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Abstract
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Figure 1
An optimal packing of cannonballs.

1. Introduction
The sphere packing problem asks how we can fill as large a fraction of space as

possible with congruent balls, if they are not allowed to overlap except tangentially.1 This
problem sits at the interface between many branches of mathematics, and of science more
generally, with connections ranging from materials science to information theory. Sphere
packing is a natural problem in Euclidean geometry, with a simple statement, and one might
expect an equally elementary and self-contained solution. Instead, the topic is dominated by
unexpected connections.

Before Viazovska’s breakthrough work, the optimal sphere packing density was
known only in one, two, and three dimensions. One dimension is trivial, because intervals
can tile the real line with density 1. Two dimensions is not trivial, but Thue [26] showed that
arranging six neighbors around each disk is optimal, with density 𝜋/

√
12 = 0.9068 . . . . Three

dimensions was solved by Hales [16] via an ingenious and elaborate computer-assisted proof,
which has since been formally verified [17]. The unsurprising answer is shown in Figure 1:
optimal two-dimensional layers are nestled together as densely as possible, to achieve density
𝜋/

√
18 = 0.7404 . . . .

These prior results paint a misleading picture of what happens in higher dimensions.
Stacking optimal layers from the previous dimension generally produces suboptimal pack-
ings, and nobody has any idea what the densest sphere packings might be in most dimensions.
We do not even know whether they should be crystalline or disordered.

1 To state the problem precisely, “as large a fraction as possible” must be made precise. One
way to do so is by taking a limit of the packing problem in a bounded region as its size
grows relative to the sphere radius. The sphere packing problem turns out to be very robust,
in the sense that just about all reasonable formulations are equivalent.
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High-dimensional packings are not merely of pure mathematical interest, but also
important for practical applications, because sphere packings are error-correcting codes for
a continuous communication channel (such as radio). In this model, the packing is in an
abstract signal space, whose dimension is the number of measurements used to characterize
the signal and is generally much larger than three.

There does not seem to be any simple pattern in the optimal packings that persists
across many dimensions, and the best upper and lower bounds known for the packing density
in R𝑑 remain exponentially far apart as 𝑑 grows. However, a handful of dimensions stand
out as special, most notably eight and twenty-four dimensions. These dimensions feature
exceptional packings, namely the 𝐸8 root lattice and the Leech lattice Λ24, with remark-
able symmetries and numerous connections to different branches of mathematics. Thanks
to Viazovska’s work [10,27], we now know that they are truly optimal. The jump from three
dimensions to eight and twenty-four in the known solutions is remarkable, and it illustrates
the exceptional nature of these packings.

The 𝐸8 and Leech lattices had long been viewed as the most compelling candidates
for further solutions of the sphere packing problem. However, a direct geometric proof seems
infeasible: it is natural to try to work with a decomposition of space into cells, but the curse
of dimensionality means we are faced with an unmanageable number of potential cell shapes
and ways they could adjoin each other. Perhaps there exists a proof along these lines, but
nobody has found a workable approach.

Instead, Viazovska proved the optimality of 𝐸8 via a dramatic new connection to the
theory of modular forms, following which she and several collaborators extended her ideas
to the case of the Leech lattice:

Theorem 1.1 (Viazovska [27]). The 𝐸8 root lattice achieves the optimal sphere packing den-
sity in R8, namely 𝜋4/384.

Theorem 1.2 (Cohn, Kumar, Miller, Radchenko, and Viazovska [10]). The Leech lattice Λ24

achieves the optimal sphere packing density in R24, namely 𝜋12/12!.

As Peter Sarnak said at the time [19], her paper [27] is “stunningly simple, as all great
things are.” This simplicity is characteristic of Viazovska’s work: she has a gift for linking
concepts and posing bold conjectures, and these insights lead her to striking arguments. Her
proofs engage directly with the heart of the matter, without any extraneous complications. Of
course, simple is very much not the same thing as easy. What makes her work extraordinary
is how different her ideas are from what came before.

In the remainder of this article, we will examine Viazovska’s proof of the optimality
of 𝐸8, as well as its motivation and place in mathematics more broadly. In particular, this
article can serve as an introduction and guide to Viazovska’s techniques, alongside other
expositions [6,20]. For background on sphere packing and lattices, see [12,15,25].

Of course we should keep in mind that this topic represents only one strand of Via-
zovska’s research. For example, [3] is a beautiful and decisive paper on a quite different topic.
What will she be known for in twenty or thirty years? I look forward to finding out.
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2. The past
Before we turn to Viazovska’s proof, we will need some background. In this section,

we will construct the 𝐸8 lattice and explain a method for proving upper bounds for the sphere
packing density.

Sphere packings can be constructed in many ways, among which lattice packings
are the simplest possibility. A lattice packing of spheres centers the spheres at the points of a
lattice Λ in R𝑑 , i.e., a discrete subgroup of R𝑑 of rank 𝑑, or equivalently the integral span of
a basis of R𝑑 . There is no reason why an optimal sphere packing should have this algebraic
structure, and for example the best sphere packing known in R10 does not. However, many
of the best sphere packings known in low dimensions are lattice packings.

To form a packing from a lattice Λ, we must choose the sphere radius 𝑟 so that
neighboring spheres do not overlap. Specifically, we should take

𝑟 = 1
2 min
𝑥∈Λ\{0}

|𝑥 |.

The volume of a sphere of radius 𝑟 in R𝑑 is 𝜋𝑑/2𝑟𝑛/(𝑑/2)!, where (𝑑/2)! means Γ(𝑑/2 + 1)
when 𝑑 is odd, and the density of the overall packing (i.e., the fraction of space covered
by the balls) is the sphere volume times the number of spheres per unit volume in space.
Let vol

(
R𝑑/Λ

)
denote the covolume of the lattice, i.e., the volume of the quotient torus, or

equivalently the absolute value of the determinant of a lattice basis. Then the number of
spheres per unit volume in space is 1/vol

(
R𝑑/Λ

)
, and so the lattice packing density is

𝜋𝑑/2𝑟𝑛

(𝑑/2)! vol
(
R𝑑/Λ

) .
One of the most remarkable lattices is the 𝐸8 root lattice, which originated in Lie

theory but has since become widespread across mathematics. We will see below how to obtain
𝐸8 as a modification of the 𝐷𝑑 lattice, the checkerboard lattice in 𝑑 dimensions, which is
defined by

𝐷𝑑 = {(𝑥1, . . . , 𝑥𝑑) ∈ Z𝑑 : 𝑥1 + · · · + 𝑥𝑑 is even}.

