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⚫ The image reconstruction model as a linear inverse problem

𝑓 = 𝐴𝑢 + 𝜂
⚫ 𝑓 is the observed image or measurement data;
⚫ 𝐴 describes the image sensing process;
⚫ 𝜂 is additive noise.

⚫ The greatest challenge: ill-posedness

⚫ An universal solution: regularization/prior knowledge

The Image Reconstruction Model

7
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The PDE-Based Approach
⚫ Designing PDEs that regularizes images

𝑢𝑡 = 𝐹 𝐴, 𝑓, 𝑢, ∇𝑢, ∇2𝑢 , 𝑢 0, 𝑥 = 𝑢0 𝑥 .
⚫ Examples: 

⚫ Shock-filters (Rudin-Osher 1990), 
⚫ Perona-Malik equation (Perona-Malik 1990), 
⚫ anisotropic diffusions (Weickert 1994) , 
⚫ fluid dynamics model (Bertalmio-Bertozzi-Sapiro 2001).
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⚫ Designing regularization in variational models

inf
𝑢∈𝒰

𝐿 𝐴, 𝑓, 𝑢 + 𝑅(𝑢)

⚫ Examples: 
⚫ The total variation (TV) model (Rudin-Osher-Fatemi 1992): 𝑅 𝑢 = ∇𝑢 𝐿1,

⚫ The Inf-convolution model (Chambolle-Lions 1997),
⚫ The total generalized variation (TGV) model (Bredies-Kunisch-Pock 2010).
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The Wavelet Frame-Based Approach

⚫ Denote 𝑾: ℝ𝑚 → ℝ𝑚′
the wavelet frame transform. 

⚫ We have the following three typical wavelet frame-based models
⚫ The balanced model (Chan-Chan-Shen-Shen 2003, Cai-Chan-Shen 2008)

min
𝒅

𝐿 𝑨, 𝒇, 𝒖 + 𝜅 𝑰 −𝑾𝑾⊤𝒅
2

2
+ 𝝀 ⋅ 𝒅 1,

⚫ The analysis model (Starck-Elad-Donoho 2005, Cai-Osher-Shen 2009)

min
𝒖

𝐿(𝑨, 𝒇, 𝒖) + 𝝀 ⋅ 𝑾𝒖 1,

⚫ The synthesis model (Figueiredo-Nowak 2003, Daubechies-Teschke-Vese, 2007)

min
𝒅

𝐿 𝑨, 𝒇,𝑾⊤𝒅 + 𝝀 ⋅ 𝒅 1.
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⚫ The synthesis model (Figueiredo-Nowak 2003, Daubechies-Teschke-Vese, 2007)

min
𝒅

𝐿 𝑨, 𝒇,𝑾⊤𝒅 + 𝝀 ⋅ 𝒅 1.

⚫ Optimization algorithms induce various wavelet shrinkage algorithms.
⚫ Key to wavelet frame-based approach: multiscale, sparse approximation.
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Relations between the Two Approaches?

⚫ Some early studies showed relations between

⚫ discrete 1D nonlinear diffusions and shift-invariant Haar shrinkage (Mrázek-
Weickert-Steidl 2003)

⚫ discrete 1D nonlinear diffusions and wavelet frame shrinkage (Jiang 2012)
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Relations between the Two Approaches?

⚫ Some early studies showed relations between

⚫ discrete 1D nonlinear diffusions and shift-invariant Haar shrinkage (Mrázek-
Weickert-Steidl 2003)

⚫ discrete 1D nonlinear diffusions and wavelet frame shrinkage (Jiang 2012)

⚫ For most of the time, the two approaches compete with each other.

⚫ What were still unclear:

⚫ Variational models (e.g., TV, TGV) v.s. wavelet-based optimization models?
⚫ More types of differential equations (e.g., fluid dynamics models)?
⚫ Generic wavelet frame shrinkage algorithms (e.g., Nesterov)?
⚫ New insights on both approaches?
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Connections

03

between PDE-based and wavelet 
frame-based approach, and the 
implications of such connections.
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Wavelet Frame Transforms and Differential Operators

⚫ A key observation is the link between vanishing moments of wavelet functions 
and the orders of differential operators.
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Wavelet Frame Transforms and Differential Operators

⚫ A key observation is the link between vanishing moments of wavelet functions 
and the orders of differential operators.

