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Barry Mazur is a singular figure in the international mathematical community.
His research achievements cover several areas of mathematics, from topology to al-
gebraic geometry to number theory, and assure his position as one of the greatest
mathematicians of our time. His ability to move from one area to another is already
unusual; what is extraordinary is his perception of deep analogies between them.
These analogies have not only brought solutions to outstanding problems but also
sparked the development of new research areas.

Mazur is in many ways a very concrete mathematician, taking on and solving
specific problems. He also has the ability to shift effortlessly to higher levels of gener-
ality and a big-picture, abstract viewpoint. He can therefore discuss mathematics on
many different levels, making him an uncommonly effective interlocutor. This trait,
combined with his buoyant zeal and the uncommon generosity with which he shares
ideas, has proven to be a magnet for students, postdocs, and colleagues, amplifying
his influence on the field. Moreover his charm and friendliness have made him a truly
beloved member of the mathematical community.

And yet his influence goes beyond this community. Mazur’s tireless intellect does
not stop at the borders of mathematics but ranges into literature, law, philosophy,
and physics. His many nontechnical writings have explored new genres for discussing
mathematical ideas. He has also crossed academic barriers to teach courses in collab-
oration with colleagues in other fields.

To give a flavor of Mazur’s rich and diverse mathematical oeuvre, we consider a
few highlights.

The “Mazur Swindle”

As a doctoral student in the 1950s, Mazur formulated a deep question about the
fundamental nature of space. Only after solving it did he find out it was a major
open question in topology known as the Schoenflies problem.

A closed curve divides the plane into two regions: the region inside the curve
and the region outside. What’s more, no matter how complicated and undulating
your curve is, you can stretch out the bumps to morph the interior into a disk; in
mathematical terms, one says the interior is homeomorphic to a disk. The Schoenflies
problem asks whether the analogous phenomena occur in higher dimensions. One need
only add one dimension to encounter an obstacle: it is possible to create a surface so
complicated that its interior is not homeomorphic to a three-dimensional ball. The
Alexander horned sphere is a celebrated example.
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Mazur came up with a mild restriction to rule out wild examples like the horned
sphere. Then he answered the Schoenflies problem in the affirmative—for all dimen-
sions. To do this, he created a technique, now called the “Mazur swindle”, that elim-
inates difficulties by pushing them off to infinity. Seemingly magical but perfectly
rigorous, the Mazur swindle was a powerful insight. As Valentin Poénaru wrote:
“Barry’s work, handling all the dimensions at once, came like a thunderbolt and was
also a psychological revolution that, together with other developments, paved the way
for what came next in high-dimensional topology.”

Topology is the study of shapes, called manifolds, that can expand, bend, and
move while retaining their most basic characteristics, like how many holes they have.
Mazur’s early work centered on topology; there is even a type of manifold called the
Mazur-Poénaru manifold (the two discovered it independently around 1960). Then,
like many other mathematicians in the 1960s, Mazur came under the influence of
Alexander Grothendieck, who envisioned unity between the fluid, continuous world
of shapes and the more rigid, discrete world of numbers. In realizing this vision,
Grothendieck reworked the foundations of algebraic geometry, a branch of mathe-
matics that uses geometric and topological ideas to study number-theoretic objects
like curves that represent the solutions of polynomial equations.

The Lure of Algebraic Geometry

One of the signs of the evolution of Mazur’s interests is a remarkable paper he wrote in
the mid-1960s describing an analogy (which he credited to David Mumford) between
knots and prime numbers. Though the paper went unpublished, the ideas it set forth
continued to blossom, forming the basis for a new area called arithmetic topology.

When Mazur received the Steele Prize of the American Mathematical Society
in 2000, he looked back on the early 1960s, when Grothendieck posed to him an
inspiring question. The question raised the intriguing possibility, Mazur said, “that
different topologies might be ‘unified’ by virtue of the fact that they arose as different
avatars of the same algebraic geometry.” Lured in this way into algebraic geometry,
Mazur launched a collaboration with Michael Artin, which he called “one of the most
important mathematical experiences for me and ... enormous fun.”

The Steele Prize honored one of Mazur’s most influential papers, “Modular curves
and the Eisenstein ideal,” published in 1977. This paper represented the first time
that the full power of the Grothendieck revolution in algebraic geometry was brought
to bear on a purely number-theoretic problem—in fact on an important problem that
had gone unsolved for more than 70 years. While the paper was immediately hailed
as a significant advance, its real impact became apparent only with the passage of
time, as other researchers used it as a springboard for new advances.
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The paper continued mathematicians’ millenia-long conversation about Diophan-
tine equations, which are polynomial equations with whole-number coefficients. The
solutions to a specific collection of Diophantine equations—those having two variables
where the highest degree of the variables is three—form objects known as an elliptic
curves. For example, solutions to the equation y2 − x3 = 2 form a curve in the plane,
which looks a bit like the silhouette of a fish with a round body trailed by an infinitely
long, infinitely widening tail.