In other words, 𝐷𝑑 simply omits every other point in the cubic lattice Z𝑑 . As a special case,
𝐷3 is the face-centered cubic lattice in three dimensions, which Hales showed achieves the
optimal sphere packing density [16], and 𝐷4 and 𝐷5 are the best packings known in their
dimensions. However, 𝐷𝑑 is not optimal beyond five dimensions.

The problem with 𝐷𝑑 in higher dimensions is that its holes are too large. A hole is
a point in space that is a local maximum for distance from the lattice. There are two types
of holes in 𝐷𝑑 , shallow holes at distance 1 from the lattice, such as (1, 0, . . . , 0), and deep
holes at distance

√︁
𝑑/4 from the lattice, such as ( 1

2 ,
1
2 , . . . ,

1
2 ). As 𝑑 → ∞, so does

√︁
𝑑/4,

and so the deep holes become large enough to fit enormous numbers of additional spheres.
In particular, 𝐷𝑑 cannot be optimal when 𝑑 is large.

When 𝑑 = 8, something beautiful happens. The distance
√︁

8/4 from a deep hole to
the lattice exactly equals the distance

√
2 between lattice points in 𝐷8, and that means the deep

holes are just large enough to be filled with additional spheres. If we plug these holes with
spheres, then the resulting packing is the union of 𝐷8 with its translate 𝐷8 + ( 1

2 ,
1
2 , . . . ,

1
2 ). It
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Figure 2
A two-dimensional cross section of R8 through a Coxeter plane of 𝐸8, colored according to the squared distance
to the nearest point in 𝐸8 (dark is close) and inspired by [22].

is not hard to check that this packing is a lattice (it amounts to the fact that 2 · ( 1
2 ,

1
2 , . . . ,

1
2 ) ∈

𝐷8), which is called the 𝐸8 root lattice.
The 𝐸8 lattice packing has packing radius 𝑟 =

√
2/2 and covolume vol

(
R8/𝐸8

)
=

vol
(
R8/𝐷8

)
/2 = 1, and so it has a packing density of 𝜋4/384 = 0.2536 . . . . It is by no

means obvious that this construction is optimal. In fact, the construction feels a little ad
hoc. However, the 𝐸8 lattice turns out to be far more beautiful and symmetric than its con-
struction indicates. For example, see Figure 2 for a view of 𝐸8 with 30-fold symmetry. This
is a common pattern with exceptional structures in mathematics: they are typically obtained
by piecing together several substructures that each have less symmetry individually.

Now that we have the 𝐸8 lattice, the next question is how we could try to obtain a
matching upper bound for the sphere packing density in eight dimensions. Obtaining a match-
ing bound seems completely infeasible in most dimensions, but in a few special dimensions
bounds based on harmonic analysis work remarkably well. This idea, called the linear pro-
gramming bound, goes back to a fundamental paper by Delsarte [13] on error-correcting
codes, and the corresponding bound for sphere packings was developed by Cohn and Elkies
[7].
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The linear programming bound is formulated in terms of the Fourier transform �̂�

of an integrable function 𝑓 : R𝑑 → C, which we will normalize as

�̂� (𝑦) =
∫
R𝑑

𝑓 (𝑥)𝑒−2𝜋𝑖⟨𝑥,𝑦⟩ 𝑑𝑥,

where ⟨·, ·⟩ is the usual inner product on R𝑑 . Recall that the Fourier transform decomposes
𝑓 into complex exponentials; in signal processing terms, it amounts to identifying the fre-
quencies that occur in a signal and their relative magnitudes. This decomposition amounts
to the Fourier inversion theorem: if �̂� is integrable as well, then

𝑓 (𝑥) =
∫
R𝑑

�̂� (𝑦)𝑒2𝜋𝑖⟨𝑥,𝑦⟩ 𝑑𝑦.

In other words, the Fourier transform is very nearly its own inverse, with a single sign change
being the only difference. Note that �̂� is generally complex-valued, even if 𝑓 is real-valued,
but �̂� is real-valued if 𝑓 is real-valued and an even function.

We will also need a few types of well-behaved functions. A function 𝑓 : R𝑑 → R
is called rapidly decreasing if 𝑓 (𝑥) = 𝑂

(
|𝑥 |−𝑐

)
as |𝑥 | → ∞ for every constant 𝑐 > 0, and

a Schwartz function is a smooth function such that it and all its iterated partial derivatives
(of every order) are rapidly decreasing. Schwartz functions are arguably the best-behaved
functions in harmonic analysis. Much of what we will discuss can be generalized somewhat
beyond Schwartz functions, but they are all Viazovska needed to solve the sphere packing
problem.

We can now state the linear programming bound for sphere packing:

Theorem 2.1 (Cohn and Elkies [7]). Let 𝑓 : R𝑑 → R be an even Schwartz function and 𝑟 a
positive real number. If

(1) 𝑓 (𝑥) ≤ 0 for all 𝑥 ∈ R𝑑 satisfying |𝑥 | ≥ 𝑟 ,

(2) �̂� (𝑦) ≥ 0 for all 𝑦 ∈ R𝑑 , and

(3) 𝑓 (0) = �̂� (0) = 1,

then the optimal sphere packing density in R𝑑 is at most vol
(
𝐵𝑑
𝑟/2

)
= 𝜋𝑑/2 (𝑟/2)𝑑/(𝑑/2)!.

This theorem produces an upper bound for the packing density from a function 𝑓

satisfying certain inequalities, but it says nothing about how to choose 𝑓 to optimize the
bound. Numerical optimization can produce good choices for 𝑓 , which yield the bounds
shown in Figure 3. These bounds are rigorous, but it is possible that other functions may
produce even better bounds.