⚫ Vanishing moments in the continuum and discrete setting. 
⚫ We say 𝜓 or 𝒒 has vanishing moment of order 𝜶 if it annihilates polynomials up to 

degree 𝜶 as follows
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Wavelet Frame Transforms and Differential Operators
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Connections: Variational and Wavelet Models

⚫ Consider the following two problems

inf
𝑢∈𝑊1

𝑠(Ω)
𝐸𝑛 𝑢 ≔ 𝜈 𝝀𝑛 ⋅ 𝑾𝑻𝑛𝑢 1 +

1

2
𝑨𝑛𝑻𝑛𝑢 − 𝑻𝑛𝑓 2

2

inf
𝑢∈𝑊1

𝑠 Ω
𝐸 𝑢 = 𝜈 𝑫𝑢 𝐿1(Ω) +

1

2
𝐴𝑢 − 𝑓 𝐿2(Ω)

2

Analysis model

Variational model
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⚫ Then, we have (Cai-Dong-Osher-Shen 2012)
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Variational model
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1

2
𝐴𝑢 − 𝑓 𝐿2(Ω)

2

⚫ Then, we have (Cai-Dong-Osher-Shen 2012)

⚫ Further extensions: Cai-Dong-Shen 2016, Dong-Shen-Xie 2017, Choi-
Dong-Zhang 2020. 

Analysis model

Variational model
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Connections: PDEs and Wavelet Shrinkage

⚫ Consider the following two dynamics
𝒖𝑘 = ෪𝑾⊤𝑺𝝀𝑘−1 𝑾𝒖𝑘−1 , 𝑘 = 1,2,⋯.

𝑢𝑡 = σℓ=1
𝐿 𝜕𝜶ℓ

𝜕𝑥𝜶ℓ
Φℓ 𝑫𝑢, 𝑢 , 𝑫 = ⋯

𝜕𝜷ℓ

𝜕𝑥𝜷ℓ
⋯ , 𝑡 ∈ (0, 𝑇].

⚫ It can be shown that (Dong-Jiang-Shen 2017) :

Wavelet shrinkage

Nonlinear evolution PDE
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⚫ It can be shown that (Dong-Jiang-Shen 2017) :

⚫ This has led to new wavelet shrinkage and PDE models. 
⚫ For example, the Nesterov accelerated wavelet frame shrinkage (Li-Fan-

Ji-Shen 2014) :  

𝒖𝑘 = 𝐼 − 𝜇𝑨⊤𝑨 𝑾⊤𝑺𝝀𝑘−1 1 + 𝛾𝑘−1 𝑾𝒖𝑘−1 − 𝛾𝑘−1𝑾𝒖𝑘−2 + 𝜇𝑨⊤𝒇, 𝑘 = 1,2,… .

Wavelet shrinkage

Nonlinear evolution PDE
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𝜕𝜷ℓ

𝜕𝑥𝜷ℓ
⋯ , 𝑡 ∈ (0, 𝑇].

⚫ It can be shown that (Dong-Jiang-Shen 2017) :

⚫ This has led to new wavelet shrinkage and PDE models. 
⚫ For example, the Nesterov accelerated wavelet frame shrinkage (Li-Fan-

Ji-Shen 2014) leads to the following PDE:  

𝑢𝑡𝑡 + 𝐶𝑢𝑡 = div 𝚽(𝑫𝑢, 𝑢) − 𝜅𝐴⊤ 𝐴𝑢 − 𝑓 .

⚫ Related works: Su-Boyd-Candes 2014, Wibisono-Wilson-Jordan 2016.

Wavelet shrinkage

Nonlinear evolution PDE
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An Integrated Knowledge on Image 
Reconstruction Methods

What we know now:

• Wavelet methods have geometric meanings.

• PDE methods can be understood through 

the lens of sparsity.

• Giving birth to new models.
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𝓕:𝑋 → 𝑌; 𝓕 𝑓 = ො𝑢 ≈ 𝑢
• Mappings 𝓕 are often dynamic systems 

and mostly discrete approximations of 

differential equations.

