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Minimal model program (MMP): Overview

Birational algebraic geometry studies algebraic varieties up to birational
equivalence.
The aim of the MMP is to find a good representative in a fixed birational
equivalence class.
Starting with an arbitrary smooth projective variety one can perform a
finite number of elementary transformations, called divisorial contractions
and flips, and at the end obtain a variety which is simpler in some sense.



Minimal model program (MMP): Overview

Most parts of the MMP are completed in arbitrary dimension, however, in
full generality (including abundance) MMP is proved only in dimensions
≤ 3. But even 3-dimensional MMP is not understood well. One of the
basic remaining problems here is the following:

describe all the intermediate steps and the outcome of the MMP.

Since the MMP for surfaces is classical, the first non-trivial case is the
3-dimensional one.
On the other hand, dimension 3 is the last dimension where one can

expect effective results : in higher dimensions classifications become very
complicated and unreasonably long.



Singularities

It turns out that to proceed with the MMP in dimension ≥ 3 one has to
work with varieties admitting certain types of very mild singularities.

Definition
A normal variety is Q-factorial if some multiple nD of any Weil divisor D
on X is Cartier, i.e. nD is locally given by one equation.

Definition
A normal algebraic variety (or an analytic space) X is said to have
terminal singularities if some multiple of the canonical Weil divisor KX is
Cartier and for any birational morphism f : Y → X one can write

KY = f ∗KX +
∑

aiEi ,

where Ei are all the exceptional divisors and ai > 0 for all i .

The smallest positive m such that mKX is Cartier is called the Gorenstein
index of X .
If m = 1, then X is Gorenstein.



Basic operations in the MMP

I A contraction is a proper surjective morphism f : X → Z of normal
varieties with connected fibers.

I The exceptional locus of a contraction f is the subset Exc(f ) ⊂ X of
points at which f is not an isomorphism.

I A Mori contraction is a contraction f : X → Z such that
• the variety X has at worst terminal Q-factorial singularities,
• the anticanonical class −KX is f -ample, and
• the relative Picard number rk Pic(X/Z) equals 1.

A Mori contraction f : X → Z is said to be

I divisorial if it is birational and codim Exc(f ) = 1,

I flipping if it is birational and codim Exc(f ) ≥ 2,

I Mori fiber space (MFS) if dim(Z ) < dim(X ).



Steps of the MMP

Divisorial contraction: f : X → Z
Then Z has terminal Q-factorial singularities and rk Pic(Z ) < rk Pic(X ).
Proceed replacing X with Z .

Flipping contraction: f : X → Z
Then Z is not terminal (and not Q-Gorenstein).
To proceed we need a flip:

X

f %%

flip // X+

f +xx
Z

where

I f + is a contraction with codim Exc(f +) ≥ 2,

I X+ has terminal Q-factorial singularities, and

I KX+ is f +-ample .

Proceed replacing X with X+.



Outcome of the MMP

The MMP should terminate with either a minimal model or Mori fiber
space. These are two essentially different possibilities for the outcome:

I Minimal model: a variety X with terminal singularities is minimal if
KX is numerically effective (nef).

I Variety with Mori fiber space (MFS) structure
In dimension 3 for MFS f : X → Z there are three possibilities.
• dim(Z) = 2: any component of a fiber is a smooth rational curve,

f is called Q-conic bundle;
• dim(Z) = 1: the general fiber is a smooth del Pezzo surface,

f is called Q-del Pezzo fibration;
• dim(Z) = 0: then X is a Fano variety with at worst terminal

Q-factorial singularities and Pic(X ) ' Z.
We call such varieties Q-Fano.

Three-dimensional MMP was completed in full generality in works of
Reid, Mori, Kawamata, Kollár, Shokurov, Miyaoka and others.



Consequences

Theorem (Miyaoka-Mori 86, Miyaoka 88)
Let X be a smooth algebraic variety of dimension ≤ 3. Then the
following are equivalent:

I Pn(X ) := dimH0(X , nKX ) = 0 for all n > 0;

I X is uniruled, i.e. it is covered by rational curves;

I there is a birational transformation X 99K X ′, where X ′ has MFS
structure f : X ′ → Z.

Theorem (Kollár-Miyaoka-Mori 92, Mumford’s conjecture)
Let X be a smooth algebraic variety of dimension ≤ 3. Then the
following are equivalent:

I H0(X , (Ω1
X )⊗n) = 0 for all n > 0;

I X is rationally connected, i.e. two general points of X can be
connected by a rational curve;

I there is a birational transformation X 99K X ′, where X ′ has MFS
structure f : X ′ → Z with rationally connected Z.



