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Abstract
The past decade has seen tremendous progress in our understanding of the behaviour of
many probabilistic models at or near their “critical point”. On the 5th of July 2022, Hugo
Duminil-Copin was awarded the Fields medal for the crucial role he played in many of
these developments. In this short review article, we will try to put his work into context
and present a small selection of his results.
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1. Introduction
Hugo Duminil-Copin was awarded the Fields medal in Helsinki during the opening

ceremony of the 2022 virtual ICM. In this short note, I will try to put his work into context
and to give the reader a glimpse of why the questions it addresses are not only very interesting
from a purely mathematical perspective, but also contribute to further our understanding of
nature at a fundamental level. I should start first of all with a disclaimer. Hugo Duminil-Copin
is an astounding problem solver and, while his interest falls squarely into the general area
of probability theory and in particular the type of probabilistic problems that arise when
studying microscopic models for statistical mechanics, I will not be able to do justice to the
breadth of his contributions. Furthermore, my own area of expertise is somewhat tangential
to that of Duminil-Copin, so this note should be taken as the point of view of an interested
outsider. In particular, any misrepresentations of his results and / or techniques will be entirely
due to my own ignorance.

In its broadest form, classical statistical mechanics can be thought of as the study
of the global behaviour of “large” systems (of “size” 𝑁 ≫ 1) that are comprised of many
identical “small” subsystems interacting with each other. One typically indexes the subsystems
by a discrete set Λ𝑁 with lim𝑁→∞ |Λ𝑁 | =∞ and one is interested in quantities that are stable
as 𝑁 →∞. In many cases of interest, one has Λ𝑁 ⊂ Λ for Λ a discrete subset of Euclidean
space (typically a regular lattice) and its elements are interpreted as a physical location of
the corresponding subsystem; the interaction between subsystems may then depend on their
locations. (In most models they actually depend only on their relative positions, a notion that
generalises very well to locations taking values in more general symmetric spaces.)

Let us write 𝑆 for the state space of one single such subsystem, so that the state
space for the full system is S𝑁

def
= 𝑆Λ𝑁 . In equilibrium statistical mechanics, we furthermore

assume that 𝑆 is equipped with a “reference” probability measure 𝜇 (think of 𝜇 as being
normalised counting measure if 𝑆 is a finite set, normalised volume measure if it is a compact
manifold, etc) and that our system is described by an energy function 𝐻 (𝑁 ) : S𝑁 → R, which
is typically comprised of a contribution for each subsystem, as well as additional interaction
terms. In full generality, one would have something like

𝐻 (𝑁 ) (𝜎) =
∑︁
𝐴⊂S𝑁

𝐻𝐴(𝜎𝐴) , (1.1)

where 𝜎𝐴 denotes the restriction of 𝜎 ∈ 𝑆Λ𝑁 to 𝑆𝐴 and the function 𝐻𝐴 typically only
depends on the “shape” of the subset 𝐴, so satisfies natural invariance properties under
translations and possibly reflections and / or discrete rotations. In many classical models, the
only non-vanishing terms in (1.1) are those with |𝐴| ≤ 2.

Given such an energy function, we obtain a probability measure 𝜇𝛽,𝑁 on S𝑁 by
setting

𝜇𝛽,𝑁 (𝑑𝜎) = 𝑍−1
𝛽,𝑁 exp

(
−𝛽𝐻 (𝑁 ) (𝜎)

) ∏
𝑢∈Λ𝑁

𝜇(𝑑𝜎𝑢) , (1.2)

where 𝑍𝛽,𝑁 is chosen in such a way that 𝜇𝛽,𝑁 (S𝑁 ) = 1. Physically, the parameter 𝛽 > 0
appearing in this expression is the inverse of the temperature of the system. To a large extent,
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(equilibrium) statistical mechanics is the study of 𝜇𝛽,𝑁 as 𝑁 →∞ with a particular emphasis
on the behaviour under 𝜇𝛽,𝑁 of observables that take a “macroscopic” (of the order of the
size of the domain Λ𝑁 ) or “mesoscopic” (tending to infinity as 𝑁 → ∞ but much smaller
than |Λ𝑁 |) number of components of 𝜎 into account.

1.1. Bernoulli percolation
The simplest such example is that of 𝑆 = {−1,1},𝐻𝑁 = 0, and 𝜇({−1}) = 𝜇({1}) = 1

2 .
Regarding the index set Λ𝑁 , we consider the case of the even elements of a large box in Z2,
namely Λ𝑁 = {𝑢 ∈ {−𝑁, . . . , 𝑁}2 : 𝑢1 + 𝑢2 even}. (The reason why we make this strange
choice rather than simply taking all elements of {−𝑁, . . . , 𝑁}2 will soon become clear.)

One of the simplest kind of “global” observables for this system is given by the
following kind of linear statistics. Given a smooth function 𝜙 : [−1, 1]2 → R, we define
𝐼𝑁
𝜙

: S𝑁 → R by
𝐼𝑁𝜙 (𝜎) = 𝑁−𝛼

∑︁
𝑢∈Λ𝑁

𝜎𝑢𝜙
(
𝑢/𝑁

)
. (1.3)

Note that this is exhaustive: for any fixed 𝑁 , if we know 𝐼𝑁
𝜙
(𝜎) for every smooth function 𝜙,

then we can in principle recover the argument 𝜎 itself. A version of the central limit theorem
then immediately yields the following result:

Theorem 1.1. Setting 𝛼 = 1, the joint distribution of 𝐼𝑁
𝜙
(𝜎) for any finite collection of test

functions 𝜙 as above converges as 𝑁→∞ to the law of a collection of jointly centred Gaussian
random variables 𝐼𝜙 such that

E𝐼𝜙 𝐼𝜓 =
1
2

∫
[−1,1]2

𝜙(𝑥)𝜓(𝑥) 𝑑𝑥 .

(The factor 1
2 appearing here comes from the fact that the local density of Λ𝑁 in Z2 is 1

2 .)

A much more interesting kind of global observables is given by the connectivity
properties of 𝜎, which were first studied by Broadbent and Hammersley [12]. These are
however much harder to analyse and, even though the model just described appears at first
sight to be somewhat trivial, most of its results already lead us squarely into 21st century
mathematics. In order to describe what we mean by “connectivity” in this context, instead
of interpreting elements 𝑢 ∈ Λ𝑁 as points in Z2, we interpret them as nearest-neighbour
edges of a suitable sublattice of Z2 by associating to 𝑢 the unique edge 𝑒𝑢 of Zeven × Zodd

with midpoint 𝑢. We will also write 𝑒∗𝑢 for the edge of Zodd × Zeven with midpoint 𝑢. In other
words, we set

𝑒𝑢 =

{
(𝑢↓, 𝑢↑) if 𝑢1 is even,
(𝑢←, 𝑢→) if 𝑢1 is odd,

𝑒∗𝑢 =

{
(𝑢←, 𝑢→) if 𝑢1 is even,
(𝑢↓, 𝑢↑) if 𝑢1 is odd.

Here, given 𝑢 = (𝑢1, 𝑢2) ∈ Z2, we write 𝑢← = (𝑢1 − 1, 𝑢2), etc. The endpoints of these edges
do belong to the stated sublattices of Z2 since 𝑢1 + 𝑢2 is even, so either both 𝑢1 and 𝑢2 are
even or both are odd.

Given a configuration 𝜎 ∈ S𝑁 , we interpret edges 𝑒𝑢 with 𝜎𝑢 = −1 as “open” and
draw them in black, while the remaining edges are considered “closed” and are drawn in light
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Figure 1
On the left, we draw a typical percolation configuration for 𝑁 = 11. On the right, the same configuration is drawn
together with its dual configuration in light blue.

grey. This yields a picture like shown on the left in Figure 1. We can then ask for example what
is the probability 𝑝𝑁 that it is possible to go from the left boundary of the light gray graph to
the right boundary (the "boundary" here consists of the ends of the dangling edges) while
only traversing black edges. It turns out that this probability does take non-trivial values even
for large values for 𝑁 . As a matter of fact, it is independent of 𝑁 as the following classical
result (see for example [36, Lem. 11.21]) shows.