As one can see in Figure 3, the bounds in eight and twenty-four dimensions appear
sharp. Numerical optimization will not yield an exactly sharp bound, but it seems to come as
close as desired. Based on data of this sort as well as analogies with other problems in coding
theory, Cohn and Elkies conjectured the existence of magic functions 𝑓 that would solve the
sphere packing problem exactly in R8 and R24, by achieving 𝑟 =

√
2 and 𝑟 = 2, respectively.

Note that this is not because the bound dips lower in these dimensions, but rather because the
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Figure 3
A plot of the numerically computed linear programming bound [1] and the best sphere packing density currently
known [12].

optimal packings rise up to meet it. No other dimensions greater than 2 seem to have a sharp
linear programming bound, and it seems unlikely that others exist, but no proof is known,
and the bound has been exactly optimized only for 𝑑 = 1, 8, and 24.

The heart of Viazovska’s breakthrough lies in the construction of the magic func-
tions. What should 𝑓 look like if we are to obtain a sharp bound? There are some simple
criteria, which we can obtain from the proof of Theorem 2.1. In this article we will examine
a proof for just the special case of lattices, but the theorem can be proved in full generality
by combining the same technique with a little additional algebra. The argument is based on
the Poisson summation formula, which says that if 𝑓 : R𝑑 → C is a Schwartz function, Λ is
a lattice in R𝑑 , and Λ∗ is its dual lattice (i.e., the lattice generated by the dual basis of any
basis of Λ with respect to the inner product ⟨·, ·⟩), then∑︁

𝑥∈Λ
𝑓 (𝑥) = 1

vol
(
R𝑑/Λ

) ∑︁
𝑦∈Λ∗

�̂� (𝑦).

Proof of Theorem 2.1 for lattice packings. The sphere packing problem is scaling-invariant,
and so we can use spheres of radius 𝑟/2. Let Λ be any lattice packing with packing radius
𝑟/2, which means |𝑥 | ≥ 𝑟 for 𝑥 ∈ Λ \ {0}. If 𝑓 satisfies the hypotheses of Theorem 2.1, then
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Figure 4
This schematic diagram, which is taken from [6], shows the roots of the magic function 𝑓 and its Fourier
transform �̂� in eight dimensions. It is not a plot of the actual function, which decreases very rapidly. See Figure 5
for an actual plot.

𝑓 (𝑥) ≤ 0 for 𝑥 ∈ Λ \ {0} and �̂� (𝑦) ≥ 0 for all 𝑦, from which it follows that

1 = 𝑓 (0) ≥
∑︁
𝑥∈Λ

𝑓 (𝑥) = 1
vol

(
R𝑑/Λ

) ∑︁
𝑦∈Λ∗

�̂� (𝑦) ≥ �̂� (0)
vol

(
R𝑑/Λ

) =
1

vol
(
R𝑑/Λ

) .
Therefore the packing density vol

(
𝐵𝑑
𝑟/2

)
/vol

(
R𝑑/Λ

)
is bounded above by vol

(
𝐵𝑑
𝑟/2

)
, as

desired.

A first observation is that we can assume without loss of generality that 𝑓 is radial,
i.e., 𝑓 (𝑥) depends only on |𝑥 |. This reason is that we can replace 𝑓 with the average of its
rotations about the origin, because all the constraints are linear and rotation-invariant. One
might wonder whether non-radial functions could be helpful conceptually even if they are not
needed, but so far the answer appears to be no. Instead, Viazovska’s work turns out to lead
to a wonderful new theory of interpolation for radial functions. We will henceforth assume
𝑓 is radial, and when 𝑡 ∈ [0,∞) we will write 𝑓 (𝑡) for the common value 𝑓 (𝑥) with |𝑥 | = 𝑡,
as well as 𝑓 ′ (𝑡) for the radial derivative.

Now if we examine the central inequality in the proof of Theorem 2.1 for lattices,
we can see when it could be sharp. To obtain a sharp bound, all of the discarded terms in the
inequality must vanish: we must have 𝑓 (𝑥) = 0 for 𝑥 ∈ Λ \ {0} and �̂� (𝑦) = 0 for 𝑦 ∈ Λ∗ \ {0}.
In other words, 𝑓 must vanish on the nonzero distances between lattice points, and �̂� must
vanish on the nonzero distances between dual lattice points.

One can check directly from the construction of 𝐸8 given above that 𝐸∗
8 = 𝐸8 and

that the vector lengths in 𝐸8 are all square roots of even integers. Furthermore, it turns out
that each distance

√
2𝑛 with 𝑛 ≥ 0 actually occurs in 𝐸8. We should therefore have 𝑟 =

√
2 in

Theorem 2.1, and the magic function 𝑓 should have a sign change at radius
√

2, followed by
double roots at

√
2𝑛 for 𝑛 ≥ 2, as indicated in Figure 4. In other words, we wish to control

the behavior of 𝑓 and �̂� to second order at these points, i.e., control both the values 𝑓
(√

2𝑛
)

and �̂�
(√

2𝑛
)

and the radial derivatives 𝑓 ′
(√

2𝑛
)

and �̂� ′ (√2𝑛
)
.

How can one construct such a function 𝑓 ? The reason this task is difficult is that
it involves controlling both 𝑓 and �̂� simultaneously. Either one is of course easy on its

8 H. Cohn



𝑥 ↦→ 𝑓 (𝑥) 𝑥 ↦→ 𝑒2𝜋 |𝑥 | |𝑥 |7/2 𝑓 (𝑥)/300

Figure 5
Two plots of Viazovska’s magic function in eight dimensions. The first plot is scaled correctly, but it decreases so
rapidly that the roots become invisible. The second plot introduces a rescaling to make them visible, based on the
asymptotic decay rate.

own, but handling both at once introduces profound difficulties. The underlying issue here is
Heisenberg’s uncertainty principle: in loose terms, whenever you try to pin down 𝑓 , you lose
control over �̂� , and vice versa. More precisely, we run into Bourgain, Clozel, and Kahane’s
uncertainty principle for controlling the signs of functions [4, 8]. These seemingly simple
inequalities on 𝑓 and �̂� therefore turn out to be far more subtle than they initially appear.

