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Nonlinear algebra provides modern math-
ematical tools to address challenges arising 
in the sciences and engineering. It is useful 
everywhere, where polynomials appear: in 
particular, data and computational sciences, 
statistics, physics, optimization. The book 
offers an invitation to this broad and fast-
developing area. It is not an extensive 
encyclopedia of known results, but rather 
a first introduction to the subject, allowing 
the reader to enter into more advanced topics. It was designed as the next step 
after linear algebra and well before abstract algebraic geometry. The book presents 
both classical topics—like the Nullstellensatz and primary decomposition—and 
more modern ones—like tropical geometry and semidefinite programming. The 
focus lies on interactions and applications. Each of the thirteen chapters introduces  
fundamental concepts. The book may be used for a one-semester course, and 
the over 200 exercises will help the readers to deepen their understanding of the 
subject.
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Undergraduate Linear Algebra

All undergraduate students learn about Gaussian elimination, a
general method for solving linear systems of algebraic equations:

Input:
x + 2y + 3z = 5

7x + 11y + 13z = 17
19x + 23y + 29z = 31

Output:
x = −35/18
y = 2/9
z = 13/6

Solving very large linear systems is central to applied mathematics.



Undergraduate Non-Linear Algebra

Lucky undergraduate students also learn about Gröbner bases,
a general method for non-linear systems of algebraic equations:

Input: x2 + y2 + z2 = 2
x3 + y3 + z3 = 3
x4 + y4 + z4 = 4

Output:

3z12−12z10−12z9+12z8+72z7−66z6−12z4+12z3−1 = 0

4y2 + (36z11+54z10−69z9−252z8−216z7+573z6+72z5

−12z4−99z3+10z+3) · y + 36z11+48z10−72z9

−234z8−192z7+564z6−48z5+96z4−96z3+10z2+8 = 0

4x + 4y + 36z11+54z10−69z9−252z8−216z7

+573z6+72z5−12z4−99z3+10z+3 = 0

Numerical homotopy methods solve polynomial systems reliably.



Julia 3264
CONICS
IN A 
SECOND

Paul Breiding
Bernd Sturmfels

Sascha Timme

In 1848 Jakob Steiner asked
«How many conics are tangent to five conics?»

In 2019 we ask
«Which conics are tangent to your five conics?»

Curious to know the answer?
Find out at:

juliahomotopycontinuation.org/do-it-yourself/



Nonlinear Shapes
Many models in the sciences and engineering are solution sets of
polynomial equations. Such a set is an algebraic variety X ⊂ Rn.



Nearest Points on Varieties
Fix a variety X in Rn, ideal IX = 〈f1, . . . , fk〉, and c = codim(X ).

The k × n Jacobian matrix J = (∂fi/∂xj) has rank ≤ c on X .

A point x ∈ X is nonsingular if rank = c .
Assumption: nonsingular real points are Zariski dense in X .

The following optimization problem arises in many applications:
Given a data point u ∈ Rn, compute the distance to the model X .

We seek x∗ in X that is closest to u.

The answer depends on the metric. We begin with

The Euclidean distance (ED) problem:

minimize
n∑

i=1

(xi − ui )
2 subject to x ∈ X .



Euclidean Distance Degree
The augmented Jacobian is the (k + 1)× n matrix with the
extra row (x1 − u1, . . . , xn − un) atop the Jacobian matrix J .

Form its ideal of (c + 1)× (c + 1) minors, add IX , and saturate
by the c × c minors of J . This results in the critical ideal CX ,u.

This defines the set of critical points of the ED problem. For
random data u, this set is finite and contains the solution x∗,

provided x∗ is a nonsingular point of X .

The ED degree of X is the number of complex zeros of CX ,u. This
measures the difficulty of solving the ED problem for the model X .