Theorem 1.2. One has 𝑝𝑁 = 1
2 for every 𝑁 .

Proof. The trick is to observe that given a configuration 𝜎 ∈ S𝑁 , if we draw the dual config-
uration 𝜎∗ ∈ S𝑁 defined by 𝜎∗𝑢 = −𝜎𝑢 by colouring (in blue, say) the edges 𝑒∗𝑢 with 𝜎∗𝑢 = −1,
then we obtain a drawing with the property that blue edges never intersect black edges. As a
consequence, it is possible to cross the square from left to right by traversing only black edges
if and only if it is not possible to cross it from top to bottom by traversing only blue edges.
(See Figure 1.) On the other hand, the law of the collection of blue edges is the same as that
of the collection of black edges, only rotated by 90◦, so that we must have 𝑝𝑁 = 1 − 𝑝𝑁 as
claimed.

Remark 1.3. If, instead of choosing edges to be open with probability 1
2 , we choose them to

be open with some probability 𝑝, then we have 𝑝𝑁 → 1 for 𝑝 > 1
2 and 𝑝𝑁 → 0 for 𝑝 < 1

2 .
This is an example of phase transition: an abrupt change in the behaviour of some global
observables as a parameter of the model is varied continuously. In this specific example, we
were able to determine the critical value 𝑝𝑐 = 1

2 explicitly by exploiting an exact duality.
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It is similarly possible to obtain a large collection of interesting global observables by
taking a shapeU ⊂ [−1, 1]2 diffeomorphic to a square and considering the analogous event
𝐴
(𝑁 )
U ⊂ S𝑁 asking whether it is possible to connect the left and right edges of 𝑁U (without

ever leaving 𝑁U) by a path following only open edges of a given configuration 𝜎 ∈ S𝑁 .
Again, the knowledge of these events is an exhaustive statistics for any given fixed value of
𝑁 . It is furthermore known that for any finite number of such shapes {U𝑖}𝑖∈𝐼 (for 𝐼 some
finite index set) the random variables {[𝐴(𝑁 )U𝑖

]}𝑖∈𝐼 converge in law to a non-degenerate limit
{[𝐴U𝑖

]}𝑖∈𝐼 as 𝑁 →∞ [56]. (Here, we write [𝐴] for the indicator function of an event 𝐴.) An
amazing fact is that this scaling limit is conformally invariant: if 𝜙 : 𝐷 → 𝐷′ is a conformal
map between two smooth simply connected domains 𝐷, 𝐷′ ⊂ C such that [−1, 1]2 ⊂ 𝐷 and
such thatV𝑖

def
= 𝜙(U𝑖) ⊂ [−1, 1]2, then the joint law of the random variables {[𝐴V𝑖

]}𝑖∈𝐼 is
the same as that of {[𝐴U𝑖

]}𝑖∈𝐼 .
This conformal invariance turns out to be a crucial feature of the scaling limits

of many equilibrium statistical mechanics models in two dimensions. It provides a link to
conformal field theory which, at a purely mathematical level, can be thought of as the study of
irreducible representations of the Virasoro algebra. In particular, it strongly suggests that the
possible large-scale behaviours one can see for two-dimensional equilibrium models come in
a one-parameter family of “universality classes” parametrised by the central charge of the
corresponding conformal field theory. (In the case of percolation, it turns out that this central
charge is given by 𝑐 = 0.)

1.2. The Ising model
The next-“simplest” model of statistical mechanics falling into the category of

equilibrium models described above is the Ising model [41,43]. (See also the review article
[16] in these proceedings which contains a more detailed account of the various developments
spawned by this model.) In this case, the index set is given by Λ𝑁 = {−𝑁, . . . , 𝑁}𝑑 for
some 𝑑 ≥ 1, the reference measure 𝜇 and local state space 𝑆 are as above, but this time one
has 𝐻𝐴 = 0 unless 𝐴 = {𝑢, 𝑣} with 𝑢, 𝑣 ∈ Z𝑑 such that |𝑢 − 𝑣 | = 1, in which case one sets
𝐻𝐴(𝜎) = −𝜎𝑢𝜎𝑣. This time, the model has a non-trivial dependence on the parameter 𝛽
appearing in (1.2), which plays a role somewhat similar to the parameter 𝑝 that appeared in
Remark 1.3.

At a very qualitative level, the situation is somewhat similar to what happened in the
case for percolation: in every dimension 𝑑 ≥ 2 there exists a critical (dimension-dependent)
value 𝛽𝑐 which delineates two different regimes. At “high temperature”, namely for 𝛽 < 𝛽𝑐,
the spontaneous magnetisation, namely the random quantity 𝑁−𝑑

∑
𝑖∈Λ𝑁

𝜎𝑖 , converges to 0 in
probability as 𝑁 →∞. For 𝛽 > 𝛽𝑐 on the other hand, it converges in probability to a limiting
random variable that can take exactly two possible values ±ℎ𝛽 ≠ 0 with equal probabilities.
The actual value of 𝛽𝑐 is only known in dimension 2 where it equals 𝛽𝑐 = log

√︁
1 +
√

2 [50].
(There is no phase transition at all in dimension 1 and the spontaneous magnetisation always
vanishes, so in some sense 𝛽𝑐 = +∞ there.)
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It is again possible to ask the same questions as in the case of Bernoulli percolation.
This time however even the analogue of Theorem 1.1, which was an essentially trivial
consequence of the central limit theorem (or at least a version thereof), is already highly
non-trivial. It was shown in a recent series of works [13,14] that if one chooses 𝛽 = 𝛽𝑐 and
𝛼 = 15/8 in the expression (1.3) in dimension 𝑑 = 2, then it converges in law to non-trivial
limiting random variables, jointly for any fixed number of test functions. This time however
the limiting distributions are not Gaussian (they actually exhibit an even faster decaying tail
behaviour). Note that the exponent 𝛼 is closely related to the behaviour of E𝑐𝜎𝑢𝜎𝑣 (where
E𝑐 denotes the expectation under the Gibbs measure (1.2) for the critical value of the inverse
temperature 𝛽) since, assuming that E𝑐𝜎𝑢𝜎𝑣 ≈ |𝑢 − 𝑣 |−𝛿 , one finds that

E𝑐
(
𝐼𝑁𝜙 (𝜎)

)2
= 𝑁−2𝛼

∑︁
𝑢,𝑣

𝜙(𝑢/𝑁)𝜙(𝑣/𝑁)E𝑐𝜎𝑢𝜎𝑣 ≲ 𝑁−2𝛼
∑︁
𝑢,𝑣

|𝑢 − 𝑣 |−𝛿 ≈ 𝑁2𝑑−(𝛿∧𝑑)−2𝛼 ,

so that one expects the relation 𝛼 = 𝑑 − (𝛿 ∧ 𝑑)/2, which (correctly) leads to the prediction
𝛿 = 1

4 . This and a number of other properties of the Ising model at criticality allow to associate
it to the conformal field theory with central charge 𝑐 = 1

2 .
The picture in higher dimensions is much less clear however. For 𝑑 ≥ 5, it was shown

in [1, 2, 29] that the correct scaling exponent to use in (1.3) at 𝛽 = 𝛽𝑐 is 𝛼 = 1 + 𝑑2 and that
the limit is a Gaussian Free Field, namely the Gaussian random distribution with correlation
function given by the Green’s function of the Laplacian (with Neuman boundary conditions
on the square). In dimension 𝑑 = 3, virtually nothing is known rigorously about the critical
Ising model, not even the value of its scaling exponents, although much progress has been
made at a non-rigorous level with the development of the “conformal bootstrap” [23, 24].
Regarding the case 𝑑 = 4, it was somewhat unclear until very recently whether the Ising
model at criticality should be “trivial” (i.e. described by Gaussian distributions) or not. This
was eventually settled by Aizenman and Duminil-Copin in the work [3] where they show
that any subsequential limit for expressions of the form (1.3) as 𝑁 →∞ (and 𝛽→ 𝛽𝑐) must
necessarily be Gaussian.

