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Abstract
We survey techniques used to detect prime numbers in sets, highlighting the strengths and
limitations of current techniques.
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1. Introduction
Many of the most notorious open problems about prime numbers can be phrased as

variations of the following question.

Question. Given a set of integers A, how many primes are in A?

Depending on the context, ‘how many’ could be asking whether there exists at least
one prime in A, whether there are infinitely many primes in A, or asking for a quantitative
estimate for the number of primes up to some threshold.

For example, we have the following special cases:

• A = Z. That there are infinitely many primes in A follows from Euclid’s proof of
the infinitude of primes. An asymptotic formula for the primes in A less than 𝑥 is
given by the Prime Number Theorem, and asking for the smallest possible error
term in such an asymptotic estimate is essentially a reformulation of the Riemann
Hypothesis.

• A = {𝑝 + 2 : 𝑝 prime}. Asking for infinitely many primes in A is the famous Twin
Prime Conjecture, and an asymptotic formula for the number of primes in A is a
conjecture of Hardy and Littlewood.

• A = {2𝑁 − 𝑝 : 𝑝 prime}, for some fixed integer 𝑁 ≥ 2. In this case A contains
only a finite number of positive elements (and so a finite number of primes), but
asking that it contains at least one prime for every 𝑁 ≥ 2 is Goldbach’s conjecture.

The final two examples are two of Landau’s influential four problems on primes listed in his
1912 ICM address; all four remain unsolved.

In general we will focus on situations where we expect (from heuristics, numerical
evidence, or other guesswork) that there should be primes in A, and the task is to try to prove
this is indeed the case.

We know of no way to construct prime numbers theoretically, and therefore we
typically need to use an indirect method to prove the existence of primes in a given set A. If
we are unable to numerically test elements, then often the only way we know how to prove the
existence of a single prime in a set A is to perform the a priori harder task of approximately
counting the number of primes in A and showing there are many primes in A of a given
size. For example, Vinogradov’s three primes theorem states that every sufficiently large odd
number can be written as the sum of three primes (this is now actually known for all 𝑁 ≥ 7
thanks to work of Helfgott [42]), but the only way we know how to prove this actually shows
that there are ‘many’ ways to write a large odd integer 𝑁 as the sum of three primes.

The ultimate goal in this area is to develop a flexible toolkit which can reduce the
question of counting primes in sets A of interest to easier (but more technical) questions
about the arithmetic structure of the set in question, and then to have a set of techniques
which can investigate these questions.
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2. Multiplicative number theory
Multiplicative number theory rests on utilising the following crucial property of the

primes, which is essentially the Fundamental Theorem of Arithmetic.

Property. Prime numbers generate the positive integers via multiplication.

This property allows us to define suitable multiplicative generating functions (𝐿-
functions) which encode properties of the primes via the integers they generate. A reformu-
lation of the Fundamental Theorem of Arithmetic is the identity (for Re(𝑠) > 1)

𝜁 (𝑠) =
∞∑︁
𝑛=1

1
𝑛𝑠

=
∏
𝑝

(
1 − 1

𝑝𝑠

)−1
.

Since we analytically understand the integers under addition quite well, we can obtain a good
understanding (analytic continuation, controlled growth) of 𝜁 (𝑠) via the Dirichlet series rep-
resentation on the left hand side. This understanding can then be translated into understanding
about the primes. The infinitude of the primes follows from the fact that 𝜁 (𝑠) has a pole at
𝑠 = 1, the Prime Number Theorem follows from (and is essentially equivalent to) the fact that
𝜁 (𝑠) has no zeros on the line Re(𝑠) = 1, and precise estimates for the count of primes are
essentially equivalent to zero-free regions for 𝜁 (𝑠) within the critical strip 0 < Re(𝑠) < 1.
In all these cases the partial information we are interested in about primes becomes much
easier to establish via translating it to a question about partial understanding of 𝜁 (𝑠).

Moreover, the techniques of multiplicative number theory extend well beyond just
studying primes via 𝜁 (𝑠), but to a whole zoo of different 𝐿-functions which encode different
algebraic information about primes. Prime ideals generate all ideals of the ring of integers of
a number field, and so prime ideals (and hence the splitting of rational primes) can be studied
via the same techniques via Dedekind 𝐿-functions 𝜁𝐾 (𝑠) (the analogue of 𝜁 (𝑠) for a number
field 𝐾). Moreover, one can twist the 𝜁 (𝑠) by a Dirichlet character or the Archimedean char-
acter 𝑛𝑖𝑡 , or one can twist 𝜁𝐾 (𝑠) by a Hecke character (or more generally twist an 𝐿-function
by a suitable automorphic representation), to obtain further 𝐿-functions, which can study
primes in arithmetic progressions, short intervals, the locations of prime ideals in lattices or
similar questions.

Essentially the only method we have which is capable of ‘producing’ primes is using
multiplicative number theory. Even though there are now a few ostensibly different proofs of
the Prime Number Theorem, all known proofs rely fundamentally on the Fundamental The-
orem of Arithmetic, and require multiplicative structure. Virtually all other results counting
primes can be thought of as extensive elaborate manoeuvres which allow one to reduce to
the situation of using multiplicative number theory to count primes.

2.1. Primes and zeros
The techniques of multiplicative number theory crucially allow one to understand

multiplicative questions on the distribution of primes via the zeros of the corresponding 𝐿-
functions. The duality between primes and zeros of 𝜁 (𝑠) is best seen through Riemann’s
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famous Explicit Formula for 𝜁 (𝑠): for 𝑥, 𝑇 ≥ 2∑︁
𝑛<𝑥

Λ(𝑛) = 𝑥 −
∑︁
|𝜌 |<𝑇

𝑥𝜌

𝜌
− log(2𝜋

√︁
1 − 𝑥−2) +𝑂

( 𝑥(log 𝑥)3

𝑇

)
, (2.1)

where Λ(𝑛) is the Von-Mangold function and the sum is over all non-trivial zeros 𝜌 of 𝜁 (𝑠)
(counted with multiplicity, although all zeros are believed to be simple). For every 𝐿-function
(satisfying the expected meromorphicity and growth conditions) we get a corresponding
explicit formula with one side representing primes and the other zeros of the 𝐿-function.

The explicit formula points to unexpected deep structure within the sequence of
primes; if the Riemann Hypothesis (Re(𝜌) = 1/2 for all non-trivial 𝜌) holds, then treating all
terms apart from 𝑥 trivially, we would obtain a smaller size error term than we would expect
based on simple random model predictions (we expect that the presence of zeros alters effects
such as the law of the iterated logarithm, for example). Indeed, the zeros of 𝜁 (𝑠) constrain the
error term in the count of primes to fluctuate relatively less than we expect for other arithmetic
sequences (such as twin primes) where we expect ‘random-like’ behaviour. Another example
where this structure plays a role is the fact that the error term in the Prime Number Theorem
can be self-improving; if we can show that���𝜋(𝑥) − ∫ 𝑥

2

𝑑𝑡

log 𝑡

��� ≪ 𝑥1/2+𝑜 (1) ,

then we know that the Riemann Hypothesis holds and the error term 𝑥1/2+𝑜 (1) can be upgraded
to the more precise 𝑂 (𝑥1/2 log 𝑥). It would be interesting to see if the structure implied by
zeros can be exploited meaningfully in other ways.

Similarly, since the error term in (2.1) disappears as𝑇 →∞, we see that knowing all
zeros encodes all information about primes, and vice-versa. This observation is useless for
most practical purposes, but it means that zeros of 𝜁 (𝑠) must also encode the distribution of
primes in arithmetic progressions, and therefore encode information about zeros of Dirichlet
𝐿-functions too. This is partial justification for the idea that 𝐿-functions should be studied
in families rather than individually. A spectacular example of this is Goldfeld and Gross-
Zagier’s [29, 30, 34] joint resolution of the Gauss class number one problem by showing that
an 𝐿-function attached to a suitable Elliptic curve had a triple zero at the central point, and
this triple zero had a suitably strong influence on zeros of Dirichlet 𝐿-functions to prevent
there being any particularly bad Siegel zeros.

2.2. Zero density estimates
Although the Riemann Hypothesis is the most important question for any given 𝐿-

function, often it would suffice for applications to primes to show a much weaker statement
that ‘most’ zeros lie ‘close’ to the line Re(𝑠) = 1/2, rather than requiring that all zeros lie on
this line. For example, under the Riemann Hypothesis we can show an asymptotic formula
for primes in [𝑥, 𝑥 + 𝑥1/2 (log 𝑥)2]. If we let 𝑁 (𝜎,𝑇) denote the number of zeros 𝜌 = 𝛽 + 𝑖𝛾
with |𝛾 | ≤ 𝑇 and 𝛽 ≥ 𝜎 then a bound 𝑁 (𝜎,𝑇) ≪ 𝑇2−2𝜎+𝑜 (1) (known as the ‘Density Hypoth-
esis’) would allow us to deduce an asymptotic formula for primes in [𝑥, 𝑥 + 𝑥1/2+𝑜 (1) ], which
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is almost as short as what we obtain under the Riemann Hypothesis. Unfortunately the Den-
sity Hypothesis is open in general, but a classical result of Huxley [44] shows 𝑁 (𝜎, 𝑇) ≪
𝑇12(1−𝜎)/5+𝑜 (1) , which implies an asymptotic formula for the number of primes in [𝑥, 𝑥 +
𝑥7/12+𝑜 (1) ], and is essentially the best known result (Heath-Brown [36] used sieve methods to
remove the 𝑜(1).)