[Draisma, Horobeţ, Ottaviani, St, Thomas, 2016]

Proposition

If f1, . . . , fk have degrees d1 ≥ · · · ≥ dk then

EDdegree(X ) ≤ d1d2 · · · dc ·
∑

i1+i2+···+ic≤n−c
(d1−1)i1(d2−1)i2 · · · (dc−1)ic .
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Trott Curve

If X is a quartic curve in R2 then EDdegree(X ) = 16. Not all
critical points are real. For example, consider the Trott curve:

144(x4 + y4) − 225(x2 + y2) + 350x2y2 + 81 = 0



Space Curves

Fix n = 3 and X a curve defined by general polynomials p, q
of degrees d1, d2 in x , y , z . The augmented Jacobian matrix is

AJ =



x − u1 y − u2 z − u3
∂p/∂x ∂p/∂y ∂p/∂z
∂q/∂x ∂q/∂y ∂q/∂z


 .

For random data u ∈ R3, the ideal CX ,u =
〈
p, q, det(AJ )

〉

has d1d2(d1 + d2 − 1) zeros in C3. This is the ED degree of X .

Proposition

If X is a general smooth curve of degree d and genus g in Rn then

EDdegree(X ) = 3d + 2g − 2.

Curve has degree d = d1d2 and genus g = 1
2 (d2

1d2 + d1d
2
2 )− 2d1d2 + 1.



General Formula

Theorem
If X ⊂ Rn satisfies • • • then EDdegree(X ) equals the sum
of the polar degrees of the projective closure of X in Pn.

Hypothesis • • • holds for all X after linear change of variables.

Points h in the dual space (Pn)∨ are hyperplanes in Pn. Consider
pairs (x , h) in Pn× (Pn)∨ with x ∈ X nonsingular and h tangent to
X at x . Zariski closure is the conormal variety NX ⊂ Pn × (Pn)∨.

Facts: NX is irreducible of dim n− 1, NX = NX∨ and (X∨)∨ = X .

Polar degrees of X are coefficients of the cohomology class

[NX ] = δ1(X )snt + δ2(X )sn−1t2 + · · · + δn(X )stn.

in H∗(Pn×(Pn)∨, Z) = Z[s, t]/〈sn+1, tn+1〉 .
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Interpretation
Polar degrees satisfy δi (X ) = #(NX ∩ (Ln+1−i × Li ) ),
where Ln+1−i ⊂ Pn and Li ⊂ (Pn)∨ are general subspaces.
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Example (General Surfaces in 3-space)

If X has degree d in P3 then NX is a surface in P3 × (P3)∨, with

[NX ] = d(d − 1)2 s3t + d(d − 1) s2t2 + d st3.

The sum of polar degrees equals EDdegree(X ) = d3 − d2 + d .



Polyhedral Norms (Wasserstein)

Scale the unit ball until it meets the variety X .

Wasserstein Distance
to Independence Models

Bernd Sturmfels
MPI Leipzig and UC Berkeley

joint work with Türkü Özlüm Çelik, Asgar Jamneshan,
Guido Montúfar, and Lorenzo Venturello

Suppose the optimal face of the unit ball has codimension i .

Proposition
The polar degree δi (X ) is the number of critical points of a linear form `
on L ∩ X, where L is a general affine space of codimension i − 1 in Rn.



Likelihood Geometry (Discrete Models)

State space {0, 1, . . . , n}. The probability simplex is

∆n =
{
p ∈ Rn+1 : p0+p1+· · ·+pn = 1 and p0, p1, . . . , pn > 0

}
.

Model X ⊂ ∆. Data u ∈ Nn+1. The log-likelihood function is

`u : ∆n → R , p 7→ u0 · log(p0) + u1 · log(p1) + · · ·+ un · log(pn).

The ML degree of X is the number of critical points of:

Maximize `u(p) subject to p ∈ X .

Example

If n = 3 and X is our curve {p = q = 0} then

ML degree(X ) = d1d2 (d1 + d2 + 1).



Likelihood Geometry (ASCB)Algebra 103

data

probability simplex

parameter space

f

θ̂

p̂

Fig. 3.2. The geometry of maximum likelihood estimation.

problem of maximizing the log-likelihood function

ℓu(θ) =
m∑

i=1

ui · log(fi(θ)). (3.19)

The geometry of maximum likelihood estimation is illustrated in Figure 3.2.

The polynomial map f maps the low-dimensional parameter space into a very

high-dimensional probability simplex. The image is the statistical model. The

empirical distribution derived from the data vector u is a point in the proba-

bility simplex, and its maximum likelihood estimate p̂ is a point in the model.

