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1. Points, lines, and planes
Points and lines are the simplest geometric shapes and really primordial mathemat-

ical objects. Euclid opens his Elements by giving a definition of a point and a line, and his
first postulate is that one can draw a straight line from any point to any point. While the need
and standards for precise definitions in mathematics have only grown in the past 2.3 · 103

years, we imagine the reader has a good enough informal or formal grasp on lines and points
to skip the definitions and focus on the basic geometric fact that two distinct point 𝑃1 and 𝑃2

determine a unique line through them. Somewhat unconventionally, we will denote this line
𝑃1 ∨ 𝑃2.

While two points always lie on a line, three points 𝑃1, 𝑃2, 𝑃3 may or may not be
on a line. As we move the points around, the point 𝑃3 is typically or generically not on the
line 𝑃1 ∨ 𝑃2, but in special cases it may be. The italicized words are important mathematical
notions; we hope their meaning is intuitively clear.

Suppose we have 𝑛 = 3, 4, . . . distinct points 𝑃1, . . . , 𝑃𝑛 in the plane, not all of them
on same line. Generically, no three of these points will be on the same line, meaning that all
lines 𝑃𝑖 ∨ 𝑃 𝑗 will be distinct. Their number is thus the number of unordered pairs of numbers
from {1, . . . , 𝑛}, which can be computed as follows:

# lines =
𝑛(𝑛 − 1)

2
= 3, 6, 10, 15, . . . , 𝑛 = 3, 4, 5, 6, . . . .

See Figure (1) for illustration for 𝑛 = 7. In particular, 𝑛 ≥ 3 generic points in the plane always
determine 𝑛 or more lines.

(1)

Let’s see how the number of lines changes if we move the points into a special positition.
For example, let’s put 𝑛 − 1 of them on a line, as in Figure (2). In this case, we get 𝑛 lines,
so again at least as many lines as points.

(2)
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In general, it is classic result of de Brujin and Erdös [12] from 1948 that the number of lines
determined by 𝑛 points in the plane is at least 𝑛, unless all points lie on a single line.

Book 11 of the Elements opens with the definition of a solid, and Euclid proceeds
with the development of the 3-dimensional geometry. Instead of the plane which previously
contained the points 𝑃1, . . . , 𝑃𝑛, in three dimensions there are many planes and any triple of
points 𝑃𝑖 , 𝑃 𝑗 , 𝑃𝑘 , not contained in a line, determines a unique plane 𝑃𝑖 ∨ 𝑃 𝑗 ∨ 𝑃𝑘 that meets
them.

(3)

It is possible for 𝑛 points to determine exactly 𝑛 planes; see Figure (3) in which all but two
points lie on a line. Theodore Motzkin [36] showed in 1951 that this indeed is the minimal
possible number of planes1.

2. Points, lines, planes, et cetera
It took a long time since Euclid for mathematicians and scientists to realize that it is

both natural and important to study 𝑑-dimensional geometry for general 𝑑 = 1, 2, 3, 4, 5, . . . .
A simple clear mathematical language of coordinates

R𝑑 = {𝑑-tuples (𝑥1, . . . , 𝑥𝑑) of real numbers} (4)

to describe the real 𝑑-dimensional space R𝑑 was introduced in the 17th century by Fermat and
Descartes. Tuples of numbers, sometimes with very large 𝑑, are abundant in both theoretical
and applied contexts. But it was not until much later, less than 200 years ago, that the necessity
and advantages of thinking about such 𝑑-tuples geometrically was realized.

A plane in a 3-dimensional space R3 is described by a linear equation

𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 = 0 (5)

in which at least one of the coefficients 𝑎1, 𝑎2, or 𝑎3 is not zero. Two sets of coefficients
(𝑎0, 𝑎1, 𝑎2, 𝑎3) and (𝑎′0, 𝑎

′
1, 𝑎
′
2, 𝑎
′
3) determine the same plane if and only if

(𝑎′0, 𝑎
′
1, 𝑎
′
2, 𝑎
′
3) = 𝑐(𝑎0, 𝑎1, 𝑎2, 𝑎3) (6)

= (𝑐𝑎0, 𝑐𝑎1, 𝑐𝑎2, 𝑐𝑎3) ,

for some nonzero number 𝑐 ≠ 0. Of course, multiplying an equation by a nonzero number
does not change its solutions.

1 In fact, Motzkin first conjectured this in his 1936 PhD thesis [35]!
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A line in R3 is an intersection of two planes, thus the set of solution of a system of
2 linear equations. There are infinitely many planes containing a given line, and we can pick
any two among them. In terms of the equations, this means that many transformations of a
system of equations preserve their solutions. For instance, we can add to one of the equations
any multiple of another equation.

Finally, a point 𝑃 in R3 is a solution of 3 linear equations, which we can choose to
have the confusingly simple form

𝑥𝑖 = the 𝑖th coordinate of 𝑃 , 𝑖 = 1, 2, 3 . (7)

In exactly the same fashion, a linear equation in R𝑑 is said to determine a hyperplane, and
points, lines, and flats of all other dimensions are described as the intersection of the corre-
sponding number of hyperplanes, that is, as solutions of systems of linear equations. There
is hardly anything more basic and fundamental in mathematics, science, technology, data
analysis, et cetera, et cetera, than systems of linear equations. It is very likely that many or
most readers of these notes have met them before. Those who would like a reminder or an
explanation will find it in Appendix A.

The basic geometric facts like:

2 points 𝑃1, 𝑃2, when distinct, lie on a unique line 𝑃1 ∨ 𝑃2 ,

3 points 𝑃1, 𝑃2, 𝑃3, not contained in a line, lie in a unique plane 𝑃1 ∨ 𝑃2 ∨ 𝑃3 ,

. . .

𝑟 points 𝑃1, . . . , 𝑃𝑟 , not contained in a (𝑟 − 2)-dimensional flat,

lie in a unique (𝑟 − 1)-dimensional flat 𝑃1 ∨ 𝑃2 ∨ · · · ∨ 𝑃𝑟 , (8)

continue to hold in any dimension 𝑑. The minimal flat containing some points 𝑃1, . . . , 𝑃𝑘

will be denoted 𝑃1 ∨ 𝑃2 ∨ · · · ∨ 𝑃𝑘 and called the span of these points.
It is natural to ask how many flats of each dimension can 𝑛 points in R𝑑 determine.

Since it takes 𝑟 points to determine an (𝑟 − 1)-dimensional flat, we will define the rank of
such flat to equal 𝑟.

For instance, 𝑛 generic points 𝑃1, 𝑃2, . . . , 𝑃𝑛 determine(
𝑛

2

)
lines,

(
𝑛

3

)
planes, . . . ,

(
𝑛

𝑟

)
rank 𝑟 flats, . . . (9)

because we can choose so many 𝑟-element subsets from an 𝑛-element sets. Here(
𝑛

𝑟

)
=

𝑛!
𝑟!(𝑛 − 𝑟)! , 𝑛! = 1 · 2 · 3 · · · · · (𝑛 − 1) · 𝑛 ,

denote the binomial coefficients
(𝑛
𝑟

)
and the factorial 𝑛! of 𝑛. Factorials and binomial coef-

ficients are as fundamental to mathematics and as ancient as points and lines, appearing in
very old Indian, Persian, and Chinese texts long before becoming known in Europe in late
Renaissance.

Many beautiful elementary properties of the binomial coefficients inspire combina-
torialists to look for similar patterns in other, more complicated, sequences of numbers. In
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(9) we get some initial segment of the binomial coefficients, which look as follows for 𝑑 = 6,
𝑛 = 10 and 𝑟 = 1, . . . , 𝑑

(10)

The transparent columns here represent the unused binomial coefficients with 𝑟 > 𝑑. Two
properties of this sequence of numbers are apparent. First, it is unimodal, that is, the numbers
first increase and then decrease. Second, it is top-heavy, which can be quantified as(

𝑛

𝑟

)
≤

(
𝑛

𝑑 − 𝑟

)
, provided 2𝑟 ≤ 𝑑 ≤ 𝑛 . (11)

So far, this was about 𝑛 generic points in R𝑑 . Now let us allow the points𝑃1, 𝑃2, . . . , 𝑃𝑛

to be in some special position (and there are a great many ways in which a point configuration
can be special for 𝑛 large). Let F𝑟 denote the set of rank 𝑟 flats determined by the 𝑃𝑖’s. In
particular,

F1 = {𝑃1, . . . , 𝑃𝑛} , (12)

while F2 are the lines in R𝑑 containing at least two of the 𝑃𝑖’s. Generalizing what we have
seen for generic points, Rota [39] conjectured the unimodality of the sequence |F𝑟 |, where
|F𝑟 | denotes the numbers of elements, or cardinality, of F𝑟 . Dowling and Wilson [15, 16]
conjectured that the sequence |F𝑟 | is top-heavy. These questions remained open for a very
long time, but now the top-heavy conjecture and the increasing part of the unimodality con-
jectures are proven as a corollary of a theorem of June Huh and Botong Wang that will be
discussed in the next section.

Why is the top-heavy conjecture so interesting? “It indicates a deep hidden reci-
procity!”, says Gil Kalai who presented June Huh’s Fields Medal laudatio at ICM 2022. June
Huh says he became interested in the top-heavy conjecture as a result of being intrigued by the
“top-heavy phenomena” for lower Bruhat intervals in Coxeter groups that are proved using
Elias–Williamson’s combinatorial Hodge theory for Soergel bimodules. A curious reader
will find out what this is about in the references [9, 17, 24, 34].

3. Matching flats to flats
Suppose we want to prove that one set, such as F𝑟 , has fewer elements than some

other set, such as F𝑟 ′ . These sets may be complicated and the exact counts of elements in each
of them may be hard to perform. However, we may be able to prove the inequality between
|F𝑟 | and |F𝑟 ′ | without actually doing either count. It suffices to assign to each element
𝐹 ∈ F𝑟 an element 𝜄(𝐹) ∈ F𝑟 ′ so that distinct 𝐹1 ≠ 𝐹2 are assigned distinct 𝜄(𝐹1) ≠ 𝜄(𝐹2).
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Mathematicians have special words for any procedure 𝜄 that assigns an element 𝜄(𝐹)
of some “target” set like F𝑟 ′ to an element 𝐹 of some “source” set like F𝑟 . We say that 𝜄 is
a function or a map from F𝑟 to F𝑟 ′ and write:

𝜄 : F𝑟 → F𝑟 ′ . (13)

When (13) takes distinct elements to distinct elements, we say that 𝜄 is injective or one-to-one.
An injective map between two finite sets exists if and only if the cardinality of the source is
less than or equal to the cardinality of the target.

Conversely, a map is called surjective or onto, if every element in the target is
assigned to some element of the source. A surjective map implies the opposite inequality
between the cardinalities of the two sets. A schematic example of an injective and a surjec-
tive set from a set of circles to a set of stars can be seen in Figure (14).

{❍,

injective!!

❍}

}}

{❍,

!!

❍,

surjective��

❍}

vv
{✰, ✰, ✰} {✰, ✰}

(14)

For an injective map, every star is the target of ≤ 1 arrows; for a surjective map, every star is
the target of ≥ 1 arrows.

Since the source and the target in (13) have a geometric meaning, we can ask for the
map 𝜄 to reflect this geometric meaning. It is nice to require that the flat 𝜄(𝐹) contains the
flat 𝐹 for all 𝐹. We will call such assignment a matching. In Figure (15), the reader can see
examples of a non-injective and an injective matching between points and lines from Figure
(2).

(15)

In Figure (15), we give each point a conic tail in the direction of the matched line.
These notes are about some very general and powerful results proved by June Huh

and his collaborators Tom Braden, Jacob P. Matherne, Nicholas Proudfoot, and Botong Wang.
We will be stating and explaining them in ascending generality, starting with the following
most basic version:

Theorem 1 ([22]). For any 𝑛-tuple of points 𝑃1, . . . , 𝑃𝑛 ∈ R𝑑 not contained in a hyperplane,
there exists an injective matching (13) from rank 𝑟 flats to rank 𝑟 ′ flats spanned by these points
provided 𝑟 ≤ 𝑟 ′ and 𝑟 + 𝑟 ′ ≤ 𝑑 + 1.
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For instance, in the plane 𝑑 = 2, the only interesting case is 𝑟 = 1 and 𝑟 ′ = 2. Theorem
1 then says that for every point one can chose a line containing it, in such a way that different
points are assigned different lines. In R3 we can have (𝑟, 𝑟 ′) = (1, 2) or (𝑟, 𝑟 ′) = (1, 3), which
means that for every point we can choose a line, and also a plane containing it. In every
dimension, Greene showed that points can be matched to the hyperplanes they define [19].

