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Background

Image-based scientific discovery and
computational imaging (sensing,
reconstruction and analysis ).
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Background

e The development of natural science has been heavily relying on visual examination.
To better analyze the phenomenon-of-interest, images are convenient tools.
e Ahistorical example: The Horse in Motion (Leland Stanford, 1874)
e Hypothesis of “unsupported transit”: there were indeed moments in a horse’s stride in which
all hooves were off the ground and the animal enjoyed “unsupported transit.”

Eadweard Muybridge’s imaging system, Palo Alto, 1878
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Background

o Computationalimaging

Sensin Image Image
J Reconstruction Analysis

.

o Example: computed tomography (CT)
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Image Reconstruction

A review of PDE-based and wavelet
frame-based approaches.



The Image Reconstruction Model

o Theimage reconstruction model as a linear inverse problem

f=Au+n
e fistheobserved image or measurement data;

e A describes the image sensing process;
e 7 isadditive noise.

o The greatest challenge: ill-posedness

o Anuniversal solution: regularization/prior knowledge

7



The PDE-Based Approach

o Designing PDEs that regularizes images

u, = F(4, f,u, Vu, V2u), U0 x) = le).

e Examples:
e Shock-filters (Rudin-Osher 1990),
e Perona-Malik equation (Perona-Malik 1990),
e anisotropic diffusions (Weickert 1994) ,
e fluid dynamics model (Bertalmio-Bertozzi-Sapiro 2001).
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u, = F(4, f,u, Vu, V2u), U0 x) = le).

e Examples:
e Shock-filters (Rudin-Osher 1990),
e Perona-Malik equation (Perona-Malik 1990),
e anisotropic diffusions (Weickert 1994) ,
e fluid dynamics model (Bertalmio-Bertozzi-Sapiro 2001).

» Designing regularization in variational models

inf L(A, f,u) + R(u)
ueu
e Examples:

e Thetotal variation (TV) model (Rudin-Osher-Fatemi 1992): R(w) = |[Vull,,,
e TheInf-convolution model (Chambolle-Lions 1997),
e Thetotal generalized variation (TGV) model (Bredies-Kunisch-Pock 2010).
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The PDE-Based Approach

Designing PDEs that regularizes images

u, = F(4, f,u, Vu, V2u), U0 x) = le).
e Examples:
e Shock-filters (Rudin-Osher 1990),
e Perona-Malik equation (Perona-Malik 1990),
e anisotropic diffusions (Weickert 1994) ,
e fluid dynamics model (Bertalmio-Bertozzi-Sapiro 2001).

Designing regularization in variational models

inf L(A, f,u) + R(u)
ueu
e Examples:

e Thetotal variation (TV) model (Rudin-Osher-Fatemi 1992): R(w) = |[Vull,,,
e TheInf-convolution model (Chambolle-Lions 1997),
e Thetotal generalized variation (TGV) model (Bredies-Kunisch-Pock 2010).

Key to the PDE-based approach: image geometry, edge preservation.

co-



The Wavelet Frame-Based Approach

« Denote W: R™ —» R™ the wavelet frame transform.
o We have the following three typical wavelet frame-based models
e The balanced model (Chan-Chan-Shen-Shen 2003, Cai-Chan-Shen 2008)

min L(4, f,u) + | - wwTd| + |14 dll,,
e The analysis model (Starck-Elad-Donoho 2005, Cai-Osher-Shen 2009)

mlnL(A, fl u) o ”A ; Wu”l;
u
e The synthesis model (Figueiredo-Nowak 2003, Daubechies-Teschke-Vese, 2007)

9



The Wavelet Frame-Based Approach

Denote W: R™ — R™' the wavelet frame transform.
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e The synthesis model (Figueiredo-Nowak 2003, Daubechies-Teschke-Vese, 2007)
Optimization algorithms induce various wavelet shrinkage algorithms.
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The Wavelet Frame-Based Approach

Denote W: R™ — R™' the wavelet frame transform.
We have the following three typical wavelet frame-based models

e The balanced model (Chan-Chan-Shen-Shen 2003, Cai-Chan-Shen 2008)

min L(4, f,u) + | - wwTd| + |14 dll,,
e The analysis model (Starck-Elad-Donoho 2005, Cai-Osher-Shen 2009)
mlnL(A, fl u) o ”A g Wu”l;
u
e The synthesis model (Figueiredo-Nowak 2003, Daubechies-Teschke-Vese, 2007)

Optimization algorithms induce various wavelet shrinkage algorithms.
Key to wavelet frame-based approach: multiscale, sparse approximation.