In many counting problems for the primes which are directly related to zeros, the
limitation in our results is due to a limitation in our understanding of zeros near the 3/4-line
(such as the example above of primes in short intervals), or near the 1-line (such as issues
with Siegel zeros or the least quadratic non-residue). For example, if we knew that there
were no zeros 𝜌 with 0.74 ≤ Re(𝜌) ≤ 0.76 (or if there were ‘few’ such zeros), then we would
improve on our understanding of primes in short intervals. The typical way to bound such
zeros is to detect them via large values of a Dirichlet polynomial (see [47, Chapter 10]). The
key limitation of our zero density estimates for the past 50 years reduces to the following
question.

Question 1. Can we show

meas
{
𝑡 ∈ [𝑇, 2𝑇] :

��� 2𝑇2/5∑︁
𝑛=𝑇2/5

𝑛𝑖𝑡
��� > 𝑇1/10

}
≪ 𝑇3/5−𝛿

for some fixed positive constant 𝛿?

The bound 𝑇3/5+𝑜 (1) follows quickly from straightforward bounds for the 4𝑡ℎ or 6𝑡ℎ

mean value of the Dirichlet polynomial. Improving on the 6𝑡ℎ moment bound is related to
bounding the 6𝑡ℎ moment of 𝜁 (1/2 + 𝑖𝑡), but it is not unreasonable to hope that this question
might be easier to study.

Even if we cannot improve our current zero-density bounds on the number of zeros,
an alternative approach might be to see what this might imply for the distribution of zeros of
𝜁 (𝑠). (Ultimately one might hope to obtain a putative classification which either contradicts
other known properties or demonstrates that there are still primes in short intervals with this
distribution of zeros.)

Question 2. Imagine that |𝜋(𝑥 + 𝑥7/12−𝜖 ) − 𝜋(𝑥) − 𝑥7/12−𝜖 /log𝑥 | ≫ 𝑥7/12−𝜖 /log𝑥 for some
large 𝑥. What does this imply about the distribution of the zeros of 𝜁 (𝑠)?

We know that there must be roughly 𝑇3/5 zeros of height 𝑇 with real part very close
to 3/4 for 𝑇 ≈ 𝑥5/12, and moreover it must be the case that these zeros 𝜌 = 𝛽 + 𝑖𝛾 have the
fact that the fractional part of 2𝜋𝛾 log 𝑥 is quite strongly biased modulo 1. Moreover, we
speculate that there should be much more prescriptive constraints on the vertical distribution
such zeros - roughly that they occur in small clusters whose imaginary parts are roughly
in an arithmetic progression. Obtaining a precise classification of this sort seems difficult
(it appears related to the inverse Littlewood problem in additive combinatorics/harmonic
analysis), but a suitably strong classification would open up a new manner to potentially rule
out conspiracies preventing primes in short intervals. A proof-of-concept in this direction is
recent work with Pratt [66].
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Theorem 3 (Conditional improvement to zero density estimates). Assume that the zeros of
𝜁 (𝑠) lie on finitely many vertical lines. Then

#{𝑝 ∈ [𝑥, 𝑥 + 𝑥13/24+𝜖 ]} = (1 + 𝑜𝜖 (1))
𝑥13/24+𝜖

log 𝑥
.

The point here is that the hypothesis still allows for the possibility of vertical arith-
metic progressions of zeros, and so one of the potential limitations is actually less of an
issue. We can obtain improvements on the classical exponent 7/12 (and improvements on
zero-density estimates) by studying the vertical patterns of zeros of 𝜁 (𝑠), albeit under rather
strong assumptions.

In a very different direction, following work of Matomäki-Radziwiłł [54], if one is
interested in the Möbius function (and is happy with weaker quantitative bounds), then we can
restrict attention to Dirichlet polynomials which factor in many ways (expanding on earlier
ideas of [10], [49] and [8]). This allows one to overcome the issues raised here for primes, and
obtain stronger results about the Möbius function in short intervals [56] as well as almost-all
short intervals [54].

2.3. Limits to multiplicative techniques
In general the multiplicative theory for counting primes points to a rich structure

encoded by the zeros and a powerful set of techniques. Unfortunately there are some issues
with this from a practical point of view:

(1) Multiplicative techniques rely on the presence of multiplicative structure in the
problem. In situations which are less structured (particularly when there is addi-
tion polluting multiplicative objects like in the Twin Prime Conjecture), we do
not know how to make use of multiplicative techniques. Even when they can be
of use, it require a lot of work to massage problems into a suitable form that the
powerful multiplicative techniques can apply to.

(2) In the absence of the conjectured strong control over zeros, our estimates are
often limited in their range of applicability, particularly with uniformity of esti-
mates with respect to underlying parameters such as conductor or degree of
number field.

(3) The multiplicative methods tend to either give strong asymptotic formulae or fail
to give any non-trivial bound whatsoever. The strength of the analytic approach
means that it is not well-suited to answering ‘soft’ questions with a wide degree
of flexibility.

As an example of the final two points, Hooley’s [43] proof of the Artin primitive root con-
jecture under the Generalised Riemann Hypothesis for suitable Dedekind 𝐿-functions relied
crucially on the upper bound∑︁

𝑞∼𝑄
𝜋∗ (𝑥; 𝑞) ≪ 𝑥

𝑄 log 𝑥
+𝑄𝑥1/2 (log 𝑥)𝑂 (1) ,
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where 𝜋∗ (𝑥; 𝑞) counts primes 𝑝 < 𝑥 with 𝑝 ≡ 1 (mod 𝑞) and for which 2 is a 𝑞𝑡ℎ power
(mod 𝑝). (In fact, an upper bound of the form 𝑜𝑄→∞ (𝜋(𝑥)) for𝑄 < 𝑥1/2 (log𝑥)−𝐴would have
sufficed.) The only way we know how to prove an upper bound of this type is by proving an
asymptotic formula of the form 𝜋∗ (𝑥; 𝑞) = 𝜋(𝑥)/(𝑞𝜑(𝑞)) +𝑂 (𝑥1/2 log 𝑥) via GRH, which is
a much stronger statement. Unconditional techniques based on multiplicative number theory
can capture the condition of being a 𝑞𝑡ℎ power, but only with error terms that degrade quickly
with 𝑞. (By contrast, other techniques such as sieve methods can be very flexible at producing
upper bounds, but appear poorly suited to capturing the more algebraic 𝑞𝑡ℎ power condition.)

Question 4. Can one produce a non-trivial upper bound for
∑
𝑞∼𝑥1/2−𝜖 𝜋∗ (𝑥;𝑞) uncondition-

ally?

3. Sieve methods
Sieve methods take a different, combinatorial approach to studying primes, based

on the following simple property:

Property. Primes are integers 𝑛 which have no divisors smaller than
√
𝑛 other than 1.

Thus primes are examples of numbers with no small divisors, and more generally
one can look at integers 𝑛 with no divisors (other than 1) less than some quantity 𝑧. This
formulation naturally suggests that one can count such numbers in a set A via inclusion-
exclusion: ∑︁

𝑛∈A
𝑝 |𝑛⇒𝑝>𝑧

1 =
∑︁
𝑑

𝑝 |𝑑⇒𝑝≤𝑧

𝜇(𝑑)
∑︁
𝑛∈A
𝑑 |𝑛

1.

Let us restrict attention from now on to sets A ⊆ [𝑥, 2𝑥] for some large value 𝑥, so that all
elements have roughly the same size.

Unfortunately even if one had very good estimates for the size of the set A𝑑 of
multiples of 𝑑 in A ⊂ [𝑥,2𝑥], there would be 2𝜋 (𝑧) different integers 𝑑 in the sum and so any
error terms would accumulate and dominate the hope of a main term unless 𝑧 was very small
(such as if 𝑧 ≤ log 𝑥). The first key insight in of sieve methods is that one can use positivity
to truncate the inclusion-exclusion process and avoid the presence of 𝑑’s which are too large,
at the cost of a small amount of precision. The basic arithmetic information required to make
this work is then a moderate understanding of inner sums above, namely the size of the sets
A𝑑 = {𝑛 ∈ A : 𝑑 |𝑛}.