It is not so clear at present what happens outside the 𝑟 + 𝑟 ′ ≤ 𝑑 + 1 range, including the
decreasing part of the unimodality conjecture. For instance, Dilworth and Greene constructed
in [14] a configuration of 21 points in a 10-dimensional space such that there is no injective
or surjective matching F6 → F7.

4. Rank and Matroids
Suppose that for some concrete collection 𝑃1, . . . , 𝑃𝑛 we want a computer program

to either construct or verify an injective matching described in Theorem 1. Or maybe we
would like to experiment in the range 𝑟 + 𝑟 ′ > 𝑑 + 1. Whatever our goals, we will need the
program to manipulate the information about the position of the points 𝑃1, . . . , 𝑃𝑛. It should
be able to either determine or remember which subsets

𝑆 ⊂ {𝑃1, . . . , 𝑃𝑛}

of points lie on a line, in a plane, et cetera. So it reasonable to think that in our program there
should be a procedure that either computes or looks up the function

rank(𝑆) = dim span(𝑆) + 1 . (16)

It is easy to see that all other notions discussed so far can be easily expressed in terms of the
function (16). For instance, a subset 𝑆 corresponds to a flat of rank 𝑟 if and only rank(𝑆) = 𝑟

and
rank(𝑆 ∪ 𝑃𝑖) = rank(𝑆) + 1 , for any 𝑃𝑖 ∉ 𝑆 . (17)

In other words, flats 𝐹 ∈F𝑟 corresponds to subsets 𝑆 of rank 𝑟 that are maximal with respect
to inclusion.

As we change the position of the points 𝑃1, . . . , 𝑃𝑛, the corresponding rank functions
will also change, but they will always satisfy the equalities:

rank({𝑃𝑖}) = 1 , 𝑖 = 1, . . . , 𝑛 , (18)

and the inequalities

for any 𝑆 ⊂ 𝑆′, rank(𝑆) ≤ rank(𝑆′) , (19)

for any 𝑆1, 𝑆2, rank(𝑆1 ∪ 𝑆2) ≤ rank(𝑆1) + rank(𝑆2) − rank(𝑆1 ∩ 𝑆2) . (20)

The intersection 𝑆1 ∩ 𝑆2 in (20) may be the empty set ∅, and by definition

rank(∅) = 0 . (21)

The geometrically obvious inequality rank(𝑆) ≤ |𝑆 | is then a formal corollary of (20).

7 Combinatorial geometry takes the lead



One may wonder whether, in fact, the above properties characterize all possible
rank functions for points in a space of dimension 𝑑, where 𝑑 = rank({𝑃1, . . . , 𝑃𝑛}) − 1? And
maybe a proof of Theorem 1 may be found by exploring formal consequences of (19) and
(20)? Turns out, the answers to these questions are emphatic “no” and “yes”, respectively.

The above properties of the rank function give one of the many equivalent axiomatic
definitions of a matroid2. Matroids were introduced by Hassler Whitney in 1935 as combi-
natorial generalization of incidence relations between flats of different dimensions, and have
since found an abundance of applications across mathematics and computer science, both
pure and applied. “Matroid theory is a triumph in the pursuit of both abstraction and concrete
simple examples”, says Gil Kalai.

While we will discuss a few examples below, it should be made very clear now that
matroids constitute a very rich and diverse universe, much larger than what we will explore
in these notes. This makes the following result of Tom Braden, June Huh, Jacob Matherne,
Nicholas Proudfoot, and Botong Wang extremely remarkable and powerful

Theorem 2. [10] The injective matching

𝜄 : F𝑟 → F𝑟 ′ , 𝑟 ≤ 𝑟 ′ ,

as in Theorem 1, exists for flats of any matroid 𝑀 provided 𝑟 + 𝑟 ′ ≤ rank(𝑀).

While the definition of a matroid is very short, the argument leading to the proof of
Theorem 2 is very, very complex. The best we can hope to do in these introductory notes, is
to explain some earlier results and ideas in various areas of mathematics that may be listed
among the precursors and inspirations for the fantastic achievement of [10].

At several points in our narrative, we will be coming back the following extraordi-
nary feature of Theorem 2. In geometry, there is a constant dialog between the continuous and
the discrete. Of course, there is a fundamental unity in mathematics and good mathematics
is constantly transcending apparent boundaries between different subfields. Still, there is a
clear difference between a matroid, which is combinatorial abstraction of a geometric con-
figuration, and objects like a geodesic on a manifold, a minimal surface, or a harmonic form
that require noncombinatorial methods to define and study.

One can compare and contrast the continuous and the discrete in many different
ways, but one fundamental difference is the presence of limits in the continuous world. Of
course, limits are absolutely central to mathematics and many crucial mathematical objects,
like the exponential function 𝑒𝑥 , are transcendental in the sense that a limit is required to
define or compute it. It is, however, an interesting question how much extra mileage one
can get from using analytic tools to investigate combinatorial objects. As we will see, at the
heart of Theorem 2, lies a certain hard Lefschetz property, which for many years was firmly
associated with continuous, noncombinatorial geometry.

2 More precisely, the condition (18) means that here we focus on so-called loopless matroids.
Given a rank function, one defines the flats of a matroid as in (17). Conversely, the rank
function may be reconstructed from the data of the flats.
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Theorem 2 applies to arbitrary matroid, a purely combinatorial object. This is
already very remarkable. But what is really amazing is the combinatorial and algebraic
framework built in [10] to prove Theorem 2. It produces the required hard Lefschetz prop-
erty from purely combinatorial, finite ingredients.

We will come back to these points later in the narrative. First, in the next section we
want to discuss some examples of matroids beyond what we have seen so far. We warn the
reader that these examples still cover a vanishing fraction of the universe of matroids.

5. Some examples of matroids
5.1. Points in F𝒅 , where F is a field
The first generalization concerns the coordinates in (4). There we took a 𝑑-tuple of

real numbers, while instead we could have taken 𝑥𝑖 to be rational numbers 𝑥𝑖 ∈ Q, or complex
numbers 𝑥𝑖 ∈ C, or elements in an arbitrary field.

In mathematics, a field F is a set with special elements 0,1 ∈ F and binary operations
+,−,×, / obeying all the usual laws of arithmetic for rational numbers Q. An attentive reader
will notice that the division is not really binary, since one cannot divide by zero. Instead, it
is a function of the form

F × (F \ {0})
(𝑎,𝑏) ↦→𝑎/𝑏

−−−−−−−−−−−−−−→ F .

For a dramatic example, we can take F2 = {0, 1}. Since 𝑎 + 0 = 𝑎, 𝑎 × 0 = 0, and
𝑎 × 1 = 𝑎 in any field, most sums and products are already specified. The only interesting
one is 1 + 1 = ? We invite the reader to check that

1 + 1 = 0 (22)

is the only logical option and this indeed defines a field with two elements.
All constructions of Section 2 extend verbatim to any field. Note, however, that some

configurations of points and lines can be realized using F2 and cannot be realized with real
numbers, see (33) for an example.

Inspired by (22), we can ask when it is possible that

1 + 1 + · · · + 1︸           ︷︷           ︸
𝑝 times

= 0 (23)

in a field F. Minimal possible 𝑝 with this property should be a prime, as we invite the reader
to check. It is called the characteristic of the field F. An example of a field of characteristic
𝑝 is given by the residues

F𝑝 = {0, 1, . . . , 𝑝 − 1} .

modulo a prime 𝑝. The operations are defined by

(𝑎, 𝑏) +−−−−−−→ (𝑎 + 𝑏) mod 𝑝 , (𝑎, 𝑏) ×−−−−−−→ 𝑎𝑏 mod 𝑝 , (24)
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where 𝑎 + 𝑏 and 𝑎𝑏 are the usual addition and multiplication of integers. But since there is
no division of integers, the existence of multiplicative inverse requires a minute of thought.
For instance, one may notice that the multiplication by 𝑎 map

F𝑝 ∋ 𝑏 ↦→ 𝑎𝑏 ∈ F𝑝 (25)

is injective for 𝑎 ≠ 0, and therefore also surjective, as the source and target sets have the same
cardinality. A map that is both injective and surjective is called bĳective; those are the maps
that have an inverse map. The inverse to multiplication by 𝑎 is, by definition, the division by
𝑎. For fun, the reader may want to compute the inverses of elements in F𝑝 for 𝑝 = 3, 5, 7.

Mathematicians usually think about fields in terms of field extensions. Concretely,
one describes new fields F′ in terms of some previously understood subfield F ⊂ F′ and the
new elements 𝑥1, 𝑥2, · · · ∈ F′ that have to be added to F to generate all elements of F′ by
arithmetic operations. One writes F′ = F(𝑥1, 𝑥2, . . . ) to denote this situation. For example

C = R(
√
−1) .

All information about the field extension is contained in the polynomial equations satisfied
by the elements 𝑥1, 𝑥2, . . . with coefficients in F. For example, the element 𝑖 =

√
−1 satisfies

the equation
𝑖2 + 1 = 0 . (26)

Using this equation, we simplify powers 𝑖𝑘 and, in particular, compute the product of two
complex numbers as follows

(𝑎1 + 𝑎2 · 𝑖) (𝑏1 + 𝑏2 · 𝑖) = (𝑎1𝑏1 − 𝑎2𝑏2) + (𝑎1𝑏2 + 𝑎2𝑏1) · 𝑖 . (27)

In parallel to (25), we invite the reader to check that this is injective and surjective for 𝑎2
1 + 𝑎

2
2 ≠

0 and compute (𝑎1 + 𝑎2 · 𝑖)−1. After this exercise, the reader may want to find the formula
for the inverse in Q(

√
2).

To reiterate, while field theory is ultimately about solutions of polynomial equa-
tions, it is much more effective to use equations to learn about their solutions as opposed
to “solving” the equations in the sense of looking for some complicated formulas giving the
solutions in terms of the coefficients. We took this little detour into algebra now because later
it will be crucial to use certain algebraic equations to deduce the information about flats in a
matroid.

5.2. Projective spaces
While two points in a plane R2 always determine a line, two lines in a plane usually

intersect in a single point, but not always. Sometimes lines can become parallel and then their
point of intersection runs off to infinity. Projective geometry adds these points at infinity to
the plane R2 so that two lines always intersect at a point. Many other geometric statements
no longer require considering various cases, either3.

3 For instance, the hyperbola, the parabola, and the ellipse are the same geometric shapes in
projective geometry !
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The 𝑑-dimensional projective space over an arbitrary field F is easy to define using
coordinates as follows

P𝑑 (F) = {(𝑑 + 1)-tuples (𝑥0, 𝑥1, . . . , 𝑥𝑑) of elements of F,

not all zero, up to proportionality ∼} , (28)

where proportionality means

(𝑥0, 𝑥1, . . . , 𝑥𝑑) ∼ 𝑐(𝑥0, 𝑥1, . . . , 𝑥𝑑) , 𝑐 ∈ F \ {0} . (29)

Recall that we already met such identification of proportional tuples in (6) when we talked
about hyperplanes in R𝑑 .

The 𝑑-dimensional space F𝑑 is naturally embedded in the projective space as the set
where 𝑥0 ≠ 0. Indeed, when 𝑥0 ≠ 0 we can choose a unique 𝑐 in (29) to make 𝑥0 = 1, and so
we get

F𝑑 = {(1, 𝑥1, . . . , 𝑥𝑑)} ⊂ P𝑑 (F) . (30)

The points with 𝑥0 = 0 are the points “at infinity”. They form a smaller projective space
P𝑑−1 (F).

