

Algebraic geometry in mixed characteristic

Bhargav Bhatt

Institute for Advanced Study
Princeton University
University of Michigan

ICM 2022

Motivating goal

Fix a prime number p .

Theorem (de Rham 1931, Hodge 1941)

Let X be a compact complex Kähler manifold (e.g., $X \subset \mathbf{CP}^m$). Integration of forms over cycles yields

$$H^n(X; \mathbf{C}) \simeq H_{dR}^n(X; \mathbf{C}) \simeq \bigoplus_{i+j=n} H^{i,j}(X).$$

This can be used in both directions:

- *Geometry to topology:* n odd $\rightsquigarrow \dim H^n(X; \mathbf{C})$ is even as $H^{i,j} \simeq \overline{H^{j,i}}$.
- *Topology to geometry:* $\pi_1(X) = 0 \rightsquigarrow$ holomorphic 1-forms on X vanish as $H^{1,0}(X) \subset H^1(X; \mathbf{C}) = 0$.

Defect: Misses torsion in $H^*(X; \mathbf{Z})$ completely!

Goal

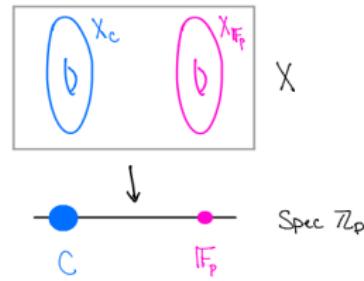
Understand $H^*(X; \mathbf{Z}/p^n)$ geometrically (e.g., via forms), at least for X algebraic.

The geometric backdrop: Hensel's p -adic world (1897)

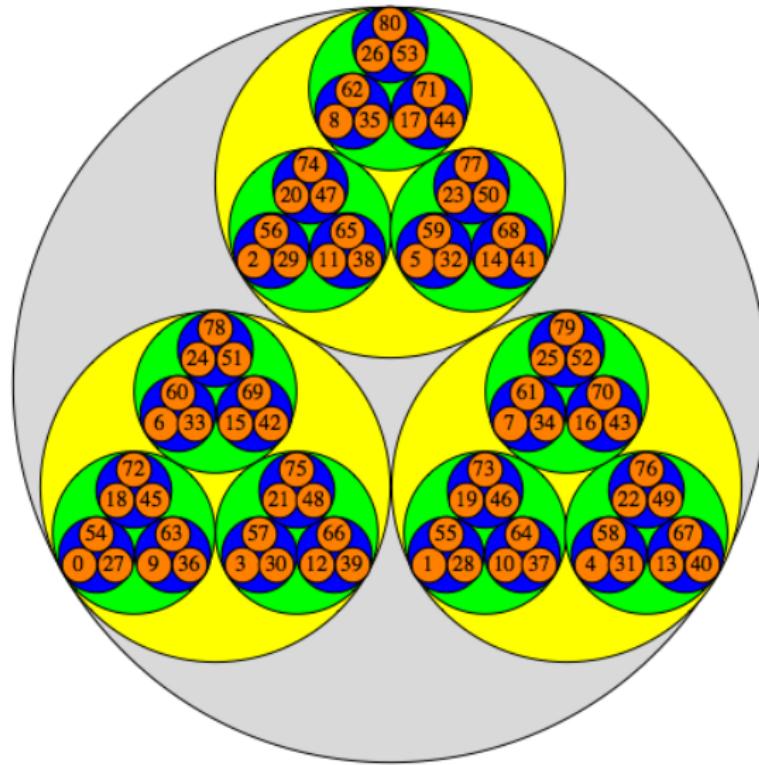
- $\mathbf{Z}_p :=$ ring of p -adic integers
 $= \{\sum_{i \geq 0} a_i p^i \mid a_i \in \{0, \dots, p-1\}\}$
- $\mathbf{F}_p = \mathbf{Z}_p/(p) \xleftarrow{\text{kill } p} \mathbf{Z}_p \xrightarrow{\text{invert } p} \mathbf{Z}_p[\frac{1}{p}] = \mathbf{Q}_p \subset \widehat{\mathbf{Q}_p} =: \mathbf{C}_p \xrightarrow{\text{non-canonical}} \mathbf{C}$
" \mathbf{Z}_p yields a bridge from characteristic 0 to characteristic p "
- X/\mathbf{Z}_p smooth projective variety
 $\rightsquigarrow X_{\mathbf{C}_p} =$ smooth projective variety over \mathbf{C}_p
 $\rightsquigarrow X_{\mathbf{F}_p} =$ " " \mathbf{F}_p

