Effective results in the three-dimensional minimal model program

Yuri Prokhorov

Steklov Institute

ICM, July 09, 2022

Minimal model program (MMP): Overview

Birational algebraic geometry studies *algebraic varieties* up to *birational equivalence*.

The aim of the MMP is to find a *good representative* in a fixed birational equivalence class.

Starting with an arbitrary smooth projective variety one can perform a finite number of elementary transformations, called *divisorial contractions* and *flips*, and at the end obtain a variety which is simpler in some sense.

Minimal model program (MMP): Overview

Most parts of the MMP are completed in arbitrary dimension, however, in full generality (including abundance) MMP is proved only in dimensions \leq 3. But even 3-dimensional MMP is not understood well. One of the basic remaining problems here is the following:

describe all the intermediate steps and the outcome of the MMP.

Since the MMP for surfaces is classical, the first non-trivial case is the 3-dimensional one.

On the other hand, dimension 3 is the <u>last dimension</u> where one can expect <u>effective results</u>: in higher dimensions classifications become very complicated and unreasonably long.

Singularities

It turns out that to proceed with the MMP in dimension ≥ 3 one has to work with varieties admitting certain types of very mild singularities.

Definition

A normal variety is \mathbb{Q} -factorial if some multiple nD of any Weil divisor D on X is Cartier, i.e. nD is locally given by one equation.

Definition

A normal algebraic variety (or an analytic space) X is said to have *terminal* singularities if some multiple of the canonical Weil divisor K_X is Cartier and for any birational morphism $f:Y\to X$ one can write

$$K_Y = f^* K_X + \sum a_i E_i,$$

where E_i are all the exceptional divisors and $a_i > 0$ for all i.

The smallest positive m such that mK_X is Cartier is called the *Gorenstein index* of X.

If m = 1, then X is Gorenstein.

Basic operations in the MMP

- ▶ A *contraction* is a proper surjective morphism $f: X \to Z$ of normal varieties with connected fibers.
- ▶ The exceptional locus of a contraction f is the subset $\text{Exc}(f) \subset X$ of points at which f is not an isomorphism.
- ▶ A *Mori contraction* is a contraction $f: X \to Z$ such that
 - the variety X has at worst terminal Q-factorial singularities,
 - the anticanonical class $-K_X$ is f-ample, and
 - the relative Picard number $\operatorname{rk}\operatorname{Pic}(X/Z)$ equals 1.

A Mori contraction $f: X \to Z$ is said to be

- ightharpoonup divisorial if it is birational and codim $\operatorname{Exc}(f) = 1$,
- flipping if it is birational and codim $Exc(f) \ge 2$,
- ▶ Mori fiber space (MFS) if dim(Z) < dim(X).

Steps of the MMP

Divisorial contraction: $f: X \rightarrow Z$

Then Z has terminal \mathbb{Q} -factorial singularities and $\operatorname{rk}\operatorname{Pic}(Z)<\operatorname{rk}\operatorname{Pic}(X)$. Proceed replacing X with Z.

Flipping contraction: $f: X \to Z$

Then Z is not terminal (and not \mathbb{Q} -Gorenstein). To proceed we need a *flip*:

$$X - - - \stackrel{\text{flip}}{-} - > X^+$$

where

- ▶ f^+ is a contraction with codim $Exc(f^+) \ge 2$,
- X⁺ has terminal Q-factorial singularities, and
- \triangleright K_{X^+} is f^+ -ample.

Proceed replacing X with X^+ .

Outcome of the MMP

The MMP should terminate with either a minimal model or Mori fiber space. These are two essentially different possibilities for the outcome:

- ▶ Minimal model: a variety X with terminal singularities is minimal if K_X is numerically effective (nef).
- ▶ Variety with Mori fiber space (MFS) structure In dimension 3 for MFS $f: X \to Z$ there are three possibilities.
 - dim(Z) = 2: any component of a fiber is a smooth rational curve,
 f is called Q-conic bundle;
 - dim(Z) = 1: the general fiber is a smooth del Pezzo surface,
 f is called O-del Pezzo fibration;
 - $\dim(Z) = 0$: then X is a Fano variety with at worst terminal \mathbb{Q} -factorial singularities and $\operatorname{Pic}(X) \simeq \mathbb{Z}$. We call such varieties \mathbb{Q} -Fano.