Terminal 3-fold singularities

Terminal 3-fold singularities are isolated.

Theorem (M. Reid)
Let (X 3 P) be an analytic germ of a 3-dimensional terminal singularity
of (Gorenstein) index m ≥ 1.
Then (X 3 P) is the quotient

(X 3 P) =
(
X ] 3 P]

)
/µm

where
(
X ] 3 P]

)
is a terminal hypersurface singularity and µm is a cyclic

group of order m that acts freely outside P].

The corresponding cover

π :
(
X ] 3 P]

)
−→ (X 3 P)

is called the index-one cover.
All possibilities for

(
X ] 3 P]

)
and the action of µm up to analytic

isomorphisms are classified [Mori 85].



Example of a terminal 3-fold singularity

Type cA/m (main series)
Consider an isolated singularity

xy + φ(zm, t) = 0

and the diagonal action of µm(1,−1, a, 0), i.e.

(x , y , z , t) 7−→
(
ζx , ζ−1y , ζaz , t

)
where ζm = 1, gcd(m, a) = 1. Then the quotient

{xy + φ(zm, t) = 0} /µm(1,−1, a, 0)

is a terminal singularity.

The extreme case φ = t is not excluded.
Then (X 3 P) ' C3/µm(1,−1, a) is called terminal cyclic quotient
singularity.



General elephant

Conjecture (Reid’s general elephant principle)
Let f : X → (Z 3 o) be a 3-fold Mori contraction, where (Z 3 o) is a
small neighborhood.
Then a general member D ∈ | − KX | is a normal surface with Du Val
(ADE) singularities.

Example (Shokurov, Reid)
Let X be a Fano 3-fold with Gorenstein terminal (and even canonical)
singularities.
Then a general member D ∈ | − KX | is a K3 surface with only Du Val
singularities.

Warning
Reid’s general elephant fails for Q-Fano 3-folds.
However there are only a few counterexamples.



General elephant (local version)

Example (Reid)
Let (X 3 P) be a 3-fold terminal singularity of index m. Then a general
member D ∈ | − KX | is a Du Val singularity.
Furthermore, assume that m > 1. Let π : X ′ → X be the index-1 cover
and let D ′ := π−1(D). Then D ′ −→ D is one of the following:

• cA/m Ak−1
m:1−−−→ Akm−1

• cAx/4 A2k−2
4:1−−−→ D2k+1

• cD/3 D4
3:1−−−→ E6

• cAx/2 A2k−1
2:1−−−→ Dk+2

• cD/2 Dk+1
2:1−−−→ D2k

• cE/2 E6
2:1−−−→ E7

This division corresponds to local analytic classification of terminal 3-fold
singularities.



Extremal curve germs

Definition
An complex analytic germ (X ⊃ C ) of a 3-fold X with terminal
singularities along a reduced connected complete curve C is called an
extremal curve germ if there exists a contraction

f : (X ⊃ C ) −→ (Z 3 o)

such that

I C = f −1(o)red and

I −KX is f -ample.

An extremal curve germ is said to be irreducible if so its central fiber C is.

A general hyperplane section is the divisor H := f −1(HZ ) ∈ |OX |C ,
where HZ ⊂ Z is given by t = 0 for general t ∈ mo,Z .



Extremal curve germs

If f : X → Z is a 3-fold Mori contraction with fibers of dimension ≤ 1
and C is a 1-dimensional component of a fiber, then (X ⊃ C ) is an
extremal curve germ.
Irreducible extremal curve germs and divisorial contractions to points

are building blocks of the 3-dimensional MMP.

Three types of extremal curve germs:

I flipping if is f birational and does not contract divisors;

I divisorial if the exceptional locus is two-dimensional;

I Q-conic bundle germ if Z is a surface.

Assumption:
We assume that X is not Gorenstein .



Extremal curve germs: examples

Example (Flip of index 2, Francia’s flip)
Take a non-Q-Gorenstein singularity

Z = {x1x3 + x2x4 = 0}/µ2(1, 1, 0, 0)

and consider two blowups:

(X ⊃ C )

blowup of

{x2 = x3 = 0}
/µ2

++

flip // (X+ ⊃ C+)

blowup of

{x1 = x2 = 0}
/µ2

ss
(Z 3 o)

Here X has a unique cyclic quotient singularity of index 2 and X+ is
smooth.



