BEYOND LINEAR ALGEBRA

Bernd Sturmfels

MPI Leipzig and UC Berkeley

Invitation to
Nonlinear Algebra

International Congress of Mathematicians, July 8, 2022

Undergraduate Linear Algebra

All undergraduate students learn about Gaussian elimination, a general method for solving linear systems of algebraic equations:

Input:

$$
\begin{array}{ccc}
x+2 y+3 z & =5 \\
7 x+11 y+13 z & =17 \\
19 x+23 y+29 z & =31
\end{array}
$$

Output:

$$
\begin{aligned}
& x=-35 / 18 \\
& y=2 / 9 \\
& z=13 / 6
\end{aligned}
$$

Solving very large linear systems is central to applied mathematics.

Undergraduate Non-Linear Algebra

Lucky undergraduate students also learn about Gröbner bases, a general method for non-linear systems of algebraic equations:

Input:

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =2 \\
x^{3}+y^{3}+z^{3} & =3 \\
x^{4}+y^{4}+z^{4} & =4
\end{aligned}
$$

Output:

$$
\begin{array}{cc}
3 z^{12}-12 z^{10}-12 z^{9}+12 z^{8}+72 z^{7}-66 z^{6}-12 z^{4}+12 z^{3}-1 & =0 \\
4 y^{2}+\left(36 z^{11}+54 z^{10}-69 z^{9}-252 z^{8}-216 z^{7}+573 z^{6}+72 z^{5}\right. & \\
\left.-12 z^{4}-99 z^{3}+10 z+3\right) \cdot y+36 z^{11}+48 z^{10}-72 z^{9} & \\
-234 z^{8}-192 z^{7}+564 z^{6}-48 z^{5}+96 z^{4}-96 z^{3}+10 z^{2}+8 & =0 \\
4 x+4 y+36 z^{11}+54 z^{10}-69 z^{9}-252 z^{8}-216 z^{7} & \\
+573 z^{6}+72 z^{5}-12 z^{4}-99 z^{3}+10 z+3 & =0
\end{array}
$$

Numerical homotopy methods solve polynomial systems reliably.

Julia

3264 CONICS IN A SECOND

Paul Breiding Bernd Sturmfels Sascha Timme

Nonlinear Shapes

Many models in the sciences and engineering are solution sets of polynomial equations. Such a set is an algebraic variety $X \subset \mathbb{R}^{n}$.

Nearest Points on Varieties

Fix a variety X in \mathbb{R}^{n}, ideal $I_{X}=\left\langle f_{1}, \ldots, f_{k}\right\rangle$, and $c=\operatorname{codim}(X)$. The $k \times n$ Jacobian matrix $\mathcal{J}=\left(\partial f_{i} / \partial x_{j}\right)$ has rank $\leq c$ on X.

A point $x \in X$ is nonsingular if rank $=c$. Assumption: nonsingular real points are Zariski dense in X.

The following optimization problem arises in many applications: Given a data point $u \in \mathbb{R}^{n}$, compute the distance to the model X. We seek x^{*} in X that is closest to u.

The answer depends on the metric. We begin with
The Euclidean distance (ED) problem:

$$
\operatorname{minimize} \sum_{i=1}^{n}\left(x_{i}-u_{i}\right)^{2} \text { subject to } x \in X
$$

Euclidean Distance Degree

The augmented Jacobian is the $(k+1) \times n$ matrix with the extra row $\left(x_{1}-u_{1}, \ldots, x_{n}-u_{n}\right)$ atop the Jacobian matrix \mathcal{J}.

Form its ideal of $(c+1) \times(c+1)$ minors, add I_{X}, and saturate by the $c \times c$ minors of \mathcal{J}. This results in the critical ideal $\mathcal{C}_{X, u}$.

This defines the set of critical points of the ED problem. For random data u, this set is finite and contains the solution x^{*}, provided x^{*} is a nonsingular point of X.

Euclidean Distance Degree

The augmented Jacobian is the $(k+1) \times n$ matrix with the extra row $\left(x_{1}-u_{1}, \ldots, x_{n}-u_{n}\right)$ atop the Jacobian matrix \mathcal{J}.

Form its ideal of $(c+1) \times(c+1)$ minors, add I_{X}, and saturate by the $c \times c$ minors of \mathcal{J}. This results in the critical ideal $\mathcal{C}_{X, u}$.

This defines the set of critical points of the ED problem. For random data u, this set is finite and contains the solution x^{*}, provided x^{*} is a nonsingular point of X.