When Elkies and I proposed this method in 1999, Viazovska was still in secondary
school. Without realizing how profoundly difficult the remaining step was, I imagined that we
had almost solved the sphere packing problem in eight and twenty-four dimensions, and our
inability to find the magic functions was extremely frustrating. At first, I worried that someone
else would find an easy solution and leave me feeling foolish for not doing it myself. Over
time I became convinced that obtaining these functions was in fact difficult, and others also
reached the same conclusion. For example, Thomas Hales has said that “I felt that it would
take a Ramanujan to find it” [19]. Eventually, instead of worrying that someone else would
solve it, I began to fear that nobody would solve it, and that I would someday die without
knowing the outcome. I am grateful that Viazovska found such a satisfying and beautiful
solution, and that she introduced wonderful new ideas for the mathematical community to
explore.

3. Modular forms
Viazovska’s magic function is constructed using modular forms, certain special

functions that play an important role in number theory. The theory of modular forms has
a reputation for being somewhat forbidding, but the basics are not so difficult, and that is all
that is needed for Viazovska’s proof. We will outline the needed theory here. For a down to
earth introduction to the case of SL2 (Z), see Chapter VII in [24], and for more detailed and
general treatments, see [5,14,28].
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We begin with an example of a modular form, namely Eisenstein series. Recall that
the Riemann zeta function is defined by

𝜁 (𝑠) =
∞∑︁
𝑛=1

1
𝑛𝑠

when this sum converges, i.e., when Re(𝑠) > 1. Here we are summing inverse powers of
the arithmetic progression 1, 2, . . . , and Euler obtained an exact formula when 𝑠 is an even
integer. What if we instead wanted to sum inverse powers of a lattice in the complex plane?
Setting aside the question of why we would want to do this (the result has deeper significance
than one might guess), we could write the result as the Eisenstein series

𝐸𝑘 (𝑧) =
1

2𝜁 (𝑘)
∑︁

(𝑚,𝑛) ∈Z2\{ (0,0) }

1
(𝑚𝑧 + 𝑛)𝑘

(3.1)

for Im 𝑧 > 0, where we are summing over the lattice {𝑚𝑧 + 𝑛 : 𝑚, 𝑛 ∈ Z}, with the exception
of the point (0, 0) at which the summand blows up. Up to scaling by a complex factor, all
two-dimensional lattices are of this form.

The factor of 1/(2𝜁 (𝑘)) in the definition is merely a convenient normalizing factor,
which plays no essential role in the study of 𝐸𝑘 . Unfortunately, the notation 𝐸𝑘 conflicts with
our name for the 𝐸8 root lattice, but that will not cause any ambiguity in practice.

We will restrict our attention to positive integers 𝑘 , so that (𝑚𝑧 + 𝑛)𝑘 is single-valued.
The series (3.1) converges absolutely when 𝑘 ≥ 3, but just conditionally when 𝑘 = 2. For odd
𝑘 , the (𝑚, 𝑛) and (−𝑚,−𝑛) terms cancel and we obtain 𝐸𝑘 (𝑧) = 0, and so only the even cases
are interesting.2 Thus, we will focus on 𝐸𝑘 for 𝑘 even and at least 4.

What does an Eisenstein series look like? Figure 6 is a plot of 𝐸4, in which black
is zero, white is infinity, and color indicates complex phase [21], with the sharp transitions
in color occurring at positive real values. The fractal structure visible in this plot can be
explained using two functional equations:

𝐸𝑘 (𝑧 + 1) = 𝐸𝑘 (𝑧) and 𝐸𝑘 (−1/𝑧) = 𝑧𝑘𝐸𝑘 (𝑧).

These symmetries follow from rearranging the defining series (3.1) when 𝑘 > 2, and they
are the central equations in the theory of modular forms.

The mappings 𝑧 ↦→ 𝑧 + 1 and 𝑧 ↦→ −1/𝑧 that occur in these functional equations
generate a discrete group of linear fractional transforms of the upper half-plane H = {𝑧 ∈
C : Im 𝑧 > 0}. To put it into a broader context of matrix groups, we can let the matrix

(
𝑎 𝑏
𝑐 𝑑

)
act on H via (

𝑎 𝑏

𝑐 𝑑

)
· 𝑧 = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.

Then the matrices 𝑇 =
( 1 1

0 1
)

and 𝑆 =
( 0 −1

1 0
)

satisfy 𝑇 · 𝑧 = 𝑧 + 1 and 𝑆 · 𝑧 = −1/𝑧, and they
turn out to generate the group SL2 (Z).

2 This parity phenomenon is essentially the same as in Euler’s formula for the zeta function
at even integers, which can be viewed as computing

∑
𝑛∈Z\{0} 𝑛

−𝑘 explicitly for all integers
𝑘 > 1.
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Figure 6
A plot of the Eisenstein series 𝐸4 (𝑧) for −1 ≤ Re 𝑧 ≤ 1 and 0 < Im 𝑧 ≤ 1 (above) and the same plot overlaid with
a tiling of H using fundamental domains for the action of SL2 (Z) (below).

The weight 𝑘 action of SL2 (Z) on functions 𝑓 : H → C is defined by

( 𝑓 |𝑘𝛾) (𝑧) = (𝑐𝑧 + 𝑑)−𝑘 𝑓
(
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)
for 𝛾 =

(
𝑎 𝑏
𝑐 𝑑

)
. In this notation, the functional equations 𝐸𝑘 (𝑧 + 1) = 𝐸𝑘 (𝑧) and 𝐸𝑘 (−1/𝑧) =

𝑧𝑘𝐸𝑘 (𝑧) imply that the Eisenstein series 𝐸𝑘 satisfies 𝐸𝑘 |𝑘𝛾 = 𝐸𝑘 for all 𝛾 ∈ SL2 (Z) when
𝑘 > 2.