By definition, a hyperplane in P𝑑 (F) is defined by an equation of the form

𝑎0𝑥0 + 𝑎1𝑥1 + · · · + 𝑎𝑑𝑥𝑑 = 0 , (31)

in which some of the coefficients 𝑎𝑖 ∈ F are not zero. In particular, the “infinity” is the
hyperplane 𝑥0 = 0.

Note that (31) is unchanged if we scale all variables 𝑥𝑖 or all variables 𝑎𝑖 by some
constant 𝑐 ≠ 0. Thus the hyperplanes in P𝑑 (F), as described by their coefficients (𝑎0, . . . , 𝑎𝑑),
form another projective space, called the dual projective space. This basic duality underlies
many remarkable facts in geometry and combinatorics.

If the field F is finite, one can get very interesting matroids by taking all points of
P𝑑 (F) as the points 𝑃1, . . . , 𝑃𝑛. For example, if F = F2, there is no need to worry about
proportionality (29), and so we get 7 points

P2 (F2) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)} . (32)

By duality, there are 7 hyperplanes in P2 (F2). Each of them, in some coordinates, represents
P1 (F2), and hence contains 3 points from (32). We invite the reader to check that the resulting
configuration of points and lines looks as follows:

(33)
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People who have read about the math behind the game of Dobble/Spot it! certainly recognize
this picture. In (33), the line

𝑥1 + 𝑥2 + 𝑥3 = 0

is plotted as a circle precisely because this line does not meet the points (32) with real coef-
ficients. With real coefficients, the three points on the circle define three different lines.

In fact, the matroid (33) can be realized in P2 (F) for some field F if and only if
the characteristic of the field F equals 2, as noted already by Whitney. In general, whether
a given matroid can be put into P𝑑 (F), or as one says can be linearly realized over F, is an
interesting and important question.

Projective geometry is a very classical and very beautiful subject. Any result about
incidence of points, lines, etc. in projective geometry is a potential obstruction to linear
realizability of a given matroid over any field. For instance, the Pappus theorem says that if
the three top points in (34) are collinear, and the three bottom points are also collinear, then
so are the three middle points. The line which Pappus proved exists, is highlighted in (34)

(34)

One can, however, declare the three middle points to be noncollinear without violating the
matroid axioms. This gives a concrete example of a matroid that is not linearly realizable.
In fact, the vast majority of matroids are such [37]. One way to think about them is to take a
realizable matroid and add/remove some flats making sure the axioms are still obeyed, like
we just did with with the non-Pappus matroid.

5.3. Field extensions
This class of examples is a little more advanced, so may be skipped on the first

reading. Let F be a field and consider an extension

F′ = F(𝑦1, . . . , 𝑦𝑛) .

Note that we have 𝑛 elements generating the extension, whereas earlier 𝑛 was the number of
points. This is intentional and we will define a rank function on subsets 𝑆 ⊂ {1, . . . , 𝑛} by

rank 𝑆 = transcendence degree of F({𝑦𝑖}𝑖∈𝑆) over F . (35)

Here the transcendence degree of a field over a subfield F is the maximal number 𝑡 of elements
𝑓1, 𝑓2, . . . , 𝑓𝑡 that satisfy no polynomial equation 𝑃( 𝑓1, . . . , 𝑓𝑡 ) = 0 with coefficients in F.
The rank function (35) satisfies the matroid axioms.
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Algebraic geometers associate a geometric image to this algebraic definition by
thinking about

F′ = rational functions on 𝑌 , 𝑌 ⊂ F𝑛 , (36)

where 𝑦1, . . . , 𝑦𝑛 are the coordinate functions on F𝑛 and𝑌 is an irreducible algebraic variety.
By definition, an algebraic variety is defined by polynomial equations and it is irreducible if
it is not a union of two other varieties. In (36) we identify two rational functions 𝑓 (𝑦) and
𝑓 ′ (𝑦) if they are equal on 𝑌 . With such reformulation

rank 𝑆 = dim (projection of 𝑌 to the coordinates {𝑦𝑖}𝑖∈𝑆) . (37)

Matroids that can be put in this form are called algebraically realizable. For instance, the
non-Pappus matroid on 9 points is algebraically realizable over F = F2; see [32].

The reader should check that a linear realization yields an algebraic realization with
𝑌 ⊂ F𝑛 being a linear subspace. In this case, it was shown in [3] that the matroid (35) controls
many important properties of the closure

𝑌 ⊂
(
P1 (F)

)𝑛
(38)

of the linear space 𝑌 in a product of projective lines over F. We will come back to (38) in
Section 8.3.

In another direction, Ingleton notes [25] that the tangent space to the generic points of
𝑌 provides a linear representation of an algebraic matroid, provided the characteristic of F is
zero. This does not work in positive characteristic as the non-Pappus matroid demonstrates4.

Some simple explicit matroids can be shown to be algebraically nonrealizable; see
[26].

5.4. Tropical realization of matroids
So far, we have looked at different classes of examples of matroids, always stressing

the fact that these do not cover the great diversity of the world of matroids. Very remarkably,
however, there is a class of examples that gives all matroids. This is the case for the tropical
analog of the construction from Section 5.3, in which it is enough to take 𝑌 to be a tropical
linear space.

This was discovered by Bernd Sturmfels in [44]. See Appendix C for a few intro-
ductory comments, [27, 30, 33] for a proper introduction to the subject, and [1, 2, 6–8, 18]
for a sample of exciting recent advances in this direction. June Huh says: “Mathematicians
discovered tropical varieties by tropicalizing algebraic varieties, but only a tiny fraction of
tropical varieties are tropicalizations of algebraic varieties. Tropical varieties are geometric
objects that try to teach us a new kind of geometric intuition through their diversity.”

In the spirit of this narrative, one should wish the best of success to all present and
future combinatorial geometers in extending classical geometric results to this combinatorial
setting. It is both very beautiful and important for applications.

4 In characteristic 𝑝 one struggles with tangent spaces due to the fact that (𝑥𝑝 ) ′ = 𝑝𝑥𝑝−1 =

0.

13 Combinatorial geometry takes the lead



6. Graded Möbius algebra
A certain algebraic language will be required the capture the essense of that is hap-

pening in Theorem 2. Most importantly, we will need explain one more meaning that the
mathematicians attach to the word algebra.

6.1. Algebras
Consider a field extension F′ = F(𝑥) generated by one element satisfying a polyno-

mial equation of degree 𝑑 with coefficients in F. For instance, it can be F′ = Q( 4√−2), which
means that the coefficients F = Q are rational numbers and the new element 𝑥 satisfies the
equation

𝑥4 + 2 = 0 . (39)

We can think of 𝑥4 = −2 as a substitution rule that we can instruct our computer to apply
any time it sees a power 𝑥𝑘 with 𝑘 > 3. Using this substitution rule, we can describe F′ by
4-tuples of rational numbers

F′ = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3, 𝑎𝑖 ∈ Q} , (40)

and thus we can picture F′ as a 4-dimensional linear space5 Q4. To multiply two general
elements of F′

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3) (𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 + 𝑏3𝑥

3) = ? ,

we have to expand out and use the substitution rule (39). This rule can phrased as follows

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3) (𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 + 𝑏3𝑥

3) =
= (𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 + 𝑐3𝑥
3)︸                         ︷︷                         ︸

product in F′

+ something · (𝑥4 + 2)︸                     ︷︷                     ︸
discard

, (41)

where something refers to some polynomial in 𝑥. To see that multiplication by a nonzero
element is invertible, it suffices to check F′ has no nontrivial divisors of zero. (We already
used this logic when we were inverting (25).) But any 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + 𝑎3𝑥
3 that divides

zero in F′ will have to divide 𝑥4 + 2, whereas this polynomial cannot be nontrivially factored
into polynomials with rational coefficients6. (Check this!)

What if we replaced 2 by 0 in (39), that is, what if we used a simpler equation 𝑥4 = 0?
The presentation (40) would still be valid and the multiplication would take a simpler form

(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3) (𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 + 𝑏3𝑥

3) =
= (𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 + 𝑐3𝑥
3)︸                         ︷︷                         ︸

product

+ terms of degree ≥ 4 in 𝑥︸                         ︷︷                         ︸
discard

, (42)

5 Readers who would like a bit more details about linear spaces will find them in Section A.3.
6 Mathematicians say (39) is irreducible. We have already used this term in exactly this mean-

ing Section 5.3.
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meaning that

𝑐0 = 𝑎0𝑏0 ,

𝑐1 = 𝑎1𝑏0 + 𝑎0𝑏1 ,

𝑐2 = 𝑎2𝑏0 + 𝑎1𝑏1 + 𝑎0𝑏2 , et cetera .

Of course, this will no longer be a field, because multiplication by 𝑥 is not invertible. But it
is still a viable algebraic object that we will denote by a different letter

A = {𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3, 𝑎𝑖 ∈ Q}
= Q[𝑥]

/
(𝑥4 = 0) , (43)

lest somebody thinks it is a field.
We see that A is a linear space over a field F that has a product operation satisfy-

ing all the rules of arithmetic except those involving division. Mathematicians call such an
object an algebra7, not to be confused with algebra as an area of mathematics that studies
fields, algebras, and many other important structures. To distinguish between field and alge-
bras, mathematicians use square brackets in (43) and they also like to to write the equations
imposed on 𝑥 as in (43). If there were no equations on 𝑥, the we would simply get the algebra
of polynomials in 𝑥 with coefficients in Q. That algebra is denoted Q[𝑥].

The reader may wonder what could be the purpose of studying equations like 𝑥4 = 0.
Doesn’t this just mean that 𝑥 = 0? In fact, no, and there are very natural geometric situation
where relations like this appear. Let’s look at the following table

1 𝑥 𝑥2 𝑥3 𝑥4 = 0
space plane line point ∅

, (44)

and note that the following parallels

𝑥 · 𝑥 = 𝑥2 two general planes in space intersect in a line,

𝑥 · 𝑥2 = 𝑥3 a plane and a general line in space intersect in a point,

𝑥 · 𝑥3 = 0 a plane and a general point in space intersect in an empty set.

Note that the 3-space here can be over an arbitrary field, which has nothing to do with the
rational coefficients we had in (43). For a 𝑑-dimensional space, we should replace 𝑥4 = 0 by
𝑥𝑑+1 = 0. We will come back to these parallels in Section 8, but for now notice the potential
for algebras to encode combinatorial information.

6.2. Graded algebras
This potential to encode combinatorial information gets amplified when we consider

graded algebras. Let
A = F[𝑥1, . . . , 𝑥𝑁 ]

/
(relations)

7 Or a commutative algebra to be more precise, since the product in A still obeys the commu-
tative law of the arithmetic.
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be an algebra generated by generators 𝑥𝑖 subjet to some relations. By definition, A is graded
if every generator 𝑥𝑖 is assigned a positive integer deg 𝑥𝑖 = 1, 2, . . . so that all relations
only involve monomials of the same total degree in 𝑥1, . . . , 𝑥𝑁 . For instance, 𝑥4 = 0 is a good
relation to have in a graded algebra, while 𝑥4 + 𝑥 = 0 is not. In a graded algebra, the subspaces

A𝑘 = span of monomials in generators of total degree 𝑘 (45)

intersect only in zero for different 𝑘 . Mathematicians put a circle around the plus sign in

A =
⊕
𝑘

A𝑘 (46)

to stress this fact. One says that (46) is a direct sum.
Each A𝑘 is a finite-dimensional linear space over F and its dimension dimF A𝑘 is a

number which may be an interesting combinatorial function of 𝑘 . For a combinatorial classic,
consider the example

A₩ = Q[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]/(𝑥𝑚1+1
1 = 0, . . . , 𝑥𝑚6+1

6 = 0) ,

where the degrees of variables, which we write as a vector, are the denominations of the
Korean won coins

deg 𝑥 = (1, 5, 10, 50, 100, 500) .

The reader should check that

dim A₩,𝑘 =number of ways to pay 𝑘 won

using ≤ 𝑚𝑖 coins of each denomination .

For instance, if all 𝑚𝑖 = 1, we get the sequence

𝑘 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

dim A₩,𝑘 1 1 0 0 0 1 1 0 0 0 1 1 0 . . .
, (47)

while for all sufficiently large 𝑚𝑖 one gets the sequence

𝑘 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

dim A₩,𝑘 1 1 1 1 1 2 2 2 2 2 4 4 4 . . .
, (48)

The number 4 here comes from the fact that 10 = 5 + 5 = 5 + 1 + · · · + 1 = 1 + · · · + 1 are all
valid ways to pay 10 won.