Let 𝑔(𝑑) be a multiplicative function which we think of as an approximation to the
density of elements ofA which are a multiple of 𝑑. We assume that 𝑔(𝑝) < 1− 𝜖 (so that there
are no prime factors which are too common) and that 𝑔(𝑝) ≈ 𝜅/𝑝 for some fixed constant
𝜅 > 0 on average by assuming for 2 ≤ 𝑤∑︁

𝑝≤𝑤
𝑔(𝑝) log 𝑝 = 𝜅 log𝑤 +𝑂 (1). (3.1)
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The key arithmetic input for sieve methods is then an estimate for every 𝐴 > 0∑︁
𝑑<𝑥𝛾

|#A𝑑 − 𝑔(𝑑)#A| ≪𝐴

#A
(log 𝑥)𝐴

(3.2)

for some given fixed 𝛾 > 0. The larger we are able to take 𝛾, the better we are able to understand
A in arithmetic progressions and the more powerful the conclusions of our sieve methods
will be. In most situations of interest we expect (3.2) to hold for a suitable function 𝑔 and
reasonably large constant 𝛾 ∈ (0, 1), so (3.2) should be thought of as a reasonably mild
constraint when 𝛾 is small.

The basic point of sieve methods is that for any set which does satisfy an estimate
like (3.2) we can make the inclusion-exclusion argument much more accurate. This is known
as the ‘fundamental lemma’ (see, for example, [28, Corollary 6.10]).

Lemma 5 (Fundamental Lemma of Sieve Methods). Let 𝑔 be a multiplicative function as
above. Then we have for any 𝜂, 𝛾 > 0∑︁

𝑛∈A
𝑝 |𝑛⇒𝑝>𝑥𝜂

1 = (1 +𝑂𝜅 (𝑒−𝛾/𝜂))
∏
𝑝≤𝑥𝜂

(
1 − 𝑔(𝑝)

)
#A +𝑂 (𝐸),

where
𝐸 =

∑︁
𝑑<𝑥𝛾

���#A𝑑 − 𝑔(𝑑)#A
���.

One should think of the case when A satisfies (3.2) with some fixed 𝛾 > 0, and 𝜂 is
taken as a sufficiently small fixed constant. The key point of the fundamental lemma is then
that one can still obtain good asymptotic estimates for the number of elements in A with no
prime factors less than 𝑧 even when 𝑧 is as large as 𝑥𝜂 , provided we have a relatively modest
estimate for the distribution of A in arithmetic progressions.

An immediate consequence is that A contains 𝑂 (#A/(log 𝑥)𝜅 ) primes, and we
expect that in most situations this should be the correct order of magnitude for the number of
primes in A. For example, returning to some of Landau’s problems mentioned in Section 1,
we find that there are𝑂 (𝑥/(log 𝑥)2) twin primes less than 𝑥, and that there are𝑂 (𝑥1/2/log 𝑥)
prime values of 𝑛2 + 1 which are less than 𝑥, and both estimates are conjectured to be sharp up
to the multiplicative constant. We also immediately obtain that A contains ‘many’ elements
with a bounded number of prime factors as soon as it satisfies something like (3.2). The
fact that sieve methods can very flexibly give upper bounds of the right order of magnitude
in a wide variety of situations is a very valuable fact when used inside more complicated
arguments.

The fundamental lemma essentially produces optimal bounds (with care, the𝑂𝜅 (𝑒−𝛾/𝜂)
error term can usually be handled satisfactorily), and so the sieving process of ‘small’ primes
less than 𝑥𝜂 is almost perfect, and as if the small primes were behaving independently of
one another. This can therefore also be used just as a preliminary sieving stage, where we
first remove all ‘small’ prime factors ≤ 𝑥𝜂 perfectly via an application of the Fundamental
Lemma, leaving us to be more careful in trying to handle the about the𝑂 (1/𝜂) ‘large’ prime
factors (bigger than 𝑥𝜂) of elements of A. Although the behaviour of the small primes is
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essentially that of independence and the same for all sets A satisfying (3.2), the distribu-
tion of the large prime factors in general will vary according to the set. Understanding how
much control we have on these large prime factors from (3.2) is still something of a poorly
understood art in general, and often the best sieving procedure is tailored to the question at
hand.

3.1. Arranging the large prime factors
In general, for any set A satisfying (3.2), and 𝑥 sufficiently large we will have that∑︁

𝑛∈A
𝑝 |𝑛⇒𝑝≥𝑥𝜂

1 ≤
(
𝐹 (𝜅, 𝜂, 𝛾) + 𝑜(1)

)
#A

∏
𝑝≤𝑥𝜂

(
1 − 𝑔(𝑝)

)
,

∑︁
𝑛∈A

𝑝 |𝑛⇒𝑝≥𝑥𝜂

1 ≥
(
𝑓 (𝜅, 𝜂, 𝛾) + 𝑜(1)

)
#A

∏
𝑝≤𝑥𝜂

(
1 − 𝑔(𝑝)

)
,

for some functions 0 ≤ 𝑓 (𝜅, 𝜂, 𝛾) ≤ 𝐹 (𝜅, 𝜂, 𝛾) depending only on the constant 𝛾 in (3.2), the
‘sieve dimension’ 𝜅 from (3.1) and 𝜂 from the sieving threshold of 𝑥𝜂 .

When 𝜅 = 1 (the most common sieving situation) we are in the situation of the ‘linear
sieve’ , somewhat remarkably we know the optimal values of the functions.

Lemma 6 (Optimality of the linear sieve). Let 𝑔 satisfy (3.1) with 𝜅 = 1 and 𝑔(𝑝) < 1 − 𝜖 .
Then there are functions 𝐹 (𝑠), 𝑓 (𝑠) such that we have the following.

(1) For any set A satisfying (3.2), we have∑︁
𝑛∈A

𝑝 |𝑛⇒𝑝≥𝑥𝜂

1 ≤
(
𝐹 (𝛾/𝜂) + 𝑜(1)

)
#A

∏
𝑝≤𝑥𝜂

(
1 − 𝑔(𝑝)

)
,

∑︁
𝑛∈A

𝑝 |𝑛⇒𝑝≥𝑥𝜂

1 ≥
(
𝑓 (𝛾/𝜂) + 𝑜(1)

)
#A

∏
𝑝≤𝑥𝜂

(
1 − 𝑔(𝑝)

)
.

(2) There are sets A+,A− ⊆ [𝑥, 2𝑥] which satisfy (3.2) and 𝑔± which satisfy (3.1)
and 𝑔± (𝑝) < 1 − 𝜖 such that∑︁

𝑛∈A+
𝑝 |𝑛⇒𝑝≥𝑥𝜂

1 =

(
𝐹 (𝛾/𝜂) + 𝑜(1)

)
#A+

∏
𝑝≤𝑥𝜂

(
1 − 𝑔+ (𝑝)

)
,

∑︁
𝑛∈A−

𝑝 |𝑛⇒𝑝≥𝑥𝜂

1 =

(
𝑓 (𝛾/𝜂) + 𝑜(1)

)
#A−

∏
𝑝≤𝑥𝜂

(
1 − 𝑔− (𝑝)

)
.

This technical looking statement says that for any A satisfying a linear sieving prob-
lem, we know the optimal upper and lower bounds for the number of sieved elements of the
set, based purely on the distribution of A in arithmetic progressions to modulus 𝑥𝛾 . We can
take A± = {𝑛 ∈ [𝑥, 𝑥 + 𝑥𝛾+𝜖 : 𝜆(𝑛) = ∓1} and 𝑔± (𝑝) = 1/𝑝, where 𝜆(𝑛) is the Liouville func-
tion (𝜆(𝑛) = −1 if 𝑛 has an odd number of prime factors, and 𝜆(𝑛) = 1 otherwise) and this
gives the functions 𝐹, 𝑓 , which can be written explicitly as solutions to a delay-differential
equation. Thus for the basic problem of understanding the consequences of (3.2), we have
an essentially complete answer.
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Although the linear sieve is essentially optimal, when the sieving dimension is
greater than one we have a much poorer understanding of optimality and what we can hope to
achieve. The linear sieve bounds are proven using a ‘combinatorial sieve’, and combinatorial
sieves tend to produce the best bounds when 𝜅 is reasonably small. When 𝜅 gets larger, how-
ever, it typically turns out that Selberg’s sieve performs better. However, in no circumstance
do we have anything like the complete understanding of the picture that we would like.

Question 7. What are the optimal sieve functions for high-degree sieves? What do the
extremal sets look like?

For example, the upper bound for the number of prime 𝑘-tuplets less than 𝑥 is larger
than the expected truth by 2𝑘𝑘!. Although the parity phenomenon would prevent us from
obtaining a bound smaller than 2𝑘 times the expected truth, it is very unclear what sort of
bound an optimal 𝑘-dimensional sieve could hope to prove in this situation. The key innova-
tion in [61] was a new high-dimensional variant of Selberg’s sieve tailored to the application
at hand, which allowed for notable progress on the sieving problem of bounded gaps between
primes (see Section 4). Although this doesn’t appear to help with the direct upper and lower
bounds, it indicates that there is potentially a lot left to be understood about high-dimensional
sieves.

Question 8. What other arithmetic features of sets A of interest can be exploited to produce
improved sieving bounds?

If there is extra arithmetic information which could distinguish setsA from extremal
sets, this could then be incorporated into the sieving assumptions to hopefully produce better
bounds.