Example

$X =$ Fermat cubic curve
 $= V(x^3 + y^3 + z^3) \subset \mathbf{P}_{\mathbf{Z}_p}^2$
($p \neq 3$ to ensure smoothness)



An illustration of \mathbb{Z}_3 (by Heiko Knospe)



Source: <http://www.nt.th-koeln.de/fachgebiete/mathe/knospe/p-adic/>

Progress from the 20th century

Fix X/\mathbf{Z}_p smooth projective as before $\rightsquigarrow X_{\mathbf{C}_p}, X_{\mathbf{F}_p}$

Principle (Tate 1966, Grothendieck 1970, Fontaine 1978, ...)

$$\text{Mod } p^n \text{ topology of } X_{\mathbf{C}_p} \quad \approx \quad \text{Algebraic geometry of } X_{\mathbf{F}_p}$$

Last century: principle works well, at least up to bounded p -torsion:

Example (Faltings 1989, Tsuji 1999)

$$H^i(X_{\mathbf{C}_p}; \mathbf{Z}_p) \stackrel{\text{up to isogeny}}{=} \text{Complicated functor } (X_{\mathbf{F}_p}, \mathcal{F}_X),$$

where \mathcal{F}_X is some linear algebra data attached to the lift X of $X_{\mathbf{F}_p}$.

Applications include:

- Langlands program (e.g: structure for p -adic Galois representations).
- Birational geometry (e.g: birational invariance of $h^{i,j}$ (Calabi Yau))

A 21st century upgrade: prismatic cohomology

Theorem (B-Morrow-Scholze 2016, 2018)

There exists a cohomology theory $H_{\Delta}^*(X; \mathbf{F}_p) \in \text{Mod}^{fg}(\mathbf{F}_p[[T]])$ such that:

- *Topological comparison:* $H_{\Delta}^*(X; \mathbf{F}_p)[\frac{1}{T}] \simeq H^*(X_{\mathbf{C}_p}; \mathbf{F}_p) \otimes_{\mathbf{F}_p} \mathbf{F}_p((T))$
- *Differential comparison:* $H_{\Delta}^*(X; \mathbf{F}_p)/T \approx H_{dR}^*(X_{\mathbf{F}_p})$
- *Partial inspiration:* Breuil and Kisin's work on Galois representations.
- Theorem + Linear Algebra $\Rightarrow \dim_{\mathbf{F}_p} H^n(X_{\mathbf{C}_p}; \mathbf{F}_p) \leq \dim_{\mathbf{F}_p} H_{dR}^n(X_{\mathbf{F}_p})$
- \exists an integral variant $H_{\Delta}^*(X; \mathbf{Z}_p) \in \text{Mod}^{fg}(\mathbf{Z}_p[[T]])$
- \exists semistable variant ([Česnavičius-Koshikawa 2018](#), [Koshikawa 2020](#))
- Several distinct constructions by now:
 - **Analytic:** via perfectoid spaces and the almost purity theorem (BMS1)
 - **Homotopical:** via K-theory and THH (BMS2)
 - **Algebraic:** via prisms (B-Scholze)
 - **Algebro-geometric:** via derived algebraic geometry (Drinfeld, B-Lurie)