• The mapping 𝓕 is “handcrafted”
• Works generally well

• Good stability and interpretability

• Still not good enough in practice:
• Not everything can be “handcrafted”

• Trending research direction:

Combination with deep learning
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Deep Learning

04

Connections between CNNs and discrete 
differential equations (ODEs and PDEs).

20
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⚫ Supervised Learning: given 𝑥𝑖 , 𝑦𝑖 ∼ 𝒫, find 𝓕෡Θ: 𝑋 → 𝑌 through

෡Θ = argminΘ
1

𝑁
෍

𝑖=1

𝑁

𝐿(𝓕Θ 𝑥𝑖 , 𝑦𝑖)

⚫ with 𝓕Θ a deep neural network, e.g., 𝓕Θ =𝑾3𝜎 𝑾2𝜎 𝑾1𝑥 + 𝒃1 + 𝒃2
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⚫ Supervised Learning: given 𝑥𝑖 , 𝑦𝑖 ∼ 𝒫, find 𝓕෡Θ: 𝑋 → 𝑌 through

෡Θ = argminΘ
1

𝑁
෍
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⚫ with 𝓕Θ a deep neural network, e.g., 𝓕Θ =𝑾3𝜎 𝑾2𝜎 𝑾1𝑥 + 𝒃1 + 𝒃2
⚫ For image reconstruction, we can let 𝑥 = 𝑓, 𝑦 = 𝑢 and 𝓕෡Θ 𝑓 = ො𝑢 ≈ 𝑢. 

This can be much better than handcrafted solution mapping.

Image denoising: average PSNR on BSD68 dataset (Zhang et al. 2017).
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⚫ Supervised Learning: given 𝑥𝑖 , 𝑦𝑖 ∼ 𝒫, find 𝓕෡Θ: 𝑋 → 𝑌 through

෡Θ = argminΘ
1

𝑁
෍

𝑖=1

𝑁

𝐿(𝓕Θ 𝑥𝑖 , 𝑦𝑖)

⚫ with 𝓕Θ a deep neural network, e.g., 𝓕Θ =𝑾3𝜎 𝑾2𝜎 𝑾1𝑥 + 𝒃1 + 𝒃2
⚫ For image reconstruction, we can let 𝑥 = 𝑓, 𝑦 = 𝑢 and 𝓕෡Θ 𝑓 = ො𝑢 ≈ 𝑢. 

This can be much better than handcrafted solution mapping.
⚫ The impact of deep learning is much beyond image reconstruction.
⚫ How can we understand deep neural networks (DNNs) in comparison 

with the “handcrafted” mapping?
As discrete dynamic systems (ODEs and PDEs)

Deep Learning
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The ODE-Nets

⚫ The success of residual networks (ResNet, He et al. 2015)
𝒙𝑘+1 = 𝒙𝑘 + 𝒇 𝒙𝑘 , 𝑡𝑘 , 𝒙0 = 𝒙, 𝑘 = 0,1,…

⚫ ResNet can be interpreted as forward-Euler discretization of the dynamic 
system ሶ𝒙 = 𝒇 𝒙 , and training ResNets can be viewed as an optimal 
control problem (E 2017).
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The ODE-Nets

⚫ The success of residual networks (ResNet, He et al. 2015)
𝒙𝑘+1 = 𝒙𝑘 + 𝒇 𝒙𝑘 , 𝑡𝑘 , 𝒙0 = 𝒙, 𝑘 = 0,1,…

⚫ ResNet can be interpreted as forward-Euler discretization of the dynamic 
system ሶ𝒙 = 𝒇 𝒙 , and training ResNets can be viewed as an optimal 
control problem (E 2017).

⚫ More examples of deep networks that can be viewed as discrete form of 
ODEs or SDEs (Lu-Zhong-Li-Dong 2018): 

⚫ e.g., PolyNet (Zhang-Li-Loy-Lin 2017) can be viewed as approximation to 
backward-Euler with truncated Neumann series. 

⚫ e.g., ResNets with stochastic depth (Huang et al. 2016) strategy are discrete 
approximations of SDEs.

