Probability theory for random groups arising in number theory

Melanie Matchett Wood includes joint work with Weitong Wang, Will Sawin, Hoi Nguyen

Harvard University

International Congress of Mathematicians 2022

Overview

Motivating examples of random groups

The moment problem for random groups

3 Universality for random groups

Overview

Motivating examples of random groups

The moment problem for random groups

Universality for random groups

As K varies over some collection of number fields,

• As K varies over some collection of number fields, what is the distribution of Cl_K?

 As K varies over some collection of number fields, what is the distribution of Cl_K?
 (a group that controls factorization in algebraic integers of K)

As K varies over some collection of number fields, what is the distribution of Cl_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X],

As K varies over some collection of number fields, what is the distribution of Cl_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X], let K = ℚ(√D)

As K varies over some collection of number fields, what is the distribution of Cl_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X], let K = Q(√D) (especially interesting as X → ∞)

As K varies over some collection of number fields, what is the distribution of Cl_K?
(a group that controls factorization in algebraic integers of K)
E.g., take a uniform random square-free integer D ∈ [2, X], let K = Q(√D) (especially interesting as X → ∞)
For a prime p, we might ask about the p-torsion Cl_K[p] or the Sylow p-subgroup

- As K varies over some collection of number fields, what is the distribution of CI_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X], let K = ℚ(√D) (especially interesting as X → ∞)
 For a prime p, we might ask about the p-torsion CI_K[p] or the Sylow p-subgroup
- ② As E varies over some collection of elliptic curves $/\mathbb{Q}$ (e.g. all of them, or a quadratic twist family),

- As K varies over some collection of number fields, what is the distribution of CI_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X], let K = ℚ(√D) (especially interesting as X → ∞)
 For a prime p, we might ask about the p-torsion CI_K[p] or the Sylow p-subgroup
- ② As E varies over some collection of elliptic curves $/\mathbb{Q}$ (e.g. all of them, or a quadratic twist family), what is the distribution of $Sel_p(E)$?

- As K varies over some collection of number fields, what is the distribution of Cl_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X], let K = ℚ(√D) (especially interesting as X → ∞)
 For a prime p, we might ask about the p-torsion Cl_K[p] or the Sylow p-subgroup
- ② As E varies over some collection of elliptic curves $/\mathbb{Q}$ (e.g. all of them, or a quadratic twist family), what is the distribution of $Sel_p(E)$? (controls the rational solutions $(x,y) \in \mathbb{Q}^2$ of $y^2 = x^3 + ax + b$)

- As K varies over some collection of number fields, what is the distribution of Cl_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X], let K = ℚ(√D) (especially interesting as X → ∞)
 For a prime p, we might ask about the p-torsion Cl_K[p] or the Sylow p-subgroup
- ② As E varies over some collection of elliptic curves $/\mathbb{Q}$ (e.g. all of them, or a quadratic twist family), what is the distribution of $Sel_p(E)$? (controls the rational solutions $(x,y) \in \mathbb{Q}^2$ of $y^2 = x^3 + ax + b$)
- **③** If M is a random $n \times n$ matrix with each entry independent uniform from $\{0,1\}$,

- As K varies over some collection of number fields, what is the distribution of Cl_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X], let K = ℚ(√D) (especially interesting as X → ∞)
 For a prime p, we might ask about the p-torsion Cl_K[p] or the Sylow p-subgroup
- ② As E varies over some collection of elliptic curves $/\mathbb{Q}$ (e.g. all of them, or a quadratic twist family), what is the distribution of $\operatorname{Sel}_p(E)$? (controls the rational solutions $(x,y) \in \mathbb{Q}^2$ of $y^2 = x^3 + ax + b$)
- ③ If M is a random $n \times n$ matrix with each entry independent uniform from $\{0,1\}$, so $M:\mathbb{Z}^n \to \mathbb{Z}^n$,