The ED degree of X is the number of complex zeros of $\mathcal{C}_{X, u}$. This measures the difficulty of solving the ED problem for the model X.
[Draisma, Horobeț, Ottaviani, St, Thomas, 2016]

Proposition

If f_{1}, \ldots, f_{k} have degrees $d_{1} \geq \cdots \geq d_{k}$ then
$\operatorname{EDdegree}(X) \leq d_{1} d_{2} \cdots d_{c} \cdot \sum_{i_{1}+i_{2}+\cdots+i_{c} \leq n-c}\left(d_{1}-1\right)^{i_{1}}\left(d_{2}-1\right)^{i_{2}} \cdots\left(d_{c}-1\right)^{i_{c}}$.

Trott Curve

If X is a quartic curve in \mathbb{R}^{2} then EDdegree $(X)=16$. Not all critical points are real. For example, consider the Trott curve:

Space Curves

Fix $n=3$ and X a curve defined by general polynomials p, q of degrees d_{1}, d_{2} in x, y, z. The augmented Jacobian matrix is

$$
\mathcal{A} \mathcal{J}=\left(\begin{array}{lll}
x-u_{1} & y-u_{2} & z-u_{3} \\
\partial p / \partial x & \partial p / \partial y & \partial p / \partial z \\
\partial q / \partial x & \partial q / \partial y & \partial q / \partial z
\end{array}\right)
$$

For random data $u \in \mathbb{R}^{3}$, the ideal $\mathcal{C}_{X, u}=\langle p, q, \operatorname{det}(\mathcal{A} \mathcal{J})\rangle$ has $d_{1} d_{2}\left(d_{1}+d_{2}-1\right)$ zeros in \mathbb{C}^{3}. This is the ED degree of X.

Proposition
If X is a general smooth curve of degree d and genus g in \mathbb{R}^{n} then

$$
E D \operatorname{degree}(X)=3 d+2 g-2
$$

Curve has degree $d=d_{1} d_{2}$ and genus $g=\frac{1}{2}\left(d_{1}^{2} d_{2}+d_{1} d_{2}^{2}\right)-2 d_{1} d_{2}+1$.

General Formula

Theorem
If $X \subset \mathbb{R}^{n}$ satisfies •• then $E D d e g r e e ~(X)$ equals the sum of the polar degrees of the projective closure of X in \mathbb{P}^{n}.

Hypothesis • • holds for all X after linear change of variables.

General Formula

Theorem

If $X \subset \mathbb{R}^{n}$ satisfies •• • then EDdegree (X) equals the sum of the polar degrees of the projective closure of X in \mathbb{P}^{n}.

Hypothesis • • holds for all X after linear change of variables.

Points h in the dual space $\left(\mathbb{P}^{n}\right)^{\vee}$ are hyperplanes in \mathbb{P}^{n}. Consider pairs (x, h) in $\mathbb{P}^{n} \times\left(\mathbb{P}^{n}\right)^{\vee}$ with $x \in X$ nonsingular and h tangent to X at x. Zariski closure is the conormal variety $N_{X} \subset \mathbb{P}^{n} \times\left(\mathbb{P}^{n}\right)^{\vee}$.

Facts: N_{X} is irreducible of $\operatorname{dim} n-1, N_{X}=N_{X} \vee$ and $\left(X^{\vee}\right)^{\vee}=X$.
Polar degrees of X are coefficients of the cohomology class

$$
\begin{aligned}
& {\left[N_{X}\right]=\delta_{1}(X) s^{n} t+\delta_{2}(X) s^{n-1} t^{2}+\cdots+\delta_{n}(X) s t^{n}} \\
& \text { in } H^{*}\left(\mathbb{P}^{n} \times\left(\mathbb{P}^{n}\right)^{\vee}, \mathbb{Z}\right)=\mathbb{Z}[s, t] /\left\langle s^{n+1}, t^{n+1}\right\rangle .
\end{aligned}
$$

Interpretation

Polar degrees satisfy $\delta_{i}(X)=\#\left(N_{X} \cap\left(L_{n+1-i} \times L_{i}\right)\right)$, where $L_{n+1-i} \subset \mathbb{P}^{n}$ and $L_{i} \subset\left(\mathbb{P}^{n}\right)^{\vee}$ are general subspaces.