If these two points are close to each other then the model is a good fit for

the data. Assuming that the model is identifiable (i.e., the map f is locally

one-to-one), we can compute the unique parameter vector θ̂ which maps to p̂.

Every local and global maximum θ̂ in Θ of the log-likelihood function (3.19)

is a solution of the critical equations

∂ℓu
∂θ1

=
∂ℓu
∂θ2

= · · · =
∂ℓu
∂θd

= 0. (3.20)

The derivative of ℓu(θ) with respect to the unknown θi is the rational function

∂ℓu
∂θi

=
u1

f1(θ)

∂f1

∂θi
+

u2

f2(θ)

∂f2

∂θi
+ · · · +

um

fm(θ)

∂fm

∂θi
. (3.21)

The problem to be studied in this section is computing all solutions θ ∈ Cd

of the critical equations (3.20). Since (3.21) is a rational function, this set of

critical points is an algebraic variety outside the locus where the denominators

of these rational functions are zero. Hence the closure of the set of critical

points of ℓu is an algebraic variety in Cd, called the likelihood variety of the

model f with respect to the data u.

In order to compute the likelihood variety we proceed as follows. We in-

troduce m new unknowns z1, . . . , zm where zi represents the inverse of fi(θ).

The polynomial ring Q[θ, z] = Q[θ1, . . . , θd, z1, . . . , zm] is our “big ring”, as



Euler Characteristic

View the model X in the complex projective space Pn, and let

X o = X \
{
p0p1 · · · pn (

n∑

i=0

pi ) = 0
}
.

Theorem
Suppose the very affine variety X o is non-singular.
The ML degree of the model X equals the signed Euler
characteristic (−1)dim(X ) · χ(X o) of the manifold X o .

polar degrees for ED ←→ Euler characteristic for MLE

Theorem (Huh, Duarte-Marigliano-St)

If the model X has ML degree one, then each coordinate of p is an
alternating product of linear forms in u with positive coefficients.



Particle Physics (Scattering Equations)
The CEGM model, due to Cachazo et al., is the
space of m points in general position in Pk−1:

X o = Gr(k,m)o/(C∗)m.

The data u are the Mandelstam invariants.
Proposition
X o is very affine; coordinates are k×k minors of




0 0 0 . . . 0 (−1)k 1 1 1 . . . 1
0 0 0 . . . (−1)k−1 0 1 x1,1 x1,2 . . . x1,m−k−1
...

...
...

. . .
...

...
...

...
...

. . .
...

0 0 −1 . . . 0 0 1 xk−3,1 xk−3,2 . . . xk−3,m−k−1
0 1 0 . . . 0 0 1 xk−2,1 xk−2,2 . . . xk−2,m−k−1
−1 0 0 . . . 0 0 1 xk−1,1 xk−1,2 . . . xk−1,m−k−1




Theorem
For k = 2, the ML degree equals (m − 3)! for all m ≥ 4.
For k = 3 and m = 5, 6, 7, 8, 9, it is 2, 26, 1272, 188112, 74570400.
For k = 4,m = 8 it equals 5211816.



Likelihood Geometry (Gaussian Models)

Statistical model is a variety X in PDn ⊂ Sym2(Rn). MLE means:

Maximize Σ 7→ log det Σ−1 − trace(S Σ−1) subject to Σ ∈ X .

Linear Space of Symmetric Matrices L ⊂ Sym2(Rn) gives a model

X = {Σ : Σ−1 ∈ L} = {K−1 : K ∈ L}.

Proposition

Critical equations for maximum likelihood estimation are

K ∈ L and KΣ = Idn and Σ− S ∈ L⊥.

The ML degree of L is the number of complex critical points.

Example: For general LSSM with n = 4 we have

k = dim(L) : 2 3 4 5 6 7 8 9
ML degree : 3 9 17 21 21 17 9 3
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Schubert Calculus

Theorem (Micha lek et al.)

The ML degree of L is the number of quadrics in Pn−1 through(n+1
2

)
− k general points and tangent to k − 1 general hyperplanes.

For fixed k, this is a polynomial in n of degree k − 1.



Nonlinear Algebra meets Linear PDE

The following two things are the same:

I Polynomials:

X 2 − T 2 = (X − T )(X + T )

I Linear homogeneous partial differential equations
with constant coefficients:

φxx(x , t) − φtt(x , t) = 0.

