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Distributions of groups arising in number theory and
related contexts

1 As K varies over some collection of number fields, what is the
distribution of ClK?
(a group that controls factorization in algebraic integers of K )
E.g., take a uniform random square-free integer D ∈ [2,X ], let
K = Q(

√
D) (especially interesting as X →∞)

For a prime p, we might ask about the p-torsion ClK [p] or the Sylow
p-subgroup

2 As E varies over some collection of elliptic curves /Q (e.g. all of
them, or a quadratic twist family), what is the distribution of Selp(E )?
(controls the rational solutions (x , y) ∈ Q2 of y2 = x3 + ax + b)

3 If M is a random n × n matrix with each entry independent uniform
from {0, 1}, so M : Zn → Zn, what is the distribution of Zn/M(Zn)?
Related: what is the distribution of the Jacobian of an Erdős–Rényi
random graph (i.e. sandpile group, i.e. Zn/∆(Zn) where ∆ is the
graph Laplacian)
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Distributions of groups arising in number theory and
related contexts

4 As C varies over some collection of curves over finite field Fq, what is
the distribution of Pic(C )?
(Function field analog of the class group question)

Or the distribution of πalg1 (C )?

5 As K varies over some number fields, if Kun is the maximal
unramified extension of K , what is the distribution of
Gal(Kun/K ) = πalg1 (SpecOK )?

6 As M varies over 3-manifolds (e.g. in the Dunfield-Thurston model of
random Heegaard splittings), what is the distribution of π1(M)?
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Recognizing distributions of real numbers from moments

When we have a distribution of numbers, we often can recognize the
distribution by its moments.

kth moment: Mk := average of xk , i.e.
∫
x x

kdµ, i.e. E[X k ]

Gaussian distribution: Poisson distribution:

E[(X − µ)k ] =

{
0 k odd

σk(k − 1)!! k even
E[X (X − 1) · · · (X − k)] = λk

Knowledge of E[X ] and these up to k is equivalent to knowledge of first k
moments
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Recognizing distributions of real numbers from moments

Theorem (Uniqueness of the moment problem)

When the moments don’t grow too fast, then there is at most 1
distribution with those moments.

Mk = ek is not too fast, but Mk = ek
2

is too fast

Moments are often much more accessible than direct information about
the distribution
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Moments of random groups

Heath-Brown ’94 on 2-Selmer groups of y2 = x3−Dx (D square-free ∈ Z)

Fouvry-Klüners ’06 on 2 ClK /4 ClK as K varies over Q(
√
D)

Both are distributions on F2-vector spaces, i.e. random F2-vector spaces

Just treat V as |V |

Then Mk ≈ 2k
2/4, too large to apply moment problem for numbers

1 There was a candidate distribution, with distribution and moments
known explicitly

2 Authors proved moments matched candidate distribution

3 Proved new theorem that moments determine distribution
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Moments of random (pro)-finite groups, modern theory

indexed by finite groups, instead of by natural numbers
moments themselves are numbers
G th moment: MG (X ) := E[# Sur(X ,G )] or
MG (µ) :=

∫
X # Sur(X ,G )dµ

Theorem (Uniqueness of the moment problem for finite abelian
groups, Wang-W. ’21)

Let X ,Y be random finite abelian groups. If for each finite ab. group A,

E(# Sur(X ,A)) = E(# Sur(Y ,A)) = O(| ∧2 A|),

then X and Y have the same distribution.

Application: (Ellenberg, Venkatesh, Westerland ’16; Liu, W.,
Zureick-Brown ’19) to Pic(C ) of curves C over finite fields Fq, function
field Cohen-Lenstra-Martinet for q →∞
(EVW applied their own version for p-Sylow subgroups, LWZB applied
analog for finite abelian R-modules)
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Moment problem for groups, modern theory

What if you don’t know an explicit distribution with the moments you find?

New approach (Sawin-W.) to construct a distribution of random groups
explicitly from moments

Application (Sawin-W.): find the distribution of (profinite completions of)
fundamental groups of random 3-manifolds, with explicit formulas

S-group: a group whose order is a product of powers of primes in S

Corollary (Sawin-W., ’22)

Let S be a finite set of primes. For a random (compact, without
boundary) 3-manifold M from Dunfield-Thurston’s model of random
Heegaard splittings,

Prob(π1(M) has no non-trivial S-group quotients)

=
∏
p∈S

∏
j≥1

(1 + p−j)−1
∏

N non-ab. finite
simple S-group

e
− |H2(N,Z)|

|Out(N)| .
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Overview

1 Motivating examples of random groups

2 The moment problem for random groups

3 Universality for random groups
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Universality: the Central Limit Theorem

Theorem (Central Limit Theorem)

Let X1,X2, . . . be independent, identically distributed random real
numbers with finite mean µ = E(Xi ) and finite variance σ2. Then as
n→∞,

√
n

(
X1 + · · ·+ Xn

n
− µ

)
converge in distribution to the normal distribution with mean 0 and

variance σ2.

The output distribution of this process that combines the Xi is largely
insensitive to the input distribution.
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Universality: random finite abelian groups

Theorem (Nguyen-W. ’21)

For integers n, u ≥ 0 and ε > 0, let Mn×(n+u) be an integral n × (n + u)
matrix with entries i.i.d. copies of a random integer x from any
distribution, such that for every prime p,

max
a∈Fp

Prob(x ≡ a (mod p)) ≤ 1− ε.

For any fixed finite abelian group A and u ≥ 0,

lim
n→∞

Prob
(
Zn/(Mn×(n+u)Zn+u) ' A

)
=

1

|A|u|Aut(A)|

∞∏
k=u+1

ζ(k)−1,

where ζ(s) is the Riemann zeta function.

Zn/(Mn×(n+u)Zn+u) is the quotient of a fixed free abelian group Zn, by
random relations (given by the columns of M)
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Universality: random finite abelian groups

Zoom out: quotient of fixed free abelian group Zn by random relations,
as n→∞ resulting distribution is largely insensitive to the distribution of
the relations

Applications (of analogs for symmetric matrices):
Jacobians/sandpile groups of random graphs W. ’17 (Erdős–Rényi),
Mészáros ’20 (uniform d-regular graphs =⇒ non-singularity of adjacency
matrix /R)
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Universality: further random algebraic structures

Sawin-W. 3-manifolds result allows some (minor) flexibility in how you
build the random 3-manifold (in choice of generators for mapping class
group)

Many open problems: can one prove universality for

1 Random finite abelian groups with additional structure (e.g.
alternating pairing)

2 Random finite or profinite groups

3 Random rings, modules, etc.

4 Allowing some dependence in the inputs

5 Allowing some degeneracy in the inputs
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