X is δ-slim, that is, if each side of the triangle is contained in the

δ-neighborhood of the two other sides. A geodesic metric space is called Gromov hyperbolic

if it is δ-hyperbolic for some δ ≥ 0. Every geodesic metric space of finite diameter is Gro-

mov hyperbolic. So is every simply connected Riemannian manifolds of sectional curvature

bounded above by some κ < 0. Gromov proved in [37] that δ-hyperbolic metric spaces are

characterized by having a filling area function which grows linearly. In fact, he proved that

if X is a δ-hyperbolic metric space and FA0(X, 100δ) < ∞ then FA0(X, r) � r. Gromov

furthermore established a far-reaching converse in [37]. He showed that if the filling area
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function of a geodesic metric space X satisfies

FA0(X, r) ≤ 1

4000
r2

for all sufficiently large r then X is Gromov hyperbolic and thus FA0(X, r) � r. In partic-

ular, there are no geodesic metric spaces with filling area function having growth between

linear and quadratic. This result inspired many different proofs, see e.g. [52], [62], [11], [56],

[24]. Using methods from geometric measure theory, I improved in [71] Gromov’s result to

yield the optimal possible constant.

Theorem 3.1 ([71]). Let X be a geodesic metric space. If there exist ε, r0 > 0 such that

FA(X, r) ≤ 1− ε
4π

r2 (3.1)

for every r ≥ r0 then X is Gromov hyperbolic.

The constant 1
4π is optimal as follows from the classical isoperimetric inequality in the

Euclidean plane. Previously, the best known constant was 1
4000 in the case of geodesic

metric spaces and 1
16π for a certain class of Riemannian manifolds, called ‘reasonable’ in

[37]. Theorem 3.1 is thus already new in the case that X is a Riemannian manifold.

Even though optimal, the above theorem is not quite satisfactory in a certain sense.

Namely, local deformations of the metric might result in a much bigger isoperimetric con-

stant, destroying (3.1) without changing the large scale structure of X . Moreover, the the-

orem does not apply to spaces such as Cayley graphs of finitely presented groups. The

following more general result remedies some of these deficiencies.

Theorem 3.2 ([71]). Let X be a geodesic metric space such that FA(X, r) = r2. If there
exist ε, r0 > 0 such that

FA(X, �∞(X), r) ≤ 1− ε
4π

r2 (3.2)

for every r ≥ r0 then X is Gromov hyperbolic.

The condition that FA(X, r) = r2 may be replaced by FA(X,Y, r) = r2 for some

thickening Y of X or by a quadratic bound on a coarse filling area function. Compare (3.2)

with the bound (2.2) which holds for every metric space X .

In [71], Theorem 3.2 was stated with FA(X, �∞(X), r) replaced by the possibly larger

function FA0(X, �
∞(X), r). The version above follows from the same arguments as in the

proof of [71, Theorem 5.1] together with the fact, recently proven in [17], that the Hausdorff

2-measure is semi-elliptic.

From Theorem 3.2 and (2.2) one obtains the following purely group theoretic result.

Corollary 3.3. Let Γ = 〈S |R〉 be a finitely presented group. Suppose there exist ε > 0 and
n0 ∈ N such that the Dehn function of Γ with respect to the presentation 〈S |R〉 satisfies

δΓ(n) ≤ 1− ε
2πL

n2

for every n ≥ n0, where L := max{|r|2 : r ∈ R}. Then Γ is Gromov hyperbolic and thus
has a linear Dehn function.
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It is not clear to me what the best constant is for Gromov hyperbolicity for the Dehn

function of finitely presented groups.

As already mentioned, there is no group whose Dehn function grows like rα for some

α ∈ (1, 2). In [12] it was proved that the set of α ≥ 2 for which there exists a finitely

presented group Γ with δΓ(n) � nα is dense in the interval [2,∞). Thus, there is no other

gap than (1, 2) in the isoperimetric spectrum for the Dehn function. A similar result for

surfaces of revolution can be found in [32]. As regards the higher filling volume functions

it is known that geodesic Gromov hyperbolic spaces satisfying suitable conditions on the

geometry on small scales have linear filling volume functions FVm+1(X, r) for all m ≥ 1.
This was shown, in a simplicial setup, in [44]. For filling functions defined with chains with

real coefficients in finitely presented groups, this was proved in [51].

3.2. Metric spaces of non-positive curvature. In this section, I describe what is known

about the growth of the filling volume functions in CAT(0)-spaces, that is, geodesic metric

spaces of non-positive curvature in the sense of Alexandrov. This notion of global non-

positive curvature is based on the comparison of geodesic triangles with Euclidean compar-

ison triangles. For precise definitions and an account of the theory of CAT(0)-spaces see
e.g. [15] or [16].

In [61], it was proved that if X is a CAT(0)-space then

FA0(X, r) ≤ 1

4π
r2 (3.3)

for every r ≥ 0. Lytchak and I have recently proved in [49] that (3.3) in fact characterizes

CAT(0)-spaces.

Theorem 3.4 ([49]). Let X be a proper geodesic metric space such that (3.3) holds for all
r ≥ 0. Then X is a CAT(0)-space.

The only geodesic metric spaces satisfying (3.3) with 1
4π replaced by a strictly smaller

constant are metric trees, that is, they are such that every geodesic triangle is isometric to a

tripod. More precisely, ifX is a geodesic metric space satisfying FA(X, r) ≤ Cr2 for some

C < 1
4π and all r ≥ 0 then X is a metric tree and hence FA0(X, r) = 0. This follows from

the same methods as used in the proof of Theorem 3.1.

We turn to the higher filling volume functions in the setting of CAT(0)-spaces. In his

seminal paper [36], Gromov showed that if X is a Hadamard manifold, that is, a complete

simply connected Riemannian manifold of non-positive sectional curvature, then for every

m ≥ 1 we have

FVm+1(X, r) ≤ Cmr
m+1
m (3.4)

for all r ≥ 0 and for some constant Cm depending only on m. In [67, 70], I proved that

this holds true for general CAT(0)-spaces and, with an appropriate notion of chains, even

for metric spaces admitting cone type inequalities, see Section 5 below. The optimal isoperi-

metric constant in (3.4) is only known in a few cases. In [3] it was found for Euclidean space

X = Rn and all m. For Hadamard manifolds of dimension n, the isoperimetric inequality

for domains (i.e. form = n− 1) with optimal Euclidean isoperimetric constant was proved

in [19] for n = 4 and in [41] for n = 3.
If X is a CAT(κ)-space with κ < 0, that is, X has a strictly negative upper curvature

bound, then it is not difficult to show that

FVm+1(X, r) ≤ Cr
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for all r and for some constant C, see [68]. In general, it is a difficult problem to deter-

mine the growth of the filling volume functions for CAT(0)-spaces, even when restricted to

Hadamard manifolds. The following conjecture appears somewhat implicitly in [38, p. 128].

Conjecture 3.5. If X is a proper cocompact CAT(0)-space of Euclidean rank k then for
everym ≥ k there exists C such that

FVm+1(X, r) ≤ Cr (3.5)

for all r ≥ 0.

Recall that the Euclidean rank of X is the maximal dimension of an isometrically em-

bedded copy of Euclidean space in X . The intuition behind this conjecture comes from

a general guiding principle in the theory of non-positively curved spaces which states that

above the Euclidean rank a proper cocompact CAT(0)-space should exhibit hyperbolic be-

havior. Instead of assuming X to be proper, cocompact and of Euclidean rank k, one may

more generally formulate the conjecture for the larger class of CAT(0)-spaces all of whose
asymptotic cones have geometric dimension at most k, see also Section 5. The conjecture

is known to be true in the following cases. If X is a proper cocompact CAT(0)-space X
of Euclidean rank k = 1 then X is Gromov hyperbolic and thus (3.5) follows from [44]

together with the Lipschitz extension results of [46]. As regards the case k > 1, the conjec-
ture is known to hold for symmetric spaces of non-compact type. This was asserted in [38],

where a proof using projections onto maximal flats was proposed. Recently, a proof which

is similar in spirit to the argument outlined in [38] but which uses projections onto suitable

horospheres was given in [48]. It seems that the above conjecture remains unanswered for

most cases even in the context of Hadamard manifolds.

A consequence of the above conjecture would be that isoperimetric inequalities detect

the Euclidean rank. This also follows from [73], where I showed that the (m + 1)-th filling

volume function (defined using metric integral currents) have sub-Euclidean growth o(r
m+1
m )

when m is at least the Euclidean rank. This holds more generally true for metric spaces

admitting cone type inequalities, see Theorem 5.4 below. In [58], it was showed that for a

simplicial complex X withH1(X) = H2(X) = 0 and for which every extremal 2-cycle for
FV3 has genus at most some fixed g ∈ N, the following holds: if FA(X, r) ≤ Cr2 and if

FV3(X, r) = o(r
3
2 ) then for every ε > 0 there exists Dε such that

FV3(X, r) ≤ Dεr
1+ε

for every r ≥ 1. It is unknown at present, whether in R3, endowed with a non-positively

curved metric, extremal 2-cycles have a uniform bound on their genus.

3.3. Nilpotent groups. A class of groups (resp. spaces) for which the Dehn and filling

volume functions have been particularly well-studied is that of nilpotent (Lie) groups. While

many results on upper bounds have been established, fewer techniques for lower bounds are

known. After recalling some well-known results I will focus on the main result of [72], which

provided a new lower bound for the Dehn function and helped answering a long-standing

open question concerning the possible growth of Dehn functions for nilpotent groups.

Recall that a group G is nilpotent if its lower central series terminates in the trivial sub-

group after finitely many steps,

G = G0 > G1 > . . .Gc > Gc+1 = {e},
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where Gi+1 = [G,Gi] is the subgroup generated by commutators [g, h] with g ∈ G and

h ∈ Gi. The smallest number c such that Gc+1 = {e} is called the class or step of G. A
special class of nilpotent Lie groups is given by the so-called homogeneous nilpotent Lie

groups or Carnot groups. By definition, a connected and simply connected nilpotent Lie

group G of step c is called Carnot group if its Lie algebra g admits a decomposition

g = V1 ⊕ · · · ⊕ Vc
such that [V1, Vi] = Vi+1 for all i = 1, . . . , c − 1 and [V1, Vc] = {0}. Here, [V1, Vi]
denotes the smallest subspace of g spanned by brackets of the form [v, w] with v ∈ V1
and w ∈ Vi. The subspace Vi is called the i-th layer of g. Every connected and simply

connected nilpotent Lie group G of step 2 is a Carnot group. When endowed with a left-

invariant Riemannian metric d0, a Carnot group G is locally but not globally biLipschitz

homeomorphic to Euclidean space. In fact, on the large scale the metric d0 behaves like

a Carnot-Carathéodory metric by [55]. Carnot groups admit scaling automorphisms. On

the basis of the Lie algebra these are given by st(v) = tiv for v ∈ Vi and t ≥ 0. When

endowed with a left-invariant Riemannian metric in such a way that the subspaces Vi ⊂ TeG
are pairwise orthogonal, the differential of st stretches vectors in the left-translates of Vi by
a factor ti. In what follows, all nilpotent Lie groups will be endowed with a left-invariant

Riemannian metric.

Recall that the n-th Heisenberg groupHn is the nilpotent Lie group R2n+1 = Rn×Rn×R
with multiplication given by

(x, y, t) ! (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 〈x, y′〉).
Note thatHn is of step 2 and has grading of the Lie algebra given by hn = V1⊕V2 = R2n×R.
It was proved in [26] and [29] that the first Heisenberg group H1 has cubic filling area

functions:

FA(H1, r) � FA0(H
1, r) � r3.

In [31] it was proved that if Γ is a finitely generated nilpotent group of step c then its

Dehn function is bounded by δΓ(r) = rc+1. Previously, it had been shown in [38, 5.A′2],
[59] that every Carnot group G of step c satisfies FA0(G, r) = rc+1. This relies essentially

on the fact that the curves t !→ st(x) with t ∈ [0, 1] have length = d0(x, e)c, where e is the
identity, and stay at bounded distance from each other in the sense that

d0(st(x), st(x
′)) ≤ td0(x, x′),

where d0 is the left-invariant Riemannian metric on G. In [38, 5.A5] a strategy has been

proposed how to extend this to all simply connected nilpotent Lie groups. The upper growth

of rc+1 is optimal. Indeed, the Dehn function of every free nilpotent group Γ of step c
satisfies δΓ(n) � nc+1 by [9] and [30]. However, not every nilpotent group of step c has
Dehn function growing like rc+1. Indeed, it was proved in [39], and later in [2, 53], that the

higher Heisenberg groups Hn, n ≥ 2, have quadratic filling area functions:

FA(Hn, r) � FA0(H
n, r) � r2.

In particular, the n-th integer Heisenberg group has quadratic Dehn function whenever

n ≥ 2. Very roughly speaking, the fact that the first layer V1 of the Lie algebra hn = V1⊕V2
of Hn contains many 2-dimensional Lie subalgebras is responsible for the quadratic upper
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bound. More generally, the n-th central power of any free nilpotent Lie group of step 2 has

quadratic filling area functions for n ≥ 2. This was asserted in [53] and proved in [78].

Recall that if G is a Carnot group of step 2 with grading g = V1 ⊕ V2 of its Lie algebra

then the n-th central power GZ,n of G is the Carnot group of step 2 whose Lie algebra has

grading gZ,n = V ′1 ⊕ V2, where V ′1 := V1 ⊕ · · · ⊕ V1 is the n-fold direct sum of copies of

V1, and where the Lie bracket on gZ,n is given by

[v, w]′ = [v1, w1] + · · ·+ [vn, wn]

for v, w ∈ gZ,n of the form v = v1 + . . . vn + v̄ and w = w1 + . . . wn + w̄ with vi, wi in
the i-th copy of V1 in V ′1 and v̄, w̄ ∈ V2. For example, the n-th Heisenberg group Hn is the

n-th central power of the first Heisenberg group H1.

A basic question which had remained open for a long time asks whether the Dehn func-

tion δΓ(n) of every finitely generated nilpotent group Γ has exactly polynomial growth, that

is, δΓ(n) � nα for some α ∈ N. In [72], I answered this question in the negative by proving

the following result.

Theorem 3.6 ([72]). There exists a finitely generated nilpotent group Γ of step 2 with

n2&(n) = δΓ(n) = n2 log n, (3.6)

where & is a function satisfying &(n) → ∞ as n→ ∞.

One can construct a whole family of such groups and they can be chosen to be lattices

of Carnot groups of step 2. The super-quadratic lower bound is proved using methods from

geometric measure theory in metric spaces, see Sections 4 and 5. The proof relies among

other things on a compactness theorem. Consequently, the precise growth of the function &
is not known. The upper bound comes from [53], [78]. More precisely, let G be a Carnot

group of step 2 with grading of the Lie algebra g = V1 ⊕ V2. Given a subspace W ⊂ V2
denote by GW the Carnot group of step 2 whose Lie algebra is gW = V1 ⊕ (V2/W ). If

FA0(G, r) � r2 then GW satisfies

FA0(GW , r) = r2 log r. (3.7)

This was asserted in [53] and proved in [78]. Moreover, ifW is spanned by elements of the

form [v, v′] with v, v′ ∈ V1 then FA0(GW , r) � r2 by [78]. In [72], I proved the following

lower bound which complements (3.7) and can be used to prove Theorem 3.6.

Theorem 3.7 ([72]). Let G be a Carnot group of step 2 with grading g = V1 ⊕ V2 of its Lie
algebra. IfW ⊂ V2 is a non-trivial subspace satisfying

W ∩ {[v, v′] : v, v′ ∈ V1} = {0} (3.8)

then the Carnot group GW of step 2 whose Lie algebra is gW = V1 ⊕ (V2/W ) satisfies

FA(GW , r)

r2
→ ∞ as r → ∞.

Note that if G is as in the theorem and if dimV2 ≥ 2 dimV1 then there always exists a

non-trivial subspaceW ⊂ V2 satisfying (3.8). In [72], the theorem above was only stated for

the case thatW is 1-dimensional. However, the exact same proof yields the version above.
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One can now easily construct finitely generated nilpotent groups Γ satisfying (3.6) as

lattices of Carnot groups GW as above. A concrete example is given as follows. Let

h = V1 ⊕ V2 be the free nilpotent Lie algebra of step 2 with dimV1 = 6. Then there exist

bases {e1, . . . , e6} of V1 and {ei,j : 1 ≤ i < j ≤ 6} of V2 such that the Lie bracket on h sat-

isfies [ei, ej ] = ei,j for all i < j. Then u := e1,2+e3,4+e5,6 satisfies u �= [v1, w1]+[v2, w2]
for all vi, wi ∈ V1. Denote by H the Carnot group whose Lie algebra is h and by G the 2nd
central power of H . Then FA0(G, r) � r2 and Theorem 3.7 together with (3.7) imply that

r2&(r) ≤ FA(G〈u〉, r) ≤ FA0(G〈u〉, r) ≤ Cr2 log r

for all sufficiently large r, where &(r) is a function satisfying &(r) → ∞ as r → ∞. Since

G〈u〉 has rational structure constants it contains a cocompact lattice Γ and hence δΓ(n) �
FA0(G〈u〉, n). Thus Γ satisfies (3.6).

Theorem 3.7 together with the results preceding it moreover yield the following charac-

terization. Let G be a Carnot group of step 2 with grading g = V1 ⊕ V2 of its Lie algebra

and such that FA0(G, r) � r2. Let W ⊂ V2 be a non-trivial subspace. Then GW satisfies

FA0(GW , r) � r2 if and only if

W = span{[v, v′] : v, v′ ∈ V1, [v, v′] ∈W}.

Not so much is known yet about the higher filling functions in Carnot groups, except

in the top-dimensional case and in the case of the Heisenberg groups. Let G be a Carnot

group of step c and of topological dimension n with grading of the Lie algebra given by

g = V1 ⊕ · · · ⊕ Vc. Then FVn(G, r) � r
Q

Q−1 , where Q is the homogeneous dimension

defined by Q =
∑

i i dimVi. The upper bound was proved in [54] for G = H1 and in [66]

for general G, see also [20]. The lower bound follows from the volume growth of balls [55].

The growth of the filling volume functions are known for the Heisenberg groups. Indeed,

in [78] and [79] it was proved that form ≤ n− 1 the (m+ 1)-th filling volume function in

Hn is Euclidean,

FVm+1(H
n, r) � rm+1

m , (3.9)

while form = n it is super-Euclidean,

FVn+1(H
n, r) � r n+2

n ,

and for n < m ≤ 2n it is sub-Euclidean,

FVm+1(H
n, r) � rm+2

m+1 .

This was previously conjectured in [38]. In [78], it was proved that (3.9) holds more gener-

ally for the jet space Carnot groups Jk(Rn) for m ≤ n − 1 and that FVn+1(J
k(Rn), r) �

r
n+k+1

n . For general Carnot groups G of step c the only known upper bound seems to be the

following which I proved in [73]:

FVm+1(G, r) = r1+ cm

1+c+···+cm−1 .

It remains a challenging problem to determine the (possible) growth of the filling area

and filling volume functions in Carnot groups.
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4. Currents in metric spaces and compactness

In this section, I discuss some of the tools used in the proofs of the theorems stated in Sec-

tion 3 and of the results which will be described in Section 5. One of the main ingredients is a

general compactness result, Theorem 4.1, for sequences ofm-chains in a sequence of metric

spaces. This theorem can be used to show, in particular, that Euclidean growth of the filling

volume function FVm+1(X, ·) is reflected in the (m + 1)-dimensional Lipschitz geometry

of the asymptotic cones of X . Singular Lipschitz chains are not suitable to formulate and

prove such a compactness theorem since such chains do not enjoy a compactness property

even in the setting of a compact ball in Euclidean space.

4.1. Currents in metric spaces. A suitable theory of chains in the generality of complete

metric spaces is provided by Ambrosio-Kirchheim’s theory [5] of currents in metric space.

This theory, based on ideas of De Giorgi [22], generalizes the well-known Federer-Fleming

theory [27] of normal and integral currents in Euclidean space to the setting of complete

metric spaces. Ambrosio-Kirchheim’s theory has been further developed for example in

[7, 8, 21, 23, 45, 47, 67, 69, 74].

As is well-known, m-dimensional currents of finite mass in Euclidean space RN in the

sense of Federer-Fleming [27] are continuous linear functionals on the space Dm(RN ) of
compactly supported differential m-forms in RN . In the generality of a complete metric

space X , differential forms do not exist. Ambrosio-Kirchheim’s theory [5] employs instead

(m + 1)-tuples of real-valued Lipschitz functions on X as a substitute for differential m-

forms. More precisely, the space of generalizedm-forms on X is defined by

Dm(X) := {(f, π1, . . . , πm) : f, πi ∈ Lip(X), f bounded} ,
where Lip(X) denotes the space of real-valued Lipschitz functions onX . As a rough guiding

principle, a tuple (f, π1, . . . , πm) may be thought of as corresponding to the differential

form fdπ1 ∧ · · · ∧ dπm whenever X = RN and when the f, πi are smooth. A metric

m-current T in the sense of Ambrosio-Kirchheim [5] is a multi-linear functional on Dm(X)
satisfying three conditions. Firstly, a continuity condition requiring T to be continuous along

sequences (f, πk1 , . . . , π
k
m) such that πki −→ πi pointwise as k → ∞with bounded Lipschitz

constants; secondly, a locality condition which forces T (f, π1, . . . , πm) to depend on the

“derivatives" of πi rather than the πi themselves; thirdly, a finite mass condition which asks

for the existence of a finite Borel measure μ on X such that

|T (f, π1, . . . , πm)| ≤
∫
X

|f | dμ

for every (f, π1, . . . , πm) ∈ Dm(X) such that all πi are 1-Lipschitz. The smallest such μ is

called the mass of T and denoted ‖T‖. The support of T , denoted sptT , is the support of
‖T‖. One also calls mass of T the numberM(T ) := ‖T‖(X). An elementary but important

example of a metricm-current in Rm, associated to a function θ ∈ L1(Rm), is given by

[θ](f, π1, . . . , πm) :=

∫
Rm

fθ det

(
∂πi
∂xj

)
dHm.

Recall that the boundary and push-forward of a Federer-Fleming current in RN are defined

by duality with differential forms. In view of the guiding principle above it is thus natural
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to define the boundary and push-forward of a metric current as follows. The boundary of a

metricm-current T is the functional ∂T on Dm−1(X) defined by

(∂T )(f, π1, . . . , πm−1) := T (1, f, π1, . . . , πm−1).

This functional satisfies all the conditions of a metric current, except maybe the finite mass

condition. If ∂T also satisfies the finite mass condition then T is called a normal current.

The push-forward of T under a Lipschitz map ϕ : X → Y is them-current in Y defined by

ϕ#T (g, τ1, . . . , τm) := T (g ◦ ϕ, τ1 ◦ ϕ, . . . , τm ◦ ϕ)
for all (g, τ1, . . . , τm) ∈ Dm(Y ).

In general, a normalm-current T in X has little to do with anm-dimensional surface in

X , even whenX = RN , since ‖T‖ may be diffused. The space of integralm-currents inX ,

denoted Im(X), identifies a suitable subclass of normal currents coming from generalized

oriented surfaces in some sense. Roughly, a normalm-current T inX is an integral current if

it can be written as the countable sum
∑
ϕi#[θi] for some Lipschitz maps ϕi : Ki ⊂ Rm →

X and θi ∈ L1(Ki,Z). Thus, T may be thought of as (being induced by) a generalized m-

dimensional surface Σ in X with integer multiplicities, where Σ is made of countably many

orientedm-dimensional Lipschitz pieces. By the important boundary rectifiability theorem,

proved in [5], the boundary of an integral m-current is an integral (m − 1)-current, that is,

can again be written in the form above. Every singular Lipschitz chain c =
∑L

k=1 akϕk in

X induces an integralm-current by Tc :=
∑L

k=1 ϕk#[ak1Δm]. If the ϕk are injective, with
pairwise almost disjoint images, then

D−1M(c) ≤ M(Tc) ≤ DM(c)

for some constant D ≥ 1 only depending on m. The reason for having a constant is that

mass measure uses the Gromov mass∗-measure rather than the Hausdorff measure used to

define M(c). One of the fundamental results proved in [5] is the closure theorem, which

generalizes the corresponding Euclidean result [27] to the setting of general complete metric

spaces X . It asserts that if a sequence (Tn) of integral m-currents in X converges weakly

(i.e. pointwise) to some normalm-current T and if (Tn) is bounded in the sense that

sup [M(Tn) +M(∂Tn)] <∞ (4.1)

then T is again an integral current. Another important result proved [5] is a compactness

theorem which shows that if (Tn) is a bounded sequence of integralm-currents in a compact

metric space X then a subsequence converges weakly to some integral current in X . As

a direct consequence of this theorem and the lower semi-continuity of mass under weak

convergence, one obtains a solution of the Plateau problem in compact metric spaces X .

That is, for every S ∈ Im(X) there exists S0 ∈ Im(X) such that ∂S0 = ∂S and

M(S0) = inf{M(S′) : S′ ∈ Im(X), ∂S′ = ∂S}.
Ambrosio-Kirchheim [5] furthermore solved the Plateau problem for compact boundaries in

some infinite dimensional Banach spaces. Using an idea of U. Lang, I solved the Plateau

problem for compact boundaries in all Hadamard spaces (i.e. CAT(0)-spaces which are

complete) and all dual Banach spaces in [67]. Using Theorem 4.1 below, I extended this in

[75] to non-compact boundaries, generalizing recent results in [7].
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4.2. Filling volume functions via integral currents. Instead of using singular Lipschitz

chains one may use integral currents in order to define the filling volume functions. More

precisely, let X and Y be complete metric spaces and ι : X ↪→ Y an isometric embedding.

The filling volume in Y of an element T ∈ Im(Y ) with ∂T = 0 is defined to be

FillvolIY (T ) := inf {M(S) : S ∈ Im+1(Y ), ∂S = T} .
The filling area function in X with respect to Y using integral currents is defined by

FA(X,Y, r) := sup
{
FillvolIY (ι#Tc) : c closed Lip. curve in X , length(c) ≤ r

}
.

Here, Tc denotes the integral 1-current in X induced by c, that is, Tc := c#[1[a,b]] if c is
parametrized on [a, b]. Then FA(X,Y, r) ≤ DFA(X,Y, r) for a universal constant D ≥ 1.
If X is a Riemannian manifold then

FA(X, r) = FA(X, r).

We furthermore define the (m+ 1)-th filling volume function using integral currents by

FVm+1(X,Y, r) := sup
{
FillvolIY (ι#T ) : T ∈ Im(X), ∂T = 0,M(T ) ≤ r

}
for all r ≥ 0. We abbreviate FVm+1(X, r) := FVm+1(X,X, r). Let X be a Riemannian

manifold. Then one can approximate a cycle T ∈ Im(X) by a singular Lipschitz cycle with

almost the same mass, see [28, 4.2.19], and hence

FVm+1(X,Y, r) ≤ DFVm+1(X,Y, r)

for almost every r ≥ 0 and some constant D only depending onm; moreover,

FVm+1(X, r) = FVm+1(X, r)

for almost every r ≥ 0.

4.3. A general compactness theorem. The compactness theorem below, which I proved

in [74], can be used to obtain relationships between the growth of the filling volume func-

tions in a metric space and the “Lipschitz geometry” of its asymptotic cones. The result

combines features of two powerful existing compactness results: Gromov’s theorem for uni-

formly compact sequences of metric spaces and Ambrosio-Kirchheim’s compactness result

described above.

In order to state the result, recall the definition of the flat norm for currents, which can

be thought of as the analog of the filling volume for an integral current with boundary. For

given T ∈ Im(X) it is defined by

FX(T ) := inf{M(R) +M(S) : R ∈ Im(X), S ∈ Im+1(X), T = R+ ∂S}. (4.2)

If ∂T = 0 then FX(T ) ≤ FillvolIX(T ). Convergence with respect to the flat norm implies

weak (i.e. pointwise) convergence. If the ambient space X admits cone type inequalities in

the sense of Definition 5.2 below then the converse is true for bounded sequences (i.e. those

satisfying (4.1)) of integral currents, as I showed in [69]. The general compactness theorem

alluded to above can be stated as follows.
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Theorem 4.1 ([74]). Let (Xn) be a sequence of complete metric spaces and Tn ∈ Im(Xn)
for n ≥ 1 such that

sup
n

[diam(sptTn) +M(Tn) +M(∂Tn)] <∞.

Then there exist a subsequence (nj), a complete metric space Z, T ∈ Im(Z), and isometric
embeddings ϕj : Xnj

↪→ Z such that

FZ(T − ϕj#Tnj
) → 0.

Moreover, if ∂Tn = 0 for all n then FillvolIZ(T − ϕj#Tnj ) → 0 as j → ∞.

When applied to a sequence Mn of compact, connected and oriented Riemannian m-

manifolds, possibly with boundary, Theorem 4.1 says that if the diameters, the volumes and

the volumes of the boundaries are uniformly bounded, then there exist a subsequenceMnj ,

a complete metric space Z, and isometric embeddings ϕj : Mnj
↪→ Z such that the images

ϕj(Mnj ), viewed as integral currents, converge with respect to the flat norm to an integral

current in Z.
In general, it can be shown that the support of the limit T in Theorem 4.1 isometrically

embeds into any ultralimit of the sequence (Xnj , xj), where xj ∈ sptTnj is an arbitrary

point. If the supports sptTnj
happen to converge in the Gromov-Hausdorff sense to a metric

space Y then sptT may be viewed as an isometric subset of Y . The inclusion sptT ⊂ Y
may be strict, due to collapsing and cancellation effects. In [63], see also [64], Sormani

and I exhibited sufficient conditions on the local “geometry” of the Tn which guarantee that

sptT = Y holds.

Note that, unlike in Ambrosio-Kirchheim’s compactness theorem or Gromov’s compact-

ness theorem for a sequence of metric spaces, there is no assumption on compactness or

bounded “complexity” on the (supports of the) Tn in Theorem 4.1. In the special case that

(Xn) is a uniformly compact sequence of metric spaces, Theorem 4.1 is a consequence

of Gromov’s and Ambrosio-Kirchheim’s compactness theorems together with the results in

[69]. The rough idea behind the proof of Theorem 4.1 in full generality is to decompose

a given current Tn into the sum Tn =
∑
T in of integral currents T in such that each T in has

a lower bound on the mass of balls up to a certain radius, where the lower bound and the

radius bound depend on i but not on n. This kind of thick-thin decomposition is inspired

by the arguments in [36] and [67]. The lower bounds on the mass of balls yields uniform

compactness of the sequences (T in)n for fixed i and thus for each of these sequences the

compactness theorems of Gromov and of Ambrosio-Kirchheim can be used.

In [47], Lang and I proved a pointed version of Theorem 4.1 for integral currents of finite

mass in bounded balls, generalizing the above theorem.

5. Filling volume and asymptotic cones

The theory of metric currents and the compactness theorems mentioned above can be used

to obtain relationships between the growth of the filling volume functions in a metric space

and fine metric properties of its asymptotic cones. These relationships play a key role in the

proofs of the results in Section 3 and of related results described below.
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Let (X, d) be a metric space. An asymptotic cone of X is a metric space which one

obtains, roughly speaking, by looking at X from infinitely far away. For each choice of a

sequence (pn) ⊂ X of base points, each sequence (rn) of scaling factors of the metric with

rn → ∞, as well as each choice of a non-principal ultrafilter ω on N there is an associated

asymptotic cone denoted byXω = (X, r−1
n d, pn)ω . Elements ofXω are equivalence classes

of sequences (xn) ⊂ X such that the sequence of real numbers r−1
n d(xn, pn) is bounded; the

distance between two points [(xn)] and [(yn)] is the ultralimit, chosen by the non-principal

ultra-filter ω, of the bounded sequence of real numbers r−1
n d(xn, yn). Asymptotic cones

were introduced in [65]. For properties see for example [25]. Asymptotic cones form an

ideal tool in the study of the large scale geometry of a space as the local geometry of X
disappears in the limit. If X and Y are quasi-isometric metric spaces then, for the same

choice of parameters and appropriate choices of base points, the asymptotic cones of X and

Y are biLipschitz homeomorphic. A geodesic metric space is Gromov hyperbolic if and

only if all its asymptotic cones are metric trees by [37] and [38]. If X is a symmetric space

of non-compact type then every asymptotic cone of X is a Euclidean building by [43]. If

G is a Carnot group, endowed with left-invariant Riemannian metric d0, then (G, r−1d0, 0)
converges in the pointed Gromov-Hausdorff distance to (G, dc), where dc is the Carnot-

Carathéodory metric associated with d0. This follows from [55]. In particular, (G, dc) is the
unique asymptotic cone of (G, d0).

The following result, which I proved in [72], shows that admitting a quadratic isoperi-

metric inequality for curves is preserved in the asymptotic cones.

Theorem 5.1 ([72]). LetX be a complete length metric space. If FA(X, r) = r2 then every
asymptotic cone Xω of X satisfies

FA(Xω, r) ≤ C ′r2

for all r ≥ 0 and some constant C ′.

The condition FA(X, r) = r2 may be replaced by FA(X,Y, r) = r2 for some thickening

Y of X or by a quadratic bound for a coarse filling function. In particular, if G is a finitely

presented group with quadratic Dehn function then every asymptotic cone Gω of G admits

a quadratic isoperimetric inequality for integral 1-currents, that is, FA(Gω, r) ≤ Cr2 for

every r ≥ 0. Previously, it was shown in [57] that every asymptotic cone Gω of a finitely

presented group with quadratic Dehn function is simply connected. Theorem 5.1 does not

give simply connectedness but yields strong metric information of Gω instead. This can

be used to prove that certain groups cannot admit a quadratic Dehn function, for example

to obtain Theorem 3.6. Note that many groups have simply connected asymptotic cones

without having a quadratic Dehn function.

The proofs of Theorems 3.2 and 3.7 rely on Theorem 5.1. The proof of Theorem 3.2 is

by condradiction. If X is not Gromov hyperbolic then there exists an asymptotic cone Xω

of X which is not a metric tree and hence contains a non-trivial closed Lipschitz curve c.
Since Xω has quadratic filling area function by Theorem 5.1 the curve c bounds an integral

2-current in Xω , which is non-zero because the current associated with c is non-zero. Since
integral currents are made of Lipschitz pieces it follows thatXω receives a Lipschitz piece of

R2 with positive Hausdorff 2-measure. By the metric differentiability [40] of Lipschitz maps

and after possibly replacing Xω by a different asymptotic cone of X , one may assume that

Xω contains an isometric copy of a 2-dimensional normed space. Since the isoperimetric

constant with respect to the Hausdorff measure for curves in 2-dimensional normed spaces
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is≥ 1
4 and the Hausdorff 2-measure is semi-elliptic one can use (3.2) to produce a contradic-

tion and to complete the proof. As for the proof of Theorem 3.7, one uses (3.8) together with

Pansu’s differentiability theorem for Lipschitz maps into Carnot groups to show that there

exists a closed Lipschitz curve in (GW , dc) which does not bound an integral 2-current.
Here, dc denotes the Carnot-Carathéodory metric associated to a left-invariant Riemannian

metric d0 on GW . In particular, it follows that (GW , dc) cannot have a quadratic filling area
function and thus, by Theorem 5.1, (GW , d0) cannot have a quadratic filling area function ei-
ther. Consequently, the filling area function of (GW , d0) must have super-quadratic growth,

completing the proof of Theorem 3.7.

The main construction in the proof of Theorem 5.1 can be described as follows, see [72]

for details.

Outline of proof. After possibly replacingX by a suitable thickening ofX , one may assume

that FA(X, r) ≤ Cr2 for all r ≥ 0 and some constant C. Let Xω = (X, r−1
n d, pn)ω be an

asymptotic cone of X and let x1, . . . , xk ∈ Xω be a chain of points such that xk = x1. We

will construct S ∈ I2(Xω) such that ∂S is the current induced by a piece-wise geodesic loop

c connecting xi with xi+1, i = 1, . . . , k − 1, and such that

M(S) ≤ C length(c)2.

Note first that each xi comes from a sequence (xin) ⊂ X . Fix a partition 0 = t0 < t1 <
· · · < tk = 1 and let cn : [0, 1] → X be such that cn|[ti,ti+1] connects x

i
n with xi+1

n by

a piece-wise almost geodesic, parametrized proportional to arc-length. For n sufficiently

large, there exists Sn ∈ I2(X) with boundary cn such that M(Sn) ≤ C length(cn)
2 and

such that ‖Sn‖ satisfies

‖Sn‖(B(x, r)) ≥ δr2 (5.1)

for all 0 < r < dist(x, cn), where δ > 0 is a constant only depending on C. An area-

minimizing integral current with boundary cn would for example satisfy this. In general, one

cannot expect the existence of an area-minimizer. Nevertheless, the completeness of Im(X)
with respect to the mass norm allows one to prove the existence of a quasi-minimizing in-

tegral current and such a current still satisfies (5.1), as already proved in [5]. It follows that

the sequence of metric spaces given by

Zn := (spt(Sn) ∪ cn([0, 1]), r−1
n d)

is a uniformly compact sequence. Hence, by Gromov’s theorem, there exists a compact met-

ric space Z and isometric embeddings ϕn : Zn ↪→ Z for every n. By Ambrosio-Kirchheim’s

compactness theorem there exists a subsequence (nj) such that ϕnj#Snj converges to some

S ∈ I2(Z). Furthermore, we may assume that ϕnj
◦ cnj

converges uniformly to some

piecewise geodesic loop c. It follows that ∂S = c and

M(S) ≤ lim inf
j→∞

M(ϕnj#Snj ) ≤ C lim inf
j→∞

length(cnj )
2 = C length(c)2.

The image of c and the support of S both lie in the ultralimit A of the sequence of subsets

ϕn(Zn). Since A isometrically embeds into Xω it follows that c and S isometrically embed

into Xω , moreover, c(ti) = xi. Using this construction and a suitable approximation of a

given Lipschitz loop in Xω one proves Theorem 5.1.
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IfX is a Carnot group, endowed with a left-invariant Riemannian metric, and if FVm+1

(X, r) = rm+1
m then the asymptotic cone Xω of X satisfies FVm+1(Xω, r) ≤ Crm+1

m for

some constant C and all r ≥ 0 by [72]. It is not known in which generality Euclidean growth
of the filling volume functions passes to the asymptotic cones for more general metric spaces.

For a large class of spaces, Euclidean growth of the filling volume functions results in

non-trivial biLipschitz pieces in some of its asymptotic cones. The class of spaces is the

following.

Definition 5.2. A complete metric spaceX is said to admit a cone type inequality for Im(X)
if there exists C ≥ 0 such that

FillvolIX(T ) ≤ C diam(sptT )M(T ) (5.2)

for every T ∈ Im(X) with ∂T = 0.

Banach spaces, Hadamard spaces, and complete metric spaces X with a convex metric

all admit cone type inequalities for Im(X) for all m. This is more generally true for all

complete metric spacesX admitting a bounded combing in the following sense. There exist

C and Cd(x, y)-Lipschitz curves cx,y : [0, 1] → X from x to y for all x, y ∈ X such that

d(cx,y(t), cx,z(t)) ≤ Cd(y, z)
for all triples x, y, z ∈ X and all t ∈ [0, 1]. Finally, if X is an m-connected Riemannian

manifold or finite dimensional simplicial complex on which a combable group acts properly

discontinuously and cocompactly by isometries then X admits a cone type inequality for

Im(X), see [26]. Admitting a cone type inequality for I1(X) is equivalent to admitting a

quadratic isoperimteric inequality for I1(X), that is,

FA(X, r) ≤ C ′r2

for all r ≥ 0. In [67], I showed that if a complete metric space X satisfies cone type

inequalities for Ik(X) for k = 1, . . . ,m then

FVm+1(X, r) ≤ C ′rm+1
m (5.3)

for every r ≥ 0, where C ′ only depends on the constants of the cone type inequalities.

For Riemannian manifolds admitting cone type inequalities (for Lipschitz chains) this was

previously proved in [36].

For spaces admitting cone type inequalities, the filling volume functions detect the asymp-

totic rank, defined as follows, see [73].

Definition 5.3. The asymptotic rank of a metric spaceX , denoted byAsrk(X), is the supre-
mum over n ∈ N such that there exists an asymptotic cone Xω of X and a biLipschitz

embedding ϕ : K ↪→ Xω for some compact subsetK ⊂ Rn with Hn(K) > 0.

The asymptotic rank is a quasi-isometry invariant of metric spaces, see [73]. For a gen-

eral metric space X one has the bounds

Asrk(X) ≤ sup{Topdim(C) : C ⊂ Xω cpt, Xω an asymptotic cone of X}
and

Asrk(X) ≥ sup{n ∈ N : ∃ψ : Rn → X quasi-isometric}.
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In the above, Topdim(C) denotes the topological dimension of C. If X is a Hadamard

space then Asrk(X) is the maximal geometric dimension of an asymptotic cone of X . If X
is moreover proper and cocompact then Asrk(X) coincides with its Euclidean rank. More

generally, if X is a proper cocompact length space with a convex metric then

Asrk(X) = sup{n ∈ N : ∃V n-dim. normed space and ψ : V → X isometric}.
This follows from [42]. If X is a Carnot group, endowed with a left-invariant Riemannian

or Carnot-Carathéodory metric, then Asrk(X) is the highest dimension of a Lie subalgebra

contained in the first layer. This follows from [6, 50], and [55]. If X is the mapping class

group of a surface of finite type then Asrk(X) is the maximal rank of an abelian subgroup.

This follows from [10] and the inequalities above.

The following theorem, which I proved in [73], shows that the filling volume functions

detect the asymptotic rank for a large class of metric spaces. Recall that a metric space

(X, d) is said to be quasi-convex if there exists C such that any two points x, y ∈ X can be

joined by a curve of length at most Cd(x, y).

Theorem 5.4 ([73]). Let X be a complete quasi-convex metric space and m ≥ 1. Suppose
X admits cone type inequalities for Ik(X) for k = 1, . . . ,m. Then:

(i) Ifm < Asrk(X) then there exists ε > 0 such that

FVm+1(X, r) ≥ FVm+1(X, �
∞(X), r) ≥ εrm+1

m

for all r > 0 large enough.

(ii) Ifm ≥ Asrk(X) then

lim sup
r→∞

FVm+1(X, r)

r
m+1
m

= 0.

The proof of part (ii) of Theorem 5.4 is by contradiction and uses the general compact-

ness theorem, Theorem 4.1. The proof can be outlined as follows.

Outline of proof. Suppose there exists a sequence (Tn) ⊂ Im(X) of cycles such that

M(Tn) → ∞ and

lim inf
n→∞

FillvolIX(Tn)

M(Tn)
m+1
m

> 0. (5.4)

By a thick-thin decomposition procedure, applied to Tn, one obtains a new cycle T ′n ∈
Im(X) such that (5.4) holds for Tn replaced with T ′n and such that

diam(sptT ′n) ≤ EM(T ′n)
1
m

for every n, where E is a constant independent of n. By the isoperimetric inequality (5.3),

there exists Sn ∈ Im+1(X) such that ∂Sn = T ′n and such that M(Sn) ≤ CM(T ′n)
m+1
m .

The Sn can be chosen such that

diam(sptSn) ≤ E′M(Sn)
1

m+1

for every n, where E′ is a constant independent of n. This can be proved with the same

arguments as in the outline of the proof of Theorem 5.1. Define a metric space by Xn =
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(X, r−1
n d), where rn := M(T ′n)

1
m , and view Sn as a current in Xn. Then (Xn) and Sn

satisfy the hypotheses of Theorem 4.1. There thus exists a subsequence (nj) and a metric

space Z such that Xnj embeds isometrically into Z and Snj , when viewed as a current in

Z, converges to some S ∈ Im+1(Z) with respect to the flat norm. Since X admits cone

type inequalities, the results in [69] and the fact that (5.4) imply that S �= 0. Since sptS
isometrically embeds into some asymptotic cone of X and since S is “made of" biLipschitz

pieces from Rm+1 it follows that Asrk(X) ≥ m+ 1, a contradiction.

In view of Conjecture 3.5 it is natural to ask the following question.

Question 5.5. LetX be a complete quasi-convex metric space admitting cone type inequal-
ities for Ik(X) for k = 1, . . . ,m. Is it true that FVm+1(X, r) grows at most linearly if
m ≥ Asrk(X)?

Acknowledgments. I would like to thank Ruth Kellerhals for useful comments and sugges-

tions concerning the presentation of the results.
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The cubical route to understanding groups

Daniel T. Wise

Abstract. We survey the methodology and key results used to understand certain groups from a cubical

viewpoint, and describe the ideas linking 3-manifolds, cube complexes, and right-angled Artin groups.

We close with a collection of problems focused on groups acting on CAT(0) cube complexes.
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Keywords. CAT(0) cube complexes, right-angled Artin groups, 3-manifolds.

1. Introduction

This survey presents some of the ingredients in a strategy for understanding groups using

cube complexes. Developing and applying this has been my research agenda and its details

have become increasingly explicit over the past decade. In the hyperbolic case this research

program has recently arrived at a major goal: the virtual Haken problem for hyperbolic cube

complexes which was completed by Agol, and its associated application towards closed hy-

perbolic 3-manifolds which was enabled by the closed surfaces of Kahn andMarkovic. Some

of these developments were precipitated by my use of cubes to understand the underlying

structure of hyperbolic groups with a quasiconvex hierarchy, which was in turn partially

aimed at the analogous conclusions for cusped hyperbolic manifolds. I describe here some

of the tools leading to these developments, mentioning especially work of and with Berg-

eron, Haglund, Hruska, Hsu, and Sageev. Many of the issues summarized here are treated in

a sketchy but intuitive fashion in [67], and in a more dense traditional fashion in [60]. There

is still much to do in the cubical realm and we close the survey with a collection of related

problems.

Our strategy to understand a group G follows the following scheme:

• Find codimension-1 subgroups and obtain an action of G on the dual cube complex

X̃ .

• If the codimension-one subgroups are nice enough then G acts on X̃ with good finite-

ness properties.

• Find a finite index subgroup G′ ⊂ G such that G′\X̃ is very organized in the sense

that it is a “special cube complex”.

• Obtain an embedding G′ ⊂ A(Γ) into a raag, and conclude that G has many nice

properties since raags are very nice groups.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Figure 1.1. A clean cover corresponding to the splitting of 〈a, b, c, d | aaab = cdc−1d−1〉 as an

amalgamated free product. The analogous situation for the HNN extension 〈a, b, c, d, t | (aaab)t =
cdc−1d−1〉 is harder.

My trek into this topic began with an interest in residual finiteness that was influenced by

the values of the combinatorial group theorists active in the 1960s, and stirred by curiosity

about subgroup separability and surfaces in 3-manifolds. In the early 1990s, the simplest

examples whose residual finiteness was not understood were cyclic HNN extensions of free

groups. These are groups of the form: 〈a, b, t | t−1Ut = V 〉 where U, V represent ele-

ments of 〈a, b〉 that do not have conjugate powers. I approached the problem by thinking

of covering spaces of a space X that decomposes as a graphs of spaces (see Figure 1.1 for

the analogous situation of a free product of two free groups amalgamating a cyclic sub-

group). Such a decomposition arises whenX is a nonpositively curved square complex with

a VH-structure in the sense that each of its 1-cells is either “vertical” or “horizontal” and the
attaching map of each square alternates between vertical and horizontal edges. The graph of

space structure arises from a singular foliation by vertical leaves formed from line segments

parallel to the vertical edges. The simplest scenario is where U, V are cyclically reduced

words of the same length, in which case the group is the fundamental group of a graph of

spaces whose vertex space is a bouquet of circles, and whose edge space is an attached cylin-

der corresponding to t−1Ut = V that is divided into squares by adding 1-cells parallel to

the t edges at the top and bottom. The strategy, as executed in [61], was to first pass to a

finite cover X̂ → X that is clean in the sense that the attaching maps of its edge spaces are

embeddings. It is straightforward to see that the fundamental groups of these clean graphs

of spaces are residually finite. Moreover, there is considerable flexibility in producing finite

covering spaces of clean complexes, and this enables one to show that every f.g. subgroup

of π1X̂ and hence π1X is separable. Indeed, this generalizes the ease with which finite

covering spaces of graphs can be produced. We refer to Figure 1.1 for a clean cover of the

graph of spaces corresponding to the free product of two free groups amalgamating a cyclic

subgroup.

These separability ideas were subsequently generalized to arbitrary compact clean VH
square complexes X with π1X hyperbolic relative to abelian subgroups [64]. A promising

application was towards the Dehn complexes of prime alternating links, which are compact

nonpositively curved VH square complexes. A computer experiment showed that many of

these Dehn complexes have clean finite covers, and so it became a mission to understand

that all Dehn complexes of prime alternating links are virtually clean. In 1997 it seemed that

this had introduced a rather new idea towards understanding separability that followed in the

footsteps of Hall’s work [28], but we now understand in retrospect that it was also an ana-

logue of Scott’s right-angled reflection group idea that was used to understand separability
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of surface groups [57].

An intriguing early step forward was to show that negatively curved VH-complexes are

virtually clean [62]. But although there was an outline of a proof based on the height of an

edge group in the splitting, a complete argument that applied to every prime alternating link

Dehn complex was unavailable for many years - the malnormal special quotient theorem was

the key missing ingredient. I was hopeful that all knot groups were (virtually) fundamental

groups of nonpositively curved (VH) square complexes, and went on a fruitless search to

generalize the Dehn complex. In another direction, I hoped there was a prospect of general-

izing the ideas by showing that there is always a finite index subgroup that acted freely on

the product of trees.

Forays into understanding residual finiteness in small-cancellation groups in 1999 led

to the study of certain codimension-one subgroups arising from immersed codimension-one

graphs. It was then natural to apply Sageev’s work [53] on the dual cube complex to cubu-

late small-cancellation groups [63]. This was an eye-opener for me, as Sageev’s construction

provided access to a combinatorial geometric structure from ingredients I already had expe-

rience with. With Hsu, we cubulated graphs of free groups with cyclic edge groups, and

then set out to understand groups with more general splittings [31, 34]. With Hruska, we

then made a detailed study of the finiteness properties with papers focusing on the finiteness

properties in [29, 30] and generalizing finiteness properties observed in [18, 47, 54, 63].

We began studying raags with Hsu, first showing that they are subgroups of Coxeter

groups and hence embed in SLn(Z) [13, 32], and then examining the separability of the

quasi-isometrically embedded subgroups of the raag 〈 a, b, c, d | [a, b], [b, c], [c, d] 〉 corre-
sponding to the complement in S3 of a length 4 chain [33]. Although our proof was not

written in that generality, we noticed the separability of complexes that map by a local isom-

etry, but our effort to prove the separability of arbitrary quasi-isometrically embedded sub-

groups was frustrated.

In 2002, Haglund and I generalized the idea of “clean square complexes” to “special cube

complexes” and this dropped the VH restriction and allowed arbitrary dimensions. The goal

of our definition was to obtain separability by extending the notion of canonical completion

and retraction to higher dimensions [25]. Surprisingly, this definition magically coincided

with the definition of a local isometry to the cube complex of a raag. We immediately set out

to generalize the work in [62] to higher dimensions - although it took many years until we

finally completed this in [27]. In view of the dual cube complex construction, special cube

complexes opened the possibility of reaping algebraic consequences from the hidden cubical

geometry of many groups.

2. CAT(0) cube complexes and npc cube complexes

An n-cube is a copy of [−1, 1]n. Its subcubes are the subspaces obtained by restricting some

coordinates to either+1 or−1. A cube complex is a complex built from cubes glued together

along subcubes. The data describing a cube complex is entirely combinatorial; we require

that the gluing maps be modeled by (local) isometries where we regard n-cubes as being
isometric copies of the corresponding subspaces of En.

A flag complex S is a simplicial complex with the property that n + 1 vertices span

an n-simplex if and only if they are pairwise adjacent. Thus a flag complex is determined

completely by its 1-skeleton: We can reconstruct S from S1 by adding an n-simplex for
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each complete graph K(n) in S. For instance, a graph S is a flag complex if and only if

girth(S) ≥ 4. Recall that the girth of a graph is the infimum of the lengths of its cycles.

The link of a 0-cube v in a cube complex X is the complex built from simplices that

corresponds to the ε-sphere about v. Specifically, link(v) has an (n − 1)-simplex for each

corner of an n-cube at v. A cube complex X is nonpositively curved if link(v) is a flag

complex for each v ∈ X0. A CAT(0) cube complex is a simply-connected nonpositively

curved cube complex.

Nonpositively curved cube complexes were introduced by Gromov in [19] as a conve-

nient source of examples of metric spaces with nonpositive curvature. When X is nonpos-

itively curved in the above combinatorial sense, its universal cover X̃ has a CAT(0) metric

such that each n-cube is isometric to the standard Euclidean n-cube. This metric has been

constructed in increasing levels of generality by Moussong, Bridson, and Leary [10, 39, 45].

One consequence of a complete CAT(0) metric is that any group acting freely on X̃ is

torsion-free. Some examples of other properties of groups acting on CAT(0) cube complexes

are as follows: Let G act cellularly by isometries on the CAT(0) cube complex X̃ . Then G
is biautomatic if the action is proper and cocompact [48], G is aTmenable if the action is

metrically proper [46, 49], and G satisfies the Tits alternative if X̃ is finite dimensional and

there is an upper bound on the size of stabilizers [56].

3. Raags

Let Γ denote a simplicial graph. The right-angled Artin group (raag)A(Γ) has the following
presentation:

〈 v : v ∈ Vertices(Γ) | uv = vu : (u, v) ∈ Edges(Γ) 〉

Note that the standard 2-complex of a raag is a cube complex with a single 0-cube, a 1-cube
for each generator and a 2-cube for each relator. When girth(Γ) ≥ 4, this 2-complex is a

nonpositively curved cube complex. In general, A(Γ) is the fundamental group of a nonpos-

itively curved cube complex R(Γ) called the Salvetti Complex that is obtained by adding an

n-cube for each collection of pairwise commutating generators - i.e. each K(n) in Γ. Note
that the 2-cubes are already in the standard 2-complex of the above presentation. Some easy

examples of raags are: a rank n free group Fn which corresponds to a graph with n vertices

and no edges, a rank n free abelian group Zn which correspond to a complete graph K(n),
and a product Fn × Fm which corresponds to a complete bipartite graph K(m,n). Every
raag is linear, and in fact a subgroup of SLn(Z) since it is a subgroup of a right-angled

Coxeter group [13, 32, 35]. We refer to [12] for more about raags.

4. Special cube complexes

Amidcube in [−1, 1]n is a connected subspace obtained by restricting exactly one coordinate

to 0. Note that an n-cube has n distinct midcubes. A hyperplane Ỹ in a CAT(0) cube

complex X̃ is a connected subspace that intersects each cube in a midcube or in ∅. As noted
by Sageev [53], each midcube lies in a unique hyperplane, and each hyperplane separates X̃
into two complementary components.
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Let Ỹ be a hyperplane of the universal cover X̃ of a nonpositively curved cube complex

X . Let H = Stabilizer(Y ). Let Y = H\Ỹ , and note that there is a map Y → X . We refer

to each such Y as an immersed hyperplane of X , and note that each midcube of X extends

to a unique immersed hyperplane. When an immersed hyperplane embeds (i.e. its image

does not contain distinct midcubes of the same cube of X) then we simply refer to it as a

hyperplane. For a hyperplane Y that embeds, it is natural to consider the subspace No(Y )
consisting of the open cubes that it intersects. The open 1-cubes that Y intersects are dual
to Y . The hyperplane Y is 2-sided if the space No(Y ) is isomorphic to Y × (−1, 1) with
Y × {0} corresponding to the subspace Y in the obvious way. When Y is 2-sided we can

direct all 1-cubes dual to Y from Y × {−1} to Y × {+1}.
We studied the following in [25]:

Definition 4.1. A special cube complex is a nonpositively curved cube complex with the

following properties:

1. There is no self-crossing hyperplane. That is, each immersed hyperplane of Y → X
is embedded

2. There is no 1-sided hyperplane. That is, each hyperplane ofX is 2-sided.

3. There is no hyperplane of X that self-osculates in the sense that it is dual to distinct

directed 1-cubes with the same initial or terminal 0-cube.

4. There do not exist distinct hyperplanes Y1, Y2 of X that inter-osculate in the sense

that: Y1, Y2 intersect, and Y1, Y2 are dual to closed 1-cubes that share a 0-cube but do

not lie on a common 2-cube.

For instance, any graph is special, any Salvetti complex R(Γ) is special, and any CAT(0)
cube complex is special. A beautiful source of special cube complexes are the state com-
plexes of Abrams and Ghrist [1, 17].

Generalizing separability for a subgroup, we say a double cosetHK is separable inG if

it is closed in the profinite topology of G (i.e. the topology whose basis consist of left cosets

of finite-index subgroups). The following criterion for virtual specialness was given in [25]:

Theorem 4.2. Let X be a compact nonpositively curved cube complex. Suppose that for
each immersed hyperplane A → X we have that π1A is separable in π1X . Suppose that
for each pair of crossing immersed hyperplanes A → X and B → X , we have π1Aπ1B is
separable in π1X . Then X has a finite cover that is special.

A noncocompact variant of Theorem 4.2 was used in [26] to see that every Coxeter group

is virtually special using the cube complex of Theorem 6.1, and it was also used to see that

simple-type arithmetic hyperbolic lattices are virtually special in [6]. It is interesting to

note that Bergeron had independently engaged with the double hyperplane separability in

his studies of totally geodesic submanifolds [5].

Theorem 4.2 has the following consequence:

Corollary 4.3. Let X be a compact nonpositively curved cube complex. Suppose that π1X
is hyperbolic. If each quasiconvex subgroup of π1X is separable thenX is virtually special.

A map φ : A → B between nonpositively curved cube complexes is a local isometry
if φ is combinatorial in the sense that φ maps open n-cubes homeomorphically to n-cubes,
and φ is an immersion in the sense that φ is locally injective, and finally for each a ∈ A0 the
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induced map φ : link(a) → link(φ(a)) has the property that if u, v are vertices of link(a)
such that φ(u), φ(v) are joined by an edge in link(φ(a)) then u, v are joined by an edge in

link(a). As observed in [44], if φ : A → B is a local isometry then the map φ̃ : Ã → B̃ is

an isometric embedding, and moreover Ã embeds as a convex subcomplex of B̃.
The definition of special cube complex was designed to enable the following, and the

reader can refer to [25] or [27] for the details:

Lemma 4.4 (Canonical Completion and Retraction). Let φ : A→ B be a local isometry of
nonpositively curved cube complexes whereB is special andA is compact. Then there exists
a finite cover B̂ → B such that A→ B lifts to an embedding A ↪→ B̂. Moreover, there is a
retraction B̂ → A.

Let D be a hyperplane of X̃ . Its halfspace carriers are the subcomplexes containing the

two components of X̃ −D. Each halfspace carrier is a convex subcomplex since it maps to

X̃ by a local isometry. For a subspace S ⊂ X̃ we let hull(S) denote the intersection of all

halfspace carriers of X̃ containing S. Note that hull(S) is a convex subcomplex of X̃ since

each halfspace carrier is convex. The following was observed in [23] and [55]. It also has a

relatively hyperbolic generalization.

Lemma 4.5. Let G be a hyperbolic group that acts properly and cocompactly on a CAT(0)
cube complex X̃ . Let H be a quasiconvex subgroup of G. Let K be a compact subspace of
X̃ . Then hull(HK) ⊂ Nr(HK) for some r ≥ 0.

In particular, ifX is a compact nonpositively curved cube complex with π1X hyperbolic,
then for each quasiconvex subgroup H ⊂ π1X , there exists a based local isometry Y → X
such that Y is compact and π1Y = H .

A group G is residually finite if the trivial subgroup is the intersection of finite index

subgroups of G. A subgroup H ⊂ G is separable if H is the intersection of finite index

subgroups of G. Thus G is residually finite precisely if {1G} is separable. Equivalently,

H is separable if and only if for each g �∈ H , there exists a finite quotient G → Ḡ such

that ḡ �∈ H̄ . One can deduce the residual finiteness of π1X from the specialness of X by

applying Lemma 4.5 to a compact convex subcomplex of X̃ containing x̃, gx̃. Moreover,

since G′ is residually finite whenever G′ ⊂ G, and since H ⊂ G is separable whenever

[G : G′] < ∞ and H ⊂ G′ is separable, and since retracts of residually finite groups

are separable (they correspond to closed subspaces in the profinite topology) we see from

Lemma 4.4 and Lemma 4.5 that quasiconvex subgroups of a special hyperbolic group are

separable.

The following theorem [25], connects special cube complexes to raags: Accordingly, we

say that a group G is special if G is isomorphic to a subgroup of a raag.

Theorem 4.6. X is special if and only if there is a local isometry X → R to the Salvetti
complex R = R(Γ) of a raag.

Proof. If there is a local isometry X → R, then X is special since an excluded hyperplane

pathology would project to a hyperplane pathology in R, which is impossible since R is

itself special.

Let Γ be the graph with a vertex for each hyperplane of X and such that two vertices

are adjacent if and only if the corresponding hyperplanes cross. Let R = R(Γ). As each

hyperplane is 2-sided, we can label each 1-cube by the hyperplane it is dual to, and direct all
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the dual 1-cubes consistently as above. This provides a mapX1 → R1 and it is readily seen

that this extends to an immersion X → R because there is no self-osculation, and moreover

X → R is a local isometry because there is no inter-osculation.

5. Cubical small-cancellation theory

5.a. Classical small-cancellation. Let X denote a graph, and let {Yi → X} be immersed

circles. We summarize this data by 〈X | Y1, . . . , Yr〉 and refer to this as a presentation.
When X is a bouquet of circles, we can regard each Yi as a word in the generators, and the

term presentation nearly corresponds to the usual notion. We let X∗ denote the complex

associated to the presentation, soX∗ is the quotientX ∪⋃i Cone(Yi) obtained by attaching
a cone with base Yi to X for each relator Yi.

A piece P → X is a combinatorial path that factors through lifts to Yi and Yj as on the

left below, but such that these two lifts are distinct in the sense that there is no map Yi → Yj
so that the diagram on the right below commutes:

P → Yj
↓ ↓
Yi → X

P → Yj
↓ ↗ ↓
Yi → X

(5.1)

The systole ||Yi|| is the girth of Yi. A presentation satisfies the C ′( 1n ) small-cancellation
condition if |P | < 1

n ||Yi|| whenever P is a piece that lifts to Yi. Here |P | denotes the length
of the immersed path, or equivalently, the distance between the endpoints of the lift of P in

Ỹi ⊂ X̃ .

When 〈X | Y1, . . . , Yr〉 satisfies the C ′( 16 ) condition the group π1X
∗ = π1X/〈〈π1Yi〉〉

is a hyperbolic group many of whose properties are particulary easy to understand. We refer

to [41] for a historical account of this theory, and to [43] for a geometric account more

consistent with the language below. The main result here is Greendlinger’s lemma which

can be summarized as follows:

Theorem 5.1. Any minimal area disk diagram D → X∗ is either

(1) trivial in the sense that it consists of a single 0-cell or single closed 2-cell

(2) a ladder in the sense that it is the union of a sequence of closed 1-cells or 2-cells
R1 ∪ R2 ∪ · · · ∪ Rm with Ri ∩ Rj = ∅ for |i − j| > 1 and Ri ∩ Ri+1 equal to a
(possibly trivial) arc otherwise.

(3) D has three or more shells and/or spurs.

A shell is a 2-cell R whose boundary path ∂pR = QS is the concatenation of two paths,

where the outer path Q is a subpath of the boundary path ∂pD and the inner path S has the

property that |S| < |Q|. A spur is a 1-cell terminating at a valence 1 vertex inD where ∂pD
backtracks.

5.b. Cubical small-cancellation. A cubical presentation 〈X | Y1, . . . , Yr〉 consists of a

nonpositively curved cube complex X , and a collection of local isometries Yi → X of non-

positively curved cube complexes. The group of this presentation is π1X/〈〈π1Y1, . . . , π1Yr〉〉∼= π1X∗ where X∗ is the complex obtained by attaching cones on the Yi as above.
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Figure 5.1. Ladders and disk diagrams with spurs, shells, and cornsquares for the classical and cubical

cases

In contrast to the classical case, there are now two types of pieces: A wall-piece is a

path P → Yi such that the lift P̃ → Ỹi ⊂ X̃ has the property that P̃ is a subpath of N(V )

where V is a hyperplane of X̃ and N(V ) is the convex subcomplex consisting of all cubes

intersecting V (so N(V ) is the closure of No(V ) discussed earlier). A cone-piece is a path
P → Yi such that P → X factors as P → Yj as on the left of Equation (5.1) and these

two paths are distinct in the sense that there is no map Yi → Yj such that the diagram on the

right of Equation (5.1). Within X̃ , this means that the lift of P to Ỹi and Ỹj are distinct in

the sense that Ỹi and Ỹj look different from the viewpoint of P̃ .
The cubical presentation is C ′( 1n ) if |P | < 1

n ||Yi|| whenever P → Yi is a piece. Now

||Yi|| denotes the infimum of the lengths of the closed essential paths in Yi, and |P | denotes
the distance between the endpoints of the lift of P in Ỹi ⊂ X̃ . (Here we use the distance in

the graph metric on the 1-skeleton.)

Let P → X be a closed combinatorial path such that P → X∗ is null-homotopic.

Note that the 2-cells of X∗ are triangles and squares, and the triangles in a disc diagram

can be assembled cyclically around 0-cells mapping to conepoints to form cone-cells whose
interiors are open disks. The boundary path of each cone-cell maps to some Yi. We are

interested in disk diagrams of minimal area in the sense that
(
#(cone-cells),#(squares)

)
is

minimized in the lexicographical order. Among other things, minimality guarantees that the

boundary path of each cone-cell R is essential for otherwise we could replace that cone-cell

by a square diagram. A spur is as before and a shell in D is also as before: it is a cone-

cell R such that ∂p(R) = QS where |S| < |Q| and where Q is a subpath of P = ∂pD.

There is now an additional object: A cornsquare is a square inD such that (parts of) the two

hyperplanes emanating from D end on adjacent 1-cells of ∂pD, and such that they bound a

square subdiagram. A ladder in X∗ is a disk diagram formed from a sequence of cone-cells

joined by n ×m square grids with n,m ≥ 0. See Figure 5.1. The main theorem of cubical

small-cancellation theory is very similar to the classical case:

Theorem 5.2. Suppose that the cubical presentation 〈X | Y1, . . . , Yr〉 satisfies the C ′( 1
12 )

condition. Let D → X∗ be a minimal area diagram. Then either

(1) D is a single 0-cell or cone-cell

(2) D is a ladder

(3) D contains three or more spurs, cornsquares, or shells.
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6. Groups acting on cube complexes

We now turn to the notion of a wallspace introduced by Haglund and Paulin in [24], and the

dual cube complex of Sageev [53].

6.a. Wallspaces. A wall in a topological space X is a decomposition X =
←−
W ∪ −→

W . It is

often simplest to work under the assumption that
←−
W ∩ −→

W = ∅. A convenient way to obtain

a wall is when a subspaceW ⊂ X has more than one complementary component, in which

case we let
−→
W be the union ofW and some of these components, and we let

←−
W = X − −→

W .

The spaces
←−
W,

−→
W are the halfspaces of the wall. We say p, q are separated by the wall

{←−W,−→W} if p, q do not both lie in the same halfspace. A wallspace is the space X together

with a collection W of walls such that #(p, q) < ∞ whenever p, q ∈ X . Here #(p, q)
denotes the number of walls separating p, q.

6.b. Codimension-one subgroups. Let G be a f.g. group, and let Υ = Υ(G,S) denote
its Cayley graph with respect to a finite generating set S and give Υ the graph metric. A

subgroup H of G is codimension-one if for some r > 0 the complement Υ − Nr(H) con-
tains more than one H-orbit of component that is deep in the sense that it does not lie in

Ns(H) for any s > 0. Note that being codimension-one does not depend on the choice of

generators although the constant r might be affected. An equivalent formulation is thatH is

codimension-one if the coset graph H\Υ has more than one end. For instance, any embed-

ding of Zm ⊂ Zn is codimension-one precisely whenm = n−1. Another visual example is

any infinite cyclic subgroup of a closed surface group, or indeed, any subgroup π1M ⊂ π1N
whereM and N are closed aspherical manifolds with dim(N) = dim(M) + 1.

Given a codimension-one subgroup H of a group G, Sageev produced a wall in the

Cayley graph Υ from a codimension-one subgroup H by letting
−→
W be HK where K is a

deep component, and letting
←−
W = Υ − −→

W . Note that if {←−W,−→W} is a wall then {g←−W, g−→W}
is a wall for g ∈ G. By varying g ∈ G, we obtain an infinite set of walls that G will

then permute. Performing this procedure for one or more codimension-one subgroups Hi

and chosen decompositions ofΥ−Nri(Hi) we obtain a wallspace that has aG-action in the
sense thatG also acts on the collection of walls. If our collection {H1, . . . , Hk} is finite then
we can be assured that the finiteness condition #(p, q) < ∞ holds so we obtain a genuine

wallspace.

6.c. The dual cube complex. Let (X,W) be a wallspace. Sageev defined its dual CAT(0)
cube complex as follows: Each 0-cube v is a choice of one halfspace from each wall that

satisfies the following two conditions:

1. Any two chosen halfspaces of v have nonempty intersection.

2. For some (and hence any) point x ∈ X , all but finitely many of the chosen halfspaces

of v contain x.

The 0-cubes u, v are joined by a 1-cube precisely when the u, v choices differ on exactly

one wall. For each n ≥ 2 we add an n-cube whenever its (n − 1)-skeleton is present.

Sageev proved that the dual is CAT(0): the nonpositive curvature condition is immediate,

and simple connectivity holds by an argument that uses that every closed path has to pass

through 1-cubes corresponding to each wall an even number of times [53].
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Figure 6.1. A wall for the Coxeter group 〈a, b, c | a2, b2, c2, (ab)2, (bc)3〉, and a wall in an anonymous

small-cancellation complex.

We now describe to noteworthy applications of the dual cube complex:

Niblo-Reeves proved the following result in [47]. The walls they used are precisely the

reflection walls of the Coxeter group. (See the left of Figure 6.1.)

Theorem 6.1 (Cubulating Coxeter Groups). Every f.g. Coxeter group acts properly on a
finite dimensional CAT(0) cube complex.

Each C ′( 16 ) 2-complex X̃ has walls that are trees whose vertices are midpoints of 1-

cells of X̃ and whose edges are arcs in 2-cells joining opposite 1-cells. (See the right of

Figure 6.1.)

Theorem 6.2 (Cubulating C ′( 16 ) Groups). Every f.g. C ′( 16 ) small-cancellation group acts
properly and cocompactly on a CAT(0) cube complex [63].

6.d. Finiteness Properties. The finiteness properties of the dual are related to properties

of the walls and their stabilizers. The maximal cubes in the dual (if they exist) correspond

to maximal collections of pairwise crossing walls. We obtain cocompactness of the dual

when there are finitely many orbits of collections of pairwise crossing walls, as shown by

Sageev when the wall stabilizers are quasiconvex and the space X is δ-hyperbolic [54].

We assume now that X is a metric space, as would be the case when X is the Cayley

graph of a group or when X = Hn. The group G acts metrically properly on the dual

cube complex when there are sufficiently many walls in the sense that #(p, q) → ∞ when

dX(p, q) → ∞. A comprehensive examination of the finiteness properties is given in [29].

Producing codimension-one subgroups can be very challenging, and even when they exist,

it is often tricky to verify that the group G acts properly on the dual cube complex.

6.e. Cubulating from the boundary. In [7] we gave a criterion to verify that a group G
acts properly and cocompactly on a CAT(0) cube complex when there is a rich collection of

walls with relatively quasiconvex stabilizers. This result was also obtained by Dufour who

applied it to cubulate fibered hyperbolic 3-manifolds in his PhD thesis.

Theorem 6.3. Let G be a relatively hyperbolic group, and let ∂G denote the Bowditch
boundary of G. Suppose that for each pair of points p, q ∈ ∂G there exists a relatively qua-
siconvex codimension-one subgroup H such that p, q lie in distinct H-orbits of components
of ∂G− ∂H . Then G acts properly and relatively cocompactly on a CAT(0) cube complex.

If the term “relatively” is omitted from Theorem 6.3, the statement applies in the more

standard setting where ∂G is the Gromov boundary of a hyperbolic group G, and the mean-

ing of cocompactness in the conclusion is as usual.
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In the relatively hyperbolic case, acting relatively cocompactly on the dual C̃ means that

there is a collection of convex parabolic subcomplexes C̃i that are stabilized by the Pi, and
a compact subcomplex K such that C̃ = GK ∪ G̃C̃i, and these parabolic subcomplexes C̃i
are isolated in the sense that giC̃i ∩ g̃jC̃j ⊂ GK unless giC̃i = gjC̃j .

Corollary 6.4. Let G act freely and cocompactly on H3. Suppose that for each pair of
points p, q ∈ ∂H3 there is a quasifuchsian subgroup H such that ∂H is an embedded cir-
cle that separates p, q. Then there exists a finite subcollection of quasifuchsian subgroups
{H1, . . . , Hk} such that G acts properly and cocompactly on the resulting dual cube com-
plex.

Kahn and Markovic proved the following in [37]:

Theorem 6.5. Let M be a closed hyperbolic 3-manifold. For each circle O ⊂ ∂H3 there
is a sequence of quasifuchsian surfaces Si → M , such that ∂S̃i ↪→ ∂M̃ = ∂H3 converges
pointwise to O.

Kahn and Markovic built these surfaces by amalgamating a family of immersed geodesic

pairs of pants, using ergodicity of the geodesic flow to ensure choices so that the surface

closes and such that consecutive pants in the gluing nearly followed a fixed H2 trajectory. In

view of Corollary 6.4, we obtain the following consequence of the Kahn-Markovic surfaces:

Corollary 6.6. Let M be a closed hyperbolic 3-manifold. Then π1M acts properly and
cocompactly on a CAT(0) cube complex.

Bergeron and I worked this out in 2006 (in the word-hyperbolic case) but the only appli-

cations available then were already handled by a direct geometric computation - namely the

simple-type arithmetic hyperbolic lattices that were cubulated with Haglund in [6]. Upon

hearing of the breakthrough of Kahn-Markovic, we connected it to our work. It appears that

there will be further cubulation results following this method, since it avoids certain messy

computations. There have not yet been applications using the relatively hyperbolic case,

although it is likely that the argument for free-by-cyclic groups in [22] can be generalized

in this direction. The case whereM is a hyperbolic manifold with nonempty boundary was

treated using hierarchies, and is discussed in Section 11.

7. Cubulating Malnormal Amalgams

Definition 7.1. A collection {H1, . . . , Hr} of subgroups of G is almost malnormal if
g−1Hig ∩ Hj is finite unless i = j and g ∈ Hi. Similarly, the term malnormal means

that each such intersection of distinct conjugates is trivial.

The following is proven in [31]:

Theorem 7.2. Let G be a hyperbolic group that splits as a finite graph of groups such that
each vertex group is virtually compact special, each edge group is quasiconvex, and the
collection of edge groups is almost malnormal. Then G acts properly and cocompactly on a
CAT(0) cube complex.

The idea of the proof of Theorem 7.2 is best motivated by considering the case where

all edge groups are infinite cyclic. Let X be a graph of spaces where the vertex spaces are
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nonpositively curved cube complexes and the edge spaces are cylinders. Its universal cover,

X̃ , is a tree of spaces where the vertex spaces are CAT(0) cube complexes and where the

edge spaces are strips attached along geodesics. We make X̃ into a wallspace as follows:

There is a wall for each edge space but the other walls are more complicated. If the attach-

ing geodesics of an edge space have the same combinatorial length on each side, then we

choose an equivariant bijection between corresponding hyperplanes in the two vertex spaces

and connect corresponding hyperplanes with arcs cutting through the edge space. Otherwise

there are more hyperplanes on one side than the other, in which case we choose an injection

from the smaller side to the larger side and attach arcs as before. We then equivariantly glue

the excess hyperplanes together in pairs using arcs that start and end on excess hyperplanes

on the longer side. When these arcs are sufficiently long, and the cyclic subgroup is malnor-

mal, and the vertex space is hyperbolic, then the resulting glued hyperplane-arc-hyperplane

objects are genuine walls. Moreover, with careful choices they are quasiconvex and there are

sufficiently many so that π1X acts freely on the resulting dual cube complex.

Remark 7.3. Virtual compact specialness of the vertex groups provide the actual enabling

properties of the proof of Theorem 7.2: That the vertex groups act properly and cocompactly

on CAT(0) cube complexes, that their edge groups have separable quasiconvex subgroups,

and that every quasiconvex wall in an edge group extends to a quasiconvex wall in its vertex

group. This last “extension property” is provided by an argument using Lemma 4.5.

Remark 7.4. A relatively hyperbolic variation of Theorem 7.2 is as follows: We assume

thatG is hyperbolic relative to virtually abelian subgroups {P1, . . . , Pr}, but we require that
each edge group is relatively quasiconvex and genuinely hyperbolic. We reach the weaker

conclusion that G acts cosparsely on the dual cube complex C̃. This means that for each i
there is a cube complex C̃i stabilized by Pi and quasi-isometric to some En, and there is a

compact subcomplexK such that C̃ = GK∪GC̃1∪· · ·∪GC̃r and finally giC̃i∩gjC̃j ⊂ GK
unless giC̃i = gjC̃j .

There is more work to be done here: One expects a generalization of Theorem 7.2 to

apply to an arbitrary relatively hyperbolic group that splits as a finite graph of virtually

compact special vertex groups with edge groups that are relatively quasiconvex and also

relatively malnormal in the sense that they intersect their conjugates in finite or parabolic

subgroups. (See Problem 13.31.) However, there are groups G that split as a graph of

abelian vertex groups with maximal cyclic edge groups, such that G cannot act freely on a

CAT(0) cube complex [59].

8. Virtually special cubical Malnormal Amalgams

The following is the main result in [27] which substantially generalizes [62]:

Theorem 8.1 (Virtual Specialness of Malnormal Cubical Amalgams). LetG be a hyperbolic
group that acts properly and cocompactly on a CAT(0) cube complex X̃ . Suppose there is a
hyperplane Ỹ such that gỸ ∩ Ỹ = ∅ unless g←−Y =

←−
Y where

←−
Y denotes the left halfspace of

Ỹ in X̃ . Suppose that Stabilizer(Ỹ ) is almost malnormal in G. Let No(Ỹ ) denote the open
cubical neighborhood of Ỹ in X̃ . Suppose that for each component X̃∗ of X̃ − GNo(Ỹ )

the group Stabilizer(X̃∗) has a finite index subgroup that acts freely on X̃∗ with a special
quotient. Then G has a finite index subgroup G′ that acts freely with a special quotient.
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Corollary 8.2 (Geometric Special Case). Let X be a compact nonpositively curved cube
complex with π1X hyperbolic. Let Y ⊂ X be a hyperplane. Suppose that Y is embedded
and 2-sided so thatNo(Y ) ∼= Y ×(−1, 1). Suppose that π1Y is malnormal in π1X . Suppose
that each component of X −No(Y ) is virtually special. Then X is virtually special.

To prove virtual specialness, we show that every quasiconvex subgroup is separable and

thus apply Corollary 4.3. Let us focus on the statement of Corollary 8.2 in the case where

X −No(Y ) is a disjoint union L �R. The heart of the matter is to be able to show that for

any finite covers L̂′ → L and R̂′ → R, there are finite regular covers L̂ → L and R̂ → R
that factor through them, so that they induce the same cover Ŷ of Y . We are thus able to

build a cover ofX from the disjoint union of a collection of covers of copies of L̂ and R̂, by
attaching copies of N(Ŷ ) = Ŷ × [−1, 1]. The key to producing L̂ and R̂ is to use functorial

properties of the canonical completion and retraction of Lemma 4.4. These properties allow

one to treat a malnormal quasiconvex subgroup A of a hyperbolic special group B almost as

if A were a retract of B.

9. Malnormal quasiconvex hierarchy

Definition 9.1. The groupG has a [malnormal] quasiconvex hierarchy terminating in groups
of type T if G can be built from groups of type T by a finite sequence of finite graphs of

groups, such that the edge groups are f.g. and quasi-isometrically embedded [and form an

almost malnormal collection] at each stage.
When T is the class of finite groups, we simply say that G has a quasiconvex hierarchy.

Our main case of interest is when G is hyperbolic in which case being quasi-isometrically

embedded is equivalent to being quasiconvex. When G has a specified relatively hyperbolic

structure it is natural to instead require that the edge groups are relatively quasiconvex.

Example 9.2. The fundamental groups of surfaces have hierarchies, and these hierarchies

are always quasiconvex, and also often malnormal (except for the torus and klein bottle and

when an edge group is generated by a glide reflection). Any Haken 3-manifold M has a

(topological) hierarchy which provides a hierarchy for π1M . When M is a fibered hyper-

bolic 3-manifold this gives a very short hierarchy, but the hierarchy will not be quasiconvex

since the fundamental group of the fiber is not quasiconvex. A similar situation occurs for

one-relator groups, whose Magnus-Moldavanskii hierarchies (providing the foundation for

the theory of one-relator groups), but these hierarchies are typically not quasiconvex.

Combining Theorem 7.2 and Theorem 8.1 we have the following result which functions

as a target criterion for virtual specialness.

Theorem 9.3. Let S denote the class of hyperbolic virtually compact special groups. Let
G be a hyperbolic group with a malnormal quasiconvex hierarchy terminating in groups of
type S . Then G is in S .