In fact, some of the results just mentioned are shown for the “lattice Φ4 model” which
is the equilibrium model with 𝑆 = R, as well as

𝐻{𝑢} (𝜎) = 𝑉 (𝜎𝑢)
def
= 𝜎4

𝑢 − 𝛼𝜎2
𝑢 , 𝐻{𝑢,𝑣} (𝜎) =

1
2
(𝜎𝑢 − 𝜎𝑣)2 ,

again provided that 𝑢 and 𝑣 are nearest-neighbours, and with 𝑐 an additional parameter. While
this appears to be very different from the Ising model at first sight, we can see that it is actually
a generalisation of it: if the constant 𝛼 is large, then the potential 𝑉 has two very deep wells
with minima located at ±

√
𝛼, so its effect is to impose that 𝜎𝑢 ≈ ±

√
𝛼 with high probability.

The main contribution then comes from the cross-term of the square in the two-body term
which is the same as for the Ising model. These kind of considerations lead one to expect that,
since these models exhibit long-range correlations at the critical temperature (in the sense that
the correlation E𝜎𝑥𝜎𝑦 decays slowly in |𝑥 − 𝑦 | as already pointed out earlier) which should
furthermore lead to some form of self-averaging, the Ising model and the Φ4 model exhibit
the same behaviour at criticality.
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1.3. A general picture
The general picture that should by now be emerging from our discussion can be

summarised as follows:

(1) Many of the simplest local equilibrium systems do exhibit a phase transition,
namely there exists a critical value 𝛽𝑐 at which the qualitative large scale beha-
viour of the system changes abruptly. In general, a system may depend on
additional parameters in which case one may see a more complicated phase
diagram with several regions in parameter space where the global behaviour
of the system displays qualitatively different behaviour. In any case, the “high
temperature / small 𝛽 phase” is expected to behave in such a way that what
happens in well separated regions of space is very close to independent.

(2) In dimension 2, many of these systems appear to exhibit a form of conformal
invariance at criticality, even though no rotation symmetry is built a priori into
their description. When this happens, the link to 2𝑑 conformal field theories
(and the associated probabilistic objects like SLE [55], QLE [45], etc) provides a
hugely powerful machinery to predict – and in a number of cases also rigorously
prove – their behaviour.

(3) The universe of local statistical mechanics models can be subdivided into broad
classes of models that exhibit a shared large-scale behaviour at criticality. These
are called “universality classes” and, in the 2𝑑 equilibrium case, they are expected
to come in families parametrised by a real parameter, the central charge. (For
certain values of the central charge, one expects to have several “subclasses”,
but we will not discuss this kind of subtlety here.)

(4) Although one still expects conformal invariance at criticality in higher dimensions,
this is a much smaller symmetry there and therefore appears to provide somewhat
less insight1. One also expects the situation there to be more rigid than in two
dimensions, with fewer universality classes. (Possibly only a discrete family.)

(5) Models that have “obvious” variants in every dimension typically have a critical
dimension above which their behaviour at criticality is “trivial” in the sense that
it exhibits Gaussian behaviour. (Typically with correlation function given by the
Green’s function of the Laplacian.) In the case of the Ising universality class,
this critical dimension is 4, while in the case of Bernoulli percolation it is 6.

One important branch of modern probability theory aims to put this general picture
onto rigorous mathematical footing. The remainder of this article is devoted to a short overview
of some of Hugo Duminil-Copin’s many contributions to this vast programme. This represents
of course a mere sliver of his work and completely ignores very substantial chunks of it.

1 See however the recent breakthrough made in the approximation of the critical exponents of
the 3𝑑 Ising model using the “conformal bootstrap” [23,24] already mentioned above.
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Figure 2
Typical Ising configurations for 𝛽 < 𝛽𝑐 (left) and 𝛽 > 𝛽𝑐 (right).

By presenting not just a long laundry list of results that he proved and conjectures that he
settled but instead an overview of the strategy of proof for a few select results, I hope to be
able to convey one of the features of Duminil-Copin’s body of work, namely that he has a
knack for finding just the right way of looking at a problem that had hitherto been overlooked.
In many cases, this only provides small cracks in the problem’s armour that still require
tremendous technical skill to be wedged open, but in some cases it results in surprisingly
simple but ingenious proofs. Either way, I am very much looking forward to learning more
from Duminil-Copin’s insights for many years to come.

2. (Dis)continuity of phase transitions
One very natural question in this area is whether one can take the limit 𝑁 →∞ in

(1.2). At this stage, we note that the definition of 𝐻 (𝑁 ) given in (1.1) is not necessarily the
most natural one since it restricts the sum over those clusters 𝐴 that are constrained to entirely
lie in 𝑆𝑁 . Another possibility that appears just as natural would be to restrict the sum over
clusters that merely intersect 𝑆𝑁 , but to specify some fixed “boundary condition” �̄� ∈ 𝑆Λ
that is used to compute the values of the 𝐻𝐴 with 𝐴 intersecting both Λ𝑁 and Λ \ Λ𝑁 in the
sense that we interpret 𝜎𝐴 in (1.1) as 𝜎𝐴,𝑥 = 𝜎𝑥 for 𝑥 ∈ 𝐴 ∩ Λ𝑁 and 𝜎𝐴,𝑥 = �̄�𝑥 otherwise.

In many examples of interest (including the case of the Ising model, but not the
case of percolation), the measure 𝜇𝛽 = lim𝑁→∞ 𝜇𝛽,𝑁 is well-defined (i.e. independent of
the choice of boundary condition) for 𝛽 < 𝛽𝑐 while one can obtain several distinct limits in
the case 𝛽 > 𝛽𝑐. Figure 2 shows typical samples drawn from 𝜇𝛽 for the Ising model with
�̄� ≡ 1. In the case 𝛽 > 𝛽𝑐, the resulting sample clearly “remembers” the bias introduced by
�̄� in the sense that a typical configuration consists of a “sea” of spins taking the dominant
value +1 (brown) with small “islands” of spins taking the value −1 (yellow). Had we set
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�̄� ≡ −1, we would have obtained a sample with the opposite behaviour, which illustrates the
non-uniqueness of the infinite-volume measure 𝜇𝛽 in this case. In the case 𝛽 < 𝛽𝑐 on the other
hand, each one of the two possible spin values is about equally represented and the measure is
symmetric under the substitution 1↔ −1, which illustrates the uniqueness of 𝜇𝛽 . It is in fact
a theorem in the case of the Ising model that for 𝛽 > 𝛽𝑐 there exist exactly two translation
invariant infinite volume measures 𝜇±

𝛽
corresponding to boundary conditions �̄� ≡ ±1 and

that every accumulation point of 𝜇𝛽,𝑁 for any sufficiently homogeneous boundary condition
as 𝑁 →∞ is a convex combination of 𝜇+

𝛽
and 𝜇−

𝛽
.

This raises the question of the uniqueness of 𝜇𝛽 at 𝛽 = 𝛽𝑐. If it is, then we say that
the phase transition is continuous, otherwise it is said to be discontinuous. The reason for this
terminology is that continuity in this sense turns out to be equivalent to the continuity of the
maps 𝛽 ↦→ 𝜇±

𝛽
at 𝛽 = 𝛽𝑐. It has been known for quite some time [5,60] that the phase transition

for the Ising model is continuous in dimensions 𝑑 = 1, 2 as well as 𝑑 ≥ 4. The reason why
dimensions 1 and 2 are typically much better understood is that the Ising model is “solvable”
in these dimensions in the sense that explicit expressions can be derived for the expectation
of a large number of observables under 𝜇𝛽,𝑁 (this solution is straightforward in 𝑑 = 1 [41]

where no phase transition is present, but it was a major breakthrough when Onsager obtained
his exact solution for 𝑑 = 2 [50]). Dimension 𝑑 = 4 on the other hand is the “upper critical
dimension” beyond which the model is expected to be “trivial” (i.e. described by Gaussian
random variables in the scaling limit) which allows to use a number of powerful techniques,
including for example the lace expansion [39,54].