Three-dimensional MMP was completed in full generality in works of Reid, Mori, Kawamata, Kollár, Shokurov, Miyaoka and others.

Consequences

Theorem (Miyaoka-Mori 86, Miyaoka 88)

Let X be a smooth algebraic variety of dimension ≤ 3 . Then the following are equivalent:

- ▶ $P_n(X) := \dim H^0(X, nK_X) = 0$ for all n > 0;
- ▶ X is uniruled, i.e. it is covered by rational curves;
- ▶ there is a birational transformation $X \dashrightarrow X'$, where X' has MFS structure $f: X' \to Z$.

Theorem (Kollár-Miyaoka-Mori 92, Mumford's conjecture)

Let X be a smooth algebraic variety of dimension ≤ 3 . Then the following are equivalent:

- ► $H^0(X, (\Omega_X^1)^{\otimes n}) = 0$ for all n > 0;
- X is rationally connected, i.e. two general points of X can be connected by a rational curve;
- ▶ there is a birational transformation $X \dashrightarrow X'$, where X' has MFS structure $f: X' \to Z$ with rationally connected Z.

Terminal 3-fold singularities

Terminal 3-fold singularities are isolated.

Theorem (M. Reid)

Let $(X \ni P)$ be an analytic germ of a 3-dimensional terminal singularity of (Gorenstein) index $m \ge 1$.

Then $(X \ni P)$ is the quotient

$$(X\ni P)=(X^{\sharp}\ni P^{\sharp})/\mu_m$$

where $(X^{\sharp} \ni P^{\sharp})$ is a terminal hypersurface singularity and μ_m is a cyclic group of order m that acts freely outside P^{\sharp} .

The corresponding cover

$$\pi:\left(X^{\sharp}\ni P^{\sharp}\right)\longrightarrow\left(X\ni P\right)$$

is called the index-one cover.

All possibilities for $(X^{\sharp} \ni P^{\sharp})$ and the action of μ_m up to analytic isomorphisms are classified [Mori 85].

Example of a terminal 3-fold singularity

Type cA/m (main series)

Consider an isolated singularity

$$xy + \phi(z^m, t) = 0$$

and the diagonal action of $\mu_m(1,-1,a,0)$, i.e.

$$(x, y, z, t) \longmapsto (\zeta x, \zeta^{-1} y, \zeta^{a} z, t)$$

where $\zeta^m = 1$, gcd(m, a) = 1. Then the quotient

$$\{xy + \phi(z^m, t) = 0\} / \mu_m(1, -1, a, 0)$$

is a terminal singularity.

The extreme case $\phi = t$ is not excluded.

Then $(X \ni P) \simeq \mathbb{C}^3/\mu_m(1,-1,a)$ is called terminal *cyclic quotient singularity*.

General elephant

Conjecture (Reid's general elephant principle)

Let $f: X \to (Z \ni o)$ be a 3-fold Mori contraction, where $(Z \ni o)$ is a small neighborhood.

Then a general member $D \in |-K_X|$ is a normal surface with Du Val (ADE) singularities.

Example (Shokurov, Reid)

Let X be a Fano 3-fold with *Gorenstein* terminal (and even canonical) singularities.

Then a general member $D \in |-K_X|$ is a K3 surface with only Du Val singularities.

Warning

Reid's general elephant fails for $\mathbb{Q}\text{-}\mathsf{Fano}$ 3-folds.

However there are only a few counterexamples.

General elephant (local version)

Example (Reid)

Let $(X \ni P)$ be a 3-fold terminal singularity of index m. Then a general member $D \in |-K_X|$ is a Du Val singularity.

Furthermore, assume that m > 1. Let $\pi: X' \to X$ be the index-1 cover and let $D' := \pi^{-1}(D)$. Then $D' \longrightarrow D$ is one of the following:

• cA/m
$$A_{k-1} \xrightarrow{m:1} A_{km-1}$$

• cAx/4 $A_{2k-2} \xrightarrow{4:1} D_{2k+1}$

• cD/3
$$D_4 \xrightarrow{3:1} E_6$$

•
$$cAx/2$$
 $A_{2k-1} \xrightarrow{2:1} D_{k+2}$
• $cD/2$ $D_{k+1} \xrightarrow{2:1} D_{2k}$

•
$$cD/2$$
 $D_{k+1} \xrightarrow{2:1} D_{2k}$

• cE/2
$$E_6 \xrightarrow{2:1} E_7$$

This division corresponds to local analytic classification of terminal 3-fold singularities.

