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Abstract
Communication complexity is an area of computational complexity theory that studies
the amount of communication required to complete a computational task. Communica-
tion complexity gives us some of the most successful techniques for proving impossibility
results for computational tasks.
Information complexity connects communication complexity with Shannon’s classical
information theory. It treats information revealed or transmitted as the resource to be con-
served. On the one hand, information complexity leads to extensions of classical informa-
tion and coding theory to interactive scenarios. On the other hand, it provides us with tools
to answer open questions about communication complexity and related areas.
This note gives an overview of communication complexity and some recent developments
in two-party information complexity and applications. The note is based on a talk given by
the author at the International Congress of Mathematicians in 2022. It expands on some of
the themes from the talk. It also provides references that were omitted during the talk.
This is a preliminary version. An updated final version will appear after the ICM.
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1. Computational complexity theory
Computational complexity theory is concerned with modeling, understanding and

mapping out the computational resources needed to solve various problems involving manip-
ulation of information. Below we give a brief non-technical overview to set communication
and information complexity in context. A principled and extensive treatment of the area can
be found in texts such as [2,59].

1.1. Upper and lower bounds
Mapping out the limits of computation involves a combination of upper and lower

bounds on the amount of resources being studied.
An upper bound is typically an algorithm with some provable properties. The pri-

mary goal of such an algorithm is to place a problem in a complexity class. Sometimes such
an algorithm is practically useful, or may inspire a practically useful version later on.

For example, the problem of sorting 𝑛 elements can be solved using 𝑂 (𝑛 log 𝑛)
comparisons. This upper bound can be established via the MergeSort algorithm [92], which
is fairly straightforward to analyze. In practice, the QuickSort algorithm often performs better,
but it is harder to analyze for the purposes of establishing an upper bound.

Some upper bounds have desirable properties, but are clearly not the most “practical”
algorithms for the problem. For example, using recursion, one can show that the problem of
raising an 𝑛 × 𝑛matrix 𝐴 ∈ F𝑛×𝑛2 to the power 𝑛 can be done using𝑂 (log2 𝑛) bits of working
memory. But alas, the resulting algorithm would run in 𝑛Θ(log 𝑛) steps of computation, and
would be impractical. Beyond its theoretical value, the upper bound placing Matrix Powering
in SPACE(log2 𝑛) 1 gives us a hint that basic linear algebraic operations may be amenable to
parallelization — a direction that has seen a lot of work in practice [29,36].

A lower bound involves a proof that some computational task is impossible to accom-
plish within a given constraint on resources. Lower bounds are often harder to prove than
upper bounds, since upper bounds are constructive (providing an algorithm), while to prove a
lower bound one needs to rule out all possible algorithms for a given problem. Still, in many
situations provable lower bounds are possible. As we shall see, in many more situations lower
bounds can be proved assuming a plausible conjecture, such as P ≠ NP.

In the sorting problem mentioned earlier, the algorithm may output one of 𝑛! pos-
sible orderings. Each comparison rules out at most half of the orderings. Therefore, at least
log2 𝑛! = Ω(𝑛 log 𝑛) comparisons are needed to sort 𝑛 elements2. Thus, the upper bound
given by MergeSort is asymptotically optimal, and sorting requires Θ(𝑛 log 𝑛) comparisons.

1.2. Abstraction and complexity classes
Abstraction is one of the two core ideas underpinning much of complexity theory,

it allows us to develop models of computation.

1 In fact, it is in the slightly smaller complexity class NC2 [34]
2 This simple argument shows that Ω(𝑛 log 𝑛) comparisons are needed in the worst case, but

it is not hard to show that the same bound also holds on average
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There are many different mathematical models that focus on different aspects of
computation. Problems can then be grouped into complexity classes based on the amount of
resources required to solve the problem in a given model. There are hundreds of complexity
classes that have been studied explicitly.

The Turing Machine is an example of an early and very successful abstraction intro-
duced in the 1930s [99]. It gave a mathematical definition of computation, which is still
accepted today. In modern terms, a Turing Machine is equivalent to a standard computer
with unlimited (but finite at any point during the computation) memory. The class R of prob-
lems corresponds to problems solvable by a Turing Machine. Problems inside R are said to
be “computable” and problems outside R are “non-computable”3.

The taxonomy of computable vs. non-computable is a very coarse one. For example,
the tasks of adding two 𝑛-bit numbers, breaking an 𝑛-bit cartographic cipher, or simulating
the 𝑛-body problem for 2𝑛 time steps are all computable tasks, yet clearly some are more
“tractable” than others. Such observations were the starting point for defining more com-
plexity classes based on the setting and resources being constrained.

One plausible (and robust) definition of tractability is given by the class P — the
class of problems that are solvable by a Turing Machine in time polynomial in input size.
For example, a problem on graphs 𝐺 = (𝑉, 𝐸) with 𝑛 vertices and 𝑚 edges is in P if it can
be solved by a Turing Machine running in time at most 𝑛𝑐 for some constant 𝑐. The class
P abstracts enough details that we do not need to be concerned with the exact model of the
Turing Machine4. We also do not need to worry about dependence on the number of edges
𝑚, since 𝑚 < 𝑛2, and any bound polynomial in 𝑛 is also polynomial in 𝑚.

The class P abstracts away many details, yet it still gives a very useful definition of
tractability. It is especially useful in its negation — if a problem is (for a “typical” input) ∉ P,
then it is likely intractable in practice except on very small inputs. In its positive direction,
being in P does not guarantee that the problem is “easy”. For example, checking whether
a graph 𝐺 contains a clique 𝐾100 with a 100 nodes is easily seen to be in P, yet no general
algorithm for the problem that runs substantially5 faster than checking all 𝑛100 possible vertex
sets is known, and is suspected to not exist [33].

The class P can be further refined by restricting the running time of the Turing
Machine. For example the class DTIME(n) restricts the number of steps to be linear in input
length. In the case of graphs, this would be linear in 𝑛 + 𝑚 – the total number of vertices
and edges. Note that here we need to be more careful about the memory access model –
linear-time algorithms are typically allowed random memory access. The field of fine-grained
complexity aims to classify problems within P based on their required running time, using
plausible assumptions [103].

3 Formally, the class R contains decision problems, that are called “recursive” or “decidable”.
To simplify our current discussion, we blur the distinction between decision problems and
general computation tasks.

4 For example, whether data is stored on a tape and addressed sequentially or in a random-
access memory array

5 Here “substantially” means 𝑛𝑜 (𝑘) , where 𝑘 = 100 is the size of the clique we are looking for
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It is possible to reduce the allotted time even further and talk about sub-linear time
algorithms. Those are particularly important in databases and other “big-data” applications,
where one wants to maintain a data-structure, but to answer queries about it without reading
it in its entirety.

Computation time (given by the number of steps performed) is only one of many
resources one could consider. Other resources commonly considered include memory used
(to store the algorithm’s data), parallelization (e.g. is there an algorithm that can be com-
pleted in a very short amount of time in a parallel computer), whether the algorithms uses
randomness (and how much), and latency caused by communication if the computation is a
distributed one6. Specific applications (such as data structures) feature additional parame-
ters, as one needs to consider the cost of updating the data structure and the cost of querying
it. In addition to “physical” resources used by an algorithm, there are sometimes additional
desirable properties such as fault-tolerance or privacy-preservation. These additional require-
ments may interact with the resource constraints (typically by making them harder to satisfy).

Given the long (but still partial!) list of possible resources and resource combinations
to consider, it should not be a surprise that there are so many complexity classes! In fact, it
may be surprising that classifying algorithmic problems into complexity classes has been
such a productive enterprise at all. One possible explanation of this is that reductions —
which we will discuss next — allow us to “cull” classes by showing equivalences. These
equivalences are often non-trivial and very surprising.

1.3. Reductions and conditional lower bounds
Reduction is the other core idea in computational complexity theory. As discussed

earlier, it is easier to prove that a computational task is attainable within given constraints
(by demonstrating an algorithm) than to prove that it is unattainable (need to rule out all
algorithms). A reduction allows to turn algorithms into (conditional or unconditional) lower
bounds.

Let C be a complexity class (i.e. a class of problems solvable within some given
resource constraints). For two problems 𝐴 and 𝐵, one can often use an algorithmic construc-
tion to prove a statement of the form

𝐴 ∈ C ⇒ 𝐵 ∈ C. (1.1)

For example, if C = P, all one needs to do is to construct a polynomial-time algorithm that
uses a black box for solving 𝐴7 in order to solve 𝐵.

Relationship (1.1) is often denoted by 𝐵 ≤C 𝐴, where the reduction from 𝐴 to 𝐵 is
done using an algorithm from class 𝐶. Thus, for example, if 𝐴 ∈ P and 𝐵 ≤P 𝐴, then 𝐵 ∈ P.

Taking the contrapositive of (1.1), we get

𝐵 ∉ C ⇒ 𝐴 ∉ C (1.2)

6 In practice, latency of communication between processing cores is significantly slower than
computation within a core

7 The box is also assumed to run in polynomial time
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Thus a lower bound on 𝐵 translates into a lower bound on 𝐴.
In terms of theory building, (1.1) and (1.2) allow one to consolidate problems into

complexity classes. As it turns out, many natural complexity classes C have a complete prob-
lem 𝑃C such that all 𝐴 ∈ C are reducible to 𝑃C. For example, Cook-Levin’s theorem asserts
that boolean circuit satisfiability 𝑆𝐴𝑇 is complete for the class NP. This means that for any
problem 𝐵 ∈ NP, 𝐵 ≤P 𝑆𝐴𝑇 . Therefore, if P ≠ NP, then for some 𝐵 ∈ NP, 𝐵 ∉ P, and by
(1.2) 𝑆𝐴𝑇 ∉ P.

In practice, whenever the assumption P ≠ NP is made, what is actually used is the
assumption that 𝑆𝐴𝑇 ∉ P. Under this assumption, to show that 𝐴 ∉ P it is enough to show
that 𝑆𝐴𝑇 ≤P 𝐴. The latter is an algorithmic problem. It may be a simple algorithm taught in
introductory classes — such as the reduction [63] showing that

𝑆𝐴𝑇 ≤P [deciding whether a given graph 𝐺 is 3-colorable.]

Or, it could be the result of stacking extremely complex reductions, such as optimal inapprox-
imability of 3-𝑆𝐴𝑇 — one of the crowning achievements of the Probabilistically Checkable
Proofs (PCP) program [3,4]. In either case, the result is ultimately algorithmic — unspooling
the reduction would yield an algorithm that, given a black-box access to the problem being
proven to be hard, solves 𝑆𝐴𝑇 in polynomial time.

Reductions are very useful in consolidating complexity classes. Suppose that C1

and C2 are two complexity classes with complete problems 𝑃1 ∈ C1 and 𝑃2 ∈ C28. Then to
show that C1 = C2 it suffices to show that 𝑃1 ∈ C2 and that 𝑃2 ∈ C1 — again, solving two
algorithmic problems.

The logic of (1.2) is very powerful in practice, as it allows one to maintain a list of
reasonable hardness assumptions, and to prove tight lower bounds modulo these assumptions.
Proving those assumptions may be out of reach (proving P ≠ NP appears to be currently
out of reach). The assumptions may even be false, but nonetheless they can be useful in
practice! An example of such an assumption is the Strong Exponential Time Hypothesis
(SETH) — asserting that certain flavors of 𝑆𝐴𝑇 on 𝑛 variables cannot be solved in 20.999𝑛

computation steps9. There is a fair chance that the SETH assumption is false, although it has
been open for about two decades [56,57]. Still, if someone works on an applied data structure,
and designing a faster-than-trivial solution for the problem leads to a violation of SETH,
the practical implication is that the algorithm designers may assume that there is no better
solution than the trivial one (at least for now) — and focus their efforts on other aspects of
the design.