- As K varies over some collection of number fields, what is the distribution of Cl_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X], let K = ℚ(√D) (especially interesting as X → ∞)
 For a prime p, we might ask about the p-torsion Cl_K[p] or the Sylow p-subgroup
- ② As E varies over some collection of elliptic curves $/\mathbb{Q}$ (e.g. all of them, or a quadratic twist family), what is the distribution of $Sel_p(E)$? (controls the rational solutions $(x,y) \in \mathbb{Q}^2$ of $y^2 = x^3 + ax + b$)
- ③ If M is a random $n \times n$ matrix with each entry independent uniform from $\{0,1\}$, so $M: \mathbb{Z}^n \to \mathbb{Z}^n$, what is the distribution of $\mathbb{Z}^n/M(\mathbb{Z}^n)$?

- As K varies over some collection of number fields, what is the distribution of CI_K?
 (a group that controls factorization in algebraic integers of K)
 E.g., take a uniform random square-free integer D ∈ [2, X], let K = ℚ(√D) (especially interesting as X → ∞)
 For a prime p, we might ask about the p-torsion CI_K[p] or the Sylow p-subgroup
- ② As E varies over some collection of elliptic curves $/\mathbb{Q}$ (e.g. all of them, or a quadratic twist family), what is the distribution of $Sel_p(E)$? (controls the rational solutions $(x,y) \in \mathbb{Q}^2$ of $y^2 = x^3 + ax + b$)
- ③ If M is a random $n \times n$ matrix with each entry independent uniform from $\{0,1\}$, so $M: \mathbb{Z}^n \to \mathbb{Z}^n$, what is the distribution of $\mathbb{Z}^n/M(\mathbb{Z}^n)$? Related: what is the distribution of the Jacobian of an Erdős–Rényi random graph (i.e. sandpile group, i.e. $\mathbb{Z}^n/\Delta(\mathbb{Z}^n)$ where Δ is the graph Laplacian)

ICM2022

4 As C varies over some collection of curves over finite field \mathbb{F}_q ,

• As C varies over some collection of curves over finite field \mathbb{F}_q , what is the distribution of Pic(C)?

• As C varies over some collection of curves over finite field \mathbb{F}_q , what is the distribution of Pic(C)? (Function field analog of the class group question)

As C varies over some collection of curves over finite field F_q, what is the distribution of Pic(C)?
 (Function field analog of the class group question)
 Or the distribution of π₁^{alg}(C)?

- As C varies over some collection of curves over finite field F_q, what is the distribution of Pic(C)?
 (Function field analog of the class group question)
 Or the distribution of π₁^{alg}(C)?
- **5** As *K* varies over some number fields,

- As C varies over some collection of curves over finite field F_q, what is the distribution of Pic(C)?
 (Function field analog of the class group question)
 Or the distribution of π₁^{alg}(C)?
- **3** As K varies over some number fields, if K^{un} is the maximal unramified extension of K,

- As C varies over some collection of curves over finite field F_q, what is the distribution of Pic(C)?
 (Function field analog of the class group question)
 Or the distribution of π₁^{alg}(C)?
- **3** As K varies over some number fields, if K^{un} is the maximal unramified extension of K, what is the distribution of $\operatorname{Gal}(K^{un}/K) = \pi_1^{alg}(\operatorname{Spec}\mathcal{O}_K)$?

- As C varies over some collection of curves over finite field F_q, what is the distribution of Pic(C)?
 (Function field analog of the class group question)
 Or the distribution of π₁^{alg}(C)?
- **3** As K varies over some number fields, if K^{un} is the maximal unramified extension of K, what is the distribution of $Gal(K^{un}/K) = \pi_1^{alg}(\operatorname{Spec} \mathcal{O}_K)$?
- As *M* varies over 3-manifolds (e.g. in the Dunfield-Thurston model of random Heegaard splittings),

- As C varies over some collection of curves over finite field F_q, what is the distribution of Pic(C)?
 (Function field analog of the class group question)
 Or the distribution of π₁^{alg}(C)?
- **3** As K varies over some number fields, if K^{un} is the maximal unramified extension of K, what is the distribution of $Gal(K^{un}/K) = \pi_1^{alg}(\operatorname{Spec} \mathcal{O}_K)$?
- As M varies over 3-manifolds (e.g. in the Dunfield-Thurston model of random Heegaard splittings), what is the distribution of $\pi_1(M)$?

