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In the past decade, Mark Braverman has emerged as a major leader in theoretical
computer science. He has an uncommon versatility and fearlessness that has allowed
him not only to tackle specific outstanding problems, but also to work on deep theo-
retical questions. As a researcher, he exhibited exceptional maturity at a young age,
producing results that brought new insights and stimulated new research.

Of the many subfields of computer science, the one known as theoretical computer
science is the closest to mathematics. It draws on, as well as develops, abstract
mathematical notions in order to address questions inspired by concrete problems in
computation, communication, information transmission, and related areas. A major
goal of theoretical computer science is to establish precise, mathematically rigorous
results about how quickly and efficiently problems can be solved. Emblematic of this
goal is the famous P versus NP problem, a major unsolved question in both theoretical
computer science and mathematics.

At the age of 38, Braverman already has a publication list of more than 100 papers
written with a total of more than 85 collaborators. Because his oeuvre is extensive
and diverse, we focus here on three areas to which he has contributed results that
exemplify the depth and power of his work.

Computing Julia Sets

Even in his earliest work Braverman took on fundamental questions. One of them cen-
tered on investigations of what becomes possible—and impossible—when one changes
the theoretical basis for computing.

Modern computers are based on the model for computing formulated by Alan
Turing in the 1930s and are essentially discrete systems: Any task a computer car-
ries out boils down to manipulating 0s and 1s. By contrast systems in nature—the
swinging of a pendulum, the development of a weather pattern, the fractal geometry
of a coastline—are continuous rather than discrete. Mathematicians and computer
scientists have therefore investigated alternative computational models that are con-
tinuous rather than discrete. Braverman has worked with one model that represents
computations not as 0s and 1s but rather as real numbers (the set of real numbers
contains all numbers, including ones like π that have infinite, nonrepeating decimal
expansions).

The bedrock of mathematics shifted when Turing’s model for computing revealed
the concept of uncomputability: There exist numbers that can be described in a
perfectly clear and precise way but that cannot be computed explicitly. What kinds
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of uncomputability phenomena arise with continuous computational models? This is
the question that Braverman explored starting already with his master’s thesis and
in subsequent work, much of it with Michael Yampolsky.

Braverman focused on a continuous computing model that, intuitively, is based
on the idea that a set is computable if it can be drawn pixel-by-pixel on a computer
screen. Among the mathematical objects drawn in this way are Julia sets, which are
fractals originally discovered by Gaston Julia in the early 20th century and popular-
ized by Benoit Mandelbrot in the 1980s. The beauty and intricacy of Julia sets have
made them the subject not only of art exhibitions but also of intensive study within
the theory of dynamical systems, the branch of mathematics treating systems that
evolve over time.

Although Julia sets can exhibit highly complicated behavior, each is characterized
by a single parameter. Braverman and Yampolsky identified values of this parameter
such that the associated Julia set is uncomputable in the continuous computing model
they used. These parameter values are few and far between; you are not likely to hit
upon one when entering a parameter in one of the many web programs that draw
Julia sets. This points to a kind of instability of uncomputable structures and might
offer hints about why they are rarely encountered in real-world problems.

In 2009 Braverman and Yampolsky published a book Computability of Julia Sets,
which provides an overview of this area. Braverman has made further contributions
to computability of other phenomena in dynamical systems. For example, in a 2007
paper with Ilia Binder and Yampolsky, Braverman investigated the computability of
the Riemann mapping, a fundamental mathematical notion from the area of complex
analysis. And in 2015 he published a paper with Jonathan Schneider and Cristóbal
Rojas that presents a refinement of a pillar of computing theory, the Church-Turing
Thesis.

Starting around 2010, Braverman’s attention turned to information complexity,
which we will discuss next. Here too the theme of discrete versus continuous arises
in his work.

Information Complexity

In 1948, Claude Shannon published a paper that provided a comprehensive theory
governing the transmission of information. He showed that, even when information is
represented as discrete bits—that is, as strings of 0s and 1s—it can be modeled as a
continuous quantity using probability theory. One can then define the notion of the
entropy of a transmitted message, which intuitively speaking is the amount of infor-
mation it contains. For example, suppose Alice sends Bob a message giving a year’s
worth of data about two daily events: Whether the sun rose that day, and whether it
rained that day. Although she has 365 bits of sun-rising data, that information could
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be compressed into one bit; its entropy is very small. By contrast, the 365 bits of
rain data could not be compressed so much; its entropy is higher. Shannon’s theory
shows that the entropy establishes a natural limit on how much a message can be
compressed without losing information.

Now suppose that instead of the communication being one-way, it’s two-way: Alice
and Bob each have some information and send bits back and forth. Their goal might
be, for example, to understand how their knowledge differs. It could happen that
what Alice knows differs by only one bit from what Bob knows, but establishing that
fact requires sending many bits back and forth. In such a case, the communication
cost, which is the number of bits exchanged, is large, but the information cost, which
is the amount of information exchanged, is low. Does information theory shed light
on how to make such an exchange more efficient?