⚫ we can use discrete schemes of ODEs/SDEs to generate novel deep networks!
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The ODE-Nets

⚫ Using the linear two-step method (LM-ResNet):
𝒙𝑘+1 = 1 − 𝛼𝑘 𝒙𝑘 + 𝛼𝑘𝒙

𝑘−1 + 𝒇 𝒙𝑘 , 𝑡𝑘 , 𝒙0 = 𝒙, 𝑘 = 0,1,…

⚫ In comparison with ResNet via the modified equation analysis:
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The PDE-Nets

⚫ Motivation of PDE-Nets: given a sequence of observed dynamics
⚫ Find a PDE that best describes the observed data.
⚫ Enable fast simulations with the learned PDE.

⚫ Key to PDE-Nets:
⚫ Exploiting the structural similarity between deep convolutional neural 

networks (CNNs) and discrete schemes of PDEs.

S. Sato et al. 2018
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The PDE-Nets

⚫ Motivation of PDE-Nets: given a sequence of observed dynamics
⚫ Find a PDE that best describes the observed data.
⚫ Enable fast simulations with the learned PDE.

⚫ Key to PDE-Nets:
⚫ Exploiting the structural similarity between deep convolutional neural 

networks (CNNs) and discrete schemes of PDEs.

⚫ Related works on system identification: 
⚫ Schmidt-Lipson 2009, Brunton-Proctor-Kutz 2016 (SINDy), Raissi-Perdikaris-

Karniadakis 2019 (PINNs).

S. Sato et al. 2018
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The PDE-Nets

⚫ We first assume

⚫

𝜕𝑢

𝜕𝑡
= 𝐹 𝑢, 𝛻𝑢, 𝛻2𝑢, … , 𝑢 ∈ ℝ𝑚;

⚫ Maximum order of the PDE is known;
⚫ 𝐹 is a multivariate function with simple operations (e.g., a polynomial).
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The PDE-Nets

⚫ We first assume

⚫

𝜕𝑢

𝜕𝑡
= 𝐹 𝑢, 𝛻𝑢, 𝛻2𝑢, … , 𝑢 ∈ ℝ𝑚;

⚫ Maximum order of the PDE is known;
⚫ 𝐹 is a multivariate function with simple operations (e.g., a polynomial).

⚫ The PDE-Nets (Long-Lu-Ma-Dong 2018, Long-Lu-Dong 2019): 
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The PDE-Nets

⚫ Enforcing 𝐷𝑖𝑗𝑢 ≈
𝜕𝑖+𝑗𝑢

𝜕𝑥𝑖𝜕𝑦𝑗
by applying Proposition 2. 

⚫ Define the moment matrix

27



The PDE-Nets

⚫ Enforcing 𝐷𝑖𝑗𝑢 ≈
𝜕𝑖+𝑗𝑢

𝜕𝑥𝑖𝜕𝑦𝑗
by applying Proposition 2. 

⚫ Define the moment matrix
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⚫ Enforcing 𝐷𝑖𝑗𝑢 ≈
𝜕𝑖+𝑗𝑢

𝜕𝑥𝑖𝜕𝑦𝑗
by applying Proposition 2. 

⚫ Define the moment matrix

⚫ We can approximate any differential operator at any prescribed order by 
constraining 𝑀(𝒒)!

⚫ For example: approximation of  
𝜕𝑢

𝜕𝑥
by  𝒒⊛ 𝒖 with a 3 × 3 kernel 𝒒

⚫ Similar idea was also adopted by (Bar-Sinai-Hoyer-Hickey-Brenner 2019, 
Chambolle-Pock 2021, Alt et al. 2021).
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The PDE-Nets

⚫ Empirical results: learning Burgers’ equation 
𝒖𝑡 + 𝒖 ⋅ ∇ 𝒖 = 𝜀 ∇2𝒖, 𝒖 = 𝑢, 𝑣 , 𝜀 = 0.05.
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The PDE-Nets

⚫ Empirical results: learning Burgers’ equation 
𝒖𝑡 + 𝒖 ⋅ ∇ 𝒖 = 𝜀 ∇2𝒖, 𝒖 = 𝑢, 𝑣 , 𝜀 = 0.05.