Overview

Motivating examples of random groups

The moment problem for random groups

Universality for random groups

When we have a distribution of numbers, we often can recognize the distribution by its *moments*.

When we have a distribution of numbers, we often can recognize the distribution by its *moments*.

kth moment: M_k := average of x^k ,

When we have a distribution of numbers, we often can recognize the distribution by its *moments*.

kth moment: M_k := average of x^k , i.e. $\int_X x^k d\mu$,

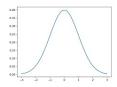
When we have a distribution of numbers, we often can recognize the distribution by its *moments*.

kth moment: M_k := average of x^k , i.e. $\int_X x^k d\mu$, i.e. $\mathbb{E}[X^k]$

When we have a distribution of numbers, we often can recognize the distribution by its *moments*.

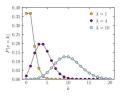
kth moment: M_k := average of x^k , i.e. $\int_X x^k d\mu$, i.e. $\mathbb{E}[X^k]$

Gaussian distribution:



$$\mathbb{E}[(X-\mu)^k] = \begin{cases} 0 & k \text{ odd} \\ \sigma^k(k-1)!! & k \text{ even} \end{cases}$$

Poisson distribution:

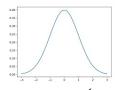


$$\mathbb{E}[X(X-1)\cdots(X-k)]=\lambda^k$$

When we have a distribution of numbers, we often can recognize the distribution by its *moments*.

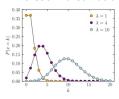
kth moment:
$$M_k$$
:= average of x^k , i.e. $\int_X x^k d\mu$, i.e. $\mathbb{E}[X^k]$

Gaussian distribution:



$$\mathbb{E}[(X - \mu)^k] = \begin{cases} 0 & k \text{ odd} \\ \sigma^k(k-1)!! & k \text{ even} \end{cases}$$

Poisson distribution:



$$\mathbb{E}[X(X-1)\cdots(X-k)]=\lambda^k$$

Knowledge of $\mathbb{E}[X]$ and these up to k is equivalent to knowledge of first k moments

Theorem (Uniqueness of the moment problem)

When the moments don't grow too fast,

Theorem (Uniqueness of the moment problem)

When the moments don't grow too fast, then there is at most 1 distribution with those moments.

Theorem (Uniqueness of the moment problem)

When the moments don't grow too fast, then there is at most 1 distribution with those moments.

 $M_k = e^k$ is not too fast, but $M_k = e^{k^2}$ is too fast

Theorem (Uniqueness of the moment problem)

When the moments don't grow too fast, then there is at most 1 distribution with those moments.

$$M_k = e^k$$
 is not too fast, but $M_k = e^{k^2}$ is too fast

Moments are often much more accessible than direct information about the distribution

Heath-Brown '94 on 2-Selmer groups of $y^2 = x^3 - Dx$ (D square-free $\in \mathbb{Z}$)

Heath-Brown '94 on 2-Selmer groups of $y^2=x^3-Dx$ (D square-free $\in \mathbb{Z}$) Fourry-Klüners '06 on $2\operatorname{Cl}_K/4\operatorname{Cl}_K$ as K varies over $\mathbb{Q}(\sqrt{D})$

Heath-Brown '94 on 2-Selmer groups of $y^2=x^3-Dx$ (D square-free $\in \mathbb{Z}$) Fourry-Klüners '06 on $2\operatorname{Cl}_K/4\operatorname{Cl}_K$ as K varies over $\mathbb{Q}(\sqrt{D})$

Both are distributions on \mathbb{F}_2 -vector spaces, i.e. random \mathbb{F}_2 -vector spaces

Heath-Brown '94 on 2-Selmer groups of $y^2=x^3-Dx$ (D square-free $\in \mathbb{Z}$) Fourry-Klüners '06 on $2\operatorname{Cl}_K/4\operatorname{Cl}_K$ as K varies over $\mathbb{Q}(\sqrt{D})$