In summary, the majority of results in complexity theory — even the deepest and
most important ones — are algorithmic reductions, establishing connections between prob-
lems and between complexity classes. Most hardness results are conditional ones, using
reasonable assumptions such as P ≠ NP, or more ambitious assumptions, such as the SETH.

8 Technically, the complexity classes also need to be closed under appropriate reductions, but
this is rarely a problem

9 Note that a brute-force search over all possible assignments takes time 2𝑛 · 𝑛𝑂 (1)
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From the perspective of most engineering applications (with the notable exception of cryp-
tography) this is good enough — one can accept a reasonably-aged conjecture as evidence of
computational hardness. Computational complexity theory has thus been spectacularly suc-
cessful in classifying problems into hardness classes based on conjectures. Proving those
conjectures is a different matter altogether — progress in attaining unconditional lower
bounds — ones where we do not have the luxury of reductions — has been very slow.
Devising new attack routes and advancing existing ones is therefore a major challenge in
attaining mathematical understanding of computation.

1.4. Unconditional lower bounds: some attack routes
The most general technique for proving unconditional lower bounds on computa-

tion is through diagonalization. The very first result in the theory of computation [99] used
diagonalization to show that the Halting Problem is non-computable. The Halting Problem
asks, given a computer program and an input10, to decide whether the program eventually
terminates, or runs indefinitely. The proof of the non-computability of the Halting Problem is
straightforward (assuming one accepts that one can program a compiler that takes an encod-
ing of a program and executes it). It is similar to Cantor’s proof that there is an uncountable
number of Real numbers. Many (perhaps most) proofs of non-computability results work
through a reduction to the Halting Problem.

Diagonalization is useful not just for proving non-computability, but for proving
hierarchy theorems, stating that giving programs asymptotically more time strictly increases
the set of problems that can be solved. For example11

DTIME(n2.3) ⊊ DTIME(n2.4)

Still, there are reasons (namely “relativization” [6]) to believe that diagonalization
cannot unconditionally prove results such as P ≠ NP, and other currently open unconditional
lower bounds.

For unconditional lower bounds that are most likely true but do not follow from
diagonalization (such as P ≠ NP), one would need a different set of lower bounds strategies.
One approach to take is an incremental one: design an hierarchy of results of increasing diffi-
culty, and incrementally prove them — hopefully discovering and developing new techniques
in the process. As an added benefit, even the partial results can be used independently. As
discussed earlier, through the magic of reductions, one unconditional lower bound can be
converted into many interesting results across multiple settings.

Historically, the most prominent such hierarchy has been that of circuit complexity
classes — it is not the main topic of this note, and therefore we will only review it briefly. The
circuit complexity program has the advantage that strong enough results under the program
will immediately lead to strong lower bounds for complexity classes. One drawback of the

10 A Turing Machine in the original formulation
11 Perhaps not surprisingly, the task that is easy to perform is time 𝑛2.4 and impossible to

perform in time 𝑛2.3 is simulating a Turing Machine for 𝑛2.35 time steps.
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program is that progress in the last 30 years has been slow, and it is unclear at this point what
tools would be needed to make further progress.

Other than the circuit complexity program, two additional programs of note are
arithmetic circuit complexity [96], and communication complexity. Discussing arithmetic
circuit complexity is beyond the scope of this note. Communication complexity is going to
be our main focus, and will be discussed in some detail.

Boolean circuit complexity program. A circuit is a directed acyclic graph with edges car-
rying boolean signals 0 or 1. Nodes with no incoming edges correspond to input variables.
Other nodes correspond to gates. A gate computes a boolean function of the values of edges
incoming into the node, and places the result on the outgoing edges.

Gates may be of fan-in 2, or of unbounded fan-in12. Bounded fan-in gates are typ-
ically OR, AND, and NOT. Unbounded fain-in gates may be computing an OR or AND
of their inputs, or a more complicated function. Two particularly important functions are
summation modulo 𝑘: ⊕k (𝑥1..𝑚) = 1∑ 𝑥𝑖≡0 (mod 𝑘 ) and majority MAJ(𝑥1..𝑚) := 1∑ 𝑥𝑖≥𝑚/2.

A function computable in polynomial time by a Turing Machine can also be com-
puted by a polynomial-size circuit13. The class of polynomial-size circuits is denoted by
P/poly. As we have just noted, P ⊂ P/poly, proving that 𝑆𝐴𝑇 ∉ P/poly would imply P ≠ NP.

Within circuit complexity, the most natural hierarchy within P/poly is based on
circuit depth: the largest number of gates from an input to the output of the circuit. Note
that if each gate takes 1 time unit to evaluate, then circuit depth corresponds to the (parallel)
latency needed to evaluate the circuit.

When only fan-in-2 gates are allowed, the class NC𝑖 denotes the set of functions that
can be evaluated by a circuit of depth 𝑂 ((log 𝑛)𝑖). When unbounded fan-in OR and AND
gates are allowed, AC𝑖 denotes the set of functions that can be evaluated by a circuit of depth
𝑂 ((log 𝑛)𝑖). When in addition ⊕k gates are allowed for some constant 𝑘 , we get the class
denoted by AC⊕k

𝑖 . When the majority gate MAJ is allowed, we get the class denoted by TC𝑖 .
A majority gate with 𝑛𝑂 (1) many inputs can be computed by a depth-𝑂 (log 𝑛)

boolean circuit with fan-in-2 gates. This gives us the following chain of inclusions:

NC0 ⊆ AC0 ⊆ AC0
⊕k ⊆ TC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 ⊆ P/poly (1.3)

Recall that the program was to progressively prove lower bounds against circuit
classes in (1.3), eventually building up to 𝑆𝐴𝑇 ∉ P/poly.

12 “Fan-in” here is the number of inputs a gate can take. A fan-in-2 AND gate takes two inputs
𝑥1, 𝑥2 ∈ {0, 1} and outputs 𝑥1 ∧ 𝑥2. A fan-in-𝑛 AND gate takes 𝑛 inputs 𝑥1, . . . , 𝑥𝑛 ∈
{0, 1} and outputs 𝑥1 ∧ 𝑥2 ∧ . . . ∧ 𝑥𝑛. A fan-in-𝑛 AND gate can be computed by a depth-
(log 𝑛)-binary tree of fan-in-2 AND gates.

13 Roughly, in the circuit, each wire corresponds to the state of one bit of memory at a particu-
lar point of time in the computation. This reduction is used in designing ASIC circuits that
need to be particularly fast or energy-efficient in performing a particular calculation, such as
for cryptographic attacks or for routing internet traffic.
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The class NC0 contains circuits where the depth is constant (since 𝑂 ((log 𝑛)0) =
𝑂 (1)), and each gate’s fan-in is 2. Therefore, the 𝑛-bit AND, AND𝑛 cannot be computed in
NC0, making the first inclusion strict.

Making the second inclusion in (1.3) strict already requires significant effort. A
progression of results in the 1980s showed that an AC0 circuit computing the parity ⊕2 of
𝑛 variables has to be of size exponential in 𝑛 [42, 51]. The proof is combinatorial in nature,
using the fact that a random restriction of the parity function to a subset of its coordinates
yields another parity function. This line of work led to important results in boolean function
analysis — showing that functions computed by AC0 circuits are approximated by low-degree
polynomials in Fourier space [71]. Still, these techniques do not appear to lead to any lower
bounds against AC0

⊕2 — the class of constant depth circuits with unbounded fan-in OR, AND,
and ⊕2 parity gates.

Lower bounds against AC0
⊕2 (or AC0

⊕p for an arbitrary constant prime 𝑝) — given
by Razborov and Smolensky [89,97] also in the 1980s — require yet another set of ideas, this
time algebraic. It turns out that a function computable by a polynomial-size AC0

⊕p circuit
can be approximated by a low-degree polynomial over the field F𝑝 (note that ⊕p become
simple addition over F𝑝). A dimensionality/counting argument then shows that computing
⊕q for any other prime 𝑞 ≠ 𝑝 cannot be done in AC0

⊕p. These results only hold for primes. In
particular, it is strongly believed, but not known, that ⊕5 cannot be computed by a polynomial
sized circuit in AC0

⊕6.
As of late 1980s, diagram (1.3) appears as

NC0 ⊊ AC0 ⊊ AC0
⊕p ⊊ AC0

⊕k ⊆ TC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 ⊆ P/poly (1.4)

Since then, there has been no progress in diagram (1.4). There are several possible
explanations for this. One possible explanation is that we are underestimating the power of
TC0 circuits, and that some of the inclusions are in fact not strict (or, at the very least, lower
bounds against TC0 are not much easier than general circuit lower bounds). There is some
indirect evidence for the power of TC0. Within circuit complexity, one surprising result about
TC0 is that it is capable of computing the Chinese Remainder representation of 𝑛-bit integers,
leading to additional surprising upper bounds [53]. More informally, TC0-circuits are able to
represent artificial neural nets, which have shown a surprising degree of expressiveness in
practice, providing indirect evidence for the computational power of the class.

Another possible reason for the relative lack of progress of the circuit complexity
program is that the techniques involved appear to be related to logic and combinatorics (diag-
onalization is a logic technique, while most existing lower bounds are combinatorial), and
that new connections are needed to make progress on this programs (or to obtain uncondi-
tional lower bounds in another way). This is something that has been noted very early in the
study of theoretical computer science (and what became complexity theory). The following
is a quote from John von Neumann [101]:
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“There exists today a very elaborate system of formal logic, and, specifically,
of logic as applied to mathematics. This is a discipline with many good sides,
but also with certain serious weaknesses. This is not the occasion to enlarge
upon the good sides, which I have certainly no intention to belittle. About the
inadequacies, however, this may be said: Everybody who has worked in formal
logic will confirm that it is one of the technically most refractory parts of math-
ematics. The reason for this is that it deals with rigid, all-or-none concepts, and
has very little contact with the continuous concept of the real or of the complex
number, that is, with mathematical analysis. Yet analysis is the technically most
successful and best-elaborated part of mathematics. Thus formal logic is, by the
nature of its approach, cut off from the best cultivated portions of mathematics,
and forced onto the most difficult part of the mathematical terrain, into combi-
natorics.
The theory of automata, of the digital, all-or-none type, as discussed up to now,
is certainly a chapter in formal logic. It would, therefore, seem that it will have
to share this unattractive property of formal logic. It will have to be, from the
mathematical point of view, combinatorial rather than analytical.”

In the 70+ years since this quote, analysis has played an increasing role in both lower
and upper bounds. Boolean function analysis [79] is an example of a relatively new field that
has played a critical role in lower-bound reductions (in Probabilistically Checkable Proofs
and Unique Games), and in upper bounds (for example in learning theory). Ideas from convex
optimization (some dating back to von Neumann and his colleagues) are now used extensively
in upper bounds for such “discrete” problems as Max-Flow [75]. Still, more “analytic” con-
cepts of complexity, particularly ones that tensorize14 are always helpful in moving the field
forward. Communication complexity, and especially its subarea of information complexity,
fit well within this general thrust.

Communication complexity and unconditional lower bounds. Like many other concepts
within computational complexity theory, communication complexity has been primarily
developed as an abstraction of concrete computational problems. Within theoretical com-
puter science the model was introduced in 1979 by Yao in [105]. Communication complexity
arises naturally when studying the complexity of distributed computing, where oftentimes
the delay cost of communication between nodes dominates the computational cost within
the nodes.

Communication complexity theory has been very successful at producing uncon-
ditional lower bound results. Early results used combinatorial methods, but more recently
analytical and information-theoretic methods (which are also continuous and analytical in
many ways) have shown some success. As with circuit complexity, it is possible to construct
a hierarchy of various communication complexity classes, although the hierarchy requires

14 In complexity theory, tensorization is known as direct sum and direct product properties,
which we discuss later in this note.
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more formalism to define, so we will omit it here. Specific parameters affecting a particular
model of communication include the number of players (2 or more), the number of rounds
of back-and-forth communication, whether randomness and errors are allowed, etc.