This leaves the case 𝑑 = 3 which is of course the physically most interesting one
since the Ising model is a toy model of ferromagnetism and its dimensions represent the
usual spatial dimensions. Heuristic considerations suggest that the phase transition is also
continuous there, and this is consistent with physical experiments, assuming that the Ising
model belongs to the same universality class as that of a genuine physical magnet. In the
article [4], Duminil-Copin et al. gave the first rigorous proof that this is indeed the case. The
proof relies on the introduction of the quantity

𝑀 (𝛽) = inf
𝐵⊂Z3

1
|𝐵 |2

∑︁
𝑥,𝑦∈𝐵

∫
𝜎𝑥𝜎𝑦 𝜇

0
𝛽 (𝑑𝜎) ,

where 𝜇0
𝛽

denotes the infinite volume limit obtained from using “free” conditions, as well
as three main steps. First, they rely on results of [30,31] to argue that the Fourier transform
of 𝑥 ↦→

∫
𝜎0𝜎𝑥 𝜇

0
𝛽
(𝑑𝜎) belongs to 𝐿1 at 𝛽 = 𝛽𝑐, which implies that 𝑀 (𝛽𝑐) = 0. Then, and

this is the main step, they show that having 𝑀 (𝛽) = 0 implies that a certain percolation
model with long-range correlations constructed from the Ising model admits no infinite
clusters. Finally, they use a variant of the “switching lemma” [35] to show that the quantity∫
𝜎0𝜎𝑥 𝜇

+
𝛽
(𝑑𝜎) −

∫
𝜎0𝜎𝑥 𝜇

0
𝛽
(𝑑𝜎) is dominated by an explicit function times the probability

of the origin belonging to an infinite cluster in the above mentioned model and therefore has
to vanish at 𝛽 = 𝛽𝑐. Once this is known, it is not too difficult to show that the spontaneous
magnetisation of the Ising model at criticality must vanish (namely one has

∫
𝜎0 𝜇

+
𝛽𝑐
(𝑑𝜎) = 0),

which in turn yields the desired uniqueness statement.

9 Hugo Duminil-Copin



To illustrate the fact that continuity of the phase transition, whatever the dimension,
is a rather non-trivial property that isn’t necessarily expected in general, a good example is
that of the Potts model [53]. This is defined similarly to the Ising model, but this time the local
state space 𝑆 is given by 𝑆 = {1, . . . , 𝑞} for some 𝑞 ≥ 2 endowed again with the normalised
counting measure as its reference measure. As in the Ising model, one sets 𝐻𝐴 = 0 unless
𝐴 = {𝑢, 𝑣} with 𝑢, 𝑣 ∈ Z𝑑 such that |𝑢 − 𝑣 | = 1, in which case one sets 𝐻𝐴(𝜎) = 1𝜎𝑢=𝜎𝑣

. For
𝑞 = 2 this is equivalent to the Ising model since their energy functionals only differ by a
constant. Let us also remark that there is an essentially equivalent model called the random
cluster model (or sometimes the FK model after Fortuin and Kasteleyn who introduced it in
[28]) in which one directly considers partitions of Z𝑑 into connected “clusters” (which one
should think of as the edge-connected components of the sets {𝑢 : 𝜎𝑢 = 𝑖} for 𝑖 ∈ 𝑆 and a
given configuration 𝜎 of the Potts model) and which makes sense also for non-integer values
of 𝑞 ≥ 1. (In the case 𝑞 = 1 the FK model actually reduces to regular Bernoulli percolation.)
See (4.1) below for a more precise definition of this model.

It was conjectured by Baxter in the 70’s [8,9] that the Potts model on Z2 exhibits a
continuous phase transition if and only if 𝑞 ≤ 4. The pair of articles [17,21] by Duminil-Copin
et al. provides proofs of both directions of this conjecture. For the sake of brevity we will not
comment on the proofs in any detail, but we note that the proof of continuity of the phase
transition for 𝑞 ≤ 4 is almost completely disjoint from that in the case of the 3𝑑 Ising model.
A milestone is again to show that the model at criticality with boundary condition set to one
fixed element of 𝑆 admits no infinite cluster. However both the proof of this fact (exploiting a
form of discrete holomorphicity of certain cleverly chosen observables) and the proof of its
equivalence with the uniqueness of the infinite-volume measure at criticality (actually they
show equivalence of a list of 5 quite distinct properties which are of independent interest for
the study of the critical Potts model) are completely different.

Regarding the proof of discontinuity when 𝑞 > 4, the main tool is a close relation, first
discovered by Temperley–Lieb [59] in a restricted context and then by Baxter et al. [10] in more
generality, between the FK model on Z2 to the so-called six-vertex model. Configurations of
the latter can be visualised as jigsaws where one assigns to each vertex of Z2 (or a subset
thereof) one of the six (oriented) tiles

and one enforces the admissibility constraint that the tiles fit together seamlessly. One further
postulates that the probability of seeing a given admissible configuration is proportional to
𝑐#𝑝, where #𝑝 denotes the number of purple tiles in the configuration and 𝑐 is some fixed
constant. The relation between the six-vertex model and the critical FK model holds for the
specific choice 𝑐 =

√︁
2 + √𝑞. The advantage gained from this relation is that the six-vertex

model is “solvable” in a certain sense using the transfer matrix formalism. This doesn’t get one
out of the woods since the transfer matrices 𝑉𝑁 involved are very large: they act on a vector
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space of dimension 2𝑁 , but are block diagonal with each block 𝑉 [𝑛]
𝑁

acting on a subspace
of dimension

( 𝑛
𝑁

)
. Each of these blocks is irreducible with positive entries and therefore

admits a Perron–Frobenius vector. The main technical result of [21] is a very sharp asymptotic
for the Perron–Frobenius eigenvalues of 𝑉 [𝑁/2−𝑟 ]

𝑁
for fixed 𝑟 as 𝑁 →∞. Interestingly, the

authors are able to prove that the ratios between these values converge to finite (and explicit,
at least as explicit convergent series) limits as 𝑁 →∞ and that the values themselves diverge
exponentially in 𝑁 with known exponent, but the common lower-order behaviour of that
divergence is not known. This asymptotic is however sufficient to obtain good control over the
partition function of the six vertex model and to exploit it to compute an explicit expression
for the inverse correlation length of the critical Potts model with free boundary conditions
when 𝑞 > 4. The finiteness of that expression finally allows to deduce the discontinuity of the
phase transition.

To conclude this section, I would like to mention the beautiful article [20] which,
although not quite dealing with the question of continuity of the phase transition, does have a
related flavour. The question there is that of the “sharpness” of the phase transition which
in this particular case is couched as the question whether it is really true that the measure
𝜇𝛽 has exponentially decaying correlations (in the sense that the covariance between 𝑓 (𝜎0)
and 𝑓 (𝜎𝑥) decays exponentially fast as |𝑥 | → ∞ for any “nice enough” function 𝑓 : 𝑆 → R)
for every 𝛽 < 𝛽𝑐 and not just for small enough values where a perturbation argument around
𝛽 = 0 (where 𝑓 (𝜎0) and 𝑓 (𝜎𝑥) are independent under 𝜇0 as soon as 𝑥 ≠ 0) may apply. One
difficulty with this type of statements is that one will in general not know any closed-form
expression for 𝛽𝑐: in the case of the FK model on the square lattice such an expression can
be derived by a duality argument [11], but it is not known for more general situations. The
main result of [20] is that the phase transition of the FK model on any vertex-transitive infinite
graph is sharp.

The main tool in their proof is a novel and far-reaching generalisation of the OSSS
inequality [49]. The context here is that of increasing random variables 𝑓 : {0, 1}𝐸 → [0, 1]
(for a finite set 𝐸 and for the natural coordinate-wise partial order on {0, 1}𝐸) where {0, 1}𝐸
is furthermore equipped with a probability measure P that is itself monotonic in the sense
that for every 𝐹 ⊂ 𝐸 and every 𝑒 ∈ 𝐸 \ 𝐹, the conditional probabilities P(𝑤𝑒 = 1 | F𝐹) are
increasing functions. (Here F𝐹 denotes the 𝜎-algebra generated by the evaluations 𝑤 ↦→ 𝑤𝑒

for 𝑒 ∈ 𝐹.) One then considers any algorithm that reveals one by one the values of an input
𝑤 ∈ {0, 1}𝐸 in such a way that the coordinate to be revealed next depends in a deterministic
way on the information gleaned from the revealement up to that point. (In particular, the first
coordinate to be revealed is always the same since no information has been obtained yet at
that point.) The algorithm stops once the revealed values are sufficient to determine the value
of 𝑓 (𝑤), thus yielding a random set �̂� ⊂ 𝐸 of revealed values. The result of [20] is then that
one has the inequality

Var( 𝑓 ) ≤
∑︁
𝑒∈𝐸

P(𝑒 ∈ �̂�) Cov( 𝑓 , 𝑤𝑒) , (2.1)
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which looks formally the same as the result of [49], but the assumption there was that the
measure P is simply the uniform measure. Since the latter is clearly monotonic (it is such that
P(𝑤𝑒 = 1 | F𝐹) is constant), the results of [49] follow as a special case.