9



Relations between the Two Approaches? -

PDE Wavelets
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Relations between the Two Approaches?

e Some early studies showed relations between

e discrete 1D nonlinear diffusions and shift-invariant Haar shrinkage (Mrazek-
Weickert-Steidl 2003)
e discrete 1D nonlinear diffusions and wavelet frame shrinkage (Jiang 2012)
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Relations between the Two Approaches?

e Some early studies showed relations between

discrete 1D nonlinear diffusions and shift-invariant Haar shrinkage (Mrazek-
Weickert-Steidl 2003)
discrete 1D nonlinear diffusions and wavelet frame shrinkage (Jiang 2012)

o For most of the time, the two approaches compete with each other.

e« What were still unclear:

Variational models (e.g., TV, TGV) v.s. wavelet-based optimization models?
More types of differential equations (e.g., fluid dynamics models)?

Generic wavelet frame shrinkage algorithms (e.g., Nesterov)?

New insights on both approaches?

10
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Connections

between PDE-based and wavelet
frame-based approach, and the
implications of such connections.

Joint work with
Jian-Feng Cai (HKUST)
Qingtang Jiang (UMSL)
Stanley Osher (UCLA)
Zuowei Shen (NUS)

11



Wavelet Frame Transforms and Differential Operators

o Akey observation is the link between vanishing moments of wavelet functions
and the orders of differential operators.



Wavelet Frame Transforms and Differential Operators

o Akey observation is the link between vanishing moments of wavelet functions

and the orders of differential operators.
o Vanishing moments in the continuum and discrete setting.

e We say ¢ or q has vanishing moment of order e if it annihilates polynomials up to

degree a as follows

|

|

| fx%(x)dx:O, VB e 72, B<|a|or|Bl=lel B+ a.
Q

> kPqlk] =0, VBeZi, B<lalor|Bl=lal.B#a.

| keZ?
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Wavelet Frame Transforms and Differential Operators

o Akey observation is the link between vanishing moments of wavelet functions

and the orders of differential operators.
o Asimple example of Haar wavelets:

: : S b 1 o ol i | 1 Sl ] el s
% K e AP R S b saet WgE R e B R S ;
e Filters: q T 1 q A 1 q PRI

e Haar framelet transform: Wu = {q; ;[—] ® u}. We also have
o ) 52

qO,l[_'] ®u= Eux» CI1,0[_'] ®u~= 5 Uy, CI1,1[—'] ®»u= Tuxy.

2
e Thus, we have

2 3
|VU| I~ SWu = E([(D;’uw)z + (D;ui,]q_l)z +- (D;ui,j)z 4= (D;ui+1'j)2]

)
= 2 2
+ [(DJ wij+ Dyuijsa) + ((DI w;,j + Dy tisa,)) )D

13



Wavelet Frame Transforms and Differential Operators

o Akey observation is the link between vanishing moments of wavelet functions
and the orders of differential operators.
e Asimple example of Haar wavelets:

: : S b 1 o ol i | 1 Sl ] el s
° FllterS.Q()}l—Z ey ;CI1,0—Z Al e | 'ql'l_z —1 a7

e Haar framelet transform: Wu = {q; ;[—] ® u}. We also have

) ) %

o] ®u~ iux» qiol—] ®u= Euy; qi1—]®u~ Tuxy-

e Thus, we have

2 3
|VU| I~ SWu = E([(D;uw)z + (D;ui,j+1)2 +- (D;ui,j)z 4= (D;uiﬂ’j)z]

i
= 2 2
T [(D;ui,j + Dy i) + ((D;“i,j + Dy i) )D

Standard discretization

Specific to Haar, granting 45-degree rotation invariance 14



Wavelet Frame Transforms and Differential Operators

o Akey observation is the link between vanishing moments of wavelet functions
and the orders of differential operators.
e Inthe continuum setting (Cai-Dong-Osher-Shen 2012, Choi-Dong-Zhang 2020)