It should be noted that some of the most promising approaches to unconditional
circuit lower bounds go through communication complexity. A notable example is Karchmer-
Wigderson games [61, 62] — a particular type of two-party deterministic communication
complexity models for which a lower bound would give a lower bound against NC1 cir-
cuits from (1.4). Another example is an implication of a result of Beigel and Tauri [10] about
AC0

⊕k circuits, that certain multi-party communication lower bounds imply lower bounds for
such circuits. Of course, to achieve these lower bounds further technical progress is needed
in communication complexity lower bounds. We will return to this briefly at the end of this
note.

1.5. Shannon’s information theory and one-way communication

Note: Large parts of this section (as well as the next two) were previously presented in the
note [12] by the author accompanying the talk at ICM 2014 in Seoul.

We begin with a very high-level overview of Shannon’s information theory. We
do this for two reasons. The first reason is that we will need its formalism when defining
information complexity in Section 3. The second reason is that one-way information and
coding theory is an example of a successful theory that gives very precise answers to many
natural questions about data transmission. It serves as a kind of inspiration for what a theory
of communication complexity (or even computational complexity) could aspire to — even
if it turns out that some core aspects of this program cannot be extended to interactive or
multi-party settings.

Information and coding theory is an enormous field of study, with subareas dealing
with questions ranging from foundations of probability and statistics to applied wireless
transmission systems. We will focus only on some of the very basic foundational aspects,
which were set forth by Shannon in the late 1940s, or shortly after.

While our overview of information and coding theory in this section focuses on fairly
simple facts, we present those in some detail nonetheless, as they will be used as a scaffold for
the interactive coding discussion. A thorough introduction into modern information theory
is given in [35].

Noiseless coding. Classical information theory studies the setting where one terminal
(Alice) wants to transmit information over a channel to another terminal (Bob). Two of
the most important original contributions by Shannon are the Noiseless Coding (or Source
Coding) Theorem and the Noisy Coding (or Channel Coding) Theorem. Here we will only
focus on the noiseless part of the theory. The Source Coding Theorem asserts that the cost
of Alice transmitting 𝑛 i.i.d. copies of a discrete random variable 𝑋 to Bob over a noiseless
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binary channel15 scales as Shannon’s entropy 𝐻 (𝑋) as 𝑛→ ∞16:

𝐻 (𝑋) =
∑︁

𝑥∈supp(𝑋)
Pr[𝑋 = 𝑥] log

1
Pr[𝑋 = 𝑥] . (1.5)

If we denote by 𝑋𝑛 the concatenation of 𝑛 independent samples from 𝑋 , and by 𝐶 (𝑌 ) the
(expected) number of bits needed for Alice to transmit a sample of random variable𝑌 to Bob,
then the Source Coding Theorem asserts that17

lim
𝑛→∞

𝐶 (𝑋𝑛)
𝑛

= 𝐻 (𝑋). (1.6)

This fact can be viewed as the operational definition of entropy, i.e. one that is grounded
in reality. Whereas definition (1.5) may appear artificial, (1.6) implies that it is the right
one, since it connects to the “natural” quantity 𝐶 (𝑋𝑛). Another indirect piece of evidence
indicating that 𝐻 (𝑋) is a natural quantity is its additivity property:

𝐻 (𝑋𝑛) = 𝑛 · 𝐻 (𝑋), (1.7)

and more generally, if 𝑋𝑌 is the concatenation of random variables 𝑋 and 𝑌 , then

𝐻 (𝑋𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 ) (1.8)

whenever 𝑋 and 𝑌 are independent. Note that it is not hard to see that (1.7) and (1.8) fail to
hold for𝐶 (𝑋), making𝐻 (𝑋) a “nicer” quantity to deal with than𝐶 (𝑋). Huffman coding (1.9)
below blurs the distinction between the two, as they only differ by at most one additive bit,
but we will return to it later in the analogous distinction between communication complexity
and information complexity.

For noiseless coding in the one-way regime, it turns out that while 𝐻 (𝑋) does not
exactly equal the expected number of bits 𝐶 (𝑋) needed to transmit a single sample from 𝑋 ,
it is very close to it. For example, the classical Huffman’s coding [55] implies that

𝐻 (𝑋) ≤ 𝐶 (𝑋) < 𝐻 (𝑋) + 1, (1.9)

where the “hard” direction of (1.9) is the upper bound. The upper bound showing that
𝐶 (𝑋) < 𝐻 (𝑋) + 1 is a compression result, showing how to encode a message with low
average information content (i.e. entropy) into a message with a low communication cost
(i.e. number of bits in the transmission). Note that this result is much less “clean” than the
limit result (1.6): in the amortized case the equality is exact, while in the one-shot case a gap
is created. This gap is inevitable if only for integrality reasons, but as we will see later, it
becomes crucial in the interactive case.

Beyond giving the exact answer to the source coding question (equation (1.6)), Shan-
non’s theory has two important benefits. First, it turns “communication” into a continuous

15 A noiseless binary channel allows the sender to transmit to a receiver a single bit without
error at a unit cost

16 All logs in this paper are base-2, with ln denoting the natural logarithm
17 In fact, Shannon’s Source Coding Theorem asserts that due to concentration the worst case

communication cost scales as 𝐻 (𝑋) as well, if we allow negligible error. We ignore this
stronger statement at the present level of abstraction.
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resource — much more analytical than combinatorial. This is even more pronounced in the
Noisy Channel Coding theorem, which allows one to denominate the capacity of a commu-
nication channel in bits of information, and to separate the ability of the channel to carry
communication from the content of that communication.

Second, it gives us a powerful formalism for talking about information relationships
between random variables, which naturally translate informal statements into mathematical
expressions. We will give a brief exposition here of notions that we will use in Section 3.

For a single random variable 𝑋 , entropy 𝐻 (𝑋) gives a way to quantify the inherent
uncertainty in the draw of this variable. For a pair of random variables 𝑋 and𝑌 , the conditional
entropy 𝐻 (𝑋 |𝑌 ) can be thought of as the amount of uncertainty remaining in 𝑋 for someone
who knows 𝑌 :

𝐻 (𝑋 |𝑌 ) := 𝐻 (𝑋𝑌 ) − 𝐻 (𝑌 ) = E𝑦∼𝑌𝐻 (𝑋 |𝑌 = 𝑦). (1.10)

In the extreme case where 𝑋 and 𝑌 are independent, we have 𝐻 (𝑋 |𝑌 ) = 𝐻 (𝑋). In the other
extreme, when 𝑋 = 𝑌 , we have 𝐻 (𝑋 |𝑋) = 0. The mutual information 𝐼 (𝑋;𝑌 ) between two
variables 𝑋 and 𝑌 measures the amount of information that revealing 𝑌 reveals about 𝑋 , i.e.
the reduction in 𝑋’s entropy as a result of conditioning on 𝑌 . Thus

𝐼 (𝑋;𝑌 ) := 𝐻 (𝑋) − 𝐻 (𝑋 |𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 ) − 𝐻 (𝑋𝑌 ) = 𝐼 (𝑌 ; 𝑋). (1.11)

Conditional mutual information is defined similarly to conditional entropy:

𝐼 (𝑋;𝑌 |𝑍) := 𝐻 (𝑋 |𝑍) − 𝐻 (𝑋 |𝑌𝑍) = 𝐼 (𝑌 ; 𝑋 |𝑍). (1.12)

The expression 𝐼 (𝑋;𝑌 |𝑍) is translated into English as “the (expected) amount of information
learning variable 𝑌 reveals about 𝑋 to someone who already knows 𝑍”.

A very important property of conditional mutual information is the chain rule:

𝐼 (𝑋𝑌 ; 𝑍 |𝑊) = 𝐼 (𝑋; 𝑍 |𝑊) + 𝐼 (𝑌 ; 𝑍 |𝑊𝑋) = 𝐼 (𝑌 ; 𝑍 |𝑊) + 𝐼 (𝑋; 𝑍 |𝑊𝑌 ). (1.13)

Again, an informal interpretation of (1.13) is that 𝑋𝑌 reveal about 𝑍 what 𝑋 reveals about
𝑍 , plus what 𝑌 reveals about 𝑍 to someone who already knows 𝑋 .

2. Communication complexity
For the majority of this discussion we will focus on 2-party computation, returning

to the general case at the end of the note.
Communication complexity was introduced by Yao in [105], and is the subject of the

texts [68,85]. It has found numerous applications for unconditional lower bounds in a variety
of models of computation, including Turing machines, streaming, sketching, data structure
lower bounds, and VLSI layout, to name a few. In the basic (two-party) setup, the two parties
Alice and Bob are given inputs 𝑋 ∈ X and 𝑌 ∈ Y, respectively, and are required to compute
a function 𝐹 (𝑋,𝑌 ) of these inputs (i.e. both parties should know the answer at the end of the
communication), while communicating over a noiseless binary channel (sending 0/1 bits to
each other). The parties are computationally unbounded, and their only goal is to minimize
the number of bits transmitted in the process of computing 𝐹 (𝑋,𝑌 ).

12 M. Braverman



In a typical setup, 𝐹 is a function 𝐹 : {0, 1}𝑛 × {0, 1}𝑛 → {0, 1}. Examples of func-
tions commonly discussed and used include the Equality function

𝐸𝑄𝑛 (𝑋,𝑌 ) := 1𝑋=𝑌 (𝑋,𝑌 ) =
𝑛∧
𝑖=1

((𝑋𝑖 ∧ 𝑌𝑖) ∨ (¬𝑋𝑖 ∧ ¬𝑌𝑖)) , (2.1)

and the Disjointness function

𝐷𝑖𝑠 𝑗𝑛 (𝑋,𝑌 ) :=
𝑛∧
𝑖=1

(¬𝑋𝑖 ∨ ¬𝑌𝑖). (2.2)

The basic notion in communication complexity is the communication protocol. A
communication protocol over a binary channel formalizes a conversation, where each mes-
sage only depends on the input to the speaker and the conversation so far:

Definition 2.1. A (deterministic) protocol 𝜋 for 𝐹 : X × Y → {0, 1} is defined as a finite
rooted binary tree, whose nodes correspond to partial communication transcripts, such that
the two edges coming out of each vertex are labeled with a 0 and 1. Each leaf ℓ is labeled by
an output value 𝑓ℓ ∈ {0, 1}. Each internal node 𝑣 is labeled by a player’s name and either by
a function 𝑎𝑣 : X → {0, 1}, or 𝑏𝑣 : Y → {0, 1} corresponding to the next message of Alice
or Bob, respectively.

The protocol 𝜋(𝑋, 𝑌 ) is executed on a pair of inputs (𝑋, 𝑌 ) by starting from the
root of the tree. At each internal node labeled by 𝑎𝑣 the protocol follows the child 𝑎𝑣 (𝑋)
(corresponding to Alice sending a message), and similarly at each internal node labeled by
𝑏𝑣 the protocol follows 𝑏𝑣 (𝑌 ). When a leaf ℓ is reached the protocol outputs 𝑓ℓ .

By a slight abuse of notation, 𝜋(𝑋,𝑌 ) will denote both the transcript and the output
of the protocol; which one it is will be clear from the context. The communication cost of
a protocol is the depth of the corresponding protocol tree. A protocol succeeds on input
(𝑋, 𝑌 ) if 𝜋(𝑋,𝑌 ) = 𝐹 (𝑋,𝑌 ). Its communication cost on this pair of inputs is the depth of
the leaf reached by the execution. The communication complexity 𝐶𝐶 (𝐹) of a function 𝐹 is
the lowest attainable communication cost of a protocol that successfully computes 𝐹. In the
case of deterministic communication we require the protocol to succeed on all inputs.