A modular form of weight 𝑘 for SL2 (Z) is a holomorphic function 𝑓 : H → C such
that 𝑓 |𝑘𝛾 = 𝑓 for all 𝛾 ∈ SL2 (Z) and one additional condition holds, called being holomorphic
at infinity. To state this condition, note that taking 𝛾 = 𝑇 shows that 𝑓 (𝑧 + 1) = 𝑓 (𝑧), and thus
we can expand 𝑓 as a Fourier series

𝑓 (𝑧) =
∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝜋𝑖𝑛𝑧 .
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We say 𝑓 is meromorphic at infinity if there are only finitely many nonzero coefficients 𝑎𝑛
with 𝑛 < 0, and holomorphic at infinity if 𝑎𝑛 = 0 for all 𝑛 < 0. The name reflects the fact
that this Fourier series governs the behavior of 𝑓 (𝑧) as Im 𝑧 grows, because 𝑒2𝜋𝑖𝑧 → 0 as
Im 𝑧→∞. The Fourier series of a modular form is often known as its 𝑞-series, with 𝑞 = 𝑒2𝜋𝑖𝑧 .

The normalization factor 1/(2𝜁 (𝑘)) in (3.1) ensures that the 𝑞-series of 𝐸𝑘 has
rational coefficients, and even integral coefficients when 𝑘 is small. For example, one can
show that 𝐸4 (𝑧) = 1 + 240

∑
𝑛≥1 𝜎3 (𝑛)𝑞𝑛 and 𝐸6 (𝑧) = 1 − 504

∑
𝑛≥1 𝜎5 (𝑛)𝑞𝑛, where 𝜎𝑘 (𝑛)

denotes the sum of the 𝑘-th powers of the divisors of 𝑛.
The product of modular forms of weights 𝑘 and ℓ is a modular form of weight 𝑘 + ℓ,

and modular forms therefore form a graded ring. For SL2 (Z), one can show that this ring is
generated by 𝐸4 and 𝐸6. In other words, the vector space of modular forms of weight 𝑘 for
SL2 (𝑍) is spanned by the modular forms 𝐸 𝑗

4𝐸
ℓ
6 with 4 𝑗 + 6ℓ = 𝑘 .

In addition to using Eisenstein series directly, Viazovska also uses the modular dis-
criminant Δ, which is given by

Δ(𝑧) = 𝐸4 (𝑧)3 − 𝐸6 (𝑧)2

1728
= 𝑞

∞∏
𝑛=1

(1 − 𝑞𝑛)24. (3.2)

Its key property is that it vanishes nowhere in the upper half plane, while it vanishes at infinity
(in the sense that its 𝑞-series has no constant term).

Turán said that special functions should instead be called useful functions, and mod-
ular forms are no exception to this principle. The reason we study modular forms is not
that we have a special love for Eisenstein series, but rather that the functional equations
𝑓 (𝑧 + 1) = 𝑓 (𝑧) and 𝑓 (−1/𝑧) = 𝑧𝑘 𝑓 (𝑧) arise far more often than one might expect. For
example, the 𝐸8 lattice has an important modular form associated with it, namely its theta
series

Θ𝐸8 (𝑧) =
∞∑︁
𝑛=0

𝑁𝑛𝑒
2𝜋𝑖𝑛𝑧 ,

where 𝑁𝑛 = #{𝑥 ∈ 𝐸8 : |𝑥 |2 = 2𝑛}. In other words, the theta series is a generating function
that counts the number of vectors of each length in 𝐸8.

This theta series satisfies both functional equations: Θ𝐸8 (𝑧 + 1) = Θ𝐸8 (𝑧) follows
from the definition of Θ𝐸8 as a Fourier series, while Θ𝐸8 (−1/𝑧) = 𝑧4Θ𝐸8 amounts to Pois-
son summation over 𝐸8 for the complex Gaussian 𝑥 ↦→ 𝑒𝜋𝑖𝑧 |𝑥 |

2 , which has eight-dimensional
Fourier transform 𝑦 ↦→ 𝑧−4𝑒𝜋𝑖 (−1/𝑧) |𝑦 |2 . These functional equations tell us thatΘ𝐸8 is a modu-
lar form for SL2 (Z) of weight 4, and it must therefore be proportional to 𝐸4. In fact,Θ𝐸8 = 𝐸4,
because 𝑁0 = 1. Thus, we obtain the beautiful formula 240𝜎3 (𝑛) for the number of vectors
in 𝐸8 of squared norm 2𝑛.

The theory of modular forms extends to other discrete groups, if one carefully defines
what being holomorphic at infinity means.3 Viazovska’s proof makes use of one more group,

3 If Γ is a subgroup of finite index in SL2 (Z) , then the condition is that for each 𝛾 ∈ SL2 (Z) ,
𝑓 |𝑘𝛾 should be holomorphic at infinity. Note that 𝑓 |𝑘𝛾 need not satisfy ( 𝑓 |𝑘𝛾) (𝑧 + 1) =
( 𝑓 |𝑘𝛾) (𝑧) , but one can check that it always satisfies ( 𝑓 |𝑘𝛾) (𝑧 + 𝑛) = ( 𝑓 |𝑘𝛾) (𝑧) for some
positive integer 𝑛 and thus has a Fourier expansion in 𝑒2𝜋𝑖𝑧/𝑛 = 𝑞1/𝑛.
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namely

Γ(2) =
{
𝛾 ∈ SL2 (Z) : 𝛾 ≡

(
1 0
0 1

)
(mod 2)

}
,

which has index 6 in SL2 (Z). If we let

𝑈 (𝑧) =
( ∑︁
𝑛∈Z

𝑒𝜋𝑖𝑛
2𝑧

)4
,

𝑊 = 𝑈 |2𝑇 , and 𝑉 = 𝑈 −𝑊 , then 𝑈, 𝑉 , and 𝑊 are modular forms of weight 2 for Γ(2) that
satisfy 𝑈 = 𝑉 +𝑊 and

𝑈 |2𝑇 = 𝑊, 𝑉 |2𝑇 = −𝑉, 𝑊 |2𝑇 = 𝑈,

𝑈 |2𝑆 = −𝑈, 𝑉 |2𝑆 = −𝑊, 𝑊 |2𝑆 = −𝑉.
(3.3)

These identities will play a key role in the construction of Viazovska’s magic function. It
turns out that 𝑈 and 𝑊 generate the ring of modular forms for Γ(2), and therefore every
modular form of weight 2𝑘 for Γ(2) is a linear combination of 𝑈𝑘 , 𝑈𝑘−1𝑊 , 𝑈𝑘−2𝑊2, . . . ,
𝑊 𝑘 .

