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 This is an easy introduction to the work of Hugo Duminil-Copin, you can read more of the 
 mathematical details in this  article  . 

 Hugo Duminil-Copin  , a mathematician from the University  of Geneva, has won one of this 
 year’s Fields Medals at the International Congress of Mathematicians. The Fields Medal is 
 one of the most prestigious prizes in mathematics. It is awarded every four years  “to 
 recognise outstanding mathematical achievement for existing work and for the promise of 
 future achievement”. Up to four mathematicians up to the age of 40 are awarded a Fields 
 Medal each time. 

 Phase transitions and universality 
 Duminil-Copin has been recognised for his work transforming the mathematical theory of 
 phase transitions  in statistical physics.  Phase transitions  are something we’re all familiar 
 with – an example is water freezing to ice when it falls below zero degrees temperature.  A 
 phase transition is when a complicated system, like a bunch of water molecules, undergoes 
 some drastic change of behaviour as some parameter, in this case temperature, passes 
 some critical point. 

 “What we do as mathematicians is we try to understand how these phase transitions occur 
 by making mathematical caricatures of the physical phenomenon,” says Duminil-Copin.  An 
 example of such a mathematical caricature (otherwise known as a  mathematical model  ) is 
 using a regular lattice to describe the arrangement of the system you’re trying to understand. 
 In reality there are no real constraints on the positions of the molecules in liquid water, they 
 don’t lie regularly in space in a way you could realistically describe using the points on a 
 lattice.  But in order to study this system it’s often simpler to imagine that the molecules are 
 regularly positioned in this way. 

 Although such an assumption is deeply unrealistic, Duminil-Copin says that studying the 
 system this way allows you to explain the phenomena that are actually occurring.  “It’s 
 something related to a very deep phenomenon  –  universality  – that I try to understand as a 
 mathematician.” 

 Universality is almost like wishful thinking come true: in certain situations the fine details of 
 your mathematical model don’t affect its global behaviour.  T  he reason is that if a system 
 involves many different random processes,  such as many water molecules moving around, 
 then the details of the underlying mechanisms should not matter.  In the example of water 
 freezing to ice, you can choose whatever arrangement of molecules you like – assume they 
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 are positioned regularly in a lattice of your choosing – and the phase transition you are 
 studying will have the same properties regardless of your choice of lattice. 

 “This is very reassuring for mathematicians and physicists because it tells you that many 
 systems in the end have the same behaviour, and you can choose the simplest example of 
 such systems, which is those that lie on a lattice.”  Mathematically you can get a lot more out 
 of this much simpler description of the problem.  The  mathematical model isn’t necessarily 
 representative of the physical reality, but thanks to universality you’re still going to end up 
 with the same results as if you’d started off with a physically accurate description. 

 Beautiful problems 
 Statistical physics offers problems that Duminil-Copin is particularly drawn to: ones that are 
 deceptively simple to state but require new mathematics to solve.  One example was one of 
 the first conjectures he learned about when he was a postdoctoral student. 

 “Imagine you are in front of a bee hive,” says Duminil-Copin.  The front of the beehive forms 
 a hexagonal tiling of the plane, and the corners and lines marking the walls of the beehive 
 form the points and edges of a  hexagonal  or  honeycomb  lattice.  Imagine you choose a 
 starting point in the lattice and then pick your path across the lattice following one simple 
 rule: you can not return to any place on the lattice you have already been.  This is called a 
 self-avoiding walk. 

 Examples of self-avoiding walks of length 5, 6 and 7. 

 Just how many self-avoiding walks are there?  As Duminil-Copin says, the rules are so 
 straightforward a child can do it.  There are 3 if your walk is only one step long, 6 if it is two 
 steps long, 12 if it is three steps long.  But the complexity of the problem quickly appears 
 with the number of steps taken, and it’s increasingly hard to keep track of this number as you 
 try to make sure you never retread your steps.  “You realise very quickly that you cannot 
 compute exactly this number, it’s a very difficult number to grasp.” 

 In 1980 the statistical physicist Bernard Nienhuis surprised everyone by saying not only was 
 it possible to grasp this number, he gave the answer for how quickly the number of walks 
 grows –  conjecturing  that the number of self-avoiding walks of length  steps grows at the  𝑛 

 rate of almost  .  2 +  2 ( )
       𝑛 
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 “I found it truly fantastic that there is an answer, and it’s a really cool number!” Duminil-Copin 
 says.  “This was a conjecture I first learned about in my masters class.  It’s funny because at 
 the time it looked like there was no hope the conjecture could be proved."  But prove it he 
 did, by using work he was doing on a seemingly disconnected area of maths.  “This is a 
 typical example of problems that we have in our field where you get inspired by many other 
 fields of mathematics and physics.  It puts you at the crossroads of many places [and] that is 
 something I like very much.” 

 And this problem isn’t just interesting to mathematicians.  In the 1940s chemists  Paul Flory 
 (who won the Nobel Prize for Chemistry in 1974) and W.J.C. Orr introduced self-avoiding 
 walks as a way to study long chain-like molecules –  polymers  –  and understand how they 
 behave.  “It’s very related to physical phenomena, for example trying to understand what 
 polymers, such as DNA molecules, are doing.  These polymers are self-avoiding [walks] for 
 obvious reasons: they are long sequences of molecules that can’t be at the same place.” 

 Duminil-Copin sees his Fields Medal as recognition for all of those working in his area and 
 the work they are developing together, and he cannot wait to finally share this recognition 
 with his collaborators when the prizes are announced at the ICM.  “Mathematics is a very 
 social activity, much more than people believe” he says.   “There is this image of the 
 mathematician as the lonely hero, but in my case it’s not a vision of my mathematics or my 
 way of doing mathematics.  My work would not happen without this interaction with others.” 
 Congratulations to Duminil-Copin and to all his collaborators on this prize! 

 Marianne Freiberger  and  Rachel Thomas  , Editors of  plus.maths.org  , interviewed Hugo 
 Duminil-Copin in May 2022. 

 This content was produced as part of the collaboration between  plus.maths.org  and the 
 London Mathematical Society  . You can find all our  content on the 2022 International 
 Congress of Mathematicians  here  . 
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