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Distributions of groups arising in number theory and
related contexts

@ As K varies over some collection of number fields, what is the
distribution of Clk?
(a group that controls factorization in algebraic integers of K)
E.g., take a uniform random square-free integer D € [2, X], let
K = Q(v/D) (especially interesting as X — o0)
For a prime p, we might ask about the p-torsion Clk[p] or the Sylow
p-subgroup

@ As E varies over some collection of elliptic curves /Q (e.g. all of
them, or a quadratic twist family), what is the distribution of Sel,(E)?
(controls the rational solutions (x,y) € Q? of y? = x3 + ax + b)

© If M is a random n x n matrix with each entry independent uniform
from {0,1}, so M : Z" — 7", what is the distribution of Z"/M(Z")?
Related: what is the distribution of the Jacobian of an Erd6s—Rényi
random graph (i.e. sandpile group, i.e. Z"/A(Z") where A is the
graph Laplacian)
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Recognizing distributions of real numbers from moments

When we have a distribution of numbers, we often can recognize the
distribution by its moments.

kth moment: Mj:= average of x, i.e. [ x*dpu,ie E[X¥]

Poisson distribution:

Gaussian distribution:
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Recognizing distributions of real numbers from moments

When we have a distribution of numbers, we often can recognize the
distribution by its moments.

kth moment: Mj:= average of x, i.e. [ x*dpu,ie E[X¥]
Gaussian distribution: Poisson distribution:
Vi

) PN S Roan
0 5 10 15 20

01~ {0 b EIXX 1) (X ] =

k even

Knowledge of E[X] and these up to k is equivalent to knowledge of first k
moments
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Recognizing distributions of real numbers from moments

Theorem (Uniqueness of the moment problem)

When the moments don't grow too fast, then there is at most 1
distribution with those moments.

M, = e¥ is not too fast, but My = ek® is too fast

Moments are often much more accessible than direct information about
the distribution
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Moments of random (pro)-finite groups, modern theory

@ indexed by finite groups, instead of by natural numbers
@ moments themselves are numbers
e Gth moment: M¢g(X) := E[# Sur(X, G)] or

Me(p) = [x #Sur(X, G)du

Theorem (Uniqueness of the moment problem for finite abelian
groups, Wang-W. '21)

Let X,Y be random finite abelian groups. If for each finite ab. group A,
E(# Sur(X, A)) = E(# Sur(Y,A)) = O(| A2 A|),

then X and Y have the same distribution.

Application: (Ellenberg, Venkatesh, Westerland '16; Liu, W.,
Zureick-Brown '19) to Pic(C) of curves C over finite fields Fg, function
field Cohen-Lenstra-Martinet for g — oo

(EVW applied their own version for p-Sylow subgroups, LWZB applied
analog for finite abelian R-modules)
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Moment problem for groups, modern theory
What if you don’t know an explicit distribution with the moments you find?

New approach (Sawin-W.) to construct a distribution of random groups
explicitly from moments

Application (Sawin-W.): find the distribution of (profinite completions of)
fundamental groups of random 3-manifolds, with explicit formulas

S-group: a group whose order is a product of powers of primes in S
Corollary (Sawin-W., '22)

Let S be a finite set of primes. For a random (compact, without

boundary) 3-manifold M from Dunfield-Thurston’s model of random
Heegaard splittings,
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Moment problem for groups, modern theory
What if you don’t know an explicit distribution with the moments you find?

New approach (Sawin-W.) to construct a distribution of random groups
explicitly from moments

Application (Sawin-W.): find the distribution of (profinite completions of)
fundamental groups of random 3-manifolds, with explicit formulas

S-group: a group whose order is a product of powers of primes in S
Corollary (Sawin-W., '22)

Let S be a finite set of primes. For a random (compact, without

boundary) 3-manifold M from Dunfield-Thurston’s model of random
Heegaard splittings,

Prob(m1(M) has no non-trivial S-group quotients)

[Ho(N,Z)|

= H H(l +p)7t H e TOut(h)]

peS j>1 N non-ab. finite
simple S-group
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Universality: the Central Limit Theorem

Theorem (Central Limit Theorem)

Let Xy, Xo, ... be independent, identically distributed random real
numbers with finite mean yu = IE(X;) and finite variance o®. Then as

n — oo,
X1+ + X,
(B

converge in distribution to the normal distribution with mean O and

variance o2.

The output distribution of this process that combines the X; is largely
insensitive to the input distribution.
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Universality: random finite abelian groups

Theorem (Nguyen-W. '21)

For integers n,u > 0 and € > 0, let M,y (n4y) be an integral n x (n + u)
matrix with entries i.i.d. copies of a random integer x from any
distribution, such that for every prime p,

max Prob(x =a (mod p)) <1—e.
aclF,

For any fixed finite abelian group A and u > 0,

Jim_ Prob (Z /(Mo (4 27) = A) A |Aut(A H S(k

where ((s) is the Riemann zeta function.

Z" [ (Mox (n4u)Z" *U) is the quotient of a fixed free abelian group Z", by
random relations (given by the columns of M)
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Universality: random finite abelian groups

Zoom out: quotient of fixed free abelian group Z" by random relations,

as n — oo resulting distribution is largely insensitive to the distribution of
the relations

Applications (of analogs for symmetric matrices):
Jacobians/sandpile groups of random graphs W. '17 (Erdés—Rényi),

Mészaros '20 (uniform d-regular graphs = non-singularity of adjacency
matrix /R)
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