For example, Chen’s twist [9] was a key innovation used by Chen to show that there
are infinitely many primes 𝑝 with 𝑝 + 2 having at most two prime factors, and this exploited
the fact that the situation could be viewed as fixing the prime factorisation of either 𝑛 of 𝑛 + 2
and viewing it as a sieve problem to produce bounds which are better than what the standard
linear sieve would imply. High dimensional sieves often have similar features where they
can be viewed as (𝑘 − 1)-dimensional sieving problems or 𝑘-dimensional ones, and mixing
these perspectives allows one to do slightly better than typical situations [60]. In a different
direction, the ‘interval sieve’ asks for bounds when we know that A is just an interval - it is
known in this case [18,31] that the optimal sieve functions are closely linked to the presence
of Siegel zeros, and so in many situations this limits what we can hope to achieve.

3.2. Limitations of sieve methods and the parity phenomenon
We saw above that the extremal sets A± for the linear sieve were given in terms of

numbers with an odd or even number of prime factors. This is an example of a fundamental
limitation of sieve methods based purely on arithmetic information of the from (3.2): the par-
ity phenomenon. Roughly, this says that sieve methods cannot distinguish between numbers
with an even number of prime factors and an odd number of prime factors.
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For example, all sieve upper and lower bounds are based on using sieve weights
which are short divisor sums

𝑤𝑛 =
∑︁
𝑑 |𝑛
𝑑<𝑥𝛾

𝜆𝑑 .

Thus, recalling that𝜆(𝑛) =−1 if 𝑛 has an odd number of prime factors, and𝜆(𝑛) = 1 otherwise,
we see ∑︁

𝑛∈A
𝑤𝑛

(1 ± 𝜆(𝑛)
2

)
=

1
2

∑︁
𝑛∈A

𝑤𝑛 +𝑂
( ∑︁
𝑑<𝑥𝛾

|𝜆𝑑 |
���∑︁
𝑛∈A
𝑑 |𝑛

𝜆(𝑛)
���) .

For most sets A of interest, it is believed that the inner sums on the right had side should
always be very small, meaning that the same total weight is put on numbers with an even
number of prime factors as those with an odd number of prime factors (although actually
proving this is almost as hard as proving an asymptotic formula for primes in A).

Because the weight is equidistributed between numbers with an even and an odd
number of prime factors, it means that any upper bound sieve for primes will be off by a
factor of at least 2 (the weight placed upon primes can be at most the total weight of numbers
with an odd number of prime factors, which in turn is at most half the total weight). It also
means that we cannot hope to obtain a non-trivial lower bound for the number of primes in
a set A by just using pure sieve methods.

In various situations, this elementary loss of a factor of 2 from sieve methods is
intimately linked to the possible presence of Siegel zeros (which would cause certain residue
classes to have double the expected number of primes of a certain size.) For example, the
Brun-Titchmarsh Theorem [69] (proven using sieve methods), states that

𝜋(𝑥; 𝑞, 𝑎) ≤ 2𝑥
𝜑(𝑞) log(𝑥/𝑞) .

When 𝑥 is fairly large relative to 𝑞, this is off by a factor of roughly 2 from the expected
asymptotic, but improving the constant 2 to 2− 𝛿 in this regime would rule out the possibility
of a Siegel zero.

4. Side-stepping limitations of sieve methods
Although sieve methods alone cannot directly produce primes, sometimes this appar-

ent limitation can be sidestepped. For example, consider the following result ([61, 62, 71, 82]

and unpublished work of Tao).

Theorem 9 (Bounded gaps between primes). Let 𝑘 be a positive integer. Then

lim inf
𝑛

(𝑝𝑛+𝑘 − 𝑝𝑛) < ∞

In the special case when 𝑘 = 1, we can take the finite constant to be 246; for general
𝑘 we can take the bound to be 𝑂 (𝑒3.815𝑘) thanks to work of Baker-Irving [3].

This result manifestly says something about prime numbers, but ultimately only
relies on arithmetic information of the form (3.2), in this case the Bombieri-Vinogradov
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Theorem. The reason this result isn’t prevented from saying something by the parity phe-
nomenon is because it sidesteps some of the issues via the pigeonhole principle, which then
avoids the need to specify exactly which quantities are taking prime values. More specifically,
the proof of Theorem 9 relies on considering the quantity

𝑆 =
∑︁
𝑛∼𝑥

( 𝐾∑︁
𝑖=1

1P (𝑛 + ℎ𝑖) − 𝑘
)
𝑤𝑛

for some suitable fixed constants ℎ1 < .. < ℎ𝐾 (chosen such that
∏𝐾
𝑖=1 (𝑛 + ℎ𝑖) is not always a

multiple of a fixed prime 𝑝) and some non-negative sieve weight 𝑤𝑛 tailored to the situation
at hand. Since 𝑤𝑛 ≥ 0, showing that 𝑆 > 0 implies that there is some 𝑛 ∼ 𝑥 for which at least
𝑘 + 1 of 𝑛 + ℎ1, . . . , 𝑛 + ℎ𝐾 are simultaneously prime, and hence there are 𝑘 + 1 primes all
contained in an interval of length ℎ𝐾 − ℎ1. The fact that we do not have any control over
which of the different 𝑛 + ℎ𝑖 are prime, merely the fact that several of them are prime is what
allows us to sidestep the parity phenomenon issue.

Another example of proving the existence of primes in a set by sidestepping the
usual obstacles is due to Elkies [15].

Theorem 10 (Elkies’ Theorem). Let 𝐸/Q be an elliptic curve. Then there are infinitely many
supersingular primes for 𝐸 .

The proof actually only relies on Dirichlet’s theorem on primes in arithmetic pro-
gressions; all the non-trivial content of the proof is showing that there are polynomials 𝑃ℓ
encoding 𝐸𝑝 having complex multiplication by a suitable order (this happens if 𝑝 divides
the numerator of 𝑃ℓ ( 𝑗 (𝐸)) and −ℓ is a quadratic non-residue (mod 𝑝)). Carefully choosing
a sequence of ℓ’s then shows that there must be infinitely many distinct such 𝑝’s. Thus this is
an example where we started with what seemed a difficult counting problem, but by focusing
on a special subsequence we were able to reduce to a much counting problem for primes.

One result about primes which relies on sieving procedures but is not directly limited
by the parity phenomenon is that of large gaps between primes. In this case it is again fruitful
to focus on a special case; if we have a long string of consecutive integers 𝑛, 𝑛 + 1, . . . , 𝑛 + 𝑦
all with a small prime factor ≤ (log 𝑛)/2, then certainly we have a long gap between primes.
The fact we only search for factors ≤ log 𝑛 limits our approach (we expect we cannot find
gaps between primes less than 𝑥 bigger than (log 𝑥) (log log 𝑥)2+𝑜 (1) in this way), but enables
us to understand the situation by looking at 𝑛 in residue classes (mod

∏
𝑝≤(log 𝑥 )/2 𝑝), and

choosing a convenient residue class to make all the consecutive integers composite. This
indirect approach therefore allows us to avoid directly counting primes. The current record
is [19,20,63]

Theorem 11 (Large gaps between primes).

sup
𝑝𝑛≤𝑋

(𝑝𝑛+1 − 𝑝𝑛) ≫
(log 𝑥) (log log 𝑥) (log log log log 𝑥)

log log log 𝑥
,

This improves upon an old bound of Erdős-Rankin [17, 72]. The key input for this
bound was a version of Theorem 9 showing the existence of certain residue classes containing
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unusually many small primes - this exploited the fact that sieve results (when successful) are
often very flexible and uniform with respect to other parameters.

The parity phenomenon issue applies equally to estimating primes or estimating
sums involving the Liouville function 𝜆(𝑛). It is therefore somewhat remarkable that Tao [74]

was able to avoid this for the 2-point Chowla conjecture.

Theorem 12 (Logarithmically average 2-point Chowla).∑︁
𝑛<𝑥

𝜆(𝑛)𝜆(𝑛 + 1)
𝑛

= 𝑜(log 𝑥)

The key property that is exploited here is the multiplicativity of 𝜆; by using 𝜆(𝑛𝑝) =
−𝜆(𝑛) and averaging over small primes 𝑝, the problem is turned from a binary problem (which
we might expect to be limited by the parity phenomenon) to a ternary one (where we might
hope to use a version of the circle method and not be limited by the parity phenomenon).
Unfortunately the subsequent steps appear only able to handle very small primes 𝑝, which
appears to stop this idea applying to questions about the primes.

5. Primes in arithmetic progressions and extending the level of
distribution
Most results using sieve methods rely crucially on an estimate of the form (3.2), and

the strength of the final results is determined by how large we can take the constant 𝛾 to be.
Natural questions are how far we can push the constant 𝛾 for a given set A, and whether we
really need the full strength of (3.2) or whether we can produce a weaker, but more technical
result which would still suffice for intended applications.

How far we can extend these estimates naturally depends on the particular set A
in question. For simplicity we will focus on the case when A is closely related to the set
of primes (A could be shifted primes, like in the Twin Prime problem, for example) since
this is a common case which appears regularly. In this situation, (3.2) is asking us to under-
stand primes in arithmetic progressions, and typically the basic tool used is the Bombieri-
Vinogradov Theorem [4,77].