The shape of prismatic cohomology

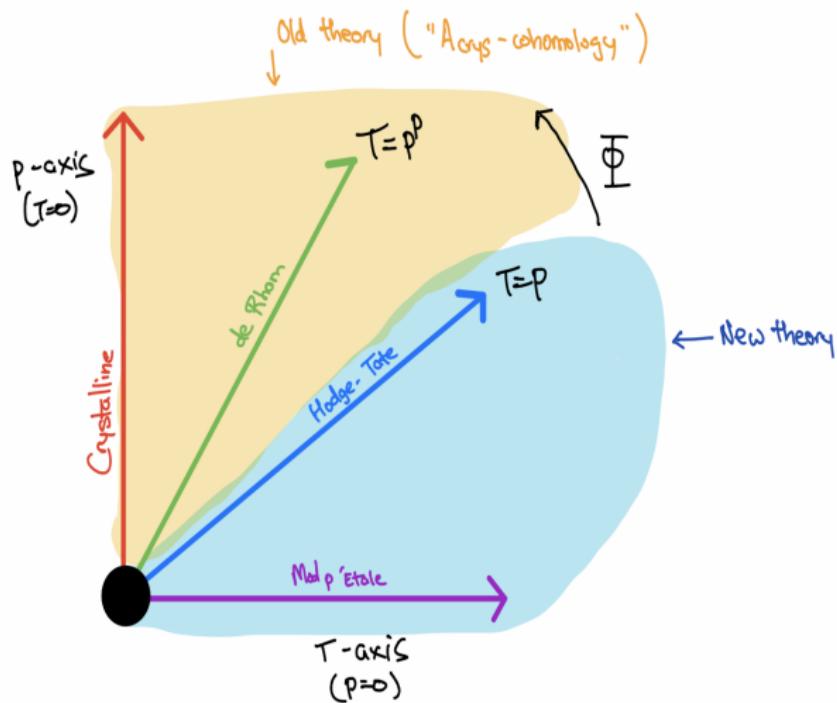


Figure: The fibers of $H_{\Delta}^*(X; \mathbf{Z}_p)$ over $\text{Spec}(\mathbf{Z}_p[[T]])$

Semistable reduction

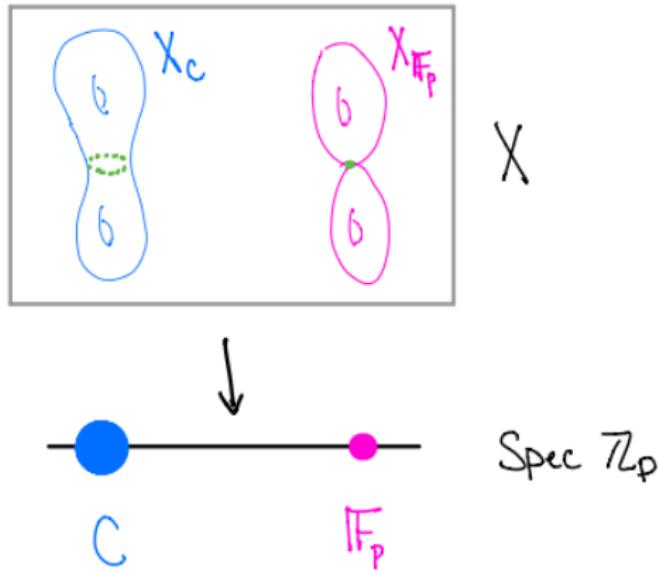


Figure: A picture of genus 2 curve X_{C_p} with semistable reduction X_{F_p}

Connections to algebraic K-theory

X a (nice) space $\rightsquigarrow K(X) = K\text{-theory of complex vector bundles on } X$

Theorem (Atiyah-Hirzebruch 1961, Bott 1957)

For a nice space X , there is a natural “skeletal” filtration on $K(X)$ with $\text{gr}^i \simeq H^*(X; \mathbf{Z}(i))[2i]$.

Quillen 1973: X algebraic variety $\rightsquigarrow K(X) = \text{algebraic K-theory of } X$

Question (Beilinson 1982)

What is the analog of the Atiyah-Hirzebruch(-Bott) theorem for the algebraic K-theory of a ring R or a variety X ?

The rational/ ℓ -adic case was mostly answered in the 20th century (Thomason, Suslin, Gabber, Bloch-Lichtenbaum, Geisser, Levine, Voevodsky, ...).

Theorem (Clausen-Mathew-Morrow 2018, B-Morrow-Scholze 2018)

For a p -complete commutative ring R , there is a natural “motivic” filtration on $K_{et}(R; \mathbf{Z}_p)$ with $\text{gr}^i \simeq H_{\text{syn}}^*(R, \mathbf{Z}_p(i))[2i] \hookleftarrow$ “syntomic cohomology” (a new object determined by prismatic cohomology).

New calculations in algebraic K -theory

Algebraic construction of prismatic cohomology + previous theorem \Rightarrow a new tool to calculate p -adic K -theory.

Example (Fix $n \geq 1$)

- Odd vanishing (B-Scholze 2019): The object $\pi_{\text{odd}} K(R; \mathbf{Z}_p)$ vanishes for many “very large” rings, e.g.,

$$\pi_{\text{odd}} K(\mathcal{O}_{\mathbf{C}_p}/p^n) = 0.$$

Prismatic input: q -de Rham complexes, André’s flatness lemma

- Even vanishing (Antieau-Krause-Nikolaus 2022): We have

$$\pi_{2k} K(\mathbf{Z}/p^n) = 0 \quad \forall k \gg 0.$$

Prismatic input: Absolute prismatic cohomology

Both results were previously out of reach for $n > 1$.

Kodaira vanishing in mixed characteristic

Theorem (Kodaira 1953)

Given $X \subset \mathbf{P}_{\mathbb{C}}^n$ smooth projective of dimension d , we have $H^{<d}(X, \mathcal{O}(-1)) = 0$.

Fact: This vanishing fails outside characteristic 0 (Raynaud 1978, Totaro 2021).