Both are distributions on \mathbb{F}_2 -vector spaces, i.e. random \mathbb{F}_2 -vector spaces Just treat V as |V|

Heath-Brown '94 on 2-Selmer groups of $y^2=x^3-Dx$ (D square-free $\in \mathbb{Z}$) Fourry-Klüners '06 on $2\operatorname{Cl}_K/4\operatorname{Cl}_K$ as K varies over $\mathbb{Q}(\sqrt{D})$

Both are distributions on \mathbb{F}_2 -vector spaces, i.e. random \mathbb{F}_2 -vector spaces Just treat V as |V|

Heath-Brown '94 on 2-Selmer groups of $y^2=x^3-Dx$ (D square-free $\in \mathbb{Z}$) Fourry-Klüners '06 on $2\operatorname{Cl}_K/4\operatorname{Cl}_K$ as K varies over $\mathbb{Q}(\sqrt{D})$

Both are distributions on \mathbb{F}_2 -vector spaces, i.e. random \mathbb{F}_2 -vector spaces Just treat V as |V|

Then $M_k \approx 2^{k^2/4}$, too large to apply moment problem for numbers

 There was a candidate distribution, with distribution and moments known explicitly

Heath-Brown '94 on 2-Selmer groups of $y^2=x^3-Dx$ (D square-free $\in \mathbb{Z}$) Fourry-Klüners '06 on $2\operatorname{Cl}_K/4\operatorname{Cl}_K$ as K varies over $\mathbb{Q}(\sqrt{D})$

Both are distributions on \mathbb{F}_2 -vector spaces, i.e. random \mathbb{F}_2 -vector spaces Just treat V as |V|

- There was a candidate distribution, with distribution and moments known explicitly
- Authors proved moments matched candidate distribution

Heath-Brown '94 on 2-Selmer groups of $y^2=x^3-Dx$ (D square-free $\in \mathbb{Z}$) Fourry-Klüners '06 on $2\operatorname{Cl}_K/4\operatorname{Cl}_K$ as K varies over $\mathbb{Q}(\sqrt{D})$

Both are distributions on \mathbb{F}_2 -vector spaces, i.e. random \mathbb{F}_2 -vector spaces Just treat V as |V|

- There was a candidate distribution, with distribution and moments known explicitly
- Authors proved moments matched candidate distribution
- Proved new theorem that moments determine distribution

Heath-Brown '94 on 2-Selmer groups of $y^2=x^3-Dx$ (D square-free $\in \mathbb{Z}$) Fourry-Klüners '06 on $2\operatorname{Cl}_K/4\operatorname{Cl}_K$ as K varies over $\mathbb{Q}(\sqrt{D})$

Both are distributions on \mathbb{F}_2 -vector spaces, i.e. random \mathbb{F}_2 -vector spaces Just treat V as |V|

- There was a candidate distribution, with distribution and moments known explicitly
- Authors proved moments matched candidate distribution
- Proved new theorem that moments determine distribution

• indexed by finite groups, instead of by natural numbers

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

Theorem (Uniqueness of the moment problem for finite abelian groups, Wang-W. '21)

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

Theorem (Uniqueness of the moment problem for finite abelian groups, Wang-W. '21)

Let X,Y be random finite abelian groups. If for each finite ab. group A,

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

Theorem (Uniqueness of the moment problem for finite abelian groups, Wang-W. '21)

Let X,Y be random finite abelian groups. If for each finite ab. group A,

$$\mathbb{E}(\#\operatorname{Sur}(X,A)) = \mathbb{E}(\#\operatorname{Sur}(Y,A)) = O(|\wedge^2 A|),$$

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

Theorem (Uniqueness of the moment problem for finite abelian groups, Wang-W. '21)

Let X,Y be random finite abelian groups. If for each finite ab. group A,

$$\mathbb{E}(\#\operatorname{Sur}(X,A)) = \mathbb{E}(\#\operatorname{Sur}(Y,A)) = O(|\wedge^2 A|),$$

then X and Y have the same distribution.