Extremal curve germs

Definition

An *complex analytic* germ $(X \supset C)$ of a 3-fold X with terminal singularities along a reduced connected complete curve C is called an *extremal curve germ* if there exists a contraction

$$f:(X\supset C)\longrightarrow (Z\ni o)$$

such that

- $ightharpoonup C = f^{-1}(o)_{red}$ and
- $-K_X$ is f-ample.

An extremal curve germ is said to be *irreducible* if so its central fiber *C* is.

A general hyperplane section is the divisor $H := f^{-1}(H_Z) \in |\mathscr{O}_X|_C$, where $H_Z \subset Z$ is given by t = 0 for general $t \in \mathfrak{m}_{o,Z}$.

Extremal curve germs

If $f: X \to Z$ is a 3-fold Mori contraction with fibers of dimension ≤ 1 and C is a 1-dimensional component of a fiber, then $(X \supset C)$ is an extremal curve germ.

Irreducible extremal curve germs and divisorial contractions to points are building blocks of the 3-dimensional MMP.

Three types of extremal curve germs:

- flipping if is f birational and does not contract divisors;
- divisorial if the exceptional locus is two-dimensional;
- ightharpoonup Q-conic bundle germ if Z is a surface.

Assumption:

We assume that X is not Gorenstein.

Extremal curve germs: examples

Example (Flip of index 2, Francia's flip)

Take a non- \mathbb{Q} -Gorenstein singularity

$$Z = \{x_1x_3 + x_2x_4 = 0\}/\mu_2(1, 1, 0, 0)$$

and consider two blowups:

$$(X \supset C) - - - \frac{\text{flip}}{-} - - > (X^{+} \supset C^{+})$$
blowup of
$$\{x_{2} = x_{3} = 0\}$$

$$/\mu_{2}$$

$$(Z \ni o) \qquad \text{blowup of}$$

$$\{x_{1} = x_{2} = 0\}$$

$$/\mu_{2}$$

Here X has a unique cyclic quotient singularity of index 2 and X^+ is smooth.

Classification of extremal curve germs: general strategy

Step 1. Local description of possible singularities $(P \in X) \supset C$

Step 2. General elephant $D \in |-K_X|$

Step 3. General hyperplane section $H \in |\mathcal{O}_X|_C$

Step 4. Reconstruction of $f:(X\supset C)\to Z$ from H

General elephant: irreducible central fiber

Theorem (Mori, Kollár-Mori, Mori-Prokhorov)

Let $(X \supset C)$ be an irreducible extremal curve germ. Then a general member $D \in |-K_X|$ has only Du Val singularities.

Idea of the proof

Essentially, there are three methods to find a good elephant $D \in |-K_X|$.

- ▶ Construct a general member $D \in |-K_X|$ locally near a singular point $P \in C \subset X$ and show that D is the global member of $|-K_X|$ along C (works in the cases $D \not\supset C$).
- Extend a good element $D \in |-K_X|$ from a general surface $S \in |-2K_X|$ (bi-elephant, which is supposed to be "good enough").
- ▶ The good element $D \in |-K_X|$ is recovered as the formal Weil divisor $\lim_{\longleftarrow} C_n$ of the completion X^{\wedge} of X along C, where C_n are subschemes with support C constructed by using certain inductive procedure [Mori88], [Mori, 08].

General elephant: consequences and generalizations

- ▶ The existence of general elephant $D \in |-K_X|$ for flipping extremal curve germs implies the existence of 3-fold flips [Kawamata 88].
- ▶ If $f: X \to Z$ is a 3-fold conic bundle contraction, then the base Z has at worst $Du\ Val$ singularities of type A_n .

From general elephant to hyperplane sections

Example-Construction

Let $f:(X\supset C)\to Z$ be an extremal curve germ. Assume that a general member $D\in |-K_X|$ is Du Val. Consider the Stein factorization:

$$f_D: D \xrightarrow{f'} D' \longrightarrow f(D)$$
 $D' = f(D)$ if f is birational

Then D' is Du Val at f'(C).

