

Mean-field limits for quantum systems and nonlinear Gibbs measures

Mathieu LEWIN

mathieu.lewin@math.cnrs.fr

(CNRS & Université Paris-Dauphine)

ICM, July 8th, 2022

Mean-field limit

Linear Schrödinger equation in \mathbb{R}^{dN}

$$\left(\sum_{j=1}^{N} \left(-\Delta_{x_j} + V(x_j)\right) + \lambda \sum_{1 \leq j < k \leq N} w(x_j - x_k)\right) \Psi = E \Psi$$

Nonlinear Schrödinger equation in \mathbb{R}^d

$$(-\Delta + V + |u|^2 * w) u = \varepsilon_0 u$$

Gross-Pitaevskii. Hartree

Main (wrong) idea: $\Psi(x_1,...,x_N) \approx \prod_{i=1}^N u(x_i) =: u^{\otimes N}(x_1,...,x_N)$ [I.I.D.]

Mean-field limit II

Mean-field models

- statistical mechanics (Curie-Weiss for Ising)
- many-body systems, quantum chemistry
- biology, social sciences, economy (mean-field games), etc

► Rigorous mean-field limits:

- classical/quantum, stationary/time-dependent
- time-dependent quantum: Hepp, Ginibre-Velo, Spohn, Erdös-Schlein-Yau, ...
- stationary quantum: **Lieb** with Benguria, Seiringer, Solovej, Yau, Yngvason

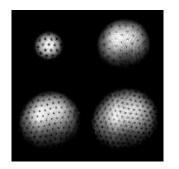
► This talk:

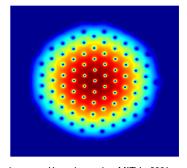
- new method with Phan Thành Nam (Munich) and Nicolas Rougerie (Lyon)
- (non-commutative) probabilistic tool: quantum de Finetti theorem
- nonlinear Gibbs measures

Bose-Einstein Condensates

At very low temperature, **condensation** of Bose gases (e.g. ⁴He, sodium)

Bose '24. Finstein '25





Left: Experimental pictures of fast rotating Bose-Einstein condensates. Ketterle et al at MIT in 2001 Right: Simulation of Gross-Pitaevskii equation with software GPELab (Antoine & Duboscq)

- well described by nonlinear Gross-Pitaevskii equation
- crystallization conjecture for vortices
- in experiments, rather dilute regime (Lieb-Seiringer-Yngvason 2000–10)
- nonlinear Gibbs measure = formation of BEC close to critical temperature

Convergence of minimum

$$H_{N,\lambda} = \sum_{j=1}^{N} \left(-\Delta_{x_j} + V(x_j) \right) + \lambda \sum_{1 \leq j < k \leq N} w(x_j - x_k)$$

$$\mathcal{E}(u) = \int_{\mathbb{R}^d} |\nabla u(x)|^2 dx + \int_{\mathbb{R}^d} V(x)|u(x)|^2 dx + \frac{1}{2} \iint_{\mathbb{R}^{2d}} |u(x)|^2 |u(y)|^2 w(x-y) dx dy$$

$$E(N,\lambda) := \min \sigma(H_{N,\lambda}) = \inf_{\|\Psi\|=1} \langle \Psi, H_{N,\lambda} \Psi \rangle, \qquad e_{\mathsf{GP}} := \inf_{\|u\|=1} \mathcal{E}(u)$$

Theorem (convergence of minimum LNR14)

- (confined case) $w, V_- \in (L^p + L^\infty)(\mathbb{R}^d, \mathbb{R})$ with p = 1 if d = 1, p > 1 if d = 2 and p = d/2 if $d \ge 3$, $V_+ \in L^1_{loc}(\mathbb{R}^d, \mathbb{R})$ with $V_+ \to +\infty$;
- (unconfined or locally confined case) $V, w \in (L^p + L^\infty)(\mathbb{R}^d, \mathbb{R})$ with p as above, and $V, w \to 0$ at infinity