Because modular forms are so closely connected with lattices, it is natural to turn
to modular forms when attempting to construct the magic functions. However, it is entirely
unclear where we should even start, because modular forms are completely different sorts
of objects from radial Schwartz functions. Figure 6 looks nothing whatsoever like Figures 4
or 5, and there is no familiar transformation that makes it look any more similar.

4. Viazovska’s construction for single roots
The first step in Viazovska’s construction of the magic function 𝑓 is to split 𝑓 into

eigenfunctions of the Fourier transform. Radial functions satisfy ̂̂
𝑓 = 𝑓 , and so we can write

𝑓 as 𝑓 = 𝑓+ + 𝑓− , where 𝑓+ := ( 𝑓 + �̂� )/2 satisfies �̂�+ = 𝑓+ and 𝑓− := ( 𝑓 − �̂� )/2 satisfies
�̂�− = − 𝑓− . If 𝑓 is the magic function in eight dimensions, then 𝑓 and �̂� both have roots at√
2𝑛 for integers 𝑛 ≥ 1, and therefore 𝑓+ and 𝑓− do as well. Thus, we are looking for radial

Fourier eigenfunctions with specified roots. Specifically, each of 𝑓± should have a single root
at
√

2 and double roots at
√

2𝑛 for 𝑛 ≥ 2. These roots turn out to provide enough information
to determine 𝑓± up to scaling, and they can then be combined to obtain 𝑓 .

Before we construct the actual magic function, it is worth examining a simpler vari-
ant as a warm-up exercise. Instead of trying to control the behavior of 𝑓 to second order at√

2𝑛, we will instead control the behavior of a function 𝑔 to first order at
√
𝑛. This construc-

tion has no known applications to sphere packing, but it is nevertheless of intrinsic interest
in Fourier analysis. We will also focus on the −1 eigenfunction (i.e., the case �̂� = −𝑔) in the
single-root case, for the sake of specificity.

Viazovska found a remarkable integral transform that can construct such functions.
We will write a radial function 𝑔 : R8 → C as a continuous linear combination of complex
Gaussians 𝑥 ↦→ 𝑒𝜋𝑖𝑧 |𝑥 |

2 with 𝑧 ∈ H via the contour integral

𝑔(𝑥) = 1
2

∫ 1

−1
𝜓(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 𝑑𝑧, (4.1)
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where𝜓 is a holomorphic function onH and the contour is a semicircle centered at the origin.
Under which conditions on 𝜓 will 𝑔 be a Fourier eigenfunction, and how can we control its
values at

√
𝑛?

We can obtain the values 𝑔
(√

𝑛
)

by imposing periodicity on 𝜓 as follows. Suppose
𝜓(𝑧 + 2) = 𝜓(𝑧) for all 𝑧 ∈ H , so that 𝜓 has a Fourier series of the form

𝜓(𝑧) =
∑︁
𝑛∈Z

𝑎𝑛𝑒
𝜋𝑖𝑛𝑧 . (4.2)

Then for integers 𝑛 ≥ 0,

𝑔
(√

𝑛
)
= 1

2

∫ 1

−1
𝜓(𝑧)𝑒𝜋𝑖𝑛𝑧 𝑑𝑧 = 𝑎−𝑛

by orthogonality, provided that we can interchange the sum and integral. If the Fourier expan-
sion (4.2) has only finitely many negative terms, then 𝑔

(√
𝑛
)

will vanish for all but finitely
many 𝑛.

To compute the Fourier transform of 𝑔, we can interchange the contour integral and
Fourier transform, again assuming the integral is sufficiently well behaved. Then

�̂�(𝑦) = 1
2

∫ 1

−1
𝜓(𝑧)𝑧−4𝑒𝜋𝑖 (−1/𝑧) |𝑦 |2 𝑑𝑧,

because the 𝑑-dimensional Fourier transform of the complex Gaussian 𝑥 ↦→ 𝑒𝜋𝑖𝑧 |𝑥 |
2 with

𝑧 ∈ H is given by 𝑦 ↦→ (𝑖/𝑧)𝑑/2𝑒𝜋𝑖 (−1/𝑧) |𝑦 |2 , and 𝑑 = 8 here. Changing variables to 𝑢 = −1/𝑧
shows that

�̂�(𝑦) = − 1
2

∫ 1

−1
𝜓(−1/𝑢)𝑢2𝑒𝜋𝑖𝑢 |𝑦 |

2
𝑑𝑢.

In other words, taking the Fourier transform of 𝑔 amounts to replacing 𝜓 with −𝜓 |−2𝑆, and
we obtain �̂� = −𝑔 if 𝜓 |−2𝑆 = 𝜓.

Let Γ be the subgroup of SL2 (Z) generated by 𝑆 and 𝑇2, which has index 3 in
SL2 (Z). Then the conditions that 𝜓 |−2𝑇

2 = 𝜓 (i.e., 𝜓(𝑧 + 2) = 𝜓(𝑧)) and 𝜓 |−2𝑆 = 𝜓 mean
that 𝜓 is weakly modular of weight −2 for Γ. The reason why 𝜓 is less than a full-fledged
modular form is that it is only meromorphic at infinity (this is unavoidable, since the weight
is negative). We furthermore require 𝜓 to vanish at ±1, which will be enough to justify our
integral manipulations and show that 𝑔 is a Schwartz function. In terms of Fourier series,
this vanishing says that 𝜓 |−2𝑇𝑆 has no negative terms in its 𝑞-series, because 𝑇𝑆 maps the
cusp 𝑖∞ to 1.

We will construct an example of the form 𝜓 = 𝜓0/Δ using the Δ function from (3.2),
where 𝜓0 is a genuine modular form of weight 10 for Γ. Note that the denominator of Δ
causes no difficulties in H , since Δ(𝑧) ≠ 0 for all 𝑧 ∈ H , and the zero of Δ at infinity will
lead to a pole of 𝜓.