Using this result, [20] then obtain the following dichotomy which yields the desired
sharpness statement.

Theorem 2.1. Let 𝐺 be any transitive graph and let P𝛽,𝑛 be the FK measure on the ball Λ𝑛
of radius 𝑛 in 𝐺. Then, there exists 𝛽𝑐 ∈ R such that, for every 𝛽 < 𝛽𝑐 there exists 𝑐𝛽 > 0
such that P𝛽,𝑛 (0↔ 𝜕Λ𝑛) ≲ 𝑒−𝑐𝛽𝑛, uniformly in 𝑛. For 𝛽 > 𝛽𝑐 on the other hand, there exists
𝑐 > 0 such that P𝛽,𝑛 (0↔ 𝜕Λ𝑛) ≥ 𝑐min{1, 𝛽 − 𝛽𝑐}.

Once (2.1) is known, the proof is surprisingly simple and relies on two ingredients.
First, one can show that the measures P𝛽,𝑛 and the function 10↔𝜕Λ𝑛

satisfy the assumptions of
(2.1). Setting 𝜃𝑛 (𝛽) = P𝛽,𝑛 (0↔ 𝜕Λ𝑛), a clever choice of search algorithm for the (potential)
cluster connecting the origin 0 to 𝜕Λ𝑛 then allows to show that one has the bound

𝜃′𝑛 (𝛽) ≳
∑︁
𝑒∈𝐸

Cov𝛽 (10↔𝜕Λ𝑛
, 𝑤𝑒) ≥

𝑛

8Σ𝑛 (𝛽)
𝜃𝑛 (𝛽) (1 − 𝜃𝑛 (𝛽)) . (2.2)

where Σ𝑛 =
∑𝑛−1
𝑘=0 𝜃𝑛. The fact that the first inequality holds is known and can be checked in

an elementary way. The second fact is that any sequence of functions 𝛽 ↦→ 𝜃𝑛 (𝛽) satisfying a
differential inequality of the form (2.2) necessarily satisfies a dichotomy of the type appearing
in the statement of Theorem 2.1. Since we are not interested in the regime where 𝜃𝑛 is large,
we can rewrite (2.2) as 𝜃′𝑛 ≥ 𝑐𝑛

Σ𝑛
𝜃𝑛. The fact that the 𝜃𝑛 then should satisfy such a dichotomy

is quite clear: if 𝛽 is such that they converge to a non-vanishing limit 𝜃, then Σ𝑛/𝑛 ∼ 𝜃 and
one must have 𝜃′ ≥ 𝑐. If on the other hand they converge to 0 on a whole interval [𝑎, 𝑏],
then that convergence must take place sufficiently fast so that Σ𝑛/𝑛 ≫ 𝜃𝑛 (since otherwise
the previous argument applies). Since Σ𝑛/𝑛 ∼ 𝜃𝑛 for 𝜃𝑛 ∼ 𝑛−𝛼 as soon as 𝛼 < 1, it is then
plausible that for any 𝑐 < 𝑏 one has 𝜃𝑛 ≪ 𝑛−1/2 (say), implying 𝜃′𝑛 ≳

√
𝑛𝜃𝑛 and therefore

𝜃𝑛 ≲ 𝑒
−
√
𝑛(𝑐−𝛽) for 𝛽 < 𝑐. This shows that Σ𝑛 is bounded for 𝛽 < 𝑐, leading to 𝜃′𝑛 ≳ 𝑛𝜃𝑛 and

therefore an exponentially (in 𝑛) small bound as claimed.

3. Triviality of 𝚽4
4

It has been known since the groundbreaking work of Osterwalder and Schrader
[51, 52] that, at least in some cases, the construction of a (bosonic) quantum field theory
satisfying the Wightman axioms is equivalent to the construction of a probability measure
on the space of distributions satisfying a number of natural properties. One of the pinnacles
of that line of enquiry was the construction in the seventies of the Φ4

2 and Φ4
3 measures

[22,25,27,33,34,47,48,57], which corresponds to the simplest case of an interacting theory in
two or three space-time dimensions with one type of boson.

At a heuristic level, the Φ4
𝑑

measure is the measure 𝜇 (𝑑) on the space of Schwartz
distributions S′ (R𝑑) (or on the 𝑑-dimensional torus) given by

𝜇 (𝑑) (𝑑Φ) = 𝑍−1 exp
(
−1

2

∫ (
|∇Φ(𝑥) |2 − 𝐶Φ2 (𝑥) +Φ4 (𝑥)

)
𝑑𝑥

)
𝑑Φ ,
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where “𝑑Φ” denotes the infinite-dimensional Lebesgue measure on S′ (R𝑑). This expression
is of course problematic at many levels: infinite-dimensional Lebesgue measure does not exist,
distributions cannot be squared, etc. If it were only for the term |∇Φ|2, one could reasonably
interpret this expression as the Gaussian measure 𝜇0 with covariance operator given by the
Green’s function of the Laplacian, which is a well-defined probability measure (modulo
technicalities arising from the constant mode which can easily be fixed). The measure 𝜇0 is
called the Gaussian Free Field (GFF) since it corresponds to a quantum field theory in which
particles are free, i.e. do not interact with each other at all.

This suggests that a more refined interpretation of the Φ4
𝑑

measure could be given by

𝜇 (𝑑) (𝑑Φ) = 𝑍−1 exp
(
−1

2

∫
Φ4 (𝑥) 𝑑𝑥

)
𝜇0 (𝑑Φ) . (3.1)

This is still ill-defined since the GFF is supported on distributions rather than functions for
any dimension 𝑑 ≥ 2. However, setting Φ𝜀 = 𝜌𝜀 ★Φ, the Wick power

:Φ4: = lim
𝜀→0

(
Φ4
𝜀 − 3Φ2

𝜀EΦ2
𝜀

)
, (3.2)

turns out to be a well-defined random Schwartz distribution (i.e. the limit exists and is
independent of the choice of 𝜌𝜀) in dimensions 𝑑 < 4. In dimension 2, Nelson showed in
[47] that the Radon–Nikodym factor appearing in (3.1) with Φ4 replaced by :Φ4: yields an
integrable random variable, thus leading to a definition of 𝜇 (2) . In particular, the Φ4

2 measure
is equivalent to the GFF. In dimension 3, this turns out not to be the case, but it is still possible
to show that the measure

𝜇 (3) (𝑑Φ) = lim
𝜀→0

𝑍−1
𝜀 exp

(
−1

2

∫
Φ4
𝜀 (𝑥) − 𝐶𝜀Φ2

𝜀 (𝑥) 𝑑𝑥
)
𝜇0 (𝑑Φ) , (3.3)

is well-defined for a suitable choice of the constant 𝐶𝜀 which differs from the choice 3EΦ2
𝜀 ∼

𝜀−1 suggested by (3.2) by a logarithmically divergent term. (An alternative construction of
this measure was recently obtained by completely different techniques in [37,38,46].)