Classification of extremal curve germs: general strategy

Step 1. Local description of possible singularities (P ∈ X ) ⊃ C

⇓

Step 2. General elephant D ∈ | − KX |

⇓

Step 3. General hyperplane section H ∈ |OX |C

⇓

Step 4. Reconstruction of f : (X ⊃ C )→ Z from H



General elephant: irreducible central fiber

Theorem (Mori, Kollár-Mori, Mori-Prokhorov)
Let (X ⊃ C ) be an irreducible extremal curve germ. Then a general
member D ∈ | − KX | has only Du Val singularities.

Idea of the proof
Essentially, there are three methods to find a good elephant D ∈ |−KX |.
I Construct a general member D ∈ | − KX | locally near a singular

point P ∈ C ⊂ X and show that D is the global member of | − KX |
along C (works in the cases D 6⊃ C ).

I Extend a good element D ∈ | − KX | from a general surface
S ∈ | − 2KX | (bi-elephant, which is supposed to be “good enough”).

I The good element D ∈ |−KX | is recovered as the formal Weil divisor
lim
←−

Cn of the completion X∧ of X along C , where Cn are

subschemes with support C constructed by using certain inductive
procedure [Mori88], [Mori,– 08].



General elephant: consequences and generalizations

I The existence of general elephant D ∈ | − KX | for flipping extremal
curve germs implies the existence of 3-fold flips [Kawamata 88].

I If f : X → Z is a 3-fold conic bundle contraction, then the base Z
has at worst Du Val singularities of type An.



From general elephant to hyperplane sections

Example-Construction
Let f : (X ⊃ C )→ Z be an extremal curve germ. Assume that a general
member D ∈ | − KX | is Du Val. Consider the Stein factorization:

fD : D
f ′−→ D ′ −→ f (D) D ′ = f (D) if f is birational

Then D ′ is Du Val at f ′(C ).

(*) Assume that D ′ 3 f ′(C ) is of type An.

Then by the Inversion of Adjunction for a general H ∈ |OX |C the pair
(X ,H + D) is log canonical (lc).
If moreover D ⊃ C , then H is normal and has only cyclic quotient
singularities.

Definition
If (X ⊃ C ) satisfies (*), then (X ⊃ C ) is said to be semistable.
Otherwise, (X ⊃ C ) is called exceptional.



Reconstruction germs from general H ∈ |OX |C

Initial data.
I A normal surface germ (H ⊃ C ) and a KH -negative contraction

fH : H → HZ such that C is a fiber.

I Near each singular point Pi ∈ H there is a small one-parameter
deformation H t

i , t ∈ D ⊂ C of a neighborhood Ui ⊂ H of Pi such
that the total space Vi =

⋃
H t

i has a terminal singularity at Pi .

Since R2f∗TH = 0, where TH = (Ω1
H)∨ is the tangent sheaf, the

deformations are unobstructed. Hence there is a global one-parameter
deformation H t of H inducing a local deformation of H t

i near Pi .

Then we have a 3-fold X =
⋃

H t ⊃ C with H ∈ |OX |C such that locally
near Pi it has the desired structure. We can extend fH to a contraction

f : X −→ Z , f (C ) = point



P1

P2

P3

H

C

V1

V2

V3

X



Semistable extremal curve germs and T-singularities

Definition (Kollár, Shepherd-Barron 1988)
A 2-dimensional quotient singularity F 3 P is called T-singularity if it
admits a smoothing in a Q-Gorenstein family X → D ⊂ C.

In this case the total family X is terminal.

Classification of T-singularities :

I Du Val (ADE) points;

I cyclic quotients of types

C2/µdn2(1, dna− 1),

where gcd(n, a) = 1.

Observation
Let (X ⊃ C ) be a semistable extremal curve germ. Assume that
H ∈ |OX |C is normal. Then the singularities of H are of type T.



Example of semistable extremal curve germs

The singularity
C2/µ4(1, 1)

is of type T. The exceptional locus of its minimal resolution consists of
one smooth rational curve E with E 2 = −4.
Consider a smooth surface H̃ containing a configuration of smooth
rational curves with the following dual graph:

E◦
−4

C•
−1

Contracting E we obtain a surface germ (H ⊃ C ) with a T-singularity as
above. An 1-parameter deformation produces Francia’s flip.



Classification of irreducible curve germs

Local [Mori88], [Mori-Prokhorov08]
The configuration of singular points and the local analytic description of
(X 3 P) ⊃ C is given.