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

Theorem (Uniqueness of the moment problem for finite abelian groups, Wang-W. '21)

Let X,Y be random finite abelian groups. If for each finite ab. group A,

$$\mathbb{E}(\#\operatorname{Sur}(X,A)) = \mathbb{E}(\#\operatorname{Sur}(Y,A)) = O(|\wedge^2 A|),$$

then X and Y have the same distribution.

Application:

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

Theorem (Uniqueness of the moment problem for finite abelian groups, Wang-W. '21)

Let X,Y be random finite abelian groups. If for each finite ab. group A,

$$\mathbb{E}(\#\operatorname{Sur}(X,A)) = \mathbb{E}(\#\operatorname{Sur}(Y,A)) = O(|\wedge^2 A|),$$

then X and Y have the same distribution.

Application: (Ellenberg, Venkatesh, Westerland '16; Liu, W., Zureick-Brown '19)

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

Theorem (Uniqueness of the moment problem for finite abelian groups, Wang-W. '21)

Let X,Y be random finite abelian groups. If for each finite ab. group A,

$$\mathbb{E}(\#\operatorname{Sur}(X,A)) = \mathbb{E}(\#\operatorname{Sur}(Y,A)) = O(|\wedge^2 A|),$$

then X and Y have the same distribution.

Application: (Ellenberg, Venkatesh, Westerland '16; Liu, W., Zureick-Brown '19) to Pic(C) of curves C over finite fields \mathbb{F}_q ,

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

Theorem (Uniqueness of the moment problem for finite abelian groups, Wang-W. '21)

Let X,Y be random finite abelian groups. If for each finite ab. group A,

$$\mathbb{E}(\#\operatorname{Sur}(X,A)) = \mathbb{E}(\#\operatorname{Sur}(Y,A)) = O(|\wedge^2 A|),$$

then X and Y have the same distribution.

Application: (Ellenberg, Venkatesh, Westerland '16; Liu, W., Zureick-Brown '19) to ${\rm Pic}(C)$ of curves C over finite fields \mathbb{F}_q , function field Cohen-Lenstra-Martinet for $q\to\infty$

- indexed by finite groups, instead of by natural numbers
- moments themselves are numbers
- Gth moment: $M_G(X) := \mathbb{E}[\#\operatorname{Sur}(X,G)]$ or $M_G(\mu) := \int_X \#\operatorname{Sur}(X,G)d\mu$

Theorem (Uniqueness of the moment problem for finite abelian groups, Wang-W. '21)

Let X,Y be random finite abelian groups. If for each finite ab. group A,

$$\mathbb{E}(\#\operatorname{Sur}(X,A)) = \mathbb{E}(\#\operatorname{Sur}(Y,A)) = O(|\wedge^2 A|),$$

then X and Y have the same distribution.

analog for finite abelian R-modules)

Application: (Ellenberg, Venkatesh, Westerland '16; Liu, W., Zureick-Brown '19) to $\operatorname{Pic}(C)$ of curves C over finite fields \mathbb{F}_q , function field Cohen-Lenstra-Martinet for $q \to \infty$ (EVW applied their own version for p-Sylow subgroups, LWZB applied

What if you don't know an explicit distribution with the moments you find?

What if you don't know an explicit distribution with the moments you find?

New approach (Sawin-W.) to construct a distribution of random groups explicitly from moments

What if you don't know an explicit distribution with the moments you find?

New approach (Sawin-W.) to construct a distribution of random groups explicitly from moments

Application (Sawin-W.): find the distribution of (profinite completions of) fundamental groups of random 3-manifolds, with explicit formulas

What if you don't know an explicit distribution with the moments you find?

New approach (Sawin-W.) to construct a distribution of random groups explicitly from moments

Application (Sawin-W.): find the distribution of (profinite completions of) fundamental groups of random 3-manifolds, with explicit formulas

S-group: a group whose order is a product of powers of primes in S

What if you don't know an explicit distribution with the moments you find?