Proposition 1. Let a tensor product wavelet frame function ¢, € L,(R?) have vanishing |
moments of order @ with |@| < s, and let supp(¥) = [a1,az] X [b1, b2]. Then, there exists |
a unique @, € L, (R?) such that ¢, is differentiable up to order @ a.e.,

ca:f 0o 20 and Yo = 0%¢,.
R2

| Furthermore, for n € N and k € Z? with supp(¥g.n_1.k) C Q, we have

(U, g n-r i) = (D)1= (30 1 k)

for every u belonging to the Sobolev space W (€2). Here, Vg n-1.kx = 22y, (27 271 k) |
and @q n—1.k 1s defined similarly.
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and the orders of differential operators.
e Inthe continuum setting (Cai-Dong-Osher-Shen 2012, Choi-Dong-Zhang 2020)

Proposition 1. Let a tensor product wavelet frame function ¢, € L,(R?) have vanishing
moments of order @ with |@| < s, and let supp(¥o) = [a1,az] X [b1, b2]. Then, there exists
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Wavelet Frame Transforms and Differential Operators

o Akey observation is the link between vanishing moments of wavelet functions
and the orders of differential operators.
In the discrete setting (Dong-Jiang-Shen 2017)

Proposition 2. Let ¢ be a high-pass filter with vanishing moments of order & € Z2. Then

. for a smooth function F (x) on R?, we have

|a| Z k|F(x +ek) = C, ;—QF(x)+O(8)
keZ?

. where C, is the constant defined by

| qa
it er
' Z - anaq(w) w=

keZ?

If, in addition, ¢ has total vanishing moments of order K\{|@| + 1} for some K > ||, then

0
|a\ Z K|F(x +&k) = Cy—

ox@
keZ?

[14

F(x)+0(e871l),
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Wavelet Frame Transforms and Differential Operators

o Akey observation is the link between vanishing moments of wavelet functions
and the orders of differential operators.
In the discrete setting (Dong-Jiang-Shen 2017)

| Proposition 2. Let g be a high-pass filter with vanishing moments of order @ € Z2. Then

for a smooth function F (x) on R?, we have

|a| Z k|F(x +ek) = C, ;—QF(x)+O(8)
keZ?

. where C,, is the constant defined by

| qa
it er
' Z - anaq(w) w=

keZ?

If, in addition, ¢ has total vanishing moments of order K\{|@| + 1} for some K > ||, then |

[14

Icr\ Z k1F(x +ek) = Coo— 0 F(x)+0(e%" |f1|)

ox@
keZ?
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Connections: Variational and Wavelet Models

o Consider the following two problems

inf Ep(uw) =v|4, WTyull; + ||A T,u—T,f|l3 Analysis model
Uuew; ()

inf E(u)—vllDu||L1(9)+ ||Au flIZ, Variational model

uew; (Q

17



Connections: Variational and Wavelet Models

o Consider the following two problems

inf E,(u) = vl4, - WTull; + ||AnTnu—Tnf||§ Analysis model
Uuew; ()

mf E(u)—vllDu||L1(9)+ ||Au flIZ, Variational model

ue

e Then, we have (Cai-Dong-Osher-Shen 2012)

| Theorem 1. Givena energy functional E as above, there exists a set of coefficients 4,,, such | :
| that the functional E, T'-converges to E in W} (€2). Furthermore, let u}; be an g-optimal ,
solution to inf, E,,(u), i.e. E,(u)) < inf, E,(u) + €. We have that

limsup E,, (u)y) < me(u) +€,

n—00

s B i’ B i © S st b dckRain

5 and any cluster point of {u }, is an g-optimal solution to inf, E (u). ’

17



Connections: Variational and Wavelet Models

o Consider the following two problems

1
inf E,(w) =v|A, WT,ull; +=14,T,u — T, f||3 Analysis model
UEWS (Q) 2
1
i e 2 i
uell/lzsf(ﬂ) E(uw) = v|IDull,,q) + 3 lAu — flIZ, @) Variational model

e Then, we have (Cai-Dong-Osher-Shen 2012)

Theorem 1. Given a energy functional E as above, there exists a set of coefficients 4,,, such
that the functional E, T'-converges to E in W} (Q). Furthermore, let u;; be an g-optimal
solution to inf, E,,(u), i.e. E,(u)) < inf, E,(u) + €. We have that