The reader should further check that when all 𝑚𝑖 are finite, the sequence dim A₩,𝑘

is always palindromic, that is, equals to itself read backwards. Equivalently,

dim A₩,𝑘 = dim A₩,topdeg −𝑘 , topdeg =

6∑︁
𝑖=1

𝑚𝑖 deg 𝑥𝑖 , (49)

where the top degree is the total sum of money in our possession8. In particular, the sequence
starts and ends with

dim A₩,0 = dim A₩,topdeg = 1 ,

8 Instead of paying 𝑘 won, we can just give all our money and ask for topdeg −𝑘 won in
change.
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but in the middle can have many ups and down, as exemplified by (47). In particular, it is
not in general a unimodal sequence, where unimodality is the concept we recall from the
discussion following (10).

6.3. Hard Lefschetz property
Remarkably, in a closely related situation, one finds a sequence which is not just

palindromic, but also unimodal. Every country in the Euro-area has its own euro cent coin,
so there are many different coins each worth e0.01. The number of ways to pay 𝑘 cents,
using at most 𝑚𝑖 cents from the country number 𝑖 = 1, . . . , 𝑁 , is related to the algebra

Ae = Q[𝑥1, . . . , 𝑥𝑁 ]/(𝑥𝑚1+1
1 = 0, . . . , 𝑥𝑚𝑁+1

𝑁
= 0) ,

with
deg 𝑥 = (1, . . . , 1) .

If 𝑚𝑖 = 1 for all 𝑖 then dim Ae,𝑘 =
(𝑁
𝑘

)
is the binomial coefficient. If all 𝑚𝑖 ≥ 2 then

dim Ae,𝑘 = 1, 𝑁, 𝑁 (𝑁+1)
2 , . . . ,

𝑁 (𝑁+1)
2 , 𝑁, 1 ,

where the last 1 occurs in the maximal degree
∑
𝑚𝑖 . Moreover, for any 𝑚𝑖’s, it will be always

a unimodal sequence! (This is a combinatorial classic, for which the reader can try finding her
or his own proof. It is probably the easiest to prove that the sequence of logarithms lndimAe,𝑘
is a concave function of 𝑘; see for example [11].)

There is certain algebraic property of Ae that is stronger than the symmetry (49)
and the unimodality. It concern multiplication by the element

𝜔 =

𝑁∑︁
𝑖=1

𝑥𝑖 ∈ Ae,1 .

The following diagram, plotted for (𝑚1, 𝑚2, . . . ) = (3, 1, 0, 0, . . . ) may help the reader visu-
alize what this multiplication operator does.

(50)

In (50), we have listed all monomials that do not reduce to zero on applying the rules 𝑥4
1 = 𝑥2

2 =

𝑥3 = · · · = 0. The graded pieces Ae,𝑘 , 𝑘 = 0,1, 2, 3,4 correspond to the diagonals in (50). The
operations of multiplication by 𝑥1 and 𝑥2, when nonzero, are represented by the horizontal
and vertical arrows, respectively. Thus, multiplication by𝜔 is the sum of all outgoing arrows.
We hope the reader has no problem visualizing the general case from this small example.

With these preparations, consider the multiplication map

Ae,𝑖
𝜔topdeg −2𝑖

−−−−−−−−−−−−→ Ae,topdeg −𝑖 , 𝑖 <
topdeg

2 . (51)

In the example (50), the possibilities for 𝑖 are 𝑖 = 0, 1. For 𝑖 = 0, we get

𝜔4 · 1 = 4 𝑥3
1𝑥2 .

17 Combinatorial geometry takes the lead



So, multiplication by 𝜔4, identifies Ae,0 = Q and Ae,4 = Q · 𝑥3
1𝑥2. Similarly,

𝜔2 · (𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑥
3
1 + (𝑐2 + 2𝑐1)𝑥2

1𝑥2 , 𝑐1, 𝑐2 ∈ Q ,

which is easily seen to be injective and surjective (one is enough, since this is linear map
between spaces of the same dimension). Thus, in the example (50), we observe that the maps
(51) are isomorphisms9.

In fact, the maps (51) are isomorphisms for the algebra Ae for any (𝑚1, 𝑚2, . . . ).
The reader who wants to prove this directly will probably find it a good challenge.

In general, one says that a graded algebra A satisfies the hard Lefschetz property
(HLP) if the multiplication maps (51) are isomorphisms for some 𝜔 ∈ A1. Among other
things, HLP implies that the multiplication map

Ae,𝑖
𝜔−−−−−−→ Ae,𝑖+1 , 𝑖 <

topdeg
2 , (52)

is injective, whence the unimodality of the sequence dim Ae,𝑖 .
Solomon Lefschetz was a very famous topologist, who proved10 HLP for cohomol-

ogy algebras of a certain class of manifolds; see Section 8. For the algebra Ae, the manifold
in question is the product

P𝑚1 (C) × P𝑚2 (C) × . . .P𝑚𝑁 (C)

of complex projective spaces.
The geometric story of HLP and its generalizations is an immensely beautiful sub-

ject, about which we will try to say a few words in Section 8. There are two reasons our contact
with this subject will be only tangential. First, going any deeper into this story requires a level
of mathematical sophistication that is well beyond the style of these notes. Second, and more
importantly, the work of [10] completely bypasses the old HLP story, creating a totally new
combinatorial alternative for it. It is true that the old HLP served as in important inspira-
tion and, in fact, the original proof of Theorem 1 relied on it. But progress in mathematics
also sometime includes letting go of very beautiful constructions that are no longer logically
required.

6.4. The graded Möbius algebra, finally
Given a matroid 𝑀 , its graded Möbius algebra H(𝑀) is defined as follows. As a

linear space over Q, it has a basis 𝑦𝐹 indexed by the flats 𝐹 of 𝑀 . It is graded by

deg 𝑦𝐹 = rank(𝐹) .

9 Mathematicians call a bĳective map between two sets an isomorphism when it preserves
some further structures that these sets possess. Multiplication by 𝜔 preserves multiplication
by A0 and addition.

10 Lefschetz’s arguments were not entirely rigorous. Different correct proofs of HLP were
given, in various geometric contexts, by Hodge, Chern, Deligne, and others. The influence
of Lefschetz’s work, however, was such that no one considers not naming this property after
him.
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Therefore,
|F𝑟 | = dim H(𝑀)𝑟 , 𝑟 = 0, 1, 2, . . . .

The multiplication is defined by

𝑦𝐹 𝑦𝐹′ =

 𝑦𝐹∨𝐹′ , rank(𝐹 ∨ 𝐹′) = rank(𝐹) + rank(𝐹′) ,
0 , otherwise ,

(53)

where 𝐹 ∨ 𝐹′ is the minimal flat that contains 𝐹 and 𝐹′. Recall we have used the notation to
denote the line 𝑃1 ∨ 𝑃2 spanned by points 𝑃1 and 𝑃2 etc.

In particular, 𝑦∅ ∈ H(𝑀)0 is the identity for this product. Also note that

𝑦𝐹 · H(𝑀) ⊂ span ({𝑦𝐹′ }such that 𝐹 ⊂ 𝐹′ ) . (54)

Theorem 2 easily follows from the following property of multiplication by the element11

𝜔 =
∑︁
𝐹∈F1

𝑦𝐹 (55)

in the algebra H(𝑀).

Theorem 3 ([10]). For 𝑟 ≤ 𝑟 ′ and 𝑟 + 𝑟 ′ ≤ rank(𝑀) the linear map

H(𝑀)𝑟
multiplication by 𝜔𝑟 ′−𝑟

−−−−−−−−−−−−−−−−−−−−−−→ H(𝑀)𝑟 ′ (56)

is injective.

Here is how Theorem 3 implies Teorem 2. Let

A = (𝑎𝐹′ ,𝐹)

be the matrix of multiplication by 𝜔𝑟 ′−𝑟 in the bases {𝑦𝐹 } ⊂ H(𝑀)𝑟 and {𝑦𝐹′ } ⊂ H(𝑀)𝑟 ′ .
See Appendix A for a reminder about matrices and bases.

By (54), the matrix entry 𝑎𝐹′ ,𝐹 vanishes unless 𝐹 ⊂ 𝐹′. Since A is injective, it has
is a square invertible submatrix A′ of size |F𝑟 |. Since A′ is invertible, its determinant

det A′ ≠ 0 (57)

is not zero. Since det A′ ≠ 0, there is at least one nonzero term in the formula (110). The
corresponding permutation determines an injective matching of flats in F𝑟 to flats in F𝑟 ′ .
Quod erat demonstrandum.

Note how the logic of the proof goes from combinatorics to linear algebra and back.
A linear map takes a basis vector to a linear combination of basic vectors, and this gives
linear maps important extra flexibility. The argument above is about how one can go back,
and obtain an injective maps between bases from an injective linear map.

11 More generally, one can replace each 𝑦𝐹 in (55) by 𝑐𝐹 𝑦𝐹 , where 𝑐𝐹 is an arbitrary positive
rational number.
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In broadest possible strokes, the strategy of the proof of Theorem 3 is the following.
The authors of [10] construct a larger graded linear space

H(𝑀)𝑟 ⊂ IH(𝑀)𝑟 , 𝑟 = 0, 1, . . . , rank(𝑀) ,

which is no longer an algebra, but still has multiplication by elements of H(𝑀). Mathemati-
cians say IH(𝑀) is a module for the algebra H(𝑀). Since it is a module, it makes sense to
consider the map

IH(𝑀)𝑟
multiplication by 𝜔rank(𝑀)−2𝑟

−−−−−−−−−−−−−−−−−−−−−−−−−−→ IH(𝑀)rank(𝑀 )−𝑟 , (58)

for 𝑟 < 1
2 rank(𝑀). Evidently, (58) being an isomorphism implies that (64) is injective. It is

this HLP for the map (58) that is really the key to Theorems 1, 2, and 3.

7. The big induction
In a computer code, it is sometimes very convenient to allow a procedure to call

another instance of itself. Of course, if done carelessly, this can easily lead to an infinite loop
and failure. To make sure the code terminates, there have to be, first, some base cases, when
the procedure returns the answer without calling itself, and, second, it should each time call
itself on smaller or simpler input, which gets closer and closer to a base case.

Imagine we already coded a data type matroid and we want to code, in some imag-
inary relative of the C programming language, a procedure

print_theorem_3_proof(matroid M){

if (rank M < 2){

print("multiplication by 𝜔0 is an isomorphism") (59)

. . . ,

where we have already indicated the base case. Definitely, a matroid 𝑀 ′ is simpler that 𝑀 if
that has fewer points, so it is OK for this procedure to call print_theorem_3_proof(M’)
inside itself for such 𝑀 ′.

There are two important ways to construct a smaller matroid from 𝑀 and a flat 𝐹
of 𝑀 . They are denoted 𝑀𝐹 and 𝑀𝐹 . The matroid 𝑀𝐹 keeps only points 𝑃𝑖 and flats 𝐹′

contained in 𝐹. The matroid 𝑀𝐹 keeps only those flats 𝐹′ that contain 𝐹. The latter are
determined by which points we should add to 𝐹 to get 𝐹′, hence 𝑀𝐹 is a matroid on the
points 𝑃 𝑗 that are not contained in 𝐹.

Of course, to have a mathematical proof of Theorem 3 it is not necessary to actually
run the procedure. It is enough to know that a proof for 𝑀 can be found if we have a proof
for all smaller matroids 𝑀𝐹 and 𝑀𝐹 , and in the base case. Mathematicians call such proofs
a proof by induction.

A very important insight from [10] is that it is much more natural to prove a stronger
theorem than Theorem 3. In an inductive proof, there is always a tension between trying to
prove too much or too little. The logic of induction says that we can get from the result for
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𝑀 ′ to the result for 𝑀 . So, assuming we can prove the statement for 𝑀 ′, we can prove it for
𝑀 . There is a certain climb between 𝑀 ′ and 𝑀 , and it becomes impossible if the starting
point is too low or the goal is too high.