10. Special quotient theorem

Theorem 10.1 (Malnormal Special Quotient Theorem). Let G be hyperbolic and virtually
compact special. Let {H1, . . . , Hr} be an almost malnormal collection of quasiconvex sub-
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groups. There exist finite index subgroups {H◦
i ⊂ Hi}, such that for any normal finite index

subgroups H ′
i ⊂ Hi with H ′

i ⊂ H◦
i the quotient Ḡ = G/〈〈H ′

1, . . . , H
′
r〉〉 is hyperbolic and

virtually compact special.

Theorem 10.1 is already interesting when G is a rank 2 free group and {H1, . . . , Hr} is

a malnormal collection of f.g. subgroups. Among other things we find that Ḡ is residually

finite. In particular, we obtain the following corollary:

Corollary 10.2. Let {W1, . . . ,Wr} be a collection of elements of a free group F with basis
{a, b}, and suppose that Wi,Wj do not have conjugate nontrivial powers for i �= j. Then
there exists ki ≥ 1 for each i so that the following group is virtually compact special for all
ni ≥ 1.

〈a, b |Wn1k1
1 , . . . ,Wnrkr

r 〉
In particular, we can control the relative orders of {W̄1, . . . , W̄r} in finite quotients

F → F̄ .

As a finite collection of quasiconvex subgroups has finite height which is the maximal

number of infinitely intersecting distinct conjugates [18], variations of the following conse-

quence can be obtained by inductively repeatedly applying Theorem 10.1 to an almost mal-

normal collection of subgroups arising from intersections of conjugates of the {H1, . . . Hr}:
Corollary 10.3 (Special Quotient Theorem). Let G be hyperbolic and virtually compact
special. Let {H1, . . . , Hr} be a collection of quasiconvex subgroups. There exist finite index
subgroups H ′

i ⊂ Hi such that the quotient G/〈〈H ′
1, . . . , H

′
r〉〉 is hyperbolic and virtually

compact special.

We prove Theorem 10.1 by choosing the H◦
i so that Ḡ = G/〈〈H ′

i〉〉 is arranged to have

a finite index subgroup with an almost malnormal quasiconvex hierarchy, and so Theo-

rem 9.3 implies that Ḡ is virtually compact special. The proof is organized via cubical

small-cancellation theory. My original conception for the proof was based on my (thus far

unrealized) expectation that Ḡ would be cubulated (using a generalization of Theorem 6.2),

in which case the proof would be completed by using only Theorem 8.1 since the hyper-

planes are malnormal. When I was ultimately unable to realize this expectation, I instead

applied Theorem 9.3. The required properties of the malnormal quasiconvex hierarchy were

verified using cubical small-cancellation theory. In retrospect, much of this could have been

done using the theory of Osin or Groves-Manning [20, 50], keeping track of the walls where

the virtual splittings would take place. Nevertheless, the cubical small-cancellation theory

helped navigate towards the desired virtual hierarchy, and it is another matter to reposition

an exposition upon a recognized target.

A relatively hyperbolic version of Theorem 10.1 can also be proven that follows the same

argument, although we only implemented this in a limited fashion in [60]. In particular, we

showed the following:

Theorem 10.4. Let G be hyperbolic relative to virtually abelian subgroups P1, . . . , Pr.
Suppose that G is virtually compact special. Then there exist finite index subgroups P ◦i ⊂
Pi such that for any normal finite index subgroups P ′i ⊂ Pi with P ′i ⊂ P ◦i , the quotient
Ḡ = G/〈〈P ′1, . . . , P ′r〉〉 is virtually compact special and hyperbolic.

One consequence of Theorem 10.4 is that for a closed hyperbolic 3-manifold M with

∂M = T1 � · · · � Tr, there are covers T̂ ◦r → Tr so that for any further covers T̂ ′r → T̂ ◦r ,
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there exists a regular cover M̂ → M such that each component of the preimage of Tr is

isomorphic as a covering space to T̂ ′r.

11. Quasiconvex hierarchy

Theorem 11.1. Let G be a hyperbolic group with a quasiconvex hierarchy. Then G is
virtually compact special.

The proof is staged by applying Theorem 10.1 to the vertex group of an HNN extension

A∗Ct=D (relative to subgroups related to intersections of various conjugates of C,D) and

obtaining a quotient group Ā∗C̄ t̄=D̄ that is closer to being an almost malnormal HNN ex-

tension in the sense that {C̄, D̄} has lower height in Ḡ than {C,D} in G. The result then
follows by induction.

Theorem 11.1 applies to one-relator groups with torsion, since their Magnus-Moldavanskii

hierarchy is quasiconvex, and thus resolves Baumslag’s conjecture on the residual finiteness

of one-relator groups with torsion. It applies to closed hyperbolic 3-manifolds with a geo-

metrically finite incompressible surface since by a result of Thurston’s, the Haken hierarchy

is quasiconvex provided the first cut is geometrically finite [11].

There are relatively hyperbolic versions of this in [60] which are not powerful enough

to handle an arbitrary relatively hyperbolic group with a quasiconvex hierarchy, but they

are sufficient to handle fundamental groups of cusped hyperbolic 3-manifolds, and can also

handle limit groups which have a hierarchy whose edge groups are cyclic at each stage. A

useful step in the relatively hyperbolic direction is the following:

Theorem 11.2. Let G be hyperbolic relative to Z2 subgroups. Suppose that G splits as a
graph of groups where the vertex groups are virtually compact special and hyperbolic, and
the edge groups are relatively quasiconvex. Then G is virtually compact special.

A hyperbolic 3-manifoldM with ∂M �= ∅ has a finite cover M̂ with an incompressible

geometrically finite surface that cuts all the tori. We thus obtain:

Corollary 11.3. Let M be a hyperbolic 3-manifold with nonempty boundary. Then π1M
has a finite index subgroup that is isomorphic to π1 of a compact special cube complex.

12. Virtually Haken conclusion

A final goal for understanding cubulated groups in the hyperbolic setting was achieved by

Agol who proved the following result [3]. I first openly conjectured this and its associated

3-manifold consequence at the 2005 Spring Topology and Dynamics conference and have

been working towards it since then.

Theorem 12.1. LetG be a hyperbolic group that acts properly and cocompactly on a CAT(0)
cube complex X̃ . Then G contains a finite index torsion-free subgroup G′ such that G′\X̃
is special.

In view of Corollary 6.6, this resolved the virtual Haken problem for closed hyperbolic

manifolds, and it conclusively impacts geometric group theory, perhaps most obviously since
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all f.p. C ′( 16 ) groups are virtually special in view of Theorem 6.2. In a reasonable sense,

most groups with comparatively few relators are given by a C ′( 16 ) presentations, so it seems

that most groups arising in combinatorial group theory are virtually special.

A quick sketch of the proof of Theorem 12.1 proceeds as follows: A block is a compact

space that is the quotient J\Ỹ by a torsion-free subgroup J ⊂ G where Ỹ is the intersection

of a collection of closed halfspaces of X̃ , and where the hyperplanes of Y embed. The

faces of Ỹ are the intersections with hyperplanes that don’t separate it, and the images of

these faces are faces of the block Y . Color all the faces so that intersecting faces have

different colors. Repeatedly glue covers of blocks together along faces of the same color

to form larger blocks (with fewer types of faces). Here the special quotient theorem is

ingeniously applied to produce the covers that ensure that we are gluing along isomorphic

faces. With each gluing, there are fewer colors of exposed faces, and one eventually obtains

a space corresponding to a quotient of X̃ by a finite index torsion-free subgroup. With

some additional coloring care one can directly arrange that this space already be special.

Alternatively, since the hyperplanes embed one can apply Theorem 11.1 and pass to a finite

special cover.

We have described that cusped hyperbolic 3-manifolds and closed hyperbolic 3-manifolds

have virtually compact special π1. Liu showed that a graph manifold is virtually special ex-

actly when it admits a metric of nonpositive curvature [40]. To complete the picture, we

mention the following obtained with P.Przytycki [52]:

Theorem 12.2. LetM be a compact irreducible 3-manifold that is neither hyperbolic nor a
closed graph manifold. ThenM has a finite cover M̂ such that π1M̂ ∼= π1X where X is a
special cube complex.

13. A collection of problems

G is locally indicable if every nontrivial finite generated subgroup H ⊂ G has in infinite

cyclic quotient. A hyperbolic group G is locally quasiconvex if each f.g. subgroup of G
is quasiconvex. Examples of locally indicable groups that are also locally quasiconvex are

given in [58]. There are no known torsion-free locally quasiconvex groups that are not

also locally indicable. However there are locally indicable hyperbolic groups that are not

locally quasiconvex (for instance, hyperbolic free-by-cyclic groups). It is conceivable that

the following conjecture holds with only one of the assumptions of locally quasiconvex or

locally indicable. There are not yet enough examples understood here.

Conjecture 13.1. Let G be a hyperbolic group that is locally quasiconvex and locally indi-

cable. Then G acts freely and cocompactly on a CAT(0) cube complex.

As described in Lemma 4.5, cyclic subgroups of hyperbolic special groups are virtual

retracts. The following proposes that this is essentially a characterization of specialness. It

is conceivable that one could find examples of hyperbolic groups where every infinite cyclic

subgroup survives in the abelianization of some finite index subgroup.

Conjecture 13.2. A f.g. (hyperbolic) group G is virtually special iff every cyclic subgroup

is a virtual retract.

Problem 13.3. Let G be [relatively] hyperbolic. Show that G acts properly on a CAT(0)
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cube complex iff every cyclic subgroup is cut by a [relatively] quasiconvex codimension-1

subgroup. (The “if” direction is straightforward).

Problem 13.4. Does every braid group act freely (and cocompactly) on a CAT(0) cube

complex? Is every braid group virtually special?

I suspect the answer to the above problems might be no for B4, although the second

problem will be easier to negate. We note thatB4 was shown to be the fundamental group of

a compact nonpositively curved space in [9], and other researchers have pushed this to higher

Bn, but asking for a nonpositively curved cube complex is considerably more demanding.

Problem 13.5. Characterize when a group that is Fn-by-Fm acts freely on a CAT(0) cube

complex. (In particular, find examples that do not act freely.)

Problem 13.6. Let G be the fundamental group of a compact nonpositively curved cube

complex. Is G hopfian?

Problem 13.7. Show that the isomorphism problem for fundamental groups of compact

nonpositively curved cube complexes is undecidable.

Problem 13.8. Show that not being virtually special is undecidable for compact nonposi-

tively curved cube complexes (even for npc VH-complexes).

The following problem is phrased in the direction that I think it will be resolved:

Problem 13.9. (Gromov) Find a compact nonpositively curved square complexX such that

π1X is not hyperbolic, but π1X does not contain Z2 subgroup.

I hope the following variant of a well-known problem in geometric group theory will be

approachable for special cube complexes:

Problem 13.10. LetX be a compact special cube complex. Suppose that π1X is hyperbolic

relative to abelian subgroups. Show that H ⊂ π1X is quasi-isometrically embedded if H is

malnormal. More generally, show that H is quasi-isometrically embedded unless there are

infinitely many left cosets {Hgi} such that g−1
i Hgi ∩H is neither parabolic nor finite.

Problem 13.11. Let H be a f.g. quasiisometrically embedded subgroup of a raag. Is H
separable? Same question under the stricter hypothesis that H is quasiconvex with respect

to the CAT(0) metric.

Problem 13.12. Suppose G is special, so G is a subgroup of a raag. Suppose G = π1X
with X a compact nonpositively curved cube complex. Is X virtually special? Similarly,

suppose X,Y are compact nonpositively curved cube complexes with π1X ∼= π1Y . Is X
virtually special if and only if Y is virtually special?

Problem 13.13. Find conditions on a 2-complexX that ensure that there are no codimension-

one subgroups (á la the Garland spectral gap condition of [4, 68]). Find conditions that

control the “direction” of the codimension-one subgroups.

Problem 13.14. Does every infinite f.p. C(6) group have a codimension-1 subgroup? Does

every infinite f.p. C(4)− T (4) group have a codimension-1 subgroup?
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Problem 13.15. Let G be a hyperbolic group with a hierarchy. Does G act properly and

cocompactly on a CAT(0) cube complex? In particular, this should be true for a hyperbolic

one-relator group. The case of free-by-cyclic groups is treated in [21, 22]. Another test case

to consider are f.g. free-by-free groups.

Problem 13.16. Let H be a malnormal quasiconvex subgroup of a hyperbolic group G that

acts properly and cocompactly on a CAT(0) cube complex. Is G/〈〈H ′〉〉 cubulated when

H ′ ⊂ H and the systole of H ′ is sufficient. Does G/〈〈H ′〉〉 always contain a codimension-1

subgroup? (I guess these have negative answers in general, but they hold when H is cyclic

[60]).

Problem 13.17. Give conditions on a cubical presentation 〈X | Y1, . . . , Yr〉 that guarantee
that the corresponding quotient group π1X

∗ acts properly on a CAT(0) cube complex. Some

conditions are given when X is 1-dimensional in [60].

Problem 13.18. Generalize the cubical small-cancellation theory in [60] to deal with quo-

tients of groups acting (not freely) on a CAT(0) cube complex X̃ .

Conjecture 13.19. Let X be a compact special cube complex with χ(X) ≥ 0. Then either

π1X is abelian, or π1X contains a f.g. non-abelian subgroup H containing a f.g. normal

subgroup N with H/N ∼= Z.
Show that if X is 2-dimensional and special and χ(X) > 0, then either π1X = 1 or

π1X contains a f.g. subgroup that is not f.p.

The plan is to apply Bestvina-Brady Morse theory [8] to a suitable immersed subspace.

This was my intended route towards virtual fibering before Agol produced his criterion -

which is a sophisticated 3-manifold topology argument enabled by a basic property enjoyed

by raags [2]. Conjecture 13.19 is examined when G acts properly and cocompactly on a

Bourdon building in [66].

A complete square complex (CSC) is a nonpositively curved square complexX such that

the link of each 0-cube of X is a complete bipartite graph. Equivalently, X is a CSC if X̃ is

isomorphic to the product of two trees.

Problem 13.20. Let X be a compact CSC with χ(X) > 0. Does π1X contain a f.g. sub-

group that is not f.p.?

Problem 13.21. Give novel examples of compact nonpositively curved cube complexes that

are not virtually special. Currently, all known nonexamples can be traced to an irreducibe

CSC.

Conjecture 13.22. Let X be a compact nonpositively curved cube complex. Then X is

virtually special iff for each immersed hyperplane D → X , there are finitely many distinct

subgroups of π1D that are of the form π1D ∩ gπ1Dg−1.

Motivation for the above conjecture can be found in the realm of CSC’s (see [65] and the

problems listed there): A CSC is virtually special (equivalently, it is a virtually product) iff

one (and hence all) of its hyperplanes satisfy the finiteness condition listed above.

Conjecture 13.23. Let H be a quasiconvex codimension-one subgroup of a hyperbolic

group G. Then G has a finite index subgroup that splits along H . This should follow the

proof in [3].
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The following is a variation on the Algebraic Torus Theorem [16]:

Problem 13.24. Suppose G has a codimension-1 amenable subgroup. Does G virtually

splits over an amenable subgroup?

Problem 13.25. (Kropholler-Roller Conjecture [38]) Let H be a f.g. subgroup of a f.g.

group G. Suppose there is an H almost-invariant proper subset A ⊂ G with A = HAH .

Does G split over a subgroup (presumably related to H)?

Problem 13.26. Let M be a hyperbolic 3-manifold. Does M have a finite cover that is

homeomorphic to a nonpositively curved cube complex?

Problem 13.27. LetM be a cusped hyperbolic 3-manifold. DoesM have a finite index sub-

group that is the fundamental group of a 2-dimensional nonpositively curved cube complex.

A VH-complex? Equivalently, does there exist M̂ such that π1M̂ acts freely on the product

of two trees?

Problem 13.28. Let M be a closed hyperbolic 3-manifold. Does π1M have a finite cover

that is the fundamental group of a compact 3-dimensional nonpositively curved cube com-

plex. Does π1M have a finite index subgroup that acts freely on the product of three trees?

Problem 13.29. Let X be a nonpositively curved cube complex that is homeomorphic to

a closed manifold. Is X virtually special? (I guess there is an example with an irreducible

CSC mapped inside by a local isometry).

Problem 13.30 (“Special” Charney-Davis-Hopf conjecture). LetM be a closed 2n-manifold

homeomorphic to a special cube complex. Show that (−1)kχ(M) ≥ 0.

Problem 13.31. Let G be hyperbolic relative to abelian subgroups. Suppose G splits as

a graph of groups where all the vertex (or equivalently all the edge groups) are relatively

quasiconvex. Suppose the edge groups are relatively malnormal, and vertex groups are vir-

tually compact special. Show thatG acts properly and [relatively cocompactly] on a CAT(0)

cube complex. Generalize this further to handle the case where the parabolic subgroups are

virtually special (instead of just virtually abelian).

Motivation for the following problem is that it was done in the special case of certain

cusped hyperbolic manifolds in [42].

Problem 13.32. Let G be hyperbolic relative to proper subgroups {Pi}. Suppose G acts

properly and cocompactly on a CAT(0) cube complex. Find a codimension-one subgroup

that does not contain any infinite order parabolic elements.

Problem 13.33. Let G act properly and cocompactly on a nonpositively curved cube com-

plex. Suppose G is hyperbolic relative to subgroups {P1, . . . , Pr}. Let P ′i ⊂ Pi be sub-

groups such that each Pi/〈〈P ′i 〉〉 acts properly [and cocompactly] on a CAT(0) cube complex.

Does G/〈〈P ′1, . . . , P ′r〉〉 act properly [and cocompactly] on a CAT(0) cube complex?

One approach to the above problem follows the proof of Theorem 10.1.

Problem 13.34. Let G act properly and cocompactly on a CAT(0) space X̃ . Let H be a

quasiconvex subgroup of G (i.e. an orbit Hx is quasiconvex in the sense that there exists r
such that any geodesic with endpoints in Hx lies in Nr(Hx)). Suppose thatW is a wall in
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X̃ whose stabilizer is H . Is the dual cube complex finite dimensional? Equivalently, does

H have the bounded packing property (see [30])? The same problem for quasi-isometrically

embedded subgroups. Some examples of CAT(0) groups with such walls are the rhombus

groups in [36].

Problem 13.35. Suppose a hyperbolic groupG acts freely on a CAT(0) cube complex. Does

G act freely and cocompactly on a CAT(0) cube complex? I guess there are counterexamples.

The work of [14] might be relevant here.

Here are two variants to the above problem: Let G be an aTmenable hyperbolic group.

Does G act metrically properly on a CAT(0) cube complex? Let G be a hyperbolic group

that is a subgroup of a raag. Is G the fundamental group of a compact nonpositively curved

cube complex?

Problem 13.36. Virtual Specialness of hierarchies without relative hyperbolicity. This is

very open ended. It should require a finiteness property on the height as in Conjecture 13.22.

Problem 13.37. Suppose thatG acts properly and cocompactly on a CAT(0) space. Suppose

G splits as a graph of groups where each vertex group acts freely on a CAT(0) cube complex.

Does G act freely on a CAT(0) cube complex? (Perhaps B4 will provide a counterexample.)

Problem 13.38. Let X be a compact nonpositively curved cube complex. Suppose that

π1D is separable in π1X for each immersed hyperplane D → X . Does it follow that X is

virtually special?

Harder: Suppose that all hyperplanes are embedded, 2-sided, and do not self-osculate.

Does it follow that X is virtually special?

Problem 13.39. LetG be hyperbolic relative to subgroups {P1, . . . , Pr}. Suppose that each
Pi is quasi-isometric to a CAT(0) cube complex. Prove thatG is quasi-isometric to a CAT(0)

cube complex. (This holds when G is hyperbolic [27].)

Problem 13.40. Is every CAT(0) space (with a proper cocompact group action) quasi-

isometric to a CAT(0) cube complex?

Problem 13.41. Challenge: Give an example of two groupsG1, G2 that are quasi-isometric,

but where G1 is the fundamental group of a compact nonpositively curved cube complex,

and G2 has property (T ).

Problem 13.42. Characterize the groups acting metrically properly [or freely] on CAT(0)

cube complexes that have a quadratic isoperimetric function. (One expects a characterization

in terms of properties of a wallspace structure on G.)

Problem 13.43. Let G be hyperbolic relative to abelian groups, and suppose G has a cyclic

hierarchy terminating in free-abelian groups (that is, at each step the amalgamated subgroup

is is either trivial or cyclic). Is G virtually a limit group? (This is related to special cube

complexes through Sela’s retractive towers.)

Problem 13.44. LetG act on a CAT(0) cube complex X̃ with amenable [or even aTmenable]

vertex stabilizers, trivial edge stabilizers, and finitely many orbits of hyperplanes. Is G
aTmenable? (See [46, 49] for the finite stabilizer case).

Problem 13.45. LetG be a hyperbolic group that splits as a graph of hyperbolic groups with

aTmenable vertex groups. Show that G is aTmenable.



The cubical route to understanding groups 1095

Problem 13.46. Let G be an aTmenable hyperbolic group. Let h be an infinite order ele-

ment. Show that G/〈〈hn〉〉 is aTmenable for sufficiently large n.

Problem 13.47. Does every f.g. raag G admit a faithful discrete affine representation? If

not all raags, then which special G admit such representations? See [15] for the case when

G is free.

Problem 13.48. DoesG satisfy Kaplansky’s zero divisor conjecture hold whenG acts freely

on a CAT(0) cube complex? That is, does the group ring R[G] have no zero-divisors when

R is an integral domain? (G need not satisfy the unique product property as Promislow’s

example [51] acts freely on CAT(0) cube complex.)

Problem 13.49. Let P (Γ) be the ring of formal power series with variables equal to the ver-

tices of Γ, and where two such variables commute if the corresponding vertices are adjacent.

Let U be the group of units of P (Γ). Suppose G ⊂ U is a f.g. subgroup. Is G (virtually) a

subgroup of a raag?

Problem 13.50. Let G be the fundamental group of a special cube complex. Suppose that

G is not a surface group nor free. DoesG contain an infinite index subgroup that is not free?

DoesG contain a surface subgroup? (It suffices to prove this whenG is not free andG splits

as an amalgam of a free group along a malnormal subgroup.)

Problem 13.51. LetG be the fundamental group of a nonpositively curved complex complex

X . Let cd(G) denote the cohomological dimension of G. Prove that for 0 ≤ k ≤ cd(G)
there is a subgroupHk ⊂ G with cd(Hk) = k. Arguing by induction on the dimension, this

is equivalent to showing that for some hyperplane Y of X , cd(π1Y ) ≥ cd(G)− 1.

Conjecture 13.52. Every lattice in hyperbolic space acts properly and cocompactly on a

CAT(0) cube complex. This is still open for uniform arithmetic lattices [6]. (In the nonuni-

form case one should conclude: either relatively cocompactly or virtually cocompactly.) The

same for geometrically finite subgroups.

Problem 13.53. Suppose G is a word-hyperbolic group that acts properly and cocompactly

on a CAT(0) cube complex. Prove that G is a discrete subgroup of Isom(Hn) for some n.

Problem 13.54. Let M be a hyperbolic m-manifold. Let J be a geometrically finite sub-

group of π1M . Prove that for some n ≥ m there is (virtually?) a discrete represen-

tation π1M → Isom(Hn) and a hyperplane Hp ⊂ Hn such that J is the preimage of

Stabilizer(Hp).
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A guide to (étale) motivic sheaves

Joseph Ayoub

Abstract. We recall the construction, following the method of Morel and Voevodsky, of the trian-

gulated category of étale motivic sheaves over a base scheme. We go through the formalism of

Grothendieck’s six operations for these categories. We mention the relative rigidity theorem. We

discuss some of the tools developed by Voevodsky to analyze motives over a base field. Finally, we

discuss some long-standing conjectures.
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1. Introduction

The (co)homological invariants associated to an algebraic variety fall into two classes:

(a) the algebro-geometric invariants such as higher Chow groups (measuring the com-

plexity of algebraic cycles inside the variety) and QuillenK-theory groups (measuring

the complexity of vector bundles over the variety);

(b) the class of transcendental invariants such as Betti cohomology (with its mixed Hodge

structure) and �-adic cohomology (with its Galois representation).

The distinction between these two classes is extreme.

• The algebro-geometric invariants are abstract Abelian groups, often of infinite rank,

carrying no extra structure.1They vary chaotically in families and are not computable

in any reasonable sense.

• On the other hand, transcendental invariants are concrete groups of finite rank (over

some coefficient ring) carrying a rich extra structure. Together with their extra struc-

ture, they vary “continuously” in families.

Nevertheless, all these invariants are expected to be shadows of some master invariants,

called the motives of the algebraic variety. The algebro-geometric invariants are expected to

be groups of morphisms, extensions and higher extensions between these motives and other

basic ones (such as Tate motives), while each of these motives realizes (i.e., gives rise) to a

multitude of transcendental invariants of different types that, a priori, look poorly related.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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One of the ultimate goals of the theory of motives is to serve as a bridge between the
above two classes of cohomological invariants.

Until now, establishing a fully satisfactory theory of motives has defied all attempts.

Thinking about it as a bridge between (a) and (b), one can describe the present status of the

theory as a broken bridge or, better, as a union of two half-bridges that, for the moment, fail

to meet.

• The first half bridge, the one starting from (a), is a theory of motives that gives a

satisfactory framework for understanding the algebro-geometric invariants.

• The second half-bridge, the one starting form (b), is a theory of motives that encapsu-

lates the transcendental invariants and endows them with universal extra structures.

Concerning the second half-bridge, we just mention few highlights. In the pure case, i.e.,
for smooth and proper varieties, an approach was pioneered by Grothendieck [20]. Roughly

speaking, Grothendieck’s idea was to “decompose” smooth and proper varieties into “co-

homological atoms” called pure numerical motives using certain algebraic cycles whose

existence would be guaranteed by his (yet unproven) Standard Conjectures [12]. Later on,
Deligne [11] and then André [2] made Grothendieck’s approach unconditional by replacing

algebraic cycles with absolute Hodge cycles and motivated cycles respectively. In the mixed
case, i.e., for possibly open and singular varieties, an approach was invented by Nori (un-

published, but see [23, §5.3.3] for an account) based on his weak Tannakian reconstruction

theorem which is an abstract devise yielding an Abelian category out of a representation of

a diagram (aka., quiver). The main geometric ingredient behind most results about Nori’s

motives is the so-called Basic Lemma which can be considered as an enhanced form of the

Lefschetz hyperplane theorem. In all these approaches (in the pure and mixed cases), the

outcome is a Tannakian (and hence Abelian) category of motives whose fundamental group

is the so-called motivic Galois group. It is also important to note here a crucial drawback:

except the original construction of Grothendieck which is conditional on the Standard Con-

jectures, all available unconditional constructions of Abelian categories of motives depend

on transcendental data (namely, a Weil cohomology theory such as Betti cohomology or �-
adic cohomology). For this reason, the existence of the “true” Abelian category of motives

is still considered to be an open question.2

The present article is mainly concerned with the first half-bridge, i.e., the one starting

from (a). Here the outcome of the theory is a triangulated category of motives whose groups

of morphisms are blends of the algebro-geometric invariants of algebraic varieties (and more

precisely, their higher Chow groups). If the existence of such categories was part of the

Grothendieck motivic picture, it was probably Beilinson and Deligne who first expressed the

hope that such categories might be easier to construct than their Abelian counterparts. And

indeed, three different constructions of triangulated categories of motives appeared in the

nineties by Hanamura [13–15], Levine [22] and Voevodsky [29] (see also its precursor [28]).

1To avoid confusion, we mention that the kind of extra structures we have in mind are those that can be given

by the action of some group of symmetries such as the Galois group of the base field or, more generally, the

fundamental group of a Tannakian category such as the category of mixed Hodge structures. It should be mentioned

here that higher Chow groups are expected to carry a filtration, the conjectural Bloch–Beilinson filtration, with quite

remarkable properties.

2Over a field of characteristic zero, it can be shown that if the “true” Abelian category of mixed motives exists,

then it must be equivalent to Nori’s category, and its subcategory of semi-simple objects must be equivalent to

André’s category. (The equivalence between André’s and Deligne’s categories is another story as it would require a

weak form of the Hodge Conjecture.)
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Although, the three categories were found to be equivalent, Voevodsky’s construction [29]

attracted most attention due to its beauty, simplicity and potential.

Nearly a decade later, it was realized (based on work of Morel and Cisinski–Déglise)

that a mild modification of Voevodsky’s construction, yields an even simpler (and certainly

as beautiful) construction of the same (up to equivalence) triangulated category of motives

at least if torsion is neglected or, more precisely, if descent for the étale topology is imposed

(which is the right thing to do for many questions concerning integral motives such as the

Hodge and Tate conjectures, existence of a motivic t-structure, etc; see §5.2). This simplified

construction is more in the spirit of the construction of the Morel–Voevodsky A1-homotopy

category [25] (and more precisely its stabilization that was worked out by Jardine [19]) and

has the advantage of giving the correct triangulated categories over any base scheme.3 These

triangulated categories are denoted byDAét(S; Λ), where S is the base scheme and Λ is the

ring of coefficients, and their objects are calledmotivic sheaves over S or simply S-motives;4
they are the subject of this paper.

The organization is as follows. In §2 we give the details of the construction ofDAét(S; Λ).
We hope to convince the reader that this construction is simple and natural. In §3 we explain

the basic operations that one can do on motivic sheaves; the story here is parallel to what

one has in the context of étale and �-adic sheaves although the construction of the operations
follows a different route. One should consider the formalism of the six operations as a tool to

reduce questions about motivic sheaves over general bases to questions about motives over

a point (i.e., the spectrum of a field). In order for this formalism to be of any use, one needs

information about motives over fields. In §4 we start discussing results about the internal

structure of the category of motives over a field. More precisely, we give a concrete de-

scription of the group of morphisms between certain motives; such groups are usually called

motivic cohomology. Here all the results are due to Voevodsky and this is the place where

the extra complexity in his original construction pays off. In particular, we recall the original

construction of Voevodsky in §4.1 and explain in §4.2 how it permits the computation of

motivic cohomology. In §5 we list some of the big open questions concerning motives. It is

these conjectures that need to be solved for having a satisfactory theory of motivic sheaves

and filling the gap between the two half-bridges discussed above.

2. Construction

In this section, we go through the construction of the categories DAét(S; Λ) of étale mo-
tivic sheaves (or motivic sheaves for short) over a base scheme S and with coefficients in a

commutative ring Λ. This construction is a slight variation of Voevodsky’s original construc-
tion of his DMét(S; Λ) [24, 29] (see Remark 4.3 for more precisions). In fact, it is really a

simplification of the latter as sheaves with transfers get replaced by ordinary sheaves. The

category DAét(S; Λ) should be also considered as the linearized counterpart of the Morel–

Voevodsky stable A1-homotopy category in the étale topology SHét(S) [19, 25]. In fact,

both categories DAét(S; Λ) and SHét(S) are constructed in a uniform way in [6, Chapitre

4] as special cases of categories SHT
M(S) by choosing M to be the category of Λ-modules

3The original construction of Voevodsky is also known to give the correct triangulated categories when the base

scheme is normal. However, the question remains open for more general base schemes (but see Remark 4.6).

4It is common to use the terminology “étale motivic sheaves”. However, as the main article concerns motives in

the étale topology, we use the shorthand “motivic sheaves”.
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or the category of simplicial symmetric spectra.

In order to keep the technicalities as low as possible, we will be using Verdier localization

of triangulated categories [27] instead of the more natural/satisfactory Bousfield localization

of model categories [16] which is usually employed in this context. We start by recalling

Verdier localization.

2.1. A technical tool: Verdier localization. Recall that a triangulated category T is an

additive category endowed with an autoequivalence A !→ A[1] and a class of distinguished
triangles which are diagrams of the form

A
α→ B

β→ C
γ→ A[1] (2.1)

satisfying a list of axioms. In particular, given a distinguished triangle as above, one has

β ◦ α = 0 and γ ◦ α = 0. Moreover, the distinguished triangle (2.1) is determined by the

map α : A→ B up to an isomorphism, which is in general not unique. Nevertheless, it will

be sometimes convenient to abuse notation by writing C = Cone(α) (and thus pretending

that C depends canonically on α). Of course, this notation is inspired from topology: one

thinks about a distinguished triangle (2.1) as an abstract version of a cofibre sequence. An

important fact to keep in mind is the following: α is an isomorphism if and only if Cone(α)
is zero.

Now, let T be a triangulated category and E ⊂ T a full subcategory closed under sus-

pensions and desuspensions (i.e., under application of the powers [n], positive and negative,

of the autoequivalence [1]) and under cones. (Such an E is called a triangulated subcategory
of T .) In this situation, we have (see [27, Théorème 2.2.6]):

Proposition 2.1. There exists a triangulated category T /E , called the Verdier quotient of T
by E , which is universal for the following two properties.

i) There is a canonical triangulated functor T → T /E which is the identity on objects
(in particular T and T /E have the same class of objects).

ii) For every A ∈ E , one has A � 0 in T /E .
Remark 2.2. The construction of T /E goes as follows. Consider the class of arrows SE in

T given by

SE = {α : A→ B | Cone(α) ∈ E}.
The axioms satisfied by the class of distinguished triangles imply that SE admits a “calculus

of fractions”. The Verdier quotient is then defined by

T /E := T [(SE)
−1].

In words, T /E is the category obtained by formally inverting the arrows in SE .5 This ex-

plains why the Verdier quotient is also called a localization.

2.2. An almost correct construction in two steps. The category DAét(S; Λ) is obtained
from the derived category of étale sheaves on smooth S-schemes by formally forcing two

simple properties. In this subsection, we discuss these properties and explain how to force

them successively. This yields a slightly naive notion of motivic sheaves. The correct notion

will be given in §2.3.

5Needless to say that we are ignoring some set-theoretical issues here.
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2.2.1. Some notation. From now on, Λ will always denote a commutative ring that we call

the ring of coefficients. (In practice, Λ is Z, Q, a subring of Q or a quotient of Z. However,
it is sometimes useful to take for Λ a number ring, a number field, a local field, etc.) Given

a set E, we denote by Λ⊗ E =
⊕

e∈E Λ · e the free Λ-module generated by E.
For simplicity, all schemes will be separated and the reader will not loose much by as-

suming that all schemes are also Noetherian of finite Krull dimension.

Let S be a base scheme. We denote by Sm/S the category of smooth S-schemes.6 We

endow Sm/S with the étale topology ([3, Exposé VII]) and we denote by Shvét(Sm/S; Λ)
the category of étale sheaves with values in Λ-modules. If no confusion can arise, objects of

Shvét(Sm/S; Λ) will be simply called étale sheaves on Sm/S. Given a smooth S-scheme

X , we denote by Λét(X) := aét(Λ ⊗ X) the étale sheaf associated to the presheaf U ∈
Sm/S !→ Λ⊗HomS(U,X). This gives a Yoneda functor

Λét : Sm/S → Shvét(Sm/S; Λ) (2.2)

which one should consider as the first/obvious linearization of the category of smooth S-
schemes, a necessary step for passing from S-schemes to S-motives.

The following lemma is left as an exercise and will not be used elsewhere. It shows that

étale sheaves on Sm/S have transfers along finite étale covers.

Lemma 2.3. Let X and U be smooth S-schemes and assume that S is normal. Then
Λét(X)(U) is the free Λ-module generated by closed integral subschemes Z ⊂ U ×S X
such that the normalization of Z is étale and finite over U .

The category Shvét(Sm/S; Λ) possesses a monoidal structure. If M and N are étale

sheaves on Sm/S, then M ⊗Λ N is simply the étale sheaf associated to the presheaf U ∈
Sm/S !→ M(U)⊗Λ N (U). If there is no risk of confusion, we will write −⊗− instead of

− ⊗Λ − for the tensor product of Λ-modules and sheaves of Λ-modules. Given two smooth

S-schemes X and Y , it follows readily from the definitions that

Λét(X)⊗ Λét(Y ) � Λét(X ×S Y ).

Said differently, the functor Λét is monoidal (when Sm/S is endowed with its Cartesian

monoidal structure).

2.2.2. First step: A1-localization. To motivate what follows, we note that, for a schemeU ,
the projectionA1×U → U (whereA1 = Spec(Z[t]) is the affine line) induces isomorphisms

in most cohomology theories (for instance, in Betti cohomology if U ∈ Sm/C, in �-adic
cohomology if � is invertible on U , in algebraic K-theory if U is regular, etc). Thus, it is

natural to expect the motives of U and A1 × U to be isomorphic.

To impose this in a “homologically correct” manner, we consider the derived category

D(Shvét(Sm/S; Λ)) of the Abelian category Shvét(Sm/S; Λ). Let TA1 be the smallest tri-

angulated subcategory of D(Shvét(Sm/S; Λ)) which is closed under arbitrary direct sums

and containing the 2-terms complexes

[. . .→ 0 → Λét(A
1 × U) → Λét(U) → 0 → . . .] (2.3)

6Recall that smooth implies in particular locally of finite presentation. One may also restrict to smooth quasi-

projective S-schemes and even to smooth quasi-affine S-schemes as these will define equivalent sites for the étale

topology.
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for all smooth S-schemes U . (In the above complex, the nonzero map is induced by the

obvious projection A1 × U → U .) Then defineDAeff, ét(S; Λ) to be the Verdier quotient of
D(Shvét(Sm/S)) by TA1 :

DAeff, ét(S; Λ) := D(Shvét(Sm/S; Λ))/TA1 .

The categories DAeff, ét(S; Λ) and D(Shvét(Sm/S; Λ)) have the same objects, that is com-

plexes of étale sheaves on Sm/S; however, a morphism inD(Shvét(Sm/S; Λ)) whose cone
belongs to TA1 gets inverted inDAeff, ét(S; Λ). As a matter of fact, the map Λét(A1 ×U) →
Λét(U), whose cone is the complex (2.3), is an isomorphism inDAeff, ét(S; Λ).

Definition 2.4. An object of DAeff, ét(S; Λ) is called an effective motivic sheaf over S (or

simply an effective S-motive). Given a smooth S-scheme X , then Λét(X), viewed as an

object ofDAeff, ét(S; Λ), is called the effective homological motive ofX and will be denoted

byMeff(X).

Definition 2.5. Let us denote by DAeff, ét
ct (S; Λ) the smallest triangulated subcategory of

DAeff, ét(S; Λ) closed under direct summands and containing the motivesMeff(X) forX ∈
Sm/S of finite presentation. Effective motivic sheaves in DAeff, ét

ct (S; Λ) are called con-
structible.

Remark 2.6. The category DAeff, ét(S; Λ) (as well as D(Shvét(Sm/S; Λ))) inherits the

monoidal structure of Shvét(Sm/S; Λ). If M• and N• are complexes of étale sheaves on

Sm/S (i.e., objets of DAeff, ét(S; Λ)), then their tensor product (M ⊗ N )• is the total

complex associated to the bi-complex M• ⊗ N•.

2.2.3. Second step: naive stabilization. In this subsection, we give a low-tech (and slightly

naive) construction yielding the categoryDAét, naive(S; Λ)which, nevertheless, captures the
essence of the category DAét(S; Λ) (see Remark 2.7).

The stabilization here refers to the process of rendering the Tate motive invertible for the

tensor product.

To motivate this process, we need to explain another simple fact about the cohomology

of algebraic varieties. To fix ideas, we consider �-adic cohomology H∗
� for schemes over an

algebraically closed field k in which � is invertible. The reduced cohomology of the pointed

(by infinity) projective line (P1
k,∞) is given by

H∗
� (P

1
k,∞) � Z�(−1)[−2]

where, as usual, Z�(−1) is the dual of the Tate module Z�(1) = Limn∈N μ�n(k). Hence,
seen as an object of the derived categoryD(Z�), the complexH∗

� (P
1
k,∞) has total rank one

and, equivalently, is invertible for the tensor product. It is the latter property that we want to

impose on the motivic level.

To this effect, let L := Λét(P1
S ,∞S) be the étale sheaf on Sm/S given by the cokernel

of the inclusion Λ(∞S) ↪→ Λét(P1
S). Seen as an object of DAeff, ét(S; Λ), L is the reduced

effective homological S-motive of the pointed S-scheme (P1
S ,∞S). We will refer to L as the

Lefschetz motive; it is the motive that corresponds to the constant complex of �-adic sheaves
Z�(1)[2] over S (for � invertible inOS).7 However, it is easy to see that L is not an invertible

7This is consistent with what we said before: the �-adic cohomology of (P1
k,∞) is Z�(−1)[−2] and hence its

�-adic homology is Z�(1)[2]; it is the latter that should corresponds to the homological motive of (P1
k,∞).
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object ofDAeff, ét(S; Λ). Therefore, one is lead to invert it formally by considering

DAét, naive(S; Λ) := DAeff, ét(S; Λ)[L−1].

An objet of DAét, naive(S; Λ) consists of a pair (M,m) where M ∈ DAeff, ét(S; Λ) and
m ∈ Z. The group homDAét, naive(S;Λ)((M,m), (N,n)) of morphisms between two such

objets is given by

lim−→
r≥−min(m,n)

homDAeff, ét(S;Λ)(M ⊗ Lr+m, N ⊗ Lr+n). (2.4)

With this definition, it is easy to see that the endofunctor − ⊗ L on DAeff, ét(S; Λ) corre-
sponds to the functor (M,m) !→ (M,m+ 1) on DAét, naive(S; Λ) which is an equivalence

of categories with inverse (M,m) !→ (M,m− 1).
The formula (2.4) is reminiscent to the formula computing stable homotopy groups ot a

topological space. This analogy suggests already that, as in topology, it is technically more

convenient to use the formalism of spectra for inverting L. This is indeed the right method

and will be explained in §2.3.

Remark 2.7. The category DAét, naive(S; Λ) suffers many technical defects. For instance,

it is not a triangulated category and it doesn’t have arbitrary direct sums. However, mod-

ulo these technical defects, DAét, naive(S; Λ) is essentially the right category of S-motives.

More precisely, under some technical assumptions,8 its full subcategory DAét, naive
ct (S; Λ)

consisting of pairs (M,m) with M ∈ DAeff, ét
ct (S; Λ), is equivalent to the category

DAét
ct(S; Λ) of constructible motives (see Definition 2.11 below), which is certainly the

most interesting part of DAét(S; Λ).

2.3. The definitive construction. This subsection can be skipped by the reader who is

satisfied by the almost correct construction explained in §2.2. The goal here is to invert in

a “homologically correct” manner the Lefschetz motive L = Λét(P1
S ,∞S) for the tensor

product. In fact, we will treat the localization (§2.2.2) and the stabilization (§2.2.3) in one

single step!

We will borrow the machinery developed by topologists in the context of stable homo-

topy theory [1, 30] for inverting the (pointed) 1-dimensional sphere S1 for the smash prod-

uct. The only difference is that, instead of considering S1-spectra (for the smash product),

we will consider L-spectra (for the tensor product).

Definition 2.8. An L-spectrum (of étale sheaves on Sm/S) is a pair

E = ((En)n∈N, (γn)n∈N)
where En is an étale sheaf on Sm/S and γn : L ⊗ En → En+1 is a morphism of sheaves

called the n-th assembly map. We refer to the sheaf En as the n-th level of the L-spectrum
E .

A morphism of L-spectra f : E → E ′ is a collection of morphisms of sheaves fn : En →
E ′n that commute with the assembly maps, i.e., such that fn+1 ◦ γn = γ′n ◦ (idL⊗ fn) for all
n ∈ N. We denote by SptL(Shvét(Sm/S; Λ)) the category of L-spectra. This is an Abelian

category.

8Such as S being Noetherian, of finite Krull dimension and of pointwise finite �-cohomological dimension for

very prime � which is not invertible in Λ.
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Remark 2.9. The functor Evp : E !→ Ep, sending an L-spectrum to its p-th level admits a

left adjoint

SuspL : Shvét(Sm/S; Λ) → SptL(Shvét(Sm/S; Λ)).

If F is a complex of sheaves on Sm/S, then SuspLF is given by

(SuspLF)n =

{
0 if n ≤ p− 1,
L⊗n−p ⊗ F if n ≥ p,

with the obvious assembly maps. Usually, Sus0L is called the infinite suspension functor and
is denoted by Σ∞L .

We will constructDAét(S; Λ) as a Verdier localization of the derived category

D(SptL(Shvét(Sm/S; Λ)))

of L-spectra over Sm/S. For this, we consider the smallest triangulated subcategory TA1–st

(“st” stands for “stable”) of the latter closed under arbitrary direct sums and containing the

complexes

[. . .→ 0 → SuspLΛét(A
1 × U) → SuspLΛét(U) → 0 → . . .] (2.5)

[. . .→ 0 → Susp+1
L (L⊗ Λét(U)) → SuspLΛét(U) → 0 → . . .] (2.6)

for all smooth S-schemes U and all p ∈ N. (In the first complex above, the nonzero map

is induced by the projection to the second factor; in the second complex above, the nonzero

map is the map of L-spectra given by the identity starting from level p+ 1.) We now define

a new triangulated category as a Verdier quotient

DAét(S; Λ) := D(SptL(Shvét(Sm/S; Λ)))/TA1–st.

Definition 2.10. An object ofDAét(S; Λ) is called a motivic sheaf over S (or simply an S-
motive). Given a smooth S-schemeX, then Σ∞L Λét(X), viewed as an object ofDAét(S; Λ),
is called the homological motive ofX and will be denoted byM(X).

Definition 2.11. Let us denote by DAét
ct(S; Λ) the smallest triangulated subcategory of

DAét(S; Λ) closed under direct summands and containing the motives M(X)(−p)[−2p] :=
SuspL Λét(X) for p ∈ N andX ∈ Sm/S of finite presentation. Motivic sheaves inDAét

ct(S; Λ)
are called constructible.

Remark 2.12. It can be shown thatDAét(S; Λ) is a triangulated category admitting arbitrary

direct sums. Therefore, the construction via L-spectra resolves the technical defects of the
categoryDAét,naive(S; Λ) constructed in §2.2.3.

Definition 2.13. For p ∈ N, denote byΛS(p) (or simplyΛ(p)) the S-motive Sus0L(L
⊗p)[−2p]

and ΛS(−p) (or simply Λ(−p)) the S-motive Susp(Λ)[2p]. These are the Tate motives over

S. We also define

Hp
L(S; Λ(q)) := homDAét(S;Λ)(ΛS(0),ΛS(q)[p])

for p, q ∈ Z. These groups are called the étale (or Lichtenbaum) motivic cohomology of S
(with coefficients in Λ).
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2.4. Complements. From Definition 2.10, a motivic sheaf over S is simply a complex of

L-spectra on Sm/S, i.e., essentially a sequence of complexes of étale sheaves on Sm/S.
This is of course deceiving and slightly misleading. The point is that every complex of L-
spectra is isomorphic in DAét(S; Λ) to a stably A1-local complex of L-spectra and it is the

latter that deserves better to be called a motivic sheaf. Our goal in this paragraph is to explain

this in some detail. We start with the effective case. (Below, Hi
ét(−;A) stands for the étale

hyper-cohomology with coefficients in a complex of étale sheaves A.)

Definition 2.14. Let F be a complex of étale sheaves on Sm/S. We say that F is A1-local
if for all U ∈ Sm/S and i ∈ Z, the map

Hi
ét(U ;F) → Hi

ét(A
1 × U ;F),

induced by the projection to the second factor, is an isomorphism.

Remark 2.15. A1-locality is important for the following reason. Let E and F be two com-

plexes of étale sheaves on Sm/S. Then, if F is A1-local, the natural homomorphism

homD(Shvét(Sm/S;Λ))(E ,F) → homDAeff, ét(S;Λ)(E ,F)

is an isomorphism. In words, computing morphisms between effective motivic sheaves can

be performed in the more familiar derived category of étale sheaves when the target is A1-

local. The next result gives, in theory, a way to reduce to this favorable case.

Lemma 2.16. There is, up to a unique isomorphism, a triangulated endofunctor LocA1 of
D(Shvét(Sm/S; Λ)) endowed with a natural transformation id → LocA1 such that the fol-
lowing two properties are satisfied for every complex F of étale sheaves on Sm/S:

• LocA1(F) is A1-local, and

• F → LocA1(F) is an A1-weak equivalence (i.e., becomes an isomorphism in the
categoryDAeff, ét(S; Λ)).

LocA1 is called the A1-localization functor.

Remark 2.17. If one adopts the convention that an “effective S-motive” is an A1-local

complex of sheaves on Sm/S, then the effective motive of a smooth S-scheme X would be

given by LocA1(Λét(X)). Therefore, understanding the A1-localization functor is of utmost

importance in the theory of motives!

Remark 2.18. One of the drawback of the abstract construction is that it gives no infor-

mation about the A1-localization functor. We will explain in §4.2 how Voevodsky is able

to overcome this crucial difficulty (sadly, only when S is the spectrum of a field) using his

theory of homotopy invariant presheaves with transfers.

We now turn to the stable setting.

Definition 2.19. Let K = ((Kn)n∈N, (γn)n∈N) be a complex of L-spectra of étale sheaves
on Sm/S. We say that K is stably A1-local if the following two properties are satisfied for

all U ∈ Sm/S, i ∈ Z and n ∈ N:

i) the map

Hi
ét(U ;Kn) → Hi

ét(A
1 × U ;Kn),

induced by the projection to the second factor, is an isomorphism;
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ii) the map

Hi
ét(U ;Kn) → Hi+2

ét ((P1,∞)× U ;Kn+1),

induced by the n-th assembly map, is an isomorphism.

Remark 2.20. Stably A1-local complexes of L-spectra are important for the same reason as

the one explained in Remark 2.15.

Remark 2.21. Let K be a stably A1-local complex of L-spectra. Writing K(n) for the

complex Kn[−2n], the two properties in Definition 2.19 gives the familiar isomorphisms:

i) H∗
ét(A

1 × U ;K(n)) = H∗
ét(U ;K(n));

ii) H∗
ét((A

1 � 0)× U ;K(n)) � H∗
ét(U ;K(n))⊕H∗−1

ét (U ;K(n− 1)).

Lemma 2.22. There is, up to a unique isomorphism, a triangulated endofunctor LocA1–st
of D(SptL(Shvét(Sm/S; Λ))) endowed with a natural transformation id → LocA1–st such
that the following two properties are satisfied for every complex of L-spectra K:

• LocA1–st(K) is stably A1-local, and

• K → LocA1–st(K) is a stable A1-weak equivalence (i.e., becomes an isomorphism in
DAét(S; Λ)).

Remark 2.23. As in the effective case, if one adopts the convention that an “S-motive” is

a stably A1-local complex of L-spectra, then the motive of a smooth S-scheme X would be

given by LocA1–st(Σ
∞
T Λét(X)).

2.5. Relative rigidity theorem. When the characteristic of Λ is non-zero, the category

DAét(S; Λ) has a very simple description. Indeed, one has the following (see [9, Théorème

4.1]):

Theorem 2.24. Let n ∈ N � {0} be an integer invertible in O(S). If Λ is a Z/nZ-algebra
(and S satisfies some mild technical hypothesis9), then there is an equivalence of categories

DAét(S; Λ) � D(Sét; Λ)

where D(Sét; Λ) is the derived category of étale sheaves on Sét (the small étale site of S).

Remark 2.25. Theorem 2.24 is a relative version of a well-known result of Suslin–Voevodsky

[29, Proposition 3.3.3 of Chapter 5] stating the same conclusion for the categoryDMét(S; Λ)
when S is a field.

Remark 2.26. From a certain perspective, Theorem 2.24 is disappointing. Indeed, its shows

that the categories DAét(S; Λ) are too simple to capture the complexity of the torsion in

Chow groups. This is not so surprising as it is well-known that higher Chow groups do

not satisfy étale descent. A way around this is to replace in the construction “étale” by

“Nisnevich” which yields the categoriesDA(S; Λ). The latter “see” the higher Chow groups

integrally (but also other things like oriented Chow groups).

9These hypothesis are satisfied when S is excellent.
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Remark 2.27. From another perspective, Theorem 2.24 is encouraging. Indeed, it is also

well-known that integrality in Chow groups is chaotic in general. For instance, there are

famous counterexamples (the first ones by Atiyah–Hirzebruch [4, Theorem 6.5] and Kollár

[21, page 134–135]) to the integral Hodge and Tate conjectures. Imposing étale descent

forces a better organization in the integral structure of higher Chow groups. As a matter of

fact, it has been shown recently by Rosenschon–Srinivas [26] that the Hodge and Tate con-

jectures can be “corrected” integrally by replacing the Chow groups by their étale version.10

See also Remark 5.7 below for another (but related) reason to be happy about Theorem 2.24.

3. Operations on motivic sheaves

In this section, we review the functorialities of the categories of motivic sheaves. As for the

classical “cohomological coefficients” (in the sense of Grothendieck), one has for motivic

sheaves the Grothendieck six operations formalism and Verdier’s duality. One also has the

nearby cycles formalism, but this will not be discussed here (see [6, Chapitre 4] and [9]).

3.1. Operations associated to morphisms of schemes. In this subsection, we will recall

the construction of the formalism of the four operations f∗, f∗, f! and f !, associated to a

morphism of schemes f , in the context of motivic sheaves.

3.1.1. Ordinary inverse and direct images. Let f : T → S be a morphism of schemes.

Then f induces a pair of adjoint functors:

f∗ : Shvét(Sm/S; Λ)
��

�� Shvét(Sm/T ; Λ) : f∗. (3.1)

The functor f∗ is easy to understand; given an étale sheaf G over Sm/T , one has f∗G(U) :=
G(T ×S U) for all U ∈ Sm/S. The functor f∗ is characterized by its property of commuting

with arbitrary colimits and by the formula

f∗Λét(U) � Λét(T ×S U) (3.2)

for all U ∈ Sm/S.
The adjunction (3.1) can be derived yielding an adjunction on the level of effective mo-

tivic sheaves

Lf∗ : DAeff, ét(S; Λ) ��
�� DAeff, ét(T ; Λ) : Rf∗. (3.3)

It can also be extended to L-spectra and then derived yielding an adjunction on the level of

motivic sheaves

Lf∗ : DAét(S; Λ) ��
�� DAét(T ; Λ) : Rf∗. (3.4)

These functors are triangulated.

10For a smooth algebraic variety X over a field k, the étale Chow groups of X can be defined by the formula

(see Definition 2.13)

CHn
ét(X) := H2n

L (X;Z(n)) = homDAét(k;Z)(M(X),Z(n)[2n])

(or, equivalently, using DMét(k;Z) instead of DAét(k;Z)). When k = C, Rosenschon and Srinivas construct in

[26] a cycle map CHn
ét(X) → H2n(X(C),Z) and show that if the Hodge conjecture holds for the rational Chow

groups (i.e., for CHn
Q(X) := CHn(X) ⊗ Q) then it also holds integrally for the étale Chow groups. They also

show a similar statement for the Tate conjecture.
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Remark 3.1. The formula (3.2) still holds for the left derived functors Lf∗ in (3.3) and

(3.4). In words, Lf∗ takes the homological motive of an S-scheme U to the homological

motive of the T -scheme T ×S U (in the effective and non-effective settings).

Lemma 3.2. Assume that f is smooth. Then, the functor f∗ admits a left adjoint

f� : Shvét(Sm/T ; Λ) → Shvét(Sm/S; Λ).

If V ∈ Sm/T , then f�Λét(V/T ) = Λét(V/S). Moreover, f� can be left derived yielding left
adjoints to Lf∗ on the level of motivic sheaves:

Lf� : DAeff, ét(T ; Λ) → DAeff, ét(S; Λ) and Lf� : DAét(T ; Λ) → DAét(S; Λ).

Remark 3.3. The existence of a left adjoint to f∗, when f is smooth, is part of the formalism

of the six operations of Grothendieck. However, in the classical setting, this property is one

of the deepest, whereas for motivic sheaves one has it for free!

3.1.2. A list of axioms. From now on, we will drop the “L” and “R” when dealing with the
operations Lf∗, Lf� and Rf∗.

Let SCH be the category of all schemes andTR the 2-category of triangulated categories.
Then, the 2-functor

DAét(−; Λ) : SCH → TR
f !→ f∗

satisfies the following list of axioms. (Only one of these axioms fails to hold forDAeff, ét(−,Λ),
namely the sixth!)

1. DAét(∅; Λ) is equivalent to the zero triangulated category.
2. For every morphism of schemes f : T → S, the functor f∗ : DAét(S; Λ) →

DAét(T ; Λ) admits a right adjoint f∗.

3. For every smooth morphism f : T → S, the functor f∗ : DAét(S; Λ) → DAét(T ; Λ)
admits a left adjoint f�. Moreover, given a cartesian square

T ′
g′

��

f ′
��

T

f
��

S′
g

�� S,

the natural exchange morphism f ′� ◦ g′∗ → g∗ ◦ f� is an isomorphism.

4. For every closed immersion i with complementary open immersion j, the pair (i∗, j∗)
is conservative (i.e., if a motive M satisfies i∗M � 0 and j∗M � 0, then M � 0).
Moreover, the counit of the adjunction i∗ ◦ i∗ → id is an isomorphism.

5. If p : V → S is the projection of a vector bundle, then the unit of the adjunction

id → p∗p∗ is an isomorphism.

6. If f : T → S is smooth and s : S → T is a section of f (i.e., f ◦ s = idS), then the

functor f� ◦ s∗ is an autoequivalence ofDAét(S; Λ).

We will call such a 2-functor an extended stable homotopical 2-functor.
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Remark 3.4. Except the fourth axiom, all these axioms follow readily from the construction.

For instance, the fifth axiom is a consequence of the A1-localization and the sixth axiom

follows from inverting the Lefschetz motive (for the tensor product).

The fourth axiom (aka., the locality axiom) is due to Morel–Voevodsky [25, Theorem

2.21 of §3.2]. (In loc. cit., only the non-Abelian setting is considered but their proof can

be adapted to the additive setting without much difficulties; see [6, §4.5.3].) It is the proof

of this axiom that dictates some of the choices that were made by Morel–Voevodsky (and

repeated in §2) such as considering sheaves on smooth S-schemes instead of sheaves on

larger categories of S-schemes.

Remark 3.5. That these axioms suffices to derive the full formalism of the four operations

is due to Voevodsky (unpublished). The details of the verifications were carried on in [5,

Chapitre 1].

For later use, we make the following definition.

Definition 3.6. Given an OS-module M on a scheme S, we set Th(M) = p� ◦ s∗ where
p : V(M) → S is the projection of the associated vector bundle and s is its zero section. By
the sixth axiom, Th(M) is an autoequivalence ofDAét(S; Λ), called the Thom equivalence.
Its inverse is denoted by Th−1(M).

Remark 3.7. It is customary to denote Th(O⊕r
S )(−)[−2r] by (−)(r) and to call it the r-th

Tate twist (extended to negative integers in the usual way).

If M has constant rank r, it can be shown that Th(M)[−2r] is canonically equivalent to
(−)(r) (see [9, Remarque 11.3]). This is a special property ofDAét(−; Λ) called orientation.

3.1.3. The proper base change theorem. One of the most surprising fact here is that the

axioms of §3.1.2 imply quite formally the so-called proper base change theorem. (All the
axioms are used in the proof of this theorem; as a matter of fact, this theorem fails for the

categoriesDAeff, ét(−; Λ).)

Theorem 3.8. Given a cartesian square

Y ′
g′

��

f ′
��

Y

f
��

X ′ g
�� X

with f proper, the exchange morphism g∗ ◦ f∗(M) → f ′∗ ◦ g′∗(M) is an isomorphism for
every motivic sheaf M ∈ DAét(Y ; Λ).

To prove Theorem 3.8, it is enough to treat the case where f is the projection pn : PnX →
X . (This reduction is easy and classical; it appears for example in [3, Exposé XII].) To treat

the case of pn, one needs a completely different approach than the one used in [3, Exposés

XII et XIII]. Here is a sketch of the proof following [5, Chapitre 1]:

Proof. In contrast with the étale formalism, here we define the extraordinary push-forward

functors f! before knowing the validity of the proper base change theorem. That this can

be done relies on the (easy) existence of a left adjoint h� to h
∗ when h is smooth. Indeed,
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assuming that f is smoothable, i.e., can be written as f = h ◦ i with h smooth and i a closed
immersion, one sets

f! := h� ◦ Th−1(Ωh) ◦ i∗ (and dually f ! := i! ◦ Th(Ωh) ◦ h∗).
A big deal of effort in [5, Chapitre 1] is devoted to showing that these definitions are inde-

pendent (up to natural isomorphisms) of the choice of the factorization f = h ◦ i and that

there are coherent choices of isomorphisms (f ◦ f ′)! � f! ◦ f ′! , for composable smoothable

morphisms, etc. Assuming this is granted, it is then easy to explain the strategy of the proof

of Theorem 3.8.

From the third axiom in §3.1.2 and the definition of the extraordinary direct image, it

is quite easy to see that one has an exchange isomorphism g∗ ◦ f! � f ′! ◦ g′∗ (without any
condition on f beside being smoothable).

On the other hand, one can construct a natural transformation αf : f! → f∗ (which is

reminiscent to the obvious morphism from cohomology with support to ordinary cohomol-

ogy). It is defined as follows. Consider the commutative diagram

Y

Δ
��

Y ×X Y pr1
��

pr2
��

Y

f
��

Y
f

�� X.

From the square, one gets a natural exchange morphism f! ◦ pr1∗ → f∗ ◦ pr2! (deduced by

adjunction from the exchange isomorphism given by the third axiom of §3.1.2). Applying

this to Δ∗ = Δ! and using the identifications pr1∗ ◦ Δ∗ = id and pr2! ◦ Δ! = id, one gets
the promised natural transformation.

This is said, we are left to showing that pn! → pn∗ is an isomorphism for pn : Pn×X →
X . This is done by induction on n using a rather tricky argument. The point is to realize that

it suffices to show that

pn! ◦ p∗n → pn∗ ◦ p∗n and pn! ◦ p!n → pn∗ ◦ p!n
are both isomorphisms. Indeed, assuming this, one can then define two maps p∗n → p!n by

the compositions of

pn∗
η→ pn∗ ◦ p∗n ◦ pn∗ � pn! ◦ p∗n ◦ pn∗ δ→ pn!

pn∗
η→ pn∗ ◦ p!n ◦ pn! � pn! ◦ p!n ◦ pn! δ→ pn!

A direct computation shows that these morphisms give respectively left and right inverses to

the canonical morphism pn! → pn∗. See [5, §1.7.2] for the complete proof.

3.1.4. Extraordinary direct and inverse images. As said in the sketch of the proof of

Theorem 3.8, one has, for f smoothable (and, in particular, for f quasi-projective), two

extraordinary operations f ! and f!.
Once the proper base change theorem is established, it is possible to extend the extraordi-

nary operations to the case where f is of finite presentation (but not necessarily smoothable)
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following the receipt of [3, Exposé XVII]. Indeed, by Nagata’s compactification, we may

factor f = f ◦ j where f is proper and j is an open immersion. Then, one sets f! := f∗ ◦ j�.
The proper base change theorem implies that this is independent of the choice of the com-

pactification.11

In any case, one has an adjunction (f!, f
!) for every finite type separated morphism. (The

existence of f ! is local over the source of f and hence, one may reduce to the case where f
is quasi-projective.)

Theorem 3.9. For every cartesian square

Y ′
g′

��

f ′
��

Y

f
��

X ′ g
�� X

with f of finite type and g arbitrary, one has exchange isomorphisms

g∗f! � f ′! g′∗ and f !g∗ � g′∗f ′!.

3.2. Closed monoidal structures and Verdier duality. As constructed in §2.3, the cate-

gory DAét(S; Λ), possesses a monoidal structure. However, as it is the case for the smash

product of spectra in topology, it is not possible to define the tensor product directly on the

category SptL(Shvét(Sm/S; Λ)) of L-spectra. Different ways around this difficulty have

been developed in topology. One of these ways is via the notion of symmetric spectra [18]

that had been greatly generalized in [17].

More specifically, one considers the Abelian category SptΣL(Shvét(S; Λ)) of symmetric

L-spectra of étale sheaves on Sm/S. A symmetric L-spectrum is an L-spectrum E endowed

with an action of the n-th symmetric groupΣn on its n-th level En and such that the assembly

maps are equivariant in an appropriate sense.

The point is that the extra symmetry that symmetric L-spectra possess permits to define

a symmetric and associative tensor product on SptΣL(Shvét(Sm/S; Λ)). The latter induces

a tensor product on D(SptΣL(Shvét(Sm/S; Λ))) and its localization with respect to its tri-

angulated subcategory T Σ
A1–st defined similarly as in §2.3. Finally, one can show that this

localization yields an equivalent category to DAét(S; Λ) inducing a monoidal structure on

the latter.

Unfortunately, the details of this story are quite technical and boring. We refer the inter-

ested reader to [6, Chapitre 4] for a complete (and self-contained) account (using however

the language of model categories).

Theorem 3.10. The categoriesDAét(S; Λ) are symmetric monoidal and closed (i.e., A⊗−
admits a right adjoint Hom(A,−) for every S-motive A). The operations f∗ are monoidal
functors. One also has the usual formulas

f!(−)⊗ − � f!(− ⊗ f∗(−)), f !Hom(−,−) � Hom(f∗(−), f !(−)),

f∗Hom(f∗(−),−) � Hom(−, f∗(−)), Hom(f!(−),−) � f∗Hom(−, f !(−)), etc.

11It is worth noting here that checking that f∗ ◦ j� is independent of the factorization f = f ◦ j is easier than

checking that h� ◦ Th(Ωh) ◦ i∗ is independent of the factorization f = h ◦ i. The reason for this is that “the

category of compactifications” is filtered whereas the “category of smoothifications” is not.
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Finally, assuming that S is of finite type over a characteristic zero field k and denoting
πS to projection to the point, there is a dualizable objet in DAét

ct(S; Λ) given by π
!
SΛ(0).

Another important result to mention here is:

Theorem 3.11. If X is a proper and smooth S-scheme of pure relative dimension d, then
M(X) admits a strong dual given byM(X)(−d)[−2d].

Proof. This follows from Theorem 3.10 using that

M(X) � (πX)!(πX)!ΛS(0) and M(X)(−d)[−2d] � (πX)∗(πX)∗ΛS(0)

where πX : X → S is the structural morphism.

4. Motives over a base field

The formalism of Grothendieck’s six operations is a powerful tool for reducing questions

about general sheaves to questions about lisse sheaves and, ultimately, to questions about

(germs of) sheaves on generic points of varieties. For this formalism to be of any use in the

context of motivic sheaves, one needs informations about motives over fields.

In this section we list some of what is known concerning motives over a field; everything

here is essentially due to Voevodsky. When dealing with Voevodsky’s motives, we mostly

work over a base field k except for the construction §4.1.1 and the comparison theorem

§4.1.2 where this restriction is irrelevant. The use of the étale topology results in inverting

automatically the exponent-characteristic of k.12 Therefore, there is no need in assuming k
perfect in quoting [24, 29].

4.1. Voevodsky’s motives. Many theorems about motives over a field and morphisms be-

tween them are obtained by using a slightly more complicated construction than the one

explained in §2. The extra complication is the requirement of having transfers and is the key

for many concrete computations.

4.1.1. The construction. The construction of Voevodsky’s category DMét(k; Λ) follows
exactly the same pattern as the construction given in §2 with only one difference: one uses the

Abelian category of étale sheaves with transfers instead of the Abelian category of ordinary

étale sheaves. To expand on this, we need some notation.

Let S be a base scheme that we assume to be Noetherian. In [29, Chapter 2], a category

of finite correspondences SmCor/S was constructed. This is an additive category whose

objects are smooth S-schemes. Given two smooth S-schemes U and V , the group of mor-

phisms from U to V in SmCor/S is denoted by CorS(U, V ). When S is regular, this group

is freely generated by integral and closed subschemes Z ⊂ U ×S V such that the projection

12This is well-known and easy. Indeed, if k = Fp, then the Artin–Schreier exact sequence of étale sheaves on

Sm/Fp:

0 → Z/pZ → O (−)p→ O → 0,

and the fact that O is A1-contractible, show that the constant étale sheaf Z/pZ is also A1-contractible. From this,

it is easy to deduce that multiplication by p is invertible in DAét(Fp; Λ) and more generally in DAét(S; Λ) for
every Fp-scheme S. The same holds true for DMét(Fp; Λ) andDMét(S; Λ).
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Z → U is finite and surjective over a connected component ofU . Moreover, the composition

of finite correspondences is then given by the usual formula involving Serre’s multiplicities.

Definition 4.1. A presheaf with transfers on Sm/S is a contravariant additive functor from

SmCor/S to the category of Λ-modules. An étale sheaf with transfers is a presheaf with

transfers Sm/S which is, after forgetting transfers, a sheaf for the étale topology. Étale

sheaves with transfers form an Abelian category that we denote by Strét(Sm/S; Λ).

Example 4.2. For a smooth S-scheme X , we denote by Λtr(X) the presheaf with transfers

on Sm/S represented by X , i.e., given by Λtr(X)(U) = CorS(U,X) ⊗Z Λ for all U ∈
Sm/S. In fact, Λtr(X) is an étale sheaf with transfers on Sm/S. After forgetting transfers,

one has an inclusion of étale sheaves Λét(X) ⊂ Λtr(X).

As said before, replacing everywhere “Shvét(Sm/S; Λ)” by “Strét(Sm/S; Λ)” in §2

yields Voevodsky’s triangulated categories of S-motives. More precisely, one obtains two

versions.

• The category of effective Voevodsky S-motives given by

DMeff, ét(S; Λ) := D(Strét(Sm/S; Λ))/T tr
A1

where T tr
A1 is defined similarly as TA1 in §2.2.2 (writing “Λtr” instead of “Λét” in (2.3)).

• The category of (non-effective) Voevodsky S-motives given by

DMét(S; Λ) := D(SptLtr
(Strét(Sm/S; Λ)))/T tr

A1–st

where Ltr = Λtr(P1
S ,∞S) and T tr

A1–st is defined similarly as TA1–st in §2.3 (writing

“Λtr” and “Ltr” instead of “Λét” and “L” in (2.5) and (2.6)).

Remark 4.3. Strictly speaking, Voevodsky [24] considered categories

DMeff, ét
− (S; Λ) and DMét

gm(S; Λ)

for S the spectrum of a perfect field (with finite cohomological dimension). The category

DMeff, ét
− (S; Λ) is the triangulated subcategory of DMeff, ét(S; Λ) consisting of complexes

that are bounded on the right. The category DMeff, ét
gm (S; Λ) is the triangulated subcat-

egory of DMeff, ét(S; Λ) generated by Λtr(X) for X ∈ Sm/S of finite type. Finally,

DMét
gm(S; Λ) is obtained from DMeff, ét

gm (S; Λ) by formally inverting tensoring by the Lef-

schetz motive Ltr (i.e., using the naive construction as in §2.2.3); it is also the triangulated

subcategory of DMét(S; Λ) generated by S-motives of finite type smooth S-schemes and

their negative Tate twists.

4.1.2. The comparison theorem. There is a pair of adjoint functors:

atr : Shvét(Sm/S; Λ)
��

�� Strét(Sm/S; Λ) : otr. (4.1)

The functor otr is a forgetful functor: it takes an étale sheaf with transfers to its underlying

étale sheaf. The functor atr is characterized by its property of commuting with arbitrary

colimits and by the formula

atr(Λét(U)) � Λtr(U)
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for all U ∈ Sm/S. The adjunction (4.1) can be derived yielding an adjunction on the level

of effective S-motives:

Latr : DAeff, ét(S; Λ) ��
�� DMeff, ét(S; Λ) : Rotr. (4.2)

It can also be extended to spectra and then derived yielding an adjunction on the level of

(non-effective) S-motives:

Latr : DAét(S; Λ) ��
�� DMét(S; Λ) : Rotr. (4.3)

Theorem 4.4. If S is normal (and some technical assumptions are satisfied), the functors in
(4.3) are equivalences of categories.

Proof. When Λ is a Q-algebra, Theorem 4.4 was proved by Morel, for S the spectrum of a

field, and was generalized later by Cisinski–Déglise.13 In [9, Annexe B], we simplified the

proof of Cisinski–Déglise and extended their result to more general coefficient rings using

Theorem 2.24.

Remark 4.5. If the normal scheme S has characteristic zero and if Λ is a Q-algebra, then

the functors in (4.2) are also known to be equivalences of categories by [8, Théorème B.1].

(This is indeed a stronger statement!)

Remark 4.6. It is unknown if Theorem 4.4 holds for general base schemes (e.g., reducible).

This is because the theory of finite correspondences over non-normal schemes is quite com-

plicated. A related (and probably equivalent) open question is to know if the 2-functor
DMét(−; Λ) satisfies the localization axiom (i.e., the fourth axiom in §3.1.2). In fact, this

is the only missing property that prevents one to promoteDMét(−; Λ) into an extended sta-
ble homotopical 2-functor. But, in our opinion, these questions have minor impact for the

following reasons:

1. A stable homotopical 2-functor H, say over quasi-projective S-schemes with S reg-

ular, is essentially determined by its values on smooth S-schemes. Indeed, if X is

a quasi-projective S-scheme, one can choose an embedding i : X ↪→ Y with Y a

smooth S-scheme. Then, thanks to the locality axiom, H(X) can be described as the

subcategory of H(Y ) consisting of those objects supported on X , i.e., those objects

that vanish when pulled back along the complement of i. Therefore, Theorem 4.4 tells

thatDAét(−; Λ) is, up to an equivalence, the unique stable homotopical 2-functor that
extends Voevodsky’s category of motives over regular bases.

2. A stressed before, the construction of DAét(S; Λ) is really simpler than DMét(S; Λ).
Moreover, the advantage of using transfers in defining motivic sheaves disappears

when the base scheme S has dimension ≥ 1. Indeed, all the results that will be

explained in §4.2 require the base to be a field.

Remark 4.7. The reader might wonder which construction of categories of motives is better.

The answer is that both DAét(S; Λ) and DMét(S; Λ) have their advantages and disadvan-

tages.

13In fact, Morel and Cisinski–Déglise prove a stronger result where the étale topology is replaced by the Nis-

nevich topology. Indeed, they prove thatDM(k;Q) is equivalent to a direct summandDA(S;Q)+ ofDA(S;Q)
whose complement vanishes when étale descent is imposed.
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• DAét(S; Λ) is simpler14 and is the correct category of motivic sheaves for any S. On
the other hand, one does not have a concrete model for the A1-localization functor

when S is the spectrum of a field.

• Over a field, one has the theory of homotopy invariant presheaves with transfers which

is a powerful tool to study the category DMét(k; Λ). However, over a curve and

higher dimensional bases, this advantage disappears as the theory of homotopy in-

variant presheaves with transfers breaks down completely. Moreover, it is unclear if

DMét(S; Λ) is the correct category when S is not normal.

4.2. Homotopy invariant presheaves with transfers. Let F be a presheaf on Sm/k. We

say that F is homotopy invariant if F(U) → F(A1 × U) is an isomorphism for all U ∈
Sm/k. For simplicity, we assume that the exponent characteristic of k is invertible in Λ. A
basic theorem of Voevodsky [29, Chapter 3] states the following.15

Theorem 4.8. Let F be a homotopy invariant presheaf with transfers on Sm/k (with val-
ues in Λ-modules). Then aét(F), the étale sheaf associated to F , is an A1-local object of
D(Strét(Sm/k; Λ)). More concretely,

Hi
ét(U ; aét(F)) → Hi

ét(A
1 × U ; aét(F))

is an isomorphism for all i ∈ N and U ∈ Sm/k.

Remark 4.9. All the hypothesis in this theorem are necessary. For instance, the theorem

is wrong for presheaves without transfers. It is also wrong if k is replaced by a curve or a

higher dimensional base.

One reason why this theorem is important is that it enables one to construct very easily

the A1-localization of any complex of étale sheaves with transfers. To explain this, we need

some notation.

Definition 4.10. For n ∈ N, set

Δn = Spec(Z[t0, . . . , tn]/(t0 + . . .+ tn − 1)).

These schemes form a cosimplicial scheme Δ•. Given a complex of presheaves with trans-

fers K•, we define SingA
1

(K) to be the total complex of the double complex hom(Δ•;K•).
(Recall that hom(Δn,F)(U) = F(Δn × U) for any presheaf F and any U ∈ Sm/k.) The

functor SingA
1

is called the Suslin–Voevodsky construction.

Corollary 4.11. LetK be a complex of étale sheaves with transfers. Then LocA1(K) is given
by the Suslin–Voevodsky construction SingA

1

(K).

Proof. It follows formally from the construction that the canonical map K → SingA
1

(K)

is an isomorphism in DMeff, ét(k; Λ). It remains to show that SingA
1

(K) is A1-local. But

again, it follows formally form the construction that the homology presheaves of the complex

14For instance, it is very convenient not to have to worry about transfers when discussing realizations!

15In loc. cit., the result is established for the Nisnevich topology. However, it is an exercise to deduce the result

for the étale topology using Suslin’s rigidity theorem [24, Theorem 7.20] and the homotopy invariance of étale

cohomology with values in Λ/nΛ for n prime to the exponent-characteristic of k.
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SingA
1

(K) are homotopy invariant (and admits transfers). Applying Theorem 4.8 to these

and using a spectral sequence, one deduces that the maps

Hi
ét(U, Sing

A1

(K)) → Hi
ét(A

1 × U ; SingA1

(K))

are isomorphisms.

4.3. Application: morphisms between motivic sheaves. A basic question about motivic

sheaves is the following.

Question. Given two motivic sheaves M and N over a base scheme S, how to compute the
group homDAét(S;Λ)(M,N )?

As said before, in theory, the formalism of the six operations reduces the above question

to computing some groups of morphisms (usually many) inDAét(k; Λ) � DMét(k; Λ) (for
various fields k). Therefore, it is important to have a solution of this question when the base

is a field.

Let k be a field and assume that the exponent-characteristic of k is invertible in Λ. We

will explain the solution of the above question in the case where M and N are the motives

of smooth k-varieties X and Y respectively. Hence, we concentrate on the groups

homDMét(k;Λ)(M(X);M(Y )[n]).

For simplicity, we assume that Y is proper of pure dimension dY . By Theorem 3.11, we

know that M(Y ) has a strong dual given by M(Y )∨ = M(Y )(−dY )[−2dY ]. Hence, we are
left to compute the étale motivic cohomology groups

Hp
L(Z; Λ(q)) := homDMét(k;Λ)(M(Z); Λ(q)[p])

(for Z = X ×k Y and q = dY and p = n+ 2dY ). The answer is as follows.

Theorem 4.12. Let X be a smooth k-variety. Then there is a canonical isomorphism

homDMét(k;Λ)(M(X); Λ(q)[p]) � Hp−2q
ét (X; SingA

1

Λtr(P
1
k,∞k)

∧q) (4.4)

where the right-hand side is the étale hypercohomology of X with values in the complex of
étale sheaves SingA

1

Λtr(P1
k,∞k)

∧q .

Remark 4.13. Theorem 4.12 is an immediate consequence of Theorem 4.8. Another the-

orem of Voevodsky asserts that the complex SingA
1

Λtr(P1
k,∞k)

∧q satisfies Nisnevich de-

scent. Therefore, if Λ is a Q-algebra (or when “étale” is replaced by “Nisnevich”), the

right hand side in (4.4) is simply the cohomology of a concrete complex of cycles, namely

Cork(Δ
• ×X, (P1

k,∞k)
∧q)⊗ Λ.

5. Conjectures

There are many outstanding conjectures concerning motives and algebraic cycles. Some of

these seem desperately out of reach such as the Hodge and Tate conjectures (that already

made an appearance in Remark 2.27) or the Grothendieck and Kontsevich–Zagier conjec-

tures on periods.
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In this section we will discuss two other conjectures that, in comparison with the previous

ones, seem more approachable. These two conjectures (as well as the previous ones) predict

relations between algebro-geometric objects and transcendental objects, and each one of

these conjectures fills some part of the gap between the two half-bridges discussed in the

Introduction.

5.1. The conservativity conjecture. Let k be a field of characteristic zero and let σ : k ↪→
C be a complex embedding. Given a finite type k-scheme X , denote by Xan the set X(C)
endowed with its analytic topology. One has a Betti realization functor [7]

B∗X : DAét(X; Λ) → D(Xan; Λ) (5.1)

where D(Xan; Λ) is the derived category of sheaves of Λ-modules on Xan. A central con-

jecture concerning motives states the following.

Conjecture 5.1 (Conservativity Conjecture). The functor B∗X , restricted to the subcategory
DAét

ct(X; Λ), is conservative. Said differently, if M is a constructible motivic sheaf on X
such that B∗X(M) � 0, then necessarily M � 0.

Lemma 5.2. It suffices to prove Conjecture 5.1 for X = Spec(k) and Λ = Q.

Proof. The reduction to the case Λ = Q follows from Theorem 2.24. The reduction to the

caseX = Spec(k) is a consequence of the compatibility of the Betti realization with inverse

images.

Conjectures such as the Hodge and Tate Conjectures concern existence of algebraic cy-

cles (and hence elements in motivic cohomology). On the contrary, Conjecture 5.1 concerns

motives which makes it look more approachable. However, the next remark suggests that

this hope might be too naive.

Remark 5.3. It is well-known that the category of Chow motives with rational coefficients

embeds fully faithfully inside DMét(k;Q). Applying Conjecture 5.1 to Chow motives one

obtains the following particular case. LetX and Y be smooth and projective varieties over k
of pure dimension d. Let γ ∈ CHd

Q(X×kY ) be an algebraic cycle inducing an isomorphism
in cohomology γ : H∗(Y (C);Q)

∼→ H∗(X(C);Q). Then, there exists an algebraic cycle
δ ∈ CHd

Q(Y ×k X) such that δ ◦ γ = [ΔX ] and γ ◦ δ = [ΔY ]. This reveals a strong

analogy/connexion between the Conservativity Conjecture and the Standard Conjecture of

Lefschetz type [12].