New approach (Sawin-W.) to construct a distribution of random groups explicitly from moments

Application (Sawin-W.): find the distribution of (profinite completions of) fundamental groups of random 3-manifolds, with explicit formulas

S-group: a group whose order is a product of powers of primes in S

Corollary (Sawin-W., '22)

Let S be a finite set of primes.

What if you don't know an explicit distribution with the moments you find?

New approach (Sawin-W.) to construct a distribution of random groups explicitly from moments

Application (Sawin-W.): find the distribution of (profinite completions of) fundamental groups of random 3-manifolds, with explicit formulas

S-group: a group whose order is a product of powers of primes in S

Corollary (Sawin-W., '22)

Let S be a finite set of primes. For a random (compact, without boundary) 3-manifold M from Dunfield-Thurston's model of random Heegaard splittings,

What if you don't know an explicit distribution with the moments you find?

New approach (Sawin-W.) to construct a distribution of random groups explicitly from moments

Application (Sawin-W.): find the distribution of (profinite completions of) fundamental groups of random 3-manifolds, with explicit formulas

S-group: a group whose order is a product of powers of primes in S

Corollary (Sawin-W., '22)

Let S be a finite set of primes. For a random (compact, without boundary) 3-manifold M from Dunfield-Thurston's model of random Heegaard splittings,

$$\begin{aligned} &\operatorname{\mathsf{Prob}}(\pi_1(M) \ has \ no \ non\text{-}trivial \ \mathcal{S}\text{-}group \ quotients}) \\ &= \prod_{p \in S} \prod_{j \geq 1} (1 + p^{-j})^{-1} \prod_{\substack{N \ non\text{-}ab. \ finite \\ simple \ \mathcal{S}\text{-}group}} e^{-\frac{|H_2(N,\mathbb{Z})|}{|\operatorname{Out}(N)|}}. \end{aligned}$$

Overview

Motivating examples of random groups

The moment problem for random groups

3 Universality for random groups

Theorem (Central Limit Theorem)

Let $X_1, X_2, ...$ be independent, identically distributed random real numbers with finite mean $\mu = \mathbb{E}(X_i)$ and finite variance σ^2 .

Theorem (Central Limit Theorem)

Let X_1, X_2, \ldots be independent, identically distributed random real numbers with finite mean $\mu = \mathbb{E}(X_i)$ and finite variance σ^2 . Then as $n \to \infty$,

Theorem (Central Limit Theorem)

Let $X_1, X_2,...$ be independent, identically distributed random real numbers with finite mean $\mu = \mathbb{E}(X_i)$ and finite variance σ^2 . Then as $n \to \infty$,

$$\sqrt{n}\left(\frac{X_1+\cdots+X_n}{n}-\mu\right)$$

Theorem (Central Limit Theorem)

Let X_1, X_2, \ldots be independent, identically distributed random real numbers with finite mean $\mu = \mathbb{E}(X_i)$ and finite variance σ^2 . Then as $n \to \infty$,

$$\sqrt{n}\left(\frac{X_1+\cdots+X_n}{n}-\mu\right)$$

converge in distribution to the normal distribution with mean 0 and variance σ^2 .

Theorem (Central Limit Theorem)

Let $X_1, X_2,...$ be independent, identically distributed random real numbers with finite mean $\mu = \mathbb{E}(X_i)$ and finite variance σ^2 . Then as $n \to \infty$,

$$\sqrt{n}\left(\frac{X_1+\cdots+X_n}{n}-\mu\right)$$

converge in distribution to the normal distribution with mean 0 and variance σ^2 .

The output distribution of this process that combines the X_i is largely *insensitive* to the input distribution.

Theorem (Nguyen-W. '21)

Theorem (Nguyen-W. '21)

For integers $n, u \ge 0$ and $\epsilon > 0$,

Theorem (Nguyen-W. '21)

For integers $n, u \ge 0$ and $\epsilon > 0$, let $M_{n \times (n+u)}$ be an integral $n \times (n+u)$ matrix with entries i.i.d. copies of a random integer \times from any distribution.