Analogies aside, what the authors of [10] actually prove is the whole Kähler package
for the space IH(𝑀). In addition to HLP, this package includes a nondegenerate bilinear form

( · , · ) : IH(𝑀)𝑖 × IH(𝑀)rank −𝑖 → Q , (60)

such that for 𝛼 ∈ IH(𝑀)𝑖 we have

𝜔rank −2𝑖+1𝛼 = 0 ⇒ (−1)𝑖 (𝜔rank −2𝑖𝛼, 𝛼) > 0 . (61)

For realizable matroids, these properties have an interpretation and history in topology, at
which we will hint in Section 8. Namely (60) is the Poincaré duality and (61) are the Hodge-
Riemann relations. But as we have already stressed at many points of this narrative, the
amazing feature of Theorem 3 is that it works with no input from topology or algebraic
geometry, and applies to absolutely all matroids, realizable or not.

The body of the procedure (59) is a marvel of combinatorics and combinatorial
algebra, and it is way beyond the sophistication level of these notes to try to look any further
in it. Let’s just say it is not at all simple. There is a reason mathematics like this is recognized
by the highest prizes in mathematics. In fact, it is miracle that some people can construct
proofs like this.

An interested reader will find further reading suggestions in Section 9. We should
also mention that Theorem 3 is not first time a combinatorial replacement of Hodge theory
appears in mathematics.

June Huh says: “Important precursors include the intersection cohomology IH(𝑃)
of a convex polytope 𝑃 [29] and the Soergel bimodule IH(𝑤) for a Coxeter group element
𝑤 [17]. Both IH(𝑃) and IH(𝑤) satisfy Poincaré duality, the hard Lefschetz theorem, and
the Hodge–Riemann relations, and these reveal fundamental properties of 𝑃 and 𝑤: The
generalized lower bound conjecture for the number of faces in the case of 𝑃 [29, 41] and
the nonnegativity conjecture for the coefficients of Kazhdan–Lusztig polynomials of Bruhat
intervals in the case of 𝑤 [17,31]. Each of the known proofs of the three combinatorial Kähler
packages involves numerous details that are unique to that specific case.”

Speaking of Kazhdan–Lusztig polynomials, the authors of [10] prove, in fact, much
more than we managed to explain in these notes. In particular, they prove the nonnegativity
of KL polynomials for all matroids.

I hope the readers share the narrator’s sense of awe at this absolutely amazing math-
ematics and join me in warmest congratulations on it being recognized by the Fields Medal.
I also hope the readers got the sense that today’s mathematics is not just extraordinarily pow-
erful, but also concrete, understandable, and fun, once one finds the right idea and the right
point of view. While finding that right point of view is not at all easy, my biggest hope is to
have inspired my youngest readers to believe that mathematics can be beautiful and reward-
ing, both as a subject and as a profession. Maybe this is also a good place for me to thank June
Huh and Gil Kalai for this special opportunity to be introduced to their wonderful subject.
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8. Inspirations from topology
8.1. Cohomology
Consider a graphΓ drawn on a torusΣ, that is, on the surface of a bagel. By definition,

a graph is a collection of vertices and edges. Since it is drawn on a surface Σ, it partitions Σ
into some regions that we will call faces. The vertices, edges, and faces are the 0-, 1-, and
2-dimensional objects in Figure (62).

We assume, and it is an important assumption, that every face is a polygon. For
instance, the unique face in Figure (62) is obtained by gluing the opposite sides of the hexagon
in (65). For a very different example of a graph on the torus, the reader may take the fine
square mesh representing the torus in Figure (62)

(62)

Let 𝑓0 be a function defined on the vertices {𝑉𝑖} of Γ. We define its gradient 𝑑𝑓0 as follows.
This will be a function of an oriented edge 𝐸𝑖 𝑗 of Γ. If 𝐸𝑖 𝑗 goes from the vertex 𝑉𝑖 to the
vertex 𝑉 𝑗 , schematically

𝑉𝑖 •
𝐸𝑖 𝑗−−−−−−−→ •𝑉 𝑗 ,

then
𝑑𝑓0 (𝐸𝑖 𝑗 ) = 𝑓 (𝑉 𝑗 ) − 𝑓 (𝑉𝑖) . (63)

For the opposite orientation of the edge, one gets the opposite sign:

𝑑𝑓0 (
←−
𝐸 ) = −𝑑𝑓0 (

−→
𝐸 ) . (64)

This elementary construction is found in abundance is both theoretical and applied situations.
For instance one may interpret 𝑑𝑓0 as the current through edges of Γ generated by a potential
function 𝑓0 defined on its vertices.

Now let 𝑓1 be a function on oriented edges satisfying the sign rule (64). We may
interpret 𝑓1 as a flow or a vector field going along the edges of Γ. Given on oriented face 𝐹,
its boundary

𝜕𝐹 = 𝐸𝑖 𝑗 ∪ 𝐸 𝑗𝑘 ∪ . . .

is a collection of edges, which gets an orientation from the orientation of 𝐹; see Figure 65.

(65)
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We define
𝑑𝑓1 (𝐹) =

∑︁
𝐸∈𝜕𝐹

𝑓1 (𝐸) . (66)

This has a natural interpretation as the circulation, or the curl, of the flow 𝑓1 around the face
𝐹. This again changes sign upon switching the orientation of 𝐹. The reader may want to
pause and write (63) in a form that resembles (66).

So far, we did not specify the range of the functions 𝑓𝑖 . Let them take values in some
field F. Functions on vertices form a linear space over F that we will denote Ω0 (Γ), and
similarly for functions Ω𝑖 (Γ), 𝑖 = 1, 2 on oriented edges and faces. We always assume these
functions change sign as in (64) upon switching the orientation. To fix a basis in these spaces,
we can fix some orientation of each edge and face arbitrarily.

Above, we have constructed two linear maps

Ω0 (Γ) 𝑑0−−−−−−→ Ω1 (Γ) 𝑑1−−−−−−→ Ω2 (Γ) , (67)

where we marked the two maps 𝑑 with lower indices for notational convenience. The key
property of (67) is that the composition

𝑑2 = 𝑑1𝑑0 = 0 (68)

is zero. This is known in may different guises, e.g. the circulation of a gradient vector field is
zero, and reflects the geometric fact that 𝜕2 = 0, meaning that a boundary has no boundary.

A classical question appearing in many branches of mathematics is: does every vec-
tor field with zero curl comes from a potential? In other words is it true that the kernel Ker 𝑑1

equals the image Im 𝑑0? Or, using the language introduced in Section A.4, is the sequence
(67) exact in the middle term?

More generally, one calls a sequence of maps composing to zero like (67) a complex,
with the stress on the second syllable. From 𝑑2 = 0, we see that Im 𝑑𝑖−1 ⊂ Ker 𝑑𝑖 and one
defines the cohomology groups of a complex by

𝐻𝑖 = Ker 𝑑𝑖
/

Im 𝑑𝑖−1 .

In (67) and in general we assume that the maps 𝑑𝑖 not indicated are the zero maps. The image
of a zero map is the zero subspace and the kernel of a zero map is the whole space.

Clearly,
Ker 𝑑0 = constant functions = F ,

hence dim𝐻0 = 1. It fun to check that

Im 𝑑1 = Ker

(
Ω2 (Γ)

∫
Σ−−−−−−→ F

)
where the integration map is defined by∫

Σ

𝑓2 =
∑︁

all faces 𝐹
𝑓2 (𝐹) ,
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with the orientation of each face induced by some chosen orientation of Σ. Therefore,
dim𝐻2 = 1. The remaining dimension dim𝐻1 we can infer from

dim𝐻0 − dim𝐻1 + dim𝐻2 = dimΩ0 − dimΩ1 + dimΩ2

= |vertices| − |edges| + |faces|
= Euler characteristic of Σ

= 0 , (69)

where the first equality is a general property of all complexes which follows from (98) and
(100), and where at the last step we used Euler’s formula, one of the first topological results
in mathematics.

Thus dim𝐻1 = 2 and, in fact, a vector field 𝑓1 is a gradient if and only if its circulation
around each face and around the two blue loops as in Figure (70) vanishes.

(70)

While we started with a graph on a torus, the eventual outcome of our computation is really
about the torus itself and not about any particular graph drawn on it. One way to see it, is to
take a a refinement Γ′ of the graph Γ. This means that every edge of Γ

𝐸𝑖 𝑗 = 𝐸 ′𝑖𝑘1
∪ 𝐸 ′𝑘1𝑘2

∪ · · · ∪ 𝐸 ′𝑘𝑙 𝑗

is a union of edges of Γ′. It follows that every face of Γ is a union of faces of Γ′. A refinement
of a face may look something like Figure (71)

(71)

From the flows and circulations in the graph Γ′ we can compute the flows and circulations
in the graph Γ. This gives vertical maps in the diagram

Ω0 (Γ) 𝑑0 // Ω1 (Γ) 𝑑1 // Ω2 (Γ)

Ω0 (Γ′)
𝑑′0 //

OO

Ω1 (Γ′)
𝑑′1 //

OO

Ω2 (Γ′)

OO , (72)
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which can be seen to identify the cohomology. Since any two graphsΓ1 andΓ2 have a common
refinement Γ′, the cohomology is really attached to the torus Σ and not to any particular
decomposition of Σ into vertices, edges, and faces. What is really fundamental about the
torus is that all possible loops in Σ, up to boundaries, span a two-dimensional space with a
basis plotted in Figure (70).

We hope it is easy for the reader to imagine the generalization of this story in which
one replaces the torus Σ by any topological space that can be glued out of polytopes of
different dimension. The elementary story told above was known in the XIX century, and
since then topologists have developed really powerful tools to attach various topological
invariants, including cohomology 𝐻𝑖 (𝑋,F), to topological spaces 𝑋 .

The torus is not only a topological space, it is also a complex algebraic variety.
Namely, consider the solutions

{𝑃(𝑥0, 𝑥1, 𝑥2) = 0} ⊂ P2 (C) , (73)

where 𝑃 is a homogeneous polynomial of degree 3, meaning that

𝑃(𝑡𝑥0, 𝑡𝑥1, 𝑡𝑥2) = 𝑡3𝑃(𝑥0, 𝑥1, 𝑥2) , for any 𝑡 ∈ C . (74)

While the coordinates (𝑥0, 𝑥1, 𝑥2) on P2 are defined only up to proportionality, by (74) the
zero set (73) is defined unambiguously. If the partial derivatives 𝜕

𝜕𝑥𝑖
𝑃 do not vanish simulta-

neously, then (73) is a torus. Not to be outdone by the topologists, algebraic geometers have
defined equally powerful cohomology theories for algebraic varieties. These agree with the
topological definitions over the field C of complex numbers.

It is a really inspiring lesson in the unity of mathematics that different cohomology
theories, with very different starting points and emphasis on very different geometric objects,
in the end all agree on their common domains of applicability.

8.2. Multiplication and Poincare duality
We were interested in cohomology because of the graded algebra structure on the

direct sum
𝐻
• (𝑋,F) =

⊕
𝐻𝑖 (𝑋,F) ,

that is, because of the multiplication operation

𝐻𝑖 (𝑋,F) × 𝐻 𝑗 (𝑋,F) ∪−−−−−−→ 𝐻𝑖+ 𝑗 (𝑋,F) . (75)

The product (75) exists for very abstract reasons. For any topological space 𝑋 there is the
diagonal map

𝑋 → 𝑋 × 𝑋 ,

sending a point 𝑥 to the pair (𝑥, 𝑥). A map between topological spaces induces a map on
cohomology the other way. Using the Künneth isomorphism

𝐻
• (𝑋 × 𝑋,F) = 𝐻

• (𝑋,F) ⊗ 𝐻
• (𝑋,F) , (76)

where ⊗ denotes the tensor product, one obtains (75). A less general but more intuitive
description says that (75) is dual to intersection, and it goes as follows.
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By definition, the complex of dual maps

Ω0 (Γ)∨
𝑑∨0←−−−−−−− Ω1 (Γ)∨

𝑑∨1←−−−−−−− Ω2 (Γ)∨ , (77)

computes the homology groups 𝐻𝑖 (Σ,F). The geometric meaning of (77) is transparent. The
bases in Ω𝑖 (Γ)∨, 𝑖 = 0, 1, 2, are indexed by vertices, edges, and faces, respectively, and the
maps are the boundary maps 𝜕. Collectively, the vertices, edges, and faces are called cells,
and F-linear combinations of cells are called chains. Chains with no boundary are called
cycles. Thus, homology describes cycles up to boundaries.