(*) Assume that
$$D' \ni f'(C)$$
 is of type A_n .

Then by the *Inversion of Adjunction* for a general $H \in |\mathscr{O}_X|_C$ the pair (X, H + D) is log canonical (lc).

If moreover $D \supset C$, then H is normal and has only cyclic quotient singularities.

Definition

If $(X \supset C)$ satisfies (*), then $(X \supset C)$ is said to be *semistable*. Otherwise, $(X \supset C)$ is called *exceptional*.

Reconstruction germs from general $H \in |\mathscr{O}_X|_C$

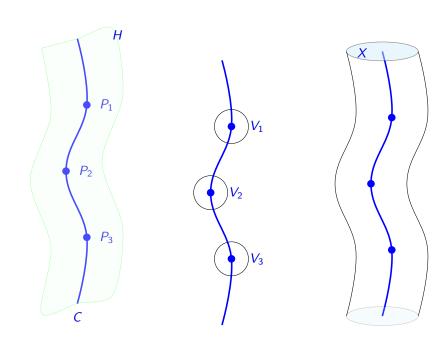
Initial data.

- ▶ A normal surface germ $(H \supset C)$ and a K_H -negative contraction $f_H : H \to H_Z$ such that C is a fiber.
- Near each singular point $P_i \in H$ there is a small one-parameter deformation H_i^t , $t \in D \subset \mathbb{C}$ of a neighborhood $U_i \subset H$ of P_i such that the total space $V_i = \bigcup H_i^t$ has a terminal singularity at P_i .

Since $R^2 f_* \mathcal{T}_H = 0$, where $\mathcal{T}_H = (\Omega_H^1)^\vee$ is the tangent sheaf, the deformations are unobstructed. Hence there is a global one-parameter deformation H^t of H inducing a local deformation of H_i^t near P_i .

Then we have a 3-fold $X = \bigcup H^t \supset C$ with $H \in |\mathscr{O}_X|_C$ such that locally near P_i it has the desired structure. We can extend f_H to a contraction

$$f: X \longrightarrow Z$$
, $f(C) = point$



Semistable extremal curve germs and T-singularities

Definition (Kollár, Shepherd-Barron 1988)

A 2-dimensional *quotient* singularity $F \ni P$ is called *T-singularity* if it admits a smoothing in a \mathbb{Q} -Gorenstein family $X \to \mathbb{D} \subset \mathbb{C}$.

In this case the total family X is terminal.

Classification of T-singularities:

- ▶ Du Val (ADE) points;
- cyclic quotients of types

$$\mathbb{C}^2/\mu_{dn^2}(1, dna-1),$$

where gcd(n, a) = 1.

Observation

Let $(X \supset C)$ be a semistable extremal curve germ. Assume that $H \in |\mathcal{O}_X|_C$ is normal. Then the singularities of H are of type T.

Example of semistable extremal curve germs

The singularity

$$\mathbb{C}^2/\mu_4(1,1)$$

is of type T. The exceptional locus of its minimal resolution consists of one smooth rational curve E with $E^2 = -4$.

Consider a smooth surface H containing a configuration of smooth rational curves with the following dual graph:

$$\stackrel{\mathsf{E}}{\circ} - - - \stackrel{\mathsf{C}}{\bullet} \\
-4 - - 1$$

Contracting E we obtain a surface germ $(H \supset C)$ with a T-singularity as above. An 1-parameter deformation produces Francia's flip.

Classification of **irreducible** curve germs

Local [Mori88], [Mori-Prokhorov08]

The configuration of singular points and the local analytic description of $(X \ni P) \supset C$ is given.

Global [Kollár-Mori92], [Mori02], [Mori-Prokhorov08-21]

The general hyperplane sections $H \in |\mathcal{O}_X|_C$ and their 1-parameter deformations are described in all cases except for a few cases: non-flipping cases of (kAD) and (k3A).