D’Alembert (1747): General solution is superposition of traveling waves:

φ(x , t) = f (x + t) + g(x − t),

where f and g are twice differentiable functions, or distributions.

Current work: any ideal in a polynomial ring, and any module.
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3.3. Linear PDEs with Constant Coe�cients 51

correspond to the 16 exponential solutions in (3.5). The ideal Q is primary
to the maximal ideal rad(Q) = hx, y, zi. Since all associated primes are
minimal, by Theorem 3.22, this primary ideal is uniquely determined by I:

Q =
⌦
x2y, x2z, xy2, xz2, y2z, yz2, x3 � yz, y3 � xz, z3 � xy

↵
.

This zero-dimensional primary ideal has degree 11. It contributes the 11
polynomial solutions to the three partial di↵erential equations in (3.4).

Below is a general result explaining our observations from Example 3.26.

Theorem 3.27. Let I be a zero-dimensional ideal in C[x1, . . . , xn], here
interpreted as a system of linear PDEs. The space of holomorphic solutions
has dimension equal to the degree of I. There exist nonzero polynomial
solutions if and only if the maximal ideal M = hx1, . . . , xni is an associated
prime of I. In that case, the polynomial solutions are precisely the solutions
to the system of PDEs given by the M -primary component (I : (I : M1)).

Proof. Fix a degree compatible monomial order and let in(I) be the initial
ideal of I for that order. The set S of standard monomials is finite. For each
xu 2 S we will construct explicitly a power series solution to the PDE given
by I. We will also show that these solutions form a basis for the space of
holomorphic solutions. These are the solutions represented by power series.

Regarding I as a C-vector space, it has a basis consisting of elements
of the form xv +

P
xu2S �ux

u, where xv 62 S. Consider a polynomial p̃
that is a C-linear combination of monomials in S. We claim that p̃ can be
uniquely extended to a power series p that is a solution to the associated
PDEs. Indeed, the above basis operators uniquely determine the coe�cients
of all other monomials, thus p is unique. Further, p has the property that
when di↵erentiated with any operator from I, the constant term in the result
is zero. Thus, all operators in I annihilate p. Hence, the dimension of the
solution space equals |S| = degree(I). The basis of this space is given by

(3.7) pu(x1, . . . , xn) = xu + higher order terms, where xu runs over S.

The series (3.7) is a polynomial if and only if it is annihilated by (@/@xi)
d

for some d and i = 1, 2, . . . , n. This is always the case when I is M -primary.

Suppose now that I is primary in C[x]. Since I is zero-dimensional, its
radical is the maximal ideal hx1�a1, . . . , xn�ani, where V(I) = {(a1, . . . , an)}
in Cn. By translating (a1, . . . , an) to the origin (0, . . . , 0), we can apply the
analysis in the previous paragraph. From this and Lemma 3.25, we obtain
degree(I) many polynomials pu with xu 2 S as in (3.7) such that

(3.8) pu(x1, . . . , xn) · exp(a1x1 + · · · + anxn)

solves the PDEs given by I. These functions form a basis of the holomorphic
solutions to I. None of them is a polynomial unless (a1, . . . , an) = (0, . . . , 0).



Cayley’s Cubic Surface

This picture is the logo of the Nonlinear Algebra group at MPI Leipzig:

The elliptope is a PDE constraint for φ : R4 → C3:



∂1 ∂2 ∂3
∂2 ∂1 ∂4
∂3 ∂4 ∂1


 •



φ1
φ2
φ3


 =




0
0
0




Quiz: What does the command solvePDE in Macaulay2 tell us?



Epilog

Linear algebra is ubiquitous in the mathematical universe.

It plays a foundational role for models in the sciences and
engineering; its numerical tools are a driving force for today’s
technologies. The power of linear algebra stems from calculus,

i.e. our ability to approximate nonlinear shapes by linear spaces.

Yet, the world is nonlinear. Polynomials are a natural
ingredient in mathematical models for the real world.

In our view, the nonlinear nature of a phenomenon should
be respected as long as possible. We advocate against the
practice of passing to a linear approximation right away.

Many Thanks for Listening