Elliptic curves have some intriguing features. If you draw a line connecting two
points on an elliptic curve, the line generally hits a third point on the curve, which
can be thought of as the “sum” of the first two points. Miraculously, this summing
operation makes the points into a group. Pervasive across mathematics and the
sciences, the concept of a group organizes the myriad structures arising when a set
is endowed with an operation that can combine pairs of elements and that can also
be reversed to “uncombine” them. Groups usually arise through considering the
collection of symmetries of an object; for example, the symmetries of a molecule with
the operation of rotations is a group.

Among the mathematicians beguiled by the beauty of elliptic curves were the
highly ingenious Italian algebraic geometers working in the early 20th century. They
explored the group structure of the rational points on elliptic curves—that is, those
points whose coordinates are rational solutions of the equation governing the curve.
They observed that the groups—more precisely, the torsion subgroups—that arose
were very limited in type. Why did so few types arise? And exactly which ones?

In a paper with John Tate in the mid-1970s, Mazur honed his intuition about
elliptic curves by studying in detail some particular examples. That intuition formed
the basis for Mazur’s prize-winning 1977 paper, which completely answered the ques-
tions the Italians had wondered about, by describing the exact structure of all the
possible torsion subgroups that could occur.

Beyond providing a definitive solution to a venerable problem, Mazur’s paper
opened new avenues of research through its many insightful asides and open ques-
tions, which other researchers took up to make further advances. The paper laid the
foundation for many of the most important results in arithmetic algebraic geometry
over the last 50 years, and its long echo is still felt at the frontier of research today.
The paper also played a major role in reviving interest in the study of elliptic curves,
which remains a central topic in number theory.

Deforming Galois Representations

Such a result might have been the crowning achievement of an outstanding career in
mathematics. But Mazur went on to do further seminal work. One example is his
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introduction of what are now known as “deformations of Galois representations.” We
can give only a very rough picture of this sophisticated notion.

The pioneering work of Evariste Galois, whose short life ended in the first part
of the 19th century, teaches us that a certain group, now called the Galois group, is
key to understanding solutions to polynomial equations. One way to get information
about the Galois group is to study how it acts on other mathematical objects, most
importantly vector spaces over finite fields and p-adic fields.

Mazur discovered a method for lifting a Galois representation over a finite field
to a collection of deformations over a p-adic field. The reason it is useful to consider
individual deformations is that they encode arithmetic information about concrete
geometric objects like elliptic curves. Mazur’s method endows the collection of all
deformations with extra mathematical structures that are of great interest in their
own right and remain part of a lively area of investigation.

Mazur’s 1989 paper introducing this discovery did not solve a specific problem.
Rather, it launched a new theory, the theory of deformation of Galois representations,
which unveiled an entirely new viewpoint and which over the ensuing decades other
researchers have used to make new advances. One of these is the application of
sophisticated counting arguments to the set of Galois deformations satisfying certain
conditions.

The first spectacular argument of this sort came in Andrew Wiles’s epoch-making
proof of Fermat’s Last Theorem in 1993. This proof completed a grand edifice of which
several of Mazur’s ideas, including those arising in his 1977 paper on elliptic curves,
are important cornerstones. The theory of deformation of Galois representations has
also been the basis for advances in the Langlands Program, which offers a unifying
view of mathematics by suggesting deep relations among geometry, algebra, number
theory, and analysis.

Beyond Mathematics

As outstanding as Mazur’s mathematical accomplishments are, they do not tell the
whole story of his impact on the field. His students and colleagues speak of his
unfailing graciousness and the generosity with which he shares ideas. A gifted com-
municator, he is unusually perceptive in his ability to pitch explanations at the right
level for his listeners. In advising PhD students—he’s had close to 60 in all—he guides
and motivates without imposing his own views of what directions they should take.
Mazur is surely a leader, but he’s also an inspirer, a facilitator, a kind of intellectual
midwife whose sensitive radar helps others give birth to their own creativity.

Mazur’s passion for ideas has had an impact beyond mathematics. He has written
several expository works that attempt to give those outside of the field an authentic
sense of its depth and beauty. One example is his 2003 book Imagining Numbers
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(particularly the square root of minus fifteen), in which the protagonist is the concept
of imaginary numbers. Tracing the life story of this concept, Mazur calls on his wide
knowledge of literature, philosophy, and history to explore the nature of mathematical
imagination as a collective pursuit by human beings across millennia.

Mazur holds a cross-disciplinary appointment at Harvard University, the Gerhard
Gade University Professorship, which allows him to teach in various academic areas.
He has collaborated with colleagues in the law school to teach courses on the nature
of evidence, and with those in the history of science to teach courses on ancient
geometry. When in 2018 students and colleagues held a conference at Harvard to
honor Mazur in his 80th year, the proceedings ran for five days and included a stellar
lineup of mathematical lectures together with panels on the history of science, on
literature and poetry, and on law, philosophy, and physics.

Mazur’s work has shown us that these fields are not isolated entities. The ideas
that populate them are organically connected in the fabric of human knowledge. By
illuminating the warp and weft of mathematics within this fabric, Mazur has enriched
us all.

Curriculum vitae of Barry Mazur:
https://people.math.harvard.edu/~mazur/cv.html
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