Global [Kollár-Mori92], [Mori02], [Mori-Prokhorov08-21]
The general hyperplane sections H ∈ |OX |C and their 1-parameter
deformations are described in all cases except for a few cases:
non-flipping cases of (kAD) and (k3A).



Classification of irreducible curve germs

[Mori88], [Kollár-Mori92], [Mori-Prokhorov08-21]

I Semistable

(k1A) one non-Gorenstein point of type cA/m
(k2A) two non-Gorenstein points of types cA/m, cA/m′

I Exceptional

· · · one non-Gorenstein point of type cD/2, cAx/2, or cE/2
cD/3 one non-Gorenstein point which is of type cD/3
(IIA)

 one non-Gorenstein point of exceptional type cAx/4(II∨)
(IIB)
(IE∨) one singular point which is a cyclic quotient of index 8

(Q-conic bundle only)
(IC) one singular point which is a cyclic quotient of index

m ≥ 5 (odd)
(kAD)two singular points of indices m ≥ 3 (odd) and 2

}
(k3A) three singular points of indices m ≥ 3 (odd), 2 and 1



Divisorial contractions to a point

There is an almost complete classification: Y. Kawamata, A. Corti,
M. Kawakita, T. Hayakawa, . . .

Theorem (M. Kawakita)
Let f : X → (Z 3 o) be a divisorial Mori contraction that contracts a
divisor to a point.
Then a general member D ∈ | − KX | is Du Val.

Theorem (M. Kawakita)
Let f : X → Z be a divisorial Mori contraction that contracts a divisor to
a smooth point.
Then f is the weighted blowup with weights (1, a, b), gcd(a, b) = 1.



Q-del Pezzo fibrations

Let f : X → Z 3 o be a germ of Q-del Pezzo fibration.

I The existence of a good element D ∈ | − KX | is not known.

I If D ∈ | − KX | is Du Val, then D → Z is a minimal elliptic fibration
obtained by contracting of some (−2)-curves on a smooth one.

Two extreme cases are studied relatively well.

Multiple fibers.

Theorem (Mori – Prokhorov)
Assume that f ∗(o) = moFo is a fiber of multiplicity mo ≥ 2.
Then mo ≤ 6.
Moreover, all the cases mo ≤ 6 occur.
The possibilities for the local behavior of Fo near singular points and the
possible values of the degree of the generic fiber are described.



Q-del Pezzo fibrations

Fibers with quotient singularities.

Assumption
Let f : X → Z 3 o be a germ of Q-del Pezzo fibration whose central
fiber F := f −1(o) is reduced normal and has only quotient singularities.

Theorem (Hacking – Prokhorov)
Let F be as above. Assume additionally that Pic(F ) ' Z. Then F
belongs to one of the following classes:

I 14 infinite families of toric surfaces determined by Markov-type
equations;

I partial smoothing of a toric surface as above;

I 18 sporadic families of surfaces of index ≤ 2.

The variety X is obtained as an 1-parameter deformation space of F .



Q-Fano 3-folds

Theorem (Y. Kawamata (dim = 3), C. Birkar (∀ dim) )
The set of all Q-Fano varieties of fixed dimension is bounded.

Remark
I Smooth Q-Fano 3-folds are classified by V. Iskovskikh (17 families).

I Q-Fano 3-folds with Gorenstein singularities are degenerations of
smooth ones (Y. Namikawa).

Basic invariants
I Collection of singularities

I Degree: (−KX )3 (rational number)

I Fano index: q(X ) := max{t ∈ N | −KX ∼
Q
tA, A is a Weil divisor}



Effective boundedness of Q-Fano 3-folds

Theorem (Kawamata)
Let X be a Q-Fano 3-fold.

I
∑(

mi − 1
mi

)
< 24, where mi ’s are the indices of singular points

I (−KX )3 ≤ b, where b is an effectively computable (but large)
constant

Theorem (P.)
Let X be a singular Q-Fano 3-fold. Then (−KX )3 ≤ 125/2.
If (−KX )3 = 125/2, then X ' P(1, 1, 1, 2) (Veronese cone).

Theorem (J. A. Chen & M. Chen)
Let X be a Q-Fano 3-fold. Then (−KX )3 ≥ 1/330.

Theorem (Chen Jiang)
If (−KX )3 = 1/330 and X is not rational , then
X ' X66 ⊂ P(1, 5, 6, 22, 33).



Thank you for attention!