Example (General Surfaces in 3-space)
If X has degree d in \mathbb{P}^{3} then N_{X} is a surface in $\mathbb{P}^{3} \times\left(\mathbb{P}^{3}\right)^{\vee}$, with

$$
\left[N_{X}\right]=d(d-1)^{2} s^{3} t+d(d-1) s^{2} t^{2}+d s t^{3}
$$

The sum of polar degrees equals EDdegree $(X)=d^{3}-d^{2}+d$.

Polyhedral Norms

(Wasserstein)

Scale the unit ball until it meets the variety X.

Suppose the optimal face of the unit ball has codimension i.

Proposition

The polar degree $\delta_{i}(X)$ is the number of critical points of a linear form ℓ on $L \cap X$, where L is a general affine space of codimension $i-1$ in \mathbb{R}^{n}.

Likelihood Geometry

State space $\{0,1, \ldots, n\}$. The probability simplex is
$\Delta_{n}=\left\{p \in \mathbb{R}^{n+1}: p_{0}+p_{1}+\cdots+p_{n}=1\right.$ and $\left.p_{0}, p_{1}, \ldots, p_{n}>0\right\}$.
Model $X \subset \Delta$. Data $u \in \mathbb{N}^{n+1}$. The log-likelihood function is
$\ell_{u}: \Delta_{n} \rightarrow \mathbb{R}, \quad p \mapsto u_{0} \cdot \log \left(p_{0}\right)+u_{1} \cdot \log \left(p_{1}\right)+\cdots+u_{n} \cdot \log \left(p_{n}\right)$.

The ML degree of X is the number of critical points of:
Maximize $\ell_{u}(p)$ subject to $p \in X$.

Example
If $n=3$ and X is our curve $\{p=q=0\}$ then

$$
\text { ML degree }(X)=d_{1} d_{2}\left(d_{1}+d_{2}+1\right)
$$

Likelihood Geometry

(ASCB)

Fig. 3.2. The geometry of maximum likelihood estimation.

Euler Characteristic

View the model X in the complex projective space \mathbb{P}^{n}, and let

$$
X^{o}=X \backslash\left\{p_{0} p_{1} \cdots p_{n}\left(\sum_{i=0}^{n} p_{i}\right)=0\right\}
$$

Theorem
Suppose the very affine variety X^{0} is non-singular.
The ML degree of the model X equals the signed Euler characteristic $(-1)^{\operatorname{dim}(X)} \cdot \chi\left(X^{0}\right)$ of the manifold X°.

polar degrees for ED \longleftrightarrow Euler characteristic for MLE

Theorem (Huh, Duarte-Marigliano-St)
If the model X has ML degree one, then each coordinate of p is an alternating product of linear forms in u with positive coefficients.

Particle Physics

(Scattering Equations)

The CEGM model, due to Cachazo et al., is the space of m points in general position in \mathbb{P}^{k-1} :

$$
X^{o}=\operatorname{Gr}(k, m)^{o} /\left(\mathbb{C}^{*}\right)^{m}
$$

The data u are the Mandelstam invariants.

Proposition

X° is very affine; coordinates are $k \times k$ minors of
$\left[\begin{array}{ccccccccccc}0 & 0 & 0 & \ldots & 0 & (-1)^{k} & 1 & 1 & 1 & \ldots & 1 \\ 0 & 0 & 0 & \ldots & (-1)^{k-1} & 0 & 1 & x_{1,1} & x_{1,2} & \ldots & x_{1, m-k-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & -1 & \ldots & 0 & 0 & 1 & x_{k-3,1} & x_{k-3,2} & \ldots & x_{k-3, m-k-1} \\ 0 & 1 & 0 & \ldots & 0 & 0 & 1 & x_{k-2,1} & x_{k-2,2} & \ldots & x_{k-2, m-k-1} \\ -1 & 0 & 0 & \ldots & 0 & 0 & 1 & x_{k-1,1} & x_{k-1,2} & \ldots & x_{k-1, m-k-1}\end{array}\right]$

Theorem

For $k=2$, the ML degree equals $(m-3)$! for all $m \geq 4$.
For $k=3$ and $m=5,6,7,8,9$, it is $2,26,1272,188112,74570400$.
For $k=4, m=8$ it equals 5211816.

Likelihood Geometry

(Gaussian Models)
Statistical model is a variety X in $\mathrm{PD}_{n} \subset \operatorname{Sym}_{2}\left(\mathbb{R}^{n}\right)$. MLE means:
Maximize $\Sigma \mapsto \log \operatorname{det} \Sigma^{-1}-\operatorname{trace}\left(\mathbf{S} \Sigma^{-1}\right)$ subject to $\Sigma \in X$.