A deterministic communication protocol 𝜋 induces a partition of the input space
X × Y into sets 𝑆ℓ by the leaf ℓ that 𝜋(𝑋,𝑌 ) reaches. Since at each step the next move of
the protocol depends only on either 𝑋 or 𝑌 alone, each 𝑆ℓ is a combinatorial rectangle of the
form 𝑆ℓ = 𝑆X

ℓ
× 𝑆Y

ℓ
. This key combinatorial property is at the heart of many combinatorial

communication complexity lower bounds. To give an example of such a simple combinatorial
proof, consider the rank bound. Let 𝑁 = |X|, 𝑀 = |Y|, and consider the 𝑁 × 𝑀 matrix 𝑀𝐹

over R whose (𝑋,𝑌 )-th entry is 𝐹 (𝑋,𝑌 ). Each protocol 𝜋 with leaf set L of size 𝐿, induces
a partition of X × Y into combinatorial rectangles {𝑆ℓ }ℓ∈L . Let 𝑀ℓ be the matrix whose
entries are equal to 𝑀𝑋,𝑌 for (𝑋,𝑌 ) ∈ 𝑆ℓ and are 0 elsewhere. Since {𝑆ℓ }ℓ∈L is a partition of
X ×Y, we have 𝑀𝐹 =

∑
ℓ∈L 𝑀ℓ . Assuming 𝜋 is always correct, each 𝑀ℓ is monochromatic,

i.e. either all-0, or all-1 on 𝑆ℓ , depending on the value of 𝑓ℓ . Thus, rank(𝑀ℓ) ≤ 1, and

rank(𝑀𝐹) ≤
∑︁
ℓ∈L

rank(𝑀ℓ) ≤ 𝐿. (2.3)

13 Communication and information complexity



In fact, a stronger bound of 𝐿 − 1 holds unless𝑀𝐹 is the trivial all-1 matrix. Thus any protocol
computing 𝐹 must have a communication cost of at least log(rank(𝑀𝐹) + 1), and it follows
that the communication complexity of 𝐹 is at least log(rank(𝑀𝐹) + 1). As an example of an
application, if 𝐹 = 𝐸𝑄𝑛 is the Equality function, then 𝑀𝐸𝑄𝑛

= 𝐼2𝑛 is the identity matrix, and
thus 𝐶𝐶 (𝐸𝑄𝑛) ≥ 𝑛 + 1. In other words, the trivial protocol where Alice sends Bob her input
𝑋 (𝑛 bits), and Bob responds whether 𝑋 = 𝑌 (1 bit), is optimal.

As in many other areas of theoretical computer science, there is much to be gained
from randomization. For example, in practice, the Equality function does not require linear
communication as Alice and Bob can just hash their inputs and compare the hash keys. The
shorter protocol may return a false positive, but it is correct with high probability, and reduces
the communication complexity from 𝑛 + 1 to 𝑂 (log 𝑛).

More generally, a randomized protocol is a protocol that tosses coins (i.e. accesses
random bits), and produces the correct answer with high probability. The distributional set-
ting, where there is a prior probability distribution 𝜇 on the inputs and the players need to
output the correct answer with high probability with respect to 𝜇 is closely related to the
randomized setting, as will be seen below. In the randomized setting there are two possible
types of random coins. Public coins are generated at random and are accessible to both Alice
and Bob at no communication cost. Private coins are coins generated privately by Alice and
Bob, and are only accessible by the player who generated them. If Alice wants to share her
coins with Bob, she needs to use the communication channel. In the context of communi-
cation complexity the pubic-coin model is clearly more powerful than the private coin one.
Fortunately, the gap between the two is not very large [78], and can be mostly ignored. For
convenience reasons, we will focus on the public-coin model.

The definition of a randomized public-coin communication protocol 𝜋𝑅 is identical
to Definition 2.1, except a public random string 𝑅 is chosen at the beginning of the execution
of the randomized 𝜋𝑅, and all functions at the nodes of 𝜋𝑅 may depend on 𝑅 in addition to
the respective input 𝑋 or 𝑌 . We still require the answer 𝑓ℓ to be unequivocally determined
by the leaf ℓ alone. The communication cost |𝜋𝑅 | of 𝜋𝑅 is still its worst-case communication
cost (for historic reasons; an average-case notion would also have been meaningful to discuss
here).

The randomized communication complexity of 𝐹 with error 𝜀 > 0 is given by

𝑅𝜀 (𝐹) := min
𝜋𝑅 :∀𝑋,𝑌 Pr𝑅 [𝜋𝑅 (𝑋,𝑌 )=𝐹 (𝑋,𝑌 ) ]≥1−𝜀

|𝜋𝑅 |. (2.4)

For a distribution 𝜇 onX ×Y the distributional communication complexity𝐷𝜇,𝜀 (𝐹)
is defined as the cost of the best protocol that achieves expected error 𝜀 with respect to 𝜇.
Note that in this case fixing public randomness 𝑅 to a uniformly random value does not
change (on average) the expected success probability of 𝜋𝑅 with respect to 𝜇. Therefore,
without loss of generality, we may require 𝜋 to be deterministic:

𝐷𝜇,𝜀 (𝐹) := min
𝜋:𝜇{𝑋,𝑌 : 𝜋 (𝑋,𝑌 )=𝐹 (𝑋,𝑌 ) }≥1−𝜀

|𝜋 |. (2.5)

It is easy to see that for all 𝜇, 𝐷𝜇,𝜀 (𝐹) ≤ 𝑅𝜀 (𝐹). By an elegant minimax argument
[106], a partial converse is also true: for each 𝐹 and 𝜀, there is a distribution against which
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the distributional communication complexity is as high as the randomized:

𝑅𝜀 (𝐹) = max
𝜇
𝐷𝜇,𝜀 (𝐹). (2.6)

For this reason, we will be able to discuss distributional and randomized communication
complexity interchangeably.

How can one prove lower bounds for the randomized setting? This setting is much
less restrictive than the deterministic one, making lower bounds more challenging. Given
a function 𝐹, one can guess the hard distribution 𝜇, and then try to lower bound the
distributional communication complexity 𝐷𝜇,𝜀 (𝐹) — that is, show that there is no low-
communication protocol 𝜋 that computes 𝐹 with error ≤ 𝜀 with respect to 𝜇. Such a protocol
𝜋 of cost 𝑘 = |𝜋 | still induces a partition {𝑆ℓ }ℓ∈L of the inputs according to the leaf they
reach, with 𝐿 ≤ 2𝑘 and each 𝑆ℓ a combinatorial rectangle. However, it is no longer the case
that when we consider the corresponding submatrix 𝑀ℓ of 𝑀𝐹 it must be monochromatic —
the output of 𝜋 is allowed to be wrong on a fraction of 𝑆ℓ , and thus for some inputs the output
of 𝜋 on 𝑆ℓ may disagree with the value of 𝐹. Still, it should be true that for most leaves the
value of 𝐹 on 𝑆ℓ is strongly biased one way or the other, since the contribution of 𝑆ℓ to the
error is

𝑒(𝑆ℓ) = min
(
𝜇(𝑆ℓ ∩ 𝐹−1 (0)), 𝜇(𝑆ℓ ∩ 𝐹−1 (1))

)
. (2.7)

In particular, a fruitful lower bound strategy is to show that all “large” rectangles with respect
to 𝜇 have 𝑒(𝑆ℓ)/𝜇(𝑆ℓ) ≫ 𝜀, and thus there must be many smaller rectangles — giving a lower
bound on 𝐿 ≤ 2 | 𝜋 | . One simple instantiation of this strategy is the discrepancy bound: for
a distribution 𝜇, the discrepancy 𝐷𝑖𝑠𝑐𝜇 (𝐹) of 𝐹 with respect to 𝜇 is the maximum over all
combinatorial rectangles 𝑅 of

𝐷𝑖𝑠𝑐𝜇 (𝑅, 𝐹) := |𝜇(𝐹−1 (0) ∩ 𝑅) − 𝜇(𝐹−1 (1) ∩ 𝑅) |.

In other words, if 𝐹 has low discrepancy with respect to 𝜇, then only very small rectangles
(as measured by 𝜇) can be unbalanced. With some calculations, it can be shown that for all
𝜀 > 0 (see [68] and references therein),

𝐷𝜇, 1
2 −𝜀 (𝐹) ≥ log2 (2𝜀/𝐷𝑖𝑠𝑐𝜇 (𝐹)). (2.8)

Note that (2.8) not only says that if the discrepancy is low then the communication complex-
ity is high, but also that it remains high even if we are only trying to gain a tiny advantage over
random guessing in computing 𝐹! An example of a natural function to which the discrep-
ancy method can be applied is the 𝑛-bit Inner Product function 𝐼𝑃𝑛 (𝑋,𝑌 ) = ⟨𝑋,𝑌⟩ mod 2.
This simple discrepancy method can be generalized to a richer family of corruption bounds
that can be viewed as combinatorial generalizations of the discrepancy bound. More on this
method can be found in the survey [70].

One of the early successes of applying combinatorial methods in communication
complexity was the proof that the randomized communication complexity of the set disjoint-
ness problem (2.2) is linear, 𝑅1/4 (𝐷𝑖𝑠 𝑗𝑛) = Θ(𝑛). The first proof of this fact was given in
the 1980s [60], and a much simpler proof was discovered soon after [88]. The proofs exhibit
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a specific distribution 𝜇 of inputs on which the distributional communication complexity
𝐷𝜇,1/4 (𝐷𝑖𝑠 𝑗𝑛) is Ω(𝑛). Note that the uniform distribution would not be a great fit, since
uniformly drawn sets are non-disjoint with a very high probability. It turns out that the fol-
lowing family of distributions 𝜇 is hard: select each coordinate pair (𝑋𝑖 , 𝑌𝑖) i.i.d. from a
distribution on {(0, 0), (0, 1), (1, 0)} (e.g. uniformly). This generates a distribution on pairs
of disjoint sets. Now, with probability 1/2 choose a uniformly random coordinate 𝑖 ∈𝑈 [𝑛]
and set (𝑋𝑖 , 𝑌𝑖) = (1, 1) (and with probability 1/2 do nothing). Thus, under 𝜇, 𝑋 and 𝑌 are
disjoint with probability 1/2.

Treating communication complexity as a generalization of one-way communication
and applying information-theoretic machinery to it is a very natural approach (perhaps the
most natural, given the success of information theory in communication theory). Interest-
ingly, however, this is not how the field has evolved. For example, a 2009 survey [70] was able
to present the vast majority of communication complexity results up until then without deal-
ing with information theory at all. It is hard to speculate why this might have been the case.
One possible explanation is that the mathematical machinery needed to tackle the (much more
complicated) interactive case from the information-theoretic angle wasn’t available until the
1990s; another possible explanation is that linear algebra, linear programming duality, and
combinatorics (the main tools in communication complexity lower bounds) are traditionally
more central to theoretical computer science research and education than information theory.

A substantial amount of literature exists on communication complexity within the
information theory community. See for example [81,82] and references therein. The flavor of
the results is usually different from the ones discussed above. In particular, there is much
more focus on bounded-round communication, and significantly less focus on techniques
for obtaining specific lower bounds on the communication complexity of specific functions
such as the disjointness function. The most relevant work to our current discussion is a more
recent line of work by Ishwar and Ma, which studied interactive amortized communication
and obtained characterizations closely related to the ones discussed below [73, 74], building
on earlier works of Wyner and Ziv [104] from the 1970s.

Within the theoretical computer science literature, in the context of communica-
tion complexity18, information theoretic tools were explicitly introduced in [31] in the early
2000s for the simultaneous message model (i.e. 2 non-interactive rounds of communication).
Building on this work, [8] developed tools for applying information theoretic reasoning to fully
interactive communication, in particular giving an alternative (arguably, more intuitive) proof
for the Ω(𝑛) lower bound on the communication complexity of 𝐷𝑖𝑠 𝑗𝑛. The motivating ques-
tions for [31], as well as for subsequent works developing information complexity, were the
direct sum [39] and direct product questions for (randomized) communication complexity.