This discussion begs the question of what happens for 𝑑 ≥ 4 and especially when
𝑑 = 4 which is the physically most interesting case from the QFT perspective (remember
that dimension here corresponds to space-time). Regarding the case 𝑑 > 4, it was already
shown in the eighties by Aizenman and Fröhlich [1,2,29] that pretty much any “reasonable”
definition of the Φ4

𝑑
measure actually coincides with the GFF. This still left the case 𝑑 = 4

which has always been expected to be the hard case since it is “critical” in the sense that,
at least at a formal level, the terms Φ4 and |∇Φ|2 scale in the same way in the following
sense. Writing S𝜆 for the transformation (S𝜆𝐹) (𝑥) = 𝐹 (𝜆𝑥), the GFF has the self-similarity
property S𝜆Ψ

law
= 𝜆

2−𝑑
2 Ψ for Ψ drawn from 𝜇0. Pretending that Ψ behaves like a function

(even though it really is a random distribution), we deduce that

S𝜆 |∇Ψ|2 = 𝜆−2 |∇S𝜆Ψ|2
law
= 𝜆−𝑑 |∇Ψ|2 , S𝜆 (Ψ4) = (S𝜆Ψ)4

law
= 𝜆4−2𝑑Ψ4 .

These exponents are indeed equal if and only if 𝑑 = 4. A heuristic calculation actually suggests
that, at higher order, the term |∇Ψ|2 dominates the term Ψ4 at large scales. Variants of this
observation have been made rigorous in a number of works [26,32,40], including most recently
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in an impressive series of works by Bauerschmidt–Brydges–Slade (see [6,7] and the references
therein).

One way of formulating one of their main results is the framework given in our
introduction with 𝑆 = R, 𝜇 being Lebesgue measure, 𝐻{𝑥} (𝜙) = 𝑔

4 𝜙
4
𝑥 + 𝜈2 𝜙

2
𝑥 , 𝐻{𝑥,𝑦} (𝜙) =

|𝜙𝑥 − 𝜙𝑦 |2 when 𝑥 and 𝑦 are neighbouring lattice sites in Z4, and 𝐻𝐴 = 0 otherwise. This
model behaves in a way that is very similar to the Ising model, to which it degenerates in
the regime 𝑔 →∞ and 𝜈 = −𝑔. Traditionally, one considers the Φ4 model with 𝛽 = 1, since
one can always reduce oneself to this case by adjusting 𝑔 and 𝜈, and possibly rescaling the
𝜙𝑥’s by a factor. One typically also considers 𝑔 fixed, it is therefore the parameter 𝜈 that is
tuneable and plays the role of a “temperature” in this model. Just like the Ising model, it
exhibits a phase transition at some value 𝜈𝑐 ∈ R: for 𝜈 > 𝜈𝑐, there exists a unique infinite
volume measure which is symmetric under 𝜙 ↦→ −𝜙. For 𝜈 < 𝜈𝑐 on the other hand, one finds
two distinct infinite-volume measures (as well as their convex combinations) depending on
the boundary conditions one chooses.

A state 𝜙 ∈ 𝑆Λ𝑁 with Λ𝑁 = {−𝑁, . . . , 𝑁}4 is viewed as a distribution 𝜄𝜙 on the torus
(of size 2) by setting, for every smooth test function 𝑓 : T4 → R,(

𝜄𝜙
)
( 𝑓 ) =

∑︁
𝑥∈Λ𝑁

𝜎𝑁𝜙𝑥 𝑓 (𝑥/𝑁) ,

for a sequence of values 𝜎𝑁 chosen in such a way that E
(
(𝜄𝜙) (1)2

)
= 1. It is then shown in

[6] that if 𝑔 is sufficiently small and 𝜈 is chosen in a suitable way (close but not quite equal to
the critical value 𝜈𝑐), then 𝜄𝜙 converges to a massive GFF, namely the Gaussian field with
covariance given by (𝑚2 − Δ)−1 for some 𝑚 ∈ R (which depends on the specific way in which
𝜈 is being tuned to approach 𝜈𝑐 as 𝑁 →∞).

While this result strongly suggests that there exists no non-trivial Φ4
4 measure, it

doesn’t rule out the possibility of having a non-trivial scaling limit for the discrete field we
just described at (or near) criticality when the constant 𝑔 is sufficiently large (in other words
“at strong coupling”). The technique of proof of [6] was to implement a rigorous version of the
“renormalisation group technique”, which relies on a subtle analysis of the behaviour of the
renormalisation map near the fixed point given by the GFF. This is unfortunately perturbative
in nature and so has little hope of being able to deal with arbitrary 𝑔. In the recent work [3]

however, Aizenman and Duminil-Copin finally succeeded in showing the following result.

Theorem 3.1. For every way of adjusting 𝑔 = 𝑔𝑁 and 𝜈 = 𝜈𝑁 as 𝑁→∞ such that 𝜈𝑁 ≥ 𝜈𝑐,𝑁 ,
every 𝑀𝑁 →∞ with 1 ≪ 𝑀𝑁 ≪ 𝑁 and every smooth compactly supported test function 𝑓 ,
the law of 𝜉 𝑓

𝑁
=
∑
𝑥∈Λ𝑁

𝜙𝑥 𝑓 (𝑥/𝑀𝑁 ), normalised so that its variance is one, converges to a
normal distribution.

Remark 3.2. The condition 𝜈𝑁 ≥ 𝜈𝑐,𝑁 can actually be slightly relaxed but not too much. This
is because, in the “low temperature” regime and with free (or periodic) boundary conditions,
one would expect the law of 𝜉 𝑓

𝑁
to converge to a Bernoulli random variable rather than a

Gaussian.
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At a high level, the main reason why [3] can deal with arbitrary couplings is that one
can think of their setting as being more akin to “perturbing around 𝑔 = ∞” rather than around
𝑔 = 0. In the setting of the introduction, they start by considering the Ising model as described
there (i.e. with 𝜇 = 1

2 (𝛿1 + 𝛿−1), but then expand their class of models to allow for each site to
represent a collection of spins with arbitrary ferromagnetic interactions within a site, instead
of a single spin. This has the effect of replacing 𝜇 by any measure that can be obtained as the
law of 𝛿

∑𝐾
𝑖=1 𝑠𝑖 for some 𝛿 > 0 and 𝐾 ∈ N, and where the 𝑠𝑖 ∈ {−1, 1} are random variables

with a joint distribution proportional to exp(−∑𝑖 𝑗 𝑎𝑖 𝑗 𝑠𝑖𝑠 𝑗 ) for some arbitrary but positive
coefficients 𝑎𝑖 𝑗 . As was shown already in the 70’s [58, Thm 1], all probability measures on R
of the type 𝑍−1 exp(𝑐𝑥2 − 𝑔𝑥4) 𝑑𝑥 can be obtained as limits of such measures, so that the
discrete Φ4

4 model can be viewed as a limit of block-spin models.
Recall that to show that a collection {𝑋𝑎}𝑎∈𝐴 of real-valued random variables is

jointly Gaussian it suffices to show that all joint fourth cumulants E𝑐{𝑋𝑎1 , . . . , 𝑋𝑎4 } with
𝑎𝑖 ∈ 𝐴 vanish. It is therefore not surprising that fourth cumulants of the spin variables play
an important role in any proof of Gaussianity for Ising-type models. In dimension 𝑑 ≥ 5, the
proof in [2] relied on two very important facts. First, writing 𝐶 (𝑥, 𝑦) = E

(
𝜎𝑥𝜎𝑦

)
for the spin

correlation function, one shows that for any temperature any any Ferromagnetic interaction,
one has the bound ��E𝑐{𝜎𝑥1 , . . . , 𝜎𝑥4 }

�� ≤ 2
∑︁
𝑦∈Z𝑑

𝐶 (𝑥1, 𝑦) · · ·𝐶 (𝑥4, 𝑦) . (3.4)

One then observes that at the critical temperature, the function 𝐶 is bounded by

𝐶 (𝑥, 𝑦) ≲ |𝑥 − 𝑦 |2−𝑑 . (3.5)

Consider now four smooth compactly supported test functions 𝑓𝑖 and define

𝑋𝑖 =
∑︁
𝑥∈Z𝑑

𝜎𝑥 𝑓𝑖 (𝑥/𝑀) .