Theorem 13 (Bombieri-Vinogradov Theorem). Let 𝜖, 𝐴 > 0. Then we have∑︁
𝑞≤𝑥1/2−𝜖

sup
(𝑎,𝑞)=1

���𝜋(𝑥; 𝑎, 𝑞) − 𝜋(𝑥)
𝜑(𝑞)

��� ≪𝜖 ,𝐴

𝑥

(log 𝑥)𝐴
.

This asserts that the set of primes shifted by a constant satisfies a strong form of
(3.2) for any 𝛾 < 1/2. From the point of view of sieve methods (where we typcially only
need estimates ‘on average’ over arithmetic progressions) this is typically an unconditional
substitute for the Generalised Riemann Hypothesis. We expect, however, that one should be
able to go much further [16].

Conjecture 1 (Elliott-Halberstam Conjecture). Let 𝜖, 𝐴 > 0. Then we have∑︁
𝑞≤𝑥1−𝜖

sup
(𝑎,𝑞)=1

���𝜋(𝑥; 𝑞, 𝑎) − 𝜋(𝑥)
𝜑(𝑞)

��� ≪𝜖 ,𝐴

𝑥

(log 𝑥)𝐴
.
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Increasing the arithmetic information available to the sieve method in question nat-
urally produces stronger results; under the Elliott-Halberstam conjecture. For example, the
bound 246 of the case 𝑘 = 1 of Theorem 9 can be improved to 12 [61], and we can obtain an
upper bound for twin primes which is a factor of only 2 larger than the expected truth.

Unfortunately in this formulation we do not know how to extend the Bombieri-
Vinogradov Theorem to moduli beyond 𝑥1/2 - this is often known as the ‘square-root barrier’,
and the difficulty of the problem increases dramatically at this point where it goes beyond
the region of the Generalised Riemann Hypothesis. However, if we ask for a slightly more
technical version of these results on primes in arithmetic progressions, then one can do better.
The pioneering work of Fouvry and Bombieri-Friedlander-Iwaniec [5–7,22] produced various
results accounting for moduli as large as 𝑥4/7−𝑜 (1) . This was recently extended [58] to larger
moduli still.

Theorem 14 (Beyond 𝑥1/2 barrier for nice coefficients). Let 𝜆(𝑛) be ‘triply well factorable’
and 𝜖, 𝐴 > 0. Then we have∑︁

𝑞≤𝑥3/5−𝜖

𝜆(𝑞)
(
𝜋(𝑥; 𝑞, 𝑎) − 𝜋(𝑥)

𝜑(𝑞)

)
≪𝑎,𝜖 ,𝐴

𝑥

(log 𝑥)𝐴
.

For simplicity we will not go into the precise definition of ‘triply well factorable’ (it
roughly means that 𝜆(𝑞) can be decomposed into a triple-convolution of sequences of any
predetermined sizes). The key point here is that one can take any 𝛾 < 3/5 so we can con-
sider very large moduli, and at the same time the technical weakenings (triply well factorable
sequences and a dependency on the residue class) are sufficient for various applications to
sieve methods. For example, Iwaniec [45] showed that the linear sieve weights can be modi-
fied to become ‘well-factorable’, which then makes linear sieve estimates amenable to such
results. Working a bit harder, one can show that the linear sieve weights then cancel with the
error term for primes in arithmetic progressions up to moduli of size 𝑥7/12. Moreover, recent
work of Lichtman [51] shows one can modify the linear sieve construction itself to exploit
newer equidistribution results profitably (the linear sieve is only optimal at exploiting the
information (3.2)).

The spectacular work of Zhang [82] on bounded gaps between primes was an impor-
tant application of breaking the square-root barrier (even though now we do not need such
strong results to prove bounded gaps between primes), and similarly the work of Adleman-
Fouvry-Heath-Brown [1,23] on Fermat’s last Theorem relied crucially on ideals going beyond
the 𝑥1/2 barrier (although now we know Fermat’s Last Theorem in full [75, 80].) Even in the
absence of a headline application, it still feels a fundamental and central problem in analytic
number theory to concretely go beyond the Bombieri-Vinogradov range.

Question 15. Can we show for any 𝑎, 𝐴∑︁
𝑞≤𝑥1/2+𝛿

(𝑞,𝑎)=1

���𝜋(𝑥; 𝑞, 𝑎) − 𝜋(𝑥)
𝜑(𝑞)

��� ≪𝑎,𝐴

𝑥

(log 𝑥)𝐴
?

for some fixed 𝛿 > 0?
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The work of Bombieri-Friedlander-Iwaniec [5–7] covered most terms which occur
when performing a combinatorial decomposition of the primes, leaving one only to deal with
products of 𝑗 integers of size roughly 𝑥1/ 𝑗 for 𝑗 ∈ {4, 5, 6}. The recent work [57] handles the
case 𝑗 = 5, but only obtains partial results for 𝑗 = 4 and 𝑗 = 6, which remain to be handled.
In particular, we highlight the case 𝑗 = 4, which appears to clearly need new ideas

Question 16. Can one obtain a non-trivial estimate for∑︁
𝑞≤𝑥1/2+𝛿

��� ∑︁
𝑛1 ,𝑛2 ,𝑛3 ,𝑛4∈[𝑥1/4 ,2𝑥1/4 ]

(𝑛1𝑛2𝑛3𝑛4 ,𝑞)=1

(
1𝑛1𝑛2𝑛3𝑛4≡1 (mod 𝑞) −

1
𝜑(𝑞)

)���?

6. Bilinear estimates
Although basic sieve methods relying only on information about A in arithmetic

progressions cannot detect primes because of the parity barrier, it is known that if you incor-
porate extra ‘bilinear’ information into the method, then you can count primes; this ultimately
goes back to the pioneering work of Vinogradov [78]. For example, by inclusion-exclusion
on the largest prime factor, for A ⊆ [𝑥, 2𝑥], we have

#{𝑝 ∈ A} = 𝑆(A, 𝑧) −
∑︁

𝑧<𝑝<𝑥1/2

𝑆(A𝑝 , 𝑝).

When 𝑧 is a small power of 𝑥, basic sieve methods can get good upper and lower bounds for
𝑆(A, 𝑧). The sum over primes counts products 𝑝𝑚 ∈ A where 𝑝 and 𝑚 are both larger than
𝑧, and the power of bilinear sums is they can estimate the number of such products in A with
very little arithmetic information requried beyond both factors are of moderate size.

To state things more precisely, it is often easiest to compare the set A of interest with
a simpler set B where we know how to count primes using techniques from multiplicative
number theory, but is expected to have similar distributional properties. For example, if A =

[𝑥, 𝑥 + 𝑥 𝜃 ] is a short interval, then we might take B = [𝑥, 𝑥 + 𝑥 exp(−
√︁

log 𝑥)] to be a long
interval. A slight extension of (3.2) is then∑︁

𝑚∼𝑀
𝛼𝑚

∑︁
𝑛∈I

(
1𝑛𝑚∈A − #A

#B 1𝑛𝑚∈B
)
≪𝐴

#A
(log 𝑥)𝐴

(6.1)

for any 1-bounded sequence 𝛼𝑚, constant 𝐴, interval I and any 𝑀 < 𝑥𝛾 . With this formula-
tion, we can consider similar variants, in particular the estimate∑︁

𝑚∼𝑀

∑︁
𝑛

𝛼𝑛𝛽𝑚

(
1𝑛𝑚∈A − #A

#B 1𝑚𝑛∈B
)
≪𝐴

#A
(log 𝑥)𝐴

(6.2)

for all 1-bounded sequences 𝛼𝑛, 𝛽𝑚.
We call (6.1) a ‘Type I’ estimate, and (6.2) a ‘Type II’ or ‘bilinear’ estimate for A.
One should interpret the condition (6.2) as saying that we can obtain an asymptotic

formula for products with some prescribed prime factorisation, provided these factorisations
always contain a divisor of a convenient size.
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Naturally, (6.2) is typically much harder to establish, and proving a non-trivial Type
II estimate is normally the key technical difficulty which needs to be overcome if wanting
to prove the existence of primes in some set A. For example, if we can establish fairly good
Type I estimates for the sets mentioned in the introduction, but we currently do not know
how to estimate Type II sums for most of the outstanding open problems on primes.

Question 17 (Type II estimates for twin primes). Can one estimate a Type II sum associated
to Twin Primes, such as ∑︁

𝑛∼𝑁

∑︁
𝑚∼𝑀

𝛼𝑛𝛽𝑚Λ(𝑛𝑚 + 2)

for arbitrary 1-bounded sequences 𝛼𝑛, 𝛽𝑚?

One might also try to reduce both prime variables to bilinear terms, but sums such
as ∑︁

𝑛∼𝑁

∑︁
𝑚∼𝑀

∑︁
𝑟∼𝑅

∑︁
𝑠∼𝑆

𝑛𝑚+2=𝑟𝑠

𝛼𝑛𝛽𝑚𝛾𝑟𝛿𝑠

also appear infeasible to handle. (The natural Cauchy-Schwarz argument leads to conditions
like 𝑛1𝑠2 − 𝑠2𝑛1 = 𝑑 for some 𝑑 |2𝑛2 − 2𝑛1, and little appears to have been gained.)

