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Citation: “The Chern medal is awarded to Masaki Kashiwara for his outstanding and 

foundational contributions to algebraic analysis and representation theory sustained over 

a period of almost 50 years.” 

 

 

 

Masaki Kashiwara is a builder of bridges, a creator of tools, and a visionary who opens 

new mathematical worlds to explore. Over his nearly 50 years in mathematics, he has 

opened a new field and proven astonishing theorems with methods no one had imagined. 

 

Kashiwara’s earliest, enormous contribution was his development of a tool known as a 

“D-module.” D-modules are an elaborate structure woven out of differential equations, 

which are one of the most fundamental mathematical tools used throughout science. 

Differential equations themselves belong to a branch of mathematics known as analysis, 

while the loom Kashiwara built for them belongs to a branch known as algebra. 

Therefore D-modules live in both these mathematical worlds, creating a bridge between 

the two fields that allows objects and methods in one field to be carried over to the other. 

He developed this bridge so much that it became the foundation of a new field, algebraic 

analysis. 

 

D-modules were initially created by Kashiwara’s professor in graduate school, Mikio 

Sato. And they worked together to fully understand D-modules, discovering all the 

different types and how those types relate to one another. 

 

Then Kashiwara put D-modules to work, demonstrating how fantastically powerful they 

could be. He used them to prove a longstanding, extremely important conjecture, the 

Riemann-Hilbert correspondence, which asks a fundamental question about differential 

equations. These equations are sometimes not defined at every point; for example, y=1/x 

is not defined at the point x=0. These points are called “singularities,” and the equations 

can behave in different ways near them. Kashiwara showed how to find all the 

differential equations that behave in a particular way near those points. (The simplest 

case, when the equation is in a single variable, had been solved in the 1960s.)  

 

But the methods he used accomplished far more than simply proving that conjecture. He 

proved it by building yet another bridge between fields, this time between algebraic 

analysis and a field known as topology. He showed that there was a perfect, one-to-one 

correspondence between a particular type of D-module and a topological object known as 

a “perverse sheaf.” 

 

He then applied this to a third field, representation theory. Representation theory asks a 

particular type of question about symmetry. One of the most fundamental questions in 

mathematics is about all the different types of symmetries there might be. In the physical 



world, we generally experience only a few fundamental types: the mirror symmetry of a 

face, the rotational symmetry of a snowflake, the translational symmetry of a frieze 

pattern in wallpaper, and combinations of those, like that of a corkscrew. But in higher 

dimensions, there are infinitely many possibilities. The question of representation theory 

is: What are all the different mathematical objects that exhibit any particular type of 

symmetry? 

 

Together with Jean-Luc Brylinski (and simultaneously with another group, Alexandre 

Beilinson and Joseph Bernstein), he astounded specialists in representation theory by 

proving something known as the Kazhdan-Lusztig conjecture, which lies at the juncture 

of algebra, analysis and geometry. The method of the proof struck most mathematicians 

as nearly magical because it was so brilliant and unexpected. Kashiwara went on, 

together with Toshiyuki Tanisaki, to prove an even more general and powerful form of 

the conjecture. The proof revolutionized representation theory, transforming it into its 

modern form. 

 

Kashiwara also invented another key tool in representation theory known as “crystal 

bases.” There are often many, many different mathematical objects that exhibit a 

particular symmetry, and these objects can be related in complex ways that are very 

difficult to understand. A crystal basis is a kind of skeleton showing how these objects 

are interrelated and revealing those relationships in a simple graph. Suppose, for 

example, that the underlying symmetry is composed of two different symmetries, the way 

the symmetry of a corkscrew is a combination of rotation and translation. Then the 

crystal basis will be a graph that has two unconnected pieces. Crystal bases are now used 

throughout representation theory. 

 

His accomplishments continue to this day. He is still developing the theory of crystal 

bases and of D-modules, proving an extension of the Riemann-Hilbert correspondence in 

2016. He has also built bridges to other fields as well, including symplectic geometry.  

 

In addition, he has inspired many other mathematicians through his ideas. He has written 

several books that have become the bibles of their fields. He was also director of the 

Research Institute for Mathematical Sciences at Kyoto University and vice president of 

the International Mathematics Union. 