$$\lim_{\substack{N\to\infty\\N\to1}}\frac{E(N,\lambda)}{N}=e_{\mathsf{GP}}.$$

M. Lewin, P. T. Nam, N. Rougerie. Derivation of Hartree's theory for generic mean-field Bose systems, Adv. Math. (2014)

5 / 15

Convergence of minimum II

- ► Many similar results in literature for particular models Lieb-Benguria '83, Lieb-Yau '87, Lieb-Seiringer-Yngvason '00s
- ▶ Exact upper bound $E(N, \lambda) \leq N e_{GP}$ when $\lambda = \frac{1}{N-1}$

$$\begin{split} E(N,\lambda) &\leq \left\langle u^{\otimes N}, H_{N,\lambda} u^{\otimes N} \right\rangle \\ &= N \left(\int_{\mathbb{R}^d} |\nabla u|^2 + V|u|^2 + \frac{\lambda(N-1)}{2} \iint_{\mathbb{R}^{2d}} |u(x)|^2 |u(y)|^2 w(x-y) \, \mathrm{d}x \, \mathrm{d}y \right) \end{split}$$

▶ **Lower bound** relatively easy if $\widehat{w} \ge 0$

$$\sum_{1 \le j < k \le N} w(x_j - x_k) = \frac{1}{2} \iint_{\mathbb{R}^d} w(x - y) \left(\sum_{j=1}^N \delta_{x_j} - \eta \right) (x) \left(\sum_{j=1}^N \delta_{x_j} - \eta \right) (y) + \sum_{j=1}^N w * \eta(x_j) - \frac{1}{2} \iint_{\mathbb{R}^{2d}} \eta(x) \eta(y) w(x - y) \, dx \, dy - \frac{N}{2} w(0) \right)$$

"Onsager argument" (1939)

"Linear programming bounds" (Cohn-Kumar, 2007)

▶ General w: elementary proof in ICM proceedings, following Lieb-Yau '87

Convergence in sense of density matrices

kth "density matrix" on $L^2(\mathbb{R}^{dk})$ of symmetric Ψ

$$\Gamma_{\Psi}^{(k)}(X,Y) := \frac{N!}{(N-k)!} \int_{(\mathbb{R}^d)^{N-k}} \Psi(X,Z) \overline{\Psi(Y,Z)} \, \mathrm{d}Z$$

- $\operatorname{tr} \Gamma_{\Psi}^{(k)} = \frac{N!}{(N-k)!}$ and $\|\Gamma_{\Psi}^{(k)}\| \leq \frac{N!}{(N-k)!}$ but usually bounded in large systems
- $\Gamma_{u^{\otimes N}}^{(k)} = \frac{N!}{(N-k)!} |u^{\otimes k}\rangle \langle u^{\otimes k}| \sim N^k |u^{\otimes k}\rangle \langle u^{\otimes k}|$

Theorem (Convergence LNR14)

Assume $\langle \Psi_N, H_{N,\lambda} \Psi_N \rangle = E(N,\lambda) + o(N)$. In the **confined case**, there exists a probability measure μ on $\mathcal{M} = \{\text{minimizers for e}_{\mathsf{GP}}\}$ such that for a subsequence

$$(N_j)^{-k}\Gamma_{\Psi_{N_j}}^{(k)}\longrightarrow \int_M |u^{\otimes k}\rangle\langle u^{\otimes k}|\,\mathrm{d}\mu(u), \qquad \forall k\geq 1,$$

strongly in trace norm. Same in unconfined or locally-confined case, with weak-* limit and $\mathcal{M} = \{ weak \ limits \ of \ minimizing \ sequences \ for \ e_{GP} \}.$

Proof: quantum de Finetti + many-body localization techniques + tools from calculus of variations (\approx concentration-compactness)

Quantum de Finetti

Penrose–Onsager (1956) predicted that $\Gamma_{\Psi}^{(k)} \sim N^k$ only for with $u^{\otimes k}$

Theorem ('weak' quantum de Finetti LNR14)

Let Ψ_N be any sequence of normalized symmetric functions on $(\mathbb{R}^d)^N$. Assume

$$N^{-k}\Gamma_{\Psi_N}^{(k)} \stackrel{\rightharpoonup}{\to} \Upsilon^{(k)}, \qquad \forall k \geq 1, \quad \textit{weakly-* in trace}.$$

Then there exists a probability measure μ on $\mathcal{B}=\{\|u\|_{L^2}\leq 1\}$ such that

$$\Upsilon^{(k)} = \int_{\mathcal{B}} |u^{\otimes k}\rangle \langle u^{\otimes k}| \,\mathrm{d}\mu(u), \qquad \forall k \geq 1.$$

Convergence holds in trace norm for one (hence all) $k \ge 1$, if and only if μ concentrates on the unit sphere $S = \{\|u\|_{L^2} = 1\}$.