The function𝜓0 is modular of weight 10 for Γ, and thus also for Γ(2) because Γ(2) is
a subgroup of Γ. In particular, 𝜓0 must be a linear combination of𝑈5,𝑈4𝑊 ,𝑈3𝑊2, . . . , 𝑊5,
because 𝑈 and 𝑊 generate the ring of modular forms for Γ(2). The relations (3.3) specify
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the action of 𝑆 and 𝑇 , and they imply that the subspace invariant under 𝑆 is spanned by

𝛼 := 𝑈5 − 6𝑈3𝑊2 + 4𝑈2𝑊3,

𝛽 := 𝑈4𝑊 − 3𝑈3𝑊2 + 2𝑈2𝑊3, and

𝛾 := −𝑈3𝑊2 + 4𝑈2𝑊3 − 5𝑈𝑊4 + 2𝑊5,

with 𝑞-expansions
𝛼

Δ
= −𝑞−1 − 40𝑞−1/2 + 752 + · · · , 𝛼

Δ

���
−2
𝑇𝑆 = −1024 + 90112𝑞 + · · · ,

𝛽

Δ
= −16𝑞−1/2 + 256 + · · · , 𝛽

Δ

���
−2
𝑇𝑆 = −512 − 20480𝑞 + · · · ,

𝛾

Δ
= 256 − 10240𝑞1/2 + · · · , 𝛾

Δ

���
−2
𝑇𝑆 = −2𝑞−1 − 32 + · · ·

in terms of 𝑞1/2 = 𝑒𝜋𝑖𝑧 . Now requiring 𝜓 to vanish at ±1 determines it up to scaling as

𝜓 =
2𝛽 − 𝛼

Δ
= 𝑞−1 + 8𝑞−1/2 − 240 − 6176𝑞1/2 − · · · , (4.3)

which yields a radial Schwartz function 𝑔 : R8 → R such that �̂� = −𝑔 and

𝑔
(√

𝑛
)
=


−240 if 𝑛 = 0,

8 if 𝑛 = 1,

1 if 𝑛 = 2, and

0 if 𝑛 ≥ 3.

Note that we do not have much flexibility here: the values 𝑔(0), 𝑔(1), and 𝑔
(√

2
)

are uniquely
determined by Poisson summation over Z8 and 𝐸8, up to scaling.

We can rewrite the definition of 𝑓 in another useful form as follows. If |𝑥 | is large
enough (in fact, |𝑥 |2 > 2 will suffice), then

𝑔(𝑥) = 1
2

∫ 1

−1
𝜓(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 𝑑𝑧

= 1
2

∫ 𝑖

−1
𝜓(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 𝑑𝑧 − 1

2

∫ 𝑖

1
𝜓(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 𝑑𝑧

= 1
2

∫ −1+𝑖∞

−1
𝜓(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 𝑑𝑧 − 1

2

∫ 1+𝑖∞

1
𝜓(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 𝑑𝑧

=
𝑒−𝜋𝑖 |𝑥 |2 − 𝑒𝜋𝑖 |𝑥 |

2

2

∫ 𝑖∞

0
𝜓(𝑢 + 1)𝑒𝜋𝑖𝑢 |𝑥 |2 𝑑𝑢.

In these manipulations, the second line merely breaks the integral in two, the third line uses
the fact that ∫ 1+𝑖𝑅

−1+𝑖𝑅
𝜓(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 𝑑𝑧 → 0

as 𝑅 →∞ (which holds if |𝑥 |2 is large enough), and the fourth line uses 𝜓(𝑢 − 1) = 𝜓(𝑢 + 1).
In other words, 𝑔(𝑥) is given by sin(𝜋 |𝑥 |2) times the Laplace transform of 𝑡 ↦→

𝜓(𝑖𝑡 + 1) evaluated at 𝜋 |𝑥 |2:

𝑔(𝑥) = sin(𝜋 |𝑥 |2)
∫ ∞

0
𝜓(𝑖𝑡 + 1)𝑒−𝜋𝑡 |𝑥 |2 𝑑𝑡. (4.4)
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While the original integral (4.1) converges for all 𝑥, this integral converges only when |𝑥 |2 is
large enough for the Gaussian factor 𝑒−𝜋𝑡 |𝑥 |2 to counteract the growth of 𝜓(𝑖𝑡 + 1) as 𝑡 →∞.
In particular, (4.3) implies that

𝜓(𝑖𝑡 + 1) = 𝑒2𝜋𝑡 − 8𝑒𝜋𝑡 − 240 + 6176𝑒−𝜋𝑡 − · · ·

as 𝑡 →∞, which means we need |𝑥 |2 > 2. We can use this expansion to analytically continue
𝑔 by removing the divergent terms:

𝑔(𝑥) = sin(𝜋 |𝑥 |2)
∫ ∞

0
(𝑒2𝜋𝑡 − 8𝑒𝜋𝑡 − 240)𝑒−𝜋𝑡 |𝑥 |2 𝑑𝑡

+ sin(𝜋 |𝑥 |2)
∫ ∞

0
(𝜓(𝑖𝑡 + 1) − 𝑒2𝜋𝑡 + 8𝑒𝜋𝑡 + 240)𝑒−𝜋𝑡 |𝑥 |2 𝑑𝑡

=
sin(𝜋 |𝑥 |2)
𝜋( |𝑥 |2 − 2)

− 8 sin(𝜋 |𝑥 |2)
𝜋( |𝑥 |2 − 1)

− 240 sin(𝜋 |𝑥 |2)
𝜋 |𝑥 |2

+ sin(𝜋 |𝑥 |2)
∫ ∞

0
(𝜓(𝑖𝑡 + 1) − 𝑒2𝜋𝑡 + 8𝑒𝜋𝑡 + 240)𝑒−𝜋𝑡 |𝑥 |2 𝑑𝑡,

and this last formula holds regardless of |𝑥 |, with removable singularities at |𝑥 | = 0, 1, and√
2.