I

limsup E,, (u)y) < inf E(u) + €,
u

n—00

S ik i S i et o R i

.

and any cluster point of {u }, is an g-optimal solution to inf, E (u).

o Further extensions: Cai-Dong-Shen 2016, Dong-Shen-Xie 2017, Choi-

Dong-Zhang 2020.
g g e



Connections: PDEs and Wavelet Shrinkage

o Consider the following two dynamics
R WTSAk_l (Wuk_l), o=l 2t Wavelet shrinkage
0%t L
U = Zﬁzlm‘bg(Du, u) , D= (m ) L E (O; T]- Nonlinear evolution PDE
e Itcan be shown that (Dong-Jiang-Shen 2017):

' Theorem 2. Given a PDE as above, we can construct a pair of dual wavelet frames trans- |
forms W and W, and a shrinkage function S, such that the wavelet shrinkage algorithm is :
- consistent with the PDE. For a nonlinear diffusion, the discrete solution generated by the
| wavelet frame shrinkage converges to that of the PDE.

18



Connections: PDEs and Wavelet Shrinkage

o Consider the following two dynamics
i WTSAk_l (Wuk_l), o=l 2t Wavelet shrinkage
0%t
U = Z%zlmq)f(pu: u) , D= (m ) L E (O; T]- Nonlinear evolution PDE
e Itcan be shown that (Dong-Jiang-Shen 2017):

| Theorem 2. Given a PDE as above, we can construct a pair of dual wavelet frames trans-
g forms W and W, and a shrinkage function S, such that the wavelet shrinkage algorithm is
; consistent with the PDE. For a nonlinear diffusion, the discrete solution generated by the

.,

| wavelet frame shrinkage converges to that of the PDE.

o This hasled to new wavelet shrinkage and PDE models.
e Forexample, the Nesterov accelerated wavelet frame shrinkage (Li-Fan-
Ji-Shen 2014) :

uk = (1 —pATAWTS ja [(1 + Y)Wkt — y 1wk 2] + uATf, k=12, ...
18



Connections: PDEs and Wavelet Shrinkage

o Consider the following two dynamics
i WTSAk_l (Wuk_l), o=l 2t Wavelet shrinkage
0%t L
U = Z%zlmq)f(pu: u) , D= (m ) L E (O; T]- Nonlinear evolution PDE
e Itcan be shown that (Dong-Jiang-Shen 2017):

| Theorem 2. Given a PDE as above, we can construct a pair of dual wavelet frames trans-
g forms W and W, and a shrinkage function S, such that the wavelet shrinkage algorithm is
; consistent with the PDE. For a nonlinear diffusion, the discrete solution generated by the

.,

| wavelet frame shrinkage converges to that of the PDE.

o This hasled to new wavelet shrinkage and PDE models.
e Forexample, the Nesterov accelerated wavelet frame shrinkage (Li-Fan-
Ji-Shen 2014) leads to the following PDE:
Upe + Cup = div(®@(Du, 1)) — kAT (Au — f).
o Related works: Su-Boyd-Candes 2014, Wibisono-Wilson-Jordan 2016.

18



An Integrated Knowledge on Image
Reconstruction Methods

Variational - Wavelet

]| | |

- Iterative
RS g/ Shrinkage

What we know now:
+ Wavelet methods have geometric meanings.

+ PDE methods can be understood through
the lens of sparsity.

» Giving birth to new models.

19
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An Integrated Knowledge on Image
Reconstruction Methods

Variational

Models

“ Wavelet
Y Models

PDEs

What we know now:
+ Wavelet methods have geometric meanings.

+ PDE methods can be understood through

the lens of sparsity.

» Giving birth to new models.

Algorithmic level: solution mapping
FX-Y, F(f)=t=u

Mappings F are often dynamic systems

and mostly discrete approximations of

differential equations.

The mapping F is “handcrafted”

* Works generally well
* Good stability and interpretability

Still not good enough in practice:
* Not everything can be “handcrafted”
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An Integrated Knowledge on Image

Reconstruction Methods

Variational Wavelet
Models Models

Iterative
Shrinkage

What we know now:
+ Wavelet methods have geometric meanings.

+ PDE methods can be understood through

the lens of sparsity.

» Giving birth to new models.