Remark 5.4. On a more optimistic note, we mention that we formulated in [8, Conjecture

B of §2.4] a concrete (although very complicated) conjecture that would implies Conjecture

5.1. We like to think that this is a non trivial step (although, probably, a very small one)

towards a potential solution of the Conservativity Conjecture.

5.2. Existence of a motivic t-structure. Keep the notation as in §5.1.

Conjecture 5.5 (t-Structure Conjecture). The category DAét
ct(X; Λ) carries a t-structure,

called the motivic t-structure, making B∗X exact. (Said differently, if M is a constructible
X-motive which belongs to the heart of the motivic t-structure, thenB∗X(M) is concentrated
in degree zero, i.e., is isomorphic to a constructible sheaf onXan.) Moreover, this t-structure
is independent of the choice of the complex embedding σ.
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Remark 5.6. Conjecture 5.5 can be reduced to the case where X = Spec(k) using gluing

techniques. Moreover, these gluing techniques can also be used to define perverse motivic

t-structures assuming the existence of the usual motivic t-structure.

Remark 5.7. It is important to note that we do not assume Λ to be aQ-algebra in Conjecture

5.5. Indeed, the t-Structure Conjecture is expected to hold integrally for DAét
ct(X; Λ); in

fact, assuming thatDAét
ct(S;Q) admits a motivic t-structure, it is easy to construct a motivic

t-structure onDAét
ct(X;Z) using Theorem 2.24.

This is particularly significant as it is well-known that DMgm(k; Λ) (The “Nisnevich”
variant ofDMét

gm(k; Λ)) cannot admit a motivic t-structure unless Λ is aQ-algebra. (A sim-

ple explanation for this was given by Voevodsky [29, Remark on page 217].) This indicates

that, in view of a future theory of Abelian motivic sheaves, it is more natural to impose étale

descent.

Remark 5.8. In [8, Conjecture A of §2.4] we formulated a very concrete conjecture that,

together with Conjecture B of loc. cit., should imply Conjecture 5.5 and more. (By “more”,

we have in mind the property that DAét
ct(S; Λ) is equivalent to the derived category of the

heart of its motivic t-structure.)

Remark 5.9. As a measure of the deepness of Conjectures 5.1 and 5.5, we mention that they

imply the Standard Conjectures in characteristic zero (as explained by Beilinson [10]). They

imply many other well-established conjectures such as the Bloch Conjecture for surfaces

and its generalizations, Kimura finiteness for Chow motives, the existence of the Bloch–

Beilinson filtration on Chow groups, etc.
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Isogenies, power operations, and homotopy theory

Charles Rezk

Abstract. The modern understanding of the homotopy theory of spaces and spectra is organized

by the chromatic philosophy, which relates phenomena in homotopy theory with the moduli of one-

dimensional formal groups. In this paper, we describe how certain phenomena K(n)-local homotopy

can be computed from knowledge of isogenies of deformations of formal groups of height n.
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1. Introduction

A sweeping theme in the study of homotopy theory over the past several decades is the

chromatic viewpoint. In this philosophy, phenomena in homotopy theory are associated to

phenomena in the theory of one-dimensional formal groups. This program was instigated by

Quillen’s observation of the connection between complex bordism and formal group laws

[32].

The chromatic picture is best described in terms of localization at a chosen prime p.
After one localizes at a prime p, the moduli of formal groups admits a descending filtration,

called the height filtration. According the chromatic philosophy, this filtration is mirrored

by a sequence of successive approximations to homotopy theory. The difference between

adjacent approximation is the nth chromatic layer, which is associated by the chromatic

picture to formal groups of height n. Phenomena in the nth chromatic layer may be detected

using cohomology theories called Morava K-theories and Morava E-theories, which are

typically (and unimaginatively) denoted K(n) and En. A good recent introduction to this

point of view is is [17].

In this paper I will describe a particular manifestation of the chromatic picture, which

relates “K(n)-local homotopy theory” (i.e., one manifestation of the nth chromatic layer in

homotopy theory), to isogenies of formal groups.

Some of the results describe here are joint work with others, including some not-yet-

published work with Matt Ando, Mark Behrens, and Mike Hopkins.

2. Formal groups and localized homotopy theory

We briefly recall the role and significance of formal groups in homotopy theory.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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2.1. Complex orientation and formal groups. Recall that a generalized cohomology the-

ory E∗ is said to be complex orientable if (i) it takes values in graded rings, and (ii) if there
exists an element x ∈ Ẽ∗CP∞ which restricts to the fundamental class in Ẽ∗CP1. To such

a theory is associated a (one-dimensional, commutative) formal group GE , which is the

formal scheme over the ring E∗ with coefficient ring OGE
= E∗CP∞.

Remark 2.1. For a complex orientable theory, a choice of element x as in (ii) gives rise to an
“Euler class” on complex line bundles, defined by ex(L → X) := f∗(x) ∈ E∗(X) where
f : X → CP∞ classifies L, together with a power series Fx(t1, t2) ∈ E∗[[t1, t2]] expressing
the Euler class of a tensor product of lines:

ex(L1 ⊗ L2) = Fx(ex(L1), ex(L2)),

which is an example of a formal group law on E∗. Both ex and Fx depend on the choice of
“coordinate” x ∈ OGE

= E∗CP∞. The formal group GE is a coordinate-free expression of

the collection of formal group laws associated to E, and depends only on the cohomology

theory E itself.

Example 2.1. For a ring R, let HR∗ denote ordinary cohomology with coefficients in R.
For any R, the theory HR∗ is complex orientable, and the resulting formal group GR is the

additive formal group. In fact, if we take x ∈ HR2(CP∞) to be any generator, we have that
Fx(t1, t2) = t1 + t2, and recover the classical addition formula for first Chern classes of

complex line bundles.

Example 2.2. Complex bordism MU∗ is a complex oriented theory, which comes with

a tautological choice of coordinate x ∈ MU2CP∞. Quillen [32] identified the resulting

formal group Fx as the universal formal group law. In coordinate-free language, we may

say that the formal group GMU of complex bordism is the universal example of a formal

group equipped with the data of a choice of coordinate.

All formal groups over a given field of characteristic 0 are isomorphic to the additive

formal group. For a formal groupsG over fields k of characteristic p, there is an isomorphism

invariant called the height of G, which is an element n ∈ Z≥1 ∪ {∞}. For separably closed
k, the height is a complete invariant.

Example 2.3. Fix a prime p. For any height n ∈ Z≥1, there exist complex cohomology

theories whose formal group is one of height n. The standard examples are the Morava
K-theories K(n), whose coefficient ring is K(n)∗ = Fp[v±n ] with vn ∈ K(n)−2(pn−1),

and whose formal group is the Honda formal group of height n.

Example 2.4. For any formal group G0 of height 1 ≤ n < ∞ over a perfect field k, Lubin
and Tate constructed its universal deformation, which is a formal group G defined over the

complete local ringWp[[u1, . . . , un−1]], whose restriction at the special fiber is G0. There is

a corresponding cohomology theory called Morava E-theory, which will play an important

role in our story; see §4.2 below.

Formal groups of infinite height over fields of characteristic p are isomorphic to the

additive formal group. Ordinary homology HFp with mod p coefficients is an example of a

complex oriented theory whose formal group has infinite height.

It is conventional to say that any formal group over a field of characteristic zero has

height 0. Ordinary homology HQ with rational coefficients is an example of a theory with

such a formal group.
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2.2. Localized homotopy theory. Associated to any homology theory E is a correspond-

ing localization functor, first constructed in full generality by Bousfield [10]. Say that a

based space Y is E-local if for any based CW-complex K such that Ẽ∗(K) ≈ 0, the space
Map∗(K,Y ) of based maps is weakly contractible. Bousfield showed that for any space

X , there exists a space XE and a map ηE : X → XE , called the E-localization of X ,

such that (i) the map ηE induces an isomorphism in E-homology, and (ii) XE is E-local.
Furthermore, the operation X !→ XE can be realized functorially.

Example 2.5. For ordinary homology theories E = HR, localization of spaces is well-

behaved in the absence of fundamental groups. For instance, π∗(XHQ) ≈ π∗X ⊗Q if X is

simply connected, and π∗(XHFp
) ≈ (π∗X)∧p if X is simply connected and finite type.

There is an analogous localization construction for spectra. In what follows we will be

most interested in localization with respect to Morava K-theory spectra. In particular, for

every prime p and n ≥ 1, there is a localization functor

X !→ XK(n) : hSpectra → hSpectraK(n) ⊂ hSpectra
from the homotopy category of spectra to the full subcategory ofK(n)-local spectra.

2.3. The functor of Bousfield and Kuhn. It is a remarkable observation of Bousfield[11]

and Kuhn[22] that localization functors on spectra with respect to certain homology theories

(such as MoravaK-theories) actually factor through the underlying space.

Fix a prime p and an integer n ≥ 1. There exists a functor

Φn : Spaces∗ → SpectraK(n) ⊂ Spectra

from pointed spaces toK(n)-local spectra which makes the following diagram commute up

to natural weak equivalence.

Spectra
(−)K(n)

��

Ω∞
��

SpectraK(n)

Spaces∗

Φn

��

The functorΦn is constructed using the existence of periodic phenomena in stable homo-

topy theory [20]. Observe that given any space Y and map g : Y → ΩdY with d ≥ 1, we can
obtain a spectrum E by setting Ekd = Y using the g as the structure map Ekd → ΩdEkd+d
(much as periodic K-theory is obtained from the Bott periodicity map U → Ω2U , though
in our case g need not be an equivalence). Given a based finite CW-complex K and a map

f : ΣdK → K for some d ≥ 1, define a functor ΦK,f : Spaces∗ → Spectra by associating

to a based space X the map

f∗ : Map∗(K,X)
f−→ Map∗(Σ

dK,X) ≈ ΩdMap∗(K,X),

from which we obtain a spectrum ΦK,f (X) as above. The functor ΦK,f (X) has the proper-
ties:

• ΦK,f (ΩX) ≈ ΩΦK,f (X),
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• If X = Ω∞Y is the 0-space of a spectrum Y , then

ΦK,f (Ω
∞Y ) ≈ hocolimk Σ

−kdHom(Σ∞K,Y ) ≈ (Σ∞f)−1Hom(Σ∞K,Y ),

the “telescope” of the function spectrum Hom(Σ∞K,Y ) induced by the map Σ∞f .

Non-trivial examples are provided by a vn-self map, i.e., a pair (K, f) such thatK is a finite

CW complex withK(n)∗K �= 0 and f : ΣdK → K with d ≥ 1 such thatK(n)∗f is an iso-

morphism. (This implies that for any spectrum Y , the map Hom(K,Y ) → f−1Hom(K,Y )
induces an isomorphism onK(n)∗-homology, and thus ΦK,f is seen to be non-trivial.)

Such vn-self maps are plentiful by the periodicity theorem of Hopkins-Smith [20]. Using

this theory, [22] constructs Φfn as a homotopy inverse limit of a suitably chosen family of

functors Σ−qiΦKi,fi ; then Φn(X) := Φfn(X)K(n).

Remark 2.2. Given a vn-self map f ofK, the homotopy groups

π∗ΦK,f (X) ≈ f−1π∗Map(K,X)

are the vn-periodic homotopy groups of the space X , usually denoted v−1
n π∗(X;K) (they

depend on K, but not on the choice of vn-self map f ). As a result, the spectrum Φn(X)
contains information about the vn-periodic homotopy groups of the space X . The extent to

which this information is captured depends in part on the status of the telescope conjecture,
which if true would imply that Φn = Φfn; see the discussion in [23].

Bousfield has developed a theory to effectively compute invariants of Φ1(X) for certain
spaces X , such as spheres and finite H-spaces [13, 14]. In §5, we will outline an approach

to generalize Bousfield’s results to the case of n ≥ 2.

2.4. The Bousfield-Kuhn idempotent. Given a basepoint preserving unstable map f : Ω∞F
→ Ω∞E where E is a K(n)-local spectrum, the K(n)-local Bousfield-Kuhn functor gives

rise to a map of spectra

F
ι−→ FK(n) ≈ ΦnΩ

∞F
Φn(f)−−−−→ Ω∞E ≈ E,

and hence an infinite loop space map

φn(f) := Ω∞(Φn(f) ◦ ι) : Ω∞F → Ω∞E.

If f = Ω∞g for a map g : F → E of spectra, then Φn(f) ◦ ι = g. Thus, the function

φn : hSpaces∗(Ω
∞F,Ω∞E)

Φ−→ hSpectra(F,E)
Ω∞−−→ hSpaces∗(Ω

∞F,Ω∞E)

is idempotent, with image precisely the set of homotopy classes of maps Ω∞F → Ω∞E
which are infinite loop maps.

It turns out to be possible to compute something about the map φn(f) (as an unstable
map), when E is a complex oriented cohomology theory to which the character theory of

Hopkins-Kuhn-Ravenel [18] can be applied, such as Morava E-theory. For the purposes

of stating a result, we recall that the Hopkins-Kuhn-Ravenel theory provides a natural ring

homomorphism

χ : E0(X ×BG) →
∏

g∈Gn,p

D ⊗E0 E0(X),
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for any finite groupG, where: X is a finite CW-complex,Gn,p is the set of conjugacy classes
of homomorphism ΛN = (Z/pN )n → G (for N sufficiently large, depending on G), and
DN is a certain faithfully flat extension of E0.

Let f : Ω∞F → Ω∞E be an H-map; i.e., the induced operation F 0(−) → E0(−) is a
group homomorphism. The following computes the operation φn(f).

Theorem 2.3. LetE be aK(n)-local complex orientable theory such that π∗E is a complete
local ring, and let f : Ω∞F → Ω∞E be an H-space map. Then for any finite CW-complex
X, the map

φn(f) : F
0(X) → E0(X)

is given (modulo torsion in E0(X)) by

(φnf)(x) =

n∑
k=0

(−1)kp(
k
2)

(
p−k

∑
A⊆Λ∗1, |A|=pk

χ(f(x̃ ∧ tA))(gA).
)

(2.1)

The inner sum is taken over all subgroups of Λ∗1 = Hom(Λ1, U(1)) of given order; the
map gA : Λ1 → A∗ = Hom(A,U(1)) is the dual homomorphism to the inclusion A ⊆ Λ∗1;
tA : Σ∞+BA

∗ → S0 is the stable transfer map, and x̃ : Σ∞+X → F is the map of spectra
representing x ∈ F 0(X).

It turns out that the inner sum of (2.1) in fact takes values in E0(X) ⊂ D1 ⊗E0 E0(X),
and furthermore this value is divisible by pk, so that the bracketed expression in (2.1) gives

a well-defined element of E0(X) modulo torsion. The statement (2.3) has not appeared in

print elsewhere, but it is a consequence of the methods of [36].

Example 2.6. Let E = Kp be p-completeK-theory. Then the formula of (2.3) becomes

(Φf)(x) = f(x)− p−1χ(f(x̃ ∧ tZ/p))(gZ/p).
In particular, if f : Ω∞F → Ω∞Kp is an H-map such that χ(f(x̃ ∧ tZ/p))(gZ/p) = 0, then
f admits the structure of an infinite loop map. This immediately recovers a well-known

theorem of Madsen-Snaith-Tornehave [31].

There is a generalization of (2.1) for f which is not necessarily an H-map, though it

is too cumbersome to give it here. Formulas of this nature, where the target spectrum is

E = K(n), are obtained in [42].

3. Units and orientations

The Bousfield-Kuhn idempotent can be usefully applied to the study of the units spectrum

of a commutative S-algebra.

3.1. The units of a commutative ring spectrum. Let R be a homotopy associative ring

spectrum. The units space of R is called GL1(R); it is defined by the pullback square of

spaces

GL1(R) ��

��

Ω∞R

��

(π0R)
× �� �� π0R
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For a space X , we have hSpaces(X,GL1(R)) ≈ R0(X)× ⊆ R0(X).
When R is a commutative S-algebra, then GL1(R) admits a canonical structure of a

grouplike E∞-space, induced by the multiplicative structure of R. Write gl1(R) for the

(−1)-connected spectrum which is the infinite delooping of GL1(R), called the units spec-
trum of R.

The units spectrum carries the obstruction to constructing orientations of commutative

S-algebras, as shown by May, Quinn, Ray, and Tornehave in [26]; see [27] and [1] for recent

treatments of this theory. Let f : g → o be a map of (−1)-connective spectra, where o is the
infinite delooping ofBO, the classifying space of the infinite dimensional orthogonal group.

Let BG = Ω∞g denote the infinite delooping of g, and letMG denote the Thom spectrum

of the virtual vector bundle classified by B(Ω∞f) : BG → BO; the spectrumMG admits

(up to weak equivalence) the structure of a commutative S-algebra. Then one can show

that space of commutative S-algebra maps MG → R is weakly equivalent to the space of

null-homotopies of the composite map

g
f−→ o

j−→ gl1(S) → gl1(R).

Thus, understanding the homotopy type of the spectrum gl1(R) is essential to under-

standing G-orientations of R which are realized by maps of commutative S-algebras.

3.2. A “logarithmic” operation. We use the Bousfield-Kuhn functor to obtain information

about theK(n)-localization of gl1(R). To do this, we consider the “shift” map

s : GL1(R)
x �→x−1−−−−−→ Ω∞R.

This shift map is a based map between infinite loop spaces, and thus we may apply the

idempotent operator of §2.4 to it. If R is aK(n)-local commutative S-algebra, we obtain in
this way from this cohomology operation of the form

�n = φn(s) : R
0(X)× → R0(X),

which is “logarithmic”, in the sense that �n(xy) = �n(x) + �n(y). The operation �n is

represented by a map of spectra gl1(R) → R.

Example 3.1. To get a sense of what such an operation provides, consider the following

analogous situation, where E is a rational commutative S-algebra. For any pointed and

connected space X , we can define a group homomorphism

�Q : (1 + E
0
(X))× → E0(X) by �Q(x) = −∑m≥1(1− x)m/m = log(x).

The series defining �Q is converges: because X is connected, 1 − x is nilpotent when re-

stricted to any connected finite CW-complex mapping to X . The operation �Q is in fact

stable: it is represented by a map of spectra (gl1E)≥1 → E (where Z≥n denotes the (n−1)-
connected cover of a spectrum Z).

The above theory applies in this case to give the following.

Theorem 3.1 ([36]). LetE be a MoravaE-theory (2.4), associated to the Lubin-Tate univer-
sal deformation of a height n-formal group. Then its logarithmic operation is given (modulo
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torsion) by the formula

�n(x) =
1

p
log

(
n∏
k=0

( ∏
A⊂Λ∗, |A|=pk

ψA(x)

)(−1)kp(
k
2)−k+1 )

. (3.1)

The functions ψA : E0(X) → D⊗E0 E0(X) are certain natural additive and multiplicative
cohomology operations (described below (4.1)), and log(x) = −∑m≥1(1− x)m/m.

The expression inside “log” in (3.1) is a multiplicative analog of (2.1), with the role of

x !→ χ(f(x̃)∧ tA, gA) in (2.1) replaced by the operation ψA. It turns out that the expression
inside log in (3.1) is in fact contained in E0(X) ⊆ D ⊗E0 E0(X), and is congruent to 1
modulo p; thus evaluating the formal expansion of log at this expression converges p-adically
to an element of E0(X).

Example 3.2. An example of a Morava E-theory spectrum at height 1 is KUp, the p-
completion of complex K-theory. In fact, it is possible to generalize (3.1) in the case of

n = 1 to any K(1)-local commutative S-algebra E, so we will describe the result in this

case [36, Thm. 1.9]. The formula (3.1) takes the form

�1(x) =
1

p
log
(
xp/ψp(x)

)
= −

∑
m≥1

1

pm

(
1 − xp/ψp(x)

)m
. (3.2)

If E isKUp orKOp, the operation ψ
p : E0(−) → E0(−) is the usual pth Adams operation

on p-complete real-or-complexK-theory.

We can do a little better in this case: the operation ψp on E0(−) satisfies a “Frobe-

nius congruence” ψp(x) ≡ xp mod pE0(−); therefore the infinite series of (3.2) con-

verges p-adically. The Frobenius congruence is “witnessed” by a cohomology operation

θp : E0(−) → E0(−), satisfying the identity ψp(x) = xp + p θp(x). Thus we can write

�1(x) =
∑
m≥1

(−1)m
pm−1

m
(θp(x)/xp)m, (3.3)

and (3.3) in fact holds on the nose (i.e., not merely modulo torsion [36, Thm. 1.9]). The right-

hand side of (3.3) recovers the Artin-Hasse logarithm of tom Dieck [43], who originally

realized this operation as as spectrum maps gl1(KUp) → KUp and gl1(KOp) → KOp
without reference to the Bousfield-Kuhn functor.

We can use (3.3), to compute the map �1 on homotopy groups, and we thus recover the

well-known equivalences of connected covers gl1(KUp)≥3
∼−→ (KUp)≥3 and gl1(KOp)≥2

∼−→ (KOp)≥2.

To understand (3.1) in the general case, we can formally pull the operations ψA (which

are ring homomorphisms) out of the logarithmic series, obtaining

�n(x) =
n∑
k=0

(−1)kp(
k
2)Tj(log x) where Tj := p

−k
∑

A⊆Λ∗, |A|=pk
ψA. (3.4)

For x = 1 + y ∈ E0(X)× such that y2 = 0, this becomes

�n(x) =
n∑
k=0

(−1)kp(
k
2)Tj(y). (3.5)
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In particular, taking X to be a sphere, we obtain a formula which computes the effect of

�n : gl1(E) → E on homotopy groups (up to torsion).

To understand how we can compute these operations, we must discuss “power opera-

tions” for K(n)-local commutative rings (such as Morava E-theory). The short answer is

that such operations are controlled by certain isogenies of the formal group associated to the

theory, and in particular the operators Tj are “Hecke operators” for the theory. We will come

back to this in §4.

3.3. Application of the logarithm to orientation problems.

Example 3.3. Orientations ofK-theory. Consider the composite

spin→ o
j−→ gl1(S) → gl1(KOp)

�1−→ KOp. (3.6)

It is a standard calculation that all maps spin = Σ−1(KO≥4) → KOp are null homo-

topic. As �1 is here an equivalence on 2-connected covers (3.2), we immediately see that the

composite of (3.6) is null-homotopic, and thus there must exist a mapMSpin → KOp of

commutative S-algebras. It can be shown that the Atiyah-Bott-Shapiro orientation can be

realized by one such map; see [19, §6.1] for a sketch.

3.4. Application to the string orientation of tmf . With Matt Ando and Mike Hopkins,

we have shown that tmf , the spectrum of topological modular forms, admits a commutative

S-algebra mapMString → tmf which realizes the Witten genus. Our proof only exists in

preprint form, though the result was announced in [19, §6], to which the reader is referred

for background. Here we will only note the way in which the logarithmic operation enters

into the proof.

The key point is to understand the homotopy type of gl1(tmfp), where tmfp is the com-

pletion of tmf at a prime p. General results localizations show that there is a commutative

square of spectra

gl1(tmfp)
�2 ��

�1

��

tmfK(2)

ιK(2)

��

tmfK(1)
γ

�� (tmfK(2))K(1)

which, after taking 3-connected covers, becomes a homotopy pullback. Both tmfK(2) and

tmfK(1) are relatively well-understood objects: tmfK(2) is closely related to Morava E-
theory spectra at height 2, while tmfK(1) is related to the theory of p-adic modular forms.

To understand the homotopy type of gl1(tmfp), we must get our hands on the map γ. It can
be shown that maps tmfK(1) → (tmfK(2))K(1) are characterized (up to homotopy) by their

effect on homotopy groups. Thus, the key is to compute the effect of γ on homotopy groups.

Recall that there is a map π∗tmf → MF∗ to the ring of modular forms (with integer

coefficients), which is an isomorphism up to torsion. Given an element in π2ktmf corre-
sponding to a modular form f of weight k, we use (3.2) to obtain

�1(f) = f
∗(q) := f(q)− pk−1f(qp),

where the result is stated in terms of the q-expansion of f . The series f∗(q) is the q-expansion
of a p-adic modular form, and thus corresponds to an element of π2ktmfK(1).
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When we evaluate �2 at an element of π2ktmf associated to a modular form f , the re-

sult turns out to be again a modular form; i.e., the image of �2 : π∗tmfp → π∗tmfK(2) is

contained in the image of ιK(2) : π∗tmfp → π∗tmfK(2). In fact, (3.5) implies

�2(f) = (1− T1 + pk−1)f,

where T1 is a classical Hecke operator on modular forms (usually written T (p) in this con-

text).

Using these calculations, one can deduce that

γ = (ιK(2))K(1) ◦ (id−U),

where U : tmfK(1) → tmfK(1) is topological lift of the Atkin operator on p-adic modular

forms; see [5] for a construction of this topological lift. This calculation provides enough

control on the homotopy type of gl1(tmfp) to study the set of string-orientations of tmf .

Remark 3.2. These ideas actually allow one to construct (“by hand”) a spectrum map

�tmfp : gl1(tmfp) → tmfp, so that ιK(2) ◦ �tmfp = �2 and ιK(1) ◦ �tmfp = (id−U) ◦ �1.
This fact is in need of a more natural explanation.

Remark 3.3. If f =
∑
anq

n is an eigenform of weight k, then (1 − T1 + pk−1)f =
(1− ap + pk−1)f . In particular, if f is an Eisenstein series, then �2(f) = 0, an observation

which is is key to realizing the Witten genus as a string-orientation.

We note in passing that for an eigenform which is a cusp form and normalized so that

a1 = 1, the expression L(f, s) =
∏
p(1 − app−s + pk−1−2s)−1 is precisely the L-series

associated to the form. The significance of this to homotopy theory remains unclear.

4. Power operations

The notion of a power operation originated in Steenrod’s construction of the eponymously

named operations in ordinary cohomology with coefficients in Fp. A convenient modern

formulation is in terms of structured commutative ring spectra. There are various equivalent

models of such; I will not distinguish among them here, and I will call them commutative
S-algebras; see [15] and [28] for introductions to some of these models.

A (generalized) cohomology theoryX !→ E∗(X) is represented by a spectrumE. IfE is

equipped with the structure of a commutative monoid in the homotopy category of spectra,

then X !→ E∗(X) takes values in graded commutative rings. For any m ≥ 0, there is a

resulting cohomology operation x !→ xm : E0(−) → E0(−) defined by takingmth powers

with respect to the product.

If E is equipped with the structure of a commutative S-algebra, then themth power map

admits a refinement to a “totalmth power operation” of the form

Pm : E0(X) → E0(X ×BΣm),

where BΣm is the classifying space of the symmetric group on m letters. The function Pm
is a multiplicative (but non-additive) natural transformation E0(−) → E0(− × BΣm) of
cohomology groups.
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It is convenient to regard power operations as operations on the homotopy groups of

commutative S-algebras. For a commutative S-algebra R, the power construction deter-

mines gives a function

Pm : π0R→ π0R
BΣ+

m , (4.1)

where RX := Hom(Σ∞X,R), the spectrum of maps from the suspension spectrum of a

pointed space X to R. (Operations in dimensions other 0 can also be obtained, by replacing

BΣ+
m with a suitable Thom spectrum. In the discussion below, I will concentrate on opera-

tions in dimension 0 for simplicity.) Cohomology operations for E∗(X) (such as Steenrod’s
for ordinary cohomology) can be obtained by setting R = EX+ , to be thought of as the ring

of E-valued cochains on X .

Let us fix a commutative S-algebra E. To calculate power operations for commutative

E-algebras R, one must understand the functor R !→ π0(R
BΣ+

m) = R0(BΣm), which in

practice can be non-trivial. The best case scenario is to have a natural “Künneth isomor-

phism”

π∗R
BΣ+

m ≈ π∗R ⊗π∗E π∗E
BΣ+

m , (4.2)

together with calculational control of the rings π∗EBΣ+
m ≈ E−∗BΣm, the E-cohomology

rings of symmetric groups.

This best case scenario is in fact relatively rare. It does hold for HF -algebras, where F
is a field [9]. It holds also for K(n)-local commutative E-algebras, where E is a Morava

E-theory spectrum.

4.1. Power operations in the K(n)-local setting. In 1993, Hopkins and Miller perceived

that a Morava E-theory spectrum must admit an essentially unique commutative S-algebra
structure; the proof is result is in [16]. Therefore MoravaE-theories admit a theory of power

operations; such operations were first originally by Ando [4]1.

Example 4.1. The operations ψA appearing in (3.1) are obtained as power operations for

Morava E-theory, namely as the composite

E0(X)
P

pk−−→ E0(X ×BΣpk) (id×Bi)∗−−−−−−→ E0(X ×BA∗) χ(−,gA)−−−−−→ D ⊗E0 E0(X),

where Ppk is the total power operation for the Morava E-theory, i : A∗ → Σpk is the in-

clusion defined by the left-action of A∗ on its underlying set, where pk = |A∗|. These are
examples of the operations constructed in [4].

The theory of power operations for commutative algebras over MoravaE-theories is now
very largely understood, based mainly on work by Ando, Hopkins, and Strickland, who were

motivated by the problem of rigidifying the Witten genus to a map of spectra [2], along with

some contributions by the author [37].

Our goal in this section is two-fold: to show (i) the homotopy groups π∗R of a K(n)-
local commutativeE-algebraR take values in a categoryQCoh(Def) of sheaves on a moduli

problem of “formal groups and isogenies”, and (ii) the category QCoh(Def) can in practice

be described using a small amount of data, and in fact at small heights can be described

completely explicitly. In addition to the references given below, the material in this section

is developed in detail in the preprint [34].

1In fact, Ando did not make use of the commutative S-algebra structure of E, which was unavailable at the

time, though he does show that the operations he constructs are the same as those obtained from any commutative

S-algebra structure which might exist on E.
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4.2. Deformations and Morava E-theory. We fix a height n formal group (commutative,

one-dimensional) G0 over a perfect field k.
Given a formal groupG over a complete local ring B, a (G0-)deformation structure on

G/B is a pair (i, α) consisting of an inclusion i : k → B/m of fields and an isomorphism

α : i∗G0
∼−→ GB/m of formal groups over B/m. We write D(G/A) = DG0(G/A) for the

set of deformation structures on G/A. Note that if g : A → A′ is a local homomorphism,

there is map g∗ : D(G/A) → D(g∗G/A′) induced by base change.
An isogeny of formal groups over A is a homomorphism f : G → G′ such that the

induced map OG′ → OG on function rings is finite and locally free; we write deg(f) for the
rank of OG as an OG′ -module. Given such an isogeny, there is an induced pushforward map

f! : D(G/A) → D(G′/A) on sets of deformation structures, so that

f∗(i, α) := (i ◦ φr, α′),

where φ(a) = ap is the absolute Frobenius on rings, pr = deg f , and α′ is the unique

isomorphism such that α′ ◦ F r = fB/m ◦ α, where

F r : G→ (φr)∗G

denotes the Frobenius isogeny, i.e., the relative prth power Frobenius defined for any G
over an Fp-algebra.

Remark 4.1. An easy exercise shows that, when Fp ⊆ A, there is an identity F∗ = φ∗ of
maps D(G/A) → D(φ∗G/A).

Given a complete local ring B, let Def0(B) = Def0G0
(B) denote the groupoid so that

• objects are pairs (G, (i, α) ∈ D(G/B)),

• morphisms are isomorphims f : G→ G′ such that f∗(i, α) = (i′, α′).

Proposition 4.2 (Lubin-Tate [24]). All automorphisms in Def0(B) are identity maps (i.e.,
Def(B) is equivalent to a discrete groupoid). There exists a ring A0 and a natural bijection

{local homomorphisms A0 → B} ←→ {iso. classes of objects in Def0(B)}.

There is a (non-canonical) isomorphism A0 ≈ Wpk[[a1, . . . , an−1]].

The tautological object ofDef0(A0) is the universal deformation ofG0. It is the formal

group of Morava E-theory, whose existence follows from the following.

Theorem 4.3 (Morava [30], Goerss-Hopkins-Miller [16]). Given a formal group G0 of
height n over a perfect field, there exists an essentially unique commutative S-algebra E,
which is a complex oriented cohomology theory with π∗E ≈ A0[u, u

−1] with |u| = 2, whose
formal group is the universal deformation of G0.

4.3. The “pile” of deformation structures. We enlarge the groupoid Def0(B) to a cate-

gory Def(B), with the same objects, but so that

• morphisms are isogenies f : G→ G′ such that f∗(i, α) = (i′, α′).
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To each continuous homomorphism g : B → B′ there is an associated pullback functor

g∗ : Def(B′) → Def(B). Thus, Def defines a (pseudo)functor

{complete local rings}op → {categories}.
A stack is a (kind of) presheaf of groupoids. The functor DefG0 gives rise to a more general

kind of object, namely a presheaf of categories on the opposite category of complete local

rings. This more general concept demands a new name; thus, we will speak of DefG0 as the

pile2 of deformations of G0 and its Frobenius isogenies.

There is a category QCoh(Def) of quasicoherent (pre)sheaves of modules over the

structure sheaf ODef of the pile Def . An object of QCoh(Def) amounts to a choice of data

{MB ,Mg} consisting of

• for each complete local ring B, a functorMB : Def(B)op → ModB , and

• for each for each local homomorphism g : B → B′ a natural isomorphism

Mg : B
′ ⊗B MB =⇒MB′ ◦ g∗ : Def(B)op → ModB′ ,

where g∗ : Def(B) → Def(B′) is the functor induced by base change along g,

together with coherence data equatingMg′g with a composition ofMg′ andMg .

Example 4.2. Given G/B, let ωB(G/B) denote the B-module of invariant 1-forms on G.
Because 1-forms can be pulled back along isogenies, this defines an object ω ∈ QCoh(Def).

Example 4.3. Given G/B, let degB(G/B) := B. To an isogeny f : G→ G′, we associate
the map degB(f) : degB(G

′/B) → degB(G/B) induced by multiplication by the integer

deg(f). This defines an object deg ∈ QCoh(Def), the degree sheaf.

4.4. Power operations and QCoh(Def). Let E denote the Morava E-theory associated

to our fixed formal group G0/k.
Recall (4.1) the total power operation Pm : π0R → π0R ⊗π0E E

0BΣm defined for

K(n)-local commutative E-algebras R. The function Pm is multiplicative (i.e., Pm(ab) =
Pm(a)Pm(b)), but not additive. We may obtain a ring homomorphism by passing to the

quotient Am = E0BΣm/Itr of E0BΣm by the ideal Itr ⊆ E0BΣm generated by the

image of all transfers maps from inclusions of the form Σi × Σm−i ⊂ Σm with 0 < i < m.

The composite map

Pm : π0R
Pm−−→ π0R

BΣ+
m ≈ π0R⊗π0E E

0BΣm → π0R⊗π0E E
0BΣm/Itr (4.3)

is a ring homomorphism.

The key to understanding power operations are the following result due to Strickland.

To state it, it is useful to note that we can form a quotient category Def(B)/ ∼ of Def(B)
by formally identifying isomorphic objects (possible exactly because there are no non-trivial

automorphisms in this category), and the projection functor is an equivalence of categories.

We write Defr(B)/ ∼ for the set of morphisms which correspond to isogenies of degree

pr. It is straightforward to show that elements of Defr(B)/ ∼ are in bijective correspon-

dence with pairs (G,H), where G is an object of Def0(B)/ ∼ and H ≤ G is a finite

subgroup scheme of rank pk; the correspondence sends an isogeny to its kernel.

2This term was suggested by Matt Ando.
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Theorem 4.4 (Strickland [39, 40]). There exist complete local rings Ar (for r ≥ 0), finite
and free as A0-modules, so that

{local homomorphisms Ar → B} ←→ Defr(B)/ ∼ .
Furthermore, there is a natural identification of rings

E0BΣpr/Itr ≈ Ar.
As a consequence, the functor B !→ Def(B) from complete local rings to (graded)

categories is represented by a graded affine category object {Ar} in (complete local rings)op.
Thus, QCoh(Def) is equivalent to a category of comodules, whose objects are A0-modules

M equipped with module maps

ψr : M → t
Ar

s ⊗A0 M,

which satisfy an evident coassociativity property. (There are ring maps s, t : A0 → Ar cor-
responding to “source” and “target” in the graded category; we use superscripts to indicate

the corresponding A0-module structures on Ar.) Furthermore, the power operation maps

P pr of (4.3) make π0R into a comodule; i.e., (4.4) refines π0 to a functor

π0 : hCom(E)K(n) → QCoh(Def)

from the homotopy category of K(n)-local commutative E-algebra spectra, to the category

of quasi-coherent sheaves of modules on Def , so that the value of π0(R) at the universal

deformation in Def(A0) precisely the ring π0R.

Remark 4.5. The existence of the functor π0 is essentially an observation of Ando, Hopkins,
and Strickland (see [2]). A construction is given in [37].

4.5. Additional structure. The functor π0 to sheaves on Def admits several additional re-

finements, which we pass over quickly. (Most are discussed in [37]; see [7] for a treatment

of completion.)

• QCoh(Def) is a symmetric monoidal category, and π0 naturally takes values in

QCoh(Def,Com), the category of sheaves of commutative rings in QCoh(Def).

• There is an extension to a functor π∗ : hCom(E)K(n) → QCoh∗(Def,Com), where
the target is a category of graded ring objects in QCoh(Def).

• The output of π∗ is (in a suitable sense) complete with respect to the maximal ideal of

A0.

• The rings π0R satisfy a Frobenius congruence. We say that an object M ∈
QCoh(Def,Com) satisfies this condition if, for all formal groups G/B with Fp ⊆ B,
the map

B
φ ⊗B MB(G, d) ≈MB(φ

∗G,φ∗(d)) =MB(φ
∗G,M∗(d))

F∗−−→MB(G, d)

coincides with the relative pth power map on the ringMB(G, d), for any d ∈ D(G/B).

In terms of the comodule formulation of QCoh(Def,Com), this amounts to saying

that the composite

M
ψ1−−→ A1

s ⊗A0 M
γ⊗id−−−→ (A0/p)⊗A0 M =M/p
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is the pth power map onM , where γ : A1 → A0/p is the map representing Def0 →
Def1 sending G !→ (F : G→ φ∗G).

• The Frobenius congruence for π0R is witnessed by a non-additive operation on π0. To
state this, note that there is A0-module homomorphism ε : A1 → A0 lifting γ : A1 →
A0/p. Using this, we define a homomorphism of abelian groups

Q : π0R
ψ1−−→ A1 ⊗A0 π0R

ε⊗id−−−→ A0 ⊗A0 π0R = π0R,

which satisfies Q(x) ≡ xp mod p. The witness is a (non-additive) natural operation
θ : π0R→ π0R satisfying Q(x) = xp + pθ(x).

Remark 4.6. Mathew, Naumann, and Noel have observed [29] that the mere existence of

a witness for the Frobenius congruence allows one to show that any pr-torsion element in

the homotopy of aK(n)-local commutative E-algebra is nilpotent. Using this together with
the nilpotence theorem of Devinatz-Hopkins-Smith, they prove a conjecture of May: for any

commutative S-algebra R the kernel of the Hurewicz map π∗R → H∗(R,Z) consists of
nilpotent elements.

The outcome of the additional structure outlined above is that there exists a refinement

of the homotopy functor π∗ : hCom(E)K(n) → Mod(E∗) to a functor

π∗ : hCom(EG0
)K(n) → TG0

to a certain algebraically defined category TG0
, whose construction depends only on the

formal group G0/k.

Example 4.4. If G0/k = Gm/Fp, the formal multiplicative group, then EG0 = KUp is

p-complete complexK-theory. The category TG0 is the category of p-complete Z/2-graded
θp-rings described by Bousfield [12].

4.6. The quadratic nature of QCoh(Def). Remarkably, making calculations about ob-

jects in QCoh(Def) is far more tractable than the above suggests. This is because the repre-

senting coalgebra {Ar} is “quadratic”. This means the following: an object of QCoh(Def)
is determined, up to canonical isomorphism, by its underlying moduleM and the structure

map ψ1 : M → A1 ⊗A0
M , which is subject to a single relation, namely that there exists a

dotted arrow in the following diagram of π0E-modules:

M
ψ1 ��

��

t
A1

s ⊗A0
M

id⊗ψ1

��
t
A2

s ⊗A0 M
∇⊗id

��
t
A1

s ⊗A0

t
A1

s ⊗A0 M

(4.4)

where ∇ encodes composition of two morphisms of degree p in Def . In particular, the

category QCoh(Def) can be reconstructed using only knowledge of the rings π0E, A1, and

A2, and the ring homomorphisms s, t, and ∇.

Example 4.5. Multiplicative group. For G0/k = Gm/Fp, the rings Ar ≈ Zp for all r.
An object in QCoh(Def) amounts to a Zp-module M equipped with an endomorphism

ψ : M →M .
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Example 4.6. Height 2. When E is associated to a formal group of height 2, it is possible
to give a completely explicit description ofQCoh(Def), by using explicit formulas obtained

from the theory of elliptic curves. For instance, let G0 be the formal completion of the

supersingular elliptic curve over F2. In this case, A0 = Z2[[a]], A1 = π0E[d]/(d
3 −ad− 2),

and the ring homomorphisms s, t : A0 → A1 are given by s(a) = a and t(a) = a
2+3d−ad2.

The ring A2 is the pullback of

A1
t ⊗A0

s
A1

w⊗id−−−→ A1
s←− A0

where w : A1 → A1 sends w(a) = t(a) and w(d) = a − d2. (The map w classifies the

operation of sending a p-isogeny of elliptic curves to its dual isogeny.) The map Δ is the

evident inclusion map. The above description is outlined (admittedly in very rough form) in

[33]. Zhu [44] has calculated a similar example at the prime 3.

Example 4.7. Height 2, modulo p. It is possible to give a uniform description of this

structure at height 2, if we work modulo the prime. Fix a supersingular elliptic curve

C0 over Fp whose Frobenius isogeny satisfies F 2 = −p (such always exist), and let G0

be its formal completion. Then, following an observation of [21, 13.4.6], we see that

A1/p ≈ Fp[[a1, a2]]/( (a
p
1 − a2)(a1 − ap2) ), so that s, t : A0/p = Fp[[a]] → A1/p send

s(a) = a1 and t(a) = a2; the rings Ar/p can be described similarly. See [38], especially

§3.

In the general case, the quadraticity of QCoh(Def) is a consequence of a stronger theo-
rem: that the algebra of power operations for Morava E-theory is Koszul.

4.7. The ring of power operations is Koszul. We observe that QCoh(Def) is equivalent
to a category of modules over an associative ring Γ :=

⊕
HomA0

(Ar, A0). In particu-

lar, it is an abelian category with enough projectives and injectives. In their work, Ando,

Hopkins, and Strickland perceived that the ring Γ should have finite homological dimension

(see discussion at the end of §14 in [39]). That this is so is a consequence of the following

theorem.

Theorem 4.7 ([35]). The ring Γ is Koszul, and thus objects ofQCoh(DefG0) admit a functo-
rial resolution by a “Koszul complex”. More precisely, there is a functor C : QCoh(Def) →
Ch(QCoh(Def)) together with a natural augmentation ε : C(M) → M which is a quasi-
isomorphism ifM is projective as a π0E-module. Furthermore,

Ck(M) = Γ⊗π0E Ck ⊗π0E M,

where Ck is a π0E-module which is (i) free and finitely generated as a right π0E-module,
and (ii) Ck = 0 if k > n, where n is the height of the formal group G0.

As a consequence, Γ has global dimension 2n, where n is the height of the formal group.

Remark 4.8. The proof of (4.7) given in [35] is purely topological, making no reference

to the interpretation of QCoh(Def) in terms of isogenies of formal groups. The proof is

inspired by the theory of the Goodwillie calculus of the identity tower, and in particular by

the work of Arone-Mahowald [3] on theK(n)-local homotopy type of the layers of the tower

of the identity functor evaluated at odd spheres. They show that the K(n)-local homotopy

type of an odd sphere is concentrated purely at Goodwillie layers pk for 0 ≤ k ≤ n.
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Remark 4.9. The statement of (4.7) is purely a statement about deformations about formal

groups and their isogenies, and thus should in particular admit a proof which does not use

topology. I do not know such a proof in general, but such a purely algebro-geometric proof

exists in the cases n = 1 and n = 2; see [38] for the height 2 case.

Remark 4.10. Ando, Hopkins, and Strickland originally conjectured a particular form for

a finite complex such as that in terms of (4.7), in terms of a “Tits building” associated to

subgroups ofGE [p], the p-torsion subgroup of the formal groupGE . Their original complex

in the height 2 case can be constructed using the arguments of [38]. Recently, Jacob Lurie

has shown how (4.7) can be used to recover the original proposal of Ando, Hopkins, and

Strickland.

4.8. Computing maps of K(n)-local E-algebras. We can use the theory described above

to describe the E2-term of a spectral sequence computing the space of maps between com-

mutative E-algebras. We describe how this works in a special case.

Let R,F be twoK(n)-local commutative E-algebras equipped with an augmentation to

E. There is a spectral sequence

Es,t2 =⇒ πt−sCom(E)augK(n)(R,F ) (4.5)

computing homotopy groups of the derived space of maps in the category of augmented

K(n)-local commutative E-algebras. When π∗R is smooth over π∗E, the E2-term takes the

form

Es,t2 ≈
{
T/E∗(π∗R, π∗F ) if (s, t) = (0, 0),

ExtsQCoh(Def)(ω
−1/2 ⊗ Q̂(π∗R), ω(t−1)/2 ⊗ π∗F ) otherwise.

(4.6)

Here Q̂(π∗R) is the module of indecomposables of the augmented ring π∗R (completed

with respect to the maximal ideal of π∗E), π∗F is the augmentation ideal of π∗F , and ω
is the module of invariant 1-forms (4.2). In this situation, the spectral sequence is strongly

convergent, and is non-zero for only finitely many values of s.

5. Tangent spaces to cochains and Φn(S
2d−1)

5.1. Derived indecomposables of commutative ring spectra. Fix a commutative ring A,
and consider an augmented commutative A-algebra R; i.e., an A-algebra equipped with an

A-algebra map π : R → A. We can consider the A-module T ∗A,π(R) := I/I2 of inde-
composables with respect to the augmentation, where I = Ker(π). In geometrical terms,

Indec(R) is the cotangent space to Spec(R) at the point corresponding to π. The dual mod-

ule Tπ(R) := HomA(T
∗
A,π(R), A) can be viewed as a tangent space at π.

This cotangent space construction admits a derived generalization to commutative ring

spectra. Given a commutative S-algebra A, and an augmented commutative A-algebra R,
there is an A-module of derived indecomposables constructed by Basterra [6], and which

we will also denote by T ∗A(R) (taking the map π to be understood).3 We write TA(R) :=
HomA(T

∗
A(R), A) for the corresponding “tangent space”.

3This functor is also called “reduced topological Andre-Quillen cohomology”.
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We note two alternate descriptions of these constructions, which follow from work of

Basterra and Mandell ([8], especially §2).

• The cotangent functor T ∗A : Comaug
A → ModA is a kind of stabilization functor. It is

most conveniently expressed in terms of an equivalence Comaug
A ≈ Comnu

A between

augmented and non-unital algebras, so that

T ∗A(R) ≈ hocolimn Ω
n
nuΣ

n
nu(I),

where I is the homotopy fiber of the augmentation R → A viewed as a non-unital

algebra, and Σnu and Ωnu are loop and suspension functors in the homotopy theory of

Comnu
A .

• The tangent space module can also be described as “functions to the dual numbers”.

That is, the underlying spaces of the spectrum TA(R) can be identified as

Ω∞+tTA(R) ≈ Comaug
A (R,A ΩtA),

where A ΩtA is a split square-zero extension of A by a shift of A.

Given a based spaceX and a commutative S-algebraA, we can apply these constructions
to the cochain algebra AX+ := Hom(Σ∞(X+), A), which is a commutative A-algebra
equipped with an augmentation corresponding to the basepoint of X .

Example 5.1. Take A = HQ, the rational Eilenberg-Mac Lane spectrum. For spaces X
which are simply connected and of finite-type, we have a natural isomorphism

π∗THQ(HQX+) ≈ π∗(X)⊗Q

from the homotopy of the tangent space spectrum to the rational homotopy groups of X .

This is a modern restatement of a well-known fact of rational homotopy theory (e.g., [41,

Thm. 10.1].

Example 5.2. Take A = HFp, the Eilenberg-Mac Lane spectrum of the algebraic closure

of Fp. Then THFp
(HF

X+

p ) ≈ 0 by [25, Prop. 3.4]. Mandell’s work shows that the cochain

spectrum HF
X+

p contains complete information about the mod p homotopy type of simply

connected finite-type X , but this information cannot be extracted from the tangent space.

It turns out that for K(n)-local rings, the (co)tangent space behaves more like rational

homology than mod p-homology, where the role of rational homotopy groups is replaced

with the Bousfield-Kuhn functor.

5.2. The tangent space to cochains for K(n)-local rings. Let A be a K(n)-local com-

mutative S-algebra. For a based space X , we can construct comparison maps which relate

the A cohomology/homology of the spectrum ΦnX with the tangent/cotangent space of the

cochain ring AX+ . These take the form

c∗X : T ∗A(A
X+) → HomA(ΦnX,A) and cX : A ∧ ΦnX → TA(A

X+).

Remark 5.1. Here is an idea of how to build c∗X (the map cX is obtained by taking A-linear
duals). Given a space X , apply Φn to the tautological map u : X → Ω∞Σ∞X , obtaining

ΦnX
Φn(u)−−−−→ Φ(Ω∞Σ∞X) ≈ (Σ∞X)K(n).
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Taking functions into aK(n)-local ring A gives

κX : AX ≈ Hom((Σ∞X)K(n), A) → Hom(ΦnX,A).

The object AX is the augmentation ideal of AX+ , and its stabilization as a non-unital A-
algebra is T ∗A(A

X+). The map c∗X is constructed as the limit of the collection of maps

Σnnu(A
X) → AΩnX κX−−→ HomA(Φn(Ω

nX), A) ≈ Ω−nHomA(ΦnX,A),

where we have used the fact that Φn commutes with Ω up to weak equivalence.

Mark Behrens and I have recently proved the following result, which shows the compar-

ison map is an isomorphism for odd-dimensional spheres.

Theorem 5.2. For anyK(n)-local commutative ring A, and X = S2d−1, the maps cX and
c∗X induce isomorphisms inK(n)-homology.

Remark 5.3. A consequence of the proof is a natural identification of E∗-modules

Ck ≈ E∧∗ ∂pk(S1)K(n),

where Ck is the module in the Koszul resolution of (4.7), with the E-homology of the pkth
layer of the Goodwillie tower of the identity functor, evaluated at the circle S1.

Remark 5.4. Combining (5.2) with remarks from §5.1, we see that we can use the spectral

sequence (4.5) to compute π∗(E ∧ Φn(S
2d+1). By (4.6), the E2-term is

Es,t2 ≈ ExtsQCoh(Def)(ω
d−1, ω(t−1)/2 ⊗ nul) =⇒ E∧t−sΦnS

2d−1,

where nul ∈ QCoh(Def) is the object corresponding to the comodule M = A0 whose

coaction maps ψr : M → Ar ⊗A0 M are identically 0.
Explicit calculations show that, for n = 1, 2, the only non-vanishing groups are when

s = n, and thus this gives a complete calculation in that case. For n = 1, this recovers
calculations of Bousfield [13]. Details are provided in [34].
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Quasi-morphisms and quasi-states in symplectic
topology
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Abstract. We discuss certain “almost homomorphisms” and “almost linea” functionals that have ap-

peared in symplectic topology and their applications concerning Hamiltonian dynamics, functional-

theoretic properties of Poisson brackets and algebraic and metric properties of symplectomorphism

groups.
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20F69, 46L30.

Keywords. Symplectic manifold, Poisson brackets, Hamiltonian symplectomorphism, quantum ho-

mology, quasi-morphism, quasi-state, symplectic rigidity.

1. Introduction

Symplectic manifolds carry several interesting mathematical structures of different flavors,

coming from algebra, geometry, topology, dynamics and analysis. In this survey we discuss

certain “almost homomorphisms” (called Calabi quasi-morphisms) on groups of symplecto-

morphisms of symplectic manifolds and certain “almost linear” functionals (called symplec-
tic quasi-states) on the spaces of smooth functions on symplectic manifolds that have been

useful in finding new relations between these structures. In particular, we describe applica-

tions of these new tools to Hamiltonian dynamics, functional-theoretic properties of Poisson

brackets as well as algebraic and metric properties of the groups of symplectomorphisms.

We also briefly discuss a relation between the symplectic quasi-states and von Neumann’s

mathematical foundations of quantum mechanics. We end the survey with a discussion on

the function theory approach to symplectic topology.

A detailed introduction to the subject can be found in the forthcoming book [58] by

L.Polterovich and D.Rosen.

2. Quasi-morphisms and quasi-states - generalities

2.1. Quasi-morphisms. Let G be a group. A function μ : G → R is called a quasi-
morphism, if there exists a constant C > 0 so that |μ(xy) − μ(x) − μ(y)| ≤ C for any

x, y ∈ G. We say that a quasi-morphism μ : G → R is homogeneous1, if μ(xk) = kμ(x)
for any x ∈ G, k ∈ Z.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Clearly, any R-valued homomorphism onG is a homogeneous quasi-morphism but find-

ing homogeneous quasi-morphisms that are not homomorphisms is usually a non-trivial task.

Let us also note that any homogeneous quasi-morphism μ is conjugacy-invariant and satis-

fies μ(xy) = μ(x)+μ(y) for any commuting elements x, y (in particular, any homogeneous

quasi-morphism on an abelian group is a homomorphism). For more on quasi-morphisms

see e.g. [16].

2.2. Quasi-states and quantum mechanics. Roughly speaking, quasi-states are “almost

linear” functionals on algebras of a certain kind. The term “quasi-state” comes from the work

of Aarnes (see [1] and the references to the Aarnes’ previous work therein) but its history

goes back to the mathematical model of quantum mechanics suggested by von Neumann

[72]. A basic object of this model is a real Lie algebra of observables that will be denoted

by Aq (q for quantum): its elements (in the simplest version of the theory) are Hermitian

operators on a finite-dimensional complex Hilbert space H and the Lie bracket is given by

[A,B]� = i
�
(AB − BA), where � is the Planck constant. Observables represent physical

quantities such as energy, position, momentum etc. In von Neumann’s model a state of a

quantum system is given by a functional ζ : Aq → R which satisfies the following axioms:

Additivity: ζ(A+B) = ζ(A) + ζ(B) for all A,B ∈ Aq .

Homogeneity: ζ(cA) = cζ(A) for all c ∈ R and A ∈ Aq .

Positivity: ζ(A) ≥ 0 provided A ≥ 0..

Normalization: ζ(Id) = 1.

As a consequence of these axioms von Neumann proved that for every state ζ there exists
a non-negative Hermitian operator Uζ with trace 1 so that ζ(A) = tr(UζA) for all A ∈ Aq .

An easy consequence of this formula is that for every state ζ there exists an observable A
such that

ζ(A2)− (ζ(A))2 > 0 . (2.1)

In his book [72] von Neumann adopted a statistical interpretation of quantum mechanics

according to which the value ζ(A) is considered as the expectation of a physical quantity

represented by A in the state ζ. In this interpretation the equation (2.1) says that there are no
dispersion-free states. This result led von Neumann to a conclusion which can be roughly

described as the impossibility to present random quantum-mechanical phenomena as an ob-

servable part of some “hidden” underlying deterministic mechanism. This conclusion caused

a major discussion among physicists (see e.g. [6]) some of whom disagreed with the additiv-

ity axiom of a quantum state. Their reasoning was that the formula ζ(A+B) = ζ(A)+ζ(B)
makes sense a priori only if observables A and B are simultaneously measurable, that is,

commute: [A,B]� = 0.
In 1957 Gleason [36] proved his famous theorem which can be viewed as an additional

argument in favor of von Neumann’s additivity axiom. Recall that two Hermitian operators

on a finite-dimensional Hilbert space commute if and only if they can be written as poly-

nomials of the same Hermitian operator. Let us define a quasi-state on Aq as an R-valued
functional which satisfies the homogeneity, positivity and normalization axioms above, while

the additivity axiom is replaced by one of the two equivalent axioms:

1Sometimes homogeneous quasi-morphisms are also called pseudo-characters – see e.g. [66].
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Quasi-additivity-I: ζ(A+B) = ζ(A)+ ζ(B), provided A and B commute: [A,B]� = 0;

Quasi-additivity-II: ζ(A + B) = ζ(A) + ζ(B), provided A and B belong to a singly

generated subalgebra of Aq .

According to the Gleason theorem, every quasi-state ζ on Aq is linear, that is, a state,

provided the complex dimension of the Hilbert spaceH is at least 3 (it is an easy exercise to

show that in the two-dimensional case there are plenty of non-linear quasi-states).

Let us turn now to the mathematical model of classical mechanics. Here the algebra Ac

of observables (c for classical) is the space C∞(M) of smooth functions on a symplectic

manifold M . The space C∞(M) carries two structures. On one hand, it is a Lie algebra

with respect to the Poisson bracket (see Section 3.1). On the other hand, it is a dense subset

(in the uniform norm) of the commutative Banach algebra C(M) of continuous functions
on M . For both frameworks one can define its own version of the notion of a quasi-state

adapting, respectively, the first or the second definition of quasi-additivity – as a result one

gets the so-called Lie quasi-states and topological quasi-states (see Section 2.3).
Symplectic quasi-states that appear in symplectic topology and will be discussed below

in Section 3 belong to both of these worlds – they are simultaneously Lie and topological

quasi-states2. Note that for the Lie algebra C∞(M) the first definition of quasi-additivity

fits in with the physical Correspondence Principle according to which the bracket [ , ]�
corresponds to the Poisson bracket { , } in the classical limit � → 0. The existence of

non-linear symplectic quasi-states on certain symplectic manifolds (see Section 3) can be

viewed as an “anti-Gleason phenomenon” in classical mechanics. Interestingly, at least for

M = S2, the symplectic quasi-state that we construct is dispersion-free (see Example 3.3),

unlike states in von Neumann’s model of quantum mechanics. For more information on the

connection of symplectic quasi-states to physics see [29] and Remark 4.21 below.

2.3. Lie and topological quasi-states. Here is the precise definition of a Lie quasi-state.

Let g be a (possibly infinite-dimensional) Lie algebra over R and let W ⊂ g be a vector

subspace. A function ζ : W → R is called a Lie quasi-state, if it is linear on every abelian

subalgebra of g contained inW .

Finding non-linear Lie quasi-states is, in general, a non-trivial task: for instance, the dif-

ficult Gleason theorem mentioned above is essentially equivalent – in the finite-dimensional

setting – to the claim that any Lie quasi-state on the unitary Lie algebra u(n), n ≥ 3, which
is bounded on a neighborhood of zero, has to be linear [24]. Choosing an appropriate regu-

larity class of Lie quasi-states is essential for this kind of results: if g is finite-dimensional,

then any Lie quasi-state on g which is differentiable at 0 is automatically linear while the

space of all, not necessarily continuous, Lie quasi-states on g might be infinite-dimensional

[24].

Another source of interest to Lie quasi-states lies in their connection to quasi-morphisms

on Lie groups: if g is the Lie algebra of a Lie group G and μ : G → R is a homogeneous

quasi-morphism continuous on 1-parametric subgroups, then the derivative of μ, that is, the
composition of μ with the exponential map, is a Lie quasi-state on g, invariant under the
adjoint action of G on g. Symplectic quasi-states that we will discuss below appear as a

particular case of this construction.

Unfortunately, rather little is known about non-linear (continuous) Lie quasi-states and

2Interestingly, symplectic quasi-states had appeared in an infinite-dimensional setting in symplectic topology

before Lie quasi-states were properly studied in the finite-dimensional setting.
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their connections to quasi-morphisms in general – almost all known facts (in particular, a

non-trivial description of the space of all non-linear continuous Lie quasi-states on sp (2n,R),
n ≥ 3) and some basic open questions on the subject can be found in [24].

Let us now define the notion of a topological quasi-state – it is due to Aarnes [1] (who

called it just a “quasi-state”). LetX be a compact Hausdorff topological space and let C(X)
be the space of continuous functions on X equipped with the uniform norm. For a function

F ∈ C(X) denote by AF the closure in C(X) of the set of functions of the form p ◦ F ,
where p is a real polynomial. A functional ζ : C(X) → R is called a topological quasi-state
[1], if it satisfies the following axioms:

Quasi-linearity: ζ is linear on AF for every F ∈ C(X) (in particular, ζ is homogeneous).

Monotonicity: ζ(F ) ≤ ζ(G) for F ≤ G.
Normalization: ζ(1) = 1.

A linear topological quasi-state is called a state (similarly to states in von Neumann’s model

of quantum mechanics – see Section 2.2). The existence of non-linear topological quasi-

states was first proved by Aarnes [1].

By the classical Riesz representation theorem, states on C(X) are in one-to-one corre-

spondence with regular Borel probability measures on X . In [1] Aarnes proved a general-

ized Riesz representation theorem that associates to each topological quasi-state ζ a quasi-
measure3 τ on X which is defined only on sets that are either open or closed and is finitely

additive but not necessarily sub-additive. The relation between ζ and τ extends the relation
between states and measures given by the Riesz representation theorem. In particular, if A
is closed, τ(A) can be thought of as the “value” of ζ on the (discontinuous) characteristic

function of A.

3. Calabi quasi-morphisms, symplectic quasi-states

3.1. Symplectic preliminaries. Referring the reader to [47] for the foundations of sym-

plectic geometry we briefly recall the basic notions needed for the further discussion.

LetM2n be a closed connected manifold equipped with a symplectic form ω, that is, a
closed and non-degenerate differential 2-form. In terms of classical mechanics, M can be

viewed as the phase space of a mechanical system and smooth functions on M (possibly

depending smoothly on an additional parameter, viewed as time) are called Hamiltonians.

Whenever we consider a time-dependent Hamiltonian we assume that it is 1-periodic in

time, i.e. has the form F : M × S1 → R. Set Ft := F (·, t). The support of F is defined

as suppF := ∪t∈S1suppFt ⊂ M . We say that F is normalized, if
∫
M
Ftω

n = 0 for any

t ∈ S1.

We denote by C(M) (respectively, C∞(M)), the space of continuous (respectively,

smooth) functions onM and by ‖ · ‖ the uniform norm on these spaces: ‖F‖ := maxM |F |.
Given a (time-dependent) Hamiltonian F , define its Hamiltonian vector field XFt

by

ω(·, XFt) = dFt(·). Denote the flow ofXFt by φ
t
F – it preserves ω and is called the Hamil-

tonian flow of F . Symplectomorphisms ofM (that is, diffeomorphisms ofM preserving ω)
that can be included in such a flow are called Hamiltonian symplectomorphisms and form a

3Quasi-measures are sometimes also called topological measures.
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group Ham (M) which is a subgroup of the identity component Symp 0(M) of the full sym-

plectomorphism group Symp (M). Its universal cover is denoted by H̃am (M). We say that

φF := φ1F is the Hamiltonian symplectomorphism generated by F . The Hamiltonian F also

generates an element of H̃am (M) that will be denoted by φ̃F : it is given by the homotopy

class (with the fixed end-points) of the path φtF , 0 ≤ t ≤ 1, in Ham (M).
The space of smooth functions on M will be denoted by C∞(M). Given F,G ∈

C∞(M), define the Poisson bracket {F,G} by {F,G} := ω(XG, XF ). Together with the

Poisson bracket C∞(M) becomes a Lie algebra whose center is R (the constant functions).

It is instructive to view Ham (M) and H̃am (M) as infinite-dimensional Lie groups

whose Lie algebra (the algebra of time-independent Hamiltonian vector fields on M ) is

naturally isomorphic to C∞(M)/R, or to the subalgebra of C∞(M) formed by normal-

ized functions, with the map F !→ φF being viewed as the exponential map and the natural

action of Ham (M) on C∞(M) being viewed as the adjoint action.

Similarly to the closed case, for an open symplectic manifold (U2n, ω) one can define

Ham (U) as the group formed by Hamiltonian symplectomorphisms generated by (time-

dependent) Hamiltonians supported in U and H̃am (U) as its universal cover. The group

H̃am (U) admits the Calabi homomorphism C̃alU : H̃am (U) → R defined by C̃alU (φ̃F ) :=∫
S1

∫
M
Ftω

ndt, where suppF ⊂ U . If ω is exact, C̃alU descends to a homomorphism

CalU : Ham (U) → R. If U is an open subset of M , then there are natural inclusion

homomorphisms Ham (U) → Ham (M), H̃am (U) → H̃am (M), whose images will be

denoted by GU and G̃U 4.

Let U be an open subset of M . Each φ ∈ Ham (M) (respectively, φ̃ ∈ H̃am (M)) can
be represented as a product of elements of the form ψθψ−1 with θ lying inGU (respectively,

G̃U ). Moreover, assuming that C̃alU descends to a homomorphism CalU on Ham (U), one
can make sure that each such θ satisfiesCalU (θ) = 0. This follows from Banyaga’s fragmen-

tation lemma [5]. Denote the minimal number of factors in such a product by ‖φ‖U (respec-

tively, ‖φ̃‖U ), if there is no condition on CalU (θ), and ‖φ‖U,0, if the condition CalU (θ) = 0
is imposed. All the norms are defined as 0 on the identity elements.

Let T k be a torus. AHamiltonian T k-action onM is a homomorphism T k → Ham (M).
(We will always assume that such an action is effective). In such a case the action of the i-th
S1-factor of T k = S1 × . . .×S1, i = 1, . . . , k, is a Hamiltonian flow generated by a Hamil-

tonianHi. The HamiltoniansH1, . . . , Hk commute with respect to the Poisson bracket. The

map Φ = (H1, . . . , Hk) :M → Rk is called the moment map of the Hamiltonian T k-action.
If all Hi are normalized, we say that Φ is the normalized moment map.

A submanifold L of (M2n, ω) is called Lagrangian, if dimL = n and ω|L ≡ 0.
A (closed) symplectic manifold (M,ω) admits a preferred class of almost complex struc-

tures compatible in a certain sense with ω. All these almost complex structures have the same

first Chern class c1, called the first Chern class ofM . A closed symplectic manifold (M,ω)
is called monotone, if [ω] and c1 are positively proportional on spherical homology classes

and symplectically aspherical, if [ω] vanishes on such classes.

Finally, we say that a subset X ⊂ M is displaceable from Y ⊂ M by a group G
(where G is either Ham (M), or Symp 0(M), or Symp (M)), if there exists φ ∈ G such that

φ(X) ∩ Y = ∅. If X can be displaced from itself by G, we say that it is displaceable by G

4Note that the homomorphism H̃am (U) → H̃am (M) does not have to be injective and, accordingly, G̃U does

not have to be the preimage of GU under the universal cover H̃am (M) → Ham (M) – see [40].
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or just displaceable, if G = Ham (M).
Consider T ∗S1 = R × S1 with the coordinates (r, θ) and the symplectic form dr ∧ dθ.

We say that X ⊂ M is stably displaceable, if X × {r = 0} is displaceable inM × T ∗S1

equipped with the split symplectic form ω ⊕ (dr ∧ dθ). Any displaceable set is stably

displaceable (but not necessarily vice versa).

3.2. Quantum homology and spectral numbers. A closed symplectic manifoldM carries

a rich algebraic structure called the quantum homology of M : additively it is just the sin-

gular homology ofM with coefficients in a certain ring, while multiplicatively the quantum

product is a deformation of the classical intersection product on homology which is defined

using a count of certain pseudo-holomorphic spheres5 in M . In fact, there are several pos-

sible algebraic setups for this structure – we refer the reader to [48], as well as [22, 70],

for the precise definitions and more details. In any case, the resulting algebraic object is a

ring with unity given by the fundamental class [M ]. Passing, if needed (depending on M
and the algebraic setup of the construction), to an appropriate subring with unity one gets

a finite-dimensional commutative algebra with unity over a certain field that we will denote

by K. Typically, K is the field of semi-infinite (Laurent-type) power series with coefficients

in a base field F , where F is one of the fields Zp, Q, R, C. Abusing the terminology we

will denote the latter finite-dimensional commutative algebra byQH(M) and still call it the
quantum homology ofM .

Let us also mention the constructions of Usher [70] and Fukaya-Oh-Ohta-Ono [31] (the

so-called deformed quantum homology) that, roughly speaking, use certain homology classes

ofM for an additional deformation of the quantum homology product and sometimes allow

to obtain different finite-dimensional commutative algebras as above for a givenM – abusing

the terminology we will still call any of these different algebras the quantum homology of

M and denote it byQH(M) and emphasize the difference between them only when needed.

Given a non-zero a ∈ QH(M) and a Hamiltonian F : M × S1 → R, one can define

the spectral number c(a, F ) [53, 61] (see [51, 52, 71] for earlier versions of the construction
and [68, 69] for additional important properties of the spectral numbers). It generalizes the

following classical minimax quantity: given a singular non-zero (rational) homology class a
ofM and a continuous function F onM , consider the smallest value c of F so that a can be
realized by a cycle lying in {F ≤ c} – for a smooth Morse function F this definition can be

reformulated in terms of the Morse homology of F . The construction of the spectral number

c(a, F ) is based on the same concept, where the singular homology is replaced by the quan-

tum homology ofM and the Morse homology of F is replaced by its Floer homology. The
latter can be viewed as an infinite-dimensional version of the Morse homology for a certain

functional, associated with F , on a covering of the space of free contractible loops in M ,

with the critical points of the functional being pre-images of contractible 1-periodic orbits

of the Hamiltonian flow of F under the covering (see e.g. [48] for a detailed introduction to

the subject).

If F,G : M × S1 → R are normalized and φ̃F = φ̃G, then c(a, F ) = c(a,G). Thus,

given φ̃ ∈ H̃am (M), one can define c(a, φ̃) := c(a, F ) for any normalized F generating φ̃.

5Pseudo-holomorphic spheres are (j, J)-holomorphic maps (CP 1, j) → (M,J) for the standard complex

structure j on CP 1 and an almost complex structure J onM compatible with the symplectic form.
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3.3. The main theorem. Assume a ∈ QH(M) is an idempotent (for instance, a = [M ]).
Here and further on, whenever we mention an idempotent, we assume that it is non-
zero. Define μa : H̃am (M) → R by

μa(φ̃) := −vol (M) lim
k→+∞

c(a, φ̃k)

k
,

where vol (M) :=
∫
M
ωn, and ζa : C∞(M) → R by

ζa(F ) := lim
k→+∞

c(a, kF )

k
.

One can check [21] that the limits exist and

ζa(F ) =

∫
M
Fωn − μa(φ̃F )
vol (M)

.

The next theorem shows that under certain conditions on QH(M) and a the function μa
is a homogeneous quasi-morphism and accordingly ζa is a Lie quasi-state invariant under

the adjoint action of H̃am (M) on C∞(M), since, up to a scaling factor and an addition of

a linear map invariant under the adjoint action of H̃am (M), it is the derivative of μa (see

Section 2.3).

We will say that QH(M) is field-split, if it can be represented, in the category of K-

algebras, as a direct sum of two subalgebras at least one of which is a field. Such a field will

be called a field factor of QH(M).

Theorem 3.1. Assume QH(M) is field-split and a is the unity in a field factor of QH(M).
Then μa satisfies the following properties:

(A) (Stability)
∫ 1

0
minM (Ft −Gt) dt ≤ μa(φ̃G)− μa(φ̃F ) ≤ ∫ 1

0
maxM (Ft −Gt) dt.

(B) The function μa : H̃am (M) → R is a homogeneous quasi-morphism, that is,

(B1) (Homogeneity) μa(φ̃k) = kμa(φ̃) for any φ̃ ∈ H̃am (M) and k ∈ Z.

(B2) (Quasi-additivity) There existsC > 0 such that |μa(φ̃ψ̃)−μa(φ̃)−μa(ψ̃)| ≤ C
for any φ̃, ψ̃ ∈ H̃am (M).

(C) (Calabi property) If U ⊂M is stably displaceable and suppF ⊂ U , then μa(φ̃F ) =∫ 1

0

∫
U
Ftω

ndt. In other words, the Calabi homomorphism C̃alU descends from H̃am (U)

to G̃U ⊂ H̃am (M)6 and μ|G̃U
= C̃alU .

At the same time, ζa satisfies the following properties:

(a) (Monotonicity) minM (F −G) ≤ ζa(F )− ζa(G) ≤ maxM (F −G) for any F,G ∈
C∞(M) and, in particular, if F ≤ G, then ζa(F ) ≤ ζa(G). Hence, ζa is 1-Lipschitz
with respect to the uniform norm and extends to a functional on C(M) that we will
still denote by ζa.

6This was tacitly assumed in [20].
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(b) The functional ζa is a Lie quasi-state, that is

(b1) (Homogeneity) ζa(λF ) = λζa(F ) for any F ∈ C(M) and λ ∈ R.
(b2) (Strong quasi-additivity) If F,G ∈ C∞(M) and {F,G} = 0,

then ζa(F +G) = ζa(F ) + ζa(G). In fact, ζa satisfies a stronger property: for
any F,G ∈ C∞(M) one has

|ζa(F +G)− ζa(F )− ζa(G)| ≤
√
2C||{F,G}||,

where C > 0 is the constant from (B2).

(c) (Vanishing property) If U ⊂ M is stably displaceable and F ∈ C(M) with
suppF ⊂ U , then ζa(F ) = 0.

(d) (Normalization) ζa(1) = 1.

(e) (Invariance) ζa : C(M) → R is invariant under the action of Symp0(M) on C(M).

The functionals μa : H̃am (M) → R and ζa : C(M) → R satisfying the properties

listed in Theorem 3.1 are called, respectively, a Calabi quasi-morphism and a symplectic
quasi-state. In particular, the restriction of a symplectic quasi-state to C∞(M) is always a
Lie quasi-state. Moreover, one can readily check that any symplectic quasi-state is also a

topological quasi-state. The converse is true only if dimM = 2 [21]. The quasi-measure

associated to a symplectic quasi-state is Symp 0(M)-invariant and vanishes on stably dis-

placeable open sets.

For an arbitrary M and an arbitrary idempotent a ∈ QH(M) (for instance, a = [M ])
one gets a weaker set of properties of μa and ζa.

Theorem 3.2. Assume a ∈ QH(M) is an arbitrary idempotent. Then μa satisfies the
properties (A) and (C) from Theorem 3.1 and a weaker version of the properties (B1) and
(B2):

(B1’) (Partial homogeneity) μa(φ̃k) = kμa(φ̃) for any φ̃ ∈ H̃am (M) and k ∈ Z≥0.

(B2’) (Partial quasi-additivity) Given a displaceable open set U ⊂ M , there exists C =
C(μa, U) > 0, so that |μa(φ̃ψ̃) − μa(φ̃) − μa(ψ̃)| ≤ Cmin{‖φ̃‖U , ‖ψ̃‖U} for any
φ̃, ψ̃ ∈ H̃am (M).

At the same time, ζa satisfies the properties (a), (c), (d), (e) from Theorem 3.1 and a
weaker version of the properties (b1) and (b2):

(b1’) (Partial homogeneity) ζa(λF ) = λζa(F ) for any F ∈ C(M) and λ ∈ R≥0.

(b2’) (Partial strong quasi-additivity) If F,G ∈ C∞(M) and {F,G} = 0 and either
suppG is displaceable or G is constant, then ζa(F + G) = ζa(F ) + ζa(G). In fact,
ζa satisfies a stronger property: for any F,G ∈ C∞(M) one has

|ζa(F +G)− ζa(F )− ζa(G)| ≤
√
2C||{F,G}||,

where C > 0 is a constant depending on ζa and on the supports of F and G.
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The functionals μa and ζa satisfying the properties listed in Theorem 3.2 are called,

respectively, a partial Calabi quasi-morphism and a partial symplectic quasi-state. Clearly,
a genuine Calabi quasi-morphism or a genuine symplectic quasi-state is also a partial one.

Theorems 3.1 and 3.2 were proved under various additional restrictions on M in [20],

[21]. In [45, 54, 68, 69] (see also [22, 23]) the restrictions were removed and the theorems

were proved for new classes of closed symplectic manifolds. The stronger part of the prop-

erty (b2) in Theorems 3.1 was proved in [28]. The stronger part of the property (b2’) in

Theorems 3.2 was proved in [57]. The Calabi and vanishing properties (C) and (c) in Theo-

rems 3.1, 3.2 were originally proved for a displaceable U – it was later observed by Borman

[10] that the displaceability assumption on U can be weakened to stable displaceability.

Examples of closed manifolds with a field-split QH(M) (for an appropriate algebraic

setup of QH(M)) include complex projective spaces (or, more generally, complex Grass-

manians and symplectic toric manifolds), as well as blow-ups of symplectic manifolds – all

with appropriate (and, in a certain sense, generic [70]) symplectic structures [20, 22, 31, 32,

44, 45, 54, 55, 70]. The direct product of symplectic manifolds with field-split quantum ho-

mology algebras also has this property – possibly under some additional assumptions on the

manifolds, depending on the algebraic setup of the quantum homology [22]. As an example

ofM whose quantum homology QH(M) is not field-split one can take any symplectically

aspherical manifold – in such a case there are no pseudo-holomorphic spheres in M and

hence there is no difference between quantum and singular homology. Let us emphasize

that, in general, the question whether QH(M) is field-split may depend not only onM but

also on the algebraic setup of the quantum homology (and on a choice of the deformation in

case of the deformed quantum homology).

Example 3.3 ([20]). AssumeM = S2 and a = [S2]. Then ζa : C(S2) → R is a symplectic

quasi-state and its restriction to the set of smooth Morse functions on S2 (which is dense in

C(S2) in the uniform norm) can be described in combinatorial terms.

Namely, assume that the symplectic (that is, area) form ω on S2 is normalized so that

the area of S2 is 1 and let F be a smooth Morse function on S2. Consider the space Δ of

connected components of the level sets of F as a quotient space of S2. As a topological

space Δ is homeomorphic to a tree. The function F descends to Δ and the push-forward of

the measure defined by ω on S2 yields a non-atomic Borel probability measure onΔ. There

exists a unique point x ∈ Δ such that each connected component of Δ \ x has measure

≤ 1/2 (such a point x is called the median of the measured treeΔ). Then ζa(F ) = F (x).

Let us note that the symplectic quasi-state ζa : C(S2) → R in Example 3.3 is dispersion-
free, that is, satisfies ζa(F 2) = (ζa(F ))

2. Equivalently, the corresponding quasi-measure

takes only values 0 and 1. The following open question is of utmost importance for the study

of symplectic quasi-states:

Question 3.4. Is it true that the (partial) symplectic quasi-states constructed in Theorems 3.1
and 3.2 are always dispersion-free?

Remark 3.5. Sometimes the (partial) Calabi quasi-morphism μa : H̃am (M) → R descends

to Ham (M) (that is, vanishes on π1Ham (M)). Abusing the notation we will denote the

resulting (partial) Calabi quasi-morphism on Ham (M) also by μa. The list of manifolds

for which μa is known to descend to Ham (M) for all a includes symplectically aspherical

manifolds [61], complex projective spaces [20] and their monotone products [13, 20], a

monotone blow-up of CP 2 at three points and the complex Grassmannian Gr(2, 4) [13].
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The list of manifolds for which it is known that μa does not descend to Ham (M) at least for
some a includes various symplectic toric manifolds and, in particular, the monotone blow-

ups of CP 2 at one or two points [23, 54].

Let us note that if (M,ω) is monotone, the restriction of μa to π1Ham (M) does not de-
pend on the choice of a (for a fixed algebraic setup ofQH(M)) [23]. This is not necessarily
true ifM is not monotone [55].

Remark 3.6. For a closed connectedM the groupHam (M) is simple and the group H̃am (M)
is perfect [5]. Hence, these groups do not admit non-trivial homomorphisms to R and there-

fore partial Calabi quasi-morphisms on H̃am (M) and Ham (M) are never homomorphisms

(they are non-trivial because of the Calabi property). Also, partial symplectic quasi-states

are never linear (use a partition of unity with displaceable supports to check it). Moreover,

in certain cases one can verify that a partial symplectic quasi-state ζa is not a genuine quasi-
state (and, accordingly, μa is not a genuine quasi-morphism) – see Section 4.1.

Remark 3.7. Denote by E the collection of all open displaceable U ⊂ (M,ω) such that ω|U
is exact. For any U ∈ E the Calabi homomorphism CalU : GU → R is well-defined and,

by Banyaga’s theorem [5], the group KerCalU is simple, meaning that, up to a scalar factor,

CalU is the unique non-trivial R-valued homomorphism on GU continuous on 1-parametric

subgroups. If U,V ∈ E and U ⊂ V , then GU ⊂ GV and CalU = CalV on GU . Thus,

if a partial Calabi quasi-morphism μa descends to Ham (M), we get the following picture:

there is a family E of subgroups of Ham (M), with each subgroup GU ∈ E carrying the

unique R-valued homomorphism CalU (continuous on 1-parametric subgroups), and while

it is impossible to patch up all these homomorphisms into an R-valued homomorphism on

Ham (M), it is possible to patch them up into a partial Calabi quasi-morphism μa (which

may be non-unique).

Now let us discuss the existence and uniqueness of genuine Calabi quasi-morphisms and

symplectic quasi-states on a given symplectic manifold and, in particular, the dependence of

μa and ζa on a and the algebraic setup of QH(M).
The set of idempotents in QH(M) carries a partial order: namely, given idempotents

a, b ∈ QH(M), we write a > b if ab = b. Clearly, [M ] ≥ b for any idempotent b ∈ QH(M).
If a > b, then a− b is also an idempotent and a > a− b. Conversely, if b, b′ ∈ QH(M) are
two idempotents such that bb′ = 0, then b+ b′ is also an idempotent and b+ b′ > b, b′.

The following theorem follows from basic properties of spectral numbers (cf. [23], The-

orem 1.5).