In particular, the sum ranges over O(𝑀𝑑) sites. If one assumes that (3.5) is sharp, then one
expects to have E𝑋2

𝑖
≈ 𝑀𝑑+2, so that the “correct” normalisation for the 𝑋𝑖’s to have unit

variance is expected to be 𝜉𝑖 = 𝑀−
𝑑+2

2 𝑋𝑖 . On the other hand, combining the covariance bound
with the bound on the fourth cumulant, a powercounting argument shows that E𝑐{𝜉1, . . . , 𝜉4} ≲
𝑀−2(𝑑+2)𝑀𝑑+8 =𝑀4−𝑑 , which does indeed converge to 0 as𝑀→∞when 𝑑 > 4, thus showing
that the 𝜉𝑖’s are jointly Gaussian in the limit.

Clearly this calculation does not allow us to conclude anything when 𝑑 = 4. The
main contribution of [3] is to show that (3.4) can actually be improved to a bound of the type��E𝑐{𝜎𝑥1 , . . . , 𝜎𝑥4 }

�� ≲ ∑
𝑦∈Z𝑑 𝐶 (𝑥1, 𝑦) · · ·𝐶 (𝑥4, 𝑦)( ∑

|𝑥 | ≤𝑀 𝐶 (0, 𝑥)2
)𝑐 , (3.6)

for some (possibly very small) 𝑐 > 0. Here, one assumes that the 𝑥𝑖’s are all at distances at
least 𝑀 of each other.

Remark 3.3. If one believes that the bound (3.5) represents the correct behaviour of 𝐶 at
criticality, then the denominator appearing in (3.6) is of order (log𝑀)𝑐 in dimension 4. This
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however is not known and is also not used by [3], whether for deriving (3.6) or for deducing
Theorem 3.1 from it.

The proof of (3.6) relies on the “random current” representation of the Ising model
in which the configuration space consists of “currents”, namely maps n : 𝐸 → N where 𝐸
denotes the set of (unoriented) nearest-neighbour pairs in our lattice. The Ising measure then
naturally leads to a weight 𝑤 on currents defined by 𝑤(n) = ∏

𝑒∈𝐸
𝛽n(𝑒)

n(𝑒)! as well as the notion
of “source” of a current given by

𝜕n def
=

{
𝑥 :

∑︁
𝑒∋𝑥

n(𝑒) is odd
}
.

The link between currents and the Ising model is the following formula. Given any finite set
𝐴 ⊂ Z𝑑 , one has

E
∏
𝑎∈𝐴

𝜎𝑎 =

∑
n : 𝜕n=𝐴 𝑤(n)∑
n : 𝜕n=∅ 𝑤(n)

.

A natural notion then is that of a “random current with source 𝐴” for which the probability of
seeing a given current n is non-vanishing only when 𝜕n = 𝐴 in which case it is proportional
to 𝑤(n). When 𝐴 = {𝑥, 𝑦}, a current n with source 𝐴 can be interpreted (not uniquely!) as
the occupation measure of a collection of loops in Z𝑑 , together with a non self-intersecting
path joining 𝑥 and 𝑦. In particular, the restriction of n to the collection of loops connected
(either directly or indirectly through other loops) to the path joining 𝑥 and 𝑦 can be thought
of as the occupation measure of one single random path joining 𝑥 to 𝑦.

The bound (3.6) can then be reformulated in terms of intersection properties of such
random paths. From a heuristic perspective, one gets a lot of mileage from thinking of these
random paths as simple random walk trajectories. Note that dimension 4 is critical for the
question whether the traces of two random walk trajectories intersect or not: in 𝑑 < 4, the
trajectories of two independent random walks with any two starting points will intersect
almost surely. In 𝑑 > 4 on the other hand, they only intersect with positive probability (going
to 0 as the two starting points are taken far from each other) and, if they do, they only have
a finite number of intersection points. In dimension 𝑑 = 4, the probability that two random
walks starting at distance of order 𝑀 from each other do intersect decays like 1/log𝑀 , but
the expected number of intersection times remains of order one as 𝑀 →∞. This shows that
if they do intersect, then the number of intersection points is typically quite large, of order
log𝑀 .

The bulk of the hard work performed in [3] is to show that the random paths arising in
the random cluster representation of the Ising model at criticality exhibit a similar behaviour,
but with log 𝑀 replaced by some quantity of size at least (log 𝑀)𝑐 for some 𝑐 > 0. The
argument is a masterpiece combining a delicate multiscale analysis, topological arguments,
and probabilistic reasoning. One of the main problem the authors have to overcome is the
fact that these random paths are very far from being simple random walks and only satisfy
some spatial version of the Markov property.
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4. Rotational invariance for the critical FK models
As already mentioned a number of times, a crucial feature of 2𝑑 equilibrium statistical

mechanics is the fact that most models are expected to obey a form of conformal invariance
(or equivariance) when considering large-scale observables at the critical temperature. This
expectation and the resulting link to the well understood world of 2𝑑 conformal field theories
allows to generate a plethora of conjectures regarding the large-scale behaviour of these
models, but these are in many cases extremely hard to prove. Consider for example the
𝑁-step 2𝑑 self-avoiding random walk which is simply the uniform measure on all functions
ℎ : {0, . . . , 𝑁} → Z2 such that ℎ(0) = 0 and such that |ℎ(𝑖 + 1) − ℎ(𝑖) | = 1 for all 𝑖 < 𝑁 .
Exploiting the expected conformal invariance of its suitably rescaled large-𝑁 limit, one
expects the size of ℎ(𝑁) to be of order 𝑁3/4 and its rescaling by 𝑁3/4 to converge to a specific
continuous random curve, namely SLE8/3 [42]. Rigorously, almost nothing non-trivial is
known: although the diameter of the range of ℎ trivially has to be at least

√︁
𝑁/𝜋, the current

best lower bound on the endpoint does not even match that! Instead, one only knows the bound
(E|ℎ(𝑁) |𝑝)1/𝑝 ≥ 1

6𝑁
𝑝/(2𝑝+2) that was recently obtained by Madras [44]. Similarly, while one

trivially has |ℎ(𝑁) | ≤ 𝑁 , the best non-trivial upper bound is pretty much the weakest possible
improvement, namely that for every 𝑝 ≥ 1 one has lim𝑁→∞ 𝑁−1 (E|ℎ(𝑁) |𝑝)1/𝑝 = 0, obtained
around the same time by Duminil-Copin and Hammond [18]. One main obstruction is that
there is at the moment no proof showing that the self-avoiding random walk is conformally
invariant at large scales.

While this illustrates the importance of showing that statistical models are conformally
invariant (or at least rotationally invariant as a crucial first step) at criticality, the strategy
of proof for such claims has so far mostly relied on finding a large enough collection of
observables that already satisfy a discrete analogue of conformal invariance, typically by
solving a discrete analogue of the Cauchy–Riemann equations. See for example Chelkak and
Smirnov’s proof of conformal invariance for the Ising model on isoradial graphs [15] and
Smirnov’s proof of conformal invariance for critical percolation [56]. The two-dimensional
FK model with 𝑞 ≤ 4 already mentioned in Section 2 is one of the simplest models where
conformal invariance at criticality is expected, but where it is not known how to obtain this
from a suitable discrete conformal invariance. In the recent work [19], Duminil-Copin et al.
show that the large-scale behaviour of these models is indeed rotationally invariant.

To define the notion of “large-scale behaviour”, we recall that the configuration space
of the FK model is the same as that for regular percolation, see Figure 1. Such a configuration
can alternatively be described as a collection of non self-intersecting loops separating the
percolation clusters from the clusters of the dual configuration. (Actually it naturally yields
two collections of loops, depending on whether the loop encloses a percolation cluster of
the primary or of the dual configuration, but we will ignore this detail for the sake of our
exposition.) Given two collections F and F̄ of non self-intersecting loops in the plane, one
then defines a distance between them in the following way. Given (small) 𝜂 > 0, writeB𝜂 ⊂ R2

for a large chunk of a fine lattice in R2, for example B𝜂 = 𝜂Z2 ∩ [−𝜂−1, 𝜂−1]2. Given a loop
𝛾 and assuming that its image doesn’t intersect the set B𝜂 , one then denotes by [𝜂]𝛾 its
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Figure 3
Examples of graphs 𝐿 (𝛼) . On the left is a generic 𝛼 while on the right 𝛼 is constant but non-zero. The graph itself
is drawn in black, the vertices of its dual graph are drawn in white, and the associated diamond graph is light gray. In
red, we draw one of the symmetry axes of the second graph.

homotopy class in R2 \ B𝜂 . One then postulates that 𝑑𝐻 (F , F̄ ) ≤ 𝜂 if and only if, for every
𝛾 ∈ F that encloses at least two elements of B𝜂 but not all of it, there exists �̄� ∈ F̄ such that
[𝛾]𝜂 = [�̄�]𝜂 and vice-versa. (The 𝐻 here stands for ‘homotopy’.)