Algorithmic level: solution mapping

FX-Y, F(f)=t=u
Mappings F are often dynamic systems
and mostly discrete approximations of
differential equations.

d ;
O—‘I‘ = div (e(|Vul?) Vu) in Qx (0,T)
du ’

IV 0 on I x (0,7),

u(0, ) = up(x) in Q,

processing

19



An Integrated Knowledge on Image
Reconstruction Methods

Variational

Models

ﬁ Wavelet
- Models

11 RARE

Iterative
FRIEE H‘ Shrinkage

What we know now:
+ Wavelet methods have geometric meanings.

--'

+ PDE methods can be understood through

the lens of sparsity.

» Giving birth to new models.

Algorithmic level: solution mapping

FX-Y, F(f)=t=u
Mappings F are often dynamic systems
and mostly discrete approximations of
differential equations.

The mapping F is “handcrafted”

* Works generally well

* Good stability and interpretability
Still not good enough in practice:

* Not everything can be “handcrafted”
Trending research direction:
Combination with deep learning

19
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Deep Learning

Connections between CNNs and discrete
differential equations (ODEs and PDEs).

Joint work with
Quanzheng Li (Harvard)
Zichao Long (Huawei)
Yiping Lu (Stanford)
Xianzhong Ma (Industry)
Aoxiao Zhong (Harvard)



Deep Learning
« Supervised Learning: given (x;,y;) ~ P, find F5: X — Y through

N
¢ e
6 = argming - > L(Fo(xy),¥:)
i=1
e with Fg a deep neural network, e.g., Fg = W36(W,o0(W x + by) + b,)



Deep Learning
« Supervised Learning: given (x;,y;) ~ P, find F5: X — Y through

N
iz e
6 = argming - > L(Fo(xy),¥:)
i=1
e with Fg a deep neural network, e.g., Fg = W36(W,o0(W x + by) + b,)
« Forimage reconstruction,wecanletx = f,y =uand Fg(f) =1 = u.
This can be much better than handcrafted solution mapping.

Methods BM3D WNNM EPLL MLP CSF TNRD DnCNN-S DnCNN-B
o=15 31.07 31.37 31.21 - 31.24 31.42 31.73 31.61
o= 25 28.57 28.83 28.68 28.96 28.74 28.92 29.23 29.16
o =250 25.62 25.87 25.67 26.03 - 25.97 26.23 26.23

Image denoising: average PSNR on BSD68 dataset (Zhang et al. 2017).




Deep Learning
« Supervised Learning: given (x;,y;) ~ P, find F5: X — Y through
N
e 1
® = argming Nz L(Fo(x;),y:)

i=1
e with Fg a deep neural network, e.g., Fg = W36(W,o0(W x + by) + b,)

« Forimage reconstruction,wecanletx = f,y =uand Fg(f) =1 = u.

This can be much better than handcrafted solution mapping.
e Theimpact of deep learning is much beyond image reconstruction.



Deep Learning

Supervised Learning: given (x;,y;) ~ P, find Fg: X — Y through

N
£ 1
6 = argming - > L(Fo(xy),¥:)
i=1
e with Fg a deep neural network, e.g., Fg = W36(W,o0(W x + by) + b,)
« Forimage reconstruction,wecanletx = f,y =uand Fg(f) =1 = u.
This can be much better than handcrafted solution mapping.
e Theimpact of deep learning is much beyond image reconstruction.
o How can we understand deep neural networks (DNNs) in comparison
with the “handcrafted” mapping?
As discrete dynamic systems (ODEs and PDEs)



The ODE-Nets

o The success of residual networks (ResNet, He et al. 2015)
xRl e e e
o ResNet can be interpreted as forward-Euler discretization of the dynamic
system x = f(x), and training ResNets can be viewed as an optimal
control problem (E 2017).

(\Y)
(\Y)



The ODE-Nets

e The success of residual networks (ResNet, He et al. 2015)
= el ol = s el
o ResNet can be interpreted as forward-Euler discretization of the dynamic
system x = f(x), and training ResNets can be viewed as an optimal
control problem (E 2017).
o More examples of deep networks that can be viewed as discrete form of
ODEs or SDEs (Lu-Zhong-Li-Dong 2018):
e e.g., PolyNet (Zhang-Li-Loy-Lin 2017) can be viewed as approximation to
backward-Euler with truncated Neumann series.
e e.g., ResNets with stochastic depth (Huang et al. 2016) strategy are discrete
approximations of SDEs.
e we can use discrete schemes of ODEs/SDEs to generate novel deep networks!