Theorem 3.8. Assume a, b ∈ QH(M) are idempotents, so that a > b. Then
(a) μa ≤ μb, ζa ≥ ζb.
(b) If μa is a genuine (i.e. not only partial) Calabi quasi-morphism, then μa = μb, ζa = ζb

and thus μb is also a genuine Calabi quasi-morphism and ζb is a genuine symplectic
quasi-state.

At the same time it is possible that a > b, μa is a partial Calabi quasi-morphism while

μb is a genuine Calabi quasi-morphism – see Examples 4.13, 4.14.

In fact, different idempotents may define linearly independent Calabi quasi-morphisms

and symplectic quasi-states. For instance, ifM is a blow-up of CP 2 at one point with an ap-

propriate non-monotone symplectic structure, one can find Calabi quasi-morphisms μa and
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μb on H̃am (M) (for some idempotents a, b ∈ QH(M)) that have linearly independent re-

strictions to π1Ham (M) [55], and ifM is S2×S2 with a monotone symplectic structure, one

can find linearly independent7 symplectic quasi-states ζa, ζb on C(M) – see Example 4.14.

Moreover, a change of the algebraic setup of QH(M) may yield new Calabi quasi-

morphisms and symplectic quasi-states on the sameM . For instance, ifM = CPn, one can
choose algebraic setups of QH(CPn), both for F = Z2 and F = C, so that in both cases
QH(CPn) is a field and thus the only idempotent in QH(CPn) is the unity a = [CPn]. By

Theorem 3.1, in both cases a = [CPn] defines a Calabi quasi-morphism μa on H̃am (CPn)
that descends to Ham (CPn) (for F = C this is proved in [20], the same proof works also

for F = Z2). However, it follows from [73] for n = 2 and from [50] for n = 3 that the

symplectic quasi-states defined by [CPn] in both cases are different (see Example 4.12).

Remark 3.9. Let us note that historically the first Calabi quasi-morphism on H̃am (CPn)
was implicitly constructed by Givental in [34, 35] in a completely different way; the fact

that it is indeed a Calabi quasi-morphism was proved by Ben Simon [7] (the stability prop-

erty of the quasi-morphism is proved in [12]). Givental’s Calabi quasi-morphism descends

from H̃am (CPn) to Ham (CPn) [64]. It would be interesting to find out whether this quasi-
morphism on Ham (CPn) can be expressed as μa for some a ∈ QH(CPn) (for some alge-

braic setup of QH(CPn)).

Question 3.10. Is the quasi-morphism μa for a = [CP 1] the only Calabi quasi-morphism
on Ham (CP 1)?

Let us note that in the case ofCP 1 the symplectic quasi-state ζa for a = [CP 1], described
in Example 3.3, is known to be the unique symplectic quasi-state on C(S2) [20].

In some cases the non-uniqueness can be prove by using the different algebras QH(M)
appearing in the deformed quantum homology construction – see [31] for examples of sym-

plectic manifolds with infinitely many linearly independent Calabi quasi-morphisms and

symplectic quasi-states constructed in this way.

Let us also mention a construction due to Borman [10, 11] (also see [12]) that allows

to use a Calabi quasi-morphism on H̃am (N) in order to build a Calabi quasi-morphism

on H̃am (M) if M is obtained from N by a symplectic reduction or if M is a symplectic

submanifold of N . Using different presentations of a symplectic manifold as a symplectic

reduction one can construct examples ofM with infinitely many linearly independent Calabi

quasi-morphisms on H̃am (M) (the corresponding symplectic quasi-states are also linearly

independent).

Let us also note that apart from the Calabi quasi-morphisms from Theorem 3.1, the

Givental quasi-morphism mentioned in Remark 3.9 and the quasi-morphisms produced from

them by Borman’s reduction method, there are no known examples of homogeneous quasi-

morphisms on H̃am (M) satisfying the stability property (A) from Theorem 3.1, though

otherwise there are many homogeneous quasi-morphisms on H̃am (M) (that sometimes de-

scend to Ham (M)) – see [19, 33, 59, 60, 65]. Let us also note that for symplectic manifolds

of dimension greater than 2 the constructions above are the only currently known construc-

tions of partial symplectic quasi-states on closed manifolds. (As it was mentioned above,

7Note that Calabi quasi-morphisms and symplectic quasi-states on a given manifold form convex sets respec-

tively in the vector spaces of all homogeneous quasi-morphisms and all Lie quasi-states and their linear dependence

is considered in these vector spaces.
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in dimension 2 any topological quasi-state is also symplectic. There is a number of ways

to construct topological quasi-states in any dimension – see e.g. [2, 41]). The basic open

case for the existence of a (stable) Calabi quasi-morphism on H̃am (M) isM = T 2 and for

symplectic quasi-states it isM = T 4. It is also unknown whether any symplectic quasi-state

has to come from a Calabi quasi-morphism and whether different Calabi quasi-morphisms

may define the same symplectic quasi-state.

Remark 3.11. There is a straightforward extension of the notion of a (partial) Calabi quasi-

morphism to the case of an open symplectic manifoldM and there are several constructions

of such quasi-morphisms.

First, one can consider a conformally symplectic embedding8 of M in a closed sym-

plectic manifold N carrying a Calabi quasi-morphism defined on Ham (N) and use the

homomorphism Ham (M) → Ham (N) induced by the embedding to pullback the quasi-

morphism from Ham (N) to Ham (M). (Of course, one then has to prove that the resulting

quasi-morphism on Ham (M) is non-trivial). In this way one can, for instance, use confor-

mally symplectic embeddings of a standard round ball B2n in CPn in order to construct a

continuum of linearly independent Calabi quasi-morphisms on Ham (B2n) [9].
There are also intrinsic constructions of (partial) Calabi quasi-morphisms for certain

open symplectic manifolds following the lines of the construction presented above – see

[42, 49] for more details as well as for extensions of the notion of a (partial) symplectic quasi-

state to the open case. These constructions allow to extend many of the results mentioned in

this survey to the open case.

4. Applications

4.1. Quasi-states and rigidity of symplectic intersections. A key phenomenon in sym-

plectic topology is rigidity of intersections of subsets of symplectic manifolds: namely,

sometimes a subset X of a symplectic manifold M cannot be displaced from a subset Y
by Ham (M) (or Symp 0(M), or Symp (M)), even though X can be displaced from Y by a

smooth isotopy. A central role in the applications of partial symplectic quasi-states is played

by their connection to this phenomenon. Namely, to each partial symplectic quasi-state, and,

in particular, to each idempotent a ∈ QH(M), one can associate a certain hierarchy of non-
displaceable sets inM . The interplay between the hierarchies associated to different a is an
interesting geometric phenomenon in itself.

The key definitions describing the hierarchy are as follows [23]. Let ζ : C(M) → R
be a partial symplectic quasi-state. We say that a closed subset X ⊂ M is heavy with
respect to ζ, if ζ(F ) ≥ infX F for all F ∈ C(M), and superheavy with respect to ζ, if
ζ(F ) ≤ supX F for all F ∈ C(M). Equivalently, X is superheavy with respect to ζ, if
ζ(F ) = F (X) for any F ∈ C(M) which is constant on X . If ζ = ζa for an idempotent

a ∈ QH(M) (and a prefixed algebraic setup of QH(M)), we use the terms a-heavy and

a-superheavy for the heavy and superheavy sets with respect to ζa. Clearly, a closed set

containing a heavy/superheavy subset is itself heavy/superheavy. The basic properties of

heavy and superheavy sets are summarized in the following theorems.

8A map f : (M,ω) → (N,Ω) between symplectic manifolds is called conformally symplectic if f∗Ω = cω
for some non-zero constant c.
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Theorem 4.1 ([23]). Heavy and superheavy sets with respect to a fixed partial symplectic
quasi-state ζ satisfy the following properties:

(a) Every superheavy set is heavy, but, in general, not vice versa.

(b) The classes of heavy and superheavy sets are Symp 0(M)-invariant.

(c) Every superheavy set has to intersect every heavy set. Therefore, in view of (b), any
superheavy set cannot be displaced from any heavy set by Symp 0(M). In particular,
any superheavy set is non-displaceable by Symp 0(M). On the other hand, two heavy
sets may be disjoint.

(d) Every heavy subset is stably non-displaceable. However, it may be displaceable by
Symp 0(M).

(e) If ζ is a genuine (that is, not partial) symplectic quasi-state, then the classes of heavy
and superheavy sets are identical: they coincide with the class of closed sets of full
quasi-measure (that is, of quasi-measure 1) for the quasi-measure on M associated
with ζ.

Theorem 4.2 ([23]). Assume thatXi is an ai-heavy (resp. ai-superheavy) subset of a closed
connected symplectic manifoldMi for some idempotent ai ∈ QH(Mi), i = 1, 2. Then the
product X1 ×X2 ⊂M1 ×M2 is a1 ⊗ a2-heavy (resp. a1 ⊗ a2-superheavy)9.

Changing an idempotent a or changing the algebraic setup of QH(M) may completely

change the heaviness/superheaviness property of a set: there are examples of disjoint sets

that are superheavy with respect to different idempotents inQH(M) (see Example 4.14) and

there is an example of a set that is [M ]-superheavy, ifQH(M) is set up over F = Z2, and is

disjoint from an [M ]-superheavy set, if QH(M) is set up over F = C (see Example 4.12).

The partial order on the set of idempotents mentioned in Section 3 yields the following

relation between the corresponding collections of heavy and superheavy sets which follows

immediately from Theorem 3.8 and the examples below.

Theorem 4.3. Assume a, b ∈ QH(M) are idempotents and a > b. Then
(a) Every a-superheavy set is also b-superheavy (but not necessarily vice versa).

(b) Every b-heavy set is also a-heavy (but not necessarily vice versa).

Remark 4.4. There is a natural action of Symp (M) onQH(M). The subgroup Symp 0(M)
⊂ Symp (M) acts on QH(M) trivially and this explains the Symp 0(M)-invariance of the

partial symplectic quasi-states ζa and, accordingly, of the classes of a-heavy and a-superheavy
sets. If an idempotent a ∈ QH(M) is invariant under the action of the full group Symp (M)
(e.g. if a = [M ]), then Symp 0(M) can be replaced by Symp (M) everywhere in Theo-

rems 3.1, 3.2, 4.1. In particular, any [M ]-superheavy set cannot be displaced from any
a-heavy set (for any idempotent a ∈ QH(M)) by Symp (M).

Remark 4.5. The reason why every superheavy set X (with respect to a partial quasi-state

ζ) must intersect every heavy set Y is very simple: If X ∩ Y = ∅, pick a function F so that

F |X ≡ 0 and F |Y ≡ 1. Then, by the definition of heavy and superheavy sets, ζ(F ) = 0 and
ζ(F ) ≥ 1, which is impossible.

9There is an analogue of the Künneth formula for quantum homology – in particular, to each pair of idempotents

a1 ∈ QH(M1), a2 ∈ QH(M2), one can associate an idempotent a1 ⊗ a2 ∈ QH(M1 ×M2). Let us note that
even if ζa1 and ζa2 are genuine symplectic quasi-states, ζa1⊗a2 may be only a partial one – see Example 4.14.
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Remark 4.6. For certain Lagrangian submanifolds X and Y ofM one can prove the non-

displaceability ofX from Y by means of the Lagrangian Floer homology of the pair (X,Y )
(see e.g. [30]). The advantage of this method is that, unlike Theorem 4.1, it gives a non-

trivial lower bound on the number of transverse intersection points of φ(X), φ ∈ Ham (M),
and Y . On the other hand, unlike the Lagrangian Floer theory, symplectic quasi-states allow

to prove non-displaceability results for singular sets (see the examples below).

The most basic examples of heavy and superheavy sets are an equator in S2 (that is,

an embedded circle dividing S2 into two parts of equal area) which is [S2]-superheavy and

a meridian in T 2 which is [T 2]-heavy but not [T 2]-superheavy, since it is displaceable by

Symp 0(T
2) – in particular, it implies that the partial symplectic quasi-state onC(T 2) defined

by [T 2] is not a genuine symplectic quasi-state [23] (cf. Remark 3.6). The union of a

meridian and a parallel in T 2 is [T 2]-superheavy [38]. More complicated examples come

from the following constructions.

Let A ⊂ C∞(M) be a finite-dimensional Poisson-commutative vector subspace (mean-

ing that {F,G} = 0 for any F,G ∈ A) . The mapΦ :M → A∗ defined by 〈Φ(x), F 〉=F (x)
is called the moment map of A. As an example of such a moment map one can consider the

moment map of a Hamiltonian torus action onM , or a mapM → RN whose components

have disjoint supports.

A non-empty fiberΦ−1(p) is called a stem ofA (see [21]), if all non-empty fibersΦ−1(q)
with q �= p are displaceable, and a stable stem, if they are stably displaceable. If a subset of

M is a (stable) stem of some finite-dimensional Poisson-commutative subspace of C∞(M),
it will be called just a (stable) stem. Any stem is a stable stem but possibly not vice versa 10.

Theorem 4.7 ([21, 23]). A stable stem is superheavy with respect to any partial symplectic
quasi-state ζ on C(M).

Using the partial symplectic quasi-state ζ[M ] we get

Corollary 4.8 ([21]). For any finite-dimensional Poisson-commutative subspace of C∞(M)
its moment map Φ has at least one non-displaceable fiber.

The following question is closely related to Question 3.4.

Question 4.9. Is it true that for any finite-dimensional Poisson-commutative subspace of
C∞(M) its moment map Φ has at least one heavy fiber (at least with respect to some sym-
plectic quasi-state ζ on C(M))?

Remark 4.10. If ζ a genuine symplectic quasi-state on C(M), then Theorem 4.7 can be

proved using the quasi-measure τ associated to ζ [21]. Namely, the push-forward of τ to A∗

by the moment map Φ of a Poisson commutative subspace A is a Borel probability measure

ν onA∗ [21]. As we already noted above, the vanishing property of ζ implies that τ vanishes
on stably displaceable open subsets ofM . Therefore if a fiber Φ−1(p) of Φ is a stable stem,

the support of ν has to be concentrated at p, meaning that τ(Φ−1(p)) = 1 or, in other words
(see Theorem 4.1), Φ−1(p) is superheavy with respect to ζ.

Here are a few examples of (stable) stems [21, 23]. The Lagrangian Clifford torus in

CPn, defined as L = {[z0 : . . . : zn] ∈ CPn | |z0| = . . . = |zn|}, is a stem, hence

[CPn]-superheavy (this generalizes the example of an equator in S2 mentioned above). The

10There are no known examples of a stable stem that is not a stem, i.e. not a stem of any A.
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codimension-1 skeleton of a triangulation of a closed symplectic manifoldM2n all of whose

2n-dimensional simplices are displaceable is a stem. A fiber Φ−1(0) of the normalized

moment map Φ of a compressible11 Hamiltonian torus action on M is a stable stem12. A

direct product of (stable) stems is a (stable) stem and that the image of a (stable) stem under

any symplectomorphism is again a (stable) stem.

In case when the Hamiltonian torus action is not compressible, much less is known about

(stable) displaceability of fibers of the moment map of the action (aside from the case of sym-

plectic toric manifolds where many results have been obtained in recent years by different

authors). If (M,ω) is monotone, one can explicitly find a so-called special fiber of the mo-

ment map Φ of the action which is a-superheavy for any idempotent a ∈ QH(M) [23]. For
a Hamiltonian Tn-action torus on a monotone (M2n, ω) (that is, for a monotone symplectic

toric manifold) the special fiber (which in this case is a Lagrangian torus) can be described in

simple combinatorial terms involving the moment polytope (that is, the image of the moment

map which is a convex polytope) – see [23]. It is not known whether in the latter case the

special fiber is always a stem – see [46] for a detailed investigation of this question. Inter-

estingly enough, the question whether the special fiber of the normalized moment map for

a monotone symplectic toric manifoldM coincides with the fiber over zero is related to the

existence of a Kähler-Einstein metric onM – see [23, 64].

Finally, heaviness/superheaviness of Lagrangian submanifolds can be proved using vari-

ous versions of Lagrangian Floer homology. Namely, to certain Lagrangian submanifolds L
ofM one can associate the quantum homology (or the Lagrangian Floer homology)QH(L)
that comes with an open-closed map iL : QH(L) → QH(M) [3, 8, 30, 31]. If iL(x) is
non-zero for certain x ∈ QH(L), then L is [M ]-heavy13, and if iL(x) divides an idempo-

tent a ∈ QH(M), then L is a-superheavy – this is shown in [23] in the monotone case, cf.

[8, 30, 31].

Here are a few examples where this method can be applied. Let us emphasize that the

applications to specificL do depend on a proper choice of the algebraic setup for the quantum

homology in each case – see e.g. Example 4.12; we will ignore this issue in the other

examples below and refer the reader to [8, 23, 31] for details.

Example 4.11 ([23]). Assume that L ⊂M is a Lagrangian submanifold and π2(M,L) = 0.
Then L is [M ]-heavy. Note that in this case heaviness may not be improved to superheavi-

ness: the meridian in T 2 is [T 2]-heavy but not [T 2]-superheavy.

Example 4.12. The real projective space RPn, which is a Lagrangian submanifold of CPn,
is [CPn]-superheavy, as long asQH(CPn) is set up over F = Z2 [8, 23]. In particular, this

implies that RPn is not displaceable by Symp (CPn) from the Clifford torus (see [4, 67] for

other proofs of this fact).

On the other hand, RPn may not be [CPn]-superheavy, if QH(CPn) is set up over

F = C – for n = 2 this follows from [73] and for n = 3 from [50]. This implies that

the symplectic quasi-states defined by [CPn] for the setups of QH(M) over F = Z2 and

F = C are different for n = 2, 3.

11An effective Hamiltonian Tk-action on (M,ω) is called compressible if the image of the homomorphism

π1(Tk) → π1(Ham (M)), induced by the action, is a finite group.
12Stable stems appearing in this way potentially may not be genuine stems.

13The a-heaviness for an arbitrary idempotent a ∈ QH(M) can also be proved by the same method under a

stronger non-vanishing assumption.
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Example 4.13 ([23]). Consider the torus T 2n equipped with the standard symplectic struc-

ture ω = dp ∧ dq. LetM2n = T 2n'CPn be a symplectic blow-up of T 2n at one point (the

blow-up is performed in a small ball B around the point). Assume that the Lagrangian torus

L ⊂ T 2n given by q = 0 does not intersect B.
Then the proper transform of L is a Lagrangian submanifold ofM which is [M ]-heavy

but not a-heavy for some other idempotent a ∈ QH(M) (that, roughly speaking, depends

on the exceptional divisor of the blow-up). In this case the functional ζ[M ] is a partial (but

not genuine) symplectic quasi-state while ζa is a genuine symplectic quasi-state.

Example 4.14 ([18, 23]). Let S2 be the standard unit sphere in R3 with the standard area

form σ. LetM := S2×S2 be equipped with the symplectic form σ⊕σ. Denote by x1, y1, z1
and x2, y2, z2 the Euclidean coordinates on the two S2-factors.

Consider the following three Lagrangian submanifolds of M : the anti-diagonal Δ :=
{(u, v) ∈ S2 × S2 : u = −v}, the Clifford torus L = {z1 = z2 = 0} and the torus

K = {z1 + z2 = 0, x1x2 + y1y2 + z1z2 = −1/2}. Clearly, L intersects both K and Δ,

whileK ∩Δ = ∅.
For a certain algebraic setup of QH(M) (with F = C) the algebra QH(M) is a direct

sum of two fields whose unities will be denoted by a− and a+ (in particular, a−+a+ = [M ]).
The idempotents a− and a+ define symplectic quasi-states ζa− , ζa+ . At the same time ζ[M ]

is only a partial, not genuine, symplectic quasi-state. The submanifolds Δ and L are a−-
superheavy, while K is not. At the same time K and L are a+-superheavy, while Δ is not.

All three sets Δ,K, L are [M ]-heavy but L is the only one of them that is [M ]-superheavy.
In particular, the Lagrangian tori L and K cannot be mapped into each other by any

symplectomorphism of M . See [50] and the references therein for more results on the La-

grangian torusK.

For more examples of heavy and superheavy Lagrangian submanifolds obtained bymeans

of an open-closed map see [23, 31].

4.2. Quasi-states and connecting trajectories of Hamiltonian flows. Here is an applica-

tion of symplectic quasi-states to Hamiltonian dynamics. As above, we assume thatM is a

closed connected symplectic manifold.

Theorem 4.15 ([14]). Let X0, X1, Y0, Y1 ⊂ M be a quadruple of closed sets so that X0 ∩
X1 = Y0 ∩ Y1 = ∅ and the sets X0 ∪ Y0, Y0 ∪X1, X1 ∪ Y1, Y1 ∪X0 are all a-superheavy
for an idempotent a ∈ QH(M). Let G ∈ C∞(M × S1) be a 1-periodic Hamiltonian with
Gt|Y0

≤ 0, Gt|Y1
≥ 1 for all t ∈ S1.

Then there exists a point x ∈ M and time moments t0, t1 ∈ R so that φt0G (x) ∈
X0 and φt1G (x) ∈ X1. Furthermore, |t0 − t1| can be bounded from above by a con-
stant depending only on a, if G is time-independent, and both on a and the oscillation
maxM×S1 G−minM×S1 G of G, if G is time-dependent.

Remark 4.16. The proof of Theorem 4.15 uses the following important notion [14]: Given a

quadrupleX0, Y0, X1, Y1 of compact subsets of a (possibly open) symplectic manifold such

that X0 ∩ X1 = Y0 ∩ Y1 = ∅, define pb4(X0, Y0, X1, Y1) (where pb stands for the “Pois-
son brackets” and 4 for the number of sets) by pb4(X0, Y0, X1, Y1) = infF,G ||{F,G}||,
where the infimum is taken over all compactly supported smooth F,G satisfying F |X0 ≤ 0,
F |X1 ≥ 1, G|Y0 ≤ 0, G|Y1 ≥ 1.

Given a quadruple X0, Y0, X1, Y1 as in Theorem 4.15, one can use the strong form of

the property (b2) in Theorem 3.1 to prove the positivity of pb4 for certain stabilizations [14]
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of the four sets. The existence of a connecting trajectory of the Hamiltonian flow is then

deduced from the positivity of pb4 using an averaging argument [14].

Example 4.17 ([14]). Consider an open tubular neighborhood U of the zero-section Tn in

T ∗Tn. Pick q0, q1 ∈ Tn and consider the open cotangent disks Di = T
∗
qiT

n ∩ U , i = 0, 1.
LetM = S2 × . . .× S2 be the product of n copies of S2 equipped with the split symplectic

structure ω = σ ⊕ . . . ⊕ σ. Let Y1 ⊂ M be the product of equators in the S2 factors. It

is a Lagrangian torus. If
∫
S2 σ is sufficiently large, then, by the Weinstein neighborhood

theorem (see [47]), U can be symplectically identified with a tubular neighborhood of Y1 in
M . Using the identification we consider Xi := Di, i = 0, 1, Y1 and U as subsets ofM . Set

Y0 :=M \ U .
If
∫
S2 σ is sufficiently large, the quadrupleX0, Y0, X1, Y1 ⊂M satisfies the assumptions

of Theorem 4.15 [14]. In particular, let G : T ∗Tn × S1 → R be a Hamiltonian supported in

U ⊂ T ∗Tn which is ≥ 1 on Tn × S1. Theorem 4.15 implies the existence of a trajectory of

the Hamiltonian flow of G passing through D0 and D1.

Switching the pairX0, X1 with the pair Y0, Y1 and applying Theorem 4.15 to the switched

pairs one can show in a similar way that if F : T ∗Tn × S1 → R is a compactly supported

Hamiltonian such that F |D0×S1 ≤ 0, F |D1×S1 ≥ 1, then there exists a trajectory of the

Hamiltonian flow of F connecting the zero-section of T ∗Tn with ∂U . It would be interesting
to find out whether this fact can be related to the well-known Arnold diffusion phenomenon

in Hamiltonian dynamics that concerns trajectories of a similar kind.

4.3. Quasi-states and C0-rigidity of Poisson brackets. In this section we still assume

that (M,ω) is a closed connected symplectic manifold.

The Poisson brackets of two smooth functions on (M,ω) depend on their first derivatives.
Nevertheless, as it was first discovered in [17], the Poisson bracket displays a certain rigidity

with respect to the uniform norm of the functions. This rigidity is best expressed in terms of

the profile function defined as follows [14].

Equip the space Π := C∞(M)× C∞(M) with the product uniform metric:

d((F,G), (H,K)) = ||F −H||+ ||G−K||.

For each s ≥ 0 define Πs := {(H,K) ∈ Π | ||{H,K}|| ≤ s}. In particular, Π0 is

the set of Poisson-commuting pairs. Given a pair (F,G) ∈ Π, define the profile function
ρF,G : R≥0 → R≥0 by ρF,G(s) = d((F,G),Πs).

Question 4.18. Given a pair (F,G) ∈ Π, what can be said of ρF,G(0)? In other words, how
well can (F,G) be approximated with respect to d by a Poisson-commuting pair?

Let us note that similar approximation questions have been extensively studied for ma-

trices – see e.g. [37] and the references therein. It follows from [25] that the sets Πs, s ≥ 0,
are closed with respect to d and therefore ρF,G(s) > 0 for s ∈ [0, ||{F,G}||). Symplectic

quasi-states help to give a more precise answer in certain cases.

Theorem 4.19 ([14]). Let ζ : C(M) → R be a symplectic quasi-state.

(a) AssumeX,Y, Z ⊂M are closed sets that are superheavy with respect to ζ and satisfy
X ∩ Y ∩ Z = ∅. Assume F |X ≤ 0, G|Y ≤ 0, (F + G)|Z ≥ 1 and at least one of
the functions F,G has its range in [0, 1]. Then ρF,G(0) = 1/2 and for some positive
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constant C, independent of F,G, and for all s ∈ [0; ||{F,G}||]
1

2
− C√

s ≤ ρF,G(s) ≤ 1

2
− s

2||{F,G}|| .

(b) Let X0, X1, Y0, Y1 ⊂ M be closed sets so that X0 ∩X1 = Y0 ∩ Y1 = ∅ and the sets
X0 ∪ Y0, Y0 ∪ X1, X1 ∪ Y1, Y1 ∪ X0 are all superheavy with respect to ζ. Assume
F,G ∈ C∞(M), F |X0 ≤ 0, F |X1 ≥ 1, G|Y0 ≤ 0, G|Y1 ≥ 1 and at least one of
the functions F,G has its range in [0, 1]. Then ρF,G(0) = 1/2 and for some positive
constant C, independent of F,G, and for all s ∈ [0; ||{F,G}||]

1

2
− Cs ≤ ρF,G(s) ≤ 1

2
− s

2||{F,G}|| .

The proof of part (b) uses the fact that pb4(X0, Y0, X1, Y1) > 0 (see Remark 4.16) and

part (a) is based on the positivity of a similar Poisson bracket invariant pb3(X,Y, Z) – see

[14] for more details, as well as for examples where the theorem can be applied, including

an example where the lower bound in part (a) is asymptotically sharp. For a version of

Theorem 4.19 for iterated Poisson brackets see [27].
Here is another fact concerning the C0-rigidity of Poisson brackets whose proof uses

partial symplectic quasi-states and the strong version of their partial quasi-additivity (see

Theorem 3.2). Let U = {U1, . . . , UN} be a finite cover of M by displaceable open sets.

Given a partition of unity 	F = {F1, . . . , FN} subordinated to U (that is, suppFi ⊂ Ui for
every i), consider the following measure of its Poisson non-commutativity:

κ(	F ) := inf
x,y∈[−1,1]N

∥∥∥{ N∑
i=1

xiFi,

N∑
j=1

yjFj

}∥∥∥,
where the infimum is taken over all x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ [−1, 1]N . Set

pb(U) := inf 	F κ(
	F ), where the infimum is taken over all partitions of unity 	F subordinated

to U . We say that U is dominated by an open set U ⊂ M if for each i = 1, . . . , N there

exists φi ∈ Ham (M) so that Ui ⊂ φi(U).
Theorem 4.20 ([57]). Assume U is dominated by a displaceable open set U . Then there
exists a constant C = C(U) > 0 so that

pb(U) ≥ C/N2. (4.1)

The theorem strengthens a similar result proved previously in [28]. It is not clear whether

the inequality (4.1) can be improved – see [57] for a discussion.

Remark 4.21. Amazingly, Theorem 4.20 that belongs to the mathematical formalism of

classical mechanics can be used to prove results about mathematical objects of quantum

nature appearing in the Berezin-Toeplitz quantization of a symplectic manifold – see [56–

58].
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4.4. Quasi-morphisms and metric properties of Ham (M). The group Ham (M) carries
various interesting metrics. Here we will discuss how Calabi quasi-morphisms can be used

to study these metrics.

The most remarkable metric on Ham (M) is the Hofer metric. Namely, define the Hofer
norm ||φ||H of φ ∈ Ham (M) as ||φ||H = infF

∫ 1

0
(maxM Ft − minM Ft)dt, where the

infimum is taken over all (time-dependent) Hamiltonians F generating φ (if M is open, F
is also required to be compactly supported). The Hofer metric is defined by &(φ, ψ) =
||φψ−1||H . It is a deep result of symplectic topology that & is a bi-invariant metric – see e.g.

[47] and the references therein.

Assume Ham (M) admits a partial Calabi quasi-morphism μ. Then the stability property
of μ (see Theorem 3.1) implies that μ is Lipschitz with respect to & and therefore the diameter

of Ham (M) with respect to & is infinite [20]. Moreover, the Lipschitz property of μ with

respect to & allows to obtain the following result on the growth of 1-parametric subgroups of

Ham (M) with respect to the Hofer norm.

Theorem 4.22 ([58], cf. [20]). Assume Ham (M) admits a partial Calabi quasi-morphism.
Then there exists a set Ξ ⊂ C∞(M) which is C0-open and C∞-dense in C∞(M) so that

lim
t→+∞

||φtF ||H
t||F || > 0 for any F ∈ Ξ.

Calabi quasi-morphisms can be also applied to the study of the metric induced by & on
certain spaces of Lagrangian submanifolds ofM – see [39, 63].

The group Ham (M) also carries the C0-topology: equipM with a distance function d,
given by a Riemannian metric on M , and define the C0-topology on Ham (M) as the one

induced by the metric dist(φ, ψ) = maxx∈M d(φ(x), ψ(x)). The relation between the C0-

topology and the Hofer metric on Ham (M) is rather delicate (for instance, the C0-metric is

never continuous with respect to the Hofer metric). One can use the Calabi quasi-morphisms

on Ham (B2n) (see Remark 3.11) in order to construct infinitely many linearly independent

homogeneous quasi-morphisms on Ham (B2n) that are both Lipschitz with respect to the

Hofer metric and continuous in the C0-topology [26]. This yields the following corollary

answering a question of Le Roux [43]:

Corollary 4.23 ([26]). For any c ∈ R the set {φ ∈ Ham (B2n) | ||φ||H ≥ c} has a non-
empty interior in the C0-topology.

See [62] for an extension of this result to a wider class of open symplectic manifolds.

(Partial) Calabi quasi-morphisms can be also applied to the study of the norms ‖φ‖U
and ‖φ‖U,0 on Ham (M) (see Section 3.1) and the metrics defined by them. Namely, let

U ⊂ M be a displaceable open set. Assume Ham (M) admits a Calabi quasi-morphism μ.
A standard fact about quasi-morphisms bounded on a generating set yields that there exists

a constant C = C(μ) > 0 so that ‖φ‖U,0 ≥ C|μ(φ)| for any φ ∈ Ham (M). In particular,

Ham (M) is unbounded with respect to the norm ‖ · ‖U,0.
On the other hand, if μ : Ham (M) → R is only a partial but not genuine Calabi quasi-

morphism, it can be used to show the unboundedness of Ham (M) with respect to the norm

‖ · ‖U [15]. Namely, assume X,Y = ϕ(X) ⊂ M , ϕ ∈ Symp 0(M), are heavy14 disjoint15

14With respect to the partial symplectic quasi-state ζ associated to μ. If X is heavy with respect to ζ, then so is

ϕ(X), since ζ is Symp 0(M)-invariant.
15This is possible only if μ is not a genuine Calabi quasi-morphism, since otherwise each heavy set (with respect

to ζ) is also superheavy and therefore must intersect any other heavy set.
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closed subsets of M and V,W are their disjoint open neighborhoods (for instance, X and

Y can be two meridians on a standard symplectic torus). Let F , G be smooth functions

supported, respectively, in V,W so that F |X ≡ 1 = maxM F , G|Y ≡ 1 = maxM G. One
can easily show that

k = |μ(φkFφkG)− μ(φkF )− μ(φkG)| ≤ C‖φkF ‖U
for any k ∈ N and a constant C > 0 depending only on μ and U . Thus in such a case ‖φkF ‖U
grows asymptotically linearly with k and the norm ‖ · ‖U is unbounded on Ham (M).

Question 4.24. Does there exist a closed symplectic manifoldM for which ‖·‖U is bounded
on Ham (M)?

4.5. First steps of symplectic function theory – discussion. A smooth manifold M and

various geometric structures on it can be described in terms of the function space C∞(M)
– for instance, subsets ofM correspond to ideals in C∞(M), tangent vectors to derivations

on C∞(M) etc. In particular, a symplectic structure onM is completely determined by the

corresponding Poisson brackets on C∞(M) which means that, in principle, any symplectic

phenomenon has a counterpart in the symplectic function theory, that is, the function theory

of the Poisson brackets. The key feature of symplectic topology is C0-rigidity appearing in

various forms for smooth objects on symplectic manifolds. Its counterpart in the symplectic

function theory is the rigidity of the Poisson brackets with respect to the C0-norm on func-

tions – see e.g. [58] for a deduction of the foundational Eliashberg-Gromov theorem on the

C0-closedness of Symp(M) from the C0-rigidity of the Poisson brackets.

The results and methods presented in this survey show that thinking about symplectic

phenomena in terms of the function theory may have a number of advantages. First, it allows

to use the “Lie group - Lie algebra” connection between H̃am (M) and C∞(M)/R: most

of the properties of symplectic quasi-states are proved using the properties of Calabi quasi-

morphisms. Second, it allows to deal with singular sets (see Remark 4.6). Third, it allows

to apply functional methods, like averaging, to Hamiltonian dynamics (see Remark 4.16).

Fourth, it helps to find connections between symplectic topology and quantum mechanics

since it is the Poisson algebra C∞(M) that is being quantized in various quantization con-

structions (see e.g. Remark 4.21). Moreover, one may hope to discover new geometric and

dynamical phenomena by studying the function theory of the Poisson bracket. For instance,

the behavior of the profile function ρ(t) as t → 0 (see Section 4.3 and [14]) is obviously

of interest in symplectic function theory but its geometric or dynamical implications are

absolutely unclear.

Acknowledgements. Most of the material presented in this survey is based on our joint

papers with Leonid Polterovich – I express my deep gratitude to Leonid for the long and

enjoyable collaboration. Some of the results were obtained jointly with Paul Biran, Lev

Buhovsky, Frol Zapolsky, Pierre Py and Daniel Rosen – I thank them all. The author was

partially supported by the Israel Science Foundation grant # 723/10.



Quasi-morphisms and quasi-states in symplectic topology 1167

References

[1] Aarnes, J.F., Quasi-states and quasi-measures, Adv. Math. 86 (1991), 41–67.

[2] , Construction of non-subadditive measures and discretization of Borel mea-
sures, Fund. Math. 147 (1995), 213–237.

[3] Albers, P., On the extrinsic topology of Lagrangian submanifolds, Int. Math. Res. Not.

38 (2005), 2341–2371. Erratum: Int. Math. Res. Not. (2010), 1363–1369.

[4] Alston, G., Lagrangian Floer homology of the Clifford torus and real projective space
in odd dimensions, J. Sympl. Geom. 9 (2011), 83–106.

[5] Banyaga, A., Sur la structure du groupe des difféomorphismes qui préservent une forme
symplectique, Comm. Math. Helv. 53 (1978), 174–227.

[6] Bell, J.S., On the problem of hidden variables in quantum mechanics, Rev. Modern

Phys. 38 (1966), 447–452.

[7] Ben Simon, G., The nonlinear Maslov index and the Calabi homomorphism, Comm.

Contemp. Math. 9 (2007), 769–780.

[8] Biran, P. and Cornea, O., Rigidity and uniruling for Lagrangian submanifolds, Geom.

Topol. 13 (2009), 2881–2989.

[9] Biran, P., Entov, M., and Polterovich, L., Calabi quasimorphisms for the symplectic
ball, Comm. Contemp. Math. 6 (2004), 793–802.

[10] Borman, M.S., Symplectic reduction of quasi-morphisms and quasi-states, J. Sympl.

Geom. 10 (2012), 225–246.

[11] , Quasi-states, quasi-morphisms, and the moment map, Int. Math. Res. Not.

(2013), 2497–2533.

[12] Borman, M.S. and Zapolsky, F., Quasi-morphisms on contactomorphism groups and
contact rigidity, preprint, arXiv:1308.3224, 2013.

[13] Branson, M., Symplectic manifolds with vanishing action-Maslov homomorphism, Al-
gebr. Geom. Topol. 11 (2011), 1077–1096.

[14] Buhovsky, L., Entov, M., and Polterovich, L., Poisson brackets and symplectic invari-
ants, Selecta Math. (N.S.) 18 (2012), 89–157.

[15] Burago, D., Ivanov, S., and Polterovich, L., Conjugation-invariant norms on groups of
geometric origin, in Groups of Diffeomorphisms: In Honor of Shigeyuki Morita on the

Occasion of His 60th Birthday. Adv. Studies in Pure Math. 52, Math. Soc. of Japan,

Tokyo, 2008.

[16] Calegari, D., scl. MSJ Memoirs 20, Math. Soc. of Japan, Tokyo, 2009.

[17] Cardin, F. and Viterbo, C., Commuting Hamiltonians and Hamilton-Jacobi multi-time
equations, Duke Math. J. 144 (2008), 235–284.



1168 Michael Entov

[18] Eliashberg, Y. and Polterovich, L., Symplectic quasi-states on the quadric surface and
Lagrangian submanifolds, preprint, arXiv:1006.2501, 2010.

[19] Entov, M., Commutator length of symplectomorphisms, Comm. Math. Helv. 79 (2004),

58–104.

[20] Entov, M. and Polterovich, L., Calabi quasimorphism and quantum homology, Int.
Math. Res. Not. 30 (2003), 1635-1676.

[21] , Quasi-states and symplectic intersections, Comm. Math. Helv. 81 (2006), 75–

99.

[22] Entov, M. and Polterovich, L., Symplectic quasi-states and semi-simplicity of quantum
homology, in Toric Topology (eds. M.Harada, Y.Karshon, M.Masuda and T.Panov),

47–70. Contemp. Math. 460, AMS, Providence RI, 2008.

[23] , Rigid subsets of symplectic manifolds, Compositio Math. 145 (2009), 773–

826.

[24] , Lie quasi-states, J. Lie Theory 19 (2009), 613–637.

[25] , C0-rigidity of Poisson brackets, in Proceedings of the Joint Summer Re-

search Conference on Symplectic Topology and Measure-Preserving Dynamical Sys-

tems (eds. A. Fathi, Y.-G. Oh and C. Viterbo), 25–32. Contemp. Math. 512, AMS,

Providence RI, 2010.

[26] Entov, M., Polterovich, L., and Py, P., On continuity of quasimorphisms for symplectic
maps,With an appendix by Michael Khanevsky, in Perspectives in analysis, geometry,

and topology, 169–197. Progr. Math. 296, Birkhauser/Springer, New York, 2012.

[27] Entov, M., Polterovich L., and Rosen, D., Poisson brackets, quasi-states and symplectic
integrators, Discr. and Cont. Dyn. Systems 28 (2010), 1455–1468.

[28] Entov, M., Polterovich, L., and Zapolsky, F.,Quasi-morphisms and the Poisson bracket,
Pure and Appl. Math. Quarterly 3 (2007), 1037–1055.

[29] , An anti-Gleason phenomenon and simultaneous measurements in classical
mechanics, Found. of Physics 37 (2007), 1306–1316.

[30] Fukaya, K., Oh, Y.-G., Ohta, H., and Ono, K., Lagrangian intersection Floer the-
ory: anomaly and obstruction Parts I, II., AMS, Providence, RI, International Press,

Somerville, MA, 2009.

[31] , Spectral invariants with bulk, quasimorphisms and Lagrangian Floer theory,
arXiv:1105.5123, 2011.

[32] Galkin, S., The conifold point, preprint, arXiv:1404.7388, 2014.

[33] Gambaudo, J.-M. and Ghys, E., Commutators and diffeomorphisms of surfaces, Erg.
Th. Dyn. Sys. 24 (2004), 1591–1617.

[34] Givental, A., The nonlinear Maslov index, in Geometry of low-dimensional manifolds,

2 (Durham, 1989), 35–43. London Math. Soc. Lecture Note Ser. 151, Cambridge Univ.

Press, Cambridge, 1990.



Quasi-morphisms and quasi-states in symplectic topology 1169

[35] , Nonlinear generalization of the Maslov index, in Theory of singularities and

its applications, 71–103. Adv. Soviet Math. 1, AMS, Providence, RI, 1990.

[36] Gleason, A.M., Measures on the closed subspaces of a Hilbert space, J. Math. Mech.

6 (1957), 885–893.

[37] Hastings, M.B., Making almost commuting matrices commute, Comm. Math. Phys.

291 (2009), 321–345.

[38] Kawasaki, M., Superheavy subsets and noncontractible Hamiltonian circle actions,
preprint, 2013.

[39] Khanevsky, M., Hofer’s metric on the space of diameters, J. Topol. and Analysis 1
(2009), 407–416.

[40] Kislev, A., Compactly supported Hamiltonian loops with non-zero Calabi invariant,
preprint, arXiv:1310.1555, 2013.

[41] Knudsen, F.F., Topology and the construction of extreme quasi-measures, Adv. Math.

120 (1996), 302–321.

[42] Lanzat, S., Quasi-morphisms and symplectic quasi-states for convex symplectic mani-
folds, Int. Math. Res. Not. (2013), 5321–5365.

[43] Le Roux, F., Six questions, a proposition and two pictures on Hofer distance for Hamil-
tonian diffeomorphisms on surfaces, in Symplectic topology and measure preserving

dynamical systems, 33–40. Contemp. Math. 512, AMS, Providence, RI, 2010.

[44] Maydanskiy, M. and Mirabelli, B.P., Semisimplicity of the quantum cohomology for
smooth Fano toric varieties associated with facet symmetric polytopes, Electron. Res.
Announc. Math. Sci. 18 (2011), 131–143.

[45] McDuff, D., Monodromy in Hamiltonian Floer theory, Comment. Math. Helv. 85
(2010), 95–133.

[46] , Displacing Lagrangian toric fibers via probes, in Low-dimensional and sym-

plectic topology, 131–160. Proc. Sympos. Pure Math. 82, AMS, Providence, RI, 2011.

[47] McDuff, D. and Salamon, D., Introduction to symplectic topology, Second edition.

Oxford Univ. Press, New York, 1998.

[48] , J-holomorphic curves and symplectic topology, Second edition. AMS Collo-

quium Publ. 52, AMS, Providence, RI, 2012.

[49] Monzner, A., Vichery, N., and Zapolsky, F., Partial quasimorphisms and quasistates on
cotangent bundles, and symplectic homogenization, J. Mod. Dyn. 6 (2012), 205–249.

[50] Oakley, J. and Usher, M., On certain Lagrangian submanifolds of S2 × S2 and CPn,
preprint, arXiv:1311.5152, 2013.

[51] Oh, Y.-G., Symplectic topology as the geometry of action functional I, J. Diff. Geom.

46 (1997), 499–577.



1170 Michael Entov

[52] , Symplectic topology as the geometry of action functional II, Comm. Analysis

Geom. 7 (1999), 1–55.

[53] , Construction of spectral invariants of Hamiltonian paths on general sym-
plectic manifolds, in The breadth of symplectic and Poisson geometry, 525–570.

Birkhäuser, Boston, 2005.

[54] Ostrover, Y., Calabi quasi-morphisms for some non-monotone symplectic manifolds,
Algebr. Geom. Topol. 6 (2006), 405–434.

[55] Ostrover, Y. and Tyomkin, I., On the quantum homology algebra of toric Fano mani-
folds, Selecta Math. (N.S.) 15 (2009), 121–149.

[56] Polterovich, L., Quantum unsharpness and symplectic rigidity, Lett. Math. Phys. 102
(2012), 245–264.

[57] , Symplectic geometry of quantum noise, preprint, arXiv:1206.3707, 2012. To
appear in Comm. Math. Phys.

[58] Polterovich, L. and Rosen., D., Function theory on symplectic manifolds, book draft,

2014.

[59] Py, P., Quasi-morphismes et invariant de Calabi, Ann. Sci. École Norm. Sup. (4) 39
(2006), 177–195.

[60] , Quasi-morphismes de Calabi et graphe de Reeb sur le tore, C. R. Math. Acad.

Sci. Paris 343 (2006), 323–328.

[61] Schwarz, M., On the action spectrum for closed symplectically aspherical manifolds,
Pacific J. Math. 193 (2000), 419–461.

[62] Seyfaddini, S., Descent and C0-rigidity of spectral invariants on monotone symplectic
manifolds, J. Topol. Analysis 4 (2012), 481–498.

[63] , Unboundedness of the Lagrangian Hofer distance in the Euclidean ball,
preprint, arXiv:1310.1057, 2013.

[64] Shelukhin, E., Remarks on invariants of Hamiltonian loops, J. Topol. Analysis 2
(2010), 277–325.

[65] , The action homomorphism, quasimorphisms and moment maps on the space
of compatible almost complex structures, preprint, arXiv:1105.5814, 2011.

[66] Shtern, A.I., The Kazhdan-Milman problem for semisimple compact Lie groups, Rus-
sian Math. Surveys 62 (2007), 113–174.

[67] Tamarkin, D., Microlocal condition for non-displaceablility, preprint, arXiv:0809.

1584, 2008.

[68] Usher, M., Spectral numbers in Floer theories, Compositio Math. 144 (2008), 1581–

1592.

[69] ,Duality in filtered Floer-Novikov complexes, J. Topol. Analysis 2 (2010), 233–

258.



Quasi-morphisms and quasi-states in symplectic topology 1171

[70] , Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasi-
morphisms, Geom. Topol. 15 (2011), 1313–1417.

[71] Viterbo, C., Symplectic topology as the geometry of generating functions, Math. Ann.

292 (1992), 685–710.

[72] Von Neumann, J.,Mathematical foundations of quantum mechanics, Princeton Univer-
sity Press, Princeton, 1955. (Translation of Mathematische Grundlagen der Quanten-

mechanik. Springer, Berlin, 1932.)

[73] Wu, W., On an exotic Lagrangian torus in CP 2, preprint, arXiv:1201.2446.

Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel.

E-mail: entov@math.technion.ac.il





Representation stability

Benson Farb

Abstract. Representation stability is a phenomenon whereby the structure of certain sequences Xn

of spaces can be seen to stabilize when viewed through the lens of representation theory. In this

paper I describe this phenomenon and sketch a framework, the theory of FI-modules, that explains the

mechanism behind it.
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1. Introduction

Sequences Vn of representations of the symmetric group Sn occur naturally in topology,

combinatorics, algebraic geometry and elsewhere. Examples include the cohomology of

configuration spaces Confn(M), moduli spaces of n-pointed Riemann surfaces and con-

gruence subgroups Γn(p); spaces of polynomials on rank varieties of n × n matrices; and

n-variable diagonal co-invariant algebras.
Any Sn-representation is a direct sum of irreducible representations. These are param-

eterized by partitions of n. Following a 1938 paper of Murnaghan, one can pad a partition

λ =
∑r

i=1 λi of any number d to produce a partition (n− |λ|)+λ of n for all n ≥ |λ|+λ1.
The decomposition of Vn into irreducibles thus produces a sequence of multiplicities of par-

titions λ, recording how often λ appears in Vn.
A few years ago Thomas Church and I discovered that for many important sequences

Vn arising in topology including the examples mentioned above, these multiplicities become

constant once n is large enough. With Jordan Ellenberg and Rohit Nagpal, we built a theory

to explain this stability, converting it to a finite generation property for a single object. We

applied this to prove stability in these and many other examples. As a consequence, the char-

acter of Vn is given (for all n ) 1) by a single polynomial, called a character polynomial,
studied by Frobenius but not so widely known today. One of the main points of our work is

that the mechanism for this stability comes from a common structure underlying all of these

examples.

After giving an overview of this theory, we explain how it applies and connects to an

array of counting problems for polynomials over finite fields, and for maximal tori in the

finite groups GLn Fq . In particular, the stability of such counts reflects, and is reflected in,

the representation stability of the cohomology of an associated algebraic variety. We begin

with a motivating example.

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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2. Configuration spaces and representation theory

LetM be any connected, oriented manifold. For any n ≥ 1 let Confn(M) be the space of
configurations of ordered n-tuples of distinct points inM :

Confn(M) := {(z1, . . . , zn) ∈Mn : zi �= zj if i �= j}.
The symmetric group Sn acts freely on Confn(M) by permuting the coordinates:

σ · (z1, . . . , zn) := (zσ(1), . . . , zσ(n)).

This action induces for each i ≥ 0 an action ofSn on the complex vector spaceHi(Confn(M);
C), making Hi(Confn(M);C) into an Sn-representation. Here we have chosen C coeffi-

cients for simplicity of exposition.

2.1. Cohomology of configuration spaces. The study of configuration spaces and their

cohomology is a classical topic. We concentrate on the following fundamental problem.

Problem 2.1 (Cohomology of configuration spaces). LetM be a connected, oriented man-

ifold. Fix a ring R. Compute H∗(Confn(M);R) as an Sn-representation.

Problem 2.1 was considered in special cases by Brieskorn, F. Cohen, Stanley, Orlik,

Lehrer-Solomon and many others; see, e.g. [20] and the references contained therein.

What exactly does “compute as an Sn-representation” mean? Well, by Maschke’s The-

orem, any Sn-representation over C is a direct sum of irreducible Sn-representations. In

1900, Alfred Young gave an explicit bijection between the set of (isomorphism classes

of) irreducible Sn-representations and the set of partitions n = n1 + · · · + nr of n with

n1 ≥ · · · ≥ nr > 0.
Let λ = (a1, . . . , ar) be an r-tuple of integers with a1 ≥ · · · ≥ ar > 0 and such that n−∑
ai ≥ a1. We denote by V (λ), or V (λ)n when we want to emphasize n, the representation

in Young’s classification corresponding to the partition n = (n−∑r
i=1 ai) + a1 + · · ·+ ar.

With this terminology we have, for example, that V (0) is the trivial representation, V (1) is
the (n − 1)-dimensional irreducible representation {(z1, . . . , zn) ∈ Cn :

∑
zi = 0}, and

V (1, 1, 1) is the irreducible representation
∧3
V (1). For each n ≥ 1 and each i ≥ 0 we can

write

Hi(Confn(M);C) =
⊕
λ

di,n(λ)V (λ)n (2.1)

for some integers di,n(λ) ≥ 0. The sum on the right-hand side of (2.1) is taken over all

partitions λ of numbers ≤ n for which V (λ)n is defined. The coefficient di,n(λ) is called
the multiplicity of V (λ) in Hi(Confn(M);C).

Problem 2.1 over C, restated: Compute the multiplicities di,n(λ).

Why should we care about solving this problem? Here are a few reasons:

1. Even the multiplicity di,n(0) of the trivial representation V (0) is interesting: it com-

putes the ith Betti number of the space UConfn(M) := Confn(M)/Sn of unordered

n-tuples of distinct points inM . In other words,

dimCH
i(UConfn(M);C) = di,n(0). (2.2)

This follows from transfer applied to the finite cover Confn(M) → UConfn(M).



Representation stability 1175

2. More generally, the di,n(λ) for other partitions λ of n compute the Betti numbers of

other (un)labelled configuration spaces. For example, for fixed a, b, c ≥ 0, consider
the spaceConfn(M)[a, b, c] of configurations of n distinct labelled points onM where

one colors a of the points blue, b red, and c yellow, and where points of the same

color are indistinguishable from each other. Then Hi(Confn(M)[a, b, c];C) can be

determined from di,n(μ) for certain μ = μ(a, b, c). See [6] for a discussion, and see

[32] for an explanation of how these spaces arise naturally in algebraic geometry.

3. The representation theory of Sn provides strong constraints on the possible values of

dimC Hi(Confn(M);C). As a simple example, if the action of Sn onH
i(Confn(M);

C) is essential in a specific sense (cf. §2.3) for n ) 1, then one can conclude for

purely representation-theoretic reasons that limn→∞ dimC Hi(Confn(M);C) = ∞.

This happens for example for every i ≥ 1 when M = C. See §2.3 below.

4. For certain special smooth projective varieties M , the multiplicities di,n(λ) encode
and are encoded by delicate information about the combinatorial statistics of the Fq-
points of M or related varieties; see §5 below for two specific applications.

5. The decomposition (2.1) can have geometric meaning, and can point the way for us to

guess at meaningful topological invariants. We now discuss this in a specific example.

2.2. A case study: the invariants of loops of configurations. Consider the special case

where M is the complex plane C. Elements of H1(Confn(C);C) are homomorphisms

π1(Confn(C)) → C. Computing H1(Confn(C);C) is thus answering the basic question:
What are the ways of attaching a complex number to each loop of configurations of n

points in the plane, in a way that is natural (= additive)?
To construct examples, pick 1 ≤ i, j ≤ n with i �= j. Given any loop γ(t) =

(z1(t), . . . , zn(t)) in Confn(C), we can ignore all points except for zi(t) and zj(t) and

measure how much zj(t) winds around zi(t); namely we let αij : [0, 1] → C be the loop

αij(t) := zj(t)− zi(t) and set

ωij(γ) :=
1

2πi

∫
αij

dz

z

It is easy to verify that ωij : π1(Confn(C)) → C is indeed a homomorphism, that ωij = ωji,
and that the set {ωij : i < j} is linearly independent in H1(Confn(C);C); see Figure 2.1.

Linear combinations of the ωij are in fact the only natural invariants of loops of config-

urations in C.

ji

α

n1
· · · · · · · · ·

ωij(α) = 1, but ωk�(α) = 0, for all other k, �.

Figure 2.1. The proof that {ωij : i < j} is linearly independent in H1(Confn(C);C).
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Theorem 2.2 (Artin(1925), Arnol’d(1968) [1]). The set {ωij : 1 ≤ i < j ≤ n} is a basis

for H1(Confn(C);C) for any n ≥ 2. Thus H1(Confn(C);C) ≈ C(
n
2).

There is more to say. The Sn action onH1(Confn(C);C) is determined by its action on

the basis via σ · ωij = ωσ(i)σ(j), from which we can deduce that

H1(Confn(C);C) = V (0)⊕ V (1)⊕ V (2) for n ≥ 4 (2.3)

using only elementary representation theory. We can see from this algebraic picture that the

subspace of vectors fixed by all of Sn is 1-dimensional, spanned by the vector

Ω :=
∑

1≤i<j≤n
ωij ∈ H1(Confn(C);C).

This implies the following geometric statement: the only natural invariant of loops of con-

figurations of n distinct unordered points in C is total winding number Ω; in particular,

H1(Confn(C)/Sn;C) ≈ C.
Looking again at (2.3) we see a copy of the standard permutation representation Cn =

V (0)⊕ V (1) given by σ · ui = uσ(i), with ui =
∑

j 
=i ωij . This indicates that the ui should
be geometrically meaningful, which indeed they are: ui gives the total winding number of

all points zj around the point zi.
I hope that even the simple example of Confn(C) convinces the reader that understand-

ingHi(Confn(M);C) as an Sn-representation and not just as a naked vector space gives us
a much richer geometric picture.

2.3. Homological (in)stability. The above discussion fits in to a broader context. Let Xn

be a sequence of spaces or groups. The classical theory of (co)homological stability (over

a fixed ring R) in topology produces results of the form: the homology Hi(Xn;R) (resp.
Hi(Xn;R)) does not depend on n for n) i. This converts an a priori infinite computation

to a finite one. Examples of such sequences Xn include symmetric groups Sn (Nakaoka),

braid groups Bn (Arnol’d and F. Cohen), the space UConfn(M) of n-point subsets of the
interior of a compact, connected manifold M with nonempty boundary (McDuff, Segal),

special linear groups SLn Z (Borel and Charney), the moduli space Mn of genus n ≥ 2
Riemann surfaces (Harer), and automorphism groups of free groups (Hatcher-Vogtmann-

Wahl) ; see [15] for a survey.

For many natural sequences Xn homological stability fails in a strong way. We saw

above that H1(Confn(C);C) ≈ C(
n
2) for all n ≥ 4. In fact, one can prove for each i ≥ 1

that

lim
n→∞

dimC(H
i(Confn(C);C)) = ∞. (2.4)

The underlying mechanism behind this instability is symmetry. Call a representation V of Sn
not essential if each σ ∈ Sn acts on V with every eigenvalue±1. Basic representation theory
of Sn implies that any essential representation V of Sn, n ≥ 5 satisfies dim(V ) ≥ n− 1. It
is not hard to check that the Sn-representation H

i(Confn(C);C)) is essential, implying the

blowup (2.4). One hardly needs to know topology to prove (2.4)! The driving force behind

this is the representation theory of Sn.
More generally, whenever we have a sequence of larger and larger groups Gn, and a se-

quence Vn of “essential” Gn-representations, one expects that dim(Vn) → ∞. The general

slogan of representation stability is: in many situations the names of the representations Vn



Representation stability 1177

should stabilize as n→ ∞. The question is, how can we formalize this slogan, and how can

we use such information? We focus on the case Gn = Sn; see §7 for a discussion of other

examples, such as Gn = SLn Fp,GLn Z and Sp2n Z.

3. Representation stability (the Sn case)

With our notation, the description of H1(Confn(C);C) given in (2.3) does not depend on

n once n ≥ 4. In 2010 Thomas Church and I guessed that such a phenomenon might be

true for cohomology in all degrees. Using an inductive description of H∗(Confn(C);C) as
a sum of induced representations (a weak form of a theorem of Lehrer-Solomon [20]), one

can convert this question into a purely representation-theoretic one. After doing this, we

asked David Hemmer about the case i = 2. He wrote a computer program that produced the

following output; we use the notation Cn for Confn(C) to save space.

H2(C4;C) = V (1)⊕2 ⊕ V (1, 1)⊕ V (2)

H2(C5;C) = V (1)⊕2 ⊕ V (1, 1)⊕2 ⊕ V (2)⊕2 ⊕ V (2, 1)

H2(C6;C) = V (1)⊕2 ⊕ V (1, 1)⊕2 ⊕ V (2)⊕2 ⊕ V (2, 1)⊕2 ⊕ V (3)

H2(C7;C) = V (1)⊕2 ⊕ V (1, 1)⊕2 ⊕ V (2)⊕2 ⊕ V (2, 1)⊕2 ⊕ V (3)⊕ V (3, 1)

H2(C8;C) = V (1)⊕2 ⊕ V (1, 1)⊕2 ⊕ V (2)⊕2 ⊕ V (2, 1)⊕2 ⊕ V (3)⊕ V (3, 1)

H2(C9;C) = V (1)⊕2 ⊕ V (1, 1)⊕2 ⊕ V (2)⊕2 ⊕ V (2, 1)⊕2 ⊕ V (3)⊕ V (3, 1)

H2(C10;C) = V (1)⊕2 ⊕ V (1, 1)⊕2 ⊕ V (2)⊕2 ⊕ V (2, 1)⊕2 ⊕ V (3)⊕ V (3, 1)

(3.1)

This was compelling. Indeed, it turns out that this decomposition holds for H2(Cn;C)
for all n ≥ 7, so the decomposition ofH2(Confn(C);C) into irreducible Sn-representations
stabilizes. The most useful way we found to encode this type of behavior was via the notion

of a representation stable sequence, which we now explain.

3.1. Representation stability and Hi(Confn(M);C). Let Vn be a sequence of Sn–
representations equipped with linear maps φn : Vn → Vn+1 so that following diagram com-

mutes for each g ∈ Sn:

Vn
φn ��

g

��

Vn+1

g

��
Vn

φn

�� Vn+1

Here g acts on Vn+1 by its image under the standard inclusion Sn ↪→ Sn+1. We call such a

sequence of representations consistent. We made the following definition in [11].
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Definition 3.1 (Representation stability for Sn-representations). A consistent sequence

{Vn} of Sn–representations is representation stable if there exists N > 0 so that for all

n ≥ N , each of the following conditions holds:

1. Injectivity: The maps φn : Vn → Vn+1 are injective.

2. Surjectivity: The span of the Sn+1–orbit of φn(Vn) is all of Vn+1.

3. Multiplicities: Decompose Vn into irreducible Sn–representations as

Vn =
⊕
λ

cn(λ)V (λ)n

with multiplicities 0 ≤ cn(λ) ≤ ∞. Then cn(λ) does not depend on n.

The numberN is called the stable range. The sequence Vn := ∧∗Cn of exterior algebras

is an example of a consistent sequence of Sn-representations that is not representation stable.
It is not hard to check that, given Condition 1 for φn, Condition 2 for φn is equivalent

to the following : φn is a composition of the inclusion Vn ↪→ Ind
Sn+1

Sn
Vn with a surjective

Sn+1–module homomorphism Ind
Sn+1

Sn
Vn → Vn+1. This point of view leads to the stronger

condition of central stability, a very useful concept invented by Putman [26] at around the

same time, which he applied in his study of the cohomology of congruence subgroups.

There are variations on Definition 3.1. For example one can allow the stable range N to

depend on the partition λ. In [11] we define representation stability for other sequences Gn
of groups, with a definition analogous to Definition 3.1 with Gn = Sn replaced by

Gn = GLn Z, Sp2g Z,GLn Fq, Sp2g Fq,

and hyperoctahedral groups Wn; see §7 below. In each case one needs a coherent naming

system for representations of Gn as n varies.

Remark 3.2. We originally stumbled onto representation stability in [12] while making

some computations in the homology of the Torelli group Ig . In this situation the homol-

ogy Hi(Ig;C) is a representation of the integral symplectic group Sp2g Z. We found some

Sp2g Z-submodules ofHi(Ig;C) whose names did not depend on g for g ) 1. Representa-
tion stability (for sequences of Sp2g Z-representations) arose from our attempt to formalize

this. See [12]. After [11, 12] appeared, Richard Hain kindly shared with us some of his

unpublished notes from the early 1990s, where he also developed a conjectural picture of the

homologyHi(Ig;C) as an Sp2g Z-representation that is similar to the idea of representation

stability for Sp2g Z-representations presented in [11].

Using in a crucial way a result of Hemmer [16], we proved in [11] the following.

Theorem 3.3 (Representation stability for Confn(C)). For any fixed i ≥ 0, the sequence
{Hi(Confn(C);C)} is representation stable with stable range n ≥ 4i.

The stable range n ≥ 4i given in Theorem 3.3 predicts that H2(Confn(C);C) will

stabilize once n = 8; in truth it stabilizes starting at n = 7.
The problem of computing all of the stable multiplicities di,n(λ) in the decomposition of

Hi(Confn(C);C) is thus converted to a problem which is finite and in principle solvable by

a computer. However, putting this into practice is a delicate matter, and the actual answers

can be quite complicated. For example, for n ≥ 16:
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H4(Confn(C);C) =

V (1)⊕2 ⊕ V (2)⊕6 ⊕ V (1, 1)⊕6 ⊕ V (3)⊕8 ⊕ V (1, 1, 1)⊕9 ⊕ V (2, 1)⊕16

⊕V (4)⊕6 ⊕ V (1, 1, 1, 1)⊕5 ⊕ V (5)⊕2 ⊕ V (2, 2)⊕12 ⊕ V (3, 1)⊕19

⊕V (2, 1, 1)⊕17 ⊕ V (4, 1)⊕12 ⊕ V (2, 1, 1, 1)⊕7 ⊕ V (3, 2)⊕14 ⊕ V (2, 2, 1)⊕10

⊕V (5, 1)⊕3 ⊕ V (3, 3)⊕4 ⊕ V (3, 1, 1)⊕16 ⊕ V (2, 2, 2)⊕2 ⊕ V (4, 2)⊕7

⊕V (4, 1, 1)⊕8 ⊕ V (5, 2)⊕ V (2, 2, 1, 1)⊕2 ⊕ V (3, 1, 1, 1)⊕5 ⊕ V (5, 1, 1)⊕2

⊕V (4, 3)⊕2 ⊕ V (3, 2, 1)⊕9 ⊕ V (4, 1, 1, 1)⊕2 ⊕ V (3, 3, 1)⊕2 ⊕ V (3, 2, 2)
⊕V (4, 2, 1)⊕3 ⊕ V (3, 2, 1, 1)⊕ V (5, 1, 1, 1)⊕ V (4, 3, 1)

Theorem 3.3 was greatly extended by Church in [6] fromM = C toM any connected,

oriented manifold, as follows.

Theorem 3.4 (Representation stability for configuration spaces). Let M be any con-
nected, oriented manifold with dim(M) ≥ 2 and with dimCH

∗(M ;C) < ∞. Fix i ≥ 0.
Then the sequence {Hi(Confn(M);C)} is representation stable with stable range n ≥ 2i
if dim(M) ≥ 3 and n ≥ 4i if dim(M) = 2.

This of course leaves open the following.

Problem 3.5 (Computing stable multiplicities). Given a connected, oriented manifoldM ,

compute explicitly the stablemultiplicities di,n(λ) for the decomposition ofHi(Confn(M);C)
into irreducibles. Give geometric interpretations of these numbers, as in the case of

H1(Confn(C);C) discussed in §2 above.

The problem of computing the di,n(λ) seems to have been solved in very few cases. For

example, I do not know the answer even forM a closed surface of genus g ≥ 1.
The paper [11] gives many other examples of representation stable sequences Vn that

arise naturally in mathematics, from the cohomology of Schubert varieties to composition of

Schur functors to many of the examples given in §4.3 below.

3.2. An application to classical homological stability. Consider the space UConfn(M)
:= Confn(M)/Sn of unordered n-tuples of distinct points inM . As mentioned above, when

M is the interior of a compact manifold with nonempty boundary, classical homological sta-

bility for Hi(UConfn(M);Z) was proved by McDuff and Segal, generalizing earlier work

of Arnol’d and F. Cohen. The reason that the assumption ∂M �= ∅ is needed is that in this

case one has a map ψn : Confn(M) → Confn+1(M) for each n ≥ 0 given by “injecting a

point at infinity” (see Proposition 4.6 of [8] for details). While ψn is really just defined up

to homotopy, it induces for each i ≥ 0 a well-defined homomorphism

(ψn)∗ : Hi(UConfn(M);Z) → Hi(UConfn+1(M);Z) (3.2)

which McDuff and Segal prove is an isomorphism for n ≥ 2i + 2. This is the typical way
one proves classical homological stability for a sequence of spaces Xn, namely one finds

maps Xn → Xn+1 and proves that they eventually induce isomorphisms on homology.

What about the case when M is closed? In this case there are no natural maps be-

tween UConfn(M) and UConfn+1(M). A natural thing to do would be to consider the

Sn-cover Confn(M) → UConfn(M), where there are maps (in fact n + 1 of them) φn :
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Confn+1(M) → Confn(M) given by “forget the point labeled i”, where 1 ≤ i ≤ n + 1.
The problem is, as we’ve seen above, the maps φn typically do not induce isomorphisms on

homology. What to do?

Representation stability allowed Church to analyze this situation. It provided him with

a language so that he could prove (Theorem 3.4) that the maps φn stabilize. The power of

this point of view can be seen by applying Church’s theorem (Theorem 3.4) to the trivial

representation V (0), which gives (for dim(M) ≥ 3) that di,n(0) is constant for n ≥ 2i.
Transfer implies (see (2.2) above) that dimCHi(UConfn(M);C) is constant for n ≥ 2i,
giving classical stability without maps between the spaces! Church actually obtains the

better stable range of n > i by a more careful analysis.

One might notice that Church only obtains homological stability over Q, while McDuff

and Segal’s theorem works over Z. One crucial place where Q is needed is the use of

transfer. However, this is not just an artifact of Church’s proof, it is a feature of the situation:

classical homological stability for UConfn(M) with M closed is false for general closed

manifolds M ! For example, H1(UConfn(S
2);Z) = Z/(2n − 2)Z. After Church’s paper

appeared, other proofs of homological stability over forHi(UConfn(M);Q) were given by
Randal-Williams [27] and then by Bendersky-Miller [2].

By plugging other representations into Theorem 3.4, Church deduces classical homo-

logical stability for a number of other colored configuration spaces. The above discussion

illustrates how representation stability can be used as a useful method to discover and prove

classical homological stability theorems.

3.3. Murnaghan’s theorem. The stabilization of names of natural sequences of represen-

tations is not new. The notation V (λ) that we gave in §2 above goes back at least to the

1938 paper [24] of Murnaghan, where he discovered the following theorem, first proved by

Littlewood [21] in 1957.

Theorem 3.6 (Murnaghan’s theorem). For any two partitions λ, μ there is a finite set P of
partitions so that for all sufficiently large n:

V (λ)n ⊗ V (μ)n =
⊕
ν∈P

dλμ(ν)V (ν)n (3.3)

for some non-negative integers dλμ(ν).

The integers dλμ(ν) are called Kronecker coefficients. In his original paper [24] Mur-

naghan computes the dλμ(ν) explicitly for 58 of the simplest pairs μ, ν. The study of Kro-

necker coefficients remains an active direction for research. It is central to combinatorial

representation theory and geometric complexity theory, among other areas. See, for exam-

ple, [3] and the references contained therein.

One can deduce from Murnaghan’s Theorem that the sequence V (λ)n ⊗ V (μ)n is mul-

tiplicity stable in the sense of Definition 3.1; see [11]. In the following section we will

describe a theory where Murnaghan’s Theorem pops out as a structural feature of the theory.

4. FI-modules

Representation stability for symmetric groups Sn grew in power and applicability in [8],

where Thomas Church, Jordan Ellenberg and I developed a theory of FI-modules.
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When looking at the sequence Hi(Confn(M);C), we broke symmetry by only consid-

ering the map Confn+1(M) → Confn(M) given by “forget the (n+1)st point”. Of course
there are really n+1 equally natural maps, given by “forget the jth point” for 1 ≤ j ≤ n+1.
Taking cohomology switches the direction of arrows, and we have n + 1 homomorphisms

Hi(Confn(M);C) → Hi(Confn+1(M);C), each one corresponding to an injective map

{1, . . . , n} → {1, . . . , n+ 1}; namely, the injective map whose image misses j. It is useful
to consider all of these maps at once. This is the starting point for the study of FI-modules.

4.1. FI-module basics. An FI-module V is a functor from the category FI of finite sets

and injections to the category of modules over a fixed Noetherian ring k. Thus to each set

n := {1, . . . , n} with n elements the functor V associates a k-module Vn := V (n), and
to each injection m → n the functor V associates a linear map Vm → Vn. The set of

self-injections n → n is the symmetric group Sn. Thus an FI-module gives a sequence of

Sn-representations Vn and linear maps between them, one for each injection of finite sets:

{1} −→ {1, 2} −→ {1, 2, 3} −→ · · · −→ {1, . . . , n} −→ · · ·
� � � �
S1 S2 S3 Sn

V ↓

V1 −→ V2 −→ V3 −→ · · · −→ Vn −→ · · ·
� � � �
S1 S2 S3 Sn

Of course each single horizontal arrow really represents many arrows, one for each in-

jection between the corresponding finite sets. Using functors from the category FI to study

sequences of objects is not new: FI-spaces were known long ago (under different names) to

homotopy theorists.

A crucial observation is that one should think of an FI-module as a module in the classical

sense. Many of the familiar notions from the theory of modules, such as submodule and

quotient module, carry over to FI-modules in the obvious way: one performs the operations

pointwise. So, for example, W is an FI-submodule of V if Wn ⊂ Vn for each n ≥ 1.
One theme of [8] is that there is conceptual power in the encoding of this large amount of

(potentially complicated) data into a single object V .
The property of being an FI-module itself does not guarantee much structure. One of the

main insights in [8] was to find a finite generation condition that has strong implications but

that one can also prove to hold in many examples.

Definition 4.1 (Finite generation). An FI-module V is finitely generated if there is a finite

set S of elements in
∐
i Vi so that no proper sub-FI-module of V contains S.

Example 4.2. Let k[x1, . . . , xn](3) denote the vector space of homogeneous polynomi-

als of degree 3 in n variables over a field k. It is not hard to check that {1, . . . , n} !→
k[x1, . . . , xn](3) is an FI-module. We claim that this FI-module is finitely generated by the

elements x31, x
2
1x2 and x1x2x3:
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k[x1](3) −→ k[x1, x2](3) −→ k[x1, x2, x3](3) −→ k[x1, x2, x3, x4](3) −→ · · ·

x31 x31, x
3
2 x31, x

3
2, x

3
3 x31, x

3
2, x

3
3, x

3
4

x21x2 , x
2
2x1 x21x2, x

2
1x3, x

2
2x1

...

x22x3, x
2
3x1, x

2
3x2

x1x2x3

Here we have written below each k[x1, . . . , xn](3) its basis as a vector space. Finite

generation of the FI-module k[x1, . . . , xn](3) is simply the fact that every vector in every

k[x1, . . . , xn](3) lies in the k-span of the set of vectors that can be obtained from the three

boxed vectors by performing all possible morphisms, i.e. by changing the labels of the xi.
In other words, there are, up to labeling and taking linear combinations, only three homo-

geneous degree three polynomials in any number n ≥ 3 of variables: x31, x
2
1x2 and x1x2x3.

Note that we need n ≥ 3 to obtain all of the generators. Similarly, k[x1, . . . , xn](87) is

finitely generated, but the full generating set appears only for n ≥ 87.

The connection of FI-modules with representation stability is the following, proved in

[8].

Theorem 4.3 (Finite generation vs. representation stable). Let V be an FI-module over a
field k of characteristic 0. Then V is finitely generated if and only if {Vn} is a representation
stable sequence of Sn-representations with dimk Vn <∞ for all n.

Theorem 4.3 thus converts a somewhat complicated property about a sequence Vn of

representations into a single property – finite generation – of a single object V . One example

of the power of this viewpoint is the following.

Proof of Murnaghan’s Theorem (Theorem 3.6). Since V (λ) and V (μ) are finitely generated
FI-modules [8, §2.8], so is V (λ) ⊗ V (μ). Theorem 4.3 implies that V (λ)n ⊗ V (μ)n is

representation stable, and so the theorem follows.

Thus a combinatorial theorem about an infinite list of numbers falls out of a basic struc-

tural property of FI-modules.

4.2. Character polynomials. One of the main discoveries of [8] is that character poly-

nomials, studied by Frobenius but not so widely known today, are ubiquitous, and are an

incredibly concise way to encode stability phenomena for sequences of Sn-representations.
Fix the ground field C. Recall that the character of a representation ρ : G→ GL(V ) of

a finite group G over C is defined to be the function χV : G→ C given by

χV (g) := Trace(ρ(g)).

We view χV as an element of the vector space C(G) of class functions on G; that is, those
functions that are constant on each conjugacy class in G. A fundamental theorem in the rep-

resentation theory of finite groups is that anyG-representation is determined by its character:

χV = χW in C(G) if and only if V ≈W as G-representations.
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For each i ≥ 1 let Xi :
∐
n Sn → N be the class function defined by

Xi(σ) = number of i-cycles in the cycle decomposition of σ.

A character polynomial is any polynomial P ∈ Q[X1, X2, . . .]. Such a polynomial gives a

class function on all the Sn at once. The study of character polynomials goes back to work

of Frobenius, Murnaghan, Specht, and Macdonald; see, e.g. [23, Example I.7.14]).

It is easy to see for any fixed n ≥ 1 that C(Sn) is spanned by character polynomials, so

the character of any representation can be described by such a polynomial. For example, if

Cn is the standard permutation representation of Sn then the character χCn(σ) is the number

of fixed points of σ, so χCn = X1 for any n ≥ 1. As another example, consider the Sn-
representation

∧2 Cn. Since σ · (ei ∧ ej) = ±ei ∧ ej according to whether σ contains (i)(j)
or (ij), respectively, it follows that

χ∧2 Cn =

(
X1

2

)
−X2 =

1

2
X2

1 − 1

2
X1 −X2

for any n ≥ 1. These descriptions of characters are uniform in n. On the other hand, if one

fixes r then for n) r it is incredibly rare for an Sn-representation to be given by a character
polynomial P (X1, . . . , Xr) depending only on cycles of length at most r. A simple example

is the sign representation: for n ) r one cannot determine the sign of an arbitrary σ ∈ Sn
just by looking at cycles in σ of length at most r.

One of the main discoveries in [8] is that finitely-generated FI-modules in characteristic 0

admit such a uniform description.

Theorem 4.4 (Polynomiality of characters). Let V be a finitely-generated FI-module over
a field k of characteristic 0. Then the sequence of characters χVn of the Sn-representations
Vn is eventually polynomial: there existsN ≥ 0 and a polynomial P (X1, . . . , Xr) for some
r > 0 so that

χVn = P (X1, . . . , Xr) for all n ≥ N
In particular dimk(Vn) is a polynomial in n for n ≥ N .

The claim on dimk(Vn) is obtained by noting that

dimk(Vn) = χVn(Id) = P (n, 0, . . . , 0).

The fact that dimk(Vn) is eventually a polynomial was extended to the case char(k) > 0 in

[10]. In situations of interest one can often give explicit bounds on r and N . This converts

the problem of finding all the characters χVn
into a concrete finite computation. In some

cases one can even get N = 0.
We again emphasize that the impact of Theorem 4.4 comes not just from the fact that a

single polynomial gives all characters of all Vn with n) 1 at the same time, but it gives an

extremely strong constraint on each individual Vn for n ) r, since χVn = P (X1, . . . , Xr)
depends only on cycles of length at most r.

4.3. Examples/Applications. Part of the usefulness of finitely generated FI-modules is that

they are common. This is illustrated in Table 4.1. We define only a few of these examples

here; see [8] for a detailed discussion.

Theorem 4.5 (Finite generation). Each of the FI-modules (1)-(9) given in Table 4.1 is
finitely generated.
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FI-module V = {Vn} Description

1. Hi(Confn(M);Q) Confn(M) = configuration space of n distinct ordered

points on a connected, oriented manifoldM , dim(M) > 1

2. R
(r)
J (n) J = (j1, . . . jr), R

(r)(n) =
⊕

J R
(r)
J (n)= r-diagonal

coinvariant algebra on r sets of n variables

3. Hi(Mg,n;Q) Mg,n = moduli space of n-pointed genus g ≥ 2 curves

4.Ri(Mg,n) ith graded piece of the tautological ring of Mg,n

5. O(XP,r(n))i space of degree i polynomials on the rank variety

XP,r(n) of n× n matrices of P -rank ≤ r

6. G(An/Q)i degree i part of the Bhargava–Satriano Galois closure

of An = Q[x1, . . . , xn]/(x1, . . . , xn)
2

7. 〈H1(In;Q)〉(i) degree i part of the subalgebra of H∗(In;Q) generated by

H1(In;Q), where In = genus n Torelli group

8. Hi(BDiffn(M);Q) BDiffn(M) = Classifying space of diffeos leaving a given

set of n points invariant, for many manifoldsM (see [18])

9. gr(Γn)i ith graded piece of associated graded Lie algebra of many

groups Γn, including In, IAn and the pure braid group Pn

Table 4.1. Some examples of finitely generated FI-modules. Any parameter not equal to n should be

considered fixed and nonnegative.

Items 3 and 8 of Theorem 4.5 are due to Jimenez Rolland [17, 18]; the other items are

due to Church-Ellenberg-Farb [8].

That each of (1)-(9) in Table 4.1 is an FI-module is not difficult to prove. More substantial

is proving finite generation. To do this one of course needs detailed information about the

specific example. In some of the cases this involves significant (but known) results; see

below.

Except for a few special (e.g. M = Rd) and low-complexity (i.e. small i, d, g, J , etc.)
cases, explicit formulas for the characters (or even the dimensions) of the vector spaces (1)-

(9) of Table 4.1 do not seem to be known, or even conjectured. Exact computations may

be quite difficult. Applying Theorem 4.4 and Theorem 4.5 to these examples gives us an

answer, albeit a non-explicit one, in all cases.

Theorem 4.6 (Ubiquity of character polynomials). For each of the sequences Vn in Ta-
ble 4.1 there are numbers N ≥ 0, r ≥ 1 and a polynomial P (X1, . . . , Xr) so that

χVn
= P (X1, . . . , Xr) for all n ≥ N

In particular dim(Vn) is a polynomial in n for n ≥ N .
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We emphasize that we are claiming eventual equality to a polynomial, not just polyno-

mial growth. As a contrasting example, if Mg,n is the Deligne-Mumford compactification

of the moduli space of n-pointed genus g curves, the dimension ofH2(Mg,n;Q) grows ex-
ponentially with n; in particular the character of H2(Mg,n;Q) is not given by a character

polynomial. Although Vn := H2(Mg,n;Q) is an FI-module, this FI-module is not finitely

generated.

As an explicit example of Theorem 4.6, the character of the Sn-representation
H2(Confn(C);Q) is given for all n ≥ 0 by the character polynomial

χ
H2(Confn(R

2);C) = 2

(
X1

3

)
+ 3

(
X1

4

)
+

(
X1

2

)
X2 −

(
X2

2

)
−X3 −X4. (4.1)

Note that for general finitely-generated FI-modules we only know such information for

n) 1. Recall from (3.1) of §3 how decomposition into irreducibles of H2(Confn(R2);C)
was shown to change with n, only to stabilize once n ≥ 7. I encourage the reader to try to

see this via (4.1), which holds for all n ≥ 0.
Although we can sometimes give explicit upper bounds on their degree, the polynomi-

als produced by Theorem 4.6 are known explicitly in only a few special cases. Thus the

following is one of the main open problems in this direction.