- non-commutative+weak-limit version of de Finetti '31, Hewitt-Savage '55
- ullet 'strong' version on ${\cal S}$ due to Størmer '69, Hudson-Moody '75
- important in quantum information theory
- Ammari-Nier '08: semi-classical analysis in infinite dimension

Convergence of Ψ_N : Bogoliubov theory

Theorem (Bogoliubov's theory LNSS15)

In confined case, assume e_{GP} admits a unique and non-degenerate minimizer u_0 (modulo phase). Then, for any given $j \geq 1$ the jth eigenvalue (counted with multiplicity) satisfies

$$\lim_{\substack{N\to\infty\\\lambda=\frac{1}{N-1}}} \left(\lambda_j(H_{N,\lambda}) - Ne_{\mathsf{GP}}\right) = \lambda_j(\mathbb{H}_0)$$

where \mathbb{H}_0 is the Bogoliubov Hamiltonian on Fock space $\mathcal{F} = \bigoplus_{n \geq 0} \bigotimes_s^n \{u_0\}^{\perp}$, that is, the second-quantization of $\operatorname{Hess}_{u_0} \mathcal{E}\big|_{\{u_0\}^{\perp}}$.

Any corresponding sequence of eigenfunctions (Ψ_N) satisfies (up to extraction)

$$\lim_{N\to\infty} \left\| \Psi_N - \sum_{n=0}^N \varphi_n \otimes_{\mathfrak{s}} (u_0)^{\otimes N-n} \right\|_{L^2(\mathbb{R}^{dN})} = 0$$

where $\mathbb{H}_0 \Phi = \lambda_j(\mathbb{H}_0) \Phi$ and $\Phi = (\varphi_n)_{n \geq 0}$, with $\varphi_n \in \bigotimes_s^n \{u_0\}^{\perp}$.

- previous works by Lieb-Solovej '04, Seiringer '11
- impressive recent developments by Fournais-Solovej '20, Schlein et al '20

9 / 15

Nonlinear (non-Gaussian) Gibbs measures

$$d\mu(u) = "z^{-1} \exp\left(-\mathcal{E}(u) - \kappa \int_{\mathbb{R}^d} |u|^2\right) du"$$

- ▶ Difficulties: $\mathcal{E}(u) = \infty$ and often $\int_{\mathbb{R}^d} |u|^2 = \infty$, μ –a.s. In d > 2, μ concentrates on singular distributions \rightsquigarrow renormalization
- ▶ (more and more) used in different areas of mathematics, e.g.
 - PDE to construct solutions to NLS equation, for rough initial data Lebowitz-Rose-Speer '88, Bourgain '90s, ...
 - **SPDE** to construct solutions of rough equations (with noise) Hairer, Kupiainen, Mourrat-Weber '10s, ...
 - Euclidean Quantum Field Theory through a Feyman-Kac type formula Symanzik, Glimm-Jaffe-Spencer, Nelson, Guerra-Rosen-Simon '70s, ...
 - Critical phenomena in statistical mechanics like BEC
- **Construction of** μ : $\mathcal{E}(u) = \text{quadratic} + \text{quartic}$ and start with Gaussian part

Gaussian part μ_0 **of** μ

$$d\mu_0(u) = "z_0^{-1} e^{-\langle u, (-\Delta + V + \kappa)u \rangle} du" = \bigotimes_j \frac{(\lambda_j + \kappa) e^{-(\lambda_j + \kappa)|u_j|^2}}{\pi} du_j$$

with $(-\Delta + V)v_j = \lambda_j v_j$, $u_j = \langle v_j, u \rangle$ and $\kappa > -\lambda_1$

Properties

Assume $C^{-1}|x|^s - C \le V(x) \le C(1+|x|^s)$ with s > 0, and $\kappa > -\lambda_1$.