Theorem (KV up to finite covers, B 2020)

For $X \subset \mathbf{P}_{\mathbb{Z}_p}^n$ projective of relative dimension d , \exists a finite cover $\pi : Y \rightarrow X$ such that

$$\text{Image} \left(H^{<d}(X, \mathcal{O}(-1))_{\text{tors}} \xrightarrow{\pi^*} H^{<d}(Y, \pi^* \mathcal{O}(-1))_{\text{tors}} \right) = 0.$$

- Formulation inspired by work of Hochster-Huneke and Smith from 1990s. In fact, analog over \mathbb{F}_p follows from their work.
- *Key ingredients:*
 - Prismatic cohomology.
 - Riemann-Hilbert constructions for perverse \mathbb{F}_p -sheaves on $X_{\mathbb{C}_p}$ (B-Lurie).

Kodaira vanishing: variants and applications

Theorem (Local KV up to finite covers, B 2020)

Fix a finite extension $\mathbf{Z}_p[x_1, \dots, x_n] \subset R$. Then \exists a finite extension $R \subset S$ such that: any relation $\sum_i a_i x_i = 0$ in R/p becomes “trivial” in S/p .

Conceptual reformulation:

Set $R^+ :=$ integral closure R in $\overline{\text{Frac}(R)}$. Then R^+/p is Cohen-Macaulay over R/p .

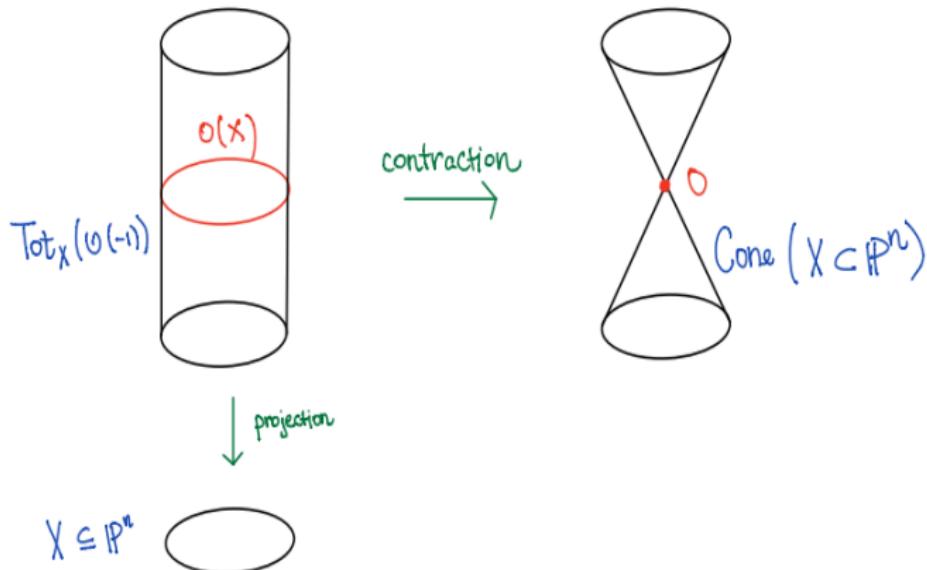
This local variant

- was previously “almost” known for $n \leq 2$ (Heitmann 2002).
- has been expected (but not conjectured...) for over 30 years.

Theorem (B-Ma-Patakfalvi-Schwede-Tucker-Waldron-Witaszek 2020, Takamatsu-Yoshikawa 2020)

One can run the minimal model program for arithmetic 3-folds with residue characteristic > 5 .

Interlude: Serre's global-to-local dictionary



Projective geometry of $X \subset \mathbb{P}^n$ \approx Local geometry of $\text{Cone}(X \subset \mathbb{P}^n)$ at 0

Some other results featuring prismatic cohomology

- (Madapusi Pera 2016, Ito-Ito-Koshikawa 2018): The Tate conjecture for K3 surfaces in characteristic 2.
- (Colmez-Dospinescu-Nizioł 2019): $H^*(\Omega; \mathbf{Z}_p)$ is p -torsionfree, where $\Omega \subset \mathbf{P}_K^d$ is Drinfeld's p -adic upper half space over a p -adic field K .
- (Farb-Kisin-Wolfson 2021): For A/\mathbf{C} abelian variety and $p \gg 0$, the multiplication by p map $[p] : A \rightarrow A$ has essential dimension $\dim(A)$.
- (Zavyalov 2021): Poincaré duality for \mathbf{Z}_p -étale cohomology in p -adic analytic geometry (also Gabber 2015, Mann 2022).

Thank you for listening!

Image a prism by Brett Jordan via Flickr