Problem 4.7. Compute the polynomials P (X1, . . . , Xr) produced by Theorem 4.6.

One difficulty in solving this problem is that, in many examples, the proof of finite gener-

ation of the corresponding FI-module uses a Noetherian property (see below), and the proof

of this property is not effective.

4.4. The Noetherian property. The following theorem, joint work with Thomas Church,

Jordan Ellenberg, and Rohit Nagpal, is central to the theory of FI-modules; it is perhaps the

most useful general tool for proving that a given FI-module is finitely generated.

Theorem 4.8 (Noetherian property). Let V be a finitely-generated FI-module over a Noethe-
rian ring k. Then any sub-FI-module of V is finitely generated.

Theorem 4.8 was proved in this generality by Church-Ellenberg-Farb-Nagpal [10]. For

fields k of characteristic 0 it was proved earlier by Church-Ellenberg-Farb [8, Theorem 2.60]

and by Snowden [29, Theorem 2.3], who actually proved a version (in a different language)

for modules for many twisted commutative algebras, of which FI-modules are an example.

The Noetherian property for FI-modules over fields k of positive characteristic is crucial for
the study of the cohomology of congruence subgroups from this point of view; see §6 below.

Lück proved a version of Theorem 4.8 for finite categories in [22], but since FI is infinite

these do not occur in our context.

One can see how Theorem 4.8 is used in practice via the following.

Theorem 4.9. Suppose Ep,q∗ is a first-quadrant spectral sequence of FI-modules over a
Noetherian ring k, and that Ep,q∗ converges to an FI-module Hp+q(X; k). If the FI-module
Ep,q2 is finitely generated for each p, q ≥ 0, then the FI-moduleHi(X; k) is finitely generated
for each fixed i ≥ 0.
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See [6] and [8] for earlier versions of Theorem 4.9, and the paper [18], where Jimenez

Rolland gives explicit bounds on the stability degree, etc.

Spectral sequences as in Theorem 4.9 arise in many computations. For example, fol-

lowing Cohen-Taylor [14] and Totaro [31], one computes Hi(Confn(M); k) by using the

Leray spectral sequence for the natural inclusion Confn(M) →Mn. As n varies we obtain

a sequence of spectral sequences, one for each n. In fact this gives a spectral sequence of

FI-modules. Another example is the computation of the homology of congruence subgroups

(see §6 below).

The proof of Theorem 4.9 is that, while we have no idea what the differentials might be,

or at which page the spectral sequence stabilizes (and this may depend on n), the terms Ep,q∞
are obtained from the Ep,q2 terms by repeatedly taking submodules and quotient modules.

Since the property of finite generation for an FI-module is preserved by taking submodules

(by the Noetherian property Theorem 4.8) and quotients, then if Ep,q2 is finitely generated so

is Ep,qj for every j ≥ 2.

4.5. Some remarks on the general theory. There are many other aspects of the general

theory of FI-modules that I am not describing due to lack of space. This includes a more

quantitative version of the theory, with notions such as stability degree and weight of an

FI-module, allowing for explicit estimates on stable ranges and degrees of character polyno-

mials. Co-FI-modules are useful when one has maps going the wrong way. Also useful are

FI-spaces, FI-varieties, and FI-hyperplane arrangements (see [9] for the latter); these give

FI-modules by applying the (co)homology functor. Church-Putman [13] have developed the

theory of FI-groups in order to prove a kind of relative finite generation theorem in group

theory; they apply this in [13] to certain subgroups of Torelli groups. Sam and Snowden have

given in [28] a more detailed analysis of the algebraic structure of the category of FI-modules

in characteristic 0.

5. Combinatorial statistics for varieties over finite fields

In [9] we exposed a close connection between representation stability in cohomology and the

stability of various combinatorial statistics for polynomials over finite fields and for maximal

tori in GLn(Fq). We now give a brief sketch of how this works.

5.1. The space of polynomials over Fq . Consider the following basic questions: how

many square-free (i.e. having no repeated roots), degree n monic polynomials in Fq[T ] are
there? How many linear factors does one expect such a polynomial to have? factors of

degree d? What is the variance of this expectation?

If one fixes q and allows n to increase, something interesting happens. A good example

of what I’d like to describe is the expected quadratic excess of a polynomial in Fq[T ]; that
is, the expected difference of the number of reducible quadratic factors and the number of

irreducible quadratic factors. This number can be computed by adding up the quadratic

excess of each degree n, monic square-free polynomial in Fq[T ] and then dividing by the

total number qn − qn−1 of such polynomials. Here are some values for small n:
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total: expectation:

n = 3 : q2 − q 1

q

n = 4 : q3 − 3q2 + 2q
1

q
− 2

q2

n = 5 : q4 − 4q3 + 5q2 − 2q
1

q
− 3

q2
+

2

q3

n = 6 : q5 − 4q4 + 7q3 − 7q2 + 3q
1

q
− 3

q2
+

4

q3
− 3

q4

n = 7 : q6 − 4q5 + 7q4 − 8q3 + 8q2 − 4q
1

q
− 3

q2
+

4

q3
− 4

q4
+

4

q5

n = 8 : q7 − 4q6 + 7q5 − 8q4 + 9q3 − 10q2 + 4q
1

q
− 3

q2
+

4

q3
− 4

q4
+

5

q5
− 5

q6

Notice that in each column in the counts above, the coefficient changes as n increases,

until n is sufficiently large, and then this coefficient stabilizes. For example the third column

gives coefficients 0, 2, 5, 7, 7, 7, . . . Theorem 5.2 below implies that these formulas must

converge term-by-term to a limit. A somewhat involved computation (see below) allowed us

in [9] to compute this limit as:

qn−1 − 4qn−2 + 7qn−3 − 8qn−4 + · · · and
1

q
− 3

q2
+

4

q3
− 4

q4
+ · · · (5.1)

This numerical stabilization is a reflection of something deeper. To explain, consider the

space Zn of all monic, square-free, degree n polynomials with coefficients in the finite field

Fq . Recall that the discriminant Δn ∈ Z[x1, . . . , xn−1] is a polynomial with the property

that an arbitrary monic polynomial f(z) = zn + an−1z
n−1 + · · · + a1z1 + a0 ∈ C[z] is

square-free if and only if Δn(a0, . . . an−1) �= 0. Thus Zn is a complex algebraic variety.

For example

Z2 = {z2 + bz + c ∈ C[z] : b2 − 4c �= 0}

and

Z3 = {z3 + bz2 + cz + d ∈ C[z] : b2c2 − 4c3 − 4b3d− 27d2 + 18bcd �= 0}.
The complex variety Zn is also an algebraic variety over the finite field Fq for any prime

power q. The set of Fq-points Zn(Fq) is exactly the set of monic, square-free, degree n poly-
nomials in Fq[T ]. From this point of view we should think of the original complex algebraic

variety as the complex points Zn(C). There is a remarkable relationship between Zn(C)
and Zn(Fq), given by the Grothendieck–Lefschetz fixed point theorem in étale cohomology,

which we now explain.

5.2. The Grothendieck-Lefschetz formula. It is a fundamental observation of Weil that

for an algebraic variety Z defined over Fq , one can realize Z(Fq) as the fixed points of a

dynamical system, as follows. Denote by Fq the algebraic closure of Fq . The geometric
Frobenius morphism Frobq : Z(Fq) → Z(Fq) acts (in an affine chart) on the coordinates of

Z by x !→ xq . Fermat’s Little Theorem implies that

Z(Fq) = Fix[(Frobq : Z(Fq) → Z(Fq)].
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In the case of the varieties Zn that we are considering, the Grothendieck-Lefschetz fixed

point theorem takes the form:

|Zn(Fq)| =
∑

f∈Fix(Frobq)

1 =
∑
i

(−1)iqn−i dimCH
i(Zn(C);C) = q

n − qn−1 (5.2)

where the last equality comes from the theorem of Arnol’d that Hi(Zn(C);C) = 0 unless

i = 0, 1, in which case it is C.
We want to compute more subtle counts than just |Zn(Fq)|. To this end, we can weight

the points of Zn(Fq) = Fix(Frobq), as follows. For each f ∈ Fix(Frobq) = Zn(Fq) the
map Frobq permutes the set

Roots(f) := {y ∈ Fq : f(y) = 0}
giving a conjugacy class σf in Sn. Thus Xi(σf ) is well defined. Let di(f) denote the

number of irreducible (over Fq) degree i factors of f . A crucial observation is that for any

i ≥ 1:
Xi(σf ) = di(f). (5.3)

Any P ∈ C[x1, . . . , xr] (here r ≥ 1 is arbitrary) determines a character polynomial

P (X1, . . . , Xr) (cf. §4.2 above). The polynomialP gives a way to weight points f ∈ Zn(Fq)
via

P (f) := P (d1(f), . . . , dr(f)) = P (X1(σf ), . . . , Xr(σf )).

So for example P (f) = d1(f) counts the number of linear factors of f (i.e. the number of

roots of f that lie in Fq), and P (f) = d2(f) − d1(f)2 counts the quadratic excess of f . In
general we call such a P a polynomial statistic. The expected value of P (f) for f ∈ Zn(Fq)
is then given by [

∑
f∈Zn(Fq)

P (f)]/(qn − qn−1).

Hi(Confn(C);C) enters the picture. Computing this expectation for a given P is where

Hi(Confn(C);C) comes in. We can identify Zn(C) with the space UConfn(C) =
Confn(C)/ Sn of unordered n-tuples of distinct points in C via the bijection that sends

f ∈ Zn(C) to its set of roots. We thus have a covering Confn(C) → Zn(C) of algebraic
varieties, with deck group Sn.

Now, it’s something of a long story, and there are a number of technical details to worry

about, but the theory of étale cohomology and the twisted Grothendieck-Lefschetz formula,

together with work of Lehrer [19], who proved that this machinery can be applied in this

case, can be used to give the following theorem of [9]. Let 〈φ, ψ〉Sn
:=
∑

σ∈Sn
φ(σ)ψ(σ)

be the standard inner product on the space of C-valued functions on Sn.

Theorem 5.1 (Twisted Grothendieck–Lefschetz for Zn). For each prime power q, each
positive integer n, and each character polynomial P , we have

∑
f ∈ Zn(Fq)

P (f) =
n∑
i=0

(−1)iqn−i
〈
P, χ

Hi(Confn(C);C)
〉
Sn
. (5.4)

For example, when P = 1 the inner product 〈P,Hi(Confn(C);C)〉 is the multiplicity

of the trivial Sn-representation in Hi(Confn(C);C), which by transfer is the dimension of

Hi(Zn(C);C), giving the formula (5.2) above. Theorem 5.1 tells us that we can compute

various weighted point counts on Zn(Fq) if we understand the cohomology of the Sn-cover
Confn(C) of Zn(C) as an Sn-representation.
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5.3. Representation stability and Grothendieck-Lefschetz. Now we can bring represen-

tation stability into the picture. According to Theorem 4.6, for each i ≥ 0 the character

of Hi(Confn(C);C) is given by a character polynomial for n ) 1 (actually in this case it

holds for all n ≥ 1). The inner product of two character polynomials is, for n) 1, constant.
Keeping track of stable ranges, and defining degP as usual but with deg xk = k, we deduce
in [10] the following.

Theorem 5.2 (Stability of polynomial statistics). For any polynomial P ∈ Q[x1, x2, . . .],
the limit 〈

P,Hi(Conf•(C);C)
〉
:= lim

n→∞

〈
P, χ

Hi(Confn(C);C)
〉
Sn

exists; in fact, this sequence is constant for n ≥ 2i + degP . Furthermore, for each prime
power q:

lim
n→∞

q−n
∑

f∈Zn(Fq)

P (f) =
∞∑
i=0

(−1)i
〈
P, χ

Hi(Conf•(C);C)
〉
q−i (5.5)

In particular, both the limit on the left and the series on the right in (5.5) converge, and they
converge to the same limit.

Plugging P =
(
X1

2

) −X2 into Theorem 5.2 gives the stable formula (5.1) for quadratic

excess of a square-free degree n polynomial in Fq[T ]. The limiting values of other polyno-

mial statistics P are computed in [9]; some of these are given in Table 5.1 below. One can

actually apply Equation (5.5) of Theorem 5.2 in reverse, using number theory to compute

the left-hand side in order to determine the right-hand side, as we do in §4.3 of [9].

The above method is applied in [9] to a different counting problem. Consider the complex

algebraic variety of ordered n-frames in Cn:

Zn(C) =
{
(L1, . . . , Ln)

∣∣Li a line in Cn, L1, . . . , Ln linearly independent
}
.

The group Sn acts on Zn(C) via σ ·Li = Lσ(i). The quotient Zn(C)/Sn is also an algebraic

variety, and its Fq-points parametrize the set of maximal tori in the finite group GLn Fq . In
analogy with the case of square-free polynomials, each P ∈ C[X1, . . . , Xr] counts maximal

tori in GLn Fq with different weights. Since Hi(Zn(C);C) is known to be representation

stable (essentially by a theorem of Kraskiewicz-Weyman, Lustig, and Stanley - see §7.1 of

[11]), we can apply an analogue of Theorem 5.2 in this context to compute this weighted

point count.

Table 5.1 lists some examples of specific asymptotics that are computed in [9] using this

method. The formulas in each column are obtained from Theorem 5.2 (and its analogue for

Zn(C)) with P = 1, P = X1, P =
(
X1

2

)−X2
2 , the character χsign of the sign representation,

and the characteristic function χncyc of the n-cycle, respectively. Note that the latter two are
not character polynomials.

The formulas for square-free polynomials in Table 5.1 can be proved by direct means, for

example using analytic number theory (e.g. weighted L-functions). In contrast, the formulas

for maximal tori in GLn Fq may be known but are not so easy to prove. For example, the

formula for the number of maximal tori in GLn Fq is a well-known theorem of Steinberg;

proofs using the Grothendieck–Lefschetz formula have been given by Lehrer and Srinivasan

(see e.g. [30]). Regardless, a central message of [9] is that representation stability provides

a single underlying mechanism for all such formulas.
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Counting theorem for Counting theorem for

P squarefree polys in Fq[T ] maximal tori in GLn Fq

1 # of degree n squarefree # of maximal tori in GLn Fq

polynomials = qn − qn−1 (both split and non-split) = qn
2−n

x1 expected # of linear factors expected # of eigenvectors in Fn
q

= 1− 1
q +

1
q2 − 1

q3 + · · · ± 1
qn−2 = 1 + 1

q +
1
q2 + · · ·+ 1

qn−1

(
x1
2

)− x2
2 expected excess of reducible expected excess of reducible

vs. irreducible quadratic factors vs. irreducible dim-2 subtori

→ 1
q
− 3

q2
+ 4

q3
− 4

q4
→ 1

q
+ 1

q2
+ 2

q3
+ 2

q4

+ 5
q5

− 7
q6

+ 8
q7

− 8
q8

+ · · · + 3
q5

+ 3
q6

+ 4
q7

+ 4
q8

+ · · ·
as n → ∞ as n → ∞

χsign discriminant of random squarefree # of irreducible factors is more

polynomial is equidistributed in F×
q likely to be ≡ n mod 2 than not,

between residues and nonresidues with bias
√
# of tori

χncyc Prime Number Theorem for Fq[T ]: # of irreducible maximal tori

# of irreducible polynomials = q(
n
2)
n

(q − 1)(q2 − 1) · · · (qn−1 − 1)

=
∑

d|n
μ(n/d)

n
qd ∼ qn

n
∼ c · qn

2−n

n

Table 5.1. Some asymptotics from [9], computed using Theorem 5.2 and its Zn(C) analogue.

Remark 5.3 (Stable range vs. rate of convergence). The dictionary between representation
stability and stability of point-counts goes one level deeper. One can of course ask how

quickly the formulas in Table 5.1 converge. As discussed in [9], the speed of convergence of

any such formula depends on the stable range of the corresponding representation stability

problem. For example, let L denote the limit of each side of Equation (5.5). The fact that

〈χP , Hi(Confn(C))〉Sn is stable with stable range n ≥ 2i + degP can be used to deduce

that

q−n
∑

f(T )∈Zn(Fq)

P (f) = L+O(q(degP−n)/2) = L+O(q−n/2).

We thus have a power-saving bound on the error term. See [9] for more details.

6. FI-modules in characteristic p

The Noetherian property for FI-modules was extended from fields of characteristic 0 to ar-

bitrary Noetherian rings by Church-Ellenberg-Farb-Nagpal [10]. The proof is significantly

more difficult in this case, and new ideas were needed. Indeed, [10] brought in more categor-

ical and homological methods into the theory, for example with a homological reformulation

of finite generation, and a certain shift functor that plays a crucial role. This line of ideas

has culminated in the recent theory of FI-homology of Church-Ellenberg [7], which is an
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exciting and powerful new tool.

One reason that we care about characteristic p > 0 is that in some examples this case

contains most of the information. As an example, let K be a number field with ring of

integersOK , and let p ⊂ OK be any proper ideal. Define the congruence subgroup Γn(p) ⊂
GLn(Ok) to be

Γn(p) := kernel[GLn(Ok) → GLn(Ok/p)].

As shown by Charney [5], when one considers coefficients localized at p then Γn(p)
and GLn(OK) have the same homology. Thus the interesting new information about Γn(p)
comes via coefficients k with char(k) = p > 0. While Hi(Γn(p); k) is most naturally a

representation of SLn(Ok/p), one can restrict this action to a copy of Sn, and show that

Hi(Γn(p); k) is an FI-module. The Noetherian condition is crucial for proving that this FI-

module is finitely generated, since the proof uses a spectral sequence argument (see below).

The proof of Theorem 4.4, that for a finitely-generated FI-module V the character χVn

is a character polynomial for n) 1, works only over a field k with char(k) = 0. However,
for fields k with char(k) > 0, we were still able to prove [10, Theorem B] that there is a

polynomial P ∈ Q[T ] so that dimk(Vn) = P (n) for all n ) 1. Following the approach of

Putman [26], we were able to apply this toHi(Γn(p); k), giving the following theorem, first

proved by Putman [26] for fields of large characteristic.

Theorem 6.1 (mod p Betti numbers of congruence subgroups). LetK be a number field,
OK its ring of integers, and p 
 OK any proper ideal. For any i ≥ 0 and any field k, there
exists a polynomial P (T ) = Pp,i,k(T ) ∈ Q[T ] so that for all sufficiently large n,

dimkHi(Γn(p); k) = P (n).

The exact numbers dimkHi(Γn(p); k) for i > 1 are known in very few cases, even for

the simplest case K = Q, p = (p), k = Fp. Frank Calegari [4] has recently determined the

rate of growth of the mod p Betti numbers of the level pd congruence subgroup of SLn(OK).
He proves for example in [4, Lemma 3.5] that for p ≥ 5, d ≥ 1:

dimFp
Hi(Γn(p

d);Fp) =

(
n2 − 1

i

)
+O(n2i−4).

Calegari’s result tells us the leading term of the polynomial guaranteed by Theorem 6.1. It

should be noted that Calegari’s proof uses (Putman’s version of) Theorem 6.1.

Problem 6.2 ([10]). Compute the polynomials Pp,i,k ∈ Q[T ] given by Theorem 6.1. Do the

Brauer characters of Hi(Γn(p); k), or indeed of an arbitrary finitely-generated FI-module

over a finite field k with char(k) > 0, exhibit polynomial behavior in n for n) 1?

The more categorical setup in [10] allowed us to find an inductive description for any

finitely generated FI-module.

Theorem 6.3 (Inductive description of f.g. FI-modules). Let V be a finitely-generated
FI-module over a Noetherian ring R. Then there exists someN ≥ 0 such that for all n ∈ N,
there is an isomorphism of Sn-representations:

Vn ≈ lim−→V (S) (6.1)

where the direct limit is taken over the poset of subsets S ⊂ {1, . . . , n} with |S| ≤ N .
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The condition (6.1) in Theorem 6.3 can be viewed as a reformulation of Putman’s central

stability condition [26, §1].

Since we proved in [10] that Hm(Γn(p); k) is a finitely generated FI-module, Theo-

rem 6.3 thus gives the following inductive presentation of Hm(Γn(p);Z). Let Γ
(i)
n−1(p)

with 1 ≤ i ≤ n denote the n standard subgroups of Γn(p) isomorphic to Γn−1(p). Let

Γ
(i,j)
n−2(p) := Γ

(i)
n−1(p) ∩ Γ

(j)
n−1(p). As the notation suggests, each Γ

(i,j)
n−2(p) is isomorphic to

Γn−2(p). As with the Mayer-Vietoris sequence, the difference of the two inclusions gives a

map

Hm(Γ
(i,j)
n−2(p)) → Hm(Γ

(i)
n−1(p))⊕Hm(Γ

(j)
n−1(p))

whose image vanishes inHm(Γn(p)). A version of the following theorem for coefficients in

a sufficiently large finite field was first proved by Putman [26].

Theorem 6.4 (A presentation for Hm(Γn(p);Z)). Let K be a number field, let OK be its
ring of integers, and let p be a proper ideal in OK . Fixm ≥ 0. Then for all sufficiently large
n,

Hm(Γn(p);Z) �
⊕n

i=1Hm(Γ
(i)
n−1(p);Z)

im
⊕

i<j Hm(Γ
(i,j)
n−2(p);Z)

.

We think of Theorem 6.4 as giving a presentation for Hm(Γn(p);Z), with copies of

Hm(Γn−1(p);Z) as generators and copies of Hm(Γn−2(p);Z) as relations. Theorem 6.3 is

applied in [10] to give a similar description for Hm(Confn(M);Z) and for graded pieces

of diagonal coinvariant algebras. Nagpal [25] has recently extended this point of view con-

siderably, and has applied it to prove that the groups Hm(UConfn(M);Fp) are periodic in
n.

7. Representation stability for other sequences of representations

In this paper we focused our attention on sequences Vn of Sn-representations. This is just
one of the examples from [11], where we introduced and studied representation stability

(and variations) for other familiesGn of groups whose representation theory has a consistent

naming system. Examples include Gn = GLnQ, Sp2g Q and the hyperoctahedral groups.

We also explored the case of modular representations of algebraic groups over finite fields,

where instead of stability we found representation periodicity. The reader is referred to [11]

for precise definitions and many examples.

I would like to illustrate here how these kinds of examples arise. For brevity let’s stick

to the calculation of group homology. Here is the general setup. Let Γ be a group with

normal subgroup N and quotient A := Γ/N . The conjugation action of Γ on N induces a

Γ–action on Hi(N ;R) for any coefficient ring R. This action factors through an A–action
on Hi(N,R), making Hi(N,R) into an A–module.

The structure of Hi(N,R) as an A–module encodes fine information. For example, the

transfer isomorphism shows that when A is finite and R = Q, the space Hi(Γ;Q) appears
precisely as the subspace of A–fixed vectors in Hi(N ;Q). But there are typically many

other summands, and knowing the representation theory of A (over R) gives us a language
with which to access these.

There are many natural examples of families Γn of this type, with normal subgroupsNn
and quotients An. Table 7 summarizes some examples that fit into this framework.
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kernel Nn group Γn acts on quotient An H1(Nn;R) for big n

pure braid group Pn braid group Bn {1, . . . , n} Sn Sym2Vn/Vn

Torelli group In mapping class H1(Σn,Z) Sp2n Z
∧3Vn/Vn

groupModn

IAut(Fn) Aut(Fn) H1(Fn,Z) GLn Z V ∗
n ⊗∧2Vn

congruence SLn Z Fn
p SLn Fp sln Fp

subgroup Γn(p)

level p subgroup Modn H1(Σn;Fp) Sp2n Fp

∧3Vn/Vn ⊕ sp2n Fp

Modn(p)

Table 7.1. Some natural sequences of representations.

In each case the group Nn arises as the kernel of a natural Γn-action. Each example is

explained in detail in [11]. HereR = Q in the first three examples, R = Fp in the fourth and
fifth, and Vn stands in each case for the “standard representation” of An. In the last example

p is an odd prime.

In each of the examples in Table 7, the groups Γ are known to satisfy classical homolog-

ical stability. In contrast, the rightmost column of Table 7 shows that none of the groups N
satisfies homological stability, even in dimension 1. In fact, except for the example of Pn,
very little is known about the An–module Hi(Nn, R) for i > 1, and indeed it is not clear if

there is a nice closed form description of these homology groups. However, the appearance

of some kind of stability can already be seen in the rightmost column, as the names of the

irreducible composition factors of these An–modules are constant for large enough n; this is
discussed in detail in [11].

A crucial common property of the examples in Table 7 is that each of the sequences An
has an inherent stability in the naming of its irreducible algebraic representations over R.
For example, an irreducible algebraic representation of SLnQ is determined by its highest

weight vector, and these vectors can be described uniformly without reference to n. For

example, for SLnQ the irreducible representation V (L1 + L2 + L3) with highest weight

L1+L2+L3 is isomorphic to
∧3
V regardless of n, where V is the standard representation

of SLn.
In [11] we defined a notion of representation stability for each of the sequences of groups

An given in Table 7. We gave some examples, gave some conjectures using this language,

and worked out some of the basic theory. The powerful FI-module point of view has only

been developed in the special case of An = Sn. This is completely missing in general.

Problem 7.1 (FI-theory for other sequences of groups). For each of the sequences An =
Sp2n Z,GLn Z, SLn Fp, Sp2n Fp, work out a theory of FIA-modules, where:

(1) Finite generation (perhaps with an additional condition) is equivalent to representation

stability for An-represntations, as defined in [11].

(2) The theory gives uniform descriptions (uniform in n) of the characters of the examples

in Table 7.
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(3) FIA-modules satisfy a Noetherian property.

In [34] J. Wilson extended the theory of FI-modules from the case of Sn to the other two

sequences of classical Weyl groups (of type B/C and D); this includes the hyperoctahedral

groups. New phenomena occur here. For example, character polynomials must be given with

two distinct sets {Xi}, {Yi} of variables. Wilson applies this theory to a number of examples,

including the cohomology of the pure string motion groups (see also [33]), the cohomology

of various hyperplane arrangements, and diagonal co-invariant algebras for Weyl groups.
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1. Introduction: Cohomology of BDiff(W )

In this paper I shall survey some recent developments in the topological approach to moduli

spaces of manifolds. The moduli spaces in question are classifying spacesBDiff(W ), where
Diff(W ) denotes the topological group of diffeomorphisms of a smooth compact manifold

W , restricting to the identity near ∂W , and variations thereof. These spaces show up in

numerous contexts, but at the most basic level they are classifying spaces for smooth fiber

bundles whose fibers are diffeomorphic to W : For a smooth manifold B there is a natural

bijection between the set of smooth fiber bundles π : E → B whose fibers are diffeomorphic

to W , and the set of homotopy classes of maps X → BDiff(W ). From this point of view,

it is especially interesting to understand the cohomology of BDiff(W ), as it is the ring of

characteristic classes of such fiber bundles.

A motivating previous result concerns the case where W is an oriented connected 2-

manifold, where the theorems of Harer ([25]) and of Madsen and Weiss ([35]) give a com-

plete description of H∗(BDiff(W )) in a range of degrees growing with the genus of W .

These results are recalled in Section 1.2 below.

In Section 1.3 we shall state precise analogues of these theorems forBDiff(W ) whenW
is an (even-dimensional) manifold of higher dimension, leading to a similar understanding

of H∗(BDiff(W )), in a range of degrees depending on a suitable analogue of genus. Some

calculational aspects, and two interesting examples are discussed in Section 1.4.

1.1. Classification of 2n-manifolds by tangential n-type. In the classical approach (cf.

e.g. [9, 56]) to the classification of (high dimensional) manifolds, the basic homotopy the-

oretic invariant attached to a manifold M is its homotopy type, and one attempts only to

classify manifolds inside one homotopy type at a time: If a space X is fixed, the structure
set S (X) parametrizes pairs consisting of a smooth manifold and a homotopy equivalence

M → X . In this section we briefly recall another approach to classification, due to Kreck

([32]).

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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As the basic homotopy theoretic invariant of a smooth 2n-manifoldW , we shall instead

consider the tangential n-type defined below (a minor variation of the normal n-type from
[32]). LetW be a smooth compact 2n-dimensional manifold. Writing γ2n for the canonical

vector bundle over BO(2n), the space of vector bundle maps TW → γ2n is contractible.

Picking an element in this contractible space gives an underlying mapW → BO(2n), and
we may form the Moore–Postnikov factorization

W
�−→ XW

θW−−→ BO(2n),

uniquely characterized up to weak homotopy equivalence by the facts that � is an n-connected
cofibration and θW is an n-coconnected Serre fibration. (Being n-connected means that

the induced map in homotopy groups is surjective for πn and bijective for π<n; being n-
coconnected means that the induced map in homotopy groups is injective in πn and bijective

in π>n.)
We shall consider the fiber homotopy equivalence class of the fibration θW : XW →

BO(2n) a primary homotopy theoretic invariant of W . If W has non-empty boundary

∂W = P , we shall consider the factorization P → XW → BO(2n), up to weak equiv-

alence over BO(2n) and under P . (Here, over and under are used in the usual sense: the

map is required to commute with the maps to BO(2n) and with the maps from P .)

Definition 1.1. Let θ : X → BO(2n) be an n-coconnected Serre fibration. Let Y (θ)
be the set of diffeomorphism classes of closed manifolds W for which there exists a weak

equivalence XW → X over BO(2n).
More generally, given a closed (2n− 1)-manifold P and a bundle map �P : ε1 ⊕ TP →

θ∗γ2n, let Y (θ, P, �P ) be the set of diffeomorphism classes of compact manifolds W with

∂W = P , up to diffeomorphism relative to P , for which there exists a weak equivalence

XW → X over BO(2n) and under P .

For some purposes it might be cleaner to define a set Y ′(θ) classifying pairs of a

closed manifold W together with a choice of weak equivalence XW → X over BO(2n),
up to homotopy through such maps. These sets contain essentially the same information,

since Y (θ) is the set of orbits of the monoid Aut(θ) of weak equivalences X → X
over BO(2n) acting on Y ′(θ) in the obvious way. These sets admit self-maps induced

by [W ] !→ [W#(Sn × Sn)], which we shall denote by s, for “stabilization”. (Here we

are assuming X and henceW is connected, so the diffeomorphism class ofW#(Sn × Sn)
is well defined.) A remarkable theorem of Kreck ([32]) determines the direct limit of sets

Y ′(θ)
s−→ Y ′(θ)

s−→ . . . by constructing a bijection to a certain bordism group. Let us recall

his result.

The composition X
θ−→ BO(2n) ⊂ BO

−1−−→ BO defines a bordism theory Ω−θ∗ in

the usual way, cf. e.g. [51]: representatives are closed manifolds with a lift of their stable

normal bundle to X , and these are considered up to bordism with the same structure. By

definition, an element in Y ′(θ) represents an element of Ω−θ2n , and [32, Theorem C] (when

translated from normal n-types to the tangential n-types used here) implies that this induces

an bijection

colim

(
Y ′(θ)

s′−→ Y ′(θ)
s′−→ . . .

)
→ Ω−θ2n .

Thus, a connected closed manifoldW with tangential n-type θ is uniquely classified by a sin-
gle invariant in the orbit set (Ω−θ2n )/Aut(θ), up to stable diffeomorphism, i.e. the equivalence
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relation generated byW ∼W ′ ifW#k(Sn×Sn) is diffeomorphic toW ′#k(Sn×Sn) for
some k.

1.2. Classification of smooth (surface) bundles. The classification problem for manifolds

has a parametrized version: for a given manifold B, describe the set of smooth fiber bundles

π : E → B, say with a fixed diffeomorphism type of the fibers, up to fiberwise diffeo-

morphism. If the fiber is a closed manifold W , this set is in natural bijection with the set

[B,BDiff(W )] of homotopy classes of maps. If P = ∂W �= ∅, the set [B,BDiff(W )] is in
bijection with smooth fiber bundles π : E → B with an identification ∂E = B × P , such
that all fibers are diffeomorphic to W relative to P . (Recall that we write Diff(W ) for the
diffeomorphisms of W restricting to the identity near ∂W .) Thus the classification theory

for smooth fiber bundles amounts to the understanding of the homotopy type of BDiff(W ).
The association of the factorizationW → XW → BO(2n) to the manifoldW is, when

carefully constructed, continuous and functorial inW and gives rise to a continuous map

BDiff(W ) → BAut(θW , ∂W ), (1.1)

where Aut(θW , ∂W ) is the topological monoid of self-homotopy equivalences φ : X → X
with φ ◦ �|∂W = �|∂W and θ ◦ φ = φ.

Definition 1.2. For a compact manifoldW , let θ = θW : XW → BO(2n) be its tangential
n-type, and write

BDiffθ(W ) = hofib
(
BDiff(W ) → BAut(θ, ∂W )

for the homotopy fiber of the map (1.1).

(Despite the notation, this space is not always the classifying space of a group, and

may have several path components.) By construction, the space BDiffθ(W ) comes with an

action of the monoid Aut(θ, ∂W ) and the ordinary BDiff(W ) can be reconstructed as the

homotopy orbit space of that action.

Example 1.3. If n = 1 andW is a connected, closed, orientable 2-manifold, the tangential

1-type of W is that of θ : BSO(2) → BO(2). In this case, BDiff(W ) is the classify-

ing space of the group of all diffeomorphisms ofW , not necessarily preserving orientation.

The monoid Aut(θ) is homotopy equivalent to the discrete group Z× ∼= Z/2, and the map

BDiff(W ) → BAut(θ) is induces by the action of Diff(W ) on H2(W ) ∼= Z. Therefore,
BDiffθ(W ) is homotopy equivalent to the classifying space of the group of orientation pre-

serving diffeomorphisms.

If n = 1 and W is a connected orientable 2-manifold with non-empty boundary, the

tangential 1-type is still BSO(2) → BO(2), but now BAut(θ, ∂W ) is contractible and

hence BDiffθ(W,∂W ) � BDiff(W,∂W ), corresponding to the fact that diffeomorphisms

fixing the boundary are automatically orientation preserving.

By the classification theorem for connected oriented compact 2-manifolds, the diffeo-

morphism type of W is given by two numbers, viz. the genus and the number of boundary

components. If W = Wg,n has genus g and n boundary components, the moduli space

BDiffθ(Wg,n) is known to have several interesting geometric models (at least when exclud-

ing the exceptional surfaces of non-negative Euler characteristic), most notably the moduli

space Mg,n of isomorphism classes of genus g Riemann surfaces, with n marked points and
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a non-zero tangent vector at each point. This space has a wealth of geometric structure, in-

cluding all the structure which follows from being the complex points of a variety defined

over Z (a mixed Hodge structure on its rational cohomology, and a Galois action on its

profinite completion), as well as metric and dynamic aspects related to the Teichmüller and

Weil-Petersson metrics. This shall barely be touched upon here, except to note that it would

be interesting to better understand the connections between these more geometric aspects of

moduli spaces and the homotopy theoretic aspects covered in the present paper. In particular

it would be interesting to understand how much, if any, of that geometric structure admits an

analogue for moduli spaces of higher dimensional manifolds.

Let us recall two important theorems about the cohomology of this space. A version of

the following result was first proved by Harer.

Theorem 1.4. For any inclusion j :W ⊂W ′ of connected oriented compact 2-dimensional
manifolds, the map

Hk(BDiffθ(W )) → Hk(BDiffθ(W ′))

induced by extending a diffeomorphism ofW by the identity map ofW ′ \ jW , is an isomor-
phism for k ≤ (g(W )− 1)/1.5, where g(W ) is the genus ofW .

Harer’s original paper [25] proved a weaker version of this result where the linear term

g/1.5 in the range is replaced by g/3. Later results [31] improved this to g/2 and allowed

closed surfaces. The slope g/1.5 above is due to Boldsen ([8]), inspired by unpublished

ideas of Harer ([27]), and is known to be optimal ([41]).

Determining the cohomology of BDiffθ(W ) in the stable range is then equivalent to

determining the inverse limit

H∗(BDiffθ(W∞)) = lim←−H
∗(BDiffθ(Wg,1)),

whereWg,1 denotes a genus g surface with one boundary component. The following result

is due to Madsen and Weiss.

Theorem 1.5 ([35]). Let BSO(2)−θ denote the Thom spectrum of the map BSO(2) θ−→
BO(2) ⊂ BO −1−−→ BO, graded such that the Thom class is in degree −2. There is a map

BDiffθ(W∞) → Ω∞(BSO(2)−θ)

which is a homology equivalence (i.e. it induces an isomorphism in singular homology with
integral coefficients) after restricting to a map between path connected spaces.

Analogues of the theorems of Harer and of Madsen–Weiss have been established for

unoriented surfaces ([47, 53]) and for surfaces with certain tangential structures (cf. e.g.

[4, 11, 26], or the comprehensive treatment in [47]). It would be interesting to understand

how these results are related to the finite-generation criteria of A. Kupers and J. Miller ([33]).

For manifolds of dimension higher than 2, A. Hatcher and N. Wahl ([28]) have proved ho-

mological stability for mapping class groups of many 3-manifolds.

The theorems of Harer and Madsen–Weiss combine to a formula for the homology of

BDiffθ(W ) for any orientable 2-manifoldW , in the range where homological stability ap-

plies. The rational cohomology of a path component ofΩ∞(BSO(2)−θ) is easy to calculate,
implying that in the stable range, the ring H∗(BDiffθ(W );Q) is polynomial on a sequence

of classes κi of degree 2i, i ≥ 1.
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1.3. Bundles of higher dimensional manifolds. Next, I shall discuss analogues for higher-

dimensional manifolds of the results of Harer and Madsen–Weiss. To begin with, the fol-

lowing turns out to be useful generalizations of genus.

Definition 1.6. Write W1 = Sn × Sn and W1,1 = W1 \ int(D2n) for some choice of

embedding D2n → W1. The genus of a connected compact smooth 2n-manifold W (with

or without boundary) is the maximal number g(W ) for which there exist g(W ) disjoint

embeddingsW1,1 →W . The stable genus is the maximal number g(W ) such that for some

k there exist k + g(W ) disjoint embeddingsW1,1 →W#kW1.

If j : W ↪→ W ′ is an embedding of compact connected 2n-manifolds, then g(W ′) ≥
g(W ) and g(W ′) ≥ g(W ). Such an embedding also induces a map of tangential n-types
θW → θW ′ , i.e. a map XW → XW ′ over BO(2n). The fibration (1.1) can be made functo-

rial with respect to embeddings and j induces a diagram

BDiffθW (W ) ��

��

BDiff(W ) ��

��

BAut(θW , ∂W )

��
BDiffθW ′ (W ′) �� BDiff(W ′) �� BAut(θW ′ , ∂W ′)

whose middle vertical arrow is induced by extending diffeomorphisms of W by the iden-

tity on W ′ \ j(W ). We shall be especially concerned with embeddings j which induce a

weak equivalence of tangential n-types, i.e. where the map XW → XW ′ is a weak equiva-

lence. In this case we can identify θW and θW ′ and denote them both by θ. The following
generalization of Harer’s theorem is proved in joint work with O. Randal-Williams.

Theorem 1.7 ([18, 19]). Let j : W ↪→ W ′ be an embedding of compact, connected man-
ifolds of dimension 2n, inducing an equivalence of tangential n-types. If W is simply con-
nected and n > 2, then the map

BDiffθ(W ) → BDiffθ(W ′)

induces an isomorphism in Hk(−;Z) for k ≤ (g(W ) − 3)/2, when restricted to a map
between path connected spaces.

If we writeWg = g(Sn × Sn) for the connected sum of g copies of Sn × Sn, then for

any connected manifoldW with non-empty boundary we get embeddingsW ↪→W#W1 ↪→
W#W2 ↪→ . . . , by first using a collar of the boundary to embedM into its own interior, then

performing the connected sum outside the image of that self-embedding. Each embedding

induces an equivalence of tangential n-types, and we will write BDiffθ(W#W∞) for the
homotopy direct limit of the resulting sequence

BDiffθ(W#W∞) = hocolim
g→∞

BDiffθ(W#Wg). (1.2)

The limiting case g → ∞ of Theorem 1.7 holds with weaker assumptions. Let us note

that if j : W → W ′ is an embedding which maps a chosen disk D2n−1 ≈ D ⊂ ∂W into

∂W ′, then j induces maps BDiff(W#Wg) → BDiff(W ′#Wg) compatible with the maps

in the direct limit (1.2), and similarly for BDiffθ, provided the connected sum is performed

near the chosen disk. Therefore j induces a map BDiffθ(W#W∞) → BDiffθ(W ′#W∞).
The following infinite-genus version of Theorem 1.7 is proved in joint work with O. Randal-

Williams.
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Addendum 1.8 ([19]). Let j :W ↪→W ′ be an embedding of compact, connected manifolds
of dimension 2n > 0, inducing an equivalence of tangential n-types. If j takes a disk in ∂W
to a disk in ∂W ′ as above, the induced map

BDiffθ(W#W∞) → BDiffθ(W ′#W∞)

is a homology equivalence, when restricting to a map between path connected spaces.

The following generalization of Madsen and Weiss’ theorem to higher dimensional man-

ifolds determines the homology in the stable range. It is proved in joint work with O. Randal-

Williams.

Theorem 1.9 ([19, 20]). LetW be any connected manifold of dimension 2n > 0 with non-
empty boundary. There is a map

BDiffθ(W#W∞) → Ω∞X−θ

which, when restricted to a map between path connected spaces, induces an isomorphism in
integral homology.

The map to Ω∞X−θ is defined using the Pontryagin–Thom construction. It exists also

for closed manifolds, and can be made functorial under gluing, cf. Section 2 below. When

W is simply connected and n > 2, the two theorems can be combined to deduce that the

map

BDiffθ(W ) → Ω∞X−θ

induces an isomorphism in Hk(−;Z) when k ≤ (g(W ) − 3)/2, when restricted to a map

between path connected spaces.

If constructed carefully, this map is also equivariant with respect to the action of

Aut(θ, ∂W ) on both sides. The induced map of homotopy orbit spaces (= Borel construc-

tions)

BDiff(W ) → (Ω∞X−θ)hAut(θ,∂W ), (1.3)

then also induces an isomorphism in homology of path components in the stable range.

If n is large and W is very complicated, the monoid Aut(θ, ∂W ) may well be quite

complicated too. However, it is always an (n − 1)-type (i.e. the homotopy groups π≥n all

vanish, with all basepoints) and is an (n − c − 2)-type if the inclusion ∂W → W is c-
connected, since the fibers of θ are all (n − 1)-types. In many examples of interest, the

homotopy type of BAut(θ, ∂W ) is easy to understand, and in particular it is contractible if

(W,∂W ) is (n− 1)-connected.

1.4. Explicit calculations. For a given θ : X → BO(2n), the integral homology of the

infinite loop spaces Ω∞X−θ appearing in Theorem 1.9 is almost certainly very complicated

in any interesting example. The rational cohomology is usually easy; in this section we spell

out two interesting examples.

The integral cohomology is probably best approached one prime at a time, where several

calculations have been carried out in the case 2n = 2, cf. [16, 17, 46]. It would be useful

to get a more concrete hold of the cohomology classes resulting from those calculations

(perhaps in the style of [23]). It also seems interesting to investigate the real or complex

K-theory, as well as more exotic cohomology theories.
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1.4.1. Miller–Morita–Mumford classes. The calculations of the cohomology rings

H∗(BDiffθ(W );Q) and H∗(BDiff(W );Q) in the stable range implied by Theorems 1.7

and 1.9 involve the characteristic classes known as MMM classes, after Miller, Morita and

Mumford, who defined these classes in [38, 39, 42] in the case of oriented surfaces. Their

definition readily generalizes to higher dimensions.

A smooth fiber bundle π : E → B has a fiberwise tangent bundle TπE which is

a vector bundle on E. If the fibers of E are compatibly oriented d-manifolds and p ∈
Hk+2n(BSO(2n)), we obtain a class p(TπE) ∈ Hk+2n(E). If the fibers of π are closed, in

addition to being oriented, we have a fiber integration map π! : H
k+2n(E) → Hk(B), and

we define the MMM class associated to p ∈ Hk+2n(BSO(2n)) as

κp(π) = π!(TπE) ∈ H∗−2n(B).

There are universal classes κp ∈ H∗(BDiff+(W )) for any closed oriented manifold W ,

where Diff+(W ) denotes the group of orientation preserving diffeomorphisms.

These characteristic classes and their variants appear in applications of Theorems 1.7

and 1.9, as well as multiple other contexts (cf. [12, 13, 24, 30] and others).

1.4.2. Connected sums of products of spheres. An interesting special case concerns the

manifold W 2n
g = g(Sn × Sn), which could perhaps be regarded as a higher-dimensional

analogue of the genus g surfaces. This manifold is (n−1)-connected andWg → BO(2n) in-
duces the trivial map in πn, so in this case the Moore–Postnikov factorizationX → BO(2n)
is the n-connected cover of BO(2n), denoted θn : BO(2n)〈n〉 → BO(2n) in [20] (the no-

tation BO(2n)〈n+ 1〉 is sometimes used for the same thing). The inclusion D2n ↪→ Wg is

(n− 1)-connected, so BAut(θ,D2n) is contractible and Theorem 1.9 asserts that the map

BDiff(W 2n
g , D

2n) → Ω∞(BO(2n)〈n〉−γ)

induces an isomorphism in homology (onto a path component of the target) in the range

∗ ≤ (g − 3)/2.
The rational cohomology of Ω∞(BO(2n)〈n〉−γ) corresponds to certain MMM-classes

in the cohomology of BDiff(W 2n
g , D

2n) and BDiffθ(W 2n
g ), namely those corresponding

to the subring H∗(BO(2n)〈n〉;Q) ⊂ H∗(BSO(2n);Q). To obtain BDiff+(Wg) from

BDiffθ(Wg) we take homotopy orbit space by the monoid of fiber homotopy equivalences

of the fibration BO(2n)〈n〉 → BSO(2n), whose classifying space is weakly equivalent to

BO[0, n]. This leads to the following consequence of Theorems 1.7 and 1.9.

Theorem 1.10 ([18–20]). Let B ⊂ H∗(BSO(2n)) be the set of monomials in the classes
{e, pi|n+1

4 ≤ i ≤ n − 1} of total degree more than 2n and let B′ = B ∪ {epi|1 ≤ i ≤ n
4 }.

Then the natural maps

Q[κc|c ∈ B] → H∗(BDiffθ(Wg);Q) → H∗(BDiff(Wg, D
2n);Q)

and
Q[κc|c ∈ B′] → H∗(BDiff+(Wg);Q)

are all isomorphisms in degrees ∗ ≤ (g − 3)/2.
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1.4.3. Complete intersections. Theorems 1.7 and 1.9 are most useful when applied to

manifolds for which the genus is easily estimated. As in [32], an interesting class of such

examples arises from the Lefschetz hyperplane theorem. I will briefly outline the simplest

non-trivial example.

Let Vd ⊂ CP 4 denote the variety defined by a homogeneous polynomial of degree d
(a section of the line bundle O(d)). For generically chosen polynomial, Vd is a smooth

manifold whose diffeomorphism type is independent of the polynomial. By [55], the genus

of Vd is half the third Betti number, and an easy Chern class calculation then proves that

g(Vd) = (d4 − 5d3 + 10d2 − 10d + 4)/2, allowing for a calculation of cohomology in a

range of degree growing as d4/4.
The embedding Vd ⊂ CP 4 classifies a natural complex line bundle over Vd which we

shall denote Ld, and c1(Ld) is a generator of H2(Vd;Z) ∼= Z. We consider the group

Diff(Vd, Ld) consisting of pairs of a diffeomorphism φ : Vd → Vd and a (specified) iso-

morphism Ld → φ∗Ld. The classifying space BDiff(Vd, Ld) classifies smooth fiber bun-

dles π : E → B with fibers diffeomorphic to Vd, together with a complex line bundle

L → E such that the class x = c1(L) ∈ H2(E;Z) restricts to a generator of H2 of

each fiber. For such bundles, the relevant characteristic classes are defined as follows.

For each monomial p = pi1p
j
2e
k ∈ H∗(BSO(6)) and each n ∈ Z≥0, we have the class

xnp(TπE) ∈ H2n+4i+8j+6k(E) and may define the corresponding MMM class

κxnp(π) = π!(x
np(TπE)) ∈ H2n+4i+8j+6k−6(B)

with a universal class κxnp ∈ H∗(BDiff(Vd, Ld)). The space BDiff(Vd, Ld) is rationally

equivalent to the space BDiffθ(Vd) of Theorems 1.7 and 1.9, so we may use those theorems

to calculate the rational cohomology.

Theorem 1.11 ([19]). Let B ⊂ H∗(BSO(6)) denote the set of monomials in p1, p2 and e.
The natural map

Q[κxnp|p ∈ B, 2n+ |p| > 6] → H∗(BDiff(Vd, Ld);Q)

is an isomorphism in degrees ∗ ≤ (d4 − 5d3 + 10d2 − 10d− 2)/4.

The forgetful map BDiff(Vd, Ld) → BDiff+(Vd) can also be analyzed in cohomology.

Up to homotopy, it is a principal K(Z, 2)-bundle, and the restriction of the action map to

CP 1 ⊂ CP∞ = K(Z, 2) gives rise to a homomorphism

D : H∗(BDiff(Vd, Ld);Q) → H∗−2(BDiff(Vd, Ld);Q), (1.4)

encoding the differential in the Serre spectral sequence for the fibration associated to the

action of K(Z, 2). That spectral sequence can then be used to deduce the following result

from Theorem 1.11.

Corollary 1.12. In the stable range, the homomorphism

H∗(BDiff+(Vd);Q) → H∗(BDiff(Vd, Ld);Q)

is injective and its image is precisely the kernel of the homomorphism D in (1.4). The
homomorphism D is a derivation with respect to cup product, and in the stable range it is
explicitly determined by the formula D(κxnp) = nκxn−1p.
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Three of the MMM classes, namely κx3 , κxp1 and κe, have degree 0 and are really

characteristic numbers of the fiber Vd, depending only on the number d. These appear in

the formula for three of the classes D(κxnp) in Theorem 1.11, leading to a numerically

somewhat complicated formula for the subringH∗(BDiff+(Vd);Q) ⊂ Q[κxnp] in the stable
range.

The spaceBDiff(Vd, Ld) admits a map from an algebraic counterpart, defined as follows.

Let Γ(O(d)) be the algebraic sections of the line bundle O(d) on P4. The open set U ⊂
P(Γ(O(d))) consisting of homogeneous polynomials defining a smooth variety Vd ⊂ P4

admits an action of the group Aut(P4) = PGL(5). The quotient stack U//Aut(P4) is

a moduli space of complete intersections, whose complex points map in a natural way to

BDiff(Vd, Ld). It would be interesting to understand more about that map and its variations.

2. Moduli spaces and bordism categories

In this section we wish to explain the role played by bordism categories in the proof of

Theorem 1.9.

Theorem 1.9 concerns a very particular gluing of manifolds, namely the iterated gluing

Sn × Sn to W near the boundary of W , but it has long been realized (cf. [22, 35, 52])

that more general gluing constructions are important. A convenient encoding of such gluing

is through bordism categories, whose objects are closed (2n − 1)-dimensional manifolds,

morphisms are 2n-dimensional bordisms, and composition defined by gluing of bordisms.

2.1. Higher and lower categories. Categories of bordisms have appeared in many other

contexts, and in many variations. The cobordism categories of [51] are mainly used to keep

track of transitivity of the bordism relation. The category theoretical aspects play an im-

portant role in Atiyah’s and Segal’s definition of topological quantum field theory ([1, 50]),

defined as functors from a category of bordisms to the category of vector spaces, subject to

certain axioms. More recently, the most mathematically popular field theories have been the

extended field theories, defined as functors out of a higher category of bordisms, bordisms

between bordisms, etc. Much of the recent interest has been inspired by the classification

theorem for field theories announced by Lurie ([34]). Giving the right definitions has proved

delicate, and popular approaches, e.g. the Θn-spaces of [49] or the iterated complete Segal

spaces of [2], have only recently been proved equivalent ([3, 7]).

For the purpose of calculating cohomology of BDiff(W ) or BDiffθ(W ), it is not de-
sirable to involve any higher categories of bordisms, and in this document we shall work

entirely with simplicial categories whose objects are closed manifolds. On the contrary, the

full bordism category of all compact bordisms between closed manifolds is already too large.

For example, in the oriented 2-dimensional case Theorem 1.9 concerns connected surfaces

of high genus, and it is not desirable to have bordisms which have many path components

of low genus. In fact, an important step (going back to [52]) in the proof is to reduce to a

subcategory where morphisms are highly connected relative to one end.

2.2. A bordism category. We define a simplicial version of a category of bordisms, useful

for proving Theorems 1.7 and 1.9, after explaining some conventions.

Remark 2.1 (Conventions on simplicial sets). In the following we shall often consider sim-
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plicial sets whose p-simplices are certain families of objects, parametrized by the extended

simplices Δp
e = {t ∈ Rp+1|∑ ti = 1}. The families are certain maps π : E → Δp

e and

the simplicial structure is given by pull-back along face inclusion Δp−1
e → Δp

e . There are

well known ways to deal with the inherent set-theoretical problems involved in this type of

definition, cf. e.g. [45, §1.1] or [35, §2.1], as follows. Choose once and for all a set Ω and

insist that E is equal to a subset of Δp
e × Ω and that π : E → Δp

e is equal to the composi-

tion E ⊂ (Δp
e × Ω) → Δp

e , where the second map is the projection. When the cardinality

of Ω is sufficiently large, the homotopy type of the resulting simplicial set will not depend

on Ω. This requirement shall be imposed without further mention in all the following def-

initions, whenever a map π : E → Δp
e or θ : X → Δp

e appears. When a pair of maps

(π, f) : E → Δp
e × R appears, we shall instead assume that E ⊂ (Δp × R) × Ω and that

(π, f) is equal to the projection.

Remark 2.2 (Conventions on boundaries). We shall consider various moduli spaces of man-

ifolds with boundary. However, we shall generally eschew actual boundries, replacing them

instead by germs of open manifolds containing them. For example, instead of a compact

bordismW with incoming boundary P0 and outgoing boundary P1, we will consider a triple
(t, E, f), where t ≥ 0, E is a smooth manifold without boundary, f : E → R is a smooth

map which has 0 and t as regular values and such that W = f−1([0, t]) ⊂ E is com-

pact. Such triples will be considered up to the equivalence relation generated by identifying

(t, E, f) with (t, E′, f |′E) whenever E′ ⊂ E is an open subset containing W . Instead of

taking the actual incoming boundary P = f−1(0) ⊂ W , we would consider (E, f) up to

the coarser equivalence relation generated by being equal near P .
This convention has various technical advantages. For example, we will only ever need

to discuss tangential structures on manifolds of the same dimension. More importantly, the

germs give a well defined gluing of manifolds: a diffeomorphism ∂W ∼= ∂W ′ does not quite
induce a well defined smooth structure on the topological manifoldW ∪∂ W ′.

We shall need a simplicial category of bordisms equipped with tangential structures.

Since the entire definition is rather long, we first define a category of bordisms without

structure.

Definition 2.3. Let C ′ be the simplicial category where NqC ′
p is the set of equivalence

classes of triples (t, π, f), where t : Δp
e → (R≥0)

q is a smooth function, π : E → Δp
e is a

submersion from a smooth manifold E of dimension p + 2n, and f : E → R is a smooth

function. Writing ai =
∑i

j=1 tj , this data is subject to the requirement that the functions

(π, f−ai◦π) : E → Δp
e×R are transverse to the submanifoldΔp

e×{0} for all i = 0, . . . , q.
Writing Eij ⊂ E for the submanifold (f − ai ◦ π)−1(R≥0) ∩ (f − aj ◦ π)−1(R≤0), we
require that the restriction π|E0q : E0q → Δp

e is a proper map. Finally, the data is subject to

the equivalence relation generated by replacing (π, f) by their restriction to an open subset

E′ ⊂ E containing E0q .

The face maps in the p-direction are defined in the obvious way, pulling all the data back
along a face map Δp−1

e → Δp
e . The face map di : NqC ′

p → Nq−1C ′
p replaces (t1, . . . , tq)

by (t1, . . . , ti + ti+1, . . . , tq) if 0 < i < q. If i = q it forgets tq , and if i = 0 it forgets

t1 and additionally replaces (π, f) : E → Δp
e × R by its pullback along the map (x, s) !→

(x, s− t1 ◦ π(x)).
With appropriate set-theoretic conventions, cf. Remark 2.1, the simplicial space [q] !→

NqC ′ is the nerve of a simplicial category C ′. Informally, the morphisms are (Δp
e-parameter
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families of) compact 2n-dimensional bordisms E01, and composition is defined by gluing;

the germ of a thickening E ⊃ E01 could be thought of as a technical detail.

Definition 2.4. Let C be the simplicial category where NqCp is the set of (t, π, f, x) where
(t, π, f) ∈ NqC ′

p is as before, and x = (c, θ, �) consists of the following bundle data. Writing

TπE for the fiberwise tangent bundle of π, c : E → BO(2n) is a map covered by a vector

bundle map c : TπE → γ2n. θ is an n-coconnected Serre fibration θ : X → Δp
e × BO(2n)

such that X is weakly equivalent to a CW complex with finite n-skeleton. Finally, � : E →
X is a map with θ ◦ � = (π, c).

If we fix an n-coconnected Serre fibration θ0 : X0 → BO(2n), the simplicial subcate-

gory of C where θ : X → Δp
e × BO(2n) is equal to id× θ0 : Δp

e ×X0 → Δp
e × BO(2n)

shall be denoted Cθ0 .

Remark 2.5. The simplicial category Cθ is a simplicial model for the topological category

denoted Cθ in [22]. Allowing θ to vary as in the above definition of C models the functori-

ality of θ !→ Cθ. In fact, we can let Hp be the category whose objects are the n-coconnected
Serre fibrations θ : X → Δp

e × BO(2n) such that X is weakly equivalent to a CW com-

plex with finite n-skeleton, and morphisms Hp(θ, θ
′) the set of maps φ : X → X ′ with

θ′ ◦ φ = θ. This defines a simplicial category H and there is an obvious forgetful functor

C → H which could perhaps be viewed as modelling C as a homotopy colimit of a functor

θ !→ Cθ from H to the self-enriched category of small simplicial categories.

Let us write BCθ for the classifying space of the simplicial category Cθ, i.e. the topo-

logical space obtained by realizing in both directions. The following result, obtained in joint

work with I. Madsen, U. Tillmann, and M. Weiss, determines the homotopy type of this

classifying space.

Theorem 2.6 ([22]). Let θ : X → BO(d) and writeX−θ for the Thom space of the inverse
of the bundle classified by θ (graded so that the Thom class is in degree−d). There is a weak
equivalence

BCθ � Ω∞−1X−θ. (2.1)

Using this result, the connection between BDiffθ(W ) and Ω∞X−θ expressed in Theo-

rems 1.7 and 1.9 goes via the based loop space ΩBCθ, or more precisely a space of paths in

BCθ with fixed endpoints.

2.3. The moduli spaces. Let us explain how the bordism categories C and Cθ are related
to the moduli spaces BDiffθ(W ) from Section 1.

The unique zero-simplex of N0Cθ with empty underlying manifold shall be denoted

simply by ∅. If P ∈ N0Cθ is some other zero-simplex, the morphism space Cθ(P, ∅) is quite
closely related to the spaces BDiffθ(W ). Indeed, the space Cθ(P, ∅) is the “moduli space of

null bordisms” ofP . Ignoring the distinction between closed (2n−1)-dimensional manifolds

and germs of 2n-dimensional thickenings, C (P, ∅) is the space of compact 2n-manifoldsW
with ∂W = P , equipped with a lift of the classifying map TW : W → BO(2n) over
the fixed θ0 : X0 → BO(2n), extending a given lift over P . Let us define the following

subspaces.

Definition 2.7. For a zero-simplex P ∈ N0Cθ, define

N (P ) ⊂ C (P, ∅)
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as the subspace defined by the requirement that, in the notation of Definition 2.4, the map

� : E → X is n-connected.

The space N (P ) is then the moduli space of null bordisms W of P , equipped with

lifts to X0 of a classifying map for their tangent bundle, extending a specified lift over

P = ∂W , subject to the requirement that W → X be n-connected. The bundle condition
is then nothing but an identification, up to homotopy equivalence, of the factorizationW →
X → BO(2n) with the Moore–Postnikov factorization of W → BO(2n). From these

considerations a weak equivalence

N (P ) �
∐
W

BDiffθ(W ), (2.2)

may be deduced, where the disjoint union is over representativesW for the set Y (P ) from
Definition 1.1.

Unfortunately N (−) is not a subfunctor of the representable functor C (−, ∅), because
pre-composing with a morphism does not always preserve the connectivity conditions im-

posed in N . Motivated by this observation, we consider the following subcategories.

Definition 2.8. Define subcategories C i
θ ,C

o
θ ⊂ Cθ, with the same objects as Cθ, in the

following way. A morphism f ∈ Cθ(P0, P1) is in C o
θ (P0, P1) provided the underlying

bordism satisfies that the inclusion of the outgoing boundary be (n − 1)-connected (in the

notation of Definition 2.4, the inclusion (f−π◦t)−1(0) ↪→ E should be (n−1)-connected).
To be in C i

θ we instead require that the inclusion of the incoming boundary be (n − 1)-
connected.

In the special case n = 1 the categories C i
θ and C o

θ are sometimes called positive bound-
ary subcategories. In this case the condition is simply that every path component of a bor-

dism is required to have non-empty incoming boundary, respectively non-empty outgoing

boundary.

2.4. Group completion and stable homology. The association P !→ N (P ) ⊂ Cθ(P, ∅)
defines a functor from C o

θ to simplicial sets. Using the weak equivalences (2.1) and (2.2),

we can now explain the map appearing in Theorem 1.9, which arises from a special case of

a very general principle. If C is a simplicial category and F : C → sSet is a simplicially

enriched functor, there is a simplicial category C ? F and a functor C ? F → C. The fiber of
the induced mapB(C ?F ) → BC over a point c ∈ N0C ⊂ C is F (c), and the inclusion into
the homotopy fiber gives a map F (c) → hofibc(B(C ? F ) → BC). This homotopy fiber is

weakly equivalent to ΩBC provided B(C ?F ) contractible, which is the case if for example

F is representable, or even just homotopy ind-representable (i.e. a filtered homotopy colimit

of representable functors). Given any inverse system k = (P0
K1←−− P1 K2←−− . . . ) in Cθ we

therefore obtain a map

Cθ(k, ∅) → ΩBCθ,

where Cθ(k,−) denotes the ind-representable functor Q !→ hocolimCθ(Pi, Q). If the mor-

phisms in the inverse system are in the subcategory C i
θ we likewise obtain a map

C i
θ (k, ∅) → ΩBC i

θ . (2.3)

We may restrict to the subspace N (k) = hocolimN (Pi) ⊂ Cθ(k, ∅) to obtain a map

N (k) → ΩBCθ.
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By Theorem 2.6, the right hand side is a model forΩ∞X−θ, and by the equivalence (2.2),
the left hand side is the disjoint union of direct limits of spaces of the form BDiffθ(W ). If
we choose an appropriate inverse system k, these direct limits become BDiffθ(W#W∞).
More precisely, we may for each object P ∈ Cθ choose an endomorphism tP ∈ Cθ(P, P )
whose underlying bordism is diffeomorphic to ([0, 1]× P )#(Sn × Sn) and form the direct

system t−1
P = (P

tP←− P tP←− . . . ). Then taking direct limit of the weak equivalence (2.2)

gives a weak equivalence

N (t−1
P ) � hocolim

(∐
W

BDiffθ(W )
s−→
∐
W

BDiffθ(W )
s−→ . . .

)

� Z×
∐
W

BDiffθ(W#W∞),

where s again denotes the map which forms connected sum with Sn × Sn, the first disjoint
union is over [W ] ∈ Yθ, and the second is over the quotient of Yθ by the equivalence relation

generated by [W ] ∼ [W#(Sn × Sn)].
With this notation, the following result is a strengthening of Theorem 1.9. The implied

bijection on π0 is essentially equivalent to [32, Theorem C], as discussed in Section 1.1

above.

Theorem 2.9. For connected X and any non-empty object P ∈ Cθ, the map N (t−1
P ) →

ΩBCθ induces an isomorphism in integral homology.

Notes on the proof. Most of the proof is in [20], but the result claimed here is slightly

stronger. We explain the two main ingredients in the proof, full details will appear in [19].

The first ingredient is the infinite-genus homological stability theorem stated as Adden-

dum 1.8 above. As stated there, nothing is said about π0, but a slightly modified version of

the statement, also proved in [19], asserts that an appropriate disjoint union of the maps in

Addendum 1.8 is a homology equivalence (not just after restricting to a map between path

connected spaces). It implies that for certain inverse systems k = (P0
K0←−− P1

K1←−− . . . ),
the ind-representable functorQ !→ C i

θ (k,Q) sends all morphisms in C i
θ to homology equiv-

alences. By a general result of [36], used in a similar way as in [52], this implies that the

map C i
θ (k, ∅) → ΩBC i

θ from (2.3) is a homology equivalence as well.

The requirement on the direct system k = (P0
K0←−− P1

K1←−− . . . ) is that it must be a

“universal θ-end”, in the language of [20], which will be the case if the morphismsKi are in

both C o
θ and C i

θ and the mapKi → X underlying the tangential structure is n-connected for
all i. That condition also implies that N (k) � C i(k, ∅). The homological stability results

of [19] is then used again to produce homology equivalences N (t−1
P ) → N (k) for any

non-empty object P . This combines to a homology equivalence N (t−1
P ) → ΩBC i

θ for any

non-empty object P .
The second ingredient is a theorem of [20] (and in the case n = 1, also [21] and [22])

asserting that the inclusion BC i
θ → BCθ is a weak equivalence.

3. Other approaches to BDiff(W )

A well established approach to understanding BDiff(W ) goes via the block diffeomorphism

group D̃iff(W ) and the corresponding moduli space BD̃iff(W ). It seems quite different
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from the theory presented here, and a deeper understanding of their relationship seems

worthwhile.

For a fixed dimension d, there is a simplicial set Mand whose p-simplices are the maps

π : E → Δp
e where E is a smooth (d + p)-manifold without boundary and π is a smooth

map which is proper (i.e. the inverse image of a compact set is compact) and a submersion.

Its homotopy type is the disjoint union ofBDiff(W ) over all closed smooth d-manifoldsW ,

one in each diffeomorphism class.

There is a larger space M̃an
d
defined in the same way, except that the condition on π is

weakened to requiring only that for all morphisms θ : [q] → [p] in Δ, the map π : E → Δp
e

is transverse to Δq
e → Δp

e , and the resulting square

θ∗E ��

��

E

π

��
Δq θ �� Δp

is homotopy cartesian (i.e. the top horizontal map is a homotopy equivalence). Thus the

0-simplices are the same for the two spaces, essentially the set of all closed d-manifolds,

whereas the 1-simplices of M̃an
d
are essentially the h-cobordisms, etc.

The path component of Mand containing a 0-simplex W is a model for the space

BDiff(W ), and the path component of M̃an
d
containing W is a model for BD̃iff(W ). F.

Quinn’s thesis [45] established a homotopy fiber sequence

G(W )/D̃iff(W ) → Map(W,G/O) → Ω∞+dL(π1(W )),

where G(W ) denotes the monoid of self-homotopy equivalences of W , G(W )/D̃iff(W )

denotes the homotopy fiber of a map BD̃iff(W ) → BG(W ), G/O denotes the homotopy

fiber of the stable J-homomorphism BO → BG, and L(π1W ) is the quadratic L-theory

spectrum. (More precisely, G(W )/D̃iff(W ) is one of the path components of the fiber,

which in general need not be path connected.) The latter is defined purely algebraically

and is well understood, at least whenW is simply connected. The space Map(W,G/O) is
a purely homotopy theoretic object, although in general quite a difficult one to understand

explicitly. This in principle pins down the homotopy type of the space BD̃iff(W ), as the

homotopy orbit space of G(W ) acting on G(W )/D̃iff(W ) whose homotopy type is in turn

described by Quinn’s fibration sequence. In practice, the homotopy types ofG/O andG(W )
are quite complicated themselves, but for instance in rational homotopy one can sometimes

say a great deal about BD̃iff(W ) this way, cf. e.g. [5].
To obtain information about the more geometric object BDiff(W ) by this method, the

second step is to understand D̃iff(W )/Diff(W ), the homotopy fiber of BDiff(W ) →
BD̃iff(W ). This is done via algebraicK-theory, in the form ofWaldhausen’s functorA(W ).
M. Weiss and B. Williams ([57]) constructed a highly connected map

D̃iff(W )/Diff(W ) → Ω∞(Σ−1WhDiff(W )hC2
), (3.1)

where WhDiff(W ) is the Whitehead spectrum of W , in turn described by the splitting

A(W ) � Q(W+) × WhDiff(W ) (cf. [54] and Rognes’ article in these proceedings), and
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the subscript hC2 denotes the homotopy orbit spectrum. The connectivity of the map (3.1)

depends on the concordance stable range which is known [29] to be 	 dim(M)/3.
This two-step approach toBDiff(W ) has an analogue for topological manifolds, describ-

ing BTop(W ), where Top(W ) denotes the topological group of homeomorphisms of W .

There are block version BT̃op(W ) and G(W )/T̃op(W ), whose homotopy type is under-

stood by an analogue of the fibration sequence (3.1); the homotopy fiber T̃op(W )/Top(W )

of a map BTop(W ) → BT̃op(W ) is again described in a concordance stable range via al-

gebraicK-theory, cf. [54] and [57]. The two-step approach via block homeomorphisms can

also be combined into one, cf. [58].

In comparison with the approach to BDiff(W ) outlined in Section 1.3, the following are
some of the main conceptual differences.

• Theorems 1.7 and 1.9 are fundamentally homological, and at best determines the ho-

motopy type of BDiff(W )+ (or BDiffθ(W )+), where the plus denotes Quillen’s plus
construction. In particular, it would be very difficult to deduce much about the dif-

feomorphism group itself from this formula. In contrast, the approach via BD̃iff(W )
is homotopical, and the homotopy theoretic approximation to BDiff(W ) it provides
may be looped to an approximation of Diff(W ).

• Both approaches describe BDiff(W ) only below a certain stable range. In theo-

rems 1.7 and 1.9 the range depends on the genus of W , whereas in the approach

via BD̃iff(W ) the stable range depends on the dimension ofW .

• The homotopy theoretic calculations involved are somewhat different. For example,

the approach viaBD̃iff(W ) involves the monoidG(W ) of all homotopy equivalences

ofW , whereas the approach via Theorem 1.9 instead involves the monoid Aut(θ).

4. Unstable cohomology

Let me briefly discuss what is known about about the cohomology of moduli spaces of

manifold outside the stable range, focusing on the case W = Wg = g(Sn × Sn). In the

notation of Section 1.4, we consider the ring homomorphisms

Q[κc|c ∈ B] → H∗(BDiff(Wg, D
2n);Q) (4.1)

and

Q[κc|c ∈ B′] → H∗(BDiff+(Wg);Q) (4.2)

which are isomorphisms in the stable range, known to be at least ∗ ≤ (g − 1)/2 for n ≥ 3
and ∗ ≤ (g − 1)/1.5 for n = 1. However, the homomorphisms (4.1) and (4.2) are still

defined outside this stable range and one may ask for an estimate of how non-trivial they are.

We shall call the image of either map the tautological subring of cohomology, following

established terminology in the case n = 1. The kernel is the ideal consisting of the relations
satisfied universally by these classes.

Even for n = 1, the cokernel is still largely mysterious: various constructions are known

to produce non-zero elements in the cokernel, but no pattern (even conjecturally) is known.

By contrast, much effort by many people has gone into understanding the kernel of these

maps when n = 1, leading to a complete understanding of the tautological subring for

g ≤ 23, as well as a conjectural description for all g, cf. e.g. [14, 15, 44].
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For larger n, I. Grigoriev has devised a method for producing relations among the tau-

tological classes for finite g, at least when n = dim(Wg)/2 is odd. His method generalizes

[40] and [48], and puts a lower bound on the size of the kernels of (4.1) and (4.2).

Theorem 4.1 ([24]). For n = (dim(Wg))/2 odd, the images of the ring maps (4.1) and
(4.2) are finitely generated Q-algebras. The kernel is non-trivial in degree 6g + 6 if n ≡ 1
mod 4 and in degree 2g + 2 if n ≡ 3 mod 4.

The non-triviality of the kernel in particular shows that if the bound ∗ ≤ (g − 3)/2 in

Theorem 1.7 can be improved to ∗ ≤ ag + b, then a is at most 2, at least if n ≡ 3 mod 4.
Hence the optimal such a is somewhere in the interval [.5, 2].

Recent joint work between Grigoriev, Randal-Williams and myself has addressed the

question of whether the tautological ring might in fact be finite dimensional as a vector
space over Q. We prove the following result.

Theorem 4.2. Let n = dim(Wg)/2 be an odd number and let g ≥ 2. Then the image of the
ring map (4.1) is a finite dimensional Q-vector space and the image of the ring map (4.2)

has Krull dimension precisely (n− 1).

In particular, the space BDiff+(Wg) is not rationally equivalent to a finite CW complex

except when n = 1. It seems unlikely that BDiff(Wg, D
2n) could be homotopy equivalent

to a finite dimensional CW complex for any n > 1.

5. Further moduli spaces

The theory presented in this survey is most well developed for smooth manifolds of even

dimension. I now wish to briefly discuss moduli spaces of other objects, which seem suffi-

ciently similar to BDiff(W ) that one might expect that some or all of the theory will have

an analogue for those moduli spaces.

5.1. Embedded manifolds. The group Diff(W ) acts freely on the space of embeddings of

W into any other manifold. The orbit space Emb(W,M)/Diff(W ) is the space of submani-

folds ofM diffeomorphic toW . WhenM = R∞, the quotient spaceEmb(W,R∞)/Diff(W )
is a convenient model for BDiff(W ). It is also interesting to study Emb(W,M)/Diff(W )
for M = Rk for finite k, or for even more general manifolds M . In the case where W is

an oriented 2-manifold, F. Cantero and O. Randal-Williams ([10]) have proved a homolog-

ical stability result very similar to Harer’s, provided dimM ≥ 5, and described the stable

homology in terms of a space of compactly supported sections of a certain fibration overM .

5.2. Discretized diffeomorphism groups. The moduli spaces from Section 1.4.2 are clas-

sifying spaces of Diff(W 2n
g , D

2n) considered as a topological group in the C∞ topology.

However, it makes perfect sense to consider also the underlying group with the discrete

topology. Thus we write Diffδ(Wg, D) for the discrete group of diffeomorphisms of Wg

which restrict to the identity on a neighborhood of D. S. Nariman has proved an ana-

logue of Theorem 1.7 for these: There is a natural group homomorphism Diffδ(Wg, D) →
Diffδ(Wg+1, D), induced by forming connected sum with Sn × Sn and extending by the

identity diffeomorphism. Up to conjugation, this homomorphism is independent of choices,

and [43] shows that the induced map in group homology is an isomorphism in a stable range.
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The stable homology is expressed in terms of classifying spaces for foliations.

5.3. Odd dimensions. As proved by Meyer ([37]), any manifold which fibres over an odd

dimensional manifold must have vanishing signature. Another proof was given by Ebert

([12]), who also pointed out that this implies that any analogue of Theorem 1.9 for odd

dimensional manifolds must differ significantly from the even dimensional case.

Consider for example the manifolds W 2n+1
g = g(Sn × S2n+1) and choose some em-

bedded disk D2n+1 ⊂ W 2n+1
g . Writing Diff(W 2n+1

g , D2n+1) for the topological group of

diffeomorphisms fixing the disk pointwise, the Pontryagin–Thom construction can be used

to define a map

BDiff(W 2n+1
g , D2n+1) → Ω∞(BO(2n+ 1)〈n〉−θ∗γ)

where θ : BO(2n+1)〈n〉 → BO(2n+1) denotes the n-connected cover. It seems tempting

to conjecture that the induced map in homology be an isomorphism in some stable range.

As pointed out in [12] this cannot be true, even rationally: there are non-trivial classes in the

rational cohomology of the codomain (viz. the MMM classes associated to the L-classes in
Hirzebruch’s signature formula) which pull back to the zero class inBDiff(W 2n+1

g , D2n+1),
for all large g.

One would expect that the limiting homology is described by some infinite loop space,

but it is an open question which one it is. For n = 1, A. Hatcher has announced a proof that

it is Q(BSO(4)+).

5.4. Other categories of manifolds. It is an interesting question whether the methods dis-

cussed in this survey may be applied in the setting of topological manifolds, or piecewise

linear manifolds.

In a related direction, I. Madsen and A. Berglund ([6], [5]) have studied the case where

Diff(W ) is replaced by the monoid G(W ) consisting of self-homotopy equivalences of W
(restricting to the identity near ∂W ). Making extensive use of rational homotopy theory,

they prove homological stability for G(Wg,1) and find a formula for the rational stable co-

homology which intriguingly involves the unstable rational cohomology of automorphism

groups of free groups.
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1. Introduction

At the 1936 ICM in Oslo, Norway, Lefschetz presented on behalf of Pontryagin the following

result:

Pontryagin’s Theorem. The second stable homotopy group of spheres is trivial.

His approached this computation via geometry, establishing a perfect dictionary between

geometric information, in this case the bordism classes of framed manifolds, and algebraic

topology, here the homotopy groups of spheres. He deduced his theorem from the classi-

fication of surfaces, using his newly developed technique of framed surgery to reduce the

genus of a framed surface until he had a framed sphere. Unfortunately, Pontryagin made

a subtle mistake: it is not always possible to reduce the genus of a framed manifold by

framed surgery. In fact, there is a quadratic obstruction to performing framed surgery, and

this obstruction is non-trivial on, say, the 2-torus with the framing induced by the Lie multi-

plication.

Pontryagin’s techniques have remained influential in algebraic topology, and his ap-

proach to bordism via surgery is still a very powerful tool. The obstruction to surgery is

our primary object of study, the Kervaire invariant.

The early 1960s saw the topology community rocked by two related theorems. Milnor

showed that there are smooth manifolds homeomorphic to the 7 sphere but not diffeomorphic

to it [34]. Kervaire then showed that there are topological (really piecewise-linear), framed

10-manifolds that do not admit any smooth structure [24]. Kervaire did this by defining a

quadratic form μf associated to a framing f onM :

μf : H5(M ;Z/2) → Z/2

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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which refines the intersection form − ∩ − in the sense that

μ(x+ y) = μ(x) + μ(y) + x ∩ y.

The distinguishing feature of quadratic forms with values in Z/2 is their Arf invariant, and

Kervaire showed that for smooth manifolds M , the Arf invariant of μf vanishes for every

f . He then produced a topological manifold and framing for which μf had nontrivial Arf

invariant, proving the result. Kervaire’s quadratic form is exactly the obstruction encountered

by Pontryagin, just in dimension 10.
These results set the stage for Kervaire-Milnor’s treatment of smooth structures on spheres

[25]. They first observed that the set of smooth structures on the n-sphere is finite if n > 4,
and that the diffeomorphism classes of n-spheres forms a group Θn under connected sum.

Kervaire and Milnor observed that any exotic smooth structure on an n-sphere still produces
an n-sphere, and hence is a framed manifold. They used this to produce a map

ψn : Θn → πnS
0/Im(J),

where Im(J) is the subgroup of πnS
0 consisting of all possible framings on the standard

n-sphere. This uses Pontryagin’s dictionary, as πnS
0 is the same as the bordism classes of

framed n-manifolds.

The kernel of ψn is, by definition, the collection of exotic spheres which bound frameable

manifolds, and Kervaire-Milnor call this group bpn. This group is cyclic, and

|bpn| =

⎧⎪⎪⎨
⎪⎪⎩
1 n ≡ 0 mod 2

1 or 2 n ≡ 1 mod 4

22k−2(22k−1 − 1)num
(

4Bk

k

)
n = 4k − 1 > 3,

whereBk is the k
th Bernoulli number. If n is not congruent to 2modulo 4, then Kervaire and

Milnor showed that ψn is surjective. When n is congruent to 2 modulo 4, there is a longer
exact sequence

0 → bpn → Θn
Ψn−−→ πsn/Im(J)

Φn−−→ Z/2 → Θbp
n−1 → 0.

The map Φn is exactly the Kervaire invariant, so this allows us to describe our problem.

Problem. For which n is there a manifold of Kervaire invariant 1?

Equivalently, for which n are there smooth manifolds not framed bordant to an exotic

sphere?

Browder greatly reduced the problem, tethering it to the fate of elements in the Adams

spectral sequence. To describe this, we need a small amount of background.

Adams introduced his eponymous spectral sequence to solve the Hopf invariant one prob-

lem (and thereby to also determine which vector spaces Rn admit a division algebra struc-

ture) [1]. The spectral sequence starts by considering mod 2 cohomology together with its

ring of natural endomorphisms A, the Steenrod algebra. For Y of finite type, the Adams

spectral sequence has the form

Es,t2 = Exts,tA
(
H∗(Y ),Z/2

)⇒ πt−s(Y )⊗ Z2.
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The most interesting cases for us is Y = S0, where we are computing the derived A-module

endomorphisms of Z/2. This is a bi-graded commutative algebra, the values of which for

small s have been completely determined.

Adem showed that

Ext1,tA (Z/2,Z/2) =

{
Z/2 · hj t = 2j

0 otherwise.

These elements have geometric content: the survival of hj in the Adams spectral sequence

is equivalent to the existence of an element of Hopf invariant one.

Adams showed that these elements generate Ext for small values of s. In particular

Ext2,?A = {hihj ||i− j| �= 1}.