Classification of irreducible curve germs

```
[Mori88], [Kollár-Mori92], [Mori-Prokhorov08-21]
 Semistable
 (k1A) one non-Gorenstein point of type cA/m
 (k2A) two non-Gorenstein points of types cA/m, cA/m'
   Exceptional
        one non-Gorenstein point of type cD/2, cAx/2, or cE/2
 cD/3 one non-Gorenstein point which is of type cD/3
           one non-Gorenstein point of exceptional type cAx/4
 (IIB)
 (IE<sup>∨</sup>) one singular point which is a cyclic quotient of index 8
        (O-conic bundle only)
 (IC) one singular point which is a cyclic quotient of index
        m > 5 \text{ (odd)}
 (kAD) two singular points of indices m \ge 3 (odd) and 2
 (k3A) three singular points of indices m \ge 3 (odd), 2 and 1
```

Divisorial contractions to a point

There is an almost complete classification: Y. Kawamata, A. Corti, M. Kawakita, T. Hayakawa, . . .

Theorem (M. Kawakita)

Let $f: X \to (Z \ni o)$ be a divisorial Mori contraction that contracts a divisor to a point.

Then a general member $D \in |-K_X|$ is Du Val.

Theorem (M. Kawakita)

Let $f: X \to Z$ be a divisorial Mori contraction that contracts a divisor to a smooth point.

Then f is the weighted blowup with weights (1, a, b), gcd(a, b) = 1.

Q-del Pezzo fibrations

Let $f: X \to Z \ni o$ be a germ of \mathbb{Q} -del Pezzo fibration.

- ▶ The existence of a good element $D \in |-K_X|$ is not known.
- ▶ If $D \in |-K_X|$ is Du Val, then $D \to Z$ is a minimal elliptic fibration obtained by contracting of some (-2)-curves on a smooth one.

Two extreme cases are studied relatively well.

Multiple fibers.

Theorem (Mori - Prokhorov)

Assume that $f^*(o) = m_o F_o$ is a fiber of multiplicity $m_o \ge 2$.

Then $m_o \leq 6$.

Moreover, all the cases $m_o \leq 6$ occur.

The possibilities for the local behavior of F_o near singular points and the possible values of the degree of the generic fiber are described.

Q-del Pezzo fibrations

Fibers with quotient singularities.

Assumption

Let $f: X \to Z \ni o$ be a germ of \mathbb{Q} -del Pezzo fibration whose central fiber $F:=f^{-1}(o)$ is reduced normal and has only *quotient singularities*.

Theorem (Hacking – Prokhorov)

Let F be as above. Assume additionally that $Pic(F) \simeq \mathbb{Z}$. Then F belongs to one of the following classes:

- ► 14 infinite families of toric surfaces determined by Markov-type equations;
- partial smoothing of a toric surface as above;
- ▶ 18 sporadic families of surfaces of index \leq 2.

The variety X is obtained as an 1-parameter deformation space of F.

Q-Fano 3-folds

Theorem (Y. Kawamata (dim = 3), C. Birkar (\forall dim)) The set of all \mathbb{Q} -Fano varieties of fixed dimension is bounded.

Remark

- ► Smooth Q-Fano 3-folds are classified by V. Iskovskikh (17 families).
- Q-Fano 3-folds with Gorenstein singularities are degenerations of smooth ones (Y. Namikawa).

Basic invariants

- Collection of singularities
- ▶ Degree: $(-K_X)^3$ (rational number)
- ► Fano index: $q(X) := \max\{t \in \mathbb{N} \mid -K_X \underset{\mathbb{Q}}{\sim} tA, A \text{ is a Weil divisor}\}$

Effective boundedness of Q-Fano 3-folds

Theorem (Kawamata)

Let X be a \mathbb{Q} -Fano 3-fold.

- $ightharpoonup \sum \left(m_i \frac{1}{m_i}\right) < 24$, where m_i 's are the indices of singular points
- $(-K_X)^3 \le b$, where b is an effectively computable (but large) constant

Theorem (P.)

Let X be a singular \mathbb{Q} -Fano 3-fold. Then $(-K_X)^3 \leq 125/2$. If $(-K_X)^3 = 125/2$, then $X \simeq \mathbb{P}(1,1,1,2)$ (Veronese cone).

Theorem (J. A. Chen & M. Chen)

Let X be a \mathbb{Q} -Fano 3-fold. Then $(-K_X)^3 \ge 1/330$.

Theorem (Chen Jiang)

If $(-K_X)^3 = 1/330$ and X is not rational, then $X \simeq X_{66} \subset \mathbb{P}(1, 5, 6, 22, 33)$.

Thank you for attention!