(\Y)
(\Y)



The ODE-Nets

o Usingthe linear two-step method (LM-ResNet):

=W =wdxt boadt R ) xR U

e Incomparison with ResNet via the modified equation analysis:
& A’x" = f(x*,1;). ResNet;
(1 +ap)®® +(1 - a/\)A' k= f(x*, 1), LM-ResNet. \



The ODE-Nets

Using the linear two-step method (LM-ResNet):

=W =wdxt boadt R ) xR U

In comparison with ResNet via the modified equation analysis:
‘ xk + %xk = f(x*,1;). ResNet;
: (1+ap)xk+ (1= ak)%x"" = f(x*,1x), LM-ResNet.

Empirical results

Model Layer top-1  top-5
ResNet (He et al. (2015b)) 50 24.7 7.8
ResNet (He et al. (2015b)) 101 23.6 7.1
ResNet (He et al. (2015b)) 152 23.0 6.7
LM-ResNet (Ours) 50, pre-act 23.8 7.0
LM-ResNet (Ours) 101, pre-act  22.6 6.4

ImageNet (1.28m training, 50k testing, 1k classes)



The ODE-Nets

Using the linear two-step method (LM-ResNet):
R k
In comparison with ResNet via the modified equation analysis:

= Jile" 1),

b = (e i  ap e L f(x )

{x’w%fk

(1+ @)k + (1 - ap) 3%

Empirical results

k

Model Layer top-1  top-5
ResNet (He et al. (2015b)) 50 24.7 7.8
ResNet (He et al. (2015b)) 101 23.6 7.1
ResNet (He et al. (2015b)) 152 23.0 6.7
LM-ResNet (Ours) 50, pre-act 23.8 7.0
LM-ResNet (Ours) 101, pre-act  22.6 6.4

ImageNet (1.28m training, 50k testing, 1k classes)

= ™ n);

ResNet;

LM

-ResNet.

=0,1,..

#—+ LM-ResNet110
+—4 LM-ResNetl64

10

20
Index Of Resid

30 40 50
ual Block



The PDE-Nets

« Motivation of PDE-Nets: given a sequence of observed dynamics
e Find a PDE that best describes the observed data.
e Enable fast simulations with the learned PDE.

o Keyto PDE-Nets: S. Sato et al. 2018

e Exploiting the structural similarity between deep convolutional neural
networks (CNNs) and discrete schemes of PDEs.



The PDE-Nets

Motivation of PDE-Nets: given a sequence of observed dynamics
e Find a PDE that best describes the observed data.
e Enable fast simulations with the learned PDE.

Key to PDE-Nets: S. Sato et al. 2018
e Exploiting the structural similarity between deep convolutional neural
networks (CNNs) and discrete schemes of PDEs.
Related works on system identification:
e Schmidt-Lipson 2009, Brunton-Proctor-Kutz 2016 (SINDy), Raissi-Perdikaris-
Karniadakis 2019 (PINNSs).
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The PDE-Nets

e Wefirstassume

ou
¢ o= F(u, Vil WVesto ), u € R™:

e Maximum order of the PDE is known;
e Fisamultivariate function with simple operations (e.g., a polynomial).

e The PDE-Nets (Long-Lu-Ma-Dong 2018, Long-Lu-Dong 2019):

IukJrl =uk +Atr- SymNetﬁl(Doouk,Dmuk,D]Ouk,---), k=0,1,...,K—1. I
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The PDE-Nets

o Enforcing D;ju ~

i+]

9x70y] ——— by applying Proposition 2.

Define the moment matrix

N-1
1 2

M(q) = (mipnxn. mij === >, kiklglkikel.iij=0.1... . N~1.
'J'kl,kz=—¥

e 8 8 B N B N N N N N &5 8 &5 8 &N 8 5 N 8 N N & &N _§ |
I Proposition 2. Let ¢ be a high-pass filter with vanishing moments of order @ € Z2. Then I

| for a smooth function F (x) on R?, we have I
I o
: gm > qlk]F(x +&k) = S F@) +0(e),

kezZ?