Likelihood Geometry

(Gaussian Models)
Statistical model is a variety X in $\mathrm{PD}_{n} \subset \operatorname{Sym}_{2}\left(\mathbb{R}^{n}\right)$. MLE means:
Maximize $\Sigma \mapsto \log \operatorname{det} \Sigma^{-1}-\operatorname{trace}\left(\mathbf{S} \Sigma^{-1}\right)$ subject to $\Sigma \in X$.
Linear Space of Symmetric Matrices $\mathcal{L} \subset \operatorname{Sym}_{2}\left(\mathbb{R}^{n}\right)$ gives a model

$$
X=\left\{\Sigma: \Sigma^{-1} \in \mathcal{L}\right\}=\left\{K^{-1}: K \in \mathcal{L}\right\} .
$$

Proposition

Critical equations for maximum likelihood estimation are

$$
K \in \mathcal{L} \text { and } K \Sigma=I d_{n} \text { and } \Sigma-\mathbf{S} \in \mathcal{L}^{\perp} .
$$

The ML degree of \mathcal{L} is the number of complex critical points.
Example: For general LSSM with $n=4$ we have

$$
\begin{array}{ccccccccc}
k=\operatorname{dim}(\mathcal{L}): & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { ML degree : } & 3 & 9 & 17 & 21 & 21 & 17 & 9 & 3
\end{array}
$$

Schubert Calculus

Theorem (Michałek et al.)
The ML degree of \mathcal{L} is the number of quadrics in \mathbb{P}^{n-1} through $\binom{n+1}{2}-k$ general points and tangent to $k-1$ general hyperplanes. For fixed k, this is a polynomial in n of degree $k-1$.

Nonlinear Algebra meets Linear PDE

The following two things are the same:

- Polynomials:

$$
X^{2}-T^{2}=(X-T)(X+T)
$$

- Linear homogeneous partial differential equations with constant coefficients:

$$
\phi_{x x}(x, t)-\phi_{t t}(x, t)=0
$$

Nonlinear Algebra meets Linear PDE

The following two things are the same:

- Polynomials:

$$
X^{2}-T^{2}=(X-T)(X+T)
$$

- Linear homogeneous partial differential equations with constant coefficients:

$$
\phi_{x x}(x, t)-\phi_{t t}(x, t)=0
$$

D'Alembert (1747): General solution is superposition of traveling waves:

$$
\phi(x, t)=f(x+t)+g(x-t)
$$

where f and g are twice differentiable functions, or distributions.

Current work: any ideal in a polynomial ring, and any module.

Section 3.3

Wolfgang Gröbner

GRADUATE STUDIES IN MATHEMATICS

Invitation to Nonlinear Algebra

Mateusz Michałek Bernd Sturmfels

Theorem 3.27. Let I be a zero-dimensional ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, here interpreted as a system of linear PDEs. The space of holomorphic solutions has dimension equal to the degree of I. There exist nonzero polynomial solutions if and only if the maximal ideal $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is an associated prime of I. In that case, the polynomial solutions are precisely the solutions to the system of PDEs given by the M-primary component $\left(I:\left(I: M^{\infty}\right)\right)$.

Cayley's Cubic Surface

This picture is the logo of the Nonlinear Algebra group at MPI Leipzig:

The elliptope is a PDE constraint for $\phi: \mathbb{R}^{4} \rightarrow \mathbb{C}^{3}$:

$$
\left[\begin{array}{ccc}
\partial_{1} & \partial_{2} & \partial_{3} \\
\partial_{2} & \partial_{1} & \partial_{4} \\
\partial_{3} & \partial_{4} & \partial_{1}
\end{array}\right] \bullet\left[\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Quiz: What does the command solvePDE in Macaulay2 tell us?

Epilog

Linear algebra is ubiquitous in the mathematical universe.
It plays a foundational role for models in the sciences and engineering; its numerical tools are a driving force for today's technologies. The power of linear algebra stems from calculus, i.e. our ability to approximate nonlinear shapes by linear spaces.

Yet, the world is nonlinear. Polynomials are a natural ingredient in mathematical models for the real world.

In our view, the nonlinear nature of a phenomenon should be respected as long as possible. We advocate against the practice of passing to a linear approximation right away.

Many Thanks for Listening