Moreover, he produced a differential

d2(hj) = h0h
2
j−1

for j ≥ 4.
Browder’s reformulation of the Kervaire invariant one problem also uses the Adams spec-

tral sequence.

Theorem (Browder [10]). There can only be elements of Kervaire invariant one in dimen-
sions of the form 2k − 2. Any element of Kervaire invariant one is detected in the Adams
spectral sequence by h2k−1.

Since h1, h2, and h3 are themselves permanent cycles (corresponding to the framings on

S1, S3, and S7 coming from viewing them as the units in a division ring), so their squares

are. These manifolds were known to be Kervaire invariant one manifolds, the first being the

obstruction into which Kervaire ran.

Barratt and Mahowald showed the next case.

Theorem. There is a 30 manifold of Kervaire invariant one.

Jones produced the manifold. He began with a genus 5 surface Σ. Arranging 4 of the

holes at the points of a square and placing the fifth at the center shows that there is a free

action of the dihedral group of order 8, D8 on this surface. Jones then produced a framing

on

Σ×D8 (S
7)4,

where D8 acts on (S
7)4 via a coinducing up the antipodal action.

Barratt-Jones-Mahowald then showed the next case.

Theorem (Barratt-Jones-Mahowald [8]). The class h25 survives the Adams spectral sequence.

To date, there is no explicit construction of this manifold.

Our theorem resolves all but one remaining case, showing that h2j is not a permanent

cycle for j ≥ 7 [20].

Main Theorem. There are manifolds of Kervaire invariant one only in dimensions 2, 6, 14,
30, 62, and maybe 126.



1222 M.A. Hill, M.J. Hopkins, and D.C. Ravenel

The proof follows from four smaller theorems concerning a C8-equivariant spectrum Ω
and its basic properties. This spectrum is by construction periodic in the same way that

K-theory is periodic, and we use this natural self-symmetry to simplify the problem.

At this point, the appearance of equivariance might be surprising. The problem, as

stated, is one of manifolds with no equivariance. Our method has an important antecedent,

Ravenel’s proof for primes larger than 3 of the analogous result [38].

1.1. Ravenel’s proof for very odd primes and the Adams-Novikov Spectral Sequence.
The first step in our argument is to lift the computation to a more universal example. At this

point, we can no longer avoid spectra. A more detailed description will be given below when

we discuss equivariant homotopy; we use them here mainly for expository flavor.

The Adams spectral sequence is really a recipe. Given any (ring) spectrum R, we can

form an Adams tower which, if R has nice homological properties (like the R-homology of

R itself is flat as anR∗-module), then we can identify theE2 term of the spectral sequence. If

R is moreover commutative, then we can describe this as a kind of descent spectral sequence

approximating a spectrum X by R-module spectra via the Amitsur complex. As a bit of

jargon, when used without any modifiers, the phrase “Adams spectral sequence” refers to the

one described above, built out of the mod 2 Eilenberg-MacLane spectrum.

While HF2 is a beautiful commutative ring spectrum, it has the disadvantage that any

algebra R over HF2 is again Eilenberg-MacLane. This means that the Adams spectral se-

quence based on anHF2-algebra R is isomorphic to the classical Adams spectral sequence.

In some sense, that makes this spectral sequence terminal. There are no Adams spectral

sequences which receive a map from the classical one that are not isomorphic to it.

Novikov observed that if instead we use the bordism theory of (almost) complex man-

ifolds, MU , then we have an Adams spectral sequence, here called the Adams-Novikov

spectral sequence, which maps to the classical Adams spectral sequence. The homotopy

groups of MU were computed by Milnor to be a polynomial ring with one generator in

every positive, even degree [35], and theMU -homology ofMU is also polynomial:

MU∗MU ∼=MU∗[b1, . . . ].

Quillen showed that this is closely related to formal group laws, as MU∗ is the Lazard

ring classifying formal group laws andMU∗MU classifies the universal isomorphism [37].

The descent formulation of the Adams spectral sequence then identifies the E2-term of the

Adams-Novikov spectral sequence with a descent spectral sequence on the moduli stack of

formal groups. This algebro-geometric perspective has been deeply influential in algebraic

topology for the last 50 years.

We need very little of the algebraic geometry here. However, the myriad spectra which

receive ring maps fromMU provide a host of other Adams spectral sequences in which we

can detect elements. In particular, we will produce a theory (Ω) which sees the Kervaire

classes at 2. We must first lift these elements.

Since we have a map of spectral sequences

ANSS → ASS,

any element in the Adams-Novikov spectral sequence which detects the Kervaire classes

must have filtration at most 2. The zero line of the Adams-Novikov E2 term is simple: it is

a copy of Z in dimension zero corresponding to theMU -Hurewicz image. Thus we cannot
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see the Kervaire classes here. The one line, at all primes, is the image of J , Im(J), which
showed up in the Kervaire-Milnor result. This was computed up to a factor of 2 by Adams

[2], and the ambiguity was resolved by Quillen and Mahowald [36], [29]. In particular,

the Kervaire classes are not detected in Im(J), and hence not on the one line. Thus if the

Kervaire classes exist, then they are detected on the two line of the Adams-Novikov spectral

sequence. Here work of Miller-Ravenel-Wilson, described in Ravenel’s ICM talk, allows us

to identify exactly what we see [33, 39]. For p = 2, the reader is also directed to work of

Shimomura [41].

Theorem (Miller-Ravenel-Wilson [33]).

(1) At odd primes, the 2-line is generated by elements βi/j,k.

(2) At two, the 2-line is generated by elements βi/j,k and α1αj , where αi are the genera-
tors on the 1-line.

(3) The elements βi/j,k and αi are all readily and algebraically described using short
exact sequences of Ext groups.

Since we are mapping the two line of the Adams-Novikov spectral sequence to the two

line of the Adams spectral sequence, this can be directly computed.

Theorem. If x is an element on the Adams-Novikov 2 line maps to h2j , then

x = β2j/2j ,1 + (sum of monomials not involvingβ2j/2j ,1).

In other words, any lift of h2j to the Adams-Novikov spectral sequence involves β2j/2j ,1.
Ravenel considered the analogous problem for primes greater than 3 (sometimes called

“very odd primes”) [38].

Theorem (Ravenel [38]). For primes p > 3 and for any j > 0, the classes

βpj/pj ,1

are not permanent cycles in the Adams-Novikov spectral sequence.

Ravenel’s strategy was to chose an appropriately simplified cohomology theory into

which the classes βpj/pj ,1 map non-trivially and in which the images of these classes sup-

port differentials. The modern language of the higher realK-theories of Hopkins and Miller

make this more transparent.

Theorem (Hopkins-Miller [40]). There is a Cp-equivariant spectrum E such that

(1) βpi/pi,1 maps to a non-trivial element in the Adams-Novikov spectral sequence for
EhCp .

(2) The Adams-Novikov E2-term is given by the group cohomology H∗(Cp;π∗E).

(3) The image of βpi/pi,1 supports a differential.

We copy this argument at p = 2. Here, we need to use a larger group than C2 to

distinguish between the Kervaire elements; we use C8.
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1.2. Outline of the proof of the main theorem. We first need that out of Ω, we can build

a spectrum which detects the Kervaire classes. In this case, we can mirror a refinement of an

odd-primary argument of Ravenel and look in the homotopy fixed points of Ω.

Detection Theorem. If there is a manifold of Kervaire invariant one, then the corresponding
homotopy class is non-zero in the homotopy groups of homotopy fixed points of Ω: ΩhC8 .

This reduces the problem to studying the homotopy groups of the homotopy fixed points

ΩhC8 . This is still a tall order, so we approach an a priori harder computation and determine

the actual fixed points.

Gap Theorem. The group π−2Ω
C8 is zero.

The periodicity of Ω now also comes into play, as does the connection between the fixed

and homotopy fixed points.

Periodicity Theorem. The homotopy groups of ΩhC8 are 256-periodic:

πk+256Ω
hC8 = πkΩ

hC8 .

Homotopy Fixed Points Theorem. The natural map

ΩC8 → ΩhC8

is a weak equivalence, and hence the homotopy groups of the fixed and homotopy fixed points
are the same.

The proof of the detection theorem is essentially identical to Ravenel’s argument for

primes bigger than 3, and so we will not sketch a proof here. We will provide a sketch of the

remaining theorems below.

2. Equivariant homotopy, real K-theory, and real bordism

2.1. Equivariant homotopy. Equivariant homotopy theory is homotopy theory for spaces

with an action of a fixed group G. For our purposes, G will be a finite group. Group actions

on spaces are always assumed to be continuous. Excellent introductions are found in the

books of tom Dieck [42, 43].

2.1.1. G-Spaces. There is a category of G-spaces. In T opG, the objects are G-spaces and
the morphisms are equivariant maps, maps which commute with theG-action. This category
is enriched in topological spaces, in that there is a space of maps between any two objects.

It is also tensored and cotensored over space.

For any subgroup H ⊂ G, we have an obvious forgetful functor

i∗H : T opG → T opH ,

and this functor has both adjoints. The left adjoint, induction, is given by the balanced

product:

X !→ G×H X.
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We should think of this as taking the disjoint union (the coproduct in T opG) of G/H copies

of X and letting the group act by permuting the coordinates. The right adjoint, coinduction,

is given by the mapping space

X !→ MapH(G,X),

where MapH(−,−) is the space of H-equivariant maps. Here H and G both act on G on

different sides. We think of this as the product of G/H copies ofX , letting the group act by

permuting the coordinates.

The values of induction and coinduction on the image of the restriction have other de-

scriptions. We have natural homeomorphisms

G×H i
∗
HX

∼= G/H ×X and MapH(G, i∗HX) ∼= Map(G/H,X),

whereG acts diagonally onG/H ×X and where the finalMap is theG-space of all contin-
uous maps G/H to X , with the conjugation action.

Any G-space can be approximated by a G-CW complex. The definition is essentially

identical to that of an ordinary CW-complex: we built our space by iterative forming map-

ping cones out of a distinguished collection of spaces, spaces of the form T × Sn, where T
is a discrete G-set and n ≥ 0.

As is standard, in both spaces and spectra, we will let [X,Y ]G denote the set of G-
homotopy classes of equivariant maps from X to Y . When there is no ambiguity, we will

suppress the G from the notation.

2.1.2. G-Spectra. We need the stable version of this. We actually work in the rigid, point-

set category of orthogonal G-spectra, but for expository purposes, we describe Lewis-May-

Steinberger spectra [27]. Adams gives a beautiful treatment of the classical approach to

stabilizing the category of finiteG-CW complexes [4], and this gives intuition for us. Adams

also gives a nice general introduction to spectra and their connection to cohomology [3].

Classically, a spectrum is a sequence of spaces . . . , X0, X1, . . . together with structure

maps

ΣXi → Xi+1

whose adjoints are equivalences. Brown Representability [11] provides a dictionary linking

cohomology theories and spectra via

En(X) ∼= [X,En].

In the equivariant context, we grade on a larger set: the set of (isomorphism classes of) finite

dimensional representations of G. These form a category, which we will denote by SpG.
There is an obvious forgetful functor

i∗H : SpG → SpH ,

and this again has both adjoints: G+ ∧H (−) andMapH(G+,−).
The key benefit of grading on all finite dimensional representations is the Wirthmüller

isomorphism:

Theorem 2.1 (Wirthmüller [47]). IfX is aG-spectrum, then we have a natural equivalence

G+ ∧H X � MapH(G+, X).
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This means that maps into

G/H+
∼= G+ ∧H S0 � MapH(G+, S

0)

is nontrivial. In fact, the Wirthmüller isomorphism makes finite G-sets stably self-dual. In

many ways, this is the defining feature of the “genuine” equivariant stable homotopy, as

it endows G-spectra and their homotopy groups with much richer structure. The homo-

topy classes of maps between two G-spectra has a richer structure than classically: they

are Mackey functors in the sense of Dress [12]. For expository reasons, we use a slight

refinement of Dress’s original definition [42].

Definition 2.2. Let A denote the Burnside category. The objects are finite G-sets, and the

morphisms are given by the group completion of the monoid isomorphism classes of finite

G-sets which map to S × T together with disjoint union. The composition is given by

pullback.

This category is obviously isomorphic to its dual, and disjoint union is both the product

and coproduct. The canonical isomorphisms T → T × ∗ and T → ∗ × T give distin-

guished elements in A(T, ∗) and A(∗, T ). We call the former the “transfer” and the latter

the “restriction”. The action of the automorphisms of T is the “Weyl action”.

Definition 2.3. A Mackey functor is an additive functor

M : A → Ab.
Example 2.4. The most important Mackey functors we will consider are “fixed point”

Mackey functors. IfM is a Z[G]-module, then the assignment

T !→ MapG(T,M)

defines a Mackey functor, the value at G/H of which is just MH . The restrictions are the

natural inclusions, while the transfers are “summing over cosets”. We will denote this M .

If M = Z with the trivial action, then we get the “constant Mackey functor Z”. Here, the
value at G/H is Z for all subgroups H , the Weyl action is trivial, the restriction maps are

the identity, and the transfer from H toK is the index.

Theorem 2.5 (Tom Dieck). The assignment

T !→ Σ∞T+

extends to a fully-faithful embedding of A into the homotopy category of G-spectra.

Corollary 2.6. If n ∈ Z, then we have a Mackey functor

πn(X)(T ) := [T+ ∧ Sn, X]G.

When evaluating on a G-set of the form G/H , we will often denote this by

πHn (X) := πn(X)(G/H).

On the G-set G/H , this gives us the nth homotopy group of the H-fixed points of X:

πn(X)(G/H) ∼= πn(XH).

However, we have a huge warning here: the fixed points of a G-spectrum are not what one

would immediately think! For example, tom Dieck showed that the fixed points of the sphere

spectrum S0 split as a wedge of classifying spaces of Weyl groups of conjugacy classes of

subgroups. This is the topological underpinning of the theorem cited above.
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2.1.3. Bredon homology. Associated to any Mackey functorM is an Eilenberg-MacLane

spectrum HM . This is the homotopy type defined by the property

πnHM =

{
M n = 0

0 otherwise.

Just as in the classical case, the Eilenberg-MacLane spectra represent ordinary homology. In

this case, the homology theory was described by Bredon [9]. We will use a slight refinement:

our version of Bredon homology is actually Mackey functor valued and uses a chain complex

of Mackey functors. Bredon’s original treatment handled a slightly more general type of

coefficients for spaces.

By definition, we have

Hk(X;M) ∼= πk(X ∧HM). (2.1)

In particular, we know immediately the homology of spheres, and more generally, of

induced spheres:

Hk(G/H+ ∧ Sn;M) ∼=
{
MG/H k = n

0 otherwise,

whereMG/H(T ) =M(G/H × T ). Now ifX is a finite G-CW complex, then as above,X

has a filtration X [n] such that each X [n] is a homotopy cofiber

Tn+ ∧ Sn−1 en−→ X [n−1] ∂n−→ X [n].

Our cellular chain complex arises from the obvious Mayer-Vietoris sequence for this, using

the dimension axiom. As an aside, we assume here that Tn is finite (otherwise, we take the

colimit). The boundary map in the complex comes from

Tn+ ∧ Sn−1 → X [n−1] → T(n−1)+ ∧ Sn−1,

This is an element in

[Tn+ ∧ Sn−1, T(n−1)+ ∧ Sn−1] ∼= [Σ∞Tn+,Σ
∞T(n−1)+] ∼= A(Tn, Tn−1),

and by functoriality, we know exactly how to evaluate a Mackey functor on this! This is the

cellular differential. We summarize this into a proposition.

Proposition 2.7. The Bredon cellular chain complex for a G-CW complex X is the chain
complex Ccell∗ (X;M) with

Ccelln (X;M) =MTn
,

and boundary induced by the composite

M
(
(Tn → T(n−1))× −).

The Bredon cochain complex is the Bredon chain complex on the Spanier-Whitehead
dual of X .

We now restrict attention to G = C2n , M = Z, and X a representation or dual rep-

resentation sphere. Proposition 2.7 says we need only find convenient G-CW models for

representation spheres.

For this, we need to list the irreducible representations.
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Definition 2.8.

(1) Let λn denote the 1-dimensional complex representation of C2n arising from the in-

clusion of the 2nth roots of unity into C×.

(2) Let λn(k) denote the k
th complex tensor power of λn.

(3) Let σn denote the sign representation of C2n

(4) Let ρn denote the regular representation of C2n , and let ρ̄n denote the quotient of the

regular representation by the trivial subrepresentation.

We implicitly work 2-locally, and in this context, it is not difficult to see that if the 2-adic
valuations of k and � are equal, then

Sλn(k) � Sλn(�).

This lets us restrict attention to those k which are powers of 2. These representations are

also more easily described as the composite

C2n → C2n/C2k
∼= C2n−k → C×.

In other words, we pull the representation λn−k back along the canonical quotient. The cell-
structure then also pulls back in the obvious way (recognizing that C2n−k/H ∼= C2n/H

′ for
the subgroup H ′ that projects to H). Similarly, the sign representation comes from

C2n → C2 → R×.

We therefore need only describe the cell structure for Sλn and Sσ1 , as all others follow from

this.

For the former, we have a single S0 for our zero cells: the point at infinity and the origin.

We have a copy of C2n+∧e1 for the one cells: the rays from the origin to the point at infinity

and passing through the various roots of unity. We then have a single 2-cell: C2n+∧e2 filling
in the wedges between the rays. In particular, the boundary of our two cell comes in as the

difference 1− γ of 1 and a fixed generator γ. This gives the following picture:

Sλn = S0 ∪ C2n+ ∧ e1 ∪1−γ C2n+ ∧ e2. (2.2)

Again, the map labeled 1− γ describes the cellular attaching map. The unlabeled attaching

map is the canonical projection C2n+ → S0.

The sign representation is even easier:

Sσn = S0 ∪ C2+ ∧ e1.
We can view this as the unit sphere in the complex numbers together with complex conjuga-

tion.

Again, for λn(2
k), we replace all instances of C2n with C2n/C2k and similarly for σn,

we replace C2 with C2n/C2n−1 .

This is actually sufficient to build any other representation sphere. First note that if � ≥ k,
then

C2n/C2k+ ∧ Sλn(2
�) ∼= C2n+ ∧C

2k
S

⏐Hλn(2
�) ∼= C2n+ ∧C

2k
S2 ∼= C2n/C2k+ ∧ S2. (2.3)

In other words, from the point of view of cells induced up from C2k for k ≤ �, the Sλn(2
�)

sphere is trivial. An easy induction argument then shows the following.
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Proposition 2.9. If V is a representation of C2n such that V C2k = V , then for any j ≤ k,
there is a cell structure on SV+λn(2

j) of the form

SV ∪ C2n/C2j+ ∧ edimV+1 ∪ C2n/C2j+ ∧ edimV+2.

If V is orientable (arising from a map C2n → SO(V )), then the top cellular boundary map
is again 1− γ.
Proof. Smash SV with the cell structure given by Equation 2.2. The isomorphisms given

by Equation 2.3 then prove the first part of the proposition. The second part follows from

observing that any oriented representation of C2n arises from a representation of S1, and the

map 1− γ is the map in the cell structure for S1 as a C2n -space.

We close with two computations. Choose once and for all an orientation of S2. This

gives an orientation for all other even spheres.

Proposition 2.10. If V is orientable, then

HdimV (S
V ;Z) ∼= Z.

Proof. This follows immediately from Proposition 2.9 once we understand the base case of

V = λn(2
k). Here our Bredon cellular chain complex is

Z ← ZC2n/C2k

1−γ←−−− ZC2n/C2k
.

An elementary-but-illuminating computation shows that the kernel of 1−γ is exactly Z.
Remark 2.11. The bottom boundary map is non-trivial. It is the covariant map associated

to the canonical quotient C2n/C2k → ∗, and that is the transfer. Thus the differential is a

Mackey functor lift of the transfer. The dual version, giving the Bredon cohomology is there-

fore a Mackey functor lift of the restriction map. This is the key ingredient in Theorem 2.16

below.

Definition 2.12. Let uV be the generator of H2(S
V ;Z)(G/G) which restricts to the fixed

orientation of SdimV .

For the rest of the homology groups, we need Euler classes in the homotopy groups of

spheres.

Definition 2.13. Let V be a representation of a finite group G. If V is such that V G = {0},
then let

aV : S0 → SV

denote the inclusion of the origin and the point at infinity into SV . This is an element in

π0S
V (G/G).

The Hurewicz map provides for us elements in H0(S
V ), and we will also denote these

by aV . Then we have the following relations connecting the orientation classes uV and the

Euler classes aW .

Proposition 2.14. For G = C2n , we have



1230 M.A. Hill, M.J. Hopkins, and D.C. Ravenel

(1) aV+W = aV aW and if V andW are oriented, then uV+W = uV uW .

(2) If H ⊂ G has V H �= {0}, then |G/H|aV = 0.

(3) If k ≤ �, then
aλn(2�)uλn(2k) = 2�−kaλn(2k)uλn(2�).

Only the relation involving swapping the subscripts on a and u is any work, and this is a
direct computation [21].

With this, we can completely determine a portion of the homology of representation

spheres. Since HZ is a ring spectrum, we have a natural map

(SV ∧HZ) ∧ (SW ∧HZ) → SV+W ∧HZ.

This means that the collection of all groups

π∗(S
� ∧HZ)(G/G),

where ∗ ∈ Z and where ! runs over all isomorphism classes of representations, forms a ring.

Proposition 2.14 completely determines this ring, and this in turn gives the homology of any

representation sphere.

Theorem 2.15. The ring π∗(S
� ∧HZ)(G/G) is isomorphic to

Z[aσ, aλn(2k), uλn(2j)|0 ≤ k ≤ n− 2, 0 ≤ j ≤ n− 1]/(rels)

where (rels) is the ideal

(rels) = (2aσ, 2
n−kaλn(2k), aλn(2�)uλn(2k) = 2�−kaλn(2k)uλn(2�)).

For the Gap Theorem, we need a small number of Bredon cohomology groups. In par-

ticular, we need

H2(Skρn ;Z)(G/G) = H−2(S
−kρn ;Z)(G/G).

Theorem 2.16. For all n �= 0 and for all k ∈ Z, the group

H−2(S
kρn ;Z)(G/G)

is zero.

Proof. If k ≥ 0, then Skρn is a space, and hence it has no negative homology. Similarly, if

k ≤ −3, then Skρn is (−2)-coconnected, and again, we have no

π−2(S
kρn ∧HZ) = H−2(Skρn ;Z).

We need only consider the cell structure for Sρn and S2ρn . If n = 1, then the argument is left

as an exercise. Otherwise, we have the following cell structures from Proposition 2.9, using

the fact that the trivial representation is stabilized by everything and the index 2 subgroup

stabilizes only 1 and σn:

Sρn : S1 ∪ C2n/C2n−1+ ∧ e2 ∪ C2n/C2n−2 ∧ e3 ∪ . . .
and

S2ρ2 : S2 ∪ C2n/C2n−1+ ∧ e3 ∪1−γ C2n/C2n−1+ ∧ e4 . . . .



On the Kervaire Invariant 1231

Spanier-Whitehead duality swaps all the signs and the arrows. Thus for the first, the relevant

cochain complex is

Z → ZC2n/C2n−1
→ ZC2n/C2n−2

. . .

and

Z → ZC2n/C2n−1

1−γ−−−→ ZC2n/C2n−1
. . . .

The unlabeled map is the restriction map, by Remark 2.11, which is an isomorphism here!

This lets us determine the homology in the second position in the first sequence and that in

the first position in the second, getting zero.

2.2. Real theories.

2.2.1. Real K-theory. Just as the heart of the Kervaire invariant one problem is about bor-

dism classes of manifolds, the heart of our proof is a bordism theory: the bordism theory

of Real manifolds. Real (always with a capital “R” to distinguish them from unReal ones)

theories arose from work of Atiyah on K-theory [7]. Atiyah defined a C2 = Gal(C/R)-
equivariant version ofK-theory, RealK-theoryKR which records Galois descent for vector

bundles.

If a space X has a trivial action, then there is a canonical real bundle associated to any

Real bundle onX , namely the fixed points of the Real bundle. This identifies the fixed points

ofKR with ordinary realK-theory:

KC2

R = KO.

Similarly, if X has a free C2-action, then the Real structure provides an identification of the

fibers over a point x and those over its translates under the group action. This identifies the

underlying spectrum ofKR with complexK-theory:

i∗eKR = KU.

Atiyah also determined the relationship between the fixed and homotopy fixed points of

KR. Using the nilpotence of η, he showed that the fixed and homotopy fixed points coincide:

KO = KC2

R = KhC2

R .

Real K-theory provides a model for the entire argument that follows. We have a Gap

Theorem (π−2KO = 0 by work of Bott), Atiyah proved the Homotopy Fixed Points theorem

(and gave a model for how to prove such things in general), and he also showed how one

can deduce the 8-fold periodicity ofKO (giving another proof of Bott periodicity). We will

produce the same sort of argument, but for a more complicated equivariant spectrum.

2.2.2. Real bordism. Building on Atiyah’s work, Landweber and Araki considered a Real

version of bordism, MUR [6, 26]. This is the bordism theory of C2-manifolds with a Real

structure on their stable normal bundle.

First Araki and then Hu-Kriz extensively studied the fixed points of the spectrumMUR,

determining the homotopy groups and showing that the fixed and homotopy fixed points

agree [5, 23]. Similarly, essentially by construction, the underlying spectrum is the ordinary

complex bordism spectrum MU . One of the most important features is that the homotopy

groups indexed by regular representations are especially nice:

π∗ρ2MUR
∼= π2∗MU,
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and by a celebrated theorem of Quillen, this is the Lazard ring classifying formal group laws

[37].

This is related to a Real version of formal groups and formal group laws, and just as in

the classical case, the spectrumMUR classifies Real oriented spectra. This allows us to use

classical techniques and approaches. We use this to help determine the homotopy groups

of related spectra, but a key starting point is the determination of the homotopy type of the

smash square ofMUR:

MUR ∧MUR �MUR[b̄1, b̄2, . . . ],

where |b̄i| = iρ2. This in particular applies to all higher smash powers ofMUR, letting us

completely determine the homotopy groups in multiples of ρ2:

π∗ρ2
(
MU∧kR

) ∼= (π2∗MU)⊗k. (2.4)

WhileMUR has a very satisfying story, it is not sufficient to detect the Kervaire classes.

For this, we need to study a larger group. Experience with the techniques similar to Ravenel’s

results for p > 3 show that C8 is the smallest group which detects the Kervaire classes

appropriately. For this, we need to produce a new ring spectrum which is a C8 analogue

of MUR. Additive induction is insufficient: the C8-equivariant homotopy theory of that is

essentially the same as the C2-equivariant theory ofMUR by the Wirthmüller isomorphism.

Instead, we use the norm functor provides a way to do this.

2.3. The norm. Equivariant spectra are a bisymmetric monoidal category. The wedge pro-

vides the sum in the category, while the smash product provides a multiplication. The norm

functor is a multiplicative kind of induction. It is the rigid, spectral version of the Evens’

transfer in group cohomology [14], which was imported into stable homotopy by Greenlees-

May, [16].

Theorem 2.17. There is a strong symmetric monoidal functor

NG
H : SpH → SpG

which commutes with certain colimits and for which

NG
HS

V ∼= SIndG
H V

for every representation V of H .

The way we should think of NG
H (X) is “smashing together G/H copies of X”, and

letting the group act by permuting the factors as well. This describes a functor from spectra

with anH-action to spectra with aG-action, and showing that it is homotopically meaningful

is one of the most difficult parts of the proof.

2.3.1. Relation to commutative rings. Since the smash product is the coproduct on com-

mutative ring spectra, the norm is the corresponding “induction” functor.

Theorem 2.18. The norm lifts to the left adjoint to the forgetful functor i∗H :

NG
H : CommH  CommG : i∗H .
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This means that commutative ring maps out of the a norm are easy to compute, as they

are determined by the underlying H-equivariant maps. Since the norm is the left adjoint

to the forgetful funtor, for any G-eqivaraint commutative ring R, we have a natural map of

G-equivariant commutative rings

NG
H i

∗
HR→ R.

In particular, this allows us to define several kinds of internal norms on the cohomology

theory given by R.

Definition 2.19. If x ∈ (i∗HR)0(X), then letNG
H (x) ∈ R0(NG

HX) also denote the compos-

ite

NG
HX

NG
Hx−−−→ NG

H i
∗
HR→ R,

where the last map is the counit to the adjunction.

Since the sphere is a commutative ring spectrum, we have norms of the Euler classes,

and sinceHZ is a commutative ring spectrum as well, we have norms of orientation classes.

Proposition 2.20. If V is a representation of H of dimension d (orientable for the second
line), we have

NG
HaV = aIndG

H V

ud IndG
H 1N

G
HuV = uIndG

H V .

With the machinery aside, we can move towards defining Ω.

Definition 2.21. LetMU ((G)) be the commutative G-equivariant ring spectrum

MU ((G)) = NG
C2
MUR.

Our spectrum Ω is a localization of this, the exact form of which is forced by the Detec-

tion, Periodicity, and Homotopy Fixed Points Theorems. We will return to this as we delve

into their proofs.

3. Slice filtration and the Gap Theorem

The main computational tool we use is the “slice filtration”. This generalizes ground-

breaking work of Dugger [13], where he describes the C2-equivariant version. The filtration

and name are motivated by the motivic slice filtration of Voevodsky, especially as applied by

Hopkins-Morel in their study of the motivic bordism spectrumMGL [44–46].

The idea behind the slice filtration is to mirror the construction of the Postnikov tower.

Classically, we form the Postnikov tower by considering the localization functors Pn(−)
whose acyclics are exactly the n-connected spectra or spaces. The category of n-connected
spectra is a localizing category in the sense of Farjoun [15]. We build a different collection

of localizing subcategories, using non-trivial representation spheres as our basic ingredients

[18]. This gives us a tower of equivariant spectra and an associated spectral sequence. For

simplicity, we only describe what is seen forMU ((G)).
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3.1. The slice filtration of norms of MUR. For the spectra MU ((G)), for G a cyclic 2-
group, the slice tower is beautifully simple. To describe it, we need to use Equation 2.4 to

produce enough homotopy elements.

Theorem 3.1. Let G = C2n be a cyclic 2-group, generated by an element γ. Then there are
elements r̄i ∈ πiρ2MU ((G)) such that

{r̄1, . . . , γ2n−1−1r̄1, r̄2, . . . }

is a set of polynomial generators for

π∗ρ1MU
((G)) ∼= (π∗ρ1MUR

)⊗2n−1

.

If we need to consider multiple groups G, then we will add them as superscripts: r̄Gi .
This is a refinement of Equation 2.4. The restriction to C2 ofMU

((G)) is the |G|/2-fold
smash power of MUR. This classifies a |G|/2-tuple of Real formal group laws, and the

group G acts by permuting these formal groups. The elements r̄i are then essentially the

coefficients of the universal isomorphism between a chosen first formal group and γ on it.

Definition 3.2. Let P be the set of monic monomials in π∗ρ1MU
((G)) with the generators

r̄j .
If p̄ ∈ P , let Hp̄ denote the stabilizer of the reduction modulo 2 of p̄.
If p̄ ∈ P is in πkρ1MU

((G)), then let

|p| = 2k and |p̄| = 2k
|Hp̄|ρHp̄

.

Then the heart of our identification of the slice tower is the following proposition (which

follows formally from properties of the norm).

Proposition 3.3. The spectrum

A =
∨
p̄∈P

S|p̄| =
∨

p̄∈P/G
G+ ∧Hp̄ S

|p̄|

is an associative ring spectrum and the maps

r̄i : S
iρ1 → i∗C2

MU ((G))

give a G-equivariant associative algebra map A→MU ((G)).

This has an obvious monomial filtration by degree, so let

Ik =
∨

p∈Pn/G,|p|≥2k

G+ ∧Hp̄
S|p̄|.

Then each Ik is an A-A-bimodule, and Ik/Ik+1 is a wedge of induced regular representa-

tions spheres.

This filtration of A by bimodules induces a filtration on any other A-module, so in par-

ticular, onMU ((G)). This is one of our main theorems.
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Theorem 3.4. We have an equivalence

MU ((G)) ∧A S0 = HZ

and the filtration ofMU ((G)) by the ideals Ik has associated graded

A ∧HZ =
∨

p∈Pn/G

G+ ∧Hp̄
S|p̄| ∧HZ.

This is the slice filtration ofMU ((G)).

The proof of the second part follows from the first immediately. The first is quite difficult

and lengthy, and we will not provide a proof here. There are several approaches that can be

taken, all of which are underlain by simple geometry. In fact, this theorem can be proved by

computing appropriate characteristic numbers for certain C2n -equivariant manifolds. Deter-

mining these manifolds is non-trivial.

Corollary 3.5 (Slice Spectral Sequence). For any virtual representation V of G, there is a
spectral sequence

Es,t2 =
⊕

p∈Pn/G

πGt−s
(
G+ ∧Hp̄ S

|p̄| ∧ SV ∧HZ
)⇒ πt−s−VMU

((G)).

The differentials are Adams type differentials.

The t in Es,t2 records the degree of p and is suppressed in this formulation.

Thus to understand the slice E2-term, we need only determine

πG∗
(
G+ ∧H SkρH ∧ SV ∧HZ

)
= HH

∗
(
SkρH ∧ SV ;Z),

but this was computed in Theorem 2.15.

3.2. The Gap Theorem. We can now prove the Gap Theorem. We give a slightly stronger

form, as this subsumes the case of interest.

Gap Theorem. If G = C2n , and D̄ ∈ πGmρGMU ((G)) then the group

πG−2

(
D̄−1MU ((G))

)
is zero.

Proof. Consider the slice spectral sequence computing

πG∗ Σ
mkρGMU ((G)) = πG∗−mkρGMU

((G)).

By Corollary 3.5, the portion of the E2 term contributing to π−2 is⊕
p∈Pn/G

H
Hp̄

2

(
S|p̄| ∧ S

⏐HmkρG ;Z).
Since the restriction ofmkρG toH(p) is of themk[G : H(p)]ρH(p), we see by Theorem 2.16

that all of these groups are zero. Thus

π−2Σ
mkρGMU ((G)) = 0.

Since inverting an element in dimension mρG is given by a directed colimit of spectra of

the form ΣmkρGMU ((G)) and since homotopy groups commute with directed colimits, we

conclude that π−2D̄
−1MU ((G)) = 0.
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4. Geometric fixed points and the homotopy fixed points and periodicity theo-
rems

The Periodicity and Homotopy Fixed Points Theorems are two sides of the same coin, and

we will see that the proofs are closely intertwined. Both rely on an argument like Atiyah’s:

we show that certain classes vanish, which given the equality between fixed and homotopy

fixed points, and the reason these classes vanish is because of certain differentials. The

vanishing of these classes causes other classes to be permanent cycles, and this gives the

Periodicity Theorem. Both rely on the geometric fixed points.

4.1. Geometric fixed points and the norm. When discussing MUR, at no point did we

discuss the fixed points of the Thom spaces making up the spectrum. In fact, in contrast to

the case ofKR, the fixed points ofMUR seem to not have geometric content. The connection

back to the geometry is provided by the “geometric fixed points”. This is a second kind of

fixed points that is actually the one most people would guess when confronted with fixed

points.

Theorem. There is a functor
ΦG : SpG → Sp

that commutes with most homotopy colimits and which has the following properties:

(1) If X has only cells induced up from proper subgroups, then ΦG(X) is contractible.

(2) If X = Σ∞Y , then ΦG(X) � Σ∞Y G.

(3) For G-CW spectra X and Y , ΦG(X ∧ Y ) � ΦG(X) ∧ ΦG(Y ).

Thus the geometric fixed points functor has all of the properties that we would expect a

fixed point functor to have, thinking only of what we learn from spaces.

Since it commutes with smash products and essentially interacts nicely with suspensions,

it is no surprise that it plays nicely with the norm functor.

Theorem 4.1. The diagonal map induces a weak equivalence

ΦH(X) � ΦGNG
HX.

Finally, generalizing the connection to suspension spectra, the geometric fixed points

functor has the expected, geometric content for Thom spectra.

Theorem 4.2. The geometric fixed points ofMUR isMO.

To describe the geometric fixed points, we introduce the isotropy separation sequence.

Let P denote the family of proper subgroups of G. If G = C2n , then let EP be the space

EP � lim
→
S(nσ),

where S(V ) is the unit sphere in an orthogonal representation V . This has the property that

(EP+)
H �

{
S0 H 
 G

∗ otherwise.
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We have an obvious mapEP+ → S0. Let ẼP denote the homotopy cofiber. In our case,

this can be taken to be the infinite sign sphere:

ẼP � lim
→
Snσ.

The maps in the direct system are all multiplication by aσ , so ẼP amounts to inverting aσ .

Definition 4.3. Given a G-CW spectrum X , define the geometric fixed points by

ΦG(X) =
(
ẼP ∧X)G.

The isotropy separation sequence is

EP+ ∧X → X → ẼP ∧X.

The isotropy separation sequence has a purely algebraic description. Since ẼP is the

infinite sign sphere, the map

X → ẼP ∧X
is the map

X → X[a−1
σ ].

This map also inverts all of the other Euler classes aV ; there are classes in theRO(G)-graded
homotopy groups of S0 of the form akσ/aV .

The geometric fixed points are the final tool we need. In particular, the nilpotence of any

of the Euler classes results in a contractible geometric fixed point spectrum. We will use our

understanding that the geometric fixed points of MU ((G)) is MO to produce differentials

in the slice spectral sequence hitting multiples of powers of aσ . Inverting the multiples will

then produce contractible geometric fixed points.

4.2. A differential in the slice spectral sequence. First, a quick simplification from the

observation that smashing with ẼP is the nullification of induced cells. For notation, let

n̄i = N
C2n

C2
r̄i,

let N denote the set of monic monomials in

Z[n̄1, n̄2, . . . ],

and let

|n̄i| = iρ2n .
Theorem 4.4. The inclusion ∨

n∈N
S|n| → A

induces an equivalence after smashing with ẼP .

Moreover, since smashing with ẼP inverts all Euler classes, the regular representation

spheres which appear are also simplified.
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Proposition 4.5. The inclusion
aiρ̄ : S

i → Siρ

induces an equivalences after smashing with ẼP .

In light of this, let fi denote the composite

Si
aiρ̄−−→ Siρ

n̄i−→MU ((G)).

This is detected in the slice spectral sequence by the eponymous element of filtration i(|G|−
1).

We want to compute the homotopy groups of the localization a−1
σ MU

((G)). We know,

since this gives the homotopy groups of the geometric fixed points, the answer: these are just

the homotopy groups ofMO! They are packaged in a non-trivial way, and we see a single

pattern of differentials which achieves this.

The computational content of Theorem 4.4 is given in the following theorem about the

RO(G)-graded slice spectral sequence. In particular, it says that only a very narrow collec-

tion of elements can contribute to the spectral sequence computing the homotopy ofMO.

Theorem 4.6. The inclusion

Z[u2σ, f1, f2, . . . , aσ, . . . ]/2aσ, · · · → E∗,�2

induces an isomorphism upon inverting aσ . (Here the dots after aσ stands for all of the other
Euler classes, and the ones after the relation 2aσ stand for the truncation of the other Euler
classes.)

The classes aV are all in the Hurewicz image, so they are necessarily permanent cycles.

The classes fi are explicit homotopy classes in πGi MU
((G)). Thus the only class that is not

a permanent cycle in the algebra listed in Theorem 4.6 is u2σ . Since the homotopy groups of

MO are polynomial on classes in ever dimension not of the form 2k − 1, we have a single
pattern of differentials which achieves this.

Theorem 4.7. There are differentials

d2k+1+(2k+1−1)(2n−1)(u
2k

2σ) = a
2k+1

σ f2k+1−1.

Remark 4.8. Theorem 4.6 also shows that the differential on u2
k

2σ is also the last possible, as

the target is on the vanishing line for the slice spectral sequence.

This gives us an immediate corollary.

Corollary 4.9. In the slice spectral sequence for n̄−1
2k−1

MU ((G)), the element u2
k

2σ is a per-
manent cycle.

Corollary 4.10. The geometric fixed points of n̄−1
2k−1

MU ((G)) are contractible.

This is the essential step in both the Periodicity and Homotopy Fixed Points theorem. It

is also the key step in proving Atiyah’s result for RealK-theory! We include a picture of the

slice spectral sequence for KR as Figure 4.1. This was exactly the impetus for Dugger, and

our Figure is essentially the same as his [13].

The element v̄1 is our r̄1 for C2. The differential on v̄
2
1u2σ is the differential from Theo-

rem 4.7:

v̄21u2σ !→ v̄31a
3
σ.

We see that there is a horizontal vanishing line in the spectral sequence at filtration 3. The
differentials on u22σ and higher are d7 or longer, and hence these are permanent cycles.
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Figure 4.1. The slice spectral sequence forKR.

4.3. Periodicity and homotopy fixed points theorems. We first need a general result link-

ing contractibility of geometric fixed points to the equivalence of fixed and homotopy fixed

points.

Lemma 4.11. LetR be aG-equivariant ring spectrum. If for all non-trivialH , the spectrum
ΦH(R) is contractible, then

R→ F (EG+, R)

is an equivalence.

Lemma 4.12. LetM be anMU ((G))-module. If uV is a permanent cycle in the slice spectral
sequence forM , then uV induces an equivalence

ΣdimVMhG � (ΣdimVM)hG → (ΣVM)hG.

Proof. Since uV survives the slice spectral sequence, it gives rise to an equivariant map

ΣdimV D̄−1MU ((G)) → ΣV D̄−1MU ((G)).

Any map detected by uV in the slice spectral sequence has the property that the underlying

map is a weak equivalence. However, an equivariant map underlain by a weak equivalence

induces a weak equivalence on homotopy fixed points, giving the result.

If a class D̄ we invert is a norm, then the resulting spectrum D̄−1MU ((G)) is again a

commutative ring spectrum [19]. This means we can take the internal norms, which, on

classes of the form uV , were determined by Proposition 2.20.

We now have all of the ingredients. Corollary 4.10 provides a way to show that various

geometric fixed point spectra are contractible, while Corollary 4.9 shows that classes u2
k

2σ

are permanent cycles. This plays into the Periodicity Theorem, as the classes uV are all

orientation classes.
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Definition 4.13. Let

D̄ = NC8

C2
r̄1,3N

C8

C2
r̄3,2N

C8

C2
r̄15,1 : S

19ρ8 →MU ((C8)).

Let

Ω = D̄−1MU ((C8)).

Periodicity Theorem. The homotopy groups of ΩhC8 are 256-periodic.

Homotopy Fixed Points Theorem. The natural map

ΩC8 → ΩhC8

is a weak equivalence.

We prove both simultaneously.

Proof. Since for any homotopy class x and for any groups H ⊂ K ⊂ G, the element

NK
H (x) divides i∗KN

G
H (x), we know that inverting D̄ inverts NC4

C2
r̄3,2 and r̄15,1. Thus i

∗
C4

Ω

is a module over NC4

C2
r̄−1
3,2MU

((C4)) and similarly for i∗C2
Ω. Since by Corollary 4.10 each

of these rings has contractible geometric fixed points, we conclude that for all nontrivial H ,

ΦHΩ is contractible. Lemma 4.11 then gives the desired equivalence.

By Corollary 4.9, we then conclude that u22σ8
, u42σ4

, and u162σ2
are permanent cycles.

Combining the parts of Proposition 2.20 then shows that u32ρ8 is a permanent cycle in the

slice spectral sequence for Ω.
Inverting D̄ automatically makes the homotopy groups ofΩ ρ8-periodic. Combining this

with Lemma 4.12 then shows that the homotopy groups of ΩhC8 are 256-periodic.
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Heegaard splittings of 3-manifolds

Tao Li

Abstract. Heegaard splitting is one of the most basic and useful topological structures of 3-manifolds.

In the past few years, much progress has been made on Heegaard splittings and several long-standing

questions have been answered. In this paper, we review some recent progress in studying Heegaard

splittings and discuss related open problems.
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1. Introduction

A (3-dimensional) handlebody is a compact orientable 3–manifold with boundary that is

homeomorphic to a closed regular neighborhood of a graph in R3. A Heegaard splitting
of a closed orientable 3–manifoldM is a decomposition ofM into two handlebodies along

an embedded surface called Heegaard surface. A Heegaard splitting can also be naturally

associated to a Morse function f : M → R. The idea of Heegaard splitting was introduced

by Poul Heegaard in his 1898 thesis [15] in which Heegaard constructed a counterexample

to an early version of Poincaré’s duality theorem. Heegaard splitting has been extensively

studied by many mathematicians, such as Haken and Waldhausen in the 1960s and 70s, and

it was a major tool in their efforts to prove the Poincaré Conjecture. In the 1980s, Casson and

Gordon introduced an extremely powerful new concept called strongly irreducible Heegaard

splitting, and this totally changed the study of Heegaard splittings. In particular, it leads to

the resolution of several long-standing conjectures, e.g. [24, 25, 28, 30].

The definition of Heegaard splitting can be extended to 3-manifolds with boundary by

replacing handlebody with compression body. A compression body can be viewed as the

manifold obtained from a handlebody by removing a regular neighborhood of a portion of

its core graph. A handlebody can be viewed as a special compression body. It follows from a

theorem of Bing andMoise [2, 35] that every orientable 3–manifold has a Heegaard splitting.

Three–manifolds have some very nice topological and geometric structures. For ex-

ample, a 3–manifold has a canonical prime decomposition along essential 2–spheres; see

[16, 18, 21, 34]. A 3–manifold that contains no essential 2–sphere is said to be irreducible.

An irreducible 3–manifold can be canonically decomposed into simpler pieces along essen-

tial tori, which is called a JSJ decomposition; see [19, 20]. Heegaard splittings also have

close connections with these decompositions. Note that Thurston’s geometrization, proved

by Perelman, says that each closed 3–manifold with trivial prime and JSJ decompositions

has one of eight geometries [42–44, 58].

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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Definition 1.1. Let M = V ∪S W be a Heegaard splitting of a 3–manifold M , where V
andW are compression bodies and S is the Heegaard surface. The Heegaard splitting is re-
ducible if there is a nontrivial simple loop in S that bounds disks in both V andW , otherwise

the splitting is said to be irreducible. The Heegaard splitting is weakly reducible if there are
disks DV ⊂ V and DW ⊂ W such that ∂DV and ∂DW are a pair of disjoint nontrivial

loops in S. The Heegaard splitting is strongly irreducible if it is not weakly reducible.

Irreducible and strongly irreducible Heegaard splittings give tremendous information

about the 3-manifolds. For example, by Haken’s lemma [5, 10], a Heegaard splitting of

a reducible 3–manifold is always reducible. If the 3–manifold contains an incompressible

torus, then the distance (see section 3) of any Heegaard splitting is at most 2.

In their seminal work [5], Casson and Gordon showed that if a 3–manifold admits an

irreducible but weakly reducible Heegaard splitting, then the manifold must be a Haken

3–manifold. The theorem of Casson and Gordon implies that an irreducible non-Haken

3–manifold always has a strongly irreducible Heegaard splitting. For Haken manifolds,

Scharlemann and Thompson [49] gave a natural construction called untelescoping of a Hee-

gaard splitting, which is a decomposition of the Haken 3–manifold into several “blocks”

along incompressible surfaces, such that there is a strongly irreducible Heegaard splitting

in each block and the original Heegaard splitting can be recovered by amalgamating these

strongly irreducible Heegaard splittings along the incompressible surfaces (see [51] for a

more detailed description).

Strongly irreducible Heegaard splittings have many remarkable properties. In the next

few sections, we will discuss some of these properties and recent progress in studying Hee-

gaard splittings.

2. Normal surfaces and branched surfaces

A Heegaard splitting M = U ∪S V can be viewed as a sweepout H : S × (I, ∂I) →
(M,ΣU ∪ ΣV ), where I = [0, 1], ΣU and ΣV are the cores of the compression bodies U
and V respectively, and H|S×(0,1) is an embedding. If one considers the intersection of the

sweepout of a strongly irreducible Heegaard splitting with another object (e.g. a surface),

then being strongly irreducible puts some great restrains on the intersection patterns. This

leads to many remarkable properties of strongly irreducible Heegaard surfaces. For example,

by studying how the sweepout meets the 2–skeleton of a triangulation of the 3–manifold,

Rubinstein [48] (also see [56]) discovered that a strongly irreducible Heegaard surface can

be isotoped into a nice position with respect to any given triangulation. A surface in such a

position is called an almost normal surface, which is a slight generalization of the classical

normal surface theory studied by Kneser and Haken [9, 21]. A surface is normal with respect

to a triangulation if its intersection with every tetrahedron is a collection of normal disks

(i.e. triangles or quadrilaterals that meet each edge in at most one point and meet each face

of the tetrahedron in at most one edge). A surface is almost normal if its intersection with the

tetrahedra consists of normal disks and exactly one almost normal piece, where an almost

normal piece in a tetrahedron is either an octagon or an annulus obtained by connecting two

normal disks by an unknotted tube; see [56] for details.

Theorem 2.1 (Rubinstein [48], Stocking [56]). Given a triangulation of a compact ori-
entable 3–manifoldM , any strongly irreducible Heegaard surface is isotopic to a normal or
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an almost normal surface with respect to the triangulation.

The idea of sweepout and thin position used in Theorem 2.1 is very powerful in solving

some decision problems in 3–manifold topology. In particular, Rubinstein and Thompson

proved:

Theorem 2.2 (Rubinstein [48], Thompson [57]). There is an algorithm to decide whether a
closed 3–manifold is S3.

There is a natural connection between normal surfaces and branched surfaces. A branched

surface can be viewed as a 2-dimensional analogue of a train track; see [23, 24, 28] for a dis-

cussion. A useful property of normal and almost normal surfaces is that these surfaces have

only a finite number of different types of pieces in each tetrahedron. By identifying the nor-

mal disks of the same type, we obtain a branched surface. This implies that there is a finite

collection of branched surfaces such that, after isotopy, every strongly irreducible Heegaard

surface is carried by a branched surface in this collection. Using branched surfaces and

measured laminations, we proved the so-called generalized Waldhausen Conjecture [24].

Theorem 2.3 ([24]). A closed, orientable, irreducible and atoroidal 3–manifold has only
finitely many Heegaard splittings in each genus, up to isotopy.

A modified proof of Theorem 2.3 gives an algorithm to determine the Heegaard genus of

a 3–manifold [28].

Theorem 2.4 ([28]). There is an algorithm to determine the Heegaard genus of a closed
orientable 3–manifold.

A famous example of Casson and Gordon [6] shows that a 3–manifold can have an

infinite family of strongly irreducible Heegaard splittings with different genera. This is con-

structed by “spinning" a Heegaard surface around an incompressible surface, and in partic-

ular, the 3–manifold is Haken. In [25], we used branched surfaces and laminations to study

Heegaard surfaces and showed that this phenomenon happens only if there is an incompress-

ible surface in the 3–manifold (i.e. the manifold is Haken); see Theorem 2.5. The proof is

a limiting argument: Suppose a 3–manifold M contains an infinite family of strongly irre-

ducible Heegaard splittings. Since all strongly irreducible Heegaard surfaces are isotopic

to normal or almost normal surfaces, there is a branched surface carrying infinitely many

strongly irreducible Heegaard surfaces. Thus, a subsequence of these Heegaard surfaces

has a limit in the projective measured lamination space. By exploring some properties of

strongly irreducible Heegaard splittings, we were able to show in [25] that this limit mea-

sured lamination is an essential lamination, which implies that the branched surface carries

an incompressible surface and hence the manifold is Haken.

Theorem 2.5 ([25]). A closed orientable non-Haken 3–manifold has only finitely many ir-
reducible Heegaard splittings, up to isotopy.

In the construction of Casson and Gordon [6], the sequence of strongly irreducible Hee-

gaard surfaces {Sn} can be expressed as Sn = S + nF , where S is a Heegaard surface, F
is a closed incompressible surface and the sum is similar to the Haken sum for normal sur-

faces. Theorem 2.5 says that if a 3–manifold contains infinitely many strongly irreducible

Heegaard surfaces, then the manifold must contain an incompressible surface. However,

the limiting argument in the proof does not give a satisfactory picture. The following is an

interesting open question. This question was also studied in [39].
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Question 2.6. Suppose a closed orientable 3–manifoldM contains infinitely many pairwise
nonisotopic strongly irreducible Heegaard surfaces. DoesM always contain a sequence of
strongly irreducible Heegaard surfaces {Sn} that can be expressed as Sn = S+nF , where
S is a Heegaard surface and F is an incompressible surface?

In a certain sense, normal surface can be viewed as a combinatorial analogue of minimal

surface. This is particularly true for incompressible surfaces and strongly irreducible Hee-

gaard surfaces. For example, using the idea of sweepout, Pitts and Rubinstein proved the

following theorem. This theorem provides a useful tool to study Heegaard surfaces using

geometry.

Theorem 2.7 (Pitts-Rubinstein). Let S be a strongly irreducible Heegaard surface in a
closed 3–manifold. Then there is a minimal surface F such that S is either isotopic to
F or to the surface obtained from the boundary of a regular neighborhood of F by attaching
a 1–handle.

3. Curve complex and Hempel distance

Let S be a closed orientable surface of genus at least 2. The curve complex of S, introduced
by Harvey [13], is the complex whose vertices are the isotopy classes of essential simple

closed curves in S, and k + 1 vertices determine a k–simplex if they are represented by

pairwise disjoint curves. We denote the curve complex of S by C(S). The curve complex of

a torus is defined similarly, and C(T 2) is the same as the Farey graph. For any two vertices in

C(S), the distance d(x, y) is the minimal number of 1–simplices in a simplicial path jointing

x to y.
Curve complex has been an important ingredient in the solutions of several important

questions in low-dimensional geometry and topology, e.g. [30, 32, 33]. In [17], Hempel used

the curve complex to define a certain complexity for Heegaard splittings: Given a Heegaard

splitting M = H1 ∪S H2. Let Hi (i = 1, 2) be the set of vertices in C(S) represented by

curves bounding disks in Hi. The distance d(S) is defined to be the distance between H1

and H2 in the curve complex C(S). Clearly, the Heegaard splitting is reducible if and only

if d(S) = 0, and if g(S) ≥ 2, the Heegaard splitting is strongly irreducible if and only if

d(S) ≥ 2.
Hartshorn first observed that the Hempel distance of a Heegaard splitting is related to the

genus of an incompressible surface [12]. Later, Scharlemann and Tomova showed that the

same is true for strongly irreducible surfaces and in a much more general setting [50] (see

[26] for another proof).

Theorem 3.1 (Hartshorn [12]). LetM = H1 ∪S H2 be a Heegaard splitting of a compact
3–manifold M . Suppose M contains a closed orientable incompressible surface P . Then
d(S) ≤ 2g(P ).

Theorem 3.2 (Scharlemann-Tomova [50]). Let M = H1 ∪S H2 be a Heegaard splitting
of a compact 3–manifoldM . SupposeM contains a closed strongly irreducible surface P .
Then d(S) ≤ 2g(P ).

Theorem 3.1 and Theorem 3.2 imply that if the Hempel distance of a Heegaard splitting

is large, then the 3–manifold M contains no other small-genus Heegaard surface, and in
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particular, this Heegaard splitting is the unique minimal-genus Heegaard splitting of the 3–

manifold.

In [29], Hempel distance is generalized to measure the complexity of an amalgamation of

any two compact 3-manifolds; see also [27]. Let F be a closed orientable surface embedded

in a closed orientable 3–manifold M , and suppose F divides M into two submanifolds

U1 and U2 with ∂U1 = ∂U2 = F . We may view M = U1 ∪F U2 as an amalgamation

of U1 and U2. Let Ui (i = 1, 2) be the set of vertices in C(F ) represented by boundary

curves of properly embedded essential surfaces in Ui with maximal Euler characteristic.

The amalgamation distance can be defined as d(M) = d(U1,U2) in the curve complex C(F ).
For example, if F is compressible in Ui, then Ui consists of vertices represented by curves

bounding disks in Ui. So the amalgamation distance is the same as the Hempel distance if F
is a Heegaard surface. In [29], we proved the following theorem.

Theorem 3.3 ([29]). LetM = U1 ∪F U2 as above. If the amalgamation distance d(M) is
sufficiently large, then all small-genus Heegaard surfaces are standard.

Theorem 3.3 is a fundamental tool used in answering the rank versus genus conjecture

for closed hyperbolic 3-manifolds, which we will discuss in the next section.

4. Rank and Heegaard genus

Given a Heegaard splitting M = U ∪S V of a compact orientable 3-manifold M , if U is

a handlebody, then the Heegaard splitting gives a natural presentation of the fundamental

group ofM : the core graph of U give a set of generators and a set of compressing disks in

the compression body V gives a set of relators.

The Heegaard genus of a 3–manifold M , denoted by g(M), is defined as the minimal

genus of all the Heegaard surfaces of M , and we define the rank of M to be the minimal

number of elements needed to generate π1(M). Suppose M is either closed or has con-

nected boundary. Then every Heegaard splitting ofM contains a handlebody, hence giving

a presentation of π1(M). Thus we have r(M) ≤ g(M).
In the 1960s, Waldhausen asked whether r(M) = g(M) for all M ; see [11, 59]. This

was called the generalized Poincaré Conjecture in [11], as the case r(M) = 0 is the Poincaré
conjecture. In fact, many 3-manifolds satisfy this conjecture; e.g. if M is a small Seifert

fibered space, then r(M) = g(M). However, this conjecture is not true in general. In [4],

Boileau and Zieschang found a Seifert fiber space with r(M) = 2 and g(M) = 3. Later,
many other Seifert fiber spaces and graph manifolds have been found with similar properties;

see e.g. [52]. A crucial ingredient in all these examples is that the fundamental group of a

Seifert fiber space has a nontrivial center and, for a certain class of Seifert fiber spaces, one

can use this property to find a smaller generating set of π1(M) than the one prescribed by a

Heegaard splitting. However, these examples are very special. The fundamental group of a

closed hyperbolic 3-manifold does not contain such commuting elements, so the modernized

version of this old conjecture is whether r(M) = g(M) holds for hyperbolic 3-manifolds;

see [53, Conjecture 1.1]. This conjecture is sometimes called the Rank versus Genus Con-

jecture or the Rank Conjecture, as r(M) can be viewed as the algebraic rank, and g(M) can
be regarded as the geometric rank of M . This conjecture is also related to the Fixed Price

Conjecture in topological dynamics [1].

Some progress on this conjecture was made in the past few years. In [55], Souto proved
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r(M) = g(M) for any fiber bundle whose monodromy is a high power of a pseudo-Anosov

map. In [41], Namazi and Souto showed that rank equals genus if the gluing map of a

Heegaard splitting is a high power of a generic pseudo-Anosov map. This means that, in

some sense, a sufficiently complicated hyperbolic 3-manifold satisfies this conjecture. On the

other hand, many simple hyperbolic 3-manifolds also satisfy the conjecture; e.g., if g(M) =
2 then π1(M) cannot be cyclic and hence r(M) = g(M) = 2. In [30], we gave a negative

answer to this conjecture.

Theorem 4.1 ([30]). There is a closed orientable hyperbolic 3-manifold with rank of its
fundamental group smaller than its Heegaard genus. Moreover, the discrepancy between its
rank and Heegaard genus can be arbitrarily large.

A basic idea of proving Theorem 4.1 is an observation based on the curve complex and

Theorem 3.3: if there is a 3–manifold M such that ∂M is connected and r(M) < g(M),
then one can construct a closed 3–manifold M̂ with r(M̂) < g(M̂) by capping off ∂M using

a handlebody, via a complicated gluing map. This means that it suffices to construct such

a 3–manifold M with connected boundary. The construction in [30] is an annulus sum of

three pieces according to how generators of their fundamental groups are conjugate to each

other.

Although rank and Heegaard genus are among the most basic invariants of 3-manifolds,

they are surprisingly not well-studied. Theorem 4.1 says that they are not the same for

hyperbolic 3-manifolds, but their relation is still not clear.

Question 4.2. Is there a function f(x), such that g(M) ≤ f(r(M)) for any closed hyper-
bolic 3–manifoldM .

Another closely related but more difficult question is whether the function in Question 4.2

is linear.

Question 4.3. Is there a number δ > 0, such that r(M)
g(M) > δ for every closed hyperbolic

3–manifoldM?

Note that Biringer and Souto [3] made significant progress toward solving Question 4.2.

They showed that, given any ε > 0, there is a function f , such that for any closed hyperbolic
3–manifoldM with injectivity radius bigger than ε, g(M) ≤ f(r(M)).

The examples constructed in [30] are Haken manifolds. In a certain sense, non-Haken

manifolds are more rigid than Haken manifolds; see e.g. [24, 25]. So it is interesting to know

whether rank equals genus for non-Haken manifolds.

Question 4.4. Is there a non-Haken 3-manifoldM with r(M) < g(M)?

Knot group has been an important topic in low-dimensional topology. Ever since 1960s

(see [11]), people have been trying to answer the question of rank versus genus for knot

exteriors, but this question remains open:

Question 4.5. Is there a knot k in S3 such that r(S3−N(k)) < g(S3−N(k))? How about
a prime knot k?

It is conceivable that one can use the methods in [30] to produce a composite knot k in

S3 whose exterior has rank smaller than Heegaard genus. But it is much harder to find a

prime-knot example.



Heegaard splittings of 3-manifolds 1251

The examples in [30] are very complicated. It would be interesting to know what is the

simplest hyperbolic 3–manifold with rank smaller than genus. For Seifert fibered spaces,

the simplest such examples were discovered first, and the more complicated examples are,

in a sense, built on these simple examples; see e.g. [4, 52]. It would be interesting to know

whether there is a simpler hyperbolic example, or a simple local structure, such that the

examples in [30] can be viewed as an extension of this simpler example or structure.

Question 4.6. Among all hyperbolic 3-manifoldsM with r(M) < g(M), what is the mini-
mal value for r(M)?

Another interesting question related to Question 4.6 is whether the minimal value for

r(M) is 2 for hyperbolic 3-manifolds.

Question 4.7. LetM be a hyperbolic 3-manifold with r(M) = 2. Is g(M) = 2?

A fundamental tool in the construction of [30] is Theorem 3.3, which gives a nice formula

to compute the Heegaard genus of an amalgamated 3–manifold. It is conceivable that a

similar formula also holds for rank.

Question 4.8. Is there an analogue of Theorem 3.3 for the rank of fundamental group?

The following question is more specific.

Question 4.9. LetM1 andM2 be compact 3-manifolds with connected boundary and ∂M1
∼=

∂M2. Let φ : ∂M1 → ∂M2 be a homeomorphism and let M be the closed manifold
obtained by gluing M1 to M2 via φ. If φ is sufficiently complicated, then is it true that
r(M) = r(M1) + r(M2)− g(∂Mi)?

Question 4.9 is true if both M1 and M2 are handlebodies and φ is a high power of a

pseudo-Anosov map [41]. However, the question is unknown if only one of the two mani-

folds is a handlebody, and it is not even known in the case of Dehn filling, i.e.,M2 is a solid

torus.

Theorem 4.1 says that the discrepancy g(M) − r(M) can be arbitrarily large for hyper-

bolic 3-manifolds. However, the 3-manifolds constructed in [30] have the same ratio
r(M)
g(M) .

Thus the following is a natural question and is a slight variation of Question 4.3.

Question 4.10. How small can the ratio r(M)
g(M) be? Can the infimum of the ratio r(M)

g(M) be
zero for 3-manifolds?

A map between two topological spaces is one of the most fundamental objects in topol-

ogy. Degree-one maps are a particularly important class of maps. For 3-manifolds, such

maps have a close relation with Thurston’s geometrization of 3-manifolds (see [14, 54, 60]).

It has been known for a long time that maps of nonzero degree between surfaces are standard

[7]. However, many important questions remain open for maps between 3-manifolds. One

of the most basic questions about degree-one maps between two 3-manifolds is the relation

between their Heegaard genera.

Conjecture 4.11. Let M and N be closed orientable 3-manifolds and suppose there is a
degree-one map f : M → N . Then g(M) ≥ g(N).
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Conjecture 4.11 is an old and difficult question in 3–manifold topology. It implies the

Poincaré Conjecture: If a closed 3–manifoldX is homotopy equivalent to S3, since a homo-

topy equivalence is a degree-one map, Conjecture 4.11 implies that g(X) = g(S3) = 0 and

X must be S3.

If f : M → N is a degree-one map, then f∗ : π1(M) → π1(N) is a surjection and hence
r(M) ≥ r(N). Thus, a counterexample to Conjecture 4.11 also gives a 3–manifold N with

g(N) > r(N). This suggests that Conjecture 4.11 is closely related to the rank versus genus
question. In particular, one approach to constructing a counterexample to Conjecture 4.11 is

to start with the examples in Theorem 4.1.

5. Dehn surgery on knots

One of the most useful constructions in low-dimensional topology is Dehn surgery. Let K
be a nontrivial knot in the 3–sphere S3 and let E(K) = S3 − N(K), where N(K) is an
open tubular neighborhood of K. Let g(E(K)) be the Heegaard genus of the knot exterior

E(K). Let K(s) (s ∈ Q ∪ {∞}) be the closed 3–manifold obtained by performing a Dehn

surgery on K along slope s. An important question in 3–manifold topology is to determine

the Heegaard genus ofK(s).

Theorem 5.1 (Gordon-Luecke [8]). Let K be a nontrivial knot in S3. If g(K(s)) = 0
(i.e.K(s) = S3), then the Dehn surgery must be a trivial surgery, i.e. s = ∞.

Theorem 5.1 concludes that there is no other way to obtain S3 by performing Dehn

surgery on a nontrivial knot in S3. However, Dehn surgery on many knots can produce lens

spaces. Berge observed that if a knot K lies on a genus-2 Heegaard surface of S3 and K
is primitive in each of the two handlebodies, then the genus-2 Heegaard splitting becomes a

genus-1 splitting after a Dehn surgery, and hence the Dehn surgery yields a lens space. Such

knots are called doubly primitive knots or Berge knots. A difficult question is whether the

converse is true:

Conjecture 5.2 (Berge Conjecture). Let K be a nontrivial knot in S3. If K(s) is a lens
space (i.e. g(K(s)) = 1), thenK must be a doubly primitive knot.

When discussing Heegaard genus of knot exterior, sometimes it is more convenient to use

another invariant called tunnel number. For any knot K is S3, there is always a collection

of disjoint and embedded arcs τ1, . . . , τt in S
3, such that τi ∩ K = ∂τi for each i, and

H = S3 −N((∪ti=1τi) ∪K) is a handlebody. This means that ∂H is a Heegaard surface of

E(K). These arcs τ1, . . . , τt are called unknotting tunnels of K, and we say that they form

a tunnel system for K. The tunnel number of K, denoted by t(K), is the minimal number

of arcs in a tunnel system forK. Clearly g(E(K)) = t(K) + 1.
By considering E(K) as a submanifold of K(s), it is easy to see that any Heegaard

surface of E(K) is a Heegaard surface of K(s). Thus g(K(s)) ≤ g(E(K)). More-

over, it is known that if the surgery slope s is “complicated”, then a minimal-genus Hee-

gaard surface in E(K) remains a minimal-genus Heegaard surface of K(s), in particular

g(K(s)) = g(E(K)). Moriah and Rubinstein [38] first proved this for hyperbolic knots;

Rieck and Sedgwick [45–47] gave a topological proof that works for all knots. This has also

been generalized to handlebody surgery; see [29].
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Theorem 5.3 (Moriah-Rubinstein [38]; Rieck-Sedgwick [45–47]). Let K and K(s) be as
above. Then there is a finite set of slopes N and a finite set of lines of slopes H, so that if
s /∈ N ∪ H, then g(K(s)) = g(E(K)).

In fact, they proved something stronger. They showed that, except for finitely many

slopes, g(K(s)) ≥ g(E(K)) − 1. Note that the theorems of Moriah-Rubinstein and Rieck-

Sedgwick are for all 3-manifolds with torus boundary. If we only consider knots in S3, it

seems that this inequality always holds except for the trivial surgery:

Conjecture 5.4. Let K be a nontrivial knot in S3. Then g(K(s)) ≥ g(E(K)) − 1 unless
the Dehn surgery is a trivial surgery, i.e. s = ∞.

There is an easy picture to see how Heegaard genus may drop after Dehn surgery. Given

a minimal-genus Heegaard splitting E(K) = H ∪S W of the knot exterior E(K), where
H is a handlebody and W is a compression body. The Heegaard splitting is said to be s-
primitive if there is a compressing disk D inH and an annulus A properly embedded inW ,

such that

1. one boundary circle of A lies in the Heegaard surface S and the other boundary circle

is a circle of slope s in the boundary torus ∂E(K), and

2. ∂D ∩ ∂A is a single point in S.

If the Heegaard splitting is s-primitive, then the annulus A extends to a disk inK(s), which
means that the corresponding Heegaard splitting in K(s) is stabilized. Since the splitting

E(K) = H ∪SW is a minimal-genus splitting, this means that g(K(s)) < g(E(K)). How-
ever, the converse of this phenomenon is not true: it is possible that a minimal-genus Hee-

gaard splitting is not s-primitive in E(K) but becomes stabilized inK(s). Nonetheless, it is
conceivable that, in this case, one can modify the Heegaard splitting into a new s-primitive

Heegaard splitting of the same genus. The following conjecture says that if the Heegaard

genus drops after an integer surgery, then the picture described above always occurs.

Conjecture 5.5. Let K be a nontrivial knot in S3. Suppose g(K(s)) < g(E(K)) for some
integer s. Then E(K) admits a minimal-genus and s-primitive Heegaard splitting.

If s is an integer and E(K) has an s-primitive genus-2 Heegaard splitting, then the knot

K is doubly primitive. Hence Conjecture 5.5 implies the Berge Conjecture for knots with

Heegaard genus 2 (i.e. tunnel number one knots).

If a Heegaard splitting of E(K) is s-primitive and s is the meridian, then the splitting is

called meridionally primitive or μ-primitive. A knotK is said to be meridionally primitive or

μ-primitive, if E(K) has a minimal-genus Heegaard splitting that is meridionally primitive.

Although we are focused on knots in S3, the concept of s-primitive Heegaard splittings

can be extended to all knot manifolds. Let K ′ be the core curve of the solid torus in the

Dehn filling. We may view K ′ as a knot in K(s). If E(K) has a minimal-genus and s-
primitive Heegaard splitting, then the knot K ′ is meridionally primitive in K(s). Thus one
way to understand Conjecture 5.5 is to study meridionally primitive knots in a 3–manifold.

This approach seems particularly useful in attacking the Berge Conjecture, as lens spaces are

among the best understood 3-manifolds.

Meridionally primitive knots have some very interesting properties. For example, if

a knot K in S3 is meridionally primitive, then for any other knot K ′, g(E(K#K ′)) <
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g(E(K)) + g(E(K ′)); in other words, t((K#K ′) ≤ t(K) + t(K ′); see [31] for an ex-

planation. In [40], Morimoto proved a converse of this fact for small knots (a knot is small

if its exterior contains no nonperipheral incompressible surface). He showed that if both

K and K ′ are small knots, then t((K#K ′) ≤ t(K) + t(K ′) only if one of K and K ′ is
meridionally primitive. Morimoto and Moriah conjectured that the converse is always true

[36, 40]. Kobayashi and Rieck [22] first gave a counterexample of which the two factors are

both composite knots. Since composite knots are special, the conjecture was modified for

prime knots; see [37, Conjecture 7.14]). Recently, this conjecture was also shown to be false

[31]. In fact, we proved a much more general theorem:

Theorem 5.6 ([31]). For any integer n ≥ 3, there is a prime knotK such that

1 K is not meridionally primitive, and

2 for every m-bridge knot K ′ with m ≤ n, the tunnel numbers satisfy t(K#K ′) ≤
t(K).

In light of Theorem 5.6, the following question was raised in [31].

Conjecture 5.7. For any two knotsK andK ′ in S3, t(K#K ′) ≥ t(K).

Note that there is a degree-one map from E(K#K ′) to E(K). Thus a counterexample

to Conjecture 5.7 also gives a counterexample to Conjecture 4.11.
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Algebraic K-theory of strict ring spectra

John Rognes

Abstract. We view strict ring spectra as generalized rings. The study of their algebraic K-theory is

motivated by its applications to the automorphism groups of compact manifolds. Partial calculations

of algebraic K-theory for the sphere spectrum are available at regular primes, but we seek more con-

ceptual answers in terms of localization and descent properties. Calculations for ring spectra related to

topological K-theory suggest the existence of a motivic cohomology theory for strictly commutative

ring spectra, and we present evidence for arithmetic duality in this theory. To tie motivic cohomology

to Galois cohomology we wish to spectrally realize ramified extensions, which is only possible after

mild forms of localization. One such mild localization is provided by the theory of logarithmic ring

spectra, and we outline recent developments in this area.

Mathematics Subject Classification (2010). Primary 19D10, 55P43; Secondary 19F27, 57R50.

Keywords. Arithmetic duality, automorphisms of manifolds, brave new rings, étale descent, log-

arithmic ring spectrum, logarithmic topological André–Quillen homology, logarithmic topological

Hochschild homology, motivic truncation, replete bar construction, sphere spectrum, tame ramifica-

tion, topological K-theory.

1. Strict ring spectra

First, let R be an abelian group. Ordinary singular cohomology with coefficients in R is a

contravariant homotopy functor that associates to each based spaceX a graded cohomology

group H̃∗(X;R). It is stable, in the sense that there is a natural isomorphism H̃∗(X;R) ∼=
H̃∗+1(ΣX;R), and this implies that it extends from the category of based spaces to the

category of spectra. The latter is a category of space-like objects, where the suspension is

invertible up to homotopy equivalence, and which has all colimits and limits. The extended

cohomology functor becomes representable, meaning that there is a spectrumHR, called the
Eilenberg–MacLane spectrum of R, and a natural isomorphism H̃∗(X;R) ∼= [X,HR]−∗,
where [X,HR]−n is the group of homotopy classes of morphisms X → ΣnHR.

Next, let R be a ring. Then the cohomology theory is multiplicative, meaning that there

is a bilinear cup product H̃∗(X;R) × H̃∗(X;R) → H̃∗(X;R). This is also representable

in the category of spectra, by a morphism μ : HR ∧ HR → HR, where ∧ denotes the

smash product of spectra. With the modern models for the category of spectra [26, 40, 48]

we may arrange that μ is strictly unital and associative, so thatHR is a strict ring spectrum.
Equivalent terms areA∞ ring spectrum, S-algebra, symmetric ring spectrum and orthogonal

ring spectrum.

If R is commutative, then the cup product is graded commutative, which at the repre-

senting level means that μτ � μ, where τ : HR ∧HR→ HR ∧HR denotes the twist iso-

Proceedings of International Congress of Mathematicians, 2014, Seoul
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morphism. In fact, we may arrange that μ is strictly commutative, in the sense that μτ = μ
as morphisms of spectra, so that HR is a strictly commutative ring spectrum. Equivalent

phrases are E∞ ring spectrum, commutative S-algebra, commutative symmetric ring spec-

trum and commutative orthogonal ring spectrum. This leads to a compatible sequence of

Σk-equivariant morphisms EΣk+ ∧HR∧k → HR for k ≥ 0. At the represented level these
morphisms give rise to power operations in cohomology, including Steenrod’s operations

Sqi for R = F2 and β
εP i for R = Fp.

One now realizes that the Eilenberg–MacLane ring spectra HR exist as special cases

within a much wider class of ring spectra. Each spectrum B represents a generalized co-

homology theory X !→ B̃∗(X) = [X,B]−∗ and a generalized homology theory X !→
B̃∗(X) = π∗(B ∧X). Examples of early interest include the spectrum KU that represents

complex topological K-theory, KU∗(X) = [X+,KU ]−∗, and the spectrumMU that rep-

resents complex bordism, MU∗(X) = π∗(MU ∧ X+). A fundamental example is given

by the sphere spectrum S, which is the image of the based space S0 under the stabilization

functor from spaces to spectra. It represents stable cohomotopy π∗S(X) = S̃∗(X) and stable
homotopy πS∗ (X) = S̃∗(X). Each of these three examples, KU , MU and S, is naturally
a strictly commutative ring spectrum, representing a multiplicative cohomology theory with

power operations, etc. Furthermore, there are interesting multiplicative morphisms connect-

ing these ring spectra to the Eilenberg–MacLane ring spectra previously considered, as in

the diagram

KU �� HQ

S �� MU �� ku ��

��

HZ ,

��

where ku = KU [0,∞) denotes the connective cover ofKU .
By placing the class of traditional rings inside the wider realm of all strict ring spectra,

a new world of possibilities opens up. Following Waldhausen [47, p. xiii] we may refer

to strict ring spectra as “brave new rings”. If we think in algebro-geometric terms, where

commutative rings appear as the rings of functions on pieces of geometric objects, then

strictly commutative ring spectra are the functions on affine pieces of brave new geometries,

more general than those realized by ordinary schemes.

How vast is this generalization? In the case of connective ring spectra B, i.e., those with
πi(B) = 0 for i negative, there is a natural ring spectrum morphism B → Hπ0(B) that in-
duces an isomorphism on π0. This behaves for many purposes like a topologically nilpotent

extension, and in geometric terms, B can be viewed as the ring spectrum of functions on an

infinitesimal thickening of Specπ0(B).
This infinitesimal thickening can be quite effectively controlled in terms of diagrams

of Eilenberg–MacLane spectra associated with simplicial rings. The Hurewicz map B ∼=
S ∧ B → HZ ∧ B is 1-connected, and there is an equivalence HZ ∧ B � HR• for some

simplicial ring R•. The square

S ∧ S ∧B ��

��

HZ ∧ S ∧B

��

S ∧HZ ∧B �� HZ ∧HZ ∧B
induces a 2-connected map from B ∼= S ∧S ∧B to the homotopy pullback. More generally,

for each n ≥ 1 there is an n-dimensional cubical diagram that induces an n-connected map
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from the initial vertex B to the homotopy limit of the remainder of the cube, and the terms

in that remainder have the form HR• for varying simplicial rings R•. Dundas [24] used a

clever strengthening of this statement to prove that relative algebraic K-theory is p-adically
equivalent to relative topological cyclic homology for morphisms A → B of connective

strict ring spectra, under the assumption that π0(A) → π0(B) is a surjection with nilpotent

kernel. He achieved this by reducing to the analogous statement for homomorphisms R• →
T• of simplicial rings, which had been established earlier by McCarthy [49]. This confirmed

a conjecture of Goodwillie [33], motivated by a similar result for rational K-theory and

(negative) cyclic homology [32].

How about the case of non-connective ring spectra? Those that arise as homotopy fixed

points BhG = F (EG+, B)
G for a group action may be viewed as the functions on an orbit

stack for the inducedG-action on the geometry associated toB. Those that arise as smashing

Bousfield localizations LEB, with respect to a homology theory E∗, may be viewed as open

subspaces in a finer topology than the one derived from the Zariski topology on Specπ0(B)
[63, §9.3]. In the general case the connection to classical geometry is less clear.

2. Automorphisms of manifolds

Why should we be interested in brave new rings and their ring-theoretic invariants, like

algebraic K-theory [26, Ch. VI], [55], other than for the sake of generalization? One

good justification comes from the tight connection between the geometric topology of high-

dimensional manifolds and the algebraic K-theory of strict ring spectra. This connection

is given by the higher simple-homotopy theory initiated by Hatcher [36], which was fully

developed byWaldhausen in the context of his algebraicK-theory of spaces [82] and the sta-

ble parametrized h-cobordism theorem [83]. On the geometric side, this theory concerns the

fundamental problem of finding a parametrized classification of high-dimensional compact

manifolds, up to homeomorphism, piecewise-linear homeomorphism or diffeomorphism, as

appropriate for the respective geometric category. The set of path components of the result-

ing moduli space corresponds to the set of isomorphism classes of such manifolds, and each

individual path component is a classifying space for the automorphism group Aut(X) of a
manifold X in the respective isomorphism class.

This parametrized classification is finer than the one provided by the Browder–Novikov–

Sullivan–Wall surgery theory [21, 84], which classifies manifolds up to h-cobordism (or

s-cobordism), and whose associated moduli space has path components that classify the

block automorphism groups of manifolds, rather than their actual automorphism groups.

The difference between these two classifications is controlled by the space H(X) of h-
cobordisms (W ;X,Y ) with a given manifoldX at one end. HereW is a compact manifold

with ∂W = X ∪ Y , and the inclusions X → W and Y → W are homotopy equivalences.

More precisely, there is one h-cobordism space HCat(X) for each of the three flavors of

manifolds mentioned, namely Cat = Top, PL or Diff .
The original h-cobordism theorem enumerates the isomorphism classes of h-cobordisms

withX at one end, i.e., the set π0H(X) of path components of the h-cobordism space ofX ,

in terms of an algebraic K-group of the integral group ring Z[π], where π = π1(X) is

the fundamental group of X . One defines the Whitehead group as the quotient Wh1(π) =
K1(Z[π])/(±π), and associates a Whitehead torsion class τ(W ;X,Y ) ∈ Wh1(π) to each

h-cobordism on X .
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Theorem 2.1 (Smale [73], Barden, Mazur, Stallings). Let X be a compact, connected n-
manifold with n ≥ 5 and π = π1(X). The Whitehead torsion defines a bijection

π0H(X) ∼= Wh1(π) .