I where C, is the constant defined by

I 1

[ Co = — Z kq[k] =
I ke7?

I

el 1O
If, in addition, ¢ has total vanishing moments of order K\{|a@| + 1} for some K > ||, then

I

[

[

\al Pl l
w=0" [

[

1

@

alffl Z k1F(x + k) = Ca;\?F(x)+O(eK-IaI)_

[ 1



The PDE-Nets

ai+]u

o Enforcing D;ju ~ by applying Proposition 2.

oxtoyJ
e Define the moment matrix
N L
1 2 . R |
M(q)=(mf,j)N><N, m,-,j:m Z kﬁkéq[kl,kz],i,j=0,] ..... N—l.\{
ki ko=—251 ;

e We can approximate any differential operator at any prescribed order by
constraining M(q)!

e Forexample: approximation of g—z by g ® u witha 3 x 3 kernel q

Oz0:0% ) R0 000
(1 * *) (1 0 *) (1 0 0)
* * * g P b S B



The PDE-Nets

X i+] : e
o Enforcing D;ju ~ 3270y by applying Proposition 2.
e Define the moment matrix
Nt L
1 3 o ‘
M(Q):(mi,j)NxN, mi’j:W Z kﬁkéq[kl,kz],i,j=0,] ..... N—l.!
Tk k=—Et ;

We can approximate any differential operator at any prescribed order by
constraining M(q)!

For example: approximation of g—z by g ® u witha 3 x 3 kernel q

Oz0:0% ) R0 000
(1 * *) (1 0 *) (1 0 0)
* * * g P b S B

Similar idea was also adopted by (Bar-Sinai-Hoyer-Hickey-Brenner 2019,
Chambolle-Pock 2021, Alt et al. 2021).
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Empirical results: learning Burgers’ equation
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Empirical results: learning Burgers’ equation

u, + (u-V)u = £ V%u,

Ground truth

up = —utly — Vity + 0.05(tzy + tyy)

v = —uvy — vuy + 0.05(vgy + vyy)

Frozen PDE-Net

up = —0.906uuy, — 0.901viy + 0.033ugy + 0.037uy,
vy = —0.907vey, — 0.902uv, + 0.0390,, + 0.0320,,

PDE-Net

up = —0.97%u, — 0.973u,v + 0.052u,, + 0.051wuy,

ve = —0.973uv; — 0.97Tvvy + 0.053v5, + 0.0510y,

Model recovery

i ="~uv)c=005

Remainer weights of u, v



The PDE-Nets

u, + (u-V)u = £ V%u,

up = —utty — Vil + 0.05(ugg + tyy)

Ground truth v = —uvy — vuy + 0.05(vgy + 'afyy)

up = —0.906uu, — 0.901vuy + 0.033uz, + 0.037uy,

Frozen PDE-Net |\ — _0.00701, — 0.002ury + 0.0300,, + 0.0320,,

up = —0.97%u, — 0.973u,v + 0.052u,, + 0.051wuy,

Empirical results: learning Burgers’ equation

i ="~uv)c=005

PDE-Net v = —0.973uvy — 0.97Tvvy + 0.0530,, + 0.0510,,
Model recovery Remainer weights of u, v
warme-up 2 6t-block 6 Ot-block 9 &t-block
14 y
L2
L0 | mmsm Frozen PDE-Net
0.8 |
|
0.6 | y PDE-Net
0.4 | 1
oz| || 4 tf . / 7
0012~ - , | £ ' — 4 ] — - I ! .
1 100 200 300 1 100 200 300 1 100 200 300 1 100 200 300
Simulations
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The PDE-Nets

e Incorporation of PDEs (physics) into the architecture of the network is beneficial!
e Machine learning accelerated simulations: e.g., learning an operator
Fo:u(t,) - u(t + At,")
e Acomparison between PDE-Nets, U-Net (Ronneberger-Fischer-Brox 2015) and
Fourier Neural Operator (FNO, Li et al. 2020)

# Parameters
PDE-Net: ~ 102
FNO: ~ 10°
U-Net: ~ 107

raletive Ly error

2D Burgers’ Eqn.