18 As with many other concepts within theoretical computer science, it was introduced earlier
in a more applied context, namely quantifying information-theoretic privacy of commu-
nication protocols [7, 90]. The two lines of work only converged later, after information
complexity was developed in the context of direct sum in communication complexity.
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The direct sum problem. In general, a direct sum theorem quantifies the cost of solving a
problem 𝐹𝑛 consisting of 𝑛 sub-problems in terms of 𝑛 and the cost of each sub-problem 𝐹.
The value of such results to lower bounds is clear: a direct sum theorem, together with a lower
bound on the (easier-to-reason-about) sub-problem, yields a lower bound on the composite
problem (a process also known as hardness amplification). For example, the Karchmer-
Wigderson program for boolean formulae lower bounds can be completed via a (currently
open) direct sum result for a certain communication model [62].

The direct sum property, while useful, is often untrue — sometimes in unexpected
or profound ways. Consider the example of matrix-vector multiplication over F2. The matrix
𝐴 ∈ F𝑛×𝑛2 is chosen at random and fixed. The input is 𝑥 ∈ F𝑛2 , and the 𝑛-bit output is 𝐴𝑥. The
computational model is boolean circuits (as in P/poly discussed earlier). A simple counting
argument shows that with high probability, for a randomly chosen 𝐴, computing 𝐴𝑥 requires
a circuit of size Ω̃(𝑛2) 19. On the other hand, computing 𝐴𝑥1, . . . , 𝐴𝑥𝑛 for 𝑛 vectors in parallel
amounts to multiplying 𝐴 by an 𝑛 × 𝑛matrix. This can be done in time (and also circuit size)
𝑛𝜔 = 𝑂 (𝑛2.38) ≪ 𝑛 × 𝑛2, showing a violation of direct sum for this model. We will return to
the direct sum problem for randomized communication complexity in the next section.

Direct product results further sharpen direct sum theorems by showing a “threshold
phenomenon”, where solving 𝐹𝑛 with insufficient resources is shown to be impossible to
achieve except with an exponentially small success probability. Classic results in complexity
theory, such as Raz’s Parallel Repetition Theorem [86] can be viewed as a direct product result.
Direct product theorems are also important in the context of cryptography: by repeating a
challenge 𝑛 times, one hopes to boost the security of a system exponentially.

In the next section, we will formally introduce information complexity. We will first
look at it as a generalization of Shannon’s entropy to interactive tasks. We will then dis-
cuss its connections to the direct sum and product questions for randomized communication
complexity, as well as other connections.

3. Information complexity
Interactive information complexity. In this section we will work towards developing infor-
mation complexity as the analogue of Shannon’s entropy for interactive computation. It will
sometimes be convenient to work with general interactive two-party tasks rather than just
functions. A task 𝑇 (𝑋,𝑌 ) is any action on inputs (𝑋,𝑌 ) that can be performed by a protocol.
𝑇 (𝑋, 𝑌 ) can be thought of as a set of distributions of outputs that are acceptable given an
input (𝑋,𝑌 ). Thus “computing 𝐹 (𝑋,𝑌 ) correctly with probability 1 − 𝜀” is an example of a
task, but there are examples of tasks that do not involve function or relation computation, for
example “Alice and Bob need to sample strings 𝐴 and 𝐵, respectively, distributed according
to (𝐴, 𝐵) ∼ 𝜇 (𝑋,𝑌 )”. For the purposes of the discussion, it suffices to think about 𝑇 as the
task of computing a function with some success probability. The communication complexity
of a task 𝑇 is then defined analogously to the communication complexity of functions. It is

19 Here Ω̃( ·) hides factors polynomial in log 𝑛.
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the least amount of communication needed to successfully perform the task 𝑇 (𝑋, 𝑌 ) by a
communication protocol 𝜋(𝑋,𝑌 ).

The information complexity of a task 𝑇 is defined as the least amount of information
Alice and Bob need to exchange (i.e. reveal to each other) about their inputs to success-
fully perform𝑇 . This amount is expressed using mutual information (specifically, conditional
mutual information (1.12)). We start by defining the information cost of a protocol 𝜋. Given
a prior distribution 𝜇 on inputs (𝑋,𝑌 ) the information cost is

IC(𝜋, 𝜇) := 𝐼 (𝑌 ;Π |𝑋) + 𝐼 (𝑋;Π |𝑌 ), (3.1)

where Π is the random variable representing a realization of the protocol’s transcript, includ-
ing the public randomness it uses20. In other words, (3.1) represents the sum of the amount
of information Alice learns about 𝑌 by participating in the protocol and the amount of
information Bob learns about 𝑋 by participating. Note that the prior distribution 𝜇 may
drastically affect IC(𝜋, 𝜇). For example, if 𝜇 is a singleton distribution supported on one
input (𝑥0, 𝑦0), then IC(𝜋, 𝜇) = 0 for all 𝜋, since 𝑋 and 𝑌 are already known to Bob and
Alice respectively under the prior distribution 𝜇. Definition (3.1), which will be justified
shortly, generalizes Shannon’s entropy in the non-interactive regime. Indeed, in the trans-
mission case, Bob has no input, thus 𝑋 ∼ 𝜇, 𝑌 = ⊥, and Π allows Bob to reconstruct 𝑋 , thus
IC(𝜋, 𝜇) = 𝐼 (𝑋;Π) = 𝐻 (𝑋) − 𝐻 (𝑋 |Π) = 𝐻 (𝑋) − 0 = 𝐻 (𝑋).

The information complexity of a task 𝑇 can now be defined similarly to communi-
cation complexity in (2.5):

IC(𝑇, 𝜇) := inf
𝜋 successfully performs 𝑇

IC(𝜋, 𝜇). (3.2)

One notable distinction between (2.5) and (3.2) is that the latter takes an infimum instead of
a minimum. This is because while the number of communication protocols of a given com-
munication cost is finite, this is not true about information cost. One can have a sequence
𝜋1, 𝜋2, . . . of protocols of ever-increasing communication cost, but whose information com-
plexity IC(𝜋𝑛, 𝜇) converges to IC(𝑇, 𝜇) in the limit. Moreover, as we will discuss later, this
phenomenon is already observed in very simple tasks 𝑇 , such as computing the conjunction
of two bits.

Our discussion of information complexity will be focused on the slightly simpler to
reason about distributional setting, where inputs are distributed according to some prior 𝜇. In
(3.2), if𝑇 is the task of computing a function 𝐹 with error 𝜀 w.r.t. 𝜇, the distribution 𝜇 is used
twice: first in the definition of “success”, and then in measuring the amount of information
learned. It turns out that it is possible to define worst-case information complexity [13] as the
information complexity with respect to the worst-possible prior distribution in the spirit of the
minimax relationship (2.6). In particular, the direct sum property of information complexity
which we will discuss below holds for prior-free information complexity as well.

20 The protocol is also allowed to use private randomness, known to only one of the two
parties, that is not automatically included in the transcript. Unlike the context of commu-
nication complexity, in information complexity private randomness is more useful than
public randomness [27].
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3.1. Direct sum for information and amortized communication
Information complexity as defined here has been extensively studied (see e.g. survey

[102]). In particular, it is surprisingly simple to show that information complexity is additive
for tasks over independent pairs of inputs. Let 𝑇1 and 𝑇2 be two tasks over pairs of inputs
(𝑋1,𝑌1), (𝑋2,𝑌2), and let 𝜇1, 𝜇2 be distributions on pairs (𝑋1,𝑌1) and (𝑋2,𝑌2), respectively.
Denote by 𝑇1 ⊗ 𝑇2 the task composed of successfully performing both 𝑇1 and 𝑇2 on the
respective inputs (𝑋1, 𝑌1) and (𝑋2, 𝑌2). Then information complexity is additive over these
two tasks:

Theorem 3.1. IC(𝑇1 ⊗ 𝑇2, 𝜇1 × 𝜇2) = IC(𝑇1, 𝜇1) + IC(𝑇2, 𝜇2).

Proof. (Sketch; a complete proof of a slightly more general statement can be found in [13]).
The “easy” direction of this theorem is the ‘≤’ direction. Take two protocols 𝜋1 and 𝜋2 that
perform 𝑇1 and 𝑇2 respectively, and consider the concatenation 𝜋 = (𝜋1, 𝜋2) (which clearly
performs 𝑇1 ⊗ 𝑇2). Consider what Alice learns from an execution of 𝜋 with prior 𝜇1 × 𝜇2. A
straightforward calculation using, for example, repeated application of the chain rule (1.13)
yields

𝐼 (𝑌1𝑌2;Π1Π2 |𝑋1𝑋2) = 𝐼 (𝑌1;Π1 |𝑋1) + 𝐼 (𝑌2;Π2 |𝑋2).

And similar statement is true about what Bob learns as well. Therefore IC(𝜋, 𝜇1 × 𝜇2) =
IC(𝜋1, 𝜇1) + IC(𝜋2, 𝜇2). By passing to the limit as IC(𝜋1, 𝜇1) → IC(𝑇1, 𝜇1) and IC(𝜋2, 𝜇2) →
IC(𝑇2, 𝜇2) we obtain the ‘≤’ direction.

The ‘≥’ direction is more interesting, even if the proof is not much more complicated.
In this direction we are given a protocol 𝜋 for solving 𝑇1 ⊗ 𝑇2 with information cost 𝐼 =
IC(𝜋, 𝜇1 × 𝜇2), and we need to construct out of it two protocols for 𝑇1 and 𝑇2 of information
costs 𝐼1 and 𝐼2 that add up to 𝐼1 + 𝐼2 ≤ 𝐼. We describe the protocol 𝜋1 (𝑋1, 𝑌1) below:

𝜋1 (X1,Y1) :
• Bob samples a pair (𝑋2, 𝑌2) ∼ 𝜇2, and sends 𝑋2 to Alice;

• Alice and Bob execute 𝜋((𝑋1, 𝑋2), (𝑌1,𝑌2)), and output the portion relevant to 𝑇1

in the performance of 𝑇1 ⊗ 𝑇2.

It is not hard to see that the tuple (𝑋1,𝑌1, 𝑋2,𝑌2) is distributed according to 𝜇1 × 𝜇2,
and hence by the assumption on 𝜋, 𝜋1 successfully performs 𝑇1. Note that there is a slight
asymmetry in 𝜋1: 𝑋2 is known to both Alice and Bob while 𝑌2 is only known to Bob. For
the purpose of correctness, the protocol would have worked the same if Bob also sent 𝑌2 to
Alice, but it is not hard to give an example where the information cost of 𝜋1 in that case is
too high. The information cost of 𝜋 is thus given by the sum of what Bob learns about 𝑋1

from 𝜋1 and what Alice learns about 𝑌1 (note that (𝑋2, 𝑌2) are not part of the input):

𝐼1 = 𝐼 (𝑋1;Π |𝑋2𝑌1𝑌2) + 𝐼 (𝑌1;Π |𝑋1𝑋2).

The protocol 𝜋2 (𝑋2, 𝑌2) is defined similarly to 𝜋1 in a skew symmetric way:

𝜋2 (X2,Y2) :
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• Alice samples a pair (𝑋1, 𝑌1) ∼ 𝜇1, and sends 𝑌1 to Bob;

• Alice and Bob execute 𝜋((𝑋1, 𝑋2), (𝑌1,𝑌2)), and output the portion relevant to 𝑇2

in the performance of 𝑇1 ⊗ 𝑇2.

We get that 𝜋2 again successfully performs 𝑇2, and its information cost is:

𝐼2 = 𝐼 (𝑋2;Π |𝑌1𝑌2) + 𝐼 (𝑌2;Π |𝑋1𝑋2𝑌1).