For the torus Σ the homology complex (77) can be identified with the cohomology
complex for the dual graph Γ∨, where the dual graph to (62) can be seen in (78).

(78)

The vertices, edges, and faces of the dual graph correspond to the faces, edges, and the vertices
of the original graph, respectively. Moreover, each cell intersects the dual cells in exactly one
point. This gives the Poincaré duality isomorphism

𝐻𝑖 (Σ,F) � 𝐻dimΣ−𝑖 (Σ,F) . (79)

It works just the same for a doughnut with 𝑔 = 2, 3, . . . holes and for any oriented closed
(meaning, compact and without boundary) manifold 𝑀 .

Manifolds are particularly nice topological spaces that, in a certain technical sense,
look just like the linear space in the vicinity of every point. The linear space R𝑛 is a manifold,
but not a compact manifold. The 𝑛-dimensional sphere 𝑆𝑛 and also the real and complex
projective spaces are closed manifolds. Recall we insisted that 𝜕

𝜕𝑥𝑖
𝑃 ≠ 0 for some 𝑖 at every

point of (73). This was to make sure that (73) defines a manifold.
For cycles, one would like to define an intersection product

𝐻𝑖 (𝑋,F) × 𝐻 𝑗 (𝑋,F)
∩−−−−−−→ 𝐻𝑖+ 𝑗−dim 𝑋 (𝑋,F) , (80)

that would turn into the ∪-product upon the identification (79). It doesn’t really make sense
for a general topological space, since it is not even clear what notion of dimension one should
use in (80). But on a manifold, it works beautifully, especially if one intersects cycles defined
using a graph Γ with the cycles defined using the dual graph Γ∨. (Recall that any two graphs
Γ and Γ′ define the same space of cycles up to boundaries.)
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One very important detail here that one should count intersections with a sign
according to orientation. This is crucial to make boundaries have zero intersection with any
cycle. Lets look at the intersection of a cycle 𝛾 with a boundary 𝜕𝐹 in Figure (81). If we
keep track of the orientations, we can tell whether 𝛾 enters or exists 𝐹 at a given point of
intersection. Hence if we count intersections with signs then we get 𝛾 ∩ 𝜕𝐹 = 0.

𝛾 𝐹 (81)

As a result, cohomology 𝐻
• (Σ,F) not commutative but rather supercommutative12

𝛼1 ∪ 𝛼2 = (−1)𝑑1𝑑2𝛼2 ∪ 𝛼1, 𝛼𝑖 ∈ 𝐻𝑑𝑖 . (82)

If the reader has not seen it before, it is a good exercise to work out multiplication for 𝐻• (Σ,F)
and also for 𝐻• (Σ𝑔,F), where Σ𝑔 is the surface of the doughnut with 𝑔 holes.

While the signs in (82) are an important fact of nature, they are of little concern
for us here since we are interested in even cohomology, which is commutative. In particular,
topological intersection of algebraic cycles, that is, those defined by polynomial equations,
is commutative and agrees with its counterpart in algebraic geometry.

For cycles of complementary dimension, we can interpret interpret the isomorphism
(79) as the Poincaré duality pairing:

( · , · ) : 𝐻𝑖 (𝑋,F) × 𝐻dim 𝑋−𝑖 (𝑋,F) → F . (83)

The purely combinatorial relative of this pairing appears in (60). One can also interpret (83)
as the composition of the cup product with the isomorphism 𝐻dim 𝑋 (𝑋,F) � 𝐻0 (𝑋,F) = F.

It is an excellent student project to prove that

𝐻
• (P𝑑 (C),F) = F[𝑥]/(𝑥𝑑+1 = 0) , 𝑥 ∈ 𝐻2 , (84)

where 𝑥 is dual to the class of the hyperplane in 𝐻2𝑑−2 (P𝑑 (C)). This formalizes the table
(44). Similarly,

Ae,𝑘 = 𝐻2𝑘 (P𝑚1 (C) × · · · × P𝑚𝑁 (C),Q) . (85)

8.3. The Hard Lefschetz property
The title of this subsection prompts the question: for which even-dimensional man-

ifolds 𝑋 is there a class 𝜔 ∈ 𝐻2 (𝑋,Q) such that the multiplication map

𝐻𝑖 (𝑋,Q) 𝜔
1
2 dimR 𝑋−𝑖

−−−−−−−−−−−−−→ 𝐻dimR 𝑋−𝑖 (𝑋,Q) , 𝑖 < 1
2 dimR 𝑋 , (86)

12 The tensor product in Künneth theorem (76) should also be understood with signs.
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is an isomorphism? Here by the dimension of 𝑋 we mean its real dimension, even though
𝑋 may have been originally defined as a complex manifold. Thus, the dimR Σ = 2 for the
torus (73). It is not enough for 𝑋 to be smooth: the even dimensional spheres 𝑋 = 𝑆2𝑘 have
𝐻2 (𝑆2𝑘) = 0, and hence no chance of satisfying (86) for 𝑘 > 1.

One classical answer is that a smooth projective 𝑋 ⊂ P𝑁 (C) satisfied the Hard Lef-
schetz property (86) with 𝜔 dual to the class of a hyperplane section. Projective means that
𝑋 is defined by polynomial equations just like (73), and smooth means it is a manifold. A
more general class of Kähler manifold also satisfies the HLP.

If 𝑋 ⊂ P𝑁 (C) is not smooth then it is called singular. For singular 𝑋 , there is a
more delicate cohomology theory that satisfies the HLP. It is called intersection cohomology
and its developments is one of the true highlights of the geometry and topology, achieved
in the 1970’s and 1980’s by Mark Goresky, Robert MacPherson, Pierre Deligne, Alexander
Beilinson, Joseph Bernstein, and other amazing mathematicians.

For a matroid linearly realisable over C, the Möbius algebra H(𝑀) is the cohomology
algebra of the variety 𝑌 associated to 𝑀 in (38). Note that the generators H(𝑀) commute
and square to zero, so it is a quotient of 𝐻•

(
(P1)𝑛

)
. The module IH(𝑀) is the intersection

cohomology of the same variety𝑌 . Thus, there is a topological proof the HLP for IH(𝑀) for
realizable matroids. This was used in the original proof of Theorem 1 given in [22].

Hard Lefschetz property for cohomology and intersection cohomology has a his-
tory of very powerful application to combinatorial problems. One great example is Richard
Stanley’s proof of McMullen’s conjectural characterization of 𝑓 -vectors13 of simplicial con-
vex polytopes. (Stanley proved the necessity of McMullen’s conditions, the sufficiency was
proven about the same time by Billera and Lee.) See [42] for a discussion of this and other
combinatorial applications of the HLP.

9. Further reading
The Quanta Magazine has published popular accounts of these and related devel-

opments, see [13, 20].
Among surveys written by top experts in the field, one should mention [5,28], includ-

ing expositions by June Huh himself [23, 24].
Among textbook introductions to different areas mathematics discussed in our nar-

rative, the reader will surely find something which suits her or his interests and style among
[4, 21, 38, 40, 43].

I hope the reader has a lot of fun studying these sources as well as the original articles
[10, 22].

13 For a convex polytope, its 𝑓 -vector records the number of faces of each dimension.
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A. A rice bowl of linear algebra
A.1. Linear equations
A system of 𝑁 linear equations for 𝑀 unknowns 𝑥1, . . . , 𝑥𝑀 ,

𝑎11𝑥1 + . . . + 𝑎1𝑀𝑥𝑀 = 𝑐1
...

...
...

𝑎𝑁1𝑥1 + . . . + 𝑎𝑁𝑀𝑥𝑀 = 𝑐𝑁

(87)

is conveniently written in matrix notation

A x = c , (88)

where

A =


𝑎11 . . . 𝑎1𝑀
...

...

𝑎𝑁1 . . . 𝑎𝑁𝑀

 , x =


𝑥1
...

𝑥𝑀

 , c =


𝑐1
...

𝑐𝑁

 . (89)

Solutions of (87) are unchanged, if we multiply 𝑖th equation, where 𝑖 = 1, . . . , 𝑁 by a nonzero
number 𝑡, or add to the 𝑖th equation 𝑡 times the 𝑗 th equation. Such transformation are called
elementary. In matrix form, they have the form

(A, c) → (gĳ (𝑡)A, gĳ (𝑡)c) ,

where gĳ (𝑡) is an elementary matrix, which means a matrix of the following form

1 0 0 . . . 0
0 1 0 . . . 0

0 0 1
...

...
...

. . . 0
0 0 . . . 0 1

︸                           ︷︷                           ︸
identity matrix

put 𝑡 ≠ 0 in 𝑖th row and 𝑗th column
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ gĳ (𝑡) . (90)

The rice in our rice bowl is the following statement, called row reduction, or Gaussian elim-
ination. Any system of linear equation can be transformed by elementary operations14 to a
unique matrix of the schematic form

Arowred =



0 0 1 ∗ 0 0 ∗ 0 ∗
0 0 0 0 1 0 ∗ 0 ∗
0 0 0 0 0 1 ∗ 0 ∗
0 0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0 0


, (91)

14 In practical implementations of row reduction, it is very convenient to permute equations.
Abstractly, however, a permutation of two equations may be achieved by elementary tranfor-
mations, as the reader will easily check.
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where stars stand for some unspecified numbers. The 1’s in (91) have to be in different rows
and columns. A star ∗ can follow a 1 in a row, but not if there is a 1 in the same column. The
number of 1’s in (91) is called the rank of A.

We have

solutions
(
A x = c

)
= solutions

(
Arowred x = c′

)
, (92)

where c′ is the result of applying the sequence of elementary tranformations gĳ (𝑡) to the
vector c. For a reduced matrix, the solutions can be described very easily.

The zero rows in (91) lead the equations of the form 0 = 𝑐′
𝑖
. These have either no

solutions if 𝑐′
𝑖
≠ 0 or can be discarded if 𝑐′

𝑖
= 0. Thus (88) has solutions if and only if c

satisfies 𝑁 − rank(A) linear equations given by 𝑐′
𝑖
= 0, 𝑖 = rank(A) + 1, . . . , 𝑁 .

After we have dealt with the zero rows in (91), the remaining equations may be
solved uniquely for the variables 𝑥 𝑗 that have a 1 in their columns. All other variables are
free parameters. Thus, when exists, the solutions are parametrized by 𝑀 − rank(A) many
free parameters.

Row reduction is fundamental. Everything else in this section is a topping.

A.2. Linear maps
In Section A.1 , we never specified the algebraic nature of the variables 𝑥 𝑗 or the

coefficients 𝑎𝑖 𝑗 and 𝑐𝑖 . The reader may have assumed they are real or rational numbers. In
fact, they can be taken to be elements in any field F without changing anything at all in the
analysis.

Column vectors x of size 𝑀 with entries in F form the coordinate linear space F𝑀

of dimension 𝑀 . It has operations of addition and multiplication by elements 𝑡 ∈ F, both
defined coordinate by coordinate. A map

A : F𝑀 → F𝑁 (93)

is said to be linear if it preserves these operations, that is,

A(x + x′) = A(x) + A(x′) , A(𝑡x) = 𝑡A(x) .

The reader should check that such maps are precisely the ones given by a matrix multiplica-
tion, and hence we can write A x in place of A(x). From what we just learned about linear
equations, it follows that:

• A is injective if and only if rank(A) = 𝑀 .

• A is surjective if and only if rank(A) = 𝑁 .

• A is bĳective, or an isomorphism, or invertible if and only if rank(A) = 𝑁 = 𝑀 .
In particular, there is no isomorphism F𝑀 → F𝑁 if 𝑀 ≠ 𝑁 .

• any isomorphism g : F𝑀 → F𝑀 is a product of elementary matrices gĳ (𝑡).