- ullet We always have $\int_{\mathbb{R}^d} |
 abla u|^2 = \int_{\mathbb{R}^d} V|u|^2 = +\infty \ \mu_0$ -a.s.
- If d=1, $u \in H^{1/2-}_{loc}(\mathbb{R})$ μ_0 -a.s. We have $\int_{\mathbb{R}} |u|^2 < +\infty$ μ_0 -a.s. iff s>2
- If $d \ge 2$, μ_0 concentrates on distributions of negative regularity < 1 d/2
- If $d \in \{1,2,3\}$ and $s > \frac{2d}{4-d}$ then, with $P_J = \perp$ proj. on span $(v_1,...,v_J)$,

$$\begin{split} M_{\text{ren}}(u) := \lim_{J \to \infty} \left(\|P_J u\|_{L^2(\mathbb{R}^d)}^2 - \left\langle \|P_J u\|_{L^2(\mathbb{R}^d)}^2 \right\rangle_{\mu_0} \right) & \text{ exists in } L^2(\mathrm{d}\mu_0), \quad \text{[Wick]} \\ \int M_{\text{ren}}(u)^2 \, \mathrm{d}\mu_0(u) &= \mathrm{tr}(-\Delta + V)^{-2} < \infty \end{split}$$

(Renormalized) Nonlinear Gibbs measure

Corollary

Assume $C^{-1}|x|^s - C \le V(x) \le C(1+|x|^s)$ with s > 0, and $\kappa > -\lambda_1$.

▶ If d = 1, s > 2 and $w \in (L^1 + L^\infty)(\mathbb{R}^d, \mathbb{R})$ with $w \ge 0$ or $\widehat{w} \ge 0$, then

$$0 \le \mathcal{I}(u) := \frac{1}{2} \iint_{\mathbb{R}^{2d}} |u(x)|^2 |u(y)|^2 w(x-y) \, \mathrm{d}x \, \mathrm{d}y \in L^1(\mathrm{d}\mu_0)$$

Mean-field limits & nonlinear Gibbs measures

hence $z:=\int e^{-\mathcal{I}(u)}\mathrm{d}\mu_0(u)>0$ and $\mathrm{d}\mu:=z^{-1}e^{-\mathcal{I}(u)}\mathrm{d}\mu_0$ is well defined.

▶ If $d \in \{1,2,3\}$, $s > \frac{2d}{4-d}$ and $0 \le \widehat{w} \in L^1(\mathbb{R}^d,\mathbb{R})$, then

$$0 \leq \mathcal{I}_{\boldsymbol{\mu_0}}(u) := \lim_{J \to \infty} \frac{1}{2} \iint_{\mathbb{R}^{2d}} \left(|P_J u(x)|^2 - \left\langle |P_J u(x)|^2 \right\rangle_{\mu_0} \right)$$

$$imes \left(|P_J u(y)|^2 - \left\langle |P_J u(y)|^2 \right
angle_{\mu_0} \right) \, w(x-y) \, \mathrm{d}x \, \mathrm{d}y$$

exists in $L^1(d\mu_0)$, hence $d\mu := z^{-1}e^{-\mathcal{I}_{\mu_0}(u)}d\mu_0$ is well defined.

Convergence in 1D

Averaged (grand-canonical) kth density matrix

$$\Gamma_{\kappa,\lambda,\beta}^{(k)}(X,Y) := \frac{\displaystyle\sum_{n\geq k} e^{-\beta\kappa n} \frac{n!}{(n-k)!} \int_{(\mathbb{R}^d)^{n-k}} e^{-\beta H_{n,\lambda}}(X,Z;Y,Z) dZ}{\displaystyle\sum_{n\geq 0} e^{-\beta\kappa n} \int_{(\mathbb{R}^d)^n} e^{-\beta H_{n,\lambda}}(Z;Z) dZ}$$

(same as replacing V by $V+\kappa$)

Theorem (Convergence in 1D, LNR15)

Let d=1 and $V\sim |x|^s$ as before with s>2. Assume $w\in (L^1+L^\infty)(\mathbb{R}^d)$ with either $w\geq 0$ or $\widehat{w}\geq 0$. We have for any fixed $\kappa>-\lambda_1(-\Delta+V)$

$$\lambda^k \Gamma_{\kappa,\lambda,\beta}^{(k)} \underset{\beta \sim \lambda}{\longrightarrow} \int_{\mathcal{M}} |u^{\otimes k}\rangle \langle u^{\otimes k}| \, \mathrm{d}\mu(u), \qquad \forall k \geq 1,$$

strongly in the trace-class, where $d\mu = z^{-1}e^{-\mathcal{I}(u)}d\mu_0$ with μ_0 the Gaussian measure of covariance $(-\Delta + V + \kappa)^{-1}$.