Putting 𝐼1 and 𝐼2 together using the Chain Rule (1.13) we get:

𝐼1 + 𝐼2 = 𝐼 (𝑋1;Π |𝑋2𝑌1𝑌2) + 𝐼 (𝑌1;Π |𝑋1𝑋2) + 𝐼 (𝑋2;Π |𝑌1𝑌2) + 𝐼 (𝑌2;Π |𝑋1𝑋2𝑌1) =
𝐼 (𝑋2;Π |𝑌1𝑌2) + 𝐼 (𝑋1;Π |𝑋2𝑌1𝑌2) + 𝐼 (𝑌1;Π |𝑋1𝑋2) + 𝐼 (𝑌2;Π |𝑋1𝑋2𝑌1) =

𝐼 (𝑋1𝑋2;Π |𝑌1𝑌2) + 𝐼 (𝑌1𝑌2;Π |𝑋1𝑋2) = 𝐼 .

Once again, passing to the limit, gives us the ‘≥’ direction, and completes the proof.

If we denote an 𝑛-time repetition of a task 𝑇 by 𝑇⊗𝑛, then repeatedly applying The-
orem 3.1 yields

IC(𝑇⊗𝑛, 𝜇𝑛) = 𝑛 · IC(𝑇, 𝜇). (3.3)

Thus information complexity is additive and has the direct sum property: the cost of 𝑛 copies
of 𝑇 scales as 𝑛 times the cost of one copy. This fact can be viewed as an extension of
the property 𝐻 (𝑋𝑛) = 𝑛 · 𝐻 (𝑋) to interactive problems, but what does it teach us about
communication complexity?

Information equals to amortized communication. Let us return to the communication
complexity setting, fixing 𝑇 to be the task of computing a function 𝐹 (𝑋,𝑌 ) with some error
at most 𝜀 > 0 over a distribution 𝜇 (the case 𝜀 = 0 seems to be different from 𝜀 > 0). We
will denote by 𝐹𝑛

𝜀 the task of computing 𝑛 copies of 𝐹 on independent inputs distributed
according to 𝜇𝑛, with error at most 𝜀 on each copy (note that computing 𝐹 correctly with
error at most 𝜀 on all copies simultaneously is a harder task).

It is an easy observation that the information cost of a protocol 𝜋 is always bounded
by its length |𝜋 |, and therefore information complexity is always bounded by communication
complexity. Therefore, by (3.3),

1
𝑛
· 𝐷𝜇𝑛 (𝐹𝑛

𝜀 ) ≥
1
𝑛
· IC(𝐹𝑛

𝜀 , 𝜇
𝑛) = IC(𝐹𝜀 , 𝜇). (3.4)

It turns out that the converse is also true in the limit, as 𝑛→ ∞ [22]21:

lim
𝑛→∞

1
𝑛
· 𝐷𝜇𝑛 (𝐹𝑛

𝜀 ) = IC(𝐹𝜀 , 𝜇). (3.5)

21 More precisely, the converse adds error that vanishes exponentially in 𝑛 (and thus goes to
0 as 𝑛 → ∞). Such a statement would be false with no errors allowed [77, 80]. Therefore,
(3.5) only holds when IC(𝐹𝜀 , 𝜇) is continuous in 𝜀 as we approach from 𝜀+. In particu-
lar, this means that in many applications we need 𝜀 > 0 for it to hold, as there is often a
discontinuity at 𝜀 = 0.
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Equation (3.5) can be viewed as the interactive version of the Source Coding Theorem (1.6).
In particular, it gives an operational characterization of information complexity exclusively
in terms of communication complexity. The link given by (3.5) has been further refined in
[100], establishing the second-order term in the equation.

3.2. Direct sum and direct product for communication
Direct sum and interactive compression. Recall that the direct sum property asserts that
solving 𝑛 copies of a problem requires 𝑛 times the resources it takes to solve one copy. It is
one of the most generic tools one can deploy (or hope to deploy) in the quest for unconditional
lower bounds.

Theorem 3.1 implies that the direct sum property holds exactly for information
complexity. In addition, (3.5) immediately gives us a handle on the direct sum question for
communication complexity.

The direct sum question for communication complexity asks whether

𝐷𝜇𝑛 (𝐹𝑛
𝜀 ) = Ω(𝑛 · 𝐷𝜇 (𝐹𝜀))? (3.6)

By (3.5), the question (3.6) is equivalent to

IC(𝐹𝜀 , 𝜇) = Ω(𝐷𝜇 (𝐹𝜀))? (3.7)

Or, switching directions,
𝐷𝜇 (𝐹𝜀) = 𝑂 (IC(𝐹𝜀 , 𝜇))? (3.8)

Note that the equivalence works on a per-problem basis, so whenever (3.8) holds for
a given problem, direct sum for communication complexity holds for that problem. On the
other hand, to show that direct sum for communication complexity fails in general, it suffices
to give one example of a function where 𝐷𝜇 (𝐹𝜀) = 𝜔(IC(𝐹𝜀 , 𝜇)).

One natural way to interpret (3.8) is through the lens of interactive compression —
an interactive analogue of Huffman coding (1.9), where it does hold that 𝐻 (𝑋) > 𝐶 (𝑋) − 1.
Huffman (one way) coding shows how to encode a low-entropy “uninformative” signal into
a short one. Its interactive version seeks to simulate a low information cost “uninformative”
protocol 𝜋 with a low communication protocol 𝜋′.

It turns out that such a compression scheme is impossible, disproving the direct sum
conjecture through the information complexity route. In a series of breakthrough works,
Ganor, Kol, and Raz [43–45] give an example of a function whose information complexity
is exponentially smaller than its communication complexity. That is, in [44] — building on
earlier works by the same authors — they present an 𝐹 such that

𝐷𝜇 (𝐹𝜀) = 2Ω(IC(𝐹𝜀 ,𝜇) ) ≫ IC(𝐹𝜀 , 𝜇). (3.9)

In fact, the exponential gap is the largest possible, as it can be shown [13] for all 𝐹,

𝐷𝜇 (𝐹𝜀) = 2𝑂 (IC(𝐹𝜀 ,𝜇) ) . (3.10)
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To prove the strongest possible direct sum theorem (3.6) we would have needed
𝜋′ to be compressed all the way down to 𝑂 (𝐼) bits of communication (the strongest possi-
ble interactive compression result). Even though such a compression is impossible, weaker
interactive compression results lead to weaker (but still non-trivial) direct sum theorems. At
present, the two strongest compression results, which partially resolve Problem 3.2, compress
𝜋 to �̃� (

√
𝐶 · 𝐼) communication22 [9] and 2𝑂 (𝐼 ) communication (3.10), respectively. Note that

these results are incomparable since 𝐶 > 𝐼 can be much (e.g. double-exponentially) larger
than 𝐼.

These result lead to direct sum theorems for randomized communication complexity.
As the compression introduces an additional small amount of error, the first result implies
for any constant 𝜌 > 0:

𝐷𝜇𝑛 (𝐹𝑛
𝜀 ) = Ω̃(

√
𝑛 · 𝐷𝜇 (𝐹𝜀+𝜌)), (3.11)

and the second one implies

𝐷𝜇𝑛 (𝐹𝑛
𝜀 ) = Ω(𝑛 · log(𝐷𝜇 (𝐹𝜀+𝜌))). (3.12)

In summary, we know that perfect compression a la Huffman is impossible in the
two-party interactive setting. Mapping out the exact limits of interactive compression remains
open:

Problem 3.2. (Interactive compression problem). Given a protocol 𝜋 whose communication
cost is 𝐶 and whose information cost is 𝐼, what is the smallest amount of communication
needed to (approximately) simulate 𝜋?

As noted above, we know that whenever 𝐼 ≪ 𝐶, the protocol can be compressed to
𝑜(𝐶) bits of communication. At the same time, it is unknown, for example, whether com-
pression to 𝐼𝑂 (1) · (log𝐶)𝑂 (1) or even to 𝐼𝑂 (1) · 𝐶𝑜 (1) is possible. A candidate problem for
such a lower bound on compression is presented in [14].

Direct product for communication complexity. Next, we turn our attention to the more
difficult direct product problem for communication complexity. The direct sum question talks
about the amount of resources needed to achieve a certain probability of success on 𝑛 copies
of 𝐹. What if that amount of resources is not provided? For example, (3.4) implies that unless
𝑛 · IC(𝐹𝜀 , 𝜇) bits of communication are allowed in the computation of 𝐹𝑛

𝜀 , the computation
of some copy of 𝐹 will have < 1− 𝜀 success probability. What does it tell us about the success
probability of all copies simultaneously? It only tells us that the probability of the protocol
succeeding on all copies simultaneously is bounded by 1 − 𝜀. This is a very weak bound,
since solving the 𝑛 copies independently leads to a success probability of (1 − 𝜀)𝑛, which is
exponentially small for a constant 𝜀. How can this gap be reconciled? In particular, can one
show that Alice and Bob cannot “pool” the errors from all 𝑛 copies onto the same instances,
thus keeping the success probability for each coordinate, as well as the global success prob-
ability, close to 1 − 𝜀? The direct product problem addresses precisely this question. Let us

22 Here, the �̃� ( ·) notation hides poly-logarithmic factors.

22 M. Braverman



denote by suc(𝐹, 𝜇,𝐶) the highest success probability (w.r.t. 𝜇) in computing 𝐹 that can be
attained using communication ≤ 𝐶. Thus suc(𝐹, 𝜇,𝐶) ≥ 1 − 𝜀 is equivalent to 𝐷𝜇 (𝐹𝜀) ≤ 𝐶.
Somewhat informally phrased, the direct product question asks whether

suc(𝐹𝑛, 𝜇𝑛, 𝑜(𝑛 · 𝐶)) < suc(𝐹, 𝜇, 𝐶)Ω(𝑛)? (3.13)

The examples showing that (3.6) fails also show that direct product (3.13) for com-
munication is false. The direct sum discussion already suggests that for suc(𝐹, 𝜇,𝐶) = 1 − 𝜀,
the best scaling of the amount of communication one can hope for is 𝑛 · 𝐼, where 𝐼 = IC(𝐹𝜀 , 𝜇).
This is because, as 𝑛 → ∞, the per-copy communication cost of computing 𝐹 with error 𝜀
scales as 𝑛 · 𝐼.

Thus, the “right” question is whether the direct product property holds when commu-
nication scales as the information complexity of the problem. If we denote by suci (𝐹, 𝜇, 𝐼) ≥
suc(𝐹, 𝜇, 𝐼) the best success probability one can attain solving 𝐹 while incurring an infor-
mation cost of at most 𝐼, the direct product question for information asks whether

suc(𝐹𝑛, 𝜇𝑛, 𝑜(𝑛 · 𝐼)) < suci (𝐹, 𝜇, 𝐼)Ω(𝑛)? (3.14)

Note that the success probability on the left-hand-side is still with respect to communication.
A statement such as this with respect to information cost is bound to be false: Information cost
being an average-case quantity, one can attain an information-cost 𝐼𝑛 protocol by doing noth-
ing with probability 1 − 𝛿, and incurring an information cost of 𝐼𝑛/𝛿≫ 𝑛 · 𝐼 with probability
𝛿 that can be taken only polynomially (and not exponentially) small.

This latter version of the direct product theorem was shown to be true up to polyloga-
rithmic factors for boolean functions in [24,25]. To simplify parameters, suppose suci (𝐹, 𝜇, 𝐼) <
2/3. Then there are constants 𝑐1, 𝑐2 such that

if 𝑇 log𝑇 < 𝑐1𝑛 · 𝐼, then suc(𝐹𝑛, 𝜇𝑛, 𝑇) < 2−𝑐2𝑛. (3.15)

The proof of (3.15) is quite involved and combines ideas from the proof of direct sum the-
orems and of parallel repetition theorems. The main idea is that an event that happens with
probability > 2−𝑐2𝑛 (namely, the event of succeeding on all coordinates) “confers” at most
∼ 𝑐2 bits of information onto each coordinate. If 𝑐2 is a small constant, then this extra infor-
mation is very small and can be ignored. The actual proof involves developing the right
information-theoretic language to make this simple-sounding ideas rigorous.