It is very important to remember that linear spaces have a lot of nontrivial isomorphisms
g : F𝑀 → F𝑀 . These can be composed and inverted, thus form a group denoted 𝐺𝐿 (𝑀,F).
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When we act by g ∈ 𝐺𝐿 (𝑀, F), we say that the we change the basis, or do a linear change
of coordinates. While coordinates provide a very concrete and convenient description of
geometric objects, a truly geometric construction should work equally well in any linear
coordinates.

Formula (91) describes a standard form to which a matrix can be brought by post-
composing with an isomorphism, that it, by a change of basis in the target of the map. We
invite the reader to check that by an independent15 change of basis in the source and the target,
a matrix can be brought to a particularly simple form

Arowcolred =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0


. (94)

The number of ones in (94) is still the rank of A.
This means that, in some coordinates, a linear map from one linear space to another

just forgets some coordinates, and pads the remaining ones by zeros. Thus a linear map from
one linear space to another may be pictured as follows:

(95)

The symbols Ker A and Im A will be explained in Section A.4.

A.3. Abstract linear spaces
A set V is called a linear space over a field F if it has a special element 0 ∈ V, an

operation of addition, and an operations of multiplication by 𝑡 ∈ F, satisfying the same rules
as the corresponding operations in F𝑀 .

Any collection of vectors v1, . . . , v𝑀 determines a linear map

F𝑀 → V

15 Something much more interesting happens if the source and target are the same space and
we have to use the same change of variables in both.
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given by 
𝑥1
...

𝑥𝑀

 ↦→
∑︁

𝑥𝑖v𝑖 . (96)

The linear space is said to have finite dimension if for some collection v1, . . . , v𝑀 the map
(96) is surjective. By a version of row reduction, there is then a subset of v𝑖’s for which
the map (96) becomes an isomorphism. Such set of vectors is called a basis for V, and its
cardinality is denoted dim V. From what we already know, V has many bases, which can be
all taken to each other by the group 𝐺𝐿 (V) = 𝐺𝐿 (dim V,F).

A.4. Kernel, image, and quotient
Given a linear map

A : V1 → V2 ,

one defines its kernel by
Ker A = {v ∈ V1,A v = 0} . (97)

This is a linear subspace of the source space of A of dimension

dim Ker A = dim V1 − rank A . (98)

The projection in (95) is the projection along the kernel of A. One defines the image of A as
the image of this projection, or more formally

Im A = {v′ ∈ V2, v′ = A v for some v ∈ V1} . (99)

This is a linear subspace in the target space of A of dimension

dim Im A = rank A . (100)

Thus, A may be factored as a projection and embedding

V1

A

66
projection // Im A

embedding // V2 . (101)

Mathematicians call a sequence of maps of the form

0→ Ker A
embedding

−−−−−−−−−−−−→ V1
projection

−−−−−−−−−−−−→ Im A→ 0 (102)

a short exact sequence. This is an important word to remember and use. It is exact because
the the kernel of each arrow in (102) is the image of the preceding map. It is short because it
contains only 3 nontrivial terms. One also says that a projection is the quotient of V1 by its
kernel.
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A.5. Dual vector spaces
For an F-linear space V, the space

V∨ =
{
linear functions V

𝝃
−−−−−−→ F

}
is also an F-linear space, since we can add linear functions and multiply them by numbers.
The dual space to F𝑀 is best visualized as the space of row vectors

(F𝑀 )∨ =
{[
𝜉1, . . . , 𝜉𝑀

]}
, 𝜉1, . . . , 𝜉𝑀 ∈ F , (103)

with

𝝃 (x) =
[
𝜉1, . . . , 𝜉𝑀

] 
𝑥1
...

𝑥𝑀

 =
∑︁

𝜉𝑖𝑥𝑖
def
= ⟨𝝃, x⟩ . (104)

Here the notation ⟨𝝃,x⟩ is introduced to stress the symmetry between 𝝃 and x. Mathematicians
like to stress that, while V and V∨ are vector spaces of the same dimension, there is no natural,
that is, coordinate-independent identification between them. By constrast, the symmetry in
(104) shows that (V∨)∨ = V in a coordinate-free way for any finite-dimensional vector space.

For any linear subspace V′ ⊂ V, there is the annihilator subspace

(V′)⊥ = {𝝃 such that ⟨𝝃, v′⟩ = 0 for all v′ ∈ V′} .

This is a subspace of V∨ of dimension

dim (V′)⊥ = dim V − dim V′ , (105)

satisfying
( (

V′
)⊥)⊥

= V′.
A linear map A : V1 → V2 induces the dual map

A∨ : V∨2 → V∨1

by precomposing a function with A. In other words

⟨A∨𝝃, x⟩ = ⟨𝝃,Ax⟩ .

For row vectors as in (103), this is just left multiplication 𝝃 ↦→ 𝝃A. It is important that duality
reverses the order of the composition

(A1A2)∨ = A∨2 A∨1.

We have
Ker A∨ = (Im A)⊥ , Im A∨ = (Ker A)⊥ ,

and in particular
rank A∨ = rank A .

If we insist on identifying the row vectors with column vectors by switching the rows and
columns then A∨ becomes the transposed matrix(

𝑎𝑖 𝑗
)T
=

(
𝑎 𝑗𝑖

)
. (106)
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A.6. Rank and rank
Let 𝑃1, . . . , 𝑃𝑁 be a collection of points in P𝑑 (F), where the projective space is

defined in Section 5.2. If

P = 𝑁 × (𝑑 + 1) matrix with rows 𝑃𝑖 ,

then the equation

P a = 0 , a =


𝑎0
...

𝑎𝑑

 , (107)

describes the hyperplanes containing the points 𝑃1, . . . , 𝑃𝑁 . Thus

rank({𝑃1, . . . , 𝑃𝑁 }) = dim span({𝑃1, . . . , 𝑃𝑁 }) + 1

= (𝑑 + 1) − dim solutions of (107)

= rank P . (108)

More generally, the rank of any subset of {𝑃1, . . . , 𝑃𝑁 } is the rank of the corresponding
submatrix in P.

For a practical computation of the rank, it is enough to bring a matrix by row oper-
ations to the row echelon form

Arow echelon =



0 0 ✰ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ✰ ∗ ∗ ∗ ∗
0 0 0 0 0 ✰ ∗ ∗ ∗
0 0 0 0 0 0 0 ✰ ∗
0 0 0 0 0 0 0 0 0


, (109)

where ✰ stands for some nonzero element of F.
A theoretical formula for the rank may given using determinants; see Appendix B.

Namely, the rank is the maximal size of a square submatrix with nonzero determinant.

B. Determinant
B.1. Formula
A matrix A : F𝑁 → F𝑁 is invertible if and only if det A ≠ 0, where det A is a certain

polynomial in matrix elements 𝑎𝑖 𝑗 . An explicit formula for this polynomial that was needed
in Section 6.4 to deduce the existence of a matching from equation (57).

This formula is a sum over permutations 𝜎 of {1, . . . , 𝑁}. It reads

det 𝐴 =
∑︁

permutations 𝜎

sgn(𝜎) 𝑎1,𝜎 (1)𝑎2,𝜎 (2) · · · 𝑎𝑁,𝜎 (𝑁 ) , (110)

where permutations and their signs are defined as follows. See further below for one possible
explanation of the formula (110).
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B.2. Permutations
By definition, a permutation 𝜎 of a finite set is a bĳective map from a set to itself,

like the following example

1

''

2

��

3

��

4

��

5

��
1 2 3 4 5

(111)

for 𝑁 = 5. A permutation has a sign defined by

sgn(𝜎) = (−1) |crossings in (111) | = (−1) |inversions | , (112)

where an inversion of 𝜎 is a pair 𝑖 < 𝑗 such that 𝜎(𝑖) > 𝜎( 𝑗). For example, (1, 2), (1, 3), and
(4,5) are the inversions for 𝜎 in (111) and hence sgn(𝜎) = −1 for this particular permutation.

It is a nice exercise in the spirit of Figure (81) to check that

sgn(𝜎1𝜎2) = sgn(𝜎1) sgn(𝜎2) ,

where 𝜎1𝜎2 denotes the composition of two permutations. In particular, the sign does not
depend of how we order an 𝑁-element set. Compare the sign in (111) and below:

1

))

2

��

4

''

3

ww

5

ww1 2 4 3 5

B.3. 𝑵 = 2 case and the cohomology of the torus
Let

A =

[
𝑎 𝑏

𝑐 𝑑

]
be a 2 × 2 matrix. Then

det A = 𝑎𝑑 − 𝑏𝑐 (113)

and

A−1 =
1

det A

[
𝑑 −𝑏
−𝑐 𝑎

]
, (114)

over any field F, as can be checked directly. Thus indeed we see that det A ≠ 0 is equivalent
to invertibility of A.

Let us see what the cohomology of the torus 𝐻• (Σ,F) can tell us about the formula
(114). We hope the reader did the exercise suggested in Section 8.2 and remembers that

𝐻0 (Σ,F) = F , 𝐻1 (Σ,F) = F𝛾1 ⊕ F𝛾2 , 𝐻2 (Σ,F) = F𝛾1 ∪ 𝛾2 , (115)

for some basis {𝛾1, 𝛾2} of the 2-dimensional space 𝐻1 (Σ, F). The description (115) means
that 𝐻• (Σ, F) is generated by 𝛾1 and 𝛾2 using the cup product, and the relations that these
generators satisfy are

𝛾1 ∪ 𝛾1 = 𝛾2 ∪ 𝛾2 = 𝛾1 ∪ 𝛾2 + 𝛾2 ∪ 𝛾1 = 0 . (116)
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These can be written more compactly as follows

for all 𝛾 ∈ 𝐻1 , 𝛾 ∪ 𝛾 = 0 . (117)

Now, 𝐻1 is 2-dimensional linear space over F with a basis, hence we can act by the matrix
A in it. This action preserves the relation (117), and so induces the action on 𝐻2. Since

(𝑎𝛾1 + 𝑐𝛾2) ∪ (𝑏𝛾1 + 𝑑𝛾2) = (𝑎𝑏 − 𝑐𝑑) 𝛾1 ∪ 𝛾2 ,

we conclude that A acts on 𝐻2 as follows

𝐻2 (Σ,F)
multiplication by det A

−−−−−−−−−−−−−−−−−−−−−→ 𝐻2 (Σ,F) .

Writing the cup product as the Poincaré duality pairing (83), we conclude

(A𝛾,A𝛾′) = (𝛾, 𝛾′) det A

for any 𝛾, 𝛾′ ∈ 𝐻1. Introducing a new variable 𝛾′′ = A𝛾, we see that

(A−1𝛾′′, 𝛾′) = 1
det A

(𝛾′′,A 𝛾′)

which is equivalent to (114).

B.4. The general case
The torus Σ = 𝑆1 × 𝑆1 is the product of two circles. We have

𝐻0 (𝑆1,F) = F , 𝐻1 (𝑆1,F) = F𝛾 , 𝛾 ∪ 𝛾 = 0 .

The relation
𝛾1 ∪ 𝛾2 = −𝛾2 ∪ 𝛾1

that we have in
𝐻
• (Σ,F) = 𝐻

• (𝑆1,F) ⊗ 𝐻
• (𝑆1,F)

is an illustration of how one is supposed to put signs in the Künneth theorem (76) for odd
cohomology classes.

Now we can take

𝐻
• ((𝑆1)𝑁 ,F) = F⟨𝛾1, . . . , 𝛾𝑛⟩

/
(𝛾2

𝑖 = 0, 𝛾𝑖𝛾 𝑗 + 𝛾 𝑗𝛾𝑖 = 0) , (118)

where angle brackets means we don’t assume that 𝛾𝑖 and 𝛾 𝑗 commute. Indeed, they anticom-
mute in the algebra (118). Note that the dimensions dim𝐻𝑖 ((𝑆1)𝑁 ,F) =

(𝑁
𝑖

)
are the binomial

coefficients, and hence the symmetry of the binomial coefficients may be interpreted as an
instance of Poincaré duality.

When we act by A in the basis {𝛾1, . . . , 𝛾𝑛} of 𝐻1, we get, unraveling the definitions,

𝐻𝑁 ((𝑆1)𝑁 ,F)
multiplication by (110)

−−−−−−−−−−−−−−−−−−−−−→ 𝐻𝑁 ((𝑆1)𝑁 ,F) .