Theorem (Nguyen-W. '21)

For integers $n, u \ge 0$ and $\epsilon > 0$, let $M_{n \times (n+u)}$ be an integral $n \times (n+u)$ matrix with entries i.i.d. copies of a random integer \times from any distribution, such that for every prime p,

Theorem (Nguyen-W. '21)

For integers $n, u \ge 0$ and $\epsilon > 0$, let $M_{n \times (n+u)}$ be an integral $n \times (n+u)$ matrix with entries i.i.d. copies of a random integer \times from any distribution, such that for every prime p,

$$\max_{a \in \mathbb{F}_p} \operatorname{Prob}(x \equiv a \pmod{p}) \le 1 - \epsilon.$$

Theorem (Nguyen-W. '21)

For integers $n, u \ge 0$ and $\epsilon > 0$, let $M_{n \times (n+u)}$ be an integral $n \times (n+u)$ matrix with entries i.i.d. copies of a random integer x from any distribution, such that for every prime p,

$$\max_{a \in \mathbb{F}_p} \operatorname{Prob}(x \equiv a \pmod{p}) \le 1 - \epsilon.$$

For any fixed finite abelian group A and $u \ge 0$,

Theorem (Nguyen-W. '21)

For integers $n, u \geq 0$ and $\epsilon > 0$, let $M_{n \times (n+u)}$ be an integral $n \times (n+u)$ matrix with entries i.i.d. copies of a random integer x from any distribution, such that for every prime p,

$$\max_{a \in \mathbb{F}_p} \operatorname{Prob}(x \equiv a \pmod{p}) \le 1 - \epsilon.$$

For any fixed finite abelian group A and $u \ge 0$,

$$\lim_{n\to\infty}\operatorname{Prob}\left(\mathbb{Z}^n/(M_{n\times(n+u)}\mathbb{Z}^{n+u})\simeq A\right)=\frac{1}{|A|^u|\operatorname{Aut}(A)|}\prod_{k=u+1}^\infty\zeta(k)^{-1},$$

Theorem (Nguyen-W. '21)

For integers $n, u \ge 0$ and $\epsilon > 0$, let $M_{n \times (n+u)}$ be an integral $n \times (n+u)$ matrix with entries i.i.d. copies of a random integer x from any distribution, such that for every prime p,

$$\max_{a \in \mathbb{F}_p} \operatorname{Prob}(x \equiv a \pmod{p}) \le 1 - \epsilon.$$

For any fixed finite abelian group A and $u \ge 0$,

$$\lim_{n\to\infty}\operatorname{Prob}\left(\mathbb{Z}^n/(M_{n\times(n+u)}\mathbb{Z}^{n+u})\simeq A\right)=\frac{1}{|A|^u|\operatorname{Aut}(A)|}\prod_{k=u+1}^\infty\zeta(k)^{-1},$$

where $\zeta(s)$ is the Riemann zeta function.

Theorem (Nguyen-W. '21)

For integers $n, u \geq 0$ and $\epsilon > 0$, let $M_{n \times (n+u)}$ be an integral $n \times (n+u)$ matrix with entries i.i.d. copies of a random integer x from any distribution, such that for every prime p,

$$\max_{a \in \mathbb{F}_p} \mathsf{Prob}(x \equiv a \pmod{p}) \le 1 - \epsilon.$$

For any fixed finite abelian group A and $u \ge 0$,

$$\lim_{n\to\infty}\operatorname{Prob}\left(\mathbb{Z}^n/(M_{n\times(n+u)}\mathbb{Z}^{n+u})\simeq A\right)=\frac{1}{|A|^u|\operatorname{Aut}(A)|}\prod_{k=u+1}^\infty\zeta(k)^{-1},$$

where $\zeta(s)$ is the Riemann zeta function.