Remainer weights of 𝑢, 𝑣

Simulations

Model recovery
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The PDE-Nets

⚫ Incorporation of PDEs (physics) into the architecture of the network is beneficial!
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⚫ Machine learning accelerated simulations: e.g., learning an operator 

𝓕Θ: 𝑢 𝑡,⋅ → 𝑢(𝑡 + Δt,⋅)
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The PDE-Nets

⚫ Incorporation of PDEs (physics) into the architecture of the network is beneficial!
⚫ Machine learning accelerated simulations: e.g., learning an operator 

𝓕Θ: 𝑢 𝑡,⋅ → 𝑢(𝑡 + Δt,⋅)
⚫ A comparison between PDE-Nets, U-Net (Ronneberger-Fischer-Brox 2015) and 

Fourier Neural Operator (FNO, Li et al. 2020)

# Parameters
• PDE-Net: ∼ 102

• FNO: ∼ 105

• U-Net: ∼ 107

29
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Modeling + Learning: A General Strategy

⚫ A typical workflow:
⚫ For a given problem of interest, start with your favorite algorithm which is 

most likely a discrete dynamic system, e.g., 
⚫ solution mapping 𝓕 for image reconstruction.

⚫ Identify the component(s) that is hard to handcraft, e.g., 
⚫ dependence of hyperparameters with input image.

⚫ Approximate the it with a properly designed deep neural network, making the 
solution mapping 𝓕Θ learnable.

⚫ Select a loss function and training algorithm, e.g.,

⚫ Same workflow can be applied to problems in other areas as well, e.g., 
scientific computing, AI for science.
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Computational Imaging

05

Integrating sensing, reconstruction and analysis.

Joint work with:
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Integration of Computational Imaging

⚫ Computational imaging revisited:

Sensing
Image 

Reconstruction
Image 

Analysis

Scientific machine learning

Analysis Reconstruction Sensing
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Sensing
Image 

Reconstruction
Image 

Analysis

Integration of Computational Imaging

⚫ Computational imaging revisited:

⚫ Some existing works: 
⚫ Reconstruction + Analysis: Liu et al. 2018, Wu et al. 2018, Huang et al. 2019
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Image 

Reconstruction
Image 

Analysis

Integration of Computational Imaging

⚫ Computational imaging revisited:

⚫ Some existing works: 
⚫ Reconstruction + Analysis: Liu et al. 2018, Wu et al. 2018, Huang et al. 2019
⚫ Sensing + Reconstruction: Jin-Unser-Yi 2019, Pineda et al. 2020, Ede 2021, 

Yin et al. 2021, Shen et al. 2022.
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Sensing
Image 

Reconstruction
Image 

Analysis

Integration of Computational Imaging

⚫ Computational imaging revisited:

⚫ Personalized CT scanning (Shen et al. 2022)

𝒇 = 𝑨𝒖 + 𝜼

Goal: to optimize

1. projection angles;

2. dose allocation,

so that image quality is 

maximized for a given 

total dose.
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Sensing
Image 

Reconstruction
Image 

Analysis

Integration of Computational Imaging

⚫ Computational imaging revisited:

⚫ Some existing works: 
⚫ Reconstruction + Analysis: Liu et al. 2018, Wu et al. 2018, Huang et al. 2019
⚫ Sensing + Reconstruction: Jin-Unser-Yi 2019, Pineda et al. 2020, Ede 2021, 

Yin et al. 2021, Shen et al. 2022.
⚫ Sensing + Reconstruction + Analysis: Wetzstein et al. 2020.
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Conclusions
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Concluding Remarks

⚫ What I have covered in this talk
⚫ Importance of images and the role of computational imaging.
⚫ Two prevailing mathematical approaches for image reconstruction, and 

their connections.
⚫ Understanding of deep learning, and how we can work with it together 

with the other tools we have.
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Concluding Remarks

⚫ What I have covered in this talk
⚫ Importance of images and the role of computational imaging.
⚫ Two prevailing mathematical approaches for image reconstruction, and 

their connections.
⚫ Understanding of deep learning, and how we can work with it together 

with the other tools we have.

⚫ Looking into the (near) future
⚫ Combination handcraft and data-driven modeling.
⚫ More advancements in the integrated computational imaging.
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Questions?

Thanks!

You can reach me at 
dongbin@math.pku.edu.cn

https://bicmr.pku.edu.cn/~dongbin/
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