These constructions involve using Morse functions or triangulations to choose a relative

CW complex structure on the pair (W,X), or equivalently, a π-equivariant relative CW

complex structure on the pair of universal covers (W̃ , X̃), and to study the associated cellular
chain complex C∗(W̃ , X̃) of free Z[π]-modules. This works fine as long as one is only

concerned with a classification of h-cobordisms up to isomorphism, but for the parametrized

problem, i.e., the study of the full homotopy type ofH(X), the passage from a CW complex

structure to the associated cellular chain complex loses too much information. One should

remember the actual attaching maps from the boundaries of cells to the preceding skeleta,

not just their degrees. In a stable range this amounts to working with maps from spheres to

spheres and coefficients in the sphere spectrum S, rather than with degrees and coefficients in
the integers Z. Likewise, the passage to the π-equivariant universal cover X̃ → X should be

replaced to a passage to a G-equivariant principal fibration P → X , where P is contractible

and G � ΩX is a topological group that is homotopy equivalent to the loop space of X �
BG. To sum up, the parametrized analog of the Whitehead torsion must take values in

a Whitehead space that is built from the algebraic K-theory of the spherical group ring

S[G] = S ∧G+, a strict ring spectrum, rather than that of its discrete reduction, the integral

group ring π0(S[G]) ∼= Z[π].
Waldhausen’s algebraic K-theory of spaces, traditionally denoted A(X), was first in-

troduced without reference to strict ring spectra [80], but can be rewritten as the algebraic

K-theory A(X) = K(S[G]) of the strict ring spectrum S[G], cf. [26, Ch. VI] and [81].

This point of view is convenient for the comparison of algebraic K-theory with other ring-

theoretic invariants.

In the case of differentiable manifolds, the Whitehead spaceWhDiff(X) is defined to sit
in a split homotopy fiber sequence of infinite loop spaces

Ω∞(S ∧X+)
ι−→ K(S[G]) −→ WhDiff(X) .

In the topological case there is a homotopy fiber sequence of infinite loop spaces

Ω∞(K(S) ∧X+)
α−→ K(S[G]) −→ WhTop(X) ,

where α is known as the assembly map. The piecewise-linear Whitehead space is the same

as the topological one. The stable parametrized h-cobordism theorem reads as follows.

Theorem 2.2 (Waldhausen–Jahren–Rognes [83, Thm. 0.1]). LetX be a compact Cat man-
ifold, for Cat = Top, PL or Diff . There is a natural homotopy equivalence

HCat(X) � ΩWhCat(X) ,

where HCat(X) = colimkH
Cat(X × Ik) is the stable Cat h-cobordism space of X .

When combined with connectivity results about the dimensional stabilization map

H(X) = HCat(X) → HCat(X) ,

and here the main result is Igusa’s stability theorem for smooth pseudoisotopies [42], knowl-

edge ofK(S) andK(S[G]) gives good general results on the h-cobordism spaceH(X) and
the automorphism group Aut(X) of a high-dimensional manifold X .



AlgebraicK-theory of strict ring spectra 1263

Example 2.3. WhenG is trivial, so that S[G] = S andX is contractible, the π0-isomorphism

and rational equivalence S → HZ induces a rational equivalence K(S) → K(Z). Here

π∗K(Z)⊗Q was computed by Borel [20], so

πiWhDiff(∗)⊗Q ∼=
{
Q for i = 4k + 1 �= 1,

0 otherwise.

For X = Dn, Farrell–Hsiang [27] used this to show that

πiDiff(Dn)⊗Q ∼=
{
Q for i = 4k − 1, n odd,

0 otherwise,

for i up to approximately n/3, where Diff(Dn) denotes the group of self-diffeomorphisms

ofDn that fix the boundary. For instance, π3 Diff(D13) is rationally nontrivial. By contrast,
the group Top(Dn) of self-homeomorphisms of Dn that fix the boundary is contractible.

Similar results follow for n-manifolds that are roughly n/3-connected.

The case of spherical space forms, when G is finite with periodic cohomology, has been

studied by Hsiang–Jahren [41]. For closed, non-positively curved manifoldsX, Farrell–Jones

[28] showed that WhDiff(X) can be assembled from copies of WhDiff(∗) and WhDiff(S1),
indexed by the points and the closed geodesics in X, respectively. These correspond to the

special cases G trivial and G infinite cyclic, respectively, so K(S) and K(S[Z]) are of fun-
damental importance for the parametrized classification of this large class of Riemannian

manifolds. In this paper we shall focus on the case ofK(S), but see Hesselholt’s paper [37]
for the case of K(S[Z]), and see Weiss–Williams [86] for a detailed survey about automor-

phisms of manifolds and algebraicK-theory.

Remark 2.4. More recent papers ofMadsen–Weiss [46], Berglund–Madsen [12] and Galatius

–Randal-Williams [29] give precise results about automorphism groups of manifolds of a

fixed even dimension n = 2d �= 4, at the expense of first forming a connected sum with

many copies of Sd×Sd. The latter results are apparently not closely related to the algebraic
K-theory of strict ring spectra.

3. Algebraic K-theory of the sphere spectrum

We can strengthen the rational results about A(X) = K(S[G]),WhDiff(X) and Diff(X) to
integral results, or more precisely, to p-adic integral results for each prime p. From here on it

will be convenient to think of algebraicK-theory as a spectrum-valued functor, and likewise

for the Whitehead theories, so that there are homotopy cofiber sequences of spectra

S ∧X+
ι−→ K(S[G]) −→ WhDiff(X)

K(S) ∧X+
α−→ K(S[G]) −→ WhTop(X) ,

and the first one is naturally split.

A key tool for this study is the cyclotomic trace map trc : K(B) → TC(B; p) from alge-

braic K-theory to the topological cyclic homology of Bökstedt–Hsiang–Madsen [16]. The

latter invariant of the strict ring spectrum B can sometimes be calculated by analyzing the

S1-equivariant homotopy type of the topological Hochschild homology spectrum THH(B).
Its power is illustrated by the following previously mentioned theorem.
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Theorem 3.1 (Dundas [24]). Let B be a connective strict ring spectrum. The square

K(B) ��

trc

��

K(π0(B))

trc

��

TC(B; p) �� TC(π0(B); p)

becomes homotopy Cartesian upon p-completion.

In the basic caseB = S, whenK(S) � S∨WhDiff(∗) determinesDiff(Dn) for large n,
this square takes the form below. Three of the four corners are quite well understood, but for

widely different reasons.

K(S) ��

trc

��

K(Z)

trc

��

TC(S; p) �� TC(Z; p) .

These reasons were tied together by the author for p = 2 in [61], and for p an odd regular

prime in [62], to compute the mod p cohomology

H∗(K(S);Fp) ∼= Fp ⊕H∗(WhDiff(∗);Fp)

as a module over the Steenrod algebra A of stable mod p cohomology operations. This

sufficed to determine the E2-term of the Adams spectral sequence

Es,t2 = Exts,tA (H∗(K(S);Fp),Fp) =⇒ πt−sK(S)p

in a large range of degrees, and to determine the homotopy groups ofK(S)p andWhDiff(∗)p
in a smaller range of degrees.

The structure of the algebraic K-theory of the integers, K(Z), was predicted by the

Lichtenbaum–Quillen conjectures [55], which were confirmed for p = 2 by Voevodsky [78]
with contributions by Rognes–Weibel [67], and for p odd by Voevodsky [79] with contri-

butions by Rost and Weibel. For p = 2 or p a regular odd prime, this led to a p-complete

description of the spectrum K(Z) in terms of topological K-theory spectra, which in turn

led to an explicit description of the spectrum cohomology H∗(K(Z);Fp) as an A -module.

The topological cyclic homology of the integers, TC(Z; p), was computed for odd primes

p by Bökstedt–Madsen [17,18] and for p = 2 by the author [57–60], in papers that start with
knowledge of the mod p homotopy of the S1-spectrum THH(Z) and inductively determine

the mod p homotopy of the Cpn -fixed points THH(Z)Cpn for n ≥ 1. It is then possible

to recognize the p-completed spectrum level structure by comparisons with known models,

using [56] for p odd, and to obtain the A -module H∗(TC(Z; p);Fp) from this.

The topological cyclic homology of the sphere spectrum, TC(S; p), was determined in

the original paper [16]. There is an equivalence of spectra TC(S; p) � S ∨ ΣCP∞−1 after p-
completion, where ΣCP∞−1 is the homotopy fiber of the dimension-shifting S1-transfer map

t : ΣCP∞+ → S. The mod p cohomology H∗(ΣCP∞−1;Fp) is well known as an A -module.

For p = 2 it is cyclic with

H∗(ΣCP∞−1;F2) ∼= Σ−1A /C ,
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where the ideal C ⊂ A is generated by the admissible SqI where I = (i1, . . . , in) with
n ≥ 2 or I = (i) with i odd. The determination of the homotopy groups of TC(S; p) is
of comparable difficulty to the computation of the homotopy groups of S, due to our exten-

sive knowledge about the attaching maps in the usual CW spectrum structure on ΣCP∞−1,

cf. Mosher [52].

The linearization map TC(S; p) → TC(Z; p) is only partially understood [45], but for

p regular the cyclotomic trace map K(Z) → TC(Z; p) can be controlled by an appeal to

global Tate–Poitou duality [76, Thm. 3.1], see [62, Prop. 3.1]. This leads to the following

conclusion for p = 2. See [62, Thm. 5.4] for the result at odd regular primes.

Theorem 3.2 ([61, Thm. 4.5]). The mod 2 cohomology of the spectrum WhDiff(∗) is given
by the unique non-trivial extension of A -modules

0 → Σ−2C/A (Sq1, Sq3) −→ H∗(WhDiff(∗);F2) −→ Σ3A /A (Sq1, Sq2) → 0 .

Using the Adams spectral sequence and related methods, the author obtained the fol-

lowing explicit calculations. Less complete information, in a larger range of degrees, is

provided in the cited references. Previously, Bökstedt–Waldhausen [19, Thm. 1.3] had com-

puted πiWhDiff(∗) for i ≤ 3.

Theorem 3.3 ([61, Thm. 5.8], [62, Thm. 4.7]). The homotopy groups of WhDiff(∗) in de-
grees i ≤ 18 are as follows, modulo p-power torsion for irregular primes p.

i 0 1 2 3 4 5 6 7 8 9

πiWhDiff(∗) 0 0 0 Z/2 0 Z 0 Z/2 0 Z⊕ Z/2

i 10 11 12 13 14

πiWhDiff(∗) Z/8⊕ (Z/2)2 Z/6 Z/4 Z Z/36⊕ Z/3

i 15 16 17 18

πiWhDiff(∗) (Z/2)2 Z/24⊕ Z/2 Z⊕ (Z/2)2 Z/480⊕ (Z/2)3

Example 3.4. For X = Dn with n sufficiently large, it follows that π4p−4Diff(Dn) or

π4p−4Diff(Dn+1) contains an element of order p, for each regular p ≥ 5, and that

π9Diff(Dn) or π9Diff(Dn+1) contains an element of order 3, see [62, Thm. 6.4]. To get

more precise results one needs to investigate the canonical involution on WhDiff(∗) and

apply Weiss–Williams [85, Thm. A].

Remark 3.5. It would be interesting to extend these results to irregular primes. Dwyer–

Mitchell [25] described the spectrum K(Z)p in terms of the p-primary Iwasawa module

of the rationals. It should be possible to turn this into a description of the A -module

H∗(K(Z);Fp). Next one must control the cyclotomic trace map K(Z) → TC(Z; p), or
the closely related completion mapK(Z) → K(Zp), whose behavior is governed by special
values of p-adic L-functions, cf. Soulé [74, Thm. 3].

4. Algebraic K-theory of topological K-theory

The calculations reviewed in the previous section extracted detailed information aboutπ∗K(S) ∼=
π∗(S)⊕π∗WhDiff(∗) from our knowledge of π∗(CP∞−1). However, this understanding was not
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presented to us in as conceptual a way as the understanding we have of K(Z), say in terms of

Quillen’s localization sequence

K(Fp) −→ K(Z) −→ K(Z[1/p])

and the étale descent property

πiK(Z[1/p])p
∼=−→ Két

i (Z[1/p];Zp)

for i > 0, cf. [54, §5] and [55, §9]. It would be desirable to have a similarly conceptual

understanding of K(S)p in terms of a comparison with K(B)p for suitably local strict ring

spectra B, a descent property describing K(B)p as a homotopy limit of K(C)p for appro-

priate extensions B → C, and a simple description of K(Ω)p for a sufficiently large such

extension B → Ω.
To explore this problem, we first simplify the number theory involved by working with

the p-adic integers Zp in place of the rational integers Z, and then seek a conceptual under-

standing of K(B)p for some of the strictly commutative ring spectra B that are closest to

HZp, namely the p-complete connective complex K-theory spectrum kup and its Adams

summand �p. Here π∗(kup) = Zp[u] and π∗(�p) = Zp[v1], with |u| = 2 and |v1| = 2p− 2.
Let KUp and Lp denote the associated periodic spectra, with π∗(KUp) = Zp[u±1] and
π∗(Lp) = Zp[v

±1
1 ]. There are multiplicative morphisms

Lp
φ

�� KUp

Sp �� �p
φ

��

��

kup ��

��

HZp

(4.1)

of strictly commutative ring spectra, where φ∗(v1) = up−1. The group Δ ∼= F×p of p-
adic roots of unity acts by Adams operations on KUp, and φ : Lp → KUp is a Δ-Galois

extension in the sense of [63, p. 3].

Definition 4.1. Let V (1) = S ∪p e1 ∪α1 e
2p−1 ∪p e2p be the type 2 Smith–Toda complex,

defined as the mapping cone of the Adams self-map v1 : Σ
2p−2S/p → S/p of the mod p

Moore spectrum S/p = S ∪p e1. It is a ring spectrum up to homotopy for p ≥ 5, which
we now assume. We write V (1)∗B = π∗(V (1) ∧ B) for the “mod p and v1 homotopy”

of any spectrum B. It is naturally a module over the polynomial ring Fp[v2], where v2 ∈
π2p2−2V (1).

The mod p and v1 homotopy of the topological cyclic homology of the connective

Adams summand � was computed by Ausoni and the author, by starting with knowledge

of V (1)∗THH(�) from [51] and inductively determining the mod p and v1 homotopy of the

fixed points THH(�)Cpn for n ≥ 1. The calculations were later extended to the full con-

nective complexK-theory spectrum ku by Ausoni. To avoid introducing too much notation,

we only describe the most striking features of the answers, referring to the original papers

for more precise statements.

Theorem 4.2 (Ausoni–Rognes [5, Thm. 0.3, Thm. 0.4]). V (1)∗TC(�; p) is a finitely gen-
erated free Fp[v2]-module on 4(p + 1) generators, which are located in degrees −1 ≤ ∗ ≤
2p2 + 2p− 2. There is an exact sequence of Fp[v2]-modules

0 → Σ2p−3Fp −→ V (1)∗K(�p)
trc−→ V (1)∗TC(�; p) −→ Σ−1Fp → 0 .
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Theorem 4.3 (Ausoni [4, Thm. 7.9, Thm. 8.1]). V (1)∗TC(ku; p) is a finitely generated
free Fp[v2]-module on 4(p− 1)(p+ 1) generators, which are located in degrees −1 ≤ ∗ ≤
2p2 + 2p− 2. There is an exact sequence of Fp[v2]-modules

0 → Σ2p−3Fp −→ V (1)∗K(kup)
trc−→ V (1)∗TC(ku; p) −→ Σ−1Fp → 0 ,

and the natural mapK(�p) → K(kup)
hΔ is a p-adic equivalence.

Blumberg–Mandell [14] constructed homotopy cofiber sequences

K(Zp) −→ K(�p) −→ K(Lp) (4.2)

and

K(Zp) → K(kup) → K(KUp) ,

which lead to calculations of V (1)∗K(Lp) and V (1)∗K(KUp), cf. [4, Thm. 8.3]. The

natural map K(Lp) → K(KUp)
hΔ is also a p-adic equivalence, which confirms the étale

descent property for algebraicK-theory in this particular case.

Remark 4.4. The examples discussed above are the case n = 1 of a series of approxi-

mations to S associated with the Lubin–Tate spectra En, with coefficient rings π∗En =
WFpn [[u1, . . . , un−1]][u

±1], which are known to be strictly commutative ring spectra by the

Goerss–Hopkins–Miller obstruction theory [31]. There are multiplicative morphisms

L̂nS �� L̂nE(n)
φ

�� En

LnS

��

�� BP 〈n〉

��

�� en

��

�� Hπ0(en) ,

where Ln and L̂n denote Bousfield localization with respect to the Johnson–Wilson spec-

trum E(n) and the Morava K-theory spectrum K(n), respectively, and BP 〈n〉 is the trun-
cated Brown–Peterson spectrum. The n-th extended Morava stabilizer groupGn acts onEn,
and L̂nE(n) → En is an H-Galois extension for H ∼= F×pn � Z/n. We write en for the

connective cover of En.
The algebraicK-theory computations above provide evidence for the chromatic redshift

conjecture, see [5, p. 7] and [6], predicting that the algebraic K-theory K(B) of a purely

vn-periodic strictly commutative ring spectrum B, such as En, is purely vn+1-periodic in

sufficiently high degrees.

5. Motivic truncation and arithmetic duality

The proven Lichtenbaum–Quillen conjectures subsume a spectral sequence

E2
s,t = H

−s
ét (R;Zp(t/2)) =⇒ πs+tK(R)p ,

which converges for reasonable R and s + t sufficiently large. Here H∗
ét denotes étale co-

homology, R is a commutative Z[1/p]-algebra, and Zp(t/2) = πt(KUp) is Zp(m) when
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t = 2m is even, and 0 otherwise. For instance, we may take R = OF [1/p] to be the ring of

p-integers in a number field F , or R may be a p-adic field, i.e., a finite extension of Qp.

The proven Beilinson–Lichtenbaum conjectures, cf. [75] and [30], provide a more pre-

cise convergence statement. For each field F containing 1/p there is a spectral sequence

E2
s,t = H

−s
mot(F ;Z(t/2)) =⇒ πs+tK(F ) ,

converging in all degrees, and similarly with mod p coefficients. HereH∗
mot denotes motivic

cohomology, which satisfies

Hr
mot(F ;Z/p(m)) ∼=

{
Hr

ét(F ;Z/p(m)) for 0 ≤ r ≤ m,

0 otherwise.
(5.1)

In terms of Bloch’s higher Chow groups [13], the vanishing of these groups for r > m
expresses the fact that there are no codimension r subvarieties of affinem-space over SpecF .
Conversely,

Hr
ét(F ;Z/p(∗)) ∼= v−1

1 H
r
mot(F ;Z/p(∗)) (5.2)

with v1 ∈ H0
mot(F ;Z/p(p − 1)). We refer to the aspects (5.1) and (5.2) of the Beilinson–

Lichtenbaum conjectures as the motivic truncation property for the field F .
The following prediction expresses a similar conceptual description of K(B) for some

strictly commutative ring spectra, and should in particular apply for B = �p, Lp, kup
andKUp.

Conjecture 5.1. For purely v1-periodic strictly commutative ring spectra B there is a spec-
tral sequence

E2
s,t = H

−s
mot(B;Fp2(t/2)) =⇒ V (1)s+tK(B) ,

converging for s+ t sufficiently large.

Here H∗
mot denotes a currently undefined form of motivic cohomology for strictly com-

mutative ring spectra. The coefficient Fp2(t/2) may be interpreted as V (1)tE2, where E2 is

the Lubin–Tate ring spectrum [31] with π∗E2 = WFp2 [[u1]][u
±1].

More generally one might consider purely vn-periodic ring spectra B, replace V (1) by
any type n+ 1 finite spectrum F (n+ 1), see [39], and replace V (1)tE2 and V (1)s+tK(B)
by F (n+ 1)tEn+1 and F (n+ 1)s+tK(B), respectively.

Example 5.2. Based on the detailed calculations behind Theorem 4.2, it is fairly evident

that the E2-term for the spectral sequence conjectured to converge to V (1)∗K(�p) will be
concentrated in the four columns −3 ≤ s ≤ 0, and that the free Fp[v2]-module generators

are located in the groupsHr
mot(�p;Fp2(m)) where 0 ≤ r ≤ 3 and r ≤ m < r+ p2 + p− 1.

This presumes that the spectral sequence collapses at the E2-term, for p ≥ 5. In addition,

there is a sporadic copy of Fp in V (1)2p−3K(�p).
The class v2 ∈ V (1)2p2−2K(�p) is represented in bidegree (s, t) = (0, 2p2 − 2), corre-

sponding to (r,m) = (0, p2 − 1). The presence of Fp[v2]-module generators in the range

r + p2 − 1 ≤ m shows that Hr
mot(�p;Fp2(∗)) is not isomorphic to v−1

2 H
r
mot(�p;Fp2(∗))

in several bigradings (r,m) with r ≤ m < r + p. In other words, the motivic truncation

property fails for �p. However, this is to be expected, since �p has the residue ring spectrum

HZp and should not behave as a field.
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Figure 5.1. Fp[v2]-generators of E
2
s,t = H−s

mot(Lp;Fp2(t/2)) =⇒ V (1)s+tK(Lp)

Example 5.3. Turning instead to V (1)∗K(Lp), as determined from V (1)∗K(Zp) and V (1)∗
K(�p) by the homotopy cofiber sequence (4.2), free Fp[v2]-module generators for the E2-

term in Conjecture 5.1 would be concentrated in the groups Hr
mot(Lp;Fp2(m)) with 0 ≤

r ≤ 3 and r ≤ m < r+p2−1. The (s, t)-bidegrees of these 4p+4 generators are displayed
for p = 5 in Figure 5.1, lying in a fundamental domain in the shape of a parallelogram, of

width 3 and height 2p2 − 2. In addition, there are sporadic copies of Fp in V (1)2p−3K(Lp)
and V (1)2p−2K(Lp).

In this case, the motivic truncation property for Lp is perfectly satisfied, in the sense that

Hr
mot(Lp;Fp2(m)) ∼=

{
Hr

ét(Lp;Fp2(m)) for 0 ≤ r ≤ m,

0 otherwise,

where, by definition,

Hr
ét(Lp;Fp2(∗)) = v−1

2 H
r
mot(Lp;Fp2(∗))

is free over the Laurent polynomial ring Fp[v
±1
2 ] on the same generators as in Figure 5.1.
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The (additive) Euler characteristic

χ(Lp;Fp2(m)) =
3∑

r=0

(−1)r dimFp H
r
mot(Lp;Fp2(m))

is zero for eachm, cf. [76, Thm. 2.2]. To the eyes of algebraicK-theory and the hypothetical

motivic cohomology, the strictly commutative ring spectrum Lp behaves much like a brave

new field. We discuss the role of its (non-commutative) residue ring L/p in the next section.

The étale cohomology of a p-adic fieldF satisfies local Tate–Poitou duality [76, Thm. 2.1].

In the case of mod p coefficients, this is a perfect pairing

Hr
ét(F ;Z/p(m))⊗H2−r

ét (F ;Z/p(1−m))
∪−→ H2

ét(F ;Z/p(1)) ∼= Z/p

for each r and m. For general p-power torsion coefficients there is a perfect pairing taking

values in the larger group H2
ét(F ;Z/p

∞(1)) ∼= Z/p∞, cf. [72, p. 130]. The multiplicative

structure on V (1)∗K(Lp) is compatible with an algebra structure onH∗
mot(Lp;Fp2(∗)) such

that the resulting multiplicative structure onH∗
ét(Lp;Fp2(∗)) also satisfies arithmetic duality.

This can be seen as a rotational symmetry about (s, t) = (−3/2, p + 1) in the variant of

Figure 5.1 where v2 has been inverted.

Conjecture 5.4. For finite extensions B of Lp there is a perfect pairing

Hr
ét(B;Fp2(m))⊗H3−r

ét (B;Fp2(p+ 1−m))
∪−→ H3

ét(B;Fp2(p+ 1)) ∼= Z/p

for each r andm.

Remark 5.5. The dependence of the twist inFp2(p+1) on the prime pmay be an artifact of the

passage to mod p and v1 coefficients. Let E2/(p
∞, u∞1 ) be the E2-module spectrum defined

by the homotopy cofiber sequences E2 → p−1E2 → E2/p
∞ and E2/p

∞ → u−1
1 E2/p

∞ →
E2/(p

∞, u∞1 ). Its homotopy groups π∗E2/(p
∞, u∞1 ) = WFp2 [[u1]]/(p

∞, u∞1 )[u±1] are Pon-
tryagin dual to those of E2. Then

Fp2(p+ 1) = V (1)2p+2E2
∼= V (1)2p+3(E2/p

∞) ∼= V (1)2p+4E2/(p
∞, u∞1 )

and

V (1)2p+4E2/(p
∞, u∞1 ) ⊂ (S/p)5E2/(p

∞, u∞1 )

⊂ π4E2/(p
∞, u∞1 ) = WFp2 [[u1]]/(p

∞, u∞1 )(2) .

The conjectured arithmetic duality for mod p and v1 coefficients may be a special case of a

duality for p- and u1-power torsion coefficients, taking values in

H3
ét(B;WFp2 [[u1]]/(p

∞, u∞1 )(2)) .

It would be desirable to find a canonical identification of this group, like the Hasse invariant

in the classical case of p-adic fields and Kato’s work [43] on the Galois cohomology of

higher-dimensional local fields.
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6. Fraction fields and ramified extensions

The étale cohomology of a field is, by construction, the same as its Galois cohomology, i.e.,

the continuous group cohomology of its absolute Galois group. There is no such direct de-

scription of Hr
ét(Lp;Fp2(m)), since according to Baker–Richter [8] the maximal connected

pro-Galois extension of Lp is the composite

Lp
φ−→ KUp −→ KUnr

p ,

where π∗(KUnr
p ) = WF̄p[u±1]. The unramified extensions of π0(KUp) = Zp are spec-

trally realized, using the methods of Schwänzl–Vogt–Waldhausen [71, Thm. 3] or Goerss–

Hopkins–Miller [31], but the associated Galois group only has p-cohomological dimen-

sion 1, whereas Lp would have p-cohomological dimension 3. Likewise, the maximal con-

nected pro-Galois extension of En is Enr
n , with π∗(Enr

n ) = WF̄[[u1, . . . , un−1]][u
±1], of

p-cohomological dimension 1 over En and L̂nE(n).
To allow for ramification at p, one might simply invert that prime. However, the resulting

strictly commutative ring spectrum p−1Lp, with π∗(p−1Lp) = Qp[v
±1
1 ], is an algebra over

p−1Sp = HQp, so V (1)∗K(p−1Lp) is an algebra over V (1)∗K(Qp), where v2 acts trivially.
Hence Hr

ét(p
−1Lp;Fp2(∗)) would be zero.

A milder form of localization may be appropriate. ByWaldhausen’s localization theorem

[82], the homotopy fiber of K(Lp) → K(p−1Lp) is given by the algebraic K-theory of

the category with cofibrations of finite cell Lp-modules with p-power torsion homotopy,

equipped with the usual weak equivalences. We might instead step back to a category with

cofibrations of coherent L/pν-modules (i.e., having degreewise finite homotopy groups, see

Barwick–Lawson [9]), for some natural number ν, and suppose that these have the same

algebraicK-theory as the category with cofibrations of finite cell L/p-modules. Here L/p =
K(1) is the first MoravaK-theory, which by Angeltveit [2] is a strict ring spectrum, but not

strictly commutative. By Davis–Lawson [22, Cor. 6.4] the tower {L/pν}ν is as commutative

as possible in the category of pro-spectra:

L/p←− {L/pν}ν ←− Lp −→ p−1Lp .

Definition 6.1. LetK(ffLp) be defined by the homotopy cofiber sequence

K(L/p)
i∗−→ K(Lp) −→ K(ffLp) ,

where i∗ is the transfer map associated to i : Lp → L/p.

We think of K(ffLp) as the algebraic K-theory of a hypothetical fraction field of Lp,
intermediate between Lp and p

−1Lp, and similar to the 2-dimensional local fieldQp((u)). Its
mod p and v1 homotopy groups can be calculated using the following result, in combination

with the homotopy cofiber sequenceK(Fp) → K(�/p) → K(L/p).

Theorem 6.2 (Ausoni–Rognes [7, Thm. 7.6, Thm. 7.7]). V (1)∗TC(�/p; p) is a finitely
generated free Fp[v2]-module on 2p2 − 2p + 8 generators, which are located in degrees
−1 ≤ ∗ ≤ 2p2 + 2p− 2. There is an exact sequence of Fp[v2]-modules

0 → V (1)∗K(�/p)
trc−→ V (1)∗TC(�/p; p) −→ Σ−1Fp ⊕ Σ2p−2Fp → 0 .
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Figure 6.1. Fp[v2]-generators of E
2
s,t = H−s

mot(ffLp;Fp2(t/2)) =⇒ V (1)s+tK(ffLp)

Example 6.3. The expected E2-term for a spectral sequence

E2
s,t = H

−s
mot(ffLp;Fp2(t/2)) =⇒ V (1)s+tK(ffLp)

is displayed for p = 5 in Figure 6.1. In addition there are four sporadic copies of Fp, in
degrees 2p − 3, 2p − 2, 2p − 2 and 2p − 1. The motivic truncation properties for ffLp,
analogous to (5.1) and (5.2), are clearly visible, and conjecturally there is now a perfect

arithmetic duality pairing

Hr
ét(ffLp;Fp2(m))⊗H3−r

ét (ffLp;Fp2(2−m))
∪−→ H3

ét(ffLp;Fp2(2)) ∼= Z/p .

After such localization of Lp away from L/p, it may be possible to construct enough

Galois extensions of ffLp to realize its v2-localized motivic cohomology as continuous group

cohomology

Hr
ét(ffLp;Fp2(m)) ∼= Hr

gp(GffLp
;Fp2(m)) ,

for an absolute Galois group GffLp
of p-cohomological dimension 3, corresponding to some

maximal extension ffLp → Ω1. If each Galois extension of Qp can be lifted to an extension

of ffLp, we get a short exact sequence

1 → Iv1 −→ GffLp −→ GQp → 1 ,
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with Iv1 the inertia group over (v1). Here GQp
has p-cohomological dimension 2, and Iv1

will have p-cohomological dimension 1.

In the less structured setting of ring spectra up to homotopy it is possible to construct to-

tally ramified extensions of KUp, complementary to the unramified extension KUnr
p , with-

out inverting p. Torii [77, Thm. 2.5] shows that for each r ≥ 1 the homotopy cofiber

F (BZ/pr−1
+ ,KUp)

τ#
r−→ F (BZ/pr+,KUp) −→ KUp[ζpr ] ,

of the map of function spectra induced by the stable transfer map τr : BZ/pr+ → BZ/pr−1
+ ,

is a ring spectrum up to homotopy with π∗KUp[ζpr ] ∼= Zp[ζpr ][u±1], where ζpr denotes a

primitive pr-th root of unity. (He has similar realization results in theK(n)-local category.)
However, it does not make sense to talk about the algebraic K-theory of a ring spectrum up

to homotopy, so these constructions are only helpful if they can be made strict.

It is not possible to realizeKUp[ζpr ] as a strictly commutative ring spectrum. Angeltveit

[1, Rem. 5.18] uses the identity ψp(x) = xp + pθ(x) among power operations in π0 of a

K(1)-local strictly commutative ring spectrum to show that if −p admits a k-th root in such
a ring, with k ≥ 2, then p is invertible in that ring. For r = 1 we have Zp[ζp] = Zp[ξ] where
ξp−1 = −p, so for p odd this proves that adjoining ζp to KUp in a strictly commutative

context will also invert p.
It is, however, possible to adjoin ζp to π0 of the connective cover kup, in the category

of strictly commutative ring spectra, without fully inverting p. Instead, one must make some

positive power of the Bott element u ∈ π2(kup) singly divisible by p. If one thereafter

inverts u, it follows that p has also become invertible. To achieve this, we modify Torii’s

construction for r = 1 by replacing the transfer map with a norm map. This leads to the

G-Tate construction

BtG = tG(B)
G = [ẼG ∧ F (EG+, i∗B)]

G

for a spectrum B with G-action, cf. Greenlees–May [35, p. 3]. This construction preserves

strictly commutative ring structures, see McClure [50, Thm. 1].

Example 6.4. Let KU ′p[ξ] = (kup)
tZ/p denote the Z/p-Tate construction on the spectrum

kup with trivial Z/p-action, and let ku′p[ξ] = KU ′p[ξ][0,∞) be its connective cover. Ad-

ditively, these are generalized Eilenberg–MacLane spectra, cf. Davis–Mahowald [23] and

[35, Thm. 13.5]. Multiplicatively, π∗(KU ′p[ξ]) ∼= Zp[ξ][v±1] where p + ξp−1 = 0 and

|v| = 2. Furthermore,

π∗(ku
′
p[ξ])

∼= Zp[ξ][v] ,

and a morphism kup → ku′p[ξ] of strictly commutative ring spectra induces the ring ho-

momorphism Zp[u] → Zp[ξ][v] that maps u to ξ · v. There is no multiplicative morphism

KUp → KU ′p[ξ], but

KUp ∧kup ku
′
p[ξ] = u

−1ku′p[ξ] � KUQp(ξ) = KUQp(ζp)

is a totally ramified extension of KUQp = p−1KUp. We get a diagram of strictly commu-
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tative ring spectra

(HZp)tZ/p KU ′p[ξ]		 �� KUQp(ξ)

(HZp)tZ/p[0,∞)

��

��

ku′p[ξ]		 ��

��

��

kuQp(ξ)

��

��

HZ/p HZp[ξ]		 �� HQp(ξ)

with horizontal maps reducing modulo or inverting ξ, and vertical maps reducing modulo

or inverting v. Here π∗((HZp)tZ/p) ∼= Ĥ−∗(Z/p;Zp) = Z/p[v±1]. We view ku′p[ξ] as an
integral model for a 2-dimensional local field close toKUQp(ξ), but note that ku

′
p[ξ] is not

finite as a kup-module.

Example 6.5. Let (Z/p)× act on the group Z/p by multiplication, hence also on the Z/p-
Tate constructionKU ′p[ξ] = (kup)

tZ/p. Let

KU ′p = (KU ′p[ξ])
h(Z/p)×

be the homotopy fixed points, and let ku′p = KU ′p[0,∞) be its connective cover. These

are strictly commutative ring spectra, with π∗(KU ′p) ∼= Zp[u,w±1]/(pw + up−1) where
|w| = 2p − 2, and π∗(ku′p) ∼= Zp[u,w]/(pw + up−1). Multiplicative morphisms kup →
ku′p → ku′p[ξ] induce the inclusions Zp[u] → Zp[u,w]/(pw + up−1) → Zp[ξ][v] where w
maps to vp−1.

The morphism KU ′p → KU ′p[ξ] is a (Z/p)
×-Galois extension in the sense of [63]. The

morphism ku′p → ku′p[ξ] becomes (Z/p)×-Galois after inverting p or w. It remains to be

determined whether V (1)∗K(ku′p) remains purely v2-periodic, i.e., whether the multiplica-

tive approximation kup → ku′p counters the additive splitting of ku
′
p as a sum of suspended

Eilenberg–MacLane spectra.

Example 6.6. More generally, for r ≥ 1 let G = Z/pr, let P be the family of proper

subgroups of G, and let KUG[0,∞) be the “brutal” truncation of G-equivariant periodic
K-theory, cf. [34, p. 129]. Define

KU ′p[ζpr ] = (KUG[0,∞))tP = [ẼP ∧ F (EP+,KUG[0,∞))]G

to be the P-Tate construction, as in Greenlees–May [35, §17], and let ku′p[ζpr ] be its con-
nective cover. Then π∗(KU ′p[ζpr ]) ∼= Zp[ζpr ][v±1] and

π∗(ku
′
p[ζpr ])

∼= Zp[ζpr ][v] .

The map (KUG[0,∞))tP → (KUG)
tP induces the inclusion Zp[ζpr ] ⊂ Qp[ζpr ] in each

even degree. To prove this, one can compute Amitsur–Dress homology for the family P ,

use the generalized Tate spectral sequence from [35, §22], and then compare with the cal-

culation in [35, §19] of the periodic case. The cyclotomic extension Zp[ζpr ] arises as

(R(G)/J ′P)∧JP , where R(G) is the representation ring, JP is the kernel of the restric-

tion map R(G) → R(H), and J ′P is the image of the induction map R(H) → R(G),
where H is the index p subgroup in G.
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7. Logarithmic ring spectra

The heuristics from the last two sections suggest that we should attempt to construct ramified

finite extensions B → C of strictly commutative ring spectra B like �p, kup and en. The
Goerss–Hopkins–Miller obstruction theory [31] for strictly commutative B-algebra struc-

tures on such spectra C has vanishing obstruction groups in the case of unramified exten-

sions, but appears to be less useful in the case of ramification over (p), due to the presence

of nontrivial (topological) André–Quillen cohomology groups [11].

The same heuristics also suggest that we should approach the extension problem by

passing to mildly local versions of B, intermediate between B and p−1B. In arithmetic

algebraic geometry, one such intermediary is provided by logarithmic geometry, cf. Kato

[44]. An affine pre-log scheme (SpecR,M) is a scheme SpecR, a commutative monoidM ,

and a homomorphism α : M → (R, ·) to the underlying multiplicative monoid of R. More

precisely,M and α live étale locally on SpecR. In this wider context, there is a factorization

SpecR[M−1] −→ (SpecR,M) −→ SpecR

of the natural inclusion, and the right-hand map is often a well-behaved proper replacement

for the composite open immersion. Logarithmic structures on valuation rings in p-adic fields
were successfully used by Hesselholt–Madsen [38] to analyze the topological cyclic homol-

ogy and algebraicK-theory of these classical rings.

A theory of logarithmic structures on strictly commutative ring spectra was started by

the author in [64], and developed further in joint work with Sagave and Schlichtkrull. To

present it, we take the category CSpΣ of commutative symmetric ring spectra [40], with the

positive stable model structure [48, §14], as our model for strictly commutative ring spectra.

By the graded underlying space of a symmetric spectrum A we mean a diagram

ΩJ (A) : (n1,n2) !−→ Ωn2An1

of spaces, where (n1,n2) ranges over the objects in a category J . We call such a diagram

a J -space. Following Sagave, the natural category J to consider turns out to be isomor-

phic to Quillen’s construction Σ−1Σ, where Σ is the permutative groupoid of finite sets and

bijections. Its nerve BJ ∼= B(Σ−1Σ) is homotopy equivalent to QS0 = Ω∞S. For any

J -space X , the homotopy colimit XhJ = hocolimJ X is augmented over BJ , so we say

thatX is QS0-graded. A mapX → Y of J -spaces is called a J -equivalence if the induced

map XhJ → YhJ is a weak equivalence.

If A is a commutative symmetric ring spectrum, then ΩJ (A) is a commutative monoid

with respect to a convolution product in the category of J -spaces. The category CSJ of

commutative J -space monoids has a positive projective model structure [70, §4], with the

J -equivalences as the weak equivalences, and is Quillen equivalent to a category of E∞
spaces over BJ . The functor ΩJ : CSpΣ → CSJ admits a left adjointM !→ SJ [M ], and
(SJ [−],ΩJ ) is a Quillen adjunction.

There is a commutative submonoid of graded homotopy units ι : GLJ1 (A) ⊂ ΩJ (A). A
pre-log ring spectrum (A,M,α) is a commutative symmetric ring spectrumAwith a pre-log

structure (M,α), i.e., a commutative J -space monoid M and a map α : M → ΩJ (A) in
CSJ . If the pullback α−1(GLJ1 (A)) → GLJ1 (A) is a J -equivalence we call (M,α) a log
structure and (A,M,α) a log ring spectrum. We often omit α from the notation.

In order to classify extensions (A,M) → (B,N) of pre-log ring spectra, one is led to

study infinitesimal deformations and derivations in this category. Derivations are corepre-
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sented by a logarithmic version TAQ(A,M) of topological André–Quillen homology, de-

fined by a pushout

A ∧SJ [M ] TAQ(S
J [M ])

ψ
��

α

��

A ∧ γ(M)

��

TAQ(A) �� TAQ(A,M)

of A-module spectra, cf. [64, Def. 11.19] and [69, Def. 5.20]. Here TAQ(A) is the ordinary
topological André–Quillen homology, as defined by Basterra [10], and γ(M) is the connec-
tive spectrum associated to the E∞ spaceMhJ . A morphism (A,M) → (B,N) is formally

log étale if B ∧A TAQ(A,M) → TAQ(B,N) is an equivalence.
Let j : e→ E be a fibration of commutative symmetric ring spectra. The direct image of

the trivial log structure on E is the log structure (j∗GL
J
1 (E), α) on e given by the pullback

j∗GL
J
1 (E) ��

α

��

GLJ1 (E)

ι

��

ΩJ (e)
ΩJ (j)

�� ΩJ (E)

in CSJ . Applying this natural construction to the vertical maps in (4.1), we get the following

example. Note that �p → kup is not étale, while Lp → KUp is Δ-Galois, hence étale.

Theorem 7.1 (Sagave [69, Thm. 6.1]). The morphism

φ : (�p, j∗GL
J
1 (Lp)) −→ (kup, j∗GL

J
1 (KUp))

is log étale.

In order to approximate algebraic K-theory, one is likewise led to study logarithmic

topological Hochschild homology and logarithmic topological cyclic homology. The former

is defined by a pushout

SJ [Bcy(M)]
ρ

��

α

��

SJ [Brep(M)]

��

THH(A) �� THH(A,M)

in CSpΣ, cf. [65, §4]. Here THH(A) is the ordinary topological Hochschild homology ofA,
given by the cyclic bar construction of A in CSpΣ. The cyclic bar construction Bcy(M) is
formed in CSJ , and is naturally augmented overM . The replete bar construction Brep(M)
can be viewed as a fibrant replacement of Bcy(M) over M in a group completion model

structure on CSJ , cf. [68, Thm. 1.6], but also has a more direct description as the (homotopy)

pullback in the right hand square below:

Bcy(M)
ρ

��

ε

��

Brep(M) ��

��

Bcy(Mgp)

ε

��

M
= �� M

η
�� Mgp .
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Here η : M → Mgp is a group completion in CSJ , which means that (Mgp)hJ is a group

completion of the E∞ space MhJ . The role of repletion in homotopy theory is similar to

that of working within the subcategory of fine and saturated logarithmic structures in the

discrete setting [44, §2].

A morphism (A,M) → (B,N) is formally log thh-étale if B ∧A THH(A,M) →
THH(B,N) is an equivalence. The following theorem strengthens the previous result.

Theorem 7.2 (Rognes–Sagave–Schlichtkrull [66, Thm. 1.5]). The morphism

φ : (�p, j∗GL
J
1 (Lp)) −→ (kup, j∗GL

J
1 (KUp))

is log thh-étale.

Remark 7.3. These results harmonize with the classical correspondence between tamely

ramified extensions and log étale extensions. By Noether’s theorem [53], tame ramification

corresponds locally to the existence of a normal basis. This conforms with the observation

that kup is a retract of a finite cell �p[Δ]-module, so that �p → kup is tamely ramified.

By contrast, ku2 is not a retract of a finite cell ko2[C2]-module, e.g. because (ku2)
tC2 is

nontrivial, so ko2 → ku2 is wildly ramified.

We say that a commutative symmetric ring spectrum E is d-periodic if d is the minimal

positive integer such that π∗(E) contains a unit in degree d.

Theorem 7.4 (Rognes–Sagave–Schlichtkrull [65, Thm. 1.5]). Let E in CSpΣ be d-periodic,
with connective cover j : e→ E. There is a natural homotopy cofiber sequence

THH(e)
ρ−→ THH(e, j∗GL

J
1 (E))

∂−→ ΣTHH(e[0, d)) ,

where e[0, d) is the (d− 1)-th Postnikov section of e.

These results allow us to realize the strategy outlined in [3, §10] to compute the V (1)-
homotopy of THH(kup) by way of

THH(�p) , THH(�p, j∗GL
J
1 (Lp)) and THH(kup, j∗GL

J
1 (KUp)).

The details are given in [66, §7, §8].

When e[0, d) = Hπ0(e) with π0(e) regular, Blumberg–Mandell [15, Thm. 4.2.1] have

constructed a map of horizontal homotopy cofiber sequences

K(π0(e))
i∗ ��

��

K(e)
j∗

��

��

K(E)

��

THH(π0(e))
i∗ �� THH(e)

j∗
�� WTHHΓ(e|E)

where the vertical arrows are trace maps.

Conjecture 7.5. There is an equivalence of cyclotomic spectra

THH(e, j∗GL
J
1 (E)) �WTHHΓ(e|E) ,

compatible with the maps from THH(e) and to ΣTHH(π0(e)).
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The author hopes that a logarithmic analog of the Goerss–Hopkins–Miller obstruction

theory [31] can be developed to classify log extensions of log ring spectra, and that in the

case of log étale extensions the obstruction groups will vanish in such a way as to enable

the construction of interesting examples. The underlying strictly commutative ring spectra

should then provide novel examples of tamely ramified extensions, and realize a larger part

of motivic cohomology as a case of Galois cohomology.
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The topology of positive scalar curvature

Thomas Schick

Abstract. Given a smooth closed manifold M we study the space of Riemannian metrics of positive

scalar curvature on M . A long-standing question is: when is this space non-empty (i.e. when does M
admit a metric of positive scalar curvature)? More generally: what is the topology of this space? For

example, what are its homotopy groups? Higher index theory of the Dirac operator is the basic tool to

address these questions. This has seen tremendous development in recent years, and in this survey we

will discuss some of the most pertinent examples. In particular, we will show how advancements of

large scale index theory (also called coarse index theory) give rise to new types of obstructions, and

provide the tools for a systematic study of the existence and classification problem via the K-theory of

C∗-algebras. This is part of a program “mapping the topology of positive scalar curvature to analysis”.

In addition, we will show how advanced surgery theory and smoothing theory can be used to construct

the first elements of infinite order in the k-th homotopy groups of the space of metrics of positive scalar

curvature for arbitrarily large k. Moreover, these examples are the first ones which remain non-trivial

in the moduli space of such metrics.
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58D27, 58B05, 53C23, 19K56, 58J22, 19K33, 46L80, 57R15, 57N16, 57R65.

Keywords. Positive scalar curvature, higher index theory, large scale index theory, coarse index theory,
coarse geometry, C∗-index theory.

1. Introduction

One of the fundamental questions at the interface of geometry and topology concerns the

relation between local geometry and global topology.

More specifically, given a compact smooth manifoldM without boundary, what are the

possibilities for Riemannian metrics onM? Even more specifically, can we find a metric of

positive scalar curvature onM and if yes, what does the space of such metrics look like?

Recall the following definition of the scalar curvature function.

Definition 1.1. Given an n-dimensional smooth Riemannian manifold (M, g), the scalar
curvature at x describes the volume expansion of small balls around x via

vol(Bε(M,x))

vol(Bε(Rn, 0))
= 1− scal(x)

6(n+ 2)
ε2 +O(ε4),

compare [3, 0.60]. In particular, this means that if scal(x) > 0 then geodesic balls around

x for small radius have smaller volume than the comparison balls in Euclidean space. Of
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course, alternatively, scal(x) can be defined as a second contraction of the Riemannian cur-

vature operator at x.

The most important tool to investigate these questions goes back to Erwin Schrödinger

[30], rediscovered by André Lichnerowicz [22]: If M has positive scalar curvature and a

spin structure then the Dirac operator onM is invertible. This forces its index (which is the

super-dimension of the null space) to vanish.

Recall that a spin structure is a (global) differential geometric datum for a Riemannian

manifold M which allows to construct a specific Riemannian vector bundle S, the spinor

bundle, together with a specific differential operator of order 1, the Dirac operator D (com-

pare e.g. [21] for a nice introduction).

On the other hand non-vanishing of the index follows from index theorems, giving rise

to powerful obstructions to positive scalar curvature. For example, the Atiyah-Singer in-

dex theorem says that ind(D) = Â(M), where the Â-genus is a fundamental differential

topological invariant (not depending on the metric!).

The most intriguing question around this method to rule out positive scalar curvature

asks to which extent a sophisticated refinement of ind(D) the Rosenberg index αR(M),
what takes values in the K-theory of the (real) C∗-algebra of the fundamental group Γ of

M , is the only obstruction. This is the content of the (stable) Gromov-Lawson-Rosenberg

conjecture.

Conjecture 1.2. Let M be a connected closed spin manifold of dimension ≥ 5. The
Gromov-Lawson-Rosenberg conjecture asserts thatM admits a metric with positive scalar
curvature if and only if αR(M) = 0 ∈ KO∗(C∗Rπ1(M)).

The stable Gromov-Lawson-Rosenberg conjecture claims that αR(M) = 0 if and only
if there is k ∈ N such that M × Bk admits a metric with positive scalar curvature. Here,
B is any so-called Bott manifold i.e. a simply connected 8-dimensional spin manifold with
Â(M) = 1.

To put the stable version in context: given two closed manifolds M,B such that M
admits a metric of positive scalar curvature, so does M × B, simply using the product of

a sufficiently scaled metric on M with any metric on B. Therefore the unstable Gromov-

Lawson-Rosenberg conjecture implies the stable one.

Recall here that for a discrete group Γ the maximal group C∗-algebra C∗maxΓ is de-

fined as the completion of the group ring C[Γ] with respect to the maximal possible C∗-
norm on C[Γ], and the reduced group C∗-algebra C∗rΓ is defined as the norm closure of

C[Γ], embedded in B(l2(Γ)) via the regular representation. The real group C∗-algebras
C∗R,rΓ and C∗R,maxΓ replace C by R throughout. Using them gives more information,

necessary in the Gromov-Lawson-Rosenberg conjecture. In this survey, for simplicity we

will not discuss them but concentrate on the complex versions. For the Rosenberg in-

dex one can use them all, where a priori αmax(M) ∈ K∗(C∗maxπ1(M)) is stronger than
αr(M) ∈ K∗(C∗rπ1(M)). The Baum-Connes isomorphism conjecture, compare [2], pre-

dicts the calculation ofK∗(C∗rΓ) in terms of the equivariant K-homology of a suitable clas-

sifying space. The strong Novikov conjecture predicts that this equivariant K-homology at

least embeds.

In celebrated work Stephan Stolz [32, 33] has established the following two partial pos-

itive results.

Theorem 1.3. The Gromov-Lawson-Rosenberg conjecture is true for manifolds with trivial
fundamental group. In other words, ifM is a closed connected spin manifold of dimension
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≥ 5 with trivial fundamental group, thenM admits a Riemannian metric with positive scalar
curvature if and only if αR(M) = 0.

More generally, if π1(M) satisfies the strong Novikov conjecture then the stable Gromov-
Lawson-Rosenberg conjecture is true forM .

On the other hand, recall the counterexamples of [6, 28] which show that the unstable

Gromov-Lawson-Rosenberg conjecture is not always true.

Theorem 1.4. For 5 ≤ n ≤ 8 there exist closed spin manifolds Mn of dimension n such
that α(Mn) = 0, but such thatMn does not admit a metric with positive scalar curvature.

The manifoldsMn can be constructed with fundamental groupsZn−1×Z/3Z or with ap-

propriately chosen torsion-free fundamental group, but not with a free abelian fundamental

group [19]. It remains one of the most intriguing open questions whether the Gromov-

Lawson-Rosenberg conjecture is true for all n-dimensional manifolds with fundamental

group (Z/3Z)n.
The obstructions used in the counterexamples of Theorem 1.4 are not based on index

theory, but on the minimal hypersurface method of Richard Schoen and Shing-Tung Yau

[29] which we will not discuss further in this survey.

As a companion to the Gromov-Lawson-Rosenberg conjecture we suggest a slightly

weaker conjecture about the strength of the Rosenberg index:

Conjecture 1.5. Let M be a closed spin manifold. Every obstruction to positive scalar
curvature for manifolds of dimension ≥ 5 which is based on index theory of Dirac operators
can be read off the Rosenberg index αR(M) ∈ KO∗(C∗Rπ1(M)).

This is vague because the statement “based on index theory of Dirac operators” certainly

leaves room for interpretation.

By Stolz’ Theorem 1.3, Conjecture 1.5 follows from the strong Novikov conjecture. On

the other hand, every index theoretic obstruction which is not (yet) understood in terms of

the Rosenberg index is particularly interesting. After all, it is a potential starting point to

obtain counterexamples to the strong Novikov conjecture.

Around this question we discuss the following results [8, 10, 11].

Theorem 1.6. Let M be an area-enlargeable spin manifold (which implies by the work of
Mikhail Gromov and Blaine Lawson [7] that M does not admit a metric of positive scalar
curvature).

Then αmax(M) �= 0 ∈ K∗(C∗maxπ1(M)).
IfM is even (length)-enlargeable, then αr(M) �= 0 ∈ K∗(C∗rπ1(M)).

Recall that a closed n-dimensional manifold M is called enlargeable if it admits a se-

quence of coveringsMi →M which come with compactly supported maps fi : Mi → Sn of
non-zero degree but such that supx∈Mi

‖Dxfi‖ tends to 0 as i→ ∞. It is area-enlargeable
if the same holds with

∥∥Λ2Dxfi
∥∥ (a weaker condition). For the definition of the norms, we

use a fixed metric onM and its pull-backs toMi and a fixed metric on Sn.
As a potential counterexample to Conjecture 1.5 we describe a codimension-2 obstruc-

tion to positive scalar curvature (in a special form introduced by Mikhail Gromov and Blaine

Lawson in [7, Theorem 7.5]) which is based on index theory of the Dirac operator, but which

so far is not known to be encompassed by the Rosenberg index.
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Theorem 1.7 (compare [9, Section 4]). Let M be a closed connected spin manifold with
vanishing second homotopy group. Assume that N ⊂ M is a smooth submanifold of codi-
mension 2 with trivial normal bundle and such that the inclusion induces an injection on the
level of fundamental groups π1(N) ↪→ π1(M). Finally, assume that the Rosenberg index of
the Dirac operator on the submanifold N does not vanish: 0 �= α(N) ∈ K∗(C∗π1N).

ThenM does not admit a Riemannian metric with positive scalar curvature.

(Secondary) index invariants of the Dirac operator can be used in the classification of

metrics of positive scalar curvature, if applied to appropriately constructed examples. “Clas-

sification” means in particular to understand how many deformation classes of metrics of

positive scalar curvature a given manifold carries, or more generally what the topology of

the space of such metrics looks like.

A promising tool to systematically study the existence and classification problem is the

“Stolz positive scalar curvature long exact sequence”. It has the form

· · · → Rn+1(π1(M)) → Posn(M) → Ωspin
n (M) → Rn(π1(M)) → · · ·

Here the group we would like to understand is Posn(M), the structure group of metrics

of positive scalar curvature (on the spin manifold M and related manifolds, and modulo

a suitable bordism relation). The group Ωspin
n (M) is the usual spin bordism group from

algebraic topology, which is very well understood. Finally, R∗(π1(M)) indeed depends

only on the fundamental group of the manifold in question. Note that this positive scalar

curvature sequence is very similar in spirit to the surgery exact sequence coming up in the

classification of manifolds.

Unfortunately we have not yet been able to fully compute all the terms in this exact

sequence, even for the simplest possible case of trivial fundamental group. However, a

lot of information can be gained using index theory by mapping out to more manageable

targets. Here, we refer in particular to [23], joint with Paolo Piazza, where we construct a

commutative diagram of maps, using large scale index theory, to the K-theory sequence of

associated C∗-algebras

· · · → Kn+1(C
∗
rΓ) → Kn+1(D

∗M̃Γ) → Kn(M)
α−→ Kn(C

∗
rΓ) → · · ·

We again abbreviate Γ = π1(M). This sequence was introduced by Nigel Higson and John

Roe [14] and called there the analytic surgery exact sequence. A lot is known about this

K-theory sequence: Kn(M) is just the usual topological K-homology of M (an important

generalized homology theory). Moreover, α is the Baum-Connes assembly map.

A good deal of this survey will discuss the large scale index theory underlying the con-

structions. In particular, we will explain two primary and secondary index theorems which

play key roles in the application of this theory:

• A vanishing theorem for the large scale index of the Dirac operator under partial pos-

itivity of the scalar curvature, Theorem 6.1.

• A higher secondary index theorem, that shows how the large scale index of a manifold

with boundary (which has positive scalar curvature near the boundary) determines a

structure invariant of the boundary’s metric of positive scalar curvature.

A fundamental problem in the use of (higher) index theory centers around the ques-

tion whether there is a difference between topological information (which typically can be
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computed much more systematically) and analytical information (which has the desired ge-

ometric consequences but often is hard to compute). This is answered (conjecturally) by

the strong Novikov conjecture. This explains why these conjectures play such a central role

in higher index theory. The appropriate version for large scale index theory is the coarse
Baum-Connes conjecture (here, “with coefficients”, for details compare Section 4).

Conjecture 1.8. Given a locally compact metric space X of bounded geometry and an
auxiliary coefficient C∗-algebra A, then in the composition

Klf
∗ (X;A) → KX∗(X;A) → K∗(C

∗(X;A))

the second map is an isomorphism. Here, Klf
∗ (X) is the topologists’ locally finite K-

homology (a generalized homology theory) of the space X , and Klf
∗ (X;A) is a version

with coefficients, still a generalized cohomology theory. Finally KX∗(X;A), the coarse
K-homology, is a variant which depends only on the large scale geometry of X .

This conjecture has many concrete applications. It implies the strong Novikov conjec-

ture. However, I expect that counterexamples to these conjectures eventually will be found.

Concerning the classification question mentioned above, in the last part of the survey we

will discuss a new construction method, based on advanced surgery theory and smoothing

theory in the topology of manifolds.

Definition 1.9. We define Riem+(M) to be the space of Riemannian metrics of positive

scalar curvature onM , an infinite dimensional manifold.

The main result is that πk(Riem
+(M)) is very often non-trivial, even its image in the

moduli space of such metrics remains non-trivial.

More precisely, we have the following theorem, derived in joint work with Bernhard

Hanke and Wolfgang Steimle (compare [12, Theorem 1.1]).

Theorem 1.10. For every k ∈ N, there is nk ∈ N such that, whenever M is a connected
closed spin manifold with a metric g0 of positive scalar curvature and with dim(M) > nk
and k+dim(M)+1 ≡ 0 (mod 8), then πk(Riem+(M), g0) contains an element of infinite
order.

IfM is a sphere, then the image of this element in πk(Riem+(M)/Diffeox0
(M)) also

has infinite order, where the diffeomorphism group acts by pullback.

The second part of the theorem implies that the examples constructed do not rely on the

homotopy properties of the diffeomorphism group ofM . This is in contrast to all previous

known cases, compare in particular [5, 17].

Here, Diffeox0(M) is the subgroup of the full diffeomorphism group consisting of dif-

feomorphisms ofM which fix the point x0 ∈M and whose differential at x0 is the identity.
It is much more reasonable to use this subgroup instead of the full diffeomorphism group,

because it ensures that the moduli space Riem+(M)/Diffeox0(M) remains an infinite di-

mensional manifold, instead of producing a very singular space.

Remark 1.11. Most of the results mentioned so far display also how poorly the topology of

positive scalar curvature is understood: the method relies on the index theory of the Dirac

operator and the Schrödinger-Lichnerowicz formula. This is quite a miraculous relation

which certainly is very helpful. But it requires the presence of a spin structure. Manifolds
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without spin structure (and where not even the universal covering admits a spin structure) a

priori shouldn’t be very different from manifolds with spin structure, i.e. one would expect

that many of them do not admit a metric of positive scalar curvature. But until now we

have almost no tools to decide this (apart from the minimal surface method, which is only

established in small dimensions).

Almost any progress in this direction would be a real breakthrough. An interesting recent

contribution is the work of Dmitri Bolotov and Alexander Dranishnikov, which deals in

particular with n-dimensional non-spin manifolds with fundamental group free abelian of

rank n [4].

2. Index theory and obstructions to positive scalar curvature

The underlying principle how scalar curvature is coupled to the Dirac operator comes from a

formula of Schrödinger [30], rediscovered and first applied by Lichnerowicz [22]. The start-

ing point is a spin manifold (M, g), with spinor bundleS andDirac operatorD. Schrödinger’s

formula says

D2 = ∇∗∇+
scal

4
.

The first term on the right is the “rough Laplacian”, by definition a non-negative unbounded

operator on the L2-sections of S. The second term stands for point-wise multiplication with

the scalar curvature function. If the scalar curvature is uniformly positive, this is a positive

operator and henceD is invertible.

Let us recall the basics of the index theory of the Dirac operator, formulated in the lan-

guage of operator algebras and K-theory. This is the most convenient setup for the general-

izations we have in mind.

We start with a very brief introduction to the K-theory of C∗-algebras.

1. The assignment A !→ K∗(A) is a functor from the category of C∗-algebras to the

category of graded abelian groups.

2. We can (for a unital C∗-algebra A) define K0(A) as the group of equivalence classes

of projectors in A and the matrix algebrasMn(A).

3. We can (for a unital C∗-algebra A) define K1(A) as the group of equivalence classes

of invertible elements in A andMn(A).

4. There is a natural Bott periodicity isomorphismKn(A) → Kn+2(A).

5. For each short exact sequence ofC∗-algebras 0 → I → A→ Q→ 0 there is naturally
associated a long exact sequence in K-theory

· · · → Kn+1(Q)
δ−→ Kn(I) → Kn(A) → Kn(Q) → · · · .

6. One can generalize K-theory for real and graded C∗-algebras. In the former case

Bottperiodicity has period 8.

7. On can use extra symmetries based on Clifford algebras to give descriptions ofKn(A)
which are adapted to the treatment of n-dimensional spin manifolds.
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On an even dimensional manifold, the spinor bundle canonically splits into S = S+⊕S−
and the Dirac operator is odd, i.e. has the form D =

(
0 D−

D+ 0

)
. Let χ : R → R be any

continuous function which is odd (i.e. χ(−x) = χ(x) for x ∈ R) and with limx→∞ χ(x) =
1. Functional calculus allows to define χ(D), which is an odd bounded operator acting

on L2(S). Choosing an isometry U : L2(S−) → L2(S+) we form Uχ(D)+ ∈ B :=
B(L2(S+)), the C∗-algebra of all bounded operators on L2(S+). If M is compact, ellip-
ticity ofD implies that Uχ(D)+ is invertible modulo the idealK := K(L2(S+)) of compact

operators. The short exact sequence of C∗-algebras 0 → K → B → B/K → 0 gives rise to

a long exact K-theory sequence and the relevant piece of this exact sequence for us is

· · · → K1(B) → K1(B/K)
δ−→ K0(K) → . . . (2.1)

As invertible elements in A represent classes in K1(A), the above spectral considerations

yield a class [Uχ(D)+] ∈ K1(B/K) and we define the index to be ind(D) := δ(Uχ(D)+) ∈
K0(K).

Of course, for the compact operators, K0(K) is isomorphic to Z, generated by any rank

1 projector in K. In our case δ(Uχ(D)+) is represented by the projector onto the kernel of

D+ minus the projector onto the kernel of D−, so that we arrive at the usual ind(D) :=
dimker(D+)− dimker(D−).

Analysing the situation more closely, the additional geometric information of positive

scalar curvature implies invertibility ofD which translates to the fact that Uχ(D)+ is invert-

ible already in B and then [Uχ(D)+] ∈ K1(B/K) in the sequence (2.1) has a lift to K1(B).
Exactness implies ind(D) = 0.

A second main ingredient concerning the index of the Dirac operator is the Atiyah-Singer

index theorem [1]. A priori ind(D) (like the operatorD) depends on the Riemannian metric

onM . However, the index theorem expresses it in terms which are independent of the metric.

More specifically, ind(D) = Â(M), the Â-genus ofM .

This result has vast generalizations in many directions. A very important one (introduced

by Jonathan Rosenberg [27]) modifies the Dirac operator by “twisting” with a smooth flat

bundle E of (finitely generated projective) modules over an auxiliary C∗-algebra A. One

then obtains an index in K∗(A). Indeed, the construction is pretty much the same as above,

with the important innovation that one replaces the scalars C by the more interesting C∗-
algebra A, as detailed in Section 3.

The second generalization works for a non-compact manifold X. In this case the clas-

sical Fredholm property of the Dirac operator fails. To overcome this, large scale index
theory, synonymously called coarse index theory is developing. Again this is based on C∗-
techniques and pioneered by John Roe [24]. It is tailor-made for the non-compact setting.

One obtains an index in the K-theory of the Roe algebra C∗(X;A). In C∗-algebras, posi-
tivity implies invertibility, which finally implies that all the generalized indices vanish if one

starts with a metric of uniformly positive scalar curvature.

The general pattern (from the point of view adopted in this article) of index theory is the

following:

1. The geometry of the manifoldM produces an interesting operatorD.

2. This operators defines an element in an operator algebra A, which depends on the

precise context.
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3. The operator satisfies a Fredholm condition, which means it is invertible module an

ideal I of the algebra A, again depending on the context.

4. The algebras in question are C∗-algebras. This implies that “positivity” of elements is

defined, and moreover “positivity” implies invertibility.

5. A very special additional geometric input implies positivity and hence honest invert-

ibility of our operator. For us, this special context will be the fact that we deal with a

metric of uniformly positive scalar curvature.

6. Indeed, any element which is invertible in A modulo an ideal I defines an element

in Kn+1(A/I), where n = dim(M). (Instead of getting K1, the fact that we deal

with the Dirac operator of an n-dimensional manifold produces additional symme-

tries (related to actions of the Clifford algebra Cln) which give rise to the element in

Kn+1(A/I).)

7. We interpret the class defined by the Dirac operator as a fundamental class [M ] ∈
Kn+1(A/I). Homotopy invariance of K-theory implies that [M ] does not depend on

the full geometric data which goes in the construction of the operator D, but only on

the topology ofM .

8. The K-theory exact sequence of the extension 0 → I → A → A/I → 0 contains the

boundary map δ. We call the image of [M ] under δ the index

δ : Kn+1(A/I) → Kn(I) ; [M ] !→ ind(D).

Note that the degree arises from additional dimension-dependent symmetries which

we do not discuss in this survey.

9. The additional geometric positivity assumption (uniformly positive scalar curvature)

which implies invertibility already in A, gives rise to a canonical lift of [M ] to an

element ρ(M,g) ∈ Kn+1(A). Because of this, we think of Kn+1(A) as a structure
group and ρ(M,g) is a structure class. It contains information about the underlying

geometry.

Indeed, we want to advocate here the idea that the setup just described has quite a number

of different manifestations, depending on the situation at hand. It can be adapted in rather

flexible ways. The next section treats one example.

3. Large scale index theory

We describe “large scale index theory” for a complete Riemannian manifold of positive

dimension.

Therefore, let (M, g) be such a complete Riemannian manifold. Fix a Hermitian vector

bundle E → M of positive dimension. We first describe the operator algebras which are

relevant. They are all defined as norm-closed subalgebras of B(L2(M ;E)).

Definition 3.1. We need the following concepts.

• An operator T : L2(M ;E) → L2(M ;E) has finite propagation (namely ≤ R) if
φTψ = 0 whenever φ, ψ ∈ Cc(M) are compactly supported continuous functions

whose supports have distance at least R.



The topology of positive scalar curvature 1293

Here, we think of φ also as bounded operator on L2(M ;E), acting by point-wise

multiplication.

• T as above is called locally compact if φT and Tφ are compact operators whenever

φ ∈ Cc(M).

• T is called pseudolocal if φTψ is compact whenever φ, ψ ∈ Cc(M) with disjoint

supports, i.e. such that φψ = 0.

• The Roe algebra C∗(M) is defined as the norm closure of the algebra of all bounded

finite propagation operators which are locally compact. It is an ideal in the structure
algebra D∗(M) which is defined as the closure of the algebra of finite propagation

pseudolocal operators.

• Assume that a discrete group Γ acts by isometries on M . Requiring in the above

definitions that the finite propagation operators are in addition Γ-equivariant and then

completing, we obtain the pair C∗(M)Γ ⊂ D∗(M)Γ.

Remark 3.2. For technical reasons, one actually should replace the bundle E by the bundle

E ⊗ l2(N) whose fibers are separable Hilbert spaces (or in the equivariant case by E ⊗
l2(N) ⊗ l2(Γ)). Via the embedding B(L2(M ;E)) → B(L2(M ;E ⊗ l2(N))) implicitly

we think of operators on L2(M ;E) as operators in the bigger algebra without mentioning

this. Using the larger bundle guarantees functoriality and independence onE, implicit in our

notion D∗(M).

Let A be an auxiliary C∗-algebra. Typical examples arise from a discrete group Γ,
namely C∗maxΓ or C∗rΓ. An important role is then played by smooth bundles E over M
with fibers finitely generated projective A-modules. These inherit fiberwise A-valued inner

products (or more precisely HilbertA-module structures in the sense of [20]). Integrating the

fiberwise inner product then also defines a Hilbert A-module structure on the space of con-

tinuous compactly supported sections of E. By completion, we obtain the Hilbert A-module

L2(M ;E). The bounded, adjointable, A-linear operators on L2(M ;E) form the Banach

algebra B(L2(M ;A)). The ideal of A-compact operators is defined as the norm closure of

the ideal generated by operators of the form s !→ v · 〈s, w〉;L2(M ;E) → L2(M ;E), with
v, w ∈ L2(M ;E).

We now define C∗(M ;A) and D∗(M ;A) mimicking Definition 3.1, but replacing the

Hilbert space concepts by the Hilbert A-module concepts throughout. In particular, we use

A-compact operators instead of compact operators. Also, the stabilization as discussed in

Remark 3.2 is replaced suitably.

Example 3.3. Given a connected manifoldM with fundamental group Γ, there is a canonical
C∗Γ-module bundle, the Mishchenko bundle L. It is the flat bundle associated to the left

multiplication action of Γ on C∗Γ, where we treat C∗Γ as the free right C∗Γ-module of

rank 1, i.e. L = M̃ ×Γ C
∗Γ.

The construction of the large scale index is now based on two principles.

Proposition 3.4. Let M be a complete Riemannian spin manifold, A an auxiliary C∗-
algebra and E → M a smooth bundle of (finitely generated projective) A-modules with
compatible connection. We form the twisted Dirac operator DE as an unbounded operator
on the Hilbert A-module of L2-spinors onM with values in E.
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For the operator DE , there exists a functional calculus. In particular, we can form
f(DE) for f : R → R a continuous function which vanishes at ∞ or which has limits as
t → ±∞. Moreover, f(DE) depends only on the restriction of f to the spectrum of DE .
Then

(1) if f has a compactly supported (distributional) Fourier transform then f(DE) has
finite propagation.

(2) if f vanishes at infinity, then f(DE) is locally compact; if f(t) converges as t→ ±∞
then f(DE) is at least pseudolocal.

The first property is a rather direct consequence of unit propagation speed for the fundamen-
tal solution of the heat equation. The second one is an incarnation of ellipticity and local
elliptic regularity.

These results are well known and have been used a lot in the literature (compare in

particular [24]), indeed they form the basis of “large scale index theory”. For the very general

case needed in the proposition (with coefficients, arbitrary complete M ), a complete proof

is given in [9].

The construction of the large scale index is now rather straight-forward:

1. Take any continuous function ψ : R → R (later assumed to be odd) with limt→∞ ψ(t)
= 1. Then Proposition 3.4 implies that ψ(DE) belongs to D

∗(M ;A). Even better,

1− ψ2 vanishes at infinity, so that 1− ψ(DE)
2 belongs to C∗(M ;A).

2. By the principles listed at the end of Section 2, ψ(DE) gives rise to an element [M ;E]
in Kn+1(D

∗(M ;A)/C∗(M ;A)). (Here, we again avoid the discussion of the addi-

tional symmetries which raise the index by n). Homotopy invariance of C∗-algebra
K-theory implies that this element is independent of the choice of ψ and depends only

on the large scale features of the metric onM .

3. We define the large scale index (or synonymously “coarse index”)

ind(DE) ∈ Kn(C
∗(M ;A))

as the image of [M ;E] under the boundary map of the long exact K-theory sequence.

4. IfM has uniformly positive scalar curvature andE is flat, the Lichnerowicz-Weitzenböck

formula implies that 0 is not in the spectrum of DE . Then we can choose a function

ψ which is equal to −1 on the negative part of the spectrum of DE and equal to +1
on the positive part of the spectrum of DE , so that 1 − ψ2 vanishes on the spec-

trum of DE , i.e. ψ
2(DE) = 1. This means that [M ;E] lifts in a canonical way to

ρ(D;E) ∈ Kn+1(D
∗(M ;A)) (this class depends on the metric of positive scalar cur-

vature) and it implies that ind(DE) = 0.

5. A special feature is that Kn+1(D
∗(M ;A)/C∗(M ;A)) indeed is homological in na-

ture: it is canonically isomorphic to the locally finite K-homology Klf
n (M ;A), satis-

fying the Eilenberg-Steenrod axioms of a (locally finite) generalized homology theory.

Example 3.5. If we apply this construction to a closed n-dimensional spin manifoldM and

the Mishchenko bundle L onM , we obtain ind(DL) ∈ Kn(C
∗(M ;C∗Γ)).

However, there is a canonical isomorphism K∗(C∗(M ;C∗Γ)) ∼= K∗(C∗Γ). Using this

isomorphism, the Rosenberg index mentioned above is exactly ind(DL):

α(M) = ind(DL) ∈ Kn(C
∗Γ) ∼= Kn(C

∗(M ;C∗Γ)).
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The reduced C∗-algebra C∗rΓ of a discrete group is a canonical construction which cap-

tures many features of the group Γ, e.g. concerning its representation theory. However, it

is very rigid. In particular, it is not functorial: a homomorphism Γ1 → Γ2 will in gen-

eral not induce a homomorphism C∗rΓ1 → C∗rΓ2. As a consequence it is very hard to find

homomorphisms out of C∗rΓ and also out ofK∗(C∗rΓ).
Coarse geometry, however, immediately provides such a homomorphism (which allows

one to detect elements inK∗(C∗rΓ)). This is based on simple calculation: If a discrete group

Γ isometrically acts freely and cocompactly on a metric spaceX, then C∗XΓ is isomorphic

to C∗r (Γ)⊗ K. “Forgetting equivariance” therefore gives the composite homomorphism

C∗rΓ ↪→ C∗rΓ⊗ K ∼= C∗XΓ ↪→ C∗X.

The induced map in K-theory allows one to detect elements in K∗(C∗rΓ) using large scale

index theory, as we will show in one case in Section 5.

4. The coarse Baum-Connes conjecture

Being the home of important index invariants, it is very important to be able to compute the

K-theory of the Roe algebras C∗(M ;A) for arbitrary complete manifoldsM and coefficient

C∗-algebras A. It turns out that there are quite a number of tools to do this. Even better, at

least conjecturally there is a purely homological answer to this task.

Let us start with the three most important computational tools.

1. K∗(C∗(M ;A)) is invariant under coarse homotopy, compare [13].

2. There are powerful vanishing theorems forK∗(C∗(M ;A)). An important one is valid

ifM is flasque [24, Proposition 9.4]. This means thatM admits a shift map f : M →
M such that, on the one hand, f is uniformly close to the identity (i.e. there is a

constant C such that d(f(x), x) < C for all x ∈ M ). On the other hand, f moves

everything to infinity in the sense that for each compact subsetK ofM , im(fk)∩K =
∅ for all sufficiently large iterations fk of f .

3. The group K∗(C∗(M ;A)) satisfies a Mayer-Vietoris principle. For this, one needs a

coarsely excisive decomposition M = M1 ∪M2, which means that the intersection

M0 := M1 ∩M2 captures all the large scale features of the relation betweenM1 and

M2. The technical definition is that for each R > 0 there is an S > 0 such that the

S-neighborhood ofM1 ∩M2 contains the intersection of the R-neighborhoods ofM1

andM2.

In this situation, there is a long exact Mayer-Vietoris sequence (compare [16, 31])

· · · → Ki(C
∗(M1;A))⊕Ki(C

∗(M2;A)) → Ki(C
∗(M ;A)) →

Ki−1(C
∗(M0;A)) → Ki(C

∗(M1;A))⊕Ki(C
∗(M2;A)) → · · ·

One of the powerful principles for the K-theory of C∗-algebras is their close relation

to purely topological quantities via isomorphism conjectures. Most prominent here is the

Baum-Connes conjecture for the computation ofK∗(C∗rΓ). The properties ofK∗(C
∗(M ;A))

listed above indicate that a similar “topological expression” should be possible here. Indeed,

we have the coarse Baum-Connes conjecture (with coefficients) [24, Conjecture 8.2], verified
in many cases.
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Conjecture 4.1. Given a metric space X of bounded geometry, in the composition

Klf
∗ (X;A) → KX∗(X;A) → K∗(C

∗(X;A))

the second map is an isomorphism.

HereKlf
∗ (X) is the usual locally finite K-homology of the spaceX , defined analytically

as K∗+1(D
∗X/C∗X), and as we saw above it is no problem to introduce as coefficients a

C∗-algebra A. The coarse K-homology KX∗ is obtained as the limit of Klf
∗ (|Ui|), where

the Ui form a sequence of coverings ofX which become coarser as i→ ∞. Here |Ui| is the
geometric realization of the associated Čech simplicial complex. If X is uniformly locally

contractible, e.g. if X is the universal covering of a closed non-positively curved manifold,

then the “coarsening map”Klf
∗ (X;A) → KX∗(X;A) is an isomorphism.

Recall that (in the context of large scale geometry) “bounded geometry” means that X
contains a discrete subset T such that on the one hand T coarsely fills the space (i.e. there

is an R > 0 such that the R-neighborhood of T is all of X), but on the other hand T is

uniformly discrete (i.e. for each R > 0 the number of elements of T contained in any R-ball
is uniformly bounded from above).

The coarse Baum-Connes conjecture has a number of important consequences. Most

notably, there is a principle of descent [24, Section 5] that uses the close relation between

C∗rΓ and C∗X for any metric space X on which Γ acts properly and cocompactly. The

principle of descent asserts that if such a space satisfies the coarse Baum-Connes conjecture,

then the strong Novikov conjecture for Γ is true.

On the other hand, the “bounded geometry” condition of the coarse Baum-Connes con-

jecture is indispensable. Guoliang Yu has constructed a metric space which is a disjoint

union of (scaled) spheres of growing dimension for which the analysis of the Dirac opera-

tor shows easily that the coarse assembly map is not injective. Despite its simplicity, this

example remains intriguing. It is important to understand this better and to construct other

examples. We believe that the coarse Baum-Connes conjecture will not be satisfied in full

generality.

5. Enlargeability and index

LetM be an (area)-enlargeable closed spin manifold. Recall that this means thatM comes

with a sequence of (not necessarily compact) coveringsMi with compactly supported maps

of non-zero degree fi : Mi → Sn which are arbitrarily (area) contracting.

Mikhail Gromov and Blaine Lawson show in [7] that an enlargeable spin manifold does

not admit a metric of positive scalar curvature. Theorem 1.6 verifies Conjecture 1.5 for this

“enlargeability obstruction”, i.e. shows that the Rosenberg index is non-zero in this situation.

This was achieved in [11] by refining the construction of Gromov and Lawson as follows:

1. One constructs vector bundlesEi onMi of small curvature which represent interesting

K-theory classes.

2. Next one produces associated bundlesM(Ei) onM . IfMi →M is a finite covering,

this is finite dimensional. If the coveringMi →M is infinite, we canonically obtain an

associated “structure C∗-algebra” Ci such thatM(Ei) is a Hilbert Ci-module bundle

with finitely generated projective fiber.
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3. The crucial step is the construction of a bundle E :=
∏
iM(Ei)/

⊕
iM(Ei) which

becomes a flat Hilbert A-module bundle where A =
∏
i Ci/

⊕
i Ci. Being flat, this

corresponds to a representation of π1(M).

4. As E is flat, the Schrödinger-Lichnerowicz formula implies that ind(DE) ∈ K∗(A)
is an obstruction to positive scalar curvature.

5. On the other hand, the universal property of C∗maxπ1(M) implies that the represen-

tation of π1(M) which gives rise to the bundle E induces a C∗-algebra homomor-

phism C∗maxπ1(M) → A. Moreover, the induced map in K-theory sends αmax(M) ∈
K∗(C∗maxπ1(M)) to ind(DE) ∈ K∗(A).

6. Finally, an index theorem computes ind(DE) in terms of the degrees of the maps

fi and in particular shows that ind(DE) �= 0. It follows that αmax(D) �= 0 ∈
K∗(C∗maxπ1(M)).

A main innovation is the technically quite non-trivial construction of an associated hon-

estly flat bundle, but with infinite dimensional fibers.

In [8] we relate enlargeability to the classical strong Novikov conjecture, which deals

with C∗rΓ instead of C∗maxΓ.
The main idea here is to use the functoriality of the large scale index. The argument

becomes technically easier if we assume that all the covering spaces which determine the

enlargeability ofM are the universal covering M̃ . In this situation, the first main point is that

the geometry allows us to combine all the maps fi : M̃ → Sn into one map F : M̃ → B∞,

where B∞ is the “infinite balloon space”, sketched in Figure 5.1. It is defined using a

collection of n-spheres of increasing radii i = 1, 2, 3, . . ., with the sphere of radius i attached
to the point i ∈ [0,∞) at the south pole of Sn, and is equipped with the path metric.

Figure 5.1. The connected balloon space B∞

Using the Mayer-Vietoris sequence and induction on the dimension, one can calculate

the coarse K-homology of B∞ and the K-theory of its Roe algebra C∗B∞. In particular,

we obtain KXn(B∞) ∼= ∏i∈N Z/
⊕

i∈N Z and the direct calculation allows us to establish

the coarse Baum-Connes conjecture for this space. We obtain a commutative diagram of

K-homology and K-theory groups as follows:

Kn(M)
∼=−−−−→ Kn+1(D

∗M̃Γ/C∗M̃Γ) −−−−→ Kn(C
∗M̃Γ)

∼=−−−−→ Kn(C
∗
rΓ)⏐⏐H ⏐⏐H

Kn+1(D
∗M̃/C∗M̃) −−−−→ Kn(C

∗M̃)⏐⏐H ⏐⏐H
Kn+1(D

∗B∞/C∗B∞) −−−−→ Kn(C
∗B∞)⏐⏐H ⏐⏐H=∏

Z/
⊕

Z
∼=−−−−→ KXn(B∞)

∼=−−−−→ Kn(C
∗B∞)



1298 Thomas Schick

A topological calculation allows to work out the image of the fundamental class of

M in KXn(B∞) ∼= ∏
Z/
⊕

Z: it is the class represented by the sequence of degrees

(deg(fi))i∈N which by assumption is non-zero. Because of the coarse Baum-Connes con-

jecture, the image in the bottom right corner is also non-zero, which finally implies that also

the image α(M) ∈ Kn(C
∗
rΓ) is non-zero, as claimed by the theorem.