We next turn our attention to an early application of information complexity: exact
bounds on communication complexity. We briefly discuss additional applications in Sec-
tion 3.4.

3.3. Exact communication complexity of set disjointness
One of the great successes of information theory as it applies to (classical, one-

way) communication problems is its ability to give precise answers to fairly complicated
asymptotic communication problems — ones involving complicated dependencies between
terminals or complicated channels. Using combinatorial techniques (in most cases) such
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precision is inaccessible in the two-party setting, since the techniques often lose constant
factors by design. In contrast, information complexity extends the precision benefits of one-
way information theory to the interactive setting.

We give one specific example of an exact communication complexity bound. Recall
that the disjointness problem 𝐷𝑖𝑠 𝑗𝑛 (𝑋,𝑌 ) takes two 𝑛-bit vectors 𝑋,𝑌 and checks whether
there is a location with 𝑋𝑖 = 𝑌𝑖 = 1. Thus 𝐷𝑖𝑠 𝑗𝑛 is just a disjunction of 𝑛 independent copies
of the two bit 𝐴𝑁𝐷 (𝑋𝑖 , 𝑌𝑖) function. Using techniques similar to the proof of Theorem 3.1,
one can show that the communication complexity of disjointness is tightly linked with the
information complexity of 𝐴𝑁𝐷. Note that disjointness becomes trivial if many coordi-
nates (𝑋 𝑗 ,𝑌 𝑗 ) of the input are (1, 1). However, any distribution of inputs where 𝜇((𝑋 𝑗 ,𝑌 𝑗 ) =
(1, 1)) ∼ 1/𝑛→ 0 will not be trivial. More formally, denote by 0+ a function 𝑓 (𝑛) of 𝑛 such
that 𝑓 (𝑛) = 𝑜(1) and 𝑓 (𝑛) ≫ 2−𝑂 (𝑛) . For example, one can take 𝑓 (𝑛) = 1/𝑛. Denote by
𝐴𝑁𝐷0 the task of computing 𝐴𝑁𝐷 correctly on all four possible inputs. Then with some
work one shows [18] that

𝑅0+ (𝐷𝑖𝑠 𝑗𝑛) =
(

inf
𝜇:𝜇 (1,1)=0

IC(𝐴𝑁𝐷0, 𝜇)
)
· 𝑛 ± 𝑜(𝑛). (3.16)

Thus, understanding the precise asymptotics of the communication complexity of𝐷𝑖𝑠 𝑗𝑛 boils
down to understanding the (0-error) information complexity of the two-bit 𝐴𝑁𝐷 function23.

The information-theoretically optimal protocol for the two-bit AND function (and
for any other function) depends on the prior distribution of the inputs. The protocol attain-
ing the optimal information complexity for the two-bit AND function for symmetric prior
distributions (where 𝜇(0, 1) = 𝜇(1, 0)) is given in Figure 124

Observe that the “protocol” in Figure 1 is not an actual communication protocol: it
involves a continuous-time clock, and not a finite sequence of discrete messages. The protocol
can be approximated by a discrete protocol by sampling 𝑁𝐴 and 𝑁𝐵 from the discrete set{

0, 1
𝑟
, 2
𝑟
, . . . , 𝑟−1

𝑟

}
instead of [0, 1), and then having 𝑟 iterations of the clock going over

multiples of 1
𝑟
.

Interestingly, even in the case of such a simple function as two-bit 𝐴𝑁𝐷, the infor-
mation complexity is not attained by any particular protocol, but rather by an infinite family
of communication protocols! Moreover, if we denote by 𝐼𝐶𝑟 (𝐴𝑁𝐷0) the information com-
plexity of 𝐴𝑁𝐷0 where the infimum in (3.2) is only taken over protocols of length 𝑟, then it
turns out that 𝐼𝐶𝑟 (𝐴𝑁𝐷0) = 𝐼𝐶 (𝐴𝑁𝐷0) + Θ(1/𝑟2), implying that an asymptotically opti-
mal protocol is only achieved with a super-constant number of rounds [18]. We do not yet
know how general this 1/𝑟2 gap phenomenon is, and which communication tasks admit a
minimum in (3.2).

23 Note that even when 𝜇 (1, 1) = 0 and thus 𝐴𝑁𝐷 (𝑋, 𝑌 ) = 0 on supp(𝜇) , the task
𝐴𝑁𝐷0 requires the protocol to always be correct – even on the (1, 1) input. Otherwise,
IC(𝐴𝑁𝐷0, 𝜇) would trivially be 0.

24 The protocol for general 𝜇 is an extension of the protocol in Figure 1, and can be found in
[18]
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Alice receives 𝑥 ∈ {0, 1}; Bob receives 𝑦 ∈ {0, 1}.
Goal: to compute 𝐴𝑁𝐷 (𝑥, 𝑦) = 𝑥 ∧ 𝑦 with no error.

(1) If 𝑥 = 0 then Alice samples 𝑁𝐴 ∈𝑅 [0, 1) uniformly at random.
If 𝑥 = 1 then Alice sets 𝑁𝐴 = 1.

(2) If 𝑦 = 0 then Bob samples 𝑁𝐵 ∈𝑅 [0, 1) uniformly at random.
If 𝑦 = 1 then Bob sets 𝑁𝐵 = 1.

(3) Alice and Bob monitor the clock 𝐶, which starts at value 0.

(4) The clock continuously increases to 1. If min(𝑁𝐴, 𝑁𝐵) < 1, when the
clock reaches min(𝑁𝐴, 𝑁𝐵) the corresponding player sends 0 to the other
player, the protocol ends, the players output 0. If min(𝑁𝐴, 𝑁𝐵) = 1, once
the clock reaches 1, Alice sends 1 to Bob, the protocol ends, and the
players output 1.

Figure 1
The information-theoretically optimal protocol for 𝐴𝑁𝐷 (𝑥, 𝑦) under prior distribution 𝜇 with 𝜇 (0, 1) = 𝜇 (1, 0)

By calculating the information cost of the optimal protocol for 𝐴𝑁𝐷, and maximiz-
ing it over all possible distributions 𝜇 with 𝜇(1, 1) = 0, we obtain from (3.16):

𝑅0+ (𝐷𝑖𝑠 𝑗𝑛) = 𝐶𝐷𝐼𝑆𝐽 · 𝑛 ± 𝑜(𝑛), where 𝐶𝐷𝐼𝑆𝐽 ≈ 0.4827. (3.17)

Small set Disjointness. An interesting special case of the set-disjointness problem, is the
small set disjointness case. In this setting, only at most 𝑘 ≪ 𝑛 of the 𝑋𝑖’s are 1 and at most 𝑘
of the 𝑌𝑖’s are 1. In other words, Alice and Bob each have a set of 𝑘 elements over a universe
of 𝑛 ≫ 𝑘 elements, and they wish to determine whether they have an element in common.
Denote this problem by 𝐷𝑖𝑠 𝑗𝑛,𝑘 .

The naïve upper bound in this case is𝑂 (𝑘 log𝑛), since it takes𝑂 (log𝑛) bits to trans-
mit a single element from the set {1, . . . , 𝑛}25. Somewhat surprisingly, Håstad and Wigderson
[52] showed that small set disjointness can be solved using communication linear in 𝑘:

𝑅0+ (𝐷𝑖𝑠 𝑗𝑛,𝑘) = 𝑂 (𝑘). (3.18)

Note that the Ω(𝑛) lower bound for 𝐷𝑖𝑠 𝑗𝑛 immediately translates into an Ω(𝑘) lower bound
for 𝐷𝑖𝑠 𝑗𝑛,𝑘 , leading to

𝑅0+ (𝐷𝑖𝑠 𝑗𝑛,𝑘) = Θ(𝑘). (3.19)

25 The precise bound is 𝑂 (𝑘 log(𝑛/𝑘 ) ) , but this becomes 𝑂 (𝑘 log 𝑛) whenever 𝑛 > 𝑘1+𝑐
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It turns out that the precise bound follows from the optimality of the protocol in Figure 1
almost immediately. The relevant distribution for the single 𝐴𝑁𝐷 instance is one where
the probability of 𝑋 = 1 is 𝑘

𝑛
. Calculating the information cost of the protocol with prior

𝜇(1, 0) = 𝜇(0, 1) = 𝑘
𝑛
, 𝜇(0, 0) = 1 − 2𝑘

𝑛
yields [18]:

𝑅0+ (𝐷𝑖𝑠 𝑗𝑛,𝑘) =
2

ln 2
· 𝑘 ± 𝑜(𝑘). (3.20)

3.4. Some other connections
Let us briefly mention some recent connections between information complexity

and other sub-areas of theoretical computer science.

Streaming: do we need numbers to approximately count? Beyond answering questions
such as the direct sum for randomized communication complexity, the main advantage of
information complexity is that it allows us to phrase intuitive statements about computation
and communication in a rigorous way. We will illustrate it with a sketch of a recent result
about the streaming complexity of approximate majority [19].

In the streaming setup, inputs 𝑋1, . . . , 𝑋𝑛 arrive one-by-one, and the state of the
computation is updated based on the input and the previous state. Thus, the computation can
be represented as the following diagram:

𝑀0
𝑋1−−→ 𝑀1 (𝑀0, 𝑋1)

𝑋2−−→ 𝑀2 (𝑀1, 𝑋2)
𝑋3−−→ . . .

𝑋𝑛−−→ 𝑀𝑛 (𝑀𝑛−1, 𝑋𝑛)
The answer is then computed from the final state 𝑀𝑛. Typically we are interested in either the
average memory used by the algorithm �̄� =

1
𝑛

∑︁
𝑖

|𝑀𝑖 |, or the maximum amount of memory

𝑚𝑚𝑎𝑥 := max |𝑀𝑖 |26.
Consider the following problem: Given 𝑛 i.i.d. coin tosses of 𝑋𝑖 ∼ 𝐵1/2, compute

MAJ(𝑋1, . . . , 𝑋𝑛) while allowing a 1% error probability27.
The simplest possible algorithm would just count the bits: set 𝑀0 = 0 and

𝑀𝑖 (𝑀𝑖−1, 𝑋𝑖) := 𝑀𝑖−1 + 𝑋𝑖 ,

so that 𝑀𝑛 =
∑
𝑋𝑖 , from which one can compute MAJ(𝑋1, . . . , 𝑋𝑛) with no error. This solu-

tion requires �̄� ∼ log𝑛memory. It is not hard to show that producing an exact count requires
this much memory. What about approximate counting? Can we avoid storing numbers if we
only wish to count the numbers approximately? It turns out that the answer is ‘no’: indeed
�̄� = Ω(log 𝑛) is necessary.

A key step of the construction is to correctly define the information cost of this
streaming setup28:

IC(𝑀) :=
𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝐼 (𝑀𝑖; 𝑋 𝑗 |𝑀 𝑗−1) (3.21)

26 Here |𝑀 | is the length of 𝑀 in bits
27 That is, the algorithm needs to be correct at least 99% of the time
28 An important benefit of an information-theoretic lower bound – as opposed to a combina-

torial one – is that it can be used in the context of a direct sum theorem to lower bound the
cost of doing multiple copies of a problem in parallel. Indeed, this is how it was used in [19]
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Each term of the sum captures how much information the 𝑖-th message still retains
about input 𝑋 𝑗 that appeared earlier. As in many other cases, information here is a lower
bound on

∑ |𝑀𝑖 |. It turns out that for a typical pair we must have

𝐼 (𝑀𝑖; 𝑋 𝑗 |𝑀 𝑗−1) ≳
1

𝑖 − 𝑗 + 1
, (3.22)

and therefore

�̄� =
1
𝑛
·
∑︁
𝑖

|𝑀𝑖 | ≥
1
𝑛
· IC(𝑀) ≳ 1

𝑛
·

𝑛∑︁
𝑖=1

𝑖∑︁
𝑗=1

1
𝑖 − 𝑗 + 1

= Θ(log 𝑛) (3.23)

The main inequality (3.22) is proved by rephrasing the following intuition in information-
theoretic terms. If we break the stream into 𝑘 = 2𝑟 blocks 𝐵1, . . . , 𝐵𝑘 of length 𝑛/𝑘 each, then
at the end of each block 𝐵𝑖 , the message 𝑀𝑖 ·𝑛/𝑘 should contain at least 1 bit of information
about the approximate count in the previous block. This translates into containing at least 𝑘

𝑛

bits of information about a typical 𝑋 𝑗 in that block, leading to (3.22). This proof also gives
intuition for the need to have Ω(log 𝑛) bits of information in the streaming algorithm: ∼ 1
bit of information needs to be dedicated to each of log 𝑛 “scales” of the stream.

