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The work of Andrei Okounkov has revealed profound new connections between 
different areas of mathematics and has brought new insights into problems 
arising in physics.  Although his work is difficult to classify because it touches 
on such a variety of areas, two clear themes are the use of notions of 
randomness and of classical ideas from representation theory. This 
combination has proven powerful in attacking problems from algebraic 
geometry and statistical mechanics. 

One of the basic objects of study in representation theory is the "symmetric 
group", whose elements are permutations of objects.  For example, if the 
objects are the letters {C, G, J, M, N, O, Q, Z}, then a permutation is an 
ordering of the letters, such as GOQZMNJC or JZOQCGNM.  The number of 
possible permutations grows quickly as the number of objects grows; for 8 
objects, there are already 40,320 different permutations.  If we consider an 
abstract set of n objects, then the "symmetric group on n letters" is the 
collection of all the different permutations of those n objects, together with 
rules for combining the permutations. 

Representation theory allows one to study the symmetric group by representing 
it by other mathematical objects that provide insights into the group's salient 
features.  The representation theory of the symmetric group is a well developed 
subfield that has important uses within mathematics itself and also in other 
scientific areas, such as quantum mechanics.  It turns out that, for the 
symmetric group on n letters, the building blocks for all of its representations 
are indexed by the "partitions" of n.  A partition of a number n is just a 
sequence of positive numbers that add up to n; for example 2 + 3 + 3 + 4 + 12 
is a partition of 24. 

Through the language of partitions, representation theory connects to another 
branch of mathematics called "combinatorics", which is the study of objects 
that have discrete, distinct parts.  Many continuous phenomena in 
mathematics are related by virtue of having a common discrete substructure, 
which then raises combinatorial questions. Continuous phenomena can also be 
discretized, making them amenable to the methods of combinatorics.  
Partitions are among the most basic combinatorial objects, and their study 
goes back at least to the 18th century. 

Randomness enters into combinatorics when one considers very large 
combinatorial objects, such as the set of all partitions of a very large number.  
If one thinks of partitioning a number as randomly cutting it up into smaller 
numbers, one can ask, What is the probability of obtaining a particular 



partition?  Questions of a similar nature arise in representation theory of large 
symmetric groups.  Such links between probability and representation theory 
were considered by mathematicians in Russia during the 1970s and 1980s. 
The key to finding just the right tool from probability theory suited to this 
question derives from viewing partitions as representations of the symmetric 
group.  A Russian who studied at Moscow State University, Andrei Okounkov 
absorbed this viewpoint and has deployed it with spectacular success to attack 
a wide range of problems. 

One of his early outstanding results concerns "random matrices", which have 
been extensively studied in physics.  A random matrix is a square array of 
numbers in which each number is chosen at random.  Each random matrix 
has associated with it a set of characteristic numbers called the "eigenvalues" 
of the matrix.  Starting in the 1950s, physicists studied the statistical 
properties of eigenvalues of random matrices to gain insight into the problem of 
the prediction and distribution of energy levels of nuclei.  In recent years, 
random matrices have received renewed attention by mathematicians and 
physicists. 

Okounkov proved an intriguing connection between random matrices and 
increasing subsequences in permutations of numbers.  An increasing 
subsequence is just what it sounds like: For example, in a permutation of the 
numbers from 1 up to 8, say 71452638, two increasing subsequences are 
14568 and 1238.  Baik, Deift, and Johansson determined the statistical 
fluctuations of the longest increasing subsequence of a random permutation as 
n goes to infinity.  They noted that these are the same fluctuations as the 
fluctuations of the largest eigenvalue of a random Hermitian matrix (due to 
Tracy and Widom).  Baik et al also gave a greatly extended version of their 
result in the form of a conjecture.  Okounkov proved this conjecture using a 
very different and original approach by showing that these two fluctuation 
problems are related to a common third one that concerns counting random 
surfaces.  This work provided a novel and direct link between random matrix 
theory and random permutations, and also established a connection to 
algebraic geometry, providing a seed for some of Okounkov's later work in that 
subject. 

Random surfaces also arise in Okounkov's work in statistical mechanics.  If 
one heats, say, a cubical crystal from a low temperature, one finds that the 
corners of the cube are eaten away as the crystal "melts".  The geometry of this 
melting process can be visualized by imagining a corner to consist of a bunch 
of tiny blocks. The melting of the crystal corresponds to removing blocks at 
random. Thinking of the partitioning of the crystal into tiny blocks as 
analogous to partitioning integers, Okounkov brought his signature methods to 
bear on the analysis of the random surfaces that arise.  In joint work with 
Richard Kenyon, Okounkov proved the surprising result that the melted part of 
the crystal, when projected onto two dimensions, has a very distinctive shape 
and is always encircled by an algebraic curve---that is, a curve that can be 
defined by polynomial equations.  This is illustrated in the accompanying 



figure; here the curve is a heart-shaped curve called a cardioid.  The 
connection with real algebraic geometry is quite unexpected. 

Over the past several years, Okounkov has, together with Rahul 
Pandharipande and other collaborators, written a long series of papers on 
questions in enumerative algebraic geometry, an area with a long history that 
in recent years has been enriched by the exchange of ideas between 
mathematicians and physicists.  A standard way of studying algebraic curves is 
to vary the coefficients in the polynomial equations that define the curves and 
then impose conditions---for example, that the curves pass through a specific 
collection of points.  With too few conditions, the collection of curves remains 
infinite; with too many, the collection is empty.  But with the right balance of 
conditions, one obtains a finite collection of curves.  The problem of "counting 
curves" in this way---a longstanding problem in algebraic geometry that also 
arose in string theory---is the main concern of enumerative geometry.  
Okounkov and his collaborators have made substantial contributions to 
enumerative geometry, bringing in ideas from physics and deploying a wide 
range of tools from algebra, combinatorics, and geometry.  Okounkov's ongoing 
research in this area represents a marvelous interplay of ideas from 
mathematics and physics. 
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