0 20 40 60 80 100

time step 29



Modeling + Learning: A General Strategy

o Atypical workflow:
e Foragiven problem of interest, start with your favorite algorithm which is
most likely a discrete dynamic system, e.g.,
e solution mapping F for image reconstruction.
e Identify the component(s) that is hard to handcraft, e.g.,
e dependence of hyperparameters with input image.
e Approximate the it with a properly designed deep neural network, making the
solution mapping Fg learnable.
e Select a loss function and training algorithm, e.g.,

ming E ry~p ((Fo(f),u) +r(Te), supervised,;
ming Ef.p ((AFe(f), f) +r(Fe), unsupervised.

« Same workflow can be applied to problems in other areas as well, e.g.,
scientific computing, Al for science.

30
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Computational Imaging

Integrating sensing, reconstruction and analysis.

Joint work with:

Harvard University:  Ziju Shen (PKU)
Georges El Fakhri Yufei Wang (CMU)
Kyungsang Kim Xu Yang (UCSB)
Quanzheng Li

Dufan Wu

31



Integration of Computational Imaging

o Computationalimaging revisited:

b _ )
. I Image Image |
\ - = — = ’ — . ‘ - - J

Scientific machine learning

o min Euz)~p (Go, © Fo, 0o Mo, (1)) . 2).
e y \ e~

Analysis Reconstruction Sensing




Integration of Computational Imaging

Computational imaging revisited:

b _ : )
. l Image Image |
Srmdeone ' s — J

Some existing works:

Reconstruction + Analysis: Liu et al. 2018, Wu et al. 2018, Huang et al. 2019
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Integration of Computational Imaging

o Computational imaging revisited:

r . \
. Image Image
- )

o Some existing works:
e Reconstruction + Analysis: Liu et al. 2018, Wu et al. 2018, Huang et al. 2019

J. Webster Stayman, JHU

Slides from “Deep Recon
Workshop, 2021”
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Integration of Computational Imaging

o Computationalimaging revisited:

48 )

Image
Reconstruction

.

Image
Analysis -

J

o Some existing works:
e Reconstruction + Analysis: Liu et al. 2018, Wu et al. 2018, Huang et al. 2019

[#0= 5 n]}—l—-| Concat Jo 2= CMN, ATy, 2 | oz, =[x. -] _ S
i | Icgl e '69‘
b (om0 o] Conea Jofi = cVattam vo o | Concar z [ " (811718
1 i r .. = == =

A network for nodule detection

A network for reconstruction
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Integration of Computational Imaging

o Computationalimaging revisited:

e _ : )
. Image Image \
. ' il

o Some existing works:
e Reconstruction + Analysis: Liu et al. 2018, Wu et al. 2018, Huang et al. 2019
e Sensing + Reconstruction: Jin-Unser-Yi 2019, Pineda et al. 2020, Ede 2021,
Yin et al. 2021, Shen et al. 2022.



Integration of Computational Imaging

o Computationalimaging revisited:

(

Image Image

Sensing

Reconstruction Analysis

.

o Personalized CT scanning (Shen et al. 2022)

Ist projection

Goal: to optimize

1. projection angles;
2. dose allocation,
so that image quality is
maximized for a given
total dose.
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Integration of Computational Imaging

o Computationalimaging revisited:

e _ : )
. Image Image \
. ' J

o Some existing works:
e Reconstruction + Analysis: Liu et al. 2018, Wu et al. 2018, Huang et al. 2019
e Sensing + Reconstruction: Jin-Unser-Yi 2019, Pineda et al. 2020, Ede 2021,
Yin et al. 2021, Shen et al. 2022.
e Sensing + Reconstruction + Analysis: Wetzstein et al. 2020.
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Conclusions

34



Concluding Remarks

o What | have covered in this talk
e Importance of images and the role of computational imaging.
e Two prevailing mathematical approaches for image reconstruction, and
their connections.
e Understanding of deep learning, and how we can work with it together
with the other tools we have.
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Concluding Remarks

« What | have covered in this talk
e Importance of images and the role of computational imaging.
e Two prevailing mathematical approaches for image reconstruction, and
their connections.
e Understanding of deep learning, and how we can work with it together
with the other tools we have.
e Lookinginto the (near) future
e Combination handcraft and data-driven modeling.
e More advancementsin the integrated computational imaging.
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Thanks!

Questions?

You can reach me at
dongbin@math.pku.edu.cn

https://bicmr.pku.edu.cn/~dongbin/
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