The Poincaré duality between 𝐻1 and 𝐻𝑁−1 gives the Cramer’s formula for A−1.
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C. Tropical lines, planes, etc.
C.1.
Consider the line

𝑥2 = 𝑎𝑥1 + 𝑏 ⊂ C2 , 𝑎, 𝑏 ≠ 0 , (119)

equivalently, the graph of the function 𝑥1 ↦→ 𝑎𝑥1 + 𝑏. What does it look like when 𝑥1 and 𝑥2

are exponentially large or small ? The question being a little vague, let us start by describing
the set of possible values of 𝜈𝑖 = ln |𝑥𝑖 | for (𝑥1, 𝑥2) satisfying (119).

The complex numbers {−𝑥2, 𝑎𝑥1, 𝑏} ⊂ C sum to zero, hence we can form a triangle
in the complex planes with these vectors as sides. The triangle inequality says that a triangle
with side lengths 𝐿1, 𝐿2, 𝐿3 exists if an only if each 𝐿𝑖 is less than or equal to the sum of the
other two numbers. This means

|𝑥2 | ≤ |𝑎𝑥1 | + |𝑏 | ,
|𝑎𝑥1 | ≤ |𝑥2 | + |𝑏 | , (120)

|𝑏 | ≤ |𝑎𝑥1 | + |𝑥2 | ,

which is equivalent to

ln (±|𝑎 |𝑒𝜈1 ∓ |𝑏 |) ≤ 𝜈2 ≤ ln (|𝑎 |𝑒𝜈1 + |𝑏 |) . (121)

See the plot on the left in Figure (122) for |𝑎 | = 2, |𝑏 | = 3. Note this graph dips to 𝜈2 = −∞
precisely at the value of 𝜈1 that corresponds to the unique root 𝑥1 = −𝑏/𝑎 of 𝑎𝑥1 + 𝑏 = 0.

𝜈1

𝜈2

𝜈1

𝜈2

(122)

What does the plot on the left in Figure (122) look like at a very large scale ? We should
rescale it by 1/𝑇 , where 𝑇 some large number, and take the limit when 𝑇 → +∞. For 𝑇 = 5
we get the shape in gray on the right in Figure (122) and as 𝑇 → ∞ these shapes converge
to the union of 3 rays plotted in blue. This union of three rays is called the tropicalization of
the line (119).

C.2.
Here is an alternative way to talk about 𝑥𝑖 being exponentially large or small. Above,

we had a parameter 𝑇 ≫ 0, and after rescaling 𝜈𝑖 by 𝑇 , the absolute values |𝑥𝑖 | were of the
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order 𝑒𝜈𝑖𝑇 . To introduce objects like 𝑒𝜈𝑖𝑇 , where 𝑇 is a parameter, into the framework of
linear algebra, there should be some extension of the field C that contains elements 𝑒 𝜉𝑇 for
all 𝜉 ∈ R. Their multiplication is clear

𝑒 𝜉1𝑇 · 𝑒 𝜉2𝑇 = 𝑒 ( 𝜉1+𝜉2 )𝑇 ,

but how should we compute inverses like (𝑒 𝜉1𝑇 + 𝑒 𝜉2𝑇 )−1 ?
Since we are interested in the 𝑇 → +∞ limit, we should focus on the larger of the

two exponents 𝜉𝑖 in 𝑒 𝜉1𝑇 + 𝑒 𝜉2𝑇 . Suppose 𝜉1 > 𝜉2. Then we can write

1
𝑒 𝜉1𝑇 + 𝑒 𝜉2𝑇

=
1

𝑒 𝜉1𝑇

1
1 + 𝑒 ( 𝜉2−𝜉1 )𝑇

= 𝑒−𝜉1𝑇
∞∑︁
𝑛=0
(−1)𝑛𝑒𝑛( 𝜉2−𝜉1 )𝑇 . (123)

The series in (123) is a geometric series which converges in the usual sense of calculus if
𝑇 is a positive real number. For our purposes, a much weaker notion of convergence will be
sufficient.

By definition, an absolute value on an algebra A is a function

A
∥ · ∥

−−−−−−−−→ R≥0 ,

that satisfies

∥𝑥∥ = 0 ⇔ 𝑥 = 0 ,

∥𝑥𝑦∥ = ∥𝑥∥∥𝑦∥ , (124)

∥𝑥 + 𝑦∥ ≤ ∥𝑥∥ + ∥𝑦∥ . (125)

For example, the usual absolute value on C used in (120) satisfies the above conditions, and
we have used the triangle inequality (125) in the derivation of (120).

Another example of an absolute value is


∑︁ 𝑐𝑖𝑒
𝜉𝑖𝑇





∼
= 𝑒 𝜉max , 𝜉max = max

𝑐𝑖≠0
𝜉𝑖 , (126)

where is subscript is chosen to remind us that the absolute value (126) records the leading
asymptotics in the 𝑇 → +∞ limit. Instead of (125), this absolute value satisfies a stronger
property

∥𝑥 + 𝑦∥∼ ≤ max(∥𝑥∥∼, ∥𝑦∥∼) , and, moreover, (127)

∥𝑥 + 𝑦∥∼ = max(∥𝑥∥∼, ∥𝑦∥∼) if ∥𝑥∥∼ ≠ ∥𝑦∥∼ . (128)

Such absolute values are called nonarchimedian.
The series in (123) converges with respect to the absolute value (126) in the sense

that 




 ∞∑︁
𝑛=𝑁

𝑒𝑛( 𝜉2−𝜉1 )







∼

→ 0 , 𝑁 →∞ . (129)

More generally, all series of the following form converge:

F∼ =
{∑︁

𝑐𝑖𝑒
𝜉𝑖𝑇 , where 𝑐𝑖 ∈ C and lim 𝜉𝑖 = −∞

}
. (130)
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The reader should check that (130) is a field. The formula (126) defines an absolute value
on this field. To save on notation, one can denote 𝑡 = 𝑒−𝑇 . The series (130) are then series in
ascending real powers of 𝑡.

The unifying feature in Figure (122) is that in both cases we have the image of the
line (119) under the map

(𝑥1, 𝑥2) ↦→ (ln ∥𝑥1∥, ln ∥𝑥2∥) .

Mathematicians call such images amoebas, because they will look a little bit like an amoeba
if we replace the line by a plane curve defined by an equation of degree ≥ 3. In other words,
the tropical line is a nonarchimedian amoeba of a line.

C.3.
Given an absolute value ∥ · ∥, we define

𝜈(𝑥) = ln ∥𝑥∥ ∈ R ∪ {−∞} . (131)

For a nonarchimedian absolute value ∥ · ∥, this satisfies

𝜈(𝑥) = −∞ ⇔ 𝑥 = 0 ,

𝜈(𝑥𝑦) = 𝜈(𝑥) + 𝜈(𝑦) , (132)

𝜈(𝑥 + 𝑦) ∈ max� (𝜈(𝑥), 𝜈(𝑦)) , (133)

where (133) combines the two cases (127) and (128) into one formula using a multivalued
function

max� (𝜈1, . . . , 𝜈𝑛) =
 max 𝜈𝑖 , if this maximum is unique ,

[−∞,max 𝜈𝑖] , otherwise
(134)

The subscript in (134) is to remind us what the graph of this function looks like. Indeed, the
graph on the right in Figure (122) is the plot of the multivalued function

max� (0, 𝜉1) = possible values of 𝜈(𝑎𝑥1 + 𝑏) ,

where 𝜈((𝑎, 𝑏, 𝑥1)) = (0, 0, 𝜉1).

C.4.
Now we are ready to generalize this discussion to a hyperplane

𝑥𝑛+1 =

𝑛∑︁
𝑖=1

𝑎𝑖𝑥𝑖 + 𝑎0 , (𝑥1, . . . , 𝑥𝑛+1) ∈ C𝑛+1 , (135)

where all coefficients 𝑎𝑖 are nonzero complex numbers. All arguments above generalize ver-
batim and give

𝜉𝑛+1 = max� (0, 𝜉1, . . . , 𝜉𝑛) (136)
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as the tropicalization of (135). This is what the plot of this function looks like for 𝑛 = 2. This
is a tropical hyperplane in 3-space.

(137)

Note that we have
max� (0, 𝜉1, 𝜉2) = −∞ = 𝜈(0) , (138)

precisely for (𝜉1, 𝜉2) forming a tropical line. This is a tropical analog of the obvious fact the
the intersection of 𝑥𝑛+1 = 0 with another hyperplane is a hyperplane in C𝑛.

C.5.
In place of a linear polynomial in (135), we could have taken an arbitrary polynomial

𝑥𝑛+1 = 𝑃(𝑥1, . . . , 𝑥𝑛) =
∑︁
𝜷∈Z𝑛

𝑎𝜷 𝑥
𝜷 , 𝑎𝜷 ∈ F∼ , (139)

where 𝜷 = [𝛽1, . . . , 𝛽𝑛] ∈ Z𝑛 and

𝑥𝜷 =

𝑛∏
𝑖=1

𝑥
𝛽𝑖
𝑖
.

In (139) we assume that only finitely many coefficients 𝑎𝜷 are nonzero. Note that here we
allow 𝑎𝜷 to be any elements of 𝐹∼. In other words, we allow the coefficients to be exponen-
tially large or small.

Arguing as above, we get

𝜉𝑛+1 = max�
{
⟨𝜷, 𝝃⟩ + 𝜈(𝑎𝜷)

}
𝑎𝜷≠0 (140)

as the tropicalization of (139). Here 𝝃 = [𝜉1, . . . , 𝜉𝑛]T and the angle brackets were defined
in (104).

The left-hand side in (140) is called a tropical polynomial16. The set (140) in R𝑛+1

is the graph of this polynomial. The intersection of the graph with 𝜉𝑛+1 = −∞ is the tropi-
calization of the hypersurface 𝑃(𝑥1, . . . , 𝑥𝑛) = 0. Here is an example of a graph of a tropical

16 Real numbers R with operations {max, +} form a semiring called tropical semiring
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polynomial of degree 3 in two variables:

(141)

The facets in (141) have slopes 𝜷 ∈ {[0, 0], [1, 0], . . . , [3, 0], [2, 1], [1, 2], [0, 3]} and they
move up and down as 𝜈(𝑎𝜷) change, leading to changes in the combinatorics. The reader
should experiment to get some feeling for how this works. Graphs of linear polynomials
from (122) and (137) change only by an overall translation if we take the coefficients from
F∼ instead of C.

C.6.
Tropical varieties of codimension more than 1 are certain piecewise linear objects

that are defined axiomatically. See [27,33]. In particular, they do not need to be nonarchime-
dian amoebas of any an algebraic variety over F∼ or some other field with a nonarchimedian
norm.

In fact, this already happens for linear spaces. There is a tropical linear space for any
matroid including the nonrealizable ones ! To see how it works, let us go back to the settings
of Section 5.3.

Let us first consider the case when the𝑌 ⊂ F𝑛 is a linear subspace, where F is a field.
Given a subset 𝑆 ⊂ {1, . . . , 𝑛}, let F𝑆 denote the quotient space of F𝑛 with the coordinates
𝑦𝑖 , where 𝑖 ∈ 𝑆. We have

|𝑆 | = rank 𝑆 ⇔ the map 𝑌 → F𝑆

is surjective
. (142)

For any matroid, the subsets 𝑆 such that |𝑆 | = rank 𝑆 are called independent. Minimal depen-
dent subsets are called circuits. One can reconstruct the matroid completely from the knowl-
edge of either the independent sets or the circuits.

For a circuit 𝑆, the image of 𝑌 → F𝑆 is a hyperplane with an equation that involves
all variables 𝑦𝑖 with 𝑖 ∈ 𝑆. We already know how to tropicalize it. One should take the tropical
hyperplane

max� ({𝑦𝑖}𝑖∈circuit 𝑆) = −∞ . (143)

Very remarkably, for an arbitrary matroid 𝑀 , the equations (143), taken for all circuits 𝑆 of
𝑀 , describe a tropical linear space. This linear space provides a tropical realization of the
matroid.
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