Extensions by Fröhlich-Knowles-Schlein-Sohinger (incl. time-dependent)

M. Lewin, P. T. Nam & N. Rougerie. Derivation of nonlinear Gibbs measures from many-body quantum mechanics, J. Éc. polytech. Math. (2015)

Convergence to renormalized measure in 2D and 3D

Theorem (Convergence in 2D-3D, LNR21/FKSS21)

Let $d \in \{2,3\}$ and $V \sim |x|^s$ as before with $s > \frac{2d}{4-d}$. Assume $\widehat{w}, |k|^2 \widehat{w} \in L^1(\mathbb{R}^d)$ with $\widehat{w} \geq 0$. For fixed κ large enough we have in Hilbert-Schmidt norm

$$\lambda^{k} \Gamma_{\kappa_{\lambda},\lambda,\beta}^{(k)} \underset{\beta \sim \lambda}{\longrightarrow} \int_{\mathcal{M}} |u^{\otimes k}\rangle \langle u^{\otimes k}| \, \mathrm{d}\mu_{\mathsf{ren}}(u), \qquad \forall k \geq 1,$$

$$\kappa_{\lambda} := \begin{cases} \kappa - \frac{\log(\kappa\lambda)^{-1}}{4\pi} \int_{\mathbb{R}^{d}} w & (d = 2) \\ \kappa - \left(\frac{\zeta(3/2)}{8\pi^{\frac{3}{2}}\sqrt{\lambda}} - \frac{\sqrt{\kappa}}{4\pi}\right) \int_{\mathbb{R}^{d}} w & (d = 3) \end{cases}$$

Here $\mathrm{d}\mu_{\mathrm{ren}}=z^{-1}e^{-\mathcal{I}_{\mu_0}(u)}\mathrm{d}\mu_0$ with \mathcal{I}_{μ_0} the Wick-renormalized interaction and μ_0 the Gaussian measure of covariance $(-\Delta+V_0+\kappa)^{-1}$, where V_0 is the unique solution to the nonlinear equation

$$V_0(x) = V(x) + \int_{\mathbb{R}^d} w(x-y) \{ (-\Delta + V_0 + \kappa)^{-1} - (-\Delta + \kappa)^{-1} \} (y,y) \, dy$$

Rmk. $\mathcal{I}_{\mu_0}(u) + \langle u, (-\Delta + V_0 + \kappa)u \rangle = \mathcal{E}(u) + (\kappa - \alpha) \int_{\mathbb{R}^d} |u|^2 + \beta \text{ with } \alpha, \beta = +\infty$

M. Lewin, P. T. Nam & N. Rougerie. Classical field theory limit of many-body quantum Gibbs states in 2D and 3D, Invent. Math. (2021)
J. Fröhlich, A. Knowles, B. Schlein & V. Sohinger, The mean-field limit of quantum Bose gases at positive temperature, J. Amer. Math. Soc. (2021)

Mathieu LEWIN (CNRS / Paris-Dauphine)

14 / 15

Strategy & Conclusion

▶ Strategy:

- \bullet variational characterization, for both $\mu_{\rm ren}$ and quantum state
- reduction to finite dim. using strong subadditivity of entropy (Lieb-Ruskai '73)
- quantum de Finetti in finite dim. with quantitative errors [~semiclassics]
- difficulty: control interaction [divergent terms compensating each other]
- new quantum correlation inequalities

▶ Conclusion:

- quantum de Finetti provides new and more conceptual interpretation of condensation
- new results for Bose gases when married with techniques from calculus of variations & PDEs
- big open problems:
 - Gibbs measures in dilute regime
 - going outside of mean-field and dilute regimes