Note that (6.2) cannot be expected to hold if A has a lot of multiplicative structure
in the sense that information about 𝑛 tells us a lot about which 𝑚’s can have 𝑛𝑚 ∈ A. This
is to be expected - if A contained only numbers with an even number of prime factors, for
example, then we couldn’t hope to produce primes and so we expect that we can’t produce
good Type II estimates. In this case the parity of the number of prime factors of 𝑛 would
dictate the parity of the number of prime factors of 𝑚, and so by choosing 𝛼𝑛, 𝛽𝑚 to account
for these we would give a counterexample to the bound (6.2). Indeed, (6.2) can be thought of
as ruling out such multiplicative conspiracies, so that the arithmetic nature of 𝑛 and 𝑚 over
products 𝑛𝑚 ∈ A are ‘independent on average’.

Although (6.2) is ruling out a certain amount of multiplicative structure within A,
somewhat perversely we are typically only able to estimate Type II terms effectively if A
has some different multiplicative structure which we are able to exploit to show that the
factors 𝑛, 𝑚 behave somewhat independently of one another. For example, after some initial
massaging one typically attempts to prove a Type II estimate via Cauchy-Schwarz to eliminate
one of the unknown sets of coefficients (there is typically little lost in doing this, since we
cannot rule out 𝛼𝑛 = sgn(∑𝑚 𝛽𝑚1𝑛𝑚∈A)), leaving us to estimate a quantity like

#{𝑛 ∼ 𝑥/𝑀 : 𝑚1𝑛 ∈ A, 𝑚2𝑛 ∈ A}. (6.3)

If we can estimate this quantity reasonably accurately (and the diagonal terms with 𝑚1 = 𝑚2

do not dominate), then we should be optimistic of obtaining a Type II estimate. It is precisely
the difficulty of estimating quantities like (6.3) which limits our ability to apply Type I/II
methods.
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6.1. Type I/II ranges to primes
We first introduce some general notation to talk about sets where we can estimate

the bilinear Type II sums in certain ranges at least.

Definition (Type I/II ranges). Given A,B ⊆ [𝑥, 2𝑥]:

• We say that A satisfies a Type I range of [0, 𝛾] if (6.1) holds for all choices of
𝑀 ≤ 𝑥𝛾 (for all 𝐴 > 0, all intervals I and all 1-bounded sequences 𝛼𝑚.)

• We say that A ⊆ [𝑥, 2𝑥] satisfies a Type II range of [𝛼, 𝛽] if (6.1) holds for all
choices of 𝑀 ∈ [𝑥𝛼, 𝑥𝛽] (for all 𝐴 > 0 and all 1-bounded sequences 𝛼𝑚, 𝛽𝑛.)

We typically suppress mentioning B, since we assume that B is a simple set like
[𝑥, 2𝑥] in which we can count primes well.

Since we think ofA ⊆ [𝑥,2𝑥], we see that by switching the roles of 𝑛,𝑚 ifA satisfies
a Type II range of [𝛼, 𝛽] then it also has a Type II range of [1 − 𝛽 + 𝜖, 1 − 𝛼 − 𝜖] for any
𝜖 > 0.

A key basic result, is that if we have ‘enough’ Type I/II arithmetic information, then
we can count primes in A.

Lemma 18 (Vaughan’s identity). Let A satisfy a Type I range of [0, 𝛾] and a Type II range
of [𝛼, 𝛼 + 𝛽]. If 𝛽 + 𝛾 > 1 then we have

#{𝑝 ∈ A} = #A
#B #{𝑝 ∈ B}(1 + 𝑜(1)).

(This formulation is somewhat different to typical statements of Vaughan’s identity.
Ignoring some minor technical considerations to do with separating variables and removing
log-coefficients, it follows from choosing𝑈 = 𝑥𝛼,𝑉 = 𝑥1−𝛼−𝛽 in [11, Chapter 24], for example.)

Therefore, if the length of the Type I range plus the length of the Type II range is
bigger than 1, we can obtain an asymptotic formula for primes in A. Unfortunately, if A
satisfies some Type I/II estimates but the combined lengths are not bigger than 1 we cannot
necessarily obtain an asymptotic formula for primes and the precise Type I/II regions when
we can produce primes becomes a more subtle arithmetic-combinatorial question.

Although we are only considering sets B which are ‘simple’ (and so contain many
primes), essentially the same arguments allow us to show that conclusions of Lemma 18 hold
even if B is a more complicated set. Thus in principle these techniques can show different
sets A, B contain the roughly same number of primes, even if we are unable to establish
precisely how many primes there are in either set. In this way the results are ‘independent’
of the Prime Number Theorem, but are not ‘producing’ primes.

For many applications, we merely wish to prove the existence of primes inA. There-
fore even if we do not have sufficient Type I/II ranges to obtain an asymptotic formula, we
might still be able to obtain a non-trivial lower bound for the number of primes inA. Methods
to do this were gradually developed [39,46] culminating in Harman’s sieve [35]. This allowed
one to exploit positivity to drop inconvenient terms and obtain a lower bound of the correct
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order of magnitude, provided one still had suitably large Type I and Type II ranges. Given
this, the strategy for proving the existence of primes in A then becomes the following:

(1) Establish a Type I estimate in as large a range as possible.

(2) Establish a Type II estimate in as large a range as possible.

(3) Use a sieve decomposition to verify the Type I/II information established is
sufficient to obtain a non-trivial lower bound for primes in A

With this is mind, we define the upper and lower bound functions 𝐿 (𝛼, 𝛽, 𝛾) and𝑈 (𝛼, 𝛽, 𝛾)
we obtain from an optimal translation of this arithmetic information.

Definition (Optimal constants in Harman’s sieve). For given fixed constants 𝛼, 𝛽, 𝛾 ∈ [0, 1],
and B = [𝑥, 2𝑥]:

• Let 𝐿𝑥 (𝛼, 𝛽, 𝛾) denote the infimum of 𝜋(A) log 𝑥/#A over all sets A ⊆ [𝑥, 2𝑥]
satisfying a Type I range [0, 𝛾] and a Type II range [𝛼, 𝛼 + 𝛽]. Let 𝐿 (𝛼, 𝛽, 𝛾) =
lim inf𝑥→∞ 𝐿𝑥 (𝛼, 𝛽, 𝛾).

• Let𝑈𝑥 (𝛼, 𝛽, 𝛾) denote the supremum of 𝜋(A) log 𝑥/#A over all sets A ⊆ [𝑥, 2𝑥]
satisfying a Type I range [0, 𝛾] and a Type II range [𝛼, 𝛼 + 𝛽]. Let 𝑈 (𝛼, 𝛽, 𝛾) =
lim sup𝑥→∞𝑈𝑥 (𝛼, 𝛽, 𝛾).

Clearly 0 ≤ 𝐿 (𝛼, 𝛽, 𝛾) ≤ 𝑈 (𝛼, 𝛽, 𝛾). Moreover, assuming that 𝛾 > 0 we have that
𝑈 (𝛼, 𝛽, 𝛾) ≪ 1 from Lemma 5. If 𝛾 > 1/2 then we know that 𝐿 (𝛼, 𝛽, 𝛾) and𝑈 (𝛼, 𝛽, 𝛾) will
be continuous functions on [0, 1]3; we expect them to be piecewise smooth and continuous
everywhere.

In many problems, we are most interested in showing the existence of primes in A,
which would follow if A satisfied (6.1) and (6.2) for some 𝛼, 𝛽, 𝛾 such that 𝐿 (𝛼, 𝛽, 𝛾) > 0.
Therefore a crucial open question is the following.

Question 19. For which choices of 𝛼, 𝛽, 𝛾 do we have 𝐿 (𝛼, 𝛽, 𝛾) > 0?

The machinery of Harman’s sieve allows one to compute a numerical lower bound
for 𝐿 (𝛼, 𝛽, 𝛾) (or an upper bound for𝑈 (𝛼, 𝛽, 𝛾)) for given constants𝛼, 𝛽, 𝛾 in terms of various
multidimensional integrals, but the lower bound is not guaranteed before time to be positive.
It is slightly unsatisfying that the computations often have to rely on a moderate amount of
explicit numerical calculation of integrals and the decompositions need to be done by hand,
but empirically this typically works well. If one has a moderately large constant 𝛾 for the
Type I range, then in practice we can often succeed in showing a positive lower bound even
when 𝛽 is as small as 1/20 or 1/30, and often (but not always) an argument which produces
a non-trivial Type II range will produce one of an adequate length. It is the empirical fact
that one can get a non-trivial lower bound via Harman’s sieve even with quite limited Type
II ranges which makes it very applicable.
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That said, it would be desirable to have a much better understanding of the optimal
ways to apply Harman’s sieve, the optimal constants which come out, and what sort of sets
we would need to distinguish ourselves from if we wanted to produce stronger results.

Question 20. Given constants𝛼, 𝛽, 𝛾, what are the optimal values 𝐿 (𝛼, 𝛽, 𝛾) and𝑈 (𝛼, 𝛽, 𝛾)?
What are the sets which achieve these maxima and minima?