Given a metric space (𝑀, 𝑑), the metric 𝑑 lifts naturally to a metric on the space
of probability measures on 𝑀 which metrises the topology of weak convergence (at least
when 𝑀 is “nice”, for example Polish). This is done by considering the Wasserstein (also
sometimes called Kantorovich–Rubinstein or Monge–Kantorovich) distance

𝑑 (𝜇, 𝜈) = inf
P∈C(𝜇,𝜈)

∫
𝑑 (𝑥, 𝑦) P(𝑑𝑥, 𝑑𝑦) ,

where C(𝜇1, 𝜇2) denotes the set of all couplings between 𝜇1 and 𝜇2, that is probability
measures on 𝑀2 with 𝑖th marginal equal to 𝜇𝑖 . Note that with this definition, the map that
assigns to 𝑥 the probability measure 𝛿𝑥 concentrated at 𝑥 is an isometry.

Fix now once and for all 𝑞 ∈ [1, 4] and consider a smooth bounded simply connected
domain Ω ⊂ R2. For 𝜀 > 0, write P𝜀,Ω for the critical FK measure (viewed as a measure on
collections of loops) on 𝜀Z2 ∩ Ω with free boundary conditions. We also write P𝜀 for the
limit of P𝜀,Ω as Ω→ R2. Given an angle 𝜃 ∈ R, we also write 𝑅𝜃 for the rotation by 𝜃, which
naturally acts on loops in R2. The large-scale rotational invariance of the critical FK model
can then be formulated as follows.

Theorem 4.1. For every domain Ω ⊂ R2 as above and every angle 𝜃 one has

lim
𝜀→0

𝑑𝐻
(
𝑅∗𝜃P𝜀,Ω,P𝜀,𝑅𝜃Ω

)
= 0 .

Furthermore, one has lim𝜀→0 𝑑𝐻 (𝑅∗𝜃P𝜀 ,P𝜀) = 0.

We only focus on the second statement since it turns out that the first one can
be deduced from it without too much effort. In fact, the authors of [19] show a type of
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universality statement for the FK model on rectangular lattices, but its formulation requires
some preparation. We start by defining a specific class of isoradial embeddings of the two-
dimensional square lattice into the plane. Recall that a planar graph embedded in the plane is
isoradial if, for each face 𝑓 , there exists a circle of radius 1 containing all the vertices of 𝑓 .
(For example, the canonical embedding of the square lattice is isoradial.)

Given a bi-infinite sequence 𝛼 : Z→ (− 𝜋2 ,
𝜋
2 ), we consider the map 𝜄𝛼 : Z2 → R2

given by

𝜄𝛼 : (𝑥, 𝑦) ↦→
(
𝑥 + 𝑠𝑦 , 𝑐𝑦

)
, 𝑠𝑦 =

∑︁
𝑘∈ (0,𝑦 ]

sin(𝛼𝑘) , 𝑐𝑦 =
∑︁

𝑘∈ (0,𝑦 ]
cos(𝛼𝑘) ,

with the convention that for 𝑦 < 0,
∑
(0,𝑦 ] = −

∑
(𝑦,0] . This defines an isoradial graph 𝐿 (𝛼) by

considering the embedding of {(𝑥, 𝑦) : 𝑥 + 𝑦 even} (joined by diagonal edges) under 𝜄𝛼 (see
Figure 3). The dual graph 𝐿∗ (𝛼) of 𝐿 (𝛼) is then given by the embedding of {(𝑥, 𝑦) : 𝑥 + 𝑦 odd}.
The associated “diamond graph” has as its vertices both the vertices of 𝐿 (𝛼) and the centres
of its faces, and its edges are given by all pairs (𝑣, 𝑓 ) with 𝑣 a vertex and 𝑓 a face such that
𝑣 ∈ 𝑓 . The diamond graph is simply given by the embedding of the usual lattice Z2 with
nearest-neighbour edges under 𝜄𝛼.

It is crucial at this stage to note that the critical FK model on 𝐿 (𝛼) is not given by
simply pushing forward the critical FK model on Z2 under the map 𝜄𝛼. Instead, one reweighs
each edge of the graph in a very specific way that depends on the length of the edge. More
specifically, viewing a configuration of the FK model as a subset 𝜔 ⊂ 𝐸 of the set of edges
of the (finite) graph on which the model is considered, the probability of seeing a given
configuration 𝜔 is proportional to( ∏

𝑒∈𝜔
𝑝𝑒

) ( ∏
𝑒∈𝐸\𝜔

(1 − 𝑝𝑒)
)
𝑞𝑘 (𝜔) , (4.1)

where 𝑘 (𝜔) denotes the number of connected components of the subgraph 𝜔. The formula
for 𝑝𝑒 as a function of 𝑞 and the length of the edge 𝑒 is explicit but not relevant for the sake
of this discussion.

The most important step in the proof is to show that the large-scale connectivity
properties of the critical FK model on 𝐿 (𝛼) are very close to those of the model on 𝐿 (𝑇𝑗𝛼),
where 𝑇𝑗 swaps the 𝑗 th and ( 𝑗 + 1)th component:

(𝑇𝑗𝛼)𝑘 =


𝛼 𝑗+1 if 𝑘 = 𝑗 ,
𝛼 𝑗 if 𝑘 = 𝑗 + 1,
𝛼𝑘 otherwise.

Furthermore, there exists a natural coupling between the FK measures on the two lattices
which implements this “closedness”. This part of the proof exploits the link to the six vertex
model and its “solvability” using the transfer matrix formalism. One then deduces from this
that the model on the standard lattice 𝐿 (0) is very close to that on a rotated rectangular
lattice 𝐿 (𝛼) with 𝑘 ↦→ 𝛼𝑘 constant (see the right half of Figure 3). This works by fixing
some large 𝑁 > 0 (which is then eventually sent to infinity) and starting from 𝛼

(𝑖)
𝑘

= 𝛼1𝑘≥𝑁
and then swapping components in such a way as to move some of the non-zero components
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down until une ends up with 𝛼 ( 𝑓 )
𝑘

= 𝛼(1 |𝑘 | ≤𝑁 + 1𝑘>3𝑁 ). Since one has 𝐿 (0) ≈ 𝐿 (𝛼 (𝑖) ) and
𝐿 (𝛼) ≈ 𝐿 (𝛼 ( 𝑓 ) ), the desired statement follows if one can control the error made at each step
of the argument. This turns out to be extremely delicate and one has to exploit subtle stochastic
cancellations along the way. One trick is to allow the vertices of the set B𝜂 around which
the homotopy classes are computed to move a little bit with each application of a swapping
operator 𝑇𝑗 and to show that this motion ends up being diffusive (and therefore “slow”) rather
than ballistic.

Once one knows that lim𝜀→0 𝑑𝐻 (P𝜀,𝐿 (0) , P𝜀,𝐿 (𝛼) ) = 0, the second part of The-
orem 4.1 follows at once. The idea is simply to note that 𝐿 (𝛼) is invariant under reflection
along a line with angle 𝜋

4 −
𝛼
2 , but that the effect of this reflection on 𝐿 (0) is the same as that

of a rotation by angle 𝛼 (since it is itself invariant under reflection along a line with angle 𝜋
4 ),

so that

𝑑𝐻 (P𝜀 , 𝑅∗𝛼P𝜀) ≤ 𝑑𝐻 (P𝜀,𝐿 (0) ,P𝜀,𝐿 (𝛼) ) + 𝑑𝐻 (P𝜀,𝐿 (𝛼) , 𝑅∗𝛼P𝜀,𝐿 (0) ) = 2𝑑𝐻 (P𝜀,𝐿 (0) ,P𝜀,𝐿 (𝛼) ) ,

and the claim follows.
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