Distributed learning. All large-scale machine learning today is performed using a large
number of processing cores. As a result, communication costs and delays often dominate the
overall execution time. This motivates efforts to minimize communication between worker
cores, and to understand the fundamental limits of communication needed to complete basic
tasks — such as distributed parameter estimation [108]. Information complexity (and its ability
to bring in tools from information theory, such as strong data processing inequalities) has
led to tight results about problems such as distributed sparse parameter estimation [17,46].

Parallel repetition. Parallel repetition first appeared in the context of Probabilistically
Checkable Proofs (PCP) and hardness amplification. Hardness amplification is accomplished
here by taking a task 𝑇 (e.g. a verification procedure that allows authorized provers to pass
the test, while unauthorized provers pass with probability at most 1 − 𝜀), and creating a task
𝑇𝑛 by taking 𝑛 independent instances of 𝑇 . It has been shown [37, 54, 84, 86] that as 𝑛 grows,
the success probability of unauthorized provers goes to 0. Unfortunately, it does not go to 0
as (1 − 𝜀)𝑛. Indeed, as shown by a counterexample constructed by Raz [87], the best rate one
can hope for is (1 − 𝜀2)𝑛. The reason for this, pointed out by an earlier example by Feige
and Verbitsky [41], is that the answers can be arranged to align errors together, so that when
the provers fail, they fail on a lot more than 𝜀𝑛 coordinates at the same time. This is possible
when answers are allowed to be correlated.

It should not be surprising that the parallel repetition problem shares some similari-
ties with the direct product problem in communication complexity. In both cases, the concern
is that correlations between coordinates will lead to an unexpectedly high success probability
— much higher than (1− 𝜀)𝑛. Indeed, the proof of the direct product theorem for information
complexity (3.15) can be combined with “standard” parallel repetition machinery to obtain
the most general parallel-repetition theorem to-date [15].
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In turn, parallel repetition has interesting connections to foams — low surface area
tiling ofR𝑛 by Z𝑛 [40], leading to new geometric constructions that implicitly use information
theory [21,65].

Quantum information complexity. Information theory and its quantum extensions have
been used to obtain key results in quantum communication complexity [58, 66]. The basic
notions of information complexity as discussed in the previous section can be adapted to
the quantum setting [98]. Unlike classical information complexity, the quantum information
complexity of the two-bit 𝐴𝑁𝐷 as in (3.16) actually vanishes as the number of rounds goes to
∞. This is consistent with the fact that the quantum communication complexity of disjointness
is𝑂 (

√
𝑛) = 𝑜(𝑛) [1,28], and an earlier result by Elitzur and Vaidman on quantum bomb testing

[38]. Nonetheless, it is possible to use the information complexity machinery to get a near
tight bound on the information complexity of 𝐴𝑁𝐷 in terms of the number of rounds (the
dependence is IC(𝐴𝑁𝐷0, 𝜇) = Θ̃( 1

𝑟
) for the best 𝑟-round protocol). This gives the tight bound

of Ω̃( 𝑛
𝑟
+ 𝑟) on the 𝑟-round quantum communication complexity of 𝐷𝑖𝑠 𝑗𝑛 [16].

Interactive error-correcting codes. Most of the discussion so far focused on developing
(two-party) information complexity as a tool for studying communication complexity and
related models of computation. In other words, the motivation has been mostly complexity-
theoretic.

The main aim of the original information theory project, starting from the work of
Shannon in the 1940s was to further coding theory and practice. Coding theory is concerned
with developing efficient codes that are robust to errors for data storage and transmission —
information theory has become a tool for giving bounds (that are sometimes tight) on what
codes are possibly attainable.

In the context of interactive communication one can view interactive information
complexity (and even communication complexity) as one aspect of coding for interactive
communication (one dealing with noiseless coding). Another important aspect of coding
theory is dealing with noisy communication.

In the interactive setting, this gives rise to questions about interactive error-correcting
codes: given a noisy channel29, encode the entire interactive computation in a way that is
robust to noise. The problem was first studied by Schulman in the 1990s [91], who showed
that it is possible to protect an interactive protocol against a small amount of adversarial
noise. Note that “standard” techniques of encoding each message separately cannot work
here, since in such an encoding an adversary would be able to derail an entire protocol by
completely replacing one of the messages.

The area has seen a resurgence of activity since the work by the author with Rao
[23], which showed that it is possible to encode an interactive protocol in a way that protects
it against 1

4 − 𝜀 adversarial error rate. Since then there has been much activity dealing with

29 As in the one-way communication case, the various models of noise include adversarial and
various forms of random noise
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making the constructions more efficient, more error resilient, and apply in a broader set of
regimes. A survey on the developments in the field as of 2017 can be found in [47].

In addition to developing interactive coding schemes, some of the fundamental ques-
tions such about interactive channel capacity (as the analogue of non-interactive Shannon’s
channel capacity) need to be revisited in the interactive setting [20,67].

4. Challenges and next steps
As we have seen in the last section, information complexity has been a useful tool

(and the right “language”) in a variety of settings involving communication. We have also
briefly seen in Section 1.4 that there are several attack routes for obtaining strong (and cur-
rently apparently unreachable) separations between complexity classes using communication
complexity. This raises the natural question of whether information complexity can be helpful
with these communication complexity bounds.

There are several settings where information complexity (and, more broadly, information-
theoretic reasoning) appears to get “stuck”. Specific examples include:

• Extending tight communication lower bounds to 3 or more parties in the number-
on-the-forehead model (with (log 𝑛)𝑂 (1) parties this would imply difficult circuit
lower bounds [10]).

• Pǎtraşcu’s multiphase conjecture [83] — a lower bound conjecture against a specific
model of computation with 3 parties. The conjecture implies strong dynamic data
structures lower bounds.

• The Arthur-Merlin model in communication complexity. This is a particularly
challenging model for communication complexity lower bounds. It is the communication-
complexity analogue of the corresponding Arthur-Merlin AM class in computa-
tional complexity [5]. We will not define it here, only mention that it can be thought
of as a communication protocol with 2 + 𝜀 players. “𝜀” here is Merlin, who can
provide Alice and Bob with an untrusted hint, but then cannot participate in
the protocol. There is evidence that the Arthur-Merlin communication model is
resistant to information complexity techniques [49].

• Extending parallel repetition results from the setting with two provers to settings
with three or more provers. While tight bounds are known in the two-prover case,
there is an exponential gap between the best upper and lower bounds even in some
of the simplest settings with three provers [48].

There appears to be a common theme in terms of what makes these examples difficult
— namely, the existence of secure computation in the relevant models.

Secure computation. Throughout most of this note information complexity was presented
as the interactive extension of Shannon’s entropy (emphasizing connections to amortized
communication cost). Historically, the fist appearance of information complexity within
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theoretical computer science was in the context of privacy of communication protocols
[7,90]30. The formula (3.2) for information complexity exactly quantifies the smallest possible
information-theoretic privacy loss31 that Alice and Bob can experience while successfully
completing task 𝑇 . It is important that the model here is information-theoretic security: it is
possible to attain cryptographic security based on computational hardness assumptions [107].

In contrast with the cryptographic results, we now know that information-theoretic
privacy in the honest-but-curious model is unattainable. Many of the communication com-
plexity bounds, such as results (3.17) and (3.20) actually apply to information complexity as
well, which means that for these problems there is (asymptotically) no gap between informa-
tion and communication, and the shortest possible protocol is also the one that reveals the least
information to the participants about the inputs. In other words, information-theoretically
secure two-party computation is impossible.

Surprisingly, with three or more players information-theoretically secure computa-
tion becomes possible [11, 32]: if Alice, Bob and Charlie have inputs 𝑋 , 𝑌 , 𝑍 , respectively,
and have pairwise private channels32, then any function 𝐹 (𝑋,𝑌, 𝑍) can be computed in such
a way that the only thing Alice learns about (𝑌, 𝑍) is the value of 𝐹 (𝑋,𝑌, 𝑍) (and similarly
for the other two players).

The result above means that while one can write the natural expression for 3-party
information complexity, and even prove a direct sum result about it, the result will be vacuous:
𝑛 × 0 = 0, since the information complexity of any function in this model is zero.

This pattern repeats itself when one tries to prove Arthur-Merlin lower bounds using
information complexity. Here, the relevant result about secure computation has to do with
the channel used. Communication so far was defined over the binary channel where Alice
and Bob send individual bits. A different kind of channel would take in input from both
Alice and Bob, and then distribute an output to them. The simplest channel of this kind
is the Shannon-Blackwell Binary Multiplying channel [93]: Alice and Bob each send a bit
𝑎 ∈ {0, 1}, 𝑏 ∈ {0, 1}, respectively into the channel, and the channel sends to both of them
the value of 𝑎 ∧ 𝑏 ∈ {0, 1}. Note that in this channel, if Alice sends 𝑎 = 0 into the channel,
she does not learn anything about the value of 𝑏.

It turns out that over the Binary Multiplying channel (BMC) one can implement
secure two-party computation [64]. Once again, one can write expressions for information
complexity over the BMC, and obtain direct sum results similar to Theorem 3.1 above, but
the result would be vacuous of the form 0 + 0 = 0.

Analytic techniques to bypass the secure computation barrier? It remains to be seen
whether the barrier to using information-theoretic techniques (or any techniques for that
matter) for the problems discussed above is merely a technical one, or is related to something
deeper.

30 And, more recently, in the context of differential privacy [76]
31 In the “honest-but-curious” model of privacy, where participants do not actively deviate

from the protocol to learn information they are not supposed to learn.
32 that is, Alice can talk with Bob without Charlie listening
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It is worth noting that in the two-party case (for both communication and parallel
repetition) it is possible to rephrase most proofs in analytic terms, in terms of values of
relevant semi-definite programs on the function’s value matrices [37, 69, 72, 95]. In fact, in
cases where both an analytic and an information-theoretic proof exists, the analytic proof
often pre-dated the information-theoretic one. A notable example of a problem for which we
had a number of analytic proofs [30,94] before an information-theoretic one [50] is for the Gap
Hamming Distance. In other cases, such as exact communication bounds (3.17) and (3.20),
information complexity appears to be the right tool.

When moving from two to three or more parties, in the analytic setup, the main
object of consideration becomes tensors instead of matrices (see e.g. [26]). They are much
more difficult to deal with, both because some of the nicer aspects of linear algebra are
missing, and because the theory as a whole is much less developed. A promising strategy for
pinning down the exact difficulty in the examples above would be to trace it to a statement
about 3-dimensional tensors.

If that statement is true, the proof might be useful in communication and parallel
repetition applications (as has been the case with the analytic tools in the two-party setting
[37, 69, 72, 95]). Moreover, using 2-party information complexity as a guiding map, it might
lead to new “information-like” definitions that don’t currently exist.

If that statement is false, or turns out to be very difficult to prove even in its analytic
form, then we might have discovered a mathematical obstacle to computational complexity
lower bounds that would guide future lower bound efforts.

In either case, we can look forward to exciting results on the quest towards uncon-
ditional lower bounds in various computation models.
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