Work-in-progress [21] makes some first steps to understanding optimality in Har-
man’s sieve, but the general picture appears to be arithmetically quite subtle (much more so
than for the linear sieve bounds) and combinatorially quite involved.

If we have some non-trivial arithmetic information about A, but we know that A
doesn’t contain the expected number of primes, then we know that this must be compensated
by A also containing a different number of products of 𝑟 primes, for some small value of 𝑟.

7. Primes in thin sets
One particularly challenging situation which encompasses many important situa-

tions is when the set A in question contains 𝑂 (𝑥1−𝜃 ) elements in [𝑥, 2𝑥] for some fixed
𝜃 > 0. In this case A is a sparse subset of the integers, and there are limitations on what sort
of Type I and Type II information one could hope to establish even in the most optimistic
scenarios.

Trivially, #A𝑑 is an integer, and so we can only hope for the approximation #A𝑑 ≈
𝑔(𝑑)#A to be accurate when 𝑑 < #A, which limits our Type I range to 𝛾 ≤ 1 − 𝜃. Similarly,
for typical 𝑛 ∼ 𝑁 there should be roughly #A/𝑁 choices of 𝑚 ∼ 𝑥/𝑁 with 𝑚𝑛 ∈ A, and so
we can only hope to obtain a non-trivial estimate for

∑
𝑚:𝑚𝑛∈A 𝛽𝑚 if 𝑁 < #A. This limits

our Type II range to 𝛼 ≥ 𝜃. Finally, if we attempt to estimate our Type II sums by following
the standard Cauchy-Schwarz strategy of estimating

#{𝑛 ∼ 𝑁 : 𝑚1𝑛 ∈ A, 𝑚2𝑛 ∈ A}, (7.1)

then (for generic 𝑚1, 𝑚2) we would expect this count to be roughly 𝑁#A2/𝑥2. For this to be
typically greater than 1, this would limit us to 𝑁 > 𝑥2/A2 = 𝑥2𝜃 , and so 𝛼 + 𝛽 < 1 − 2𝜃 in
our Type II range. Thus if A ⊆ [𝑥, 2𝑥] with #A = 𝑥1−𝜃 , in the absence of more sophisti-
cated methods we expect to be limited to a Type I range of [0, 𝑥1−𝜃 ] and a Type II range of
[𝑥 𝜃 , 𝑥1−2𝜃 ]. In particular, this range would be sufficient to obtain an asymptotic formula via
Vaughan’s identity if #A > 𝑥3/4, but we would expect to fail to obtain any Type II information
at all if #A < 𝑥2/3.

In various favourable situations we can obtain Type I and Type II estimates of this
strength.

(1) Let A = {𝑛 ∼ 𝑥 : ∥𝛼𝑛 + 𝛽∥ < 𝑛−𝜃 } for given irrationals 𝛼, 𝛽, corresponding to
the question of inhomogeneous Diophantine approximation by primes. In this
situation #A = 𝑥1−𝜃+𝑜 (1) and it follows from work of Vaughan [76] that one
can obtain a Type I range [0, 1 − 𝜃] and a Type II range [𝜃, 1 − 2𝜃], therefore
covering essentially the full range.
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(2) Let 𝑁 (𝑥1 + 𝑥2
𝑛
√
𝑎 + · · · + 𝑥𝑛−𝑘

𝑛
√
𝑎𝑛−𝑘−1) be the incomplete norm form associ-

ated to the Kummer extensionQ( 𝑛
√
𝑎), andA be the value set of 𝑁 on [1, 𝑥1/𝑛]𝑛.

Since 𝑁 is a degree 𝑛 polynomial in 𝑛 − 𝑘 variables, A contains roughly 𝑥1−𝑘/𝑛

in [𝑥, 2𝑥] and so is a thin set of integers. In [65] we obtain a Type I range
[0, 1 − 𝑘/𝑛] and a Type II range [𝑘/𝑛, 1 − 2𝑘/𝑛], therefore corresponding to
the optimistic basic estimates above.

Jia [48] showed that provided 𝜃 < 9/28 then Harman’s sieve can produce a lower bound of the
correct order of magnitude for the number of primes in a set A satisfying a Type I estimate
[0, 1 − 𝜃] and a Type II estimate [𝜃, 1 − 2𝜃].

In some situations one can exploit extra structure of the problem to obtain slightly
wider Type II estimates. One might hope to obtain cancellations in the error terms 𝐸 (𝑚1, 𝑚2)
occurring in estimating #{𝑛 ∼ 𝑁 : 𝑚1𝑛 ∈ A, 𝑚2𝑛 ∈ A}, for example, which might allow one
to have a Type II range beyond 1 − 2𝜃.

(1) Let A = {𝑛 ∈ [𝑥, 𝑥 + 𝑥1−𝜃 ]}, so we are investigating primes in short intervals.
In Section 2 we saw that we can use zero-density methods to obtain an asymp-
totic formula for 𝜃 < 5/12 (note that 5/12 > 1/3, so this is much sparser than
the examples above). By using Dirichlet polynomials, we can actually obtain
non-trivial arithmetic information for this problem whenever 𝜃 > 1/2 (although
we can only obtain Type II style estimates for coefficients of special types cor-
responding to convolutions of 3 rather than 2 sequences). By combining these
estimates for triple convolutions (and more) with Harman’s sieve we can uncon-
ditionally show the existence of primes in intervals [𝑥, 𝑥 + 𝑥0.525+𝑜 (1) ] [2], which
is only an exponent only slightly worse than what we would obtain under the
Riemann Hypothesis. The most powerful arithmetic input is Watt’s mean value
Theorem [79] - it would be very desirable to have some new arithmetic estimates
which could apply to these short interval problems, but currently our techniques
do not seem able to go beyond Watt’s work.

(2) Let A = {𝑎3 + 2𝑏3 : 𝑎, 𝑏 < 𝑥1/3}. After switching to prime ideals, Heath-Brown
[38] is essentially able to classify those 𝑚1, 𝑚2 for which there is an 𝑛 with
𝑚1𝑛, 𝑚2𝑛 ∈ A since such 𝑛 can be given explicitly in terms of 𝑚1, 𝑚2, and then
obtain suitable cancellations over these special pairs𝑚1,𝑚2. This enables him to
obtain a Type II range [1/3,1/2], which is sufficient for obtaining an asymptotic
formula for primes represented by 𝑎3 + 2𝑏3, even though this only contains 𝑥2/3

elements in [1, 𝑥]. Li [50] is able to generalise this to further restrict 𝑏 to be
small, allowing him to handle sets even sparser than this.

(3) Let A = {𝑛 ∼ 𝑥 : ∥𝛼𝑛∥ < 𝑥−1/3+𝜖 }. Then A contains 𝑥2/3 integers of size 𝑥,
but nevertheless Matomäki [53] (building on [40]) was able to show that A still
contained primes by establishing non-trivial arithmetic information in wider
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ranges. Again, to establish these wider ranges she needed to consider trilinear
sums.

In a slightly different direction in [64] Type II estimates were deduced by exploiting a
very nice Fourier structure in the underlying set. This is an example where the set doesn’t have
obvious ‘linear structure’ (such as short intervals, or the distribution of 𝛼𝑛modulo one), and
doesn’t lack obvious multiplicative structure which makes it more feasible to estimate (7.1),
but nevertheless non-trivial arithmetic information can be established (in this case within the
Hardy-Littlewood circle method). It would be interesting to add to this example.

We mention in passing the recent work of Heath-Brown-Li [41] on primes of the form
𝑋2 + 𝑝4 and Merikoski [67] on 𝑋2 + (𝑌2 + 1)2 and Xiao [81] on primes of the form 𝑓 (𝑎, 𝑏2)
for binary quadratic forms 𝑓 all generalising the work of Friedlander-Iwaniec on 𝑋2 + 𝑌4

[27].
Even with these proof-of-concept results that in principle one can establish some

sort of non-trivial arithmetic information with fairly general coefficient sequences in some
sparse sets, all approaches seem to break down completely when considering sets containing
fewer than 𝑥1/2 elements in [𝑥, 2𝑥].

Question 21. Is there a plausible way to adapt Type I/II machinery to apply to very sparse
sets with 𝑥1/2−𝜖 elements in [𝑥, 2𝑥]?

Without some advance in this direction, we do seem to have any means of counting
primes in intervals of length smaller than 𝑥1/2, and thereby addressing Legendre’s conjecture
on the existence of a prime between consecutive squares. Of course, we expect there to be
primes in much shorter intervals (as short as (log 𝑥)2+𝑜 (1) ), but going beyond 𝑥1/2 seems out
of reach for now, even if we assume the Riemann Hypothesis and things like Montgomery’s
Pair Correlation Conjecture [68].

8. Further arithmetic information
Even if the Type I/Type II arithmetic information in insufficient for generating primes

(or asymptotic formulae for primes), we can sometimes remedy the situation by incorporating
further arithmetic information into the method.

For example, we mentioned in Section 7 that for the problem of primes in short
intervals or for small values of 𝛼𝑝 modulo one it was important that there was additional
flexibility to consider triple convolutions of sequences, rather than just bilinear sums. Often
we find that the size of factors of terms produced in a decomposition of the primes is the key
feature - when terms factor in a convenient manner one can produce much stronger results.