Starting around 1980, the area of communication complexity grew up around
such questions. A good deal of progress was made addressing specific problems, and
this had a big impact in applications to tasks like streaming algorithms and data
structures. However, the theoretical underpinning remained somewhat undeveloped,
partly because the necessary mathematical machinery was lacking. When Braverman
came on the scene starting around 2010, he revived and expanded the field through a
series of striking results that supplied new and more precise theoretical foundations.

Basic to this area is the direct sum question, which asks the following. Suppose
C is the cost of Alice and Bob interacting to carry out a certain task once. If they
carry out k independent repetitions of the task, is the final cost always equal to k
times C? In the case of information cost, Braverman proved that the answer is yes.
For communication cost the answer is generally no and depends on the nature of the
task.

But in 2010, Braverman, together with Boaz Barak, Xi Chen, and Anup Rao,
showed that the cost of k repetitions is at least

√
k times the cost of doing the

task once. The following year, Braverman and Rao proved an “amortization” result,
establishing that in the limit as k gets very large, the average communication cost of
one repetition approaches the information cost. This result has had a wide impact
by providing a natural line of attack for proving results about efficiency for specific
communication tasks. Braverman has also had important results in regimes where
the communication can be corrupted by transmission errors or sabotage.

In the realm of computation, the dominant theoretical problem is P versus NP.
Work on this problem has to a large extent remained in the discrete realm and has
not benefited much from continuous tools from analysis, which is one of the most
sophisticated and highly developed areas of mathematics. The work of Braverman
and his collaborators on efficiency in communication might provide a glimmer of hope
that continuous tools could one day have a larger impact on P versus NP than they
have so far.
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Mechanism Design

As algorithmic economics has provided the foundation for much of online commerce,
mechanism design has grown into one of its most active subfields. Here too Braverman
has made several significant contributions.

Right after his doctorate, Braverman held a research position at the Microsoft
Research New England laboratory, where he worked with the lab’s health care group.
There he investigated machine-learning tools for studying factors leading to patient
rehospitalization. This experience led him to realize that such questions are often
more economic and game-theoretic than they are computational and sparked his
interest in algorithmic economics.

An algorithm takes an input, carries out a step by step procedure, and produces
an output. The algorithm carries out the same procedure regardless of what the
input is; one might say that the input doesn’t care what the algorithm is. But in
many economic procedures, for example in auctions, the inputs are provided by agents
who do care what the algorithm is and are seeking, by their inputs, to influence the
output. This is the setting for mechanism design, which aims to construct protocols
that take inputs elicited from agents having a stake in the output and that also drives
the agents towards inputs that result in desirable output.

A well known example of a mechanism is the Vickrey auction. Bidders submit
secret bids, and the person submitting the highest bid is allowed to buy the item,
but at a price equal to the second-highest bid. This system drives bidders to be
honest about what the item is actually worth to them: Underbidding cannot reduce
the purchase price and could cause them to lose the opportunity to buy the item.
In the more general Vickrey–Clarke–Groves (VCG) mechanism, multiple items are
distributed among bidders, and each bidder must pay for the “harm” that buying
an item causes to the others, thereby achieving a socially optimal solution. VCG
produces excellent theoretical results, but its practical implementation is marred by
instabilities and other problems.

In today’s world of cheap computing and interconnectedness, algorithms are in-
creasingly manipulated by strategic agents. A major goal is therefore to find ways
to convert algorithms to mechanisms, and this is the focus of Braverman’s latest re-
search. In particular, he has been looking at how to incorporate the VCG mechanism
into algorithms that are based on many implementations of local optimization. Such
an algorithm contains many sub-algorithms, each of which uses local optimization
on just one small chunk of the problem and takes incremental steps towards optimal
solutions within that chunk. Those locally optimal solutions are then combined by
the main algorithm to solve the problem. Braverman’s idea is to bring the VCG
mechanism into the algorithm at the level of the local optimization, where the larger
problems of VCG can be effectively controlled. Because local optimization is used

4



in many systems, including in machine learning, Braverman’s approach has potential
for wide impact in applications. It has already borne fruit in the realm of theory; in
2021 Braverman used it to strengthen an economics result from more than 40 years
ago.

Problem-Solving Prowess and Theoretical Insight

This brief account of Braverman’s work shows how he is able to make progress on
difficult questions that require sustained focus and development over time. But he has
also worked in a different mode, solving isolated and highly abstract open questions
that called on his problem-solving prowess. An example of this is his 2010 proof of the
Linial-Nisan conjecture. Too technical to describe here, this conjecture arose in the
area of pseudorandomness and had stumped researchers since it was first proposed
in 1990. Braverman’s strikingly original solution stunned experts and was especially
surprising because the problem lay so far from the areas in which he had been working.

Mark Braverman’s combination of potent problem-solving ability and deep the-
oretical insight has produced results of exceptional impact. His work embodies the
spirit of theoretical computer science, with its emphasis on marrying the power of
abstract mathematics to the real-world struggle for speed and efficiency. His influ-
ence on the field, already large for such a young researcher, will no doubt continue to
grow.

Biographical sketch of Mark Braverman:
https://mbraverm.princeton.edu/about/brief-bio/
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