6. Vanishing of the index under partial positivity

The main reason why one can apply index theory to geometric and topological questions is

that a special geometric situation implies vanishing results for the index. It is very important

to develop further instances of such vanishing theorems, in order to widen the scope of the

consequences of the index method. Here we present one of these, which is valid in the

context of large scale index theory:

Theorem 6.1. LetM be a complete non-compact connected Riemannian spin manifold. Let
E → M be a flat bundle of Hilbert A-modules for a C∗-algebra A. Assume that the scalar
curvature is uniformly positive outside a compact subset.

Then the large scale index of the Dirac operator twisted with E vanishes.

For A = C, this result has been stated by John Roe [24, 26]. A different proof, which

covers the general case, is given by Bernhard Hanke, Daniel Pape and the author in [9,

Theorem 3.11].

A concrete application of Theorem 6.1 to compact spin manifolds is the codimension-2
obstruction to positive scalar curvature of Theorem 1.7. In its proof in [9], a gluing and

bending construction of an intermediate space gives positive scalar curvature outside of a

neighborhood of the hypersurface.

7. The Stolz exact sequence

Stephan Stolz (compare [23, Proposition 1.27]) introduced a long exact sequence that makes

systematic the bordism classification of metrics of positive scalar curvature. It is quite similar

in spirit to the surgery exact sequence for the classification of closed manifolds.

Convention 7.1. Throughout the remainder of the article, a Riemannian metric on a mani-

fold with boundary is assumed to have product structure near the boundary.

Definition 7.2. Fix a reference space X .

1. The group Ωspin
n (X) is the usual spin bordism group, consisting of cycles f : M →

X , with M a closed n-dimensional spin manifold. The equivalence relation is spin

bordism.

2. The structure group Posspinn (X) is the group of bordism classes of metrics of positive

scalar curvature on n-dimensional closed spin manifolds with reference map to X .

Two such manifolds (Mi, gi, fi : Mi → X) are called bordant if there is a manifold

W with boundary, with metric G of positive scalar curvature and with reference map

F : W → X such that its boundary is M1 @ (−M2) and G,F restrict to the given

gi, fi at the boundary.
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3. Finally, the group Rn(X) is the group of equivalence classes of compact spin man-

ifolds W with boundary, with reference map f : W → X and with a metric g of

positive scalar curvature on ∂W . Again, the equivalence relation on such cycles is

bordism, where a bordism between (W1, f1, g1) and (W2, f2, g2) is a manifold Y with

boundary ∂Y =W1 ∪∂W1 Z ∪∂W2 −W2 (where Z is a spin bordism betweenW1 and

W2) together with a continuous map f : Y → X and a positive scalar curvature metric

g on Z. Of course, the restriction of f to Wj must be fj and the restriction of g to
∂Wj must be gj . It turns out that Rn(X) only depends on π1(X) for n > 5.

4. The group structure in each of the three cases is given by disjoint union, and the inverse

is obtained by reversing the spin structure and leaving all other data unchanged.

5. There are evident “forget structure” and “take boundary” maps between these groups.

Using these, one obtains a long exact sequence, the Stolz positive scalar curvature
exact sequence

· · · → Rn+1(π1(X)) → Posspinn (X) → Ωspin
n (X) → . . . (7.3)

The most useful cases of this sequence arises if X = M and f = id: M → M or if

X = BΓ is the classifying space of a discrete group and f : M → BΓ induces the identity

on the fundamental groups.

To get information about Posspinn (M) we want to use index theory systematically by

mapping in a consistent way to the analytic exact sequence of Nigel Higson and John Roe.

This sequence is simply the long exact K-theory sequence of the extension 0 → C∗M̃Γ →
D∗M̃Γ → D∗M̃Γ/C∗M̃Γ → 0, where M̃ is the universal covering ofM , and Γ = π1(M).

Using that K∗(C∗M̃Γ) = K∗(C∗rΓ) and that K∗+1(D
∗M̃Γ/C∗M̃Γ) = K∗(M), we

obtain the following theorem, compare [23, Theorem 1.39]

Theorem 7.4. LetX be a topological space with Γ-covering X̃ . We have a natural canoni-
cal commutative diagram (if n is odd proved in detail)

−−−−−→ Ωspin
n+1(X) −−−−−→ Rn+1(X) −−−−−→ Posspinn (X) −−−−−→ Ωspin

n (X) · · ·
⏐
⏐
�β

⏐
⏐
�ind

⏐
⏐
�ρΓ

⏐
⏐
�β

−−−−−→ Kn+1(X) −−−−−→ Kn+1(C
∗
rΓ) −−−−−→ Kn+1(D

∗X̃Γ) −−−−−→ Kn(X) · · ·
Here, β is obtained by taking the large scale (equivariant) index of the Dirac operator on

the covering of a cycle f : N → X and then use functoriality of large scale index theory to
push forward via f∗ fromK∗(C∗ÑΓ) toK∗(C∗X̃Γ). It coincides with the Atiyah orientation
as natural transformation from spin bordism to K-homology. Similarly, ρΓ is obtained by
constructing the structure invariant of the positive scalar curvature metric of the covering
of (N, g, f : N → X) and then use naturality to push forward along f∗ fromK∗(D∗ÑΓ) to
K∗(D∗X̃Γ).

Finally, ind assigns to a manifold with boundary and positive scalar curvature at the
boundary an Atiyah-Patodi-Singer type index.

Note that the assertion of Theorem 8.1 is that the (index based) maps all exist, that they

are indeed well defined, i.e. invariant under bordism, and that the diagram is commutative.

This means that we have to work (for the cycles and for the equivalence relation) throughout

with manifolds with boundary. It turns out that large scale index theory can very elegantly

and efficiently be used to carry out index theory on manifolds with boundary, as well.
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8. Index theory on manifolds with boundary

Our method to do index theory on a manifold with boundary is simply to attach an infinite

half-cylinder to the boundary. This produces a manifold without boundary, of course at the

expense that the resulting manifold is never compact. However, large scale index theory can

deal with such spaces.

To obtain the appropriate information, the construction must take the extra information

into account coming from the fact that the metric of the boundary is assumed to have positive

scalar curvature. Let us review the construction:

1. We start with a smooth manifoldW with boundary, with a Riemannian metric g which
has positive scalar curvature near the boundary (and a product structure there, by our

general convention). As a metric space,W is assumed to be complete. Moreover, we

fix an auxiliary C∗-algebra A and a flat Hilbert A-module bundle E onW (again with

product structure near the boundary).

2. We now attach a half-cylinder ∂W × [0,∞) to the boundary to obtainW∞ and extend

all the structures over W∞. We obtain a complete manifold without boundary, with

product end ∂W × [0,∞).

3. As in Section 3, the Dirac operator DE produces a bounded operator ψ(DE) in

D∗(W∞; A).

4. Now, however, we use the invertibility of DE on ∂M × [0,∞) coming from the

Schrödinger-Lichnerowicz formula: for suitable ψ the element 1 − ψ(DE)
2 does

not only lie in C∗(W∞;A) but in the smaller ideal C∗(W ⊂ W∞;A). This is by

definition generated by all locally compact finite propagation operators T which are

supported near W , which means that there is R > 0 such that Tφ = 0 and φT = 0
whenever φ is a compactly supported function with d(supp(φ),W ) > R.

5. Correspondingly, the fundamental class ofW∞ has a canonical lift to a class [W, g|∂W ]
in Kn+1(D

∗(W∞;A)/C∗(W ⊂ W∞;A)). This class does in general depend on the

positive scalar curvature metric on the boundary.

6. As usual, we next define the “large scale Atiyah-Patodi-Singer index” by applying the

boundary map of the long exact K-theory sequence, now for the extension

0 → C∗(W ⊂W∞;A) → D∗(W∞;A) → D∗(W∞;A)/C∗(W ⊂W∞;A) → 0,

to obtain ind(DW , g∂W ) ∈ Kn(C
∗(W ⊂ W∞;A)) ∼= Kn(C

∗(W ;A)). The latter

isomorphism is induced by the inclusion C∗(W ;A) ↪→ C∗(W ⊂ W∞;A) which

just extends the operators by zero. Note that this construction of the index required

the invertibility of the operator at the boundary and indeed depends in general on the

metric of positive scalar curvature at ∂W .

Note that large scale index theory in the situation we just described produces two invari-

ants which depend on the positive scalar curvature metric on ∂W , namely ind(DW , g∂W ) ∈
Kn(C

∗(W ⊂W∞;A)), but also the secondary invariant ρ(∂W, g∂W ) ∈ Kn(D
∗(∂W ;A)).

A major result, which we consider a secondary higher Atiyah-Patodi-Singer index theorem,

relates these two.
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Theorem 8.1. (compare [23, Theorem 1.22]) Let (W, gW ) be an even dimensional Rieman-
nian spin-manifold with boundary ∂W such that g∂W has positive scalar curvature. Assume
that a group Γ acts isometrically onM . Then

ι∗(indΓ(DW )) = j∗(ρ(∂W, g∂W )) in K0(D
∗(W )Γ).

Here, we use j : D∗(∂W )Γ → D∗WΓ induced by the inclusion ∂W →W and ι : C∗(W )Γ

→ D∗(W )Γ the inclusion.

Remark 8.2. Above we apply the obvious generalization of the construction of the large

scale index of Sections 3 and 8 to an equivariant situation, where subalgebras D∗(W )Γ and

C∗(W )Γ generated by invariant operators are used. This works because the Dirac operator

then itself is invariant under the group Γ.

Remark 8.3. The heart of the proof of Theorem 8.1 is an explicit secondary index calcula-

tion in a model (product) case which is surprisingly intricate.

Remark 8.4. The assertion of Theorem 8.1 should generalize to arbitrary (non-cocompact)

spin manifolds, to Hilbert C∗-algebra coefficient bundles and to the K-theory of real C∗-
algebras. In a preprint of Zhizhang Xie and Guoliang Yu [35] an argument is sketched which

shows how to extend the result to arbitrary dimensions and to real C∗-algebras.

9. Constructions of new classes of metrics of positive scalar curvature

The fundamental idea in the construction of the “geometrically significant” homotopy classes

of the space of metrics of positive scalar curvature of Theorem 1.10 is quite old and based

on index theory:

Given a closed n-dimensional spin manifold B with Â(B) �= 0, we know that B does

not admit a metric of positive scalar curvature.

Remove an embedded disc from B. The result is a manifold W with boundary ∂W =
Sn−1. Given any metric of positive scalar curvature on W (with product structure near the

boundary), the corresponding boundary metric g1 can not be homotopic to the standard met-

ric on Sn−1 because then one could glue in the standard disc (with positive scalar curvature)

to obtain a metric of positive scalar curvature on B. Now, if g1 is homotopic to ψ∗geucl for
a non-identity diffeomorphism we can glue the disc back in with ψ to obtain a new manifold

Bψ which is of positive scalar curvature. Note thatBψ is not necessarily diffeomorphic toB,
but using the Alexander trick there is a homeomorphism between Bψ and B. As the rational

Pontryagin classes and therefore the Â-genus are homeomorphism invariant, Â(Bψ) �= 0,
also Bψ can not carry a metric of positive scalar curvature.

Observe that exactly the same argument can be applied to a family situation: Let Y → Sk

be a family (i.e. bundle) of manifolds with boundary, with boundary Sn×Sk. Assume there

is a family of metrics gx of positive scalar curvature on Y (product near the boundary). If this

family of metrics is homotopic to the constant family consisting of the standard metric (or

to a pullback of that one along a family of diffeomorphisms ψx) we can glue in Dn+1 × Sk
to obtain a family of closed manifolds which admits a metric of positive scalar curvature

(fiberwise, and then also the total space X admits such a metric). Note that this is only

interesting if each gx is in the component of the standard metric, which we therefore assume.
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Alas: if the total space X has non-trivial Â-genus, this is a contradiction (and again, by

the homeomorphism invariance and the Alexander trick the argument works modulo diffeo-

morphism).

Note that this requires two important ingredients:

1. the topological situation with the bundle Y (and X)

2. the geometric input of a family of metrics of positive scalar curvature on Y .

It turns out that already the topological input is surprisingly difficult to get. It means that

(after the gluing) we have a fiber bundleM → X → Sk of spin manifolds whereM does

admit a metric of positive scalar curvature, therefore Â(M) = 0, whereas Â(X) �= 0. Note
that this means that the Â-genus is not multiplicative in fiber bundles, even if the base is

simply connected (in contrast to the L-genus).

In [12, Theorem 1.4] we use advanced differential topology, in particular surgery theory,

Casson’s theory of prefibrations and Hatcher’s theory of concordance spaces to prove that

the required fiber bundles X exist:

Theorem 9.1. For sufficiently large n, there are 4n-dimensional smooth closed spin man-
ifolds X with non-vanishing Â-genus fitting into a smooth fiber bundle F → X → Sk

such that F admits a metric of positive scalar curvature, is highly connected and the bundle
contains as subbundle D4n−k × Sk.

How about the second ingredient, the existence of the family of metrics of positive scalar

curvature on Y = X \D4n−k × Sk?
The only tool known which can provide such metrics is the surgery method of Gromov

and Lawson. In highly non-trivial work [34] this has been extended by Mark Walsh to fami-

lies of the kindX as constructed in Theorem 9.1. To apply this, we use the high connectivity

and results of Kiyoshi Igusa on Morse theory for fiber bundles [18]. As a consequence we

obtain Theorem 1.10.

10. Open problems

The geometry of positive scalar curvature and the development and application of large scale

index theory is a vibrant field of research, with a host of important open problems. Many of

those were already mentioned above; here we want to highlight them and add a couple of

further directions of research.

Gromov-Lawson-Rosenberg conjecture. We should find further obstructions to positive

scalar curvature on spin manifolds, in particular for finite fundamental group (Z/pZ)n for

the so-called toral manifolds. We expect that this will require fundamentally new ideas.

On the other hand, can the class of fundamental groups for which the conjecture holds

be described systematically?

Stable Gromov-Lawson-Rosenberg conjecture. The stable Gromov-Lawson-Rosenberg

conjecture and its weaker cousin 1.5 which states that “the Rosenberg index sees everything

about positive scalar curvature which can be seen using the Dirac operator” follow from the

strong Novikov conjecture. It would be spectacular to find counterexamples to either of these
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(they are expected to exist, but to find them will of course be very hard). It is necessary to

investigate this question further. In this context, the role of the codimension-2 obstruction as
discussed in Theorem 1.7 should be understood.

This theorem should extend to the signature operator, which will shed new light on its

meaning. Vaguely, we conjecture the following.

Conjecture 10.1. Let M1,M2 be two complete non-compact connected oriented Rieman-
nian manifolds and f : M1 → M2 a sufficiently well behaved map which is an “oriented
homotopy equivalence near infinity”.

Let E →M2 be a flat bundle of Hilbert A-modules for a C∗-algebra A. LetD
sgn
E be the

signature operator onM1 twisted with the flat bundle E, and Dsgn
f∗E the signature operator

onM2 twisted by f∗E. Then the large scale indices of these two operators should coincide,
i.e.

f∗(ind(D
sgn
f∗E)) = ind(Dsgn

E ) ∈ K∗(C∗(M1;A)).

Note that, in this conjecture, one has to work out the precise concept of “sufficiently well

behaved” and of “homotopy equivalence at infinity”.

Area based large scale geometry. Large scale geometry is based on the metric spaces and

distances, viewed from a coarse perspective. Curvature, on the other hand, is a concept based

on the bending of surfaces, where scalar curvature looks at the average over all possible

surface curvatures through a given point.

This is reflected in the fact that area-enlargeability suffices to obstruct positive scalar

curvature (Theorem 1.6). So far, this is not captured well by large scale index theory.

This suggests that a program should be developed for large scale geometry based on 2-
dimensional areas instead of lengths. A possible starting point would be to work on a relative

of the loop space and carry out the analysis there. This is interesting in its own right, with a

host of potential further applications, but seems to require new analytical tools.

Note that the axiomatic abstraction from metric spaces to coarse structures as developed

by John Roe [25] does not seem to apply here. Of course, this generalization is interesting

in its own right and applications to positive scalar curvature should be developed further.

Coarse Baum-Connes conjecture. If the coarse Baum-Connes conjecture holds for the

classifying space of a discrete group, then also the strong Novikov conjecture is true for

this group. Moreover, the validity of the coarse Baum-Connes conjecture is a powerful

computational tool. On the other hand, there are enigmatic counterexamples due to Guoliang

Yu if one drops the “bounded geometry” condition on the space in question.

We expect that many new classes of metric spaces can be found where the coarse Baum-

Connes conjecture can be established. But we also feel that the search for counterexamples

(of bounded geometry) should be intensified.

Aspherical manifolds. A lot of attention has been given to the special class of aspherical

manifolds.

Conjecture 10.2. Let M be a closed manifold whose universal covering is contractible
(i.e.M is aspherical). ThenM does not admit a metric of positive scalar curvature.

Often the geometry implies that a manifold is aspherical (e.g. if it admits a metric which

is non-positively curved in the sense of comparison geometry). The conjecture states that
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in a weak sense this is the only way a manifold can be aspherical. The strong Novikov

conjecture for an aspherical spin manifold M implies that α(M) �= 0 because the Dirac

operator of a manifold M always represents a non-zero K-homology class in K∗(M), and
here M = Bπ1(M). Of course, we now look for ways to directly use the asphericity in

proofs of (special cases) of Conjecture 10.2.

Mapping surgery to analysis to homology. The program to map surgery to analysis has

been fully carried out in [23] only for half the dimensions, and only for complexC∗-algebras,
based on a delicate explicit index calculation. New developments, in particular the work of

Zhizhang Xie and Guoliang Yu [35] extend this to all dimensions with a modified method. It

remains to develop the details of this (or an alternative) approach and to carry it over to the

more powerful real C∗-algebras.
K-theory ofC∗-algebras is a very powerful tool. Most useful, however is its combination

with homological tools (in particular Hochschild and cyclic (co)homology). To achieve this

systematically and use it for the classification of metrics of positive scalar curvature, we

propose a program to not only map the positive scalar curvature sequence to analysis, as

described in Section 7, but then to map further to a corresponding long exact sequence of

(cyclic) homology groups. There, one would then see primary and secondary numerical

invariants of higher index theory.

The primary invariants are well developed. Rather not understood, however, is the theory

related to the secondary invariants. Indeed, the relevant algebra D∗M is very large and

the usual dense and holomorphically closed subalgebras on which explicit formulas for the

Connes-Karoubi Chern character would make sense seem hard to come by. Exactly because

of this we feel that the development of such a theory will shed important new light on the

power of the secondary invariants of rho-type as proposed here.

Apart from this general program, the theory described above needs to be applied in more

concrete situations. The analytic structure set K∗(D∗M), despite its evident potential, so

far has only been used in a small number of concrete contexts (compare in particular [15]).

This must change before we will have a definite idea of its power.

Minimal surface obstructions to positive scalar curvature. The minimal surface method

is the only known tool to obstruct the existence of a metric of positive scalar curvature which

works for non-spin manifolds of dimension ≥ 5. So far, it is controversial how to extend

the method if the dimension of the manifold in question is larger than 8 (due to singularities

which develop in the minimal hypersurfaces one wants to use). Joachim Lohkamp has a

program to achieve this.

The minimal surface technique has so far only been used together with the Gauss-Bonnet

theorem (via an iterative approach, until the hypersurface is 2-dimensional). Are there other

ways to exploit it and combine it with obstructions to positive scalar curvature (Seiberg-

Witten, spin Dirac) and what are the relations?

Enlargeability and non-spin manifolds. As just one case of the question whether the

known results for spin manifolds carry over to non-spin manifolds consider the following

question:

Question 10.3. LetM be an arbitrary (non-spin) closed n-dimensional manifold with cov-
eringsMε and with maps fε : Mε → Sn which are constant outside a compact subset ofMε,
which have non-zero degree and which are ε-contracting.
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CanM admit a metric of positive scalar curvature?

Using the minimal surface method, Gromov and Lawson [7, Section 12] have shown that

this is not the case if n ≤ 7.

Topology of the space of metrics of positive scalar curvature. The stable Gromov-Lawson-

Rosenberg conjecture shows that there is a stability feature in the topology of the space

Riem+(M) of metrics of positive scalar curvature: if index theory suggests that it should be

non-empty, this might be violated byM itself, but after iterated product withB, eventually it
is non-empty. Are there similar stability features concerning the (higher) homotopy groups

of Riem+(M)? It would also be important to develop estimates on the stable range.

The space of metrics of positive scalar curvature and fundamental group. We know

well that, for a spin manifold M with a complicated fundamental group Γ, the existence

of a metric of positive scalar curvature is not only obstructed by Â(M), but by α(M) ∈
K∗(C∗Γ), and many elements ofK∗(C∗Γ) are indeed realized as values of α(M).

Similarly, we should expect that the topology of Riem+(M), if non-empty, should

be governed by K∗(C∗Γ). At the moment, a precise conjecture (e.g. about the homo-

topy groups) seems too far-fetched. Still, the methods of large scale and higher index

theory should be developed to the point that they are available to detect new elements in

π∗(Riem+(M)), and one should systematically construct non-trivial examples.
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Gauge theory and mirror symmetry

Constantin Teleman

Abstract. Outlined here is a description of equivariance in the world of 2-dimensional extended

topological quantum field theories, under a topological action of compact Lie groups. In physics

language, I am gauging the theories — coupling them to a principal bundle on the surface world-sheet.

I describe the data needed to gauge the theory, as well as the computation of the gauged theory, the

result of integrating over all bundles. The relevant theories are ‘A-models’, such as arise from the

Gromov-Witten theory of a symplectic manifold with Hamiltonian group action, and the mathematical

description starts with a group action on the generating category (the Fukaya category, in this example)

which is factored through the topology of the group. Their mirror description involves holomorphic

symplectic manifolds and Lagrangians related to the Langlands dual group. An application recovers

the complex mirrors of flag varieties proposed by Rietsch.
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1. Introduction

This paper tells the story of equivariance, under a compact Lie group, in the higher algebra

surrounding topological quantum field theory (TQFT). Speaking in riddles, if 2-dimensional

TQFT is a higher analogue of cohomology (the reader may think of the Fukaya-Floer theory

of a symplectic manifold as refining ordinary cohomology), my story of gauged TQFTs is the

analogue of equivariant cohomology. The case of finite groups, well-studied in the literature

[30], provides a useful and easy reference point, but the surprising features of the continuous

case, such as the appearance of holomorphic symplectic spaces and Langlands duality, are

missing there.

From another angle, this is a story of the categorified representation theory of a compact

Lie group G, with the provision that representations are topological: the G-action (on a

linear category) factors through the topology of G. One floor below, where the group acts

on vector spaces, these would be not the ordinary complex representations of G, but the
local systems of vector spaces on the classifying space BG. There is no distinction for

a finite group, but in the connected case, BG is simply connected, and we must pass to

the derived category to see anything interesting. The same will hold in the categorified

story, where simply connected groups will appear to have trivial representation theory, before

deriving. This observation suggests a straightforward homological algebra approach to the

investigation, worthy of featuring as an example in a graduate textbook. Pursuing that road,

however, leads to faulty predictions, even in the simplest case of pure gauge theory of a

Proceedings of the International Congress of Mathematicians, Seoul, 2014
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point (topological Yang-Mills theory). One reason for this failure is a curious predilection

of interesting TQFTs to break the obvious Z-grading information present, collapsing it to a

Z/2 grading, or encoding it in more labored form (as in the Euler field of Gromov-Witten

theory [17]). The result is that homological algebra, which localizes the spectrum of a graded

ring to its degree zero part, loses relevant information, which needs restoration by ulterior

guesswork. In our example, we will see the homological information in the neighborhood

of a Lagrangian within a certain holomorphic symplectic manifold, whereas most of the

interesting ‘physics’ happens elsewhere.

The emerging geometric picture for this categorical topological representation theory is

surprisingly attractive. Representations admit a character theory, but characters are now co-

herent sheaves on a manifold related to the conjugacy classes, instead of functions. The

manifold in question, the BFM space of the Langlands dual Lie groupG∨, introduced in [5],
is closely related to the cotangent bundle to the space of conjugacy classes in the complex

group G∨C . (For SU2, it is the Atiyah-Hitchin manifold studied in detail in [4].) Multiplicity

spaces of G-invariant maps between linear representations are now replaced by multiplic-

ity categories, whose ‘dimensions’ are the Hom-spaces in the category of coherent sheaves.

(In interesting examples, they are the Frobenius algebras underlying 2-dimensional TQFTs.)

There is a preferred family of simple representations, which in a sense exhausts the space

of representations: they foliate the BFM space. Every such representation is ‘symplecti-

cally induced’ from a one-dimensional representation of a certain Levi subgroup ofG: more

precisely, it is the Fukaya category of a flag variety of G. This is formally similar to the

Borel-Weil construction of irreducible representations of G by holomorphic induction. Re-

call that in that world there is another kind of “L2-induction" from closed subgroups, which

is right adjoint to the restriction functor. The counterpart of naïve induction also exists in

our world, and gives the (curved) string topologies [8] of the same flag varieties, instead of

their Fukaya categories.

This story might seem a bit unhinged, were it not for the appearance of the governing

structure in the work of Kapustin, Rozansky and Saulina [15]. Studied there are boundary

conditions in the 3-dimensional TQFT associated to a holomorphic symplectic manifold X ,

known as Rozansky-Witten theory [23]. Among those are holomorphic Lagrangian sub-

manifolds ofX , or more generally, sheaves of categories over such sub-manifolds. (The full

2-category of all boundary conditions does not yet have a precise definition.) The relation

to gauge theory is summarized by the observation that gaugeable 2-dimensional field the-

ories are topological boundary conditions for pure 3-dimensional topological gauge theory.

The reader may illustrate this with an easy example: the representations of a finite group F
are the boundary conditions for pure F -gauge theory in 2 dimensions; yet these represen-

tations are exactly the 1-dimensional topological field theories (vector spaces) which admit

F -symmetry. Modulo the [15] description of Rozansky-Witten theory, my entire story is

underpinned by the following

Meta-Statement. Pure topological gauge theory in 3 dimensions for a compact Lie group
G is equivalent to the Rozansky-Witten theory for the BFM space of the Langlands dual Lie
group G∨.

I shall offer no elucidation of this, beyond its inspirational value; however, strong indications

of this statement have been known in the physics literature, at least for special G [3, 19,

27]. Formulating this statement in a mathematically useable way will require an excursion

through much preliminary material in §2-5. A small reward will come in §6, where we
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illustrate how these ideas can lead to ‘real answers’.

A closing warning is that the results in this paper are partly experimental: enough exam-

ples have been checked to rule out plausible alternatives, but I do not claim to know proofs

in full generality. In fact, the status of Floer-Fukaya theory makes such claims difficult to

sustain, and the author has no special expertise on that topic. In topological cases, such as

for string topology (Fukaya theory of cotangent bundles), precise statements and proofs are

possible (and easy). More generally, the results apply to the abstract setting of differential

graded (or A∞-categories) with topological G-action, the question being to what extent the

Fukaya category of a symplectic manifold with Hamiltonian G-action qualifies. (For non-

compact manifolds, this depends on the ‘wrapping’ condition at ∞.) If nothing else, the

paper can be read as a template for what a nice world should look like.

2. Topological field theory

Topological field theory, introduced originally by Atiyah[2], Segal [25] and Witten [32],

promised to systematize a slew of new 3-manifold invariants. The invariants of a 3-manifold

M are thought to arise from path integrals over a space of maps from M to a target X .

The latter is often a manifold, but in interesting cases, related to gauge theory, it is a stack.
One example relevant for us will have X a holomorphic symplectic manifold, leading to

Rozansky-Witten theory [23]. The 2-dimensional version of this notion quickly found appli-

cation to the counting of holomorphic curves, the Gromov-Witten invariants of a symplectic

manifold X: these are controlled by a family of TQFTs parametrized by the even cohomol-

ogy space Hev(X).

2.1. Extended TQFTs. Both theories above have a bearing on my story, once they are ex-
tended down to points. In the original definition, a d-dimensional TQFT is a symmetric,

strongly monoidal functor form the category whose objects are closed (d − 1)-manifolds

and whose morphisms are compact d-bordisms, to the category Vect of complex finite-

dimensional vector spaces; the monoidal structures are disjoint union and tensor product,

respectively. (Some tangential structure on manifolds is chosen, as part of the starting da-

tum.) Fully extending the theory means extending this functor to one from the bordism d-
categoryBordd, whose objects are points and whose k-morphisms are compact k-manifolds

with corners (and some tangential structure), to some de-looping of the category of vector

spaces: a symmetric monoidal d-category whose top three layers are complex numbers, vec-

tor spaces and linear categories, or a differential graded (dg) version of this. When d = 2,
which most concerns us, the target is usually the 2-category LCat of linear dg categories,

linear functors and natural transformations. The reader may consult Lurie [16], references

therein and the wide following it inspired, for a precise setting of higher categories.

Example 2.1 (2-dimensional gauge theory with finite gauge group F ). This theory is de-

fined for unoriented manifolds; among others, the functor ZF which sends a point ∗ to

the category Rep(F ) of (finite-dimensional) linear representations of F , the half-circle bor-
dism ⊂: ∅ → {∗, ∗′} to the functor Vect → Rep(F ) ⊗ Rep(F ) sending C to the (2-
sided) regular representation of F , the opposite bordism ⊃: {∗, ∗′} → ∅ to the functor

Rep(F ) ⊗ Rep(F ) → Vect sending V ⊗ W to the subspace of F -invariants therein. A

closed surface gives a number, which is the (weighted) count of principal F -bundles. See



1312 Constantin Teleman

for instance [9] for a uniform construction of the complete functor and generalizations.

The first theorem of [16] is that an such extended TQFT Z : Bordd →?? is determined

by its value Z(+) on the point, at least in the setting of framed manifolds. The object Z(+),
which we call the generator of Z, must satisfy some strong (full dualizability) conditions,
but carries no additional structure, beyond being a member of an ambient d-category.

On the other hand, the ability to pass to surfaces with less structure than a framing on

their tangent bundle forces additional structure on the generator Z(+). The point (conceived
together with an ambient germ of d-manifold) carries a d-framing, on which the group O(d)
acts. Lurie’s second theorem states that, given a tangential structure, encoded in a homo-

morphism G → O(d), factoring the theory Z from Bordd through the category BordGd of

d-folds with G-structure is equivalent to exhibiting Z(+) as a fixed-point for the G-action
on the image of TQFTs in the target d-category (more precisely, the sub-groupoid of fully

dualizable objects and invertible morphisms).

The best-known case of oriented surfaces, when G = SO(2), requires a Calabi-Yau
structure on Z(+). This can be variously phrased: as a trivialization of the Serre functor,
which is an automorphism of any fully dualizable linear dg category (see Remark 2.3 below);

alternatively, as a linear functional on the cyclic homology of Z(+) whose restriction to

Hochschild homology HH∗(Z(+)) induces a perfect pairing on Hom spaces:

Hom(x, y)⊗Hom(y, x) → Hom(x, x) → HH∗ → C.

This case of Lurie’s theorem recovers earlier results of Costello, Kontsevich and Hopkins-

Lurie [6, 13].

The Hochschild homologyHH∗(Z(+)) is meaningful in a different guise: it is the space

of statesZ(S1) of the theory, for the circle with the radial framing. The circle is pictured here

with a germ of surrounding surface, and therefore carries a Z’s worth of framings, detected

by a winding number. The Hochschild cohomologyHH∗ goes with the blackboard framing,

and the space for the framing with winding number n is HH∗ of the nth power of the Serre

functor. (Of course, for oriented theories there is no framing dependence, and these spaces

agree.)

2.2. Topological group actions. An important point is that the action of O(2) (and thus

G) on the target category Z(+) is topological, or factored through its topology. There are

several ways to formulate this constraint, which is vacuous when G is discrete. The favored

formulation will depend on the nature of the target category; in the linear case, and when G
is connected, we will provisionally settle for the one in Theorem 2.5 below. Combined with

Statement 2.9 below, this generalizes an old result of Seidel [26] on Hamiltonian diffeomor-

phism groups.

Here are some alternative definitions:

1. We can ask for a local trivialization of the action in a contractible neighborhood of 1 ∈
G, an isomorphism with the trivial action of that same neighborhood (up to coherent

homotopies of all orders).

2. Using the action to form a bundle of categories with fiber Z(+) over the classifying
stack BG, we ask for an integrable flat connection on the resulting bundle of cate-

gories. (Formulating the flatness condition requires some care, in light of the fiber-

wise automorphisms.)
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3. Exploiting the contractibility of the group P1G of paths starting at 1 ∈ G, we can ask

for a trivialization of the lifted P1G-action.

Now, the action of the based loop group ΩG (kernel of P1G → G) is already trivial

(being factored through 1 ∈ G), and the difference of trivializations defines a (topo-

logical) representation of ΩG by automorphisms of the identity functor in Z(+).

The group ΩG has an E2 structure, seen from its equivalence with the second loop

space Ω2BG; and the representation on IdZ(+) is the 2-holonomy, over spheres, of

the flat connection in #2. Importantly, it is an E2 representation.

Remark 2.2. WhenG is connected, description #3 above captures all the information for the

action (up to contractible choices), because the space of trivializations of a trivial topological

action of P1G is contractible.

Example 2.3. A topological action of the circle on a category is given by a group homo-

morphism from Z = π1S
1 = π0ΩS

1 to the automorphisms of the identity: equivalently, a

central (in the category) automorphism of each object. Because there is no higher topology

in S1, this also works when the target is a 2-category, such as the (sub-groupoid of fully

dualizable objects in the) 2-category LCat. The structural SO(2) ⊂ O(2) action gives an

automorphism of each category: this is the Serre functor.

Example 2.4. Endomorphisms of the identity in the linear category Vect are the complex

scalars, so that linear topological representations of a connectedG onVect are 1-dimensional

representations of π0ΩG ∼= π1G. These are the points in the center of the complexified

Langlands dual group G∨C .

Recall that the endomorphisms of the identity in a category (the center) form the 0th

Hochschild cohomology. To generalize the above example to the derived world, we should

include the entire Hochschild cochain complex.

Theorem 2.5. Topological actions of a connected group G on a linear dg-category C are
captured (up to contractible choices) by the induced E2 algebra homomorphism from the
chains C∗ΩG, with Pontrjagin product, to the Hochschild cochains of C.

Example 2.6. From a continuous action of G on a space X , we get a locally trivial action

on the cochains C∗X . Indeed, we get an action of ΩG on the free loop space LX of X .

The action is fiber-wise with respect to the bundle ΩX → LX → X . Let C∗
(
X;C∗Ω̃X

)
be the cochain complex onX with coefficients in the fiber-wise chains for this bundle. With

the fiber-wise Pontrjagin product, this is a model for the Hochschild cochains of the algebra

C∗(X), and the action of ΩG exhibits the E2 homomorphism in the theorem.

Remark 2.7. The “E2” in the statement is not jus a commutativity constraint, but can contain

(infinite amounts of!) data; see Lesson 3.2.5.

Remark 2.8. One floor below, for 1-dimensional field theories, the category Z(+) is re-
placed with a vector space (or a complex), and we recognize #2 above as defining a topo-

logical representation of G. The datum in Theorem 2.5 is replaced by an (E1) algebra

homomorphism from the chains C∗G, with Pontrjagin product, to End(Z(+)); there is no
connectivity assumption. Climbing to the higher ground of n-categories, we can extract an

En+1-algebra homomorphism from C∗ΩnG to the En Hochschild cohomology; but this

misses the information from the homotopy of G below n.
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The following key example captures the relevance of my story to real mathematics. (In

fact, it contains all examples I know for topological group actions!)

Conjecture 2.9. LetG act in Hamiltonian fashion action on a symplectic manifoldX . Then,
G acts topologically on the Fukaya category of X .

Proof. AHamiltonian action ofG onX defines, in the category of symplectic manifolds and

Lagrangian correspondences, an action of the group object T ∗G.1 This makes the Fukaya

category ofX into a module category over the wrapped Fukaya categoryWF(T ∗G). A the-

orem of Abouzaid [1] identifies the latter with that of C∗ΩG-modules. The tensor structure

is identified with the E2 structure of the Pontrjagin product, by detecting it on generators

of the category (the cotangent fibers). The resulting structure is equivalent to the datum in

Theorem 2.5.

Remark 2.10. It may seem strange to state a conjecture and then provide a proof. However,

the reader will detect certain assumptions which have not been clearly stated in the conjec-

ture: mainly, functoriality of Fukaya categories under Lagrangian correspondences. If X is

non-compact, equivariance of the wrapping condition at ∞ is essential; the statement fails

for the infinitesimally wrapped Fukaya category of Nadler and Zaslow [20], see below. (An-

other outline argument is more tightly connected to holomorphic disks and GC-bundles, but

that relies on details of the construction of the Fukaya category.)

Remark 2.11. A closely related notion to the one discussed, but distinct from it, is that of an

infinitesimally trivialized Lie group action. Here, we ask for the action to be differentiable,

and the restricted action to the formal group Ĝ (equivalently, the Lie algebra g) should be

homologically trivialized. An example is furnished by an action of G on a manifold X
and the induced action on the algebra D(X) of differential operators: the Lie action of g is

trivialized in the sense that it is inner, realized by the natural Lie homomorphism from g to

the 1st order differential operators. Theorem 2.5 does not usually apply to such situations.

With respect to the alternative definition #2 above, the relevant distinction is between flat
and integrable connections over BG.

2.3. Gauging a topological theory. Given a guantum field theory and a (compact Lie)

group G, physicists normally produce a G-gauged theory in two stages. The theory is first

coupled to a ‘classical gauge background’, a principalG-bundle. (No connection is needed in
the case of topological actions.2) Then, we ‘integrate over all principal bundles’ to quantize

the gauge theory.

These two distinct stages are neatly spelt out in the setting of extended TQFTs. Lurie’s

theory already captures the first stage of gauging. Namely, we convert the principal G-
bundle into a tangential structure by choosing the trivial homomorphism G → O(2). (Of

course, we may add any desired tangential structure, such as orientability, by switching to

G× SO(2) → O(2), by projection.) Making Z(+) into a fixed point for the trivial G-action
means defining a (topological) G-action on Z(+). This is the input datum for a classically

gauged theory.

Quantizing the gauge theory, or integrating over principal G-bundles, is tricky. It is

straightforward for finite groups: integration of numbers is a weighted sum, and integration

1The moment map μ : X → g∗ appears in the requisite Lagrangian, {(g, μ(gx),x, gx)} ⊂ T ∗G×(−X)×X .

2Flat connections would be needed when G action does not factor through topology, as in B-model theories.
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of vector spaces and categories is a finite limit or colimit. (The duality constraints require the

limits and colimts to agree; working in characteristic 0 ensures that [9].) For Lie groups G,
integration of the numbers requires a fundamental class on the moduli of principal bundles.

For instance, the symplectic volume form is relevant to topological Yang-mills theory. A

limitedK-theoretic fundamental class was defined in [31], and cohomological classes, such

as the one relevant to topological Yang-Mills theory, can be extracted from it. But this matter

seems worthy of more subtle discussion than space allows here.

In fact, the gauge theory cannot always be fully quantized. The generating object for the
quantum gauge theory is the invariant category Z(+)G, which agrees with the co-invariant

category Z(+)G under mild assumptions. In the framework of Theorem 2.5, we compute

the generator Z(+)G as a tensor product

Z(+)G = Z(+)⊗C∗ΩG Vect (2.1)

with the trivial representation. The 1-dimensional part of the field theory, and sometimes

part of the surface operations, are well-defined; but the complete surface-level operations

often fail to be defined. Thus, for the trivial 2D theory, Z(+) = dg−Vect with trivial G-
action, and the fixed-points are local systems over BG. This generates a partially defined

2D theory, a version of string topology for the space BG. The space associated to the

circle is the equivariant cohomology H∗
G(G) for the conjugation action, and the theory is

defined the subcategory ofBord2 where all surfaces (top morphisms) have non-empty output

boundaries for each component.

This example can be made more interesting by noting that the trivial action of G on

dg−Vect has interesting topological deformations, in the Z/2-graded world; the notable one
comes from the quadratic Casimir inH4(BG), and gives topological Yang-Mills theory with

gauge group G. When G is semi-simple, this theory is almost completely defined, and the

invariants of a closed surface (of genus 2 or more) are the symplectic volumes of the moduli

spaces of flat connections. (Further deformations exits, by the entire even cohomology of

BG and relate to more general integrals over those spaces.) These should be regarded as

twisted Gromov-Witten theories with target space BG. A starting point of the present work

was the abject failure of the homological calculation (2.1) in these examples: for topological

Yang-Mills theory, (2.1) gives the zero answer when G is simple.

2.4. The space of states. The space(s) of states of the gauged theory are well-defined, inde-

pendently of good behavior of the fixed-point category Z(+)G. More precisely, each g ∈ G
gives an autofunctor g∗ of the category. The Hochshild cochain complexesHCH∗(g∗;Z(+))
assemble to a (derived) local systemH(Z(+)) over the groupG, which is equivariant for the
conjugation action, and the space of states for the (blackboard framed) circle in the gauge

theory is the equivariant homology HG
∗ (G;H). It has a natural E2 multiplication, using the

Pontrjagin product in the group. When Z(+) = Vect, with the trivial G-action, we recover
the string topology space HG

∗ (G) of BG by exploiting Poincaré duality on G.3

3The last space goes with the radially framed circle.
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3. The 2-category of Kapustin-Rozansky-Saulina

As the image of the point, an object in the 3-dimensional bordism 3-category, Lurie’s gener-
ator for pure 3-dimensional gauge theory should have categorical depth 2. My proposal for

this generator is a 2-category associated to a certain holomorphic symplectic manifold, to be

described in §5.

Fortunately, the existence of the requisite 2-category has already been conjectured, and

a proposal for its construction has been outlined in [14, 15]. When X is compact, this 2-
category should generate the Rozansky-Witten theory [23] ofX . In particular, its Hochschild

cohomology, which on general grounds is a 1-category with a braided tensor structure,

should be (a dg refinement of) the derived category of coherent sheaves on X described

in [24]. Just like Rozansky-Witten theory, the narrative takes place in a differential graded

world, and in applications, the integer grading must be collapsed mod 2 (the symplectic

form needs to have degree 2, if the integral grading is to be kept). To keep the language

simple, I will use ‘sheaf’ for ‘complex of sheaves’ and write Coh for a differential graded

version of the category of coherent sheaves, etc.

Remark 3.1. The 2-category may at first appear analogous to the deformation quantization

of the symplectic manifold; but that is not so. That analogue — a double categorification —

is Coh(X) with its braided tensor structure. The category [15] is a ‘square root’ of that, and

I will denote it
√
Coh(X) orKRS(X).

3.1. Simplified description. The following partial description of the KRS 2-category ap-

plies to a Stein manifold X , when deformations coming from coherent cohomology van-

ish.4 In our example, X will be affine algebraic. Among objects of
√
Coh(X) are smooth

holomorphic Lagrangians L ⊂ X; more general objects are coherent sheaves of OL-linear

categories on such L. (The object L itself stands for its dg category Coh(L) of coherent
sheaves, a generator for the above.) To make this even more precisee,

√
Coh(X) is the sheaf

of global sections of a coherent sheaf of OX -linear 2-categories, whose localization at any

smooth L as above is equivalent the 2-category of module categories over the sheaf of tensor

categories (Coh(L),⊗) on L; with a bit of faith, this pins down
√
Coh(X), as follows.

For two Lagrangians L,L′ ∈ X , Hom(L,L′) will be a sheaf of categories supported on

L∩L′, and a (Coh(L),⊗)− (Coh(L′),⊗) bi-module. Localizing at L, we choose a (formal)

neighborhood identified symplectically with T ∗L, so that we regard (locally) L′ as the graph
of a differential dΨ, for a potential function Ψ : L → C. Locally where this identification

is valid, Hom(L,L′) becomes equivalent to the matrix factorization category MF (L,Ψ).
(See for instance [21] for a definition of the latter.)

3.2. Lessons. Several insights emerge from this important notion.

1. A familiar actor in mirror symmetry, a complex manifold L with potential Ψ, is really

the object in
√
Coh(T ∗L) represented by the graph Γ(dΨ), masquerading as a more

traditional geometric object. The matrix factorization categoryMF (L,Ψ) is its Hom
with the zero-section. This resolves the contradiction in which the restriction of the

category MF (L,Ψ) to a sub-manifold M ⊂ L is commonly taken to be the matrix

factorization category of Ψ|M . That is clearly false in the 2-category of (Coh(L),⊗)-

4My discussion is faulty in another way, failing to incorporate the Spin structures, which must be carried by the

Lagrangians. I am grateful to D. Joyce for flagging their role.
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module categories (the result of localizing to the zero-section L ⊂ T ∗L). For in-

stance, if the critical locus of Ψ does not meet M , Hom computed in (Coh(L),⊗)-
modules gives zero. Instead, M must be replaced by the object represented by its

co-normal bundle in
√
Coh(T ∗L), whose Hom there with Γ(dΨ) computes precisely

MF (M,Ψ|M ).

2. The well-defined assignment sends (Coh(L),⊗)-module categories to sheaves of cat-

egories with Lagrangian support in the cotangent bundle T̂ ∗L, completed at the zero-

section. Namely, the Hochschild cohomology of such a category K is (locally on L)
an E2-algebra over the second (E2) Hochschild cohomology of (Coh(L),⊗), which
is an E3 algebra. The spectrum of the latter is T̂ ∗L, with E3 structure given by the

standard symplectic form. This turns SpecHH∗(K) into a coherent sheaf with co-

isotropic support in T̂ ∗L, and K sheafifies over it. The Lagrangian condition is clearly
related to a finiteness constraint, but this certainly shows the need to include singular

Lagrangians in theKRS 2-category.

3. The deformation of a (Coh(L),⊗)-module category M by the addition of a poten-

tial (‘curving’) Ψ ∈ O(L) shifts the support of M vertically by dΨ in T ∗L. This

allows one to move from formal to analytic neighborhoods of L, if the deformation

theory under curvings is well-understood. For instance, one can compute theHom be-

tween two objects that do not intersect the zero-section — such as two potentials with-

out critical points — by drawing their intersection into L: Hom(Γ(dΦ),Γ(dΨ)) =
MF (L,Ψ− Φ).

4. More generally, Hamiltonian vector fields on T̂ ∗L give the derivations of
√
Coh(T̂ ∗L)

defined from its E2 Hochschild cohomology. Hamiltonians vanishing on the zero-

section preserve the latter, and give first-order automorphisms of (Coh(L),⊗).

5. The KRS picture captures in geometric terms sophisticated algebraic information.

For example, the categoryVect can be given a (Coh(L),⊗)-module structure in many

more ways in the Z/2 graded world: any potentialΨwith a single, Morse critical point

will accomplish that. The location of the critical point p ∈ Lmisses an infinite amount

of information, which is captured precisely by the graph of dΨ; this is equivalent

to an E2 structure on the evaluation homomorphism OL → Cp at the residue field

(cf. Theorem 2.5).

Parts of this story can be made rigorous at the level of formal deformation theory, see for

instance [10], and of course the outline in [14]. Lesson 3 also offers a working definition of

the 2-category
√
Coh(T ∗L) as that of (Coh(L),⊗)-modules, together with all their defor-

mations by curvings. On a general symplectic manifold X , we can hope to patch the local

definitions from here.5 It is not my purpose to supply a construction of
√
Coh(X) here — in-

deed, that is an important open question — but rather, to indicate enough structure to explain

my answer to the mirror of (non-abelian) gauge theory. I believe that one important reason

why that particular question has been troublesome is that the mirror holomorphic symplectic

manifold, the BFM space of §5, not quite a cotangent bundle, so the usual description in

terms of complex manifolds with potentials is inadequate.

Remark 3.2. If X = T ∗L for a manifold L, and we insist on integer, rather than Z/2-
gradings, then the cotangent fibers have degree 2 and all structure in the KRS category

5IfX is not Stein, deformations will be imposed upon this story by coherent cohomology.
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is invariant under the scaling action on T ∗L. In that case, we are dealing precisely with

(Coh(L),⊗)-modules.

3.3. Boundary conditions and domain walls. The Hom category Hom(L,L′) for two

Lagrangians L,L′ ⊂ X with finite intersection supplies a 2-dimensional topological field

theory for framed surfaces; this follows form its local description by matrix factorizations.

SinceX itself aims to define a 3D (Rozansky-Witten) theory and each of L,L′ is a boundary
condition for it, one should picture a sandwich of Rozansky-Witten filling between a bottom

slice of L and a top one of L′. The formal description is that L,L′ : Id → RWX are mor-

phisms from the trivial 3D theory Id to Rozansky-Witten theory RWX , viewed as functors

fromBord2 to the 3-category of linear 2-categories, and the categoryHom(L,L′) of natural
transformations between these morphisms is the generator for this sandwich theory. Geo-

metrically, it is represented by the interval, with RWX in the bulk and L,L′ at the ends, and
is also known as the compactification of RWX along the interval, with the named boundary

conditions.

Factoring this theory through oriented surfaces requires a trace on the Hochschild homol-

ogy HH∗ (cf. §2.1). Now, the canonical description of the only non-zero group, HHdimL,

turns out to involve the Spin square roots6 of the canonical bundles ω, ω′ of L,L′ on their

scheme-theoretic overlap:

HHdimLHom(L,L′) ∼= Γ
(
L ∩ L′; (ω ⊗ ω′)1/2). (3.1)

A non-degenerate quadratic form on HHdimL comes from the Grothendieck residue

(and the symplectic volume onX). A non-degenerate trace onHH∗ will thus be defined by
choosing non-vanishing sections of ω1/2, ω′1/2 on L,L′.

Remark 3.3. A generalization of the notion of boundary condition is that of a domain wall
between TQFTs. This is an adjoint pair of functors between the TQFTs meeting certain

(dualizability) conditions, see [16], §4. A boundary condition is a domain wall with the

trivial TQFT. Just as a holomorphic Lagrangian in X can be expected to define a boundary

condition forRWX , a holomorphic Lagrangian correspondenceX ← C → Y should define

a domain wall between RWX and RWY . We shalll use these in §5 and §6, in comparing

gauge theories for different groups.

4. The mirror of abelian gauge theory

This interlude recalls the mirror story of torus gauge theory; except for the difficulty men-

tioned in Lesson 1 of §3.2, this story is well understood and can be phrased as a categorified

Fourier-Mukai transform. In fact, in this case we can indicate the other mirror transforma-

tion, from the gauged B-model to a family of A-models.

4.1. The Z-graded story. We will need to correct this when abandoning Z-gradings, in
light of the wisdom of the previous section; nevertheless the following picture is nearly

right.

6The cohomology is easy to pin down canonically, as the functions on L ∩ L′.
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Proposition 4.1.

(i) Topological actions of the torus T on the category Vect are classified by points in the
complexified dual torus T∨C .

(ii) A topological action of T on a linear category C is equivalent to a quasi-coherent
sheafification of C over T∨C .

Proof. Both statements follow from Theorem 2.5, considering that the group ring C∗(ΩT )
is quasi-isomorphic to the ring of algebraic functions on T∨C , and that a category naturally

sheafifies over its center, the zeroth Hochschild cohomology.

There emerges the following 0th order approximation to abelian gauged mirror symme-

try: if X is a symplectic manifold with Hamiltonian action of T , and X∨ is a mirror of X
— in the sense that Coh(X∨) is equivalent to the Fukaya category F(X) — then the group

action on X is mirrored into a holomorphic map π : X∨ → T∨C . This picture could be

readily extracted from Seidel’s result, [26].

Proposition 4.1 interprets the mirror map X∨ → T∨C as a spectral decomposition of

the category F(X) into irreducibles Vectτ . One of the motivating conjectures of this pro-

gram gives a geometric interpretation of this spectral decomposition, in terms of the original

manifold X and the moment map μ : X → t∗.

Conjecture 4.2 (Torus symplectic quotients). The multiplicity of Vectτ in F(X) is the
Fukaya category of the symplectic reduction of X at the point Re log τ ∈ t∗, with imagi-
nary curving (B-field) Im log τ .

Remark 4.3. This is, for now, meaningless over singular values of the moment map, where

there seems to be no candidate definition for the Fukaya category of the quotient.

Remark 4.4. The conjecture relies on using the unitary mirror of X , constructed from

Lagrangians with unitary local systems. Otherwise, in the toric case, the algebraic mirrorX∨

is T∨C , obviously having a point fiber over every point in T∨C ; yet the symplectic reduction

is empty for values outside the moment polytope. That polytope is precisely the cut-off

prescribed for the mirror by unitarity.

Example 4.5 (Toric varieties). The following construction of mirrors for toric manifolds,

going back to the work of Givental and Hori-Vafa, illustrates both the conjecture and the

need to correct the picture by moving to theKRS category.

Start with the mirror of X = CN , with standard symplectic form, as the space T∨C :=
(C×)N with potential Ψ = z1 + . . . zN . Here, T∨ is the dual of the diagonal torus acting on

X , and the mirror map X∨ → T∨C is the identity.7 For a sub-torus i : K ↪→ T , the mirror

of the symplectic reduction Xq := CN//qK at q ∈ k∗ is the (torus) fiber X∨
q of the dual

surjection i∨ : T∨C � K∨
C , with restricted super-potential Ψ. The parameter q lives in the

small quantum cohomology ofX . We see here the familiar, but faulty restriction to the fiber

of the matrix factorization categoryMF (T∨C ,Ψ) of Lesson 3.2, #1. The problem is glaring,

because the original MF category is null.

The mirror X∨
q projects isomorphically to the kernel S∨C of i∨; this is the map π mirror

to the action of S = T/K on X .

7This is readily obtained from the SYZ picture, using coordinate tori as Lagrangians; the unitary mirror is cut

off by |zk| < 1.
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4.2. Fourier transform. As can be expected in the abelian case, the spectral decompo-

sition of Proposition 4.1 is formally given by a Fourier transform. Specifically, there is a

‘categorical Poincaré line bundle’

P → BTC × T∨C ,

with an integrable flat connection along BT . (Of course,P is the universal one-dimensional

topological representation of T , and its fiber over τ ∈ T∨C isVectτ .) Given a category Cwith

topological T -action, we form the bundle Hom(P,C) and integrate along BTC to obtain the

spectral decomposition of C laid out over T∨C .

Remark 4.6 (B to A). The interest in this observation stems from a related Fourier trans-

formation, giving a “B to A” mirror symmetry. There is another Poincaré bundle Q →
BTC×T∨C , with flat structure this time along T∨C . It may help to exploit flatness and descend

to B(TC × π1(T )∨), in which caseQ is the lineVect with action of the group T × π1(T )∨,
defined by the Heisenberg C×-central extension. (The extension is a multiplicative assign-

ment of a line to every group element, and the action on Vect tensors by that line.)
Fourier transform converts a category C with (non-topological!) T -action into a local

system C̃ of categories over T∨C . The fiber of C̃ over 1 is the fixed-point category CT , and the
monodromy action of π1(T

∨) comes from the natural action thereon of the categoryRep(T )
of complex T -representations. For example, when C = Coh(X), the (dg) category of coher-
ent sheaves on a complex manifold with holomorphic T -action, CT is, almost by definition,

the category of sheaves on the quotient stack X/TC. The analogue of Conjecture 4.2 is

completely obvious here.

I do not know a non-abelian analogue of this “B to A” story.

4.3. The Z/2-graded story. In light of Lesson 3.2.1 and Example 4.5, the only change

needed to reach the true story is to replace the (Coh(T∨C ),⊗)-module category Coh(X∨),
determined from π : X∨ → T∨C , by an object in the KRS category of T ∗T∨C : the category

with T -action sees precisely the germ of aKRS object near the zero-section.

Figure 4.1. Pictorial representation of
√
Coh(T ∗T∨

C )
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This enhancement of information relies upon knowing not just the Fukaya category F(X)
with its torus action, but all of its curvings with respect to functions lifted from the mirror

map π : X∨ → T∨C . However, we can expect in examples that a meaningful geometric

construction of the mirror would carry that information. For instance, in Example 4.5, we

replace (X∨
q ,Ψ|X∨q ) and its map to S∨C by the graph of dΨ|X∨q in T ∗S∨C ; this is the result of

intersecting the graph of dΨ with the cotangent space at q ∈ K∨
C .

Figure 4.1 attempts to capture the distinction between (CohT∨C ,⊗)-modules and their

KRS enhancement. The squiggly line stands for (the support of) a general object; its germ

at the zero-section is the underlying category, with topological T -action. In that sense, the

zero-section represents the regular representation of T (its Hom category with any object

recovers the underlying category.) The invariant category is the intercept with the trivial

representation, the cotangent space at 1 ∈ T∨C ; other spectral components are intercepts with

vertical axes. We see that the invariant subcategory is computed ‘far’ from the underlying

category, and a homological calculation centered at the zero-section will fail.

5. The non-abelian mirror BFM(G∨)

For torus actions, the insight was that gauging a Fukaya category F(X) amounted to enrich-

ing it from a Coh(T∨C ) module to an object in
√
Coh(T ∗T∨C ). In a cotangent bundle, this

promotion may seem modest. A non-abelian Lie group G will move us to a more sophisti-

cated holomorphic algebraic manifold which is not a cotangent bundle. Let T be a maximal

torus of G, W the Weyl group and B,B+ two opposite (lower and upper triangular) Borel

subgroups,N,N+ their unipotent radicals; Fraktur letters will stand for the Lie algebras and
∨ will indicate their counterparts in the Langlands dual Lie group G∨.

5.1. The home of 2D gauge theory. The space BFM(G) was introduced and studied by

Bezrukavnikov, Mirkovic and Finkelberg [5] in general, but special instances were known in

many guises. Here are several descriptions. Call T ∗regGC ⊂ T ∗GC the Zariski-open subset

comprising the regular cotangent vectors (centralizer of minimal dimension, the rank of G).

Theorem 5.1. The following describe the same holomorphic symplectic manifold, denoted
BFM(G).

(i) The spectrum of the complex equivariant homologyHG∨
∗ (ΩG∨), with Pontrjagin mul-

tiplication.

(ii) The holomorphic symplectic reduction of T ∗regGC by conjugation under GC.

(iii) The affine resolution of singularities of the quotient T ∗TC/W , obtained by adjoining
the functions (eα−1)/α. (α ranges over the roots of g, eα−1 is the respective function
on TC and the denominator α is the linear function on t∗.)

(iv) BFM
(
SUn

)
is the moduli space of SU2 monopoles of charge n, and is a Zariski-open

subset of the Hilbert scheme of n points in T ∗C× [4].

(v) BFM(T ) = T ∗TC

Remark 5.2. The moment map zero-fiber for the conjugation GC-action on T ∗regGC is the

(regular) universal centralizer Zreg = {(g, ξ) | gξg−1 = ξ, ξ is regular}. Zreg is smooth,

and BFM(G) = Zreg/GC, with stabilizer of constant dimension and local slices. This is

the only one of the descriptions that makes the holomorphic symplectic structure evident.
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The spaceBFM(G∨) inherits two projections from T ∗regGC : πv , to the space (g
∨)∗C/G

∨
C∼= tC/W of co-adjoint orbits, and πh, to the conjugacy classes in G∨C . Both are Poisson-

integrable with Lagrangian fibers. The projection πv will have the more obvious meaning

for gauge theory, capturing the H∗(BG)-module structure on fixed-point categories. The

projection πh is closely related to the restriction to T (and to the string topology of flag

varieties.)

The symplectic structure on BFM(G∨) relates to its nature as (an uncompletion of) the

second Hochschild cohomology of the E2-algebra H∗(ΩG).8 In fact, BFM(G) contains
the zero-fiber of πv , Z := SpecH∗(ΩG), as a smooth Lagrangian; it comes from the part of

Zreg with nilpotent ξ (cf. Remark 5.2).

Theorem 2.5 and Lesson 3.2.2 sheafify categories with topologicalG-action over the for-
mal neighborhood of Z. However, it is the entire space BFM(G∨) which is the correct re-

ceptacle forG-gauge theory: gauged TQFTs are objects in the 2-category
√
Coh(BFM(G∨)).

Clearly, that requires a rethinking of the notion: the definition of ‘topological category

with G-action’ as in §2 would complete the BFM space at the exceptional Lagrangian

Z. Loosely speaking, we need to know a theory together with all its deformations of the

group action.

The Lagrangian Z replaces the zero-section from the torus case, and plays the role of the

regular representation of G: Hom(Z,L) gives the underlying category of the representation

L. The formal calculation is HomC∗ΩG(C∗ΩG;L) = L, if we use Theorem 2.5 to model

representations. Figure 5.1 below sketches BFM(PSU2).

Figure 5.1. BFM space of PSU2; the fiber of πh at 1 is Z∪trivial representation

5.2. Induction by String topology. Nomap relatesBFM(T∨) = T ∗T∨C andBFM(G∨),
because of the blow-up, but a holomorphic Lagrangian correspondence is defined from the

8Of course, the E2 structure is trivial over the complex numbers and the algebra is quasi-isomorphic to its

underlying dg ring of chains.
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branched cover

BFM(G∨) BFM(G∨)×tC/W tC�� �� T ∗T∨C . (5.1)

The right map is neither proper not open.9 A holomorphic Lagrangian correspondences

could give a pair of adjoint functors between the respective
√
Coh 2-categories, thus a do-

main wall between T - and G- gauge theories (cf. §3.3). This is indeed the case, and we can

identify the functors.

Theorem 5.3. The correspondence (5.1) matches an adjoint pair of restriction-induction
functors between categorical T - and G-representations. Induction from a category C with
topological T -action is effected by string topology with coefficients of the flag variety G/T :

Ind(C) = C∗ΩG⊗C∗ΩT C.

Restriction is the obvious functor.

Remark 5.4.
(i) An alternative (slightly worse) description of induction is given by the category of

(derived) global sections RΓ
(
G/T ; C̃

)
for the associated local system C̃ of categories.

(ii) Neither description is quite correct. Just as the BFM spaces carry more information

than the category and the action, so does induction.

(iii) For example, inducing from the representation Vectτ , for a point τ ∈ T∨C which is

not central in G, by either method above, will appear to give zero. (This is what

a homological algebra calculation of the curved string topology of G/T for a non-

trivial curving τ ∈ H2(G/T ;C×) gives.) However, geometric induction gives the

fiber of π−1
v (τ). The puzzle is resolved by noting that none of those fibers meet the

regular representation Z, so the underlying categories are null. We are letting G act

on categories without objects, and growing wiser.

(iv) The ‘naïvely induced’ representations can serve to probe the entire BFM space by

abelianization. It is therefor not conceptually more difficult to understand non-abelian

gauged mirrors than abelian ones. However, the symplectically induced representa-

tions of the next section are much nicer.

5.3. Alternative model for induction. I close with a new model for the correspondence

(5.1), useful in a later mirror calculation. Call b+,reg ⊂ b+ the open subset of regular ele-

ments. Identify b+ =
(
gC/n+

)∗
, B+-equivariantly; the last space matches the fibers of the

bundle, over B+ ⊂ GC, of co-normals to the N+-translation orbits. Using this to define the

left map below and projection on the right gives a holomorphic Lagrangian correspondence

B+ × b+,reg
B+



 ��
T ∗regGC//adB+ T ∗TC

9Z maps to 1 ∈ T∨, but most of the zero-section in T ∗T∨
C

is missed by the map.
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having divided by the conjugation action ofB∨+. We can also divide out byB+ in the defining

correspondence for BFM(G),

BFM(G) Zreg/B+
�� �� T ∗regGC//adB+.

The composition of these two can be shown to yield (5.1) (for the group G).

6. Mirrors of flag varieties

I will now explain the place of flag varieties in the mirror view of gauge theory. Lifting to

the torus-equivariant picture will recover a construction of K. Rietsch [22].

6.1. Flag varieties as domain walls. Let L ⊂ G be a Levi subgroup, centralizer of a dom-

inant weight λ : l → iR. The flag variety X = G/L is a symplectic manifold with Hamil-

tonian G-action (the co-adjoint orbit of λ), and as such it should have a mirror holomorphic

Lagrangian in BFM(G∨). This will be true, but we forgot some structure relevant to gauge

theory. Namely, we can use G/L to symplectically induce categorical representations from
L to G.

A categorical representation C of L gives the local system of categories C̃ = G×L C →
X , and we can construct the Fukaya category of X with coefficients in C̃. (Objects would
be horizontal sections of objects over Lagrangians, and Floer complexes can be formed in

the usual way from the Hom-spaces over intersections.) In fact, the weight λ (or rather,

its exponential eλ in the center of L∨C) defines a topological representation Vectλ of L, and
we can think of the ordinary Fukaya category F(X,λ) as the symplectic induction from the

latter. The precise meaning is that deforming λ in Vectλ achieves the same effect as the

matching deformation of the symplectic form. An imaginary variation of λ (movement in

the unitary group L∨) has the effect of adding a unitary B-field twist to the Fukaya category.

Remark 6.1. Left adjoint to the symplectic induction functor SIndGL is a symplectic restric-
tion from G to L. This is not the ordinary (forgetful) restriction, which instead is adjoint

to string topology induction (§5). For example, when L = T , the spectral decomposition

under T of the symplectic restriction of C would extract the multiplicities of the F(X, τ) in
C, rather than those of the Vectτ .

This pair of functors is a new domain wall between pure 3-dimensional G- and L-gauge
theories. On the mirror side, we can hope to represent a domain wall by a holomorphic

Lagrangian correspondence between BFM(L∨) and BFM(G∨). We will be fortunate to

identify this correspondence with an open embedding.

To recover the mirror of X in its various incarnations (as a symplectic manifold, or a

G-equivariant symplectic one) we must apply boundary conditions to the two gauge theo-

ries, aiming for the ‘sandwich picture’ of a 2D TQFT, as in §3.3. For example, to find the

underlying symplectic manifold (X,λ), we must apply the representation Vectλ of L and

the regular representation Z of G. I shall carry out this (and a more general) exercise in the

final section.

The study of symplectically induced representations can be motivated by the following

conjecture, the evident non-abelian counterpart of Conjecture 4.2 (with the difference that it

seems much less approachable).
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Conjecture 6.2. For a Hamiltonian G-action on the compact symplectic manifold X and a
regular value μ of the moment map, the Fukaya category F(X//G), reduced at the orbit of
μ (and with unitary B-field iν) is the multiplicity in X of the representation symplectically
induced from Vectμ+iν .

6.2. The Toda isomorphism. The following isomorphism of holomorphic symplectic man-

ifolds is mirror to symplectic induction. It fits within a broad range of related results (‘Whit-

taker constructions’) due to Kostant. Its relation to Fukaya categories of flag varieties is

mysterious, and now only understood with reference to the appearance of the Toda inte-

grable system in the Gromov-Witten theory of flag varieties [11, 12]. From that point of

view, the isomorphism enhances the Toda system by supplying the conjugate family of com-

muting Hamiltonians, pulled back from conjugacy classes in the group, rather than orbits in

the Lie algebra.

The mirror picture of G-gauge theory involves the Langlands dual group G∨ of G, but
the notation is cleaner with G. With notation as in §5, call χ : n → C× the regular character

(unique up to TC-conjugation) and consider the Toda space, the holomorphic symplectic

quotient of T ∗GC

T (G) := (N,χ)\\T ∗GC//(N,χ)

under the left×right action of N , reduced at the point (χ, χ) ∈ n∗ ⊕ n∗.

Theorem 6.3. We have a holomorphic symplectic isomorphism

T (G) = (N,χ)\\T ∗GC//(N,χ) ∼= T ∗regGC//AdGC = BFM(G)

induced from the presentation of the two manifolds as holomorphic symplectic reductions of
the same manifold T ∗regGC.

Proof. The N ×N moment fiber in T ∗GC
∼= GC × g∗C (by left trivialization) is

T := {(g, ξ) ∈ GC × g∗C |π(ξ) = π(gξg−1) = χ},
where π : g∗C → n∗ is the projection. As π−1(χ) consists of regular elements, we may use

T ∗regGC instead. Now, N acts freely on π−1(χ), with Kostant’s global slice, so the N × N
action on T is free also and T (G) = N\T /N is a manifold.

The moment map fibers T and Zreg (for the Ad-action of GC) provide holomorphic

Lagrangian correspondences

T

�� ��

Zreg

�� ��
T (G) T ∗regGC BFM(G)

(6.1)

whose composition T ×T∗regGC
Zreg, I claim, induces an isomorphism. Actually, the

clean correspondence must mind the fact that the two actions on T ∗G, of N × N and G,
respectively, have in common the conjugation action ofN (sitting diagonally inN ×N ): so

we must really factor through T ∗regGC//Ad(N), within which the co-isotropics T /AdN and

Zreg/AdN turn out to intersect transversally.

We check that the composition in (6.1) induces a bijection on points: preservation of the

Poisson structure then supplies the Jacobian criterion. Choose (g, ξ) ∈ T ; then, ξ, gξg−1 ∈
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π−1(χ) are in the sameGC-orbit in g
∗
C. Kostant’s slice theorem ensures that the two elements

are then Ad-related by a unique ν ∈ N , νgξ(νg)−1 = ξ. There is then, up to right action

of N , a unique (g′, ξ′) ∈ Zreg in the N × N -orbit of (g, ξ). We thus get an injection

T (G) ↪→ BFM(G). To see surjectivity, conjugate a chosen (h, η) ∈ Zreg to bring η into
π−1(χ). The result is in T (and is again unique up to N -conjugation).

Remark 6.4. The space T (G) has a hyperkähler structure; it comes from a third description,

as a moduli space of solutions to Nahm’s equations. This is closely related to a conjectural

derivation of my mirror conjecture (6.5) below from Langlands (electric-magnetic) duality in

4-dimensional N = 4 Yang-Mills theory. (I am indebted to E. Witten for this explanation.)

6.3. The mirror of symplectic induction. Inclusion of the open cellN×w0 ·TC×N ⊂ GC

leads to a holomorphic symplectic embedding T ∗TC ⊂ T (G). Sending a co-tangent vector

to its co-adjoint orbit projects T (G) to g∗C//G
ad
C , and the functions on the latter space lift to

the commuting Hamiltonians of the Toda integrable system; so the theorem completes the

picture by providing a complementary set of Hamiltonians lifted from the conjugacy classes

of G.
More generally, if L ⊂ G is a Levi subgroup, with representative wL ∈ L of its longest

Weyl element, and with unipotent groupNL = N ∩LC, then χ restrict to a regular character

of NL and the inclusion

N ×NL
w0w

−1
L · LC ×NL

N ⊂ GC

determines an open embedding T (L) ⊂ T (G). The following is, among others, a character

formula for induced representations. It relies on too many wobbly definitions to be called a

theorem, but assuming it is meaningful, its truth can be established form existing knowledge.

Conjecture 6.5. Via the Toda isomorphism, the embedding T (L∨) ⊂ T (G∨) is mirror
to symplectic induction from L to G, representing the flag variety G/L as a domain wall
between L- and G-gauge theories.

Example 6.6. With the torus L = T , a one-dimensional representation of T is described by

a point q ∈ T∨, represented in
√
Coh(T ∗T∨) by the cotangent space at q. Its image under

the Toda isomorphism, a Lagrangian leaf Λ(q) ⊂ BFM(G), is the symplectically induced

representation, or the G-equivariant Fukaya category of the flag variety G/T with quantum

parameter q. The analogue of the character is the structure sheaf OΛ(q), whose algebra of

global sections is the G-equivariant quantum cohomology of G/T [11].

Remark 6.7. It is difficult to prove the conjecture without a precise definitions (of equivari-

ant Fukaya categories with coefficients and of theKRS 2-category). Nevertheless, accepting
thatBFM(G∨) as the correct mirror ofG-gauge theory, the conjecture follows from known

results about the equivariant quantum cohomology of flag varieties [7, 11, 18]. The latter de-

scribe qH∗
G(G/L) as a module over H∗(BG) = C[g]G, the algebra of Toda Hamiltonians,

induced from the projection πv . The symplectic condition turns out to pin the map uniquely.

6.4. Foliation by induced representations. Recall (Example 2.4) the one-dimensional rep-

resentations of a Levi subgroup L ⊂ G, corresponding to the points in the center of L∨C . Let
us call them cuspidal: they are not symplectically induced from a smaller Levi subgroup.

(Such a symplectic induction produces representation of rank equal to the Euler characteris-

tic of the flag variety.) The following proposition suggests that these induced representations

are better suited to spectral theory that the naïvely induced ones of §5.
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Theorem 6.8. The space BFM(G∨) is smoothly foliated by symplectic inductions of cus-
pidal representations: each leaf comes from a unique cuspidal representation of a unique
Levi subgroup L, with T ⊂ L ⊂ G.
Proof. The leaves are the fibers of N\T ∨/N → N\G∨C/N , and induction on the semi-

simple rank reduces us to checking that the part of T ∨ which does not come from any

T (L∨), for a proper L ⊂ G, lives over the center of G∨C .
Omit ∨ from the notation and choose (g, ξ) ∈ T . From GC =

∐
wN ·wTC ·N , we may

take g ∈ wTC for some w ∈W . Split g∗C = n∗ ⊕ t∗C ⊕ n∗+; then,

ξ = χ+ η + ν, for some η ∈ tC, ν ∈ n∗+

gξg−1 = χ+ w(η) + ν′, for some ν′ ∈ n∗+

whence we see that w sends each simple negative root either to a simple negative root, or to

a positive root. If w = 1, then g ∈ TC centralizes χ (mod b∗+) and thus lies in the center of

GC. Otherwise, I claim that w = w0w
−1
L , for the Levi L whose negative simple roots stay

negative. Equivalently, the unique simple root system of g comprising the simple negative

roots of L and otherwise only positive roots, is the wL-transform of the positive root system.

This can be seen by choosing a point ζ+ε, with ζ generic on theL-fixed face of the dominant

Weyl chamber, and ε a dominant regular displacement: wL(ζ + ε) must be in the dominant

chamber of the new root system.

Example 6.9 (G = SU2). The dual complex group is G∨C = PSL2(C), whose BFM space

is the blow-up of C × C×/{±1} at (0, 1), with the proper transform of the zero-section

{0} × C×/{±1} removed. This is the Atiyah-Hitchin manifold studied in [4]. The Z/2-
action identifies (ξ, z) with (−ξ, z−1). Projection to the line of co-adjoint orbits is given by

the Toda Hamiltonian ξ2.
The Toda inclusion of T ∗T∨C

∼= C× C× sends a point (u, q) to

ξ2 = u2 − q, z + z−1

4
=
u2

q
− 1

2

(A match of signs is required between z and ξ.) The induced leaves of constant q are given
by

ξ = q

√
z − √

z
−1

2
,

after lifting to the coordinates ξ,
√
z for the double-cover maximal torus in SL2. We recog-

nize here the (graph of the differentiated potential in the) S1-equivariant mirror of the flag

variety P1.

The one remaining leaf in BFM(PSU2) is the trivial representation of SU2; it is the

proper transform of T ∗1C
×/{±1}, the image in C×C×/{±1} of) the cotangent fiber at 1. If

we switch instead to PSU(2), the new BFM space (on the Langlands dual side) is a double

cover of the former, and there is a new cuspidal leaf over the central point (−I2) ∈ SU2,

corresponding to the sign representation of π1PSU2.

6.5. Torus-equivariant flag varieties. Restricting the G-action to T , the flag manifold

G/L is a transformation from L-gauge theory to T -gauge theory, given by composition

of the symplectic induction and string topology domain walls:
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T (L∨) �
� SInd �� T (G∨)

Toda

∼ �� BFM(G)
ST �� BFM(T∨) = T ∗T∨C (6.2)

The equivariant mirror is a family of 2D TQFTs, which can be defined, for instance,

by a family of complex manifolds with potentials parametrized by the Lie algebra tC. This
family reflects the H∗(BT )-module structure on equivariant quantum cohomology. When

F(G/L) has been represented by an object Λ ∈ √
Coh(T ∗T∨C ), the family comes from the

projection of T ∗T∨C to the cotangent fiber, and the TQFTs are the fibers of Λ over tC, the
Hom categories with the constant sections of T ∗T∨C .

To recover this family of mirrors from the double domain wall (6.2), we must use it to

pair two Lagrangians, in T (L∨) and in T ∗T∨C . The Lagrangians are

• the Lagrangian leaf Λ(q) ⊂ BFM(L∨) over a point q in the center of L∨C , describing
a cuspidal representation of L (q is also the quantum parameter for G/L);

• the constant Lagrangian section Sξ of T
∗T∨C , with fixed value ξ ∈ tC.

Note that Sξ is the differential of a multi-valued character ξ ◦ log : T∨C → C.

Remark 6.10. The relevant TQFT picture is a sandwich with triple-decker filling: the base

slice is the representation Vectq of L corresponding to Λ(q), a boundary condition for L-
gauge theory. The filling of the sandwich is a triple layer ofL,G, T gauge theories, separated

by the SInd and string topology domain walls in (6.2). The sandwich is topped with the slice

Sξ, a boundary condition for T -gauge theory. Its underlying representation category is null,

if ξ �= 0; Sξ is a deformation of the regular representation of T by the multi-valued potential

ξ ◦ log.

6.6. Rietsch mirrors. Building on ideas of Peterson and earlier calculations of Givental-

Kim, Ciocan-Fontanine, Kostant and Mihalcea [7, 11, 12, 18], Rietsch [22] proposed torus-

equivariant complex mirrors for all flag varieties G/L.
Let us recover these from my story by computing the answer outlined above. Recall

(§5.3) the Lagrangian correspondence

T ∗TC ← B+ × b+,reg → T ∗regGC,

appearing in the alternate model for the string topology induction. Compose this with the

Toda construction to define the following holomorphic Lagrangian correspondence between

T (G) and BFM(T ) = T ∗TC:

T
P

�� ��

B+ × b+,reg





p

��
T (G) T ∗regGC T ∗TC

(6.3)

Proposition 6.11. Correspondence (6.3) is the composition ST ◦ Toda of (6.2).

Sketch of proof. In the jagged triangle of correspondences below, the left edge is the Toda

isomorphism, the right edge the correspondence (6.3) and the bottom edge the string topol-

ogy domain wall. The long, counterclockwise way from top to right involves division by the
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complementary subgroups N and B+ of GC; so it seems reasonable that the composition

should agree with the undivided correspondence (6.3) on the right edge:

T /Ad(N) ��

��

T(G) T��

��

T ∩ (B+ × b+,reg
)

��

��

Zreg/Ad(N)

��

�� T ∗regGC//AdN Zreg(B+)/B+

��
��

T ∗regGC B+ × b+,reg

��

��

Zreg

B+

�� ��

B+ × b+,reg
B+

�� ��
BFM(G) T ∗regGC//AdB+ BFM(T)

The argument exploits the regularity of the Lie algebra elements. The intersection in the

upper right corner comprises the pairs (b, β) ∈ B+ × b+ with b centralizing β ∈ E + tC.
(E = χ under n+ ∼= n∗.) That is a slice for the conjugation B+-action on the regular

centralizer Zreg(B+) in B+, which makes clear the isomorphism with the fiber product in

the center the triangle; and the map is compatible with the Toda isomorphism on the left

edge.

We now calculate the pairing Sξ ⊂ T (L∨) and Λ(q) ⊂ T ∗T∨C by the correspon-

dence (6.3) for the dual group G∨. We do so by computing in T ∗regG
∨
C

Hom
(
p−1Sξ, P

−1Λ(q)
)
.

The two Lagrangians meet over the intersection

B∨+ ∩ (N∨ · w0w
−1
L L

∨
C ·N∨) ⊂ G∨C .

Lift ξ ◦ log to B∨+ by p; over B∨+, p
−1Sξ is the conormal bundle to B∨+ ⊂ G∨C shifted by the

graph of d(ξ◦ log). (The shifted bundle is well-defined, independently of any local extension
of the function ξ ◦ log.)

The Lagrangian P−1Λ(q) lives over the open set N∨ · w0w
−1
L L

∨
C ·N∨ in G∨C , where it

is the shifted co-normal bundle to the submanifold

M := N∨ · w0w
−1
L q ·N∨ ∼= N∨ ×N∨

diag(N∨ ∩ L∨C)
,

shifted into T by the graph of the differential of the following function f :

f : n1 · w0w
−1
L l · n2 !→ χ(log n1 + log n2).

Now, B∨+ andM meet transversally in G∨C , in a manifold isomorphic to a Zariski-open

in the flag variety G∨/L∨; this is the Rw0,wL
of [22]-. Transversality permits us to dispense
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with the conormal bundles, and identify Hom(Sξ,Λ(q)) with the pairing, in the cotangent

bundles, between graphs of the restricted functions to B∨+ ∩M

HomT∗(B∨+∩M) (Γ(d(ξ ◦ log)),Γ(df)) ;

this is the matrix factorization category MF
(
B∨+ ∩M ; f − ξ ◦ log

)
. This is the Rietsch

mirror of G/L.
The last mirror comes with a volume form, which defines the trace on HH∗. In the

Lagrangian correspondence, we need instead a half-volume form on each leaf. The two

leaves Sξ and Λ(q) do in fact carry natural half-volumes, translation-invariant for the groups

(B andN×N ) and along the cotangent fibers. Rietsch’s volume form on the mirrorRw0,wL

comes from the product of these half-volumes.
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