 $\mathbb{Z}^n/(M_{n \times (n+u)}\mathbb{Z}^{n+u})$ is the quotient of a fixed free abelian group \mathbb{Z}^n ,

4 D > 4 D > 4 E > 4 E > E = 90 P

Theorem (Nguyen-W. '21)

For integers $n, u \ge 0$ and $\epsilon > 0$, let $M_{n \times (n+u)}$ be an integral $n \times (n+u)$ matrix with entries i.i.d. copies of a random integer x from any distribution, such that for every prime p,

$$\max_{a \in \mathbb{F}_p} \mathsf{Prob}(x \equiv a \pmod{p}) \le 1 - \epsilon.$$

For any fixed finite abelian group A and $u \ge 0$,

$$\lim_{n\to\infty}\operatorname{Prob}\left(\mathbb{Z}^n/(M_{n\times(n+u)}\mathbb{Z}^{n+u})\simeq A\right)=\frac{1}{|A|^u|\operatorname{Aut}(A)|}\prod_{k=u+1}^\infty\zeta(k)^{-1},$$

where $\zeta(s)$ is the Riemann zeta function.

 $\mathbb{Z}^n/(M_{n\times(n+u)}\mathbb{Z}^{n+u})$ is the quotient of a fixed free abelian group \mathbb{Z}^n , by random relations (given by the columns of M)

Zoom out: quotient of fixed free abelian group \mathbb{Z}^n by random relations,

Zoom out: quotient of fixed free abelian group \mathbb{Z}^n by random relations, as $n \to \infty$ resulting distribution is largely insensitive to the distribution of the relations

Zoom out: quotient of fixed free abelian group \mathbb{Z}^n by random relations, as $n \to \infty$ resulting distribution is largely insensitive to the distribution of the relations

Applications (of analogs for symmetric matrices):

Zoom out: quotient of fixed free abelian group \mathbb{Z}^n by random relations, as $n \to \infty$ resulting distribution is largely insensitive to the distribution of the relations

Applications (of analogs for symmetric matrices): Jacobians/sandpile groups of random graphs W. '17 (Erdős–Rényi), Mészáros '20 (uniform d-regular graphs \implies non-singularity of adjacency matrix $/\mathbb{R}$)

Sawin-W. 3-manifolds result allows some (minor) flexibility in how you build the random 3-manifold (in choice of generators for mapping class group)

Sawin-W. 3-manifolds result allows some (minor) flexibility in how you build the random 3-manifold (in choice of generators for mapping class group)

Sawin-W. 3-manifolds result allows some (minor) flexibility in how you build the random 3-manifold (in choice of generators for mapping class group)

Many open problems: can one prove universality for

 Random finite abelian groups with additional structure (e.g. alternating pairing)

Sawin-W. 3-manifolds result allows some (minor) flexibility in how you build the random 3-manifold (in choice of generators for mapping class group)

- Random finite abelian groups with additional structure (e.g. alternating pairing)
- 2 Random finite or profinite groups

Sawin-W. 3-manifolds result allows some (minor) flexibility in how you build the random 3-manifold (in choice of generators for mapping class group)

- Random finite abelian groups with additional structure (e.g. alternating pairing)
- Random finite or profinite groups
- Random rings, modules, etc.

Sawin-W. 3-manifolds result allows some (minor) flexibility in how you build the random 3-manifold (in choice of generators for mapping class group)

- Random finite abelian groups with additional structure (e.g. alternating pairing)
- Random finite or profinite groups
- Random rings, modules, etc.
- Allowing some dependence in the inputs

Sawin-W. 3-manifolds result allows some (minor) flexibility in how you build the random 3-manifold (in choice of generators for mapping class group)

- Random finite abelian groups with additional structure (e.g. alternating pairing)
- Random finite or profinite groups
- 3 Random rings, modules, etc.
- Allowing some dependence in the inputs
- Allowing some degeneracy in the inputs

Sawin-W. 3-manifolds result allows some (minor) flexibility in how you build the random 3-manifold (in choice of generators for mapping class group)

- Random finite abelian groups with additional structure (e.g. alternating pairing)
- Random finite or profinite groups
- 3 Random rings, modules, etc.
- Allowing some dependence in the inputs
- Allowing some degeneracy in the inputs