As well as higher order convolutions (corresponding to assuming some factorisation
properties of the sequences 𝛼𝑛 or 𝛽𝑚) we can also exploit the fact that sometimes we are able
to produce stronger results if some of the sequences involved are just the constant 1. For
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example, we have Linnik’s identity [52]

Λ(𝑛)
log 𝑛

= −
∞∑︁
𝑗=1

(−1) 𝑗
𝑗

𝜏′𝑗 (𝑛)

where 𝜏′
𝑗
(𝑛) counts representations of 𝑛 as the product of 𝑗 integers all bigger than 1. In

principle this allows us to understand primes in A by understanding the average of 𝜏′
𝑗
(𝑛) for

𝑛 ∈ A. Understanding 𝜏′
𝑗
(𝑛) is similar to understanding 𝑗-fold convolutions in A, therefore

generalising our linear and bilinear sums. Moreover, in this formulation the coefficients of
each of the 𝑗 factors is just 1 rather than some unknown sequence. This additional flexibility
of only needing to consider smooth coefficient sequences is difficult to exploit unless some of
the variables are very long like in the case of Type I estimates (and for practical applications
Heath-Brown’s identity [36] is often more convenient to use), but is crucial in some situations.
For example, the recent work [57–59] on primes in arithmetic progressions crucially relied
on estimates for the divisor function in arithmetic progressions and for 𝜏3 (𝑛) in arithmetic
progressions [24,25,37].

One further comment is that the coefficients which naturally occur from Buchstab
iterations are the indicator function of products of primes, where each prime is of a roughly
fixed size. This means that rather than requiring estimates like (6.2) for arbitrary sequences,
we only really require this when 𝛼𝑛 and 𝛽𝑚 look like the indicator function of primes, or
products of primes. In the ground-breaking work of Friedlander-Iwaniec on 𝑋2 + 𝑌4 repre-
senting primes [26,27] the fact that the coefficients satisfied a suitable Siegel-Walfisz Theorem
was crucial, and so the Type II estimates were only valid for this reduced class of coefficients.

One simple observation is that 𝜏𝑗 (𝑛) are the coefficients of the degree 𝑗 𝐿-function
𝜁 (𝑠) 𝑗 . There is a general principle that often estimates which can be obtained in a direct man-
ner for 𝜏(𝑛) can be also obtained in a more complicated manner for the Fourier coefficients of
suitable cusp forms via the spectral theory of automorphic forms. It is therefore compelling
to speculate whether this would allow for further ‘higher degree’ arithmetic information to
be incorporated.

Question 22. Can one use coefficients of other higher degree 𝐿-functions to aid counting
primes?

Work of Drappeau-Maynard [14] made crucial use of the Sato-Tate distribution of
Kloosterman sums to enable an estimation of a sum over primes, where arithmetic properties
of the underlying sequence essentially reduced the sieve dimension. Since Fourier coefficients
have similar distributional features one might hope that this simple example could be indica-
tive of a wider approach.
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9. Choice of lift and comparison sets
When attempting to count primes in A using the Type I/II sums strategy, one wants

to understand a sum ∑︁
𝑝∈A

𝑎𝑝

over primes, and we study this by gaining arithmetic information (such as Type I/II estimates)
for a sequence 𝑎𝑛 over integers 𝑛 ∈ A. We therefore choose a lift of the sequence 𝑎𝑝 supported
on primes to the sequence 𝑎𝑛 supported on integers which hopefully is more amenable to
estimation. In many contexts there is a natural choice of 𝑎𝑛 which works well (e.g. 𝑎𝑝 = 1 and
𝑎𝑛 = 1), but one could imagine other choices also being worthy of consideration (or perhaps
multiple different lifts). For example, if one could understand the sums with 𝑎𝑛 = 2/𝜏(𝑛),
then one would have a lift of the sequence 𝑎𝑝 = 1 which would remain closer to the primes,
and it would be correspondingly easier to detect primes given the same basic arithmetic
information (it would be reducing the sieve dimension). So far our estimates appear to have
been limited to the simplest possible choices, but it is natural to ask if this is really necessary.

Question 23. Are there situations where other lifts 𝑎𝑛 of the sequence 𝑎𝑝 can aid estimating
primes?

As a very basic proof-of-concept, in some situations it is easier to lift 𝑎𝑝 = 1 to
𝑎𝑛 = 𝜃 (𝑛) where 𝜃 (𝑛) is a sieve weight ensuring that 𝑎𝑛 behaves as if it is supported only on
small prime factors. But ideally we would find a non-trivial way to lift to a sequence sensitive
to all prime factors of 𝑛, not just small ones.

In (6.1) and (6.2) we compare arithmetic counts in a set A to a simpler set B, but the
choice of B is left to the application at hand. In most cases B is a truly simple set (such as an
interval) where something like the Prime Number Theorem can be applied directly. However,
in some cases it is advantageous (or important) to have more complicated comparison sets (or
one could generalise to a weighted sequence). For example, in looking at primes in arithmetic
progressions to large moduli, it is useful to compare the indicator function of the residue class
1𝑛≡𝑎 (mod 𝑞1𝑞2 ) not with the basic choice of 1 (or 1(𝑛,𝑞1𝑞2 )=1), but with the ‘intermediate
complexity’ sequences 1𝑛≡𝑎 (mod 𝑞1 ) . This allows us to use additive Fourier analysis to show
that 1𝑛≡𝑎 (mod 𝑞1𝑞2 ) ≈ 1𝑛≡𝑎 (mod 𝑞1 ) in some average sense, and then use multiplicative Fourier
analysis (Dirichlet characters) to show that 1𝑛≡𝑎 (mod 𝑞1 ) ≈ 1. Therefore we are going through
a two-step approximation process, and exploiting in a crucial manner thatZ/𝑞1Z is a subgroup
of Z/𝑞1𝑞2Z.

Question 24. When is it helpful to use more complicated intermediate comparison sequences
B?

It would be very interesting if we could weaken the requirement that Z/𝑞1𝑞2Z has
a suitably sized subgroup for the arguments to apply.

In various works Drappeau [12, 13] has shown that it can be valuable to retain var-
ious possible secondary main terms in applications of Linnik’s dispersion method, which
corresponds to it being somewhat advantageous to choose a more complicated comparison
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set B. (A similar feature was used in [65] to help account for Siegel-zero issues.) These can
be thought of as examples of intermediate sequences B which are taking into account the
possible causes of fluctuations of the number of primes in A.

10. Abelian quadratic limitations
One limitation in many methods for counting primes is that we cannot rule out zeros

of 𝐿-functions very close to the line Re(𝑠) = 1, and so even in the simplest situations such
as counting primes in [1, 𝑥] we cannot obtain an error term better than some exponential log
factor.

One curious feature is that often the more involved counting arguments (such as
Type I/II estimates) actually come with much stronger error terms (such as giving a power
saving) whenever the estimate can be achieved. For example, the classical exponential sum
bound shows that ∑︁

𝑛<𝑥

Λ(𝑛)𝑒(𝑛𝛼) ≪ 𝑥1−𝜖

unless 𝛼 ≈ 𝑎/𝑞 for some 𝑞 < 𝑥2𝜖 (log 𝑥)𝑂 (1) , in which case the possible existence of a Siegel
zero would prevent a power-saving estimate.

Similarly, the error term in the Titchmarsh divisor problem of estimating
∑
𝑝<𝑥 𝜏(𝑝 −

1) is fundamentally limited by the possible existence of Siegel-zeros (see [13]), but for the
analogue of this problem with (normalised) Fourier coefficients of Holomorphic cusp forms
of PSL2 (Z), we obtain a power-saving estimate

∑
𝑝<𝑥 𝑎(𝑝 − 1) < 𝑥391/392+𝑜 (1) due to work

of Pitt [70].
The ‘Higher order Fourier analysis’ pioneered by Green and Tao [32] involves looking

at sums over primes twisted by nilsequences. Again, it is the case that it is ultimately easier to
obtain quantitative cancellation for nilsequences when the nilsequence is suitably far from a
rational phase; the limits of the results stem from possible zeros of Dirichlet 𝐿-functions (see,
for example, the discussion after [33, Theorem 1]). Other examples of this occur in the more
recent work [55,73] where the ultimately key limitations to estimates are when a nilsequence
is ‘close’ to encoding a rational phase, reducing to the classical situation.

In a slightly different direction, for many situations involving higher degree 𝐿-
functions it is known that the issue of zeros very close to 𝑠 = 1 cannot arise; Siegel zeros are
essentially only a phenomenon which could arise for quadratic Dirichlet 𝐿-functions, and so
we can have better results in these more complicated scenarios (unless quadratic Dirichlet
character could be lurking under the surface, such as if we consider a Dedekind 𝐿-function
for a number field with an index 2 - so quadratic - subfield).

In all these cases estimates for primes which at first sight seem harder that the clas-
sical setting actually avoid the limitations from the well-known obstacles and so prove to
actually be easier in some sense.
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