5. Viazovska’s construction for double roots
We are now in a position to obtain the magic function in eight dimensions. First,

we will obtain the −1 eigenfunction 𝑓− . It is not immediately clear how to generalize the
contour integral (4.1) from single to double roots, but the Laplace transform formula (4.4)
generalizes elegantly. To obtain 𝑓− , we will look for a special function 𝜓 such that

𝑓− (𝑥) = −4𝑖 sin(𝜋 |𝑥 |2/2)2
∫ 𝑖∞

0
𝜓(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 𝑑𝑧

when |𝑥 | is large enough. If we write −4 sin(𝜋 |𝑥 |2/2)2 = 𝑒−𝜋𝑖 |𝑥 |2 + 𝑒𝜋𝑖 |𝑥 |
2 − 2, we find that

𝑓− (𝑥) =
∫ −1+𝑖∞

−1
𝜓(𝑧 + 1)𝑒𝜋𝑖 |𝑥 |2𝑧 𝑑𝑧 +

∫ 1+𝑖∞

1
𝜓(𝑧 − 1)𝑒𝜋𝑖 |𝑥 |2𝑧 𝑑𝑧

− 2
∫ 𝑖∞

0
𝜓(𝑧)𝑒𝜋𝑖 |𝑥 |2𝑧 𝑑𝑧.

We will construct a function 𝜓 such that 𝜓 is holomorphic on H and 𝜓(𝑧) is exponentially
bounded as Im 𝑧 →∞. Under these conditions, when |𝑥 | is sufficiently large we can shift the
contours and combine the integrals to obtain

𝑓− (𝑥) =
∫ 𝑖

−1
𝜓(𝑧 + 1)𝑒𝜋𝑖 |𝑥 |2𝑧 𝑑𝑧 +

∫ 𝑖

1
𝜓(𝑧 − 1)𝑒𝜋𝑖 |𝑥 |2𝑧 𝑑𝑧

− 2
∫ 𝑖

0
𝜓(𝑧)𝑒𝜋𝑖 |𝑥 |2𝑧 𝑑𝑧 +

∫ 𝑖∞

𝑖

(
𝜓(𝑧 + 1) + 𝜓(𝑧 − 1) − 2𝜓(𝑧)

)
𝑒𝜋𝑖 |𝑥 |

2𝑧 𝑑𝑧,

with the contours shown in Figure 7. This formula will be the analogue of (4.1), and it will
define 𝑓− (𝑥) for all 𝑥.
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0 1−1

𝑖

−2𝜓(𝑧)

𝜓(𝑧 + 1) + 𝜓(𝑧 − 1) − 2𝜓(𝑧)

𝜓(𝑧 + 1) 𝜓(𝑧 − 1)

...

Figure 7
The contours used to obtain 𝑓− (𝑥 ) , labeled with their integrands (omitting 𝑒𝜋𝑖 |𝑥 |2𝑧 𝑑𝑧).

Taking the Fourier transform amounts to replacing 𝑒𝜋𝑖 |𝑥 |
2𝑧 with 𝑧−4𝑒𝜋𝑖 |𝑦 |

2 (−1/𝑧) in
the formula defining 𝑓−:

�̂�− (𝑦) =
∫ 𝑖

−1
𝜓(𝑧 + 1)𝑧−4𝑒𝜋𝑖 |𝑦 |

2 (−1/𝑧) 𝑑𝑧 +
∫ 𝑖

1
𝜓(𝑧 − 1)𝑧−4𝑒𝜋𝑖 |𝑦 |

2 (−1/𝑧) 𝑑𝑧

− 2
∫ 𝑖

0
𝜓(𝑧)𝑧−4𝑒𝜋𝑖 |𝑦 |

2 (−1/𝑧) 𝑑𝑧

+
∫ 𝑖∞

𝑖

(
𝜓(𝑧 + 1) + 𝜓(𝑧 − 1) − 2𝜓(𝑧)

)
𝑧−4𝑒𝜋𝑖 |𝑦 |

2 (−1/𝑧) 𝑑𝑧.

We can now set 𝑢 = −1/𝑧, which exchanges the four contours in pairs. The simplest way to
obtain �̂�− = − 𝑓− would be if the resulting formula is exactly the negative of the formula with
which we began. That amounts to the functional equations

𝜓 |−2𝑇𝑆 = −𝜓 |−2𝑇
−1

and

2𝜓 |−2𝑆 = 2𝜓 − 𝜓 |−2𝑇 − 𝜓 |−2𝑇
−1.

Note that the structure of these equations reflects the integrands.
Now the question is which sorts of functions 𝜓 satisfy these functional equations.

The simplest possibility would be some sort of modular form. The functional equations are
not consistent with invariance under 𝑆 and 𝑇 , and so 𝜓 cannot be modular for the full group
SL2 (Z). Let us suppose instead that𝜓 is weakly modular of weight−2 for Γ(2) (i.e., invariant
underΓ(2) but only meromorphic at infinity). Then𝜓 |−2𝑇 =𝜓 |−2𝑇

−1, because𝑇2 ∈ Γ(2), and
our functional equations become𝜓 |−2𝑇𝑆 =−𝜓 |−2𝑇 and𝜓 =𝜓 |−2𝑇 +𝜓 |−2𝑆. Furthermore, the
second equation implies the first, because 𝑆2 = 𝐼. We will therefore obtain the eigenfunction
equation �̂�− = − 𝑓− as long as 𝜓 is weakly modular of weight −2 for Γ(2) and satisfies 𝜓 =

𝜓 |−2𝑇 + 𝜓 |−2𝑆.
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As in the single-root case, it is natural to multiply 𝜓 by Δ to try to eliminate a pole
at infinity. Then 𝜓Δ will be a genuine modular form of weight 10 for Γ(2), and thus a linear
combination of𝑈5,𝑈4𝑊 ,𝑈3𝑊2, . . . , 𝑊5. One can check that the solutions of the remaining
functional equation form a two-dimensional subspace, spanned by

𝛼 := 2𝑈4𝑊 − 4𝑈3𝑊2 +𝑈2𝑊3 +𝑈𝑊4 and 𝛽 := 5𝑈4𝑊 − 10𝑈3𝑊2 + 5𝑈2𝑊3 +𝑊5,

with
𝛼

Δ
= −16𝑞−1/2 + 768 + · · · and

𝛽

Δ
= 𝑞−1 − 40𝑞−1/2 + 2064 + · · · .

We will take
𝜓 =

−5𝛼 + 2𝛽
Δ

= 2𝑞−1 + 288 + · · · ,

so that we eliminate the 𝑞−1/2 term in the 𝑞-series. The motivation for eliminating that term
is that it prevents 𝑓− from having a pole at radius 1. To see why, let us analytically continue

𝑓− (𝑥) = 4 sin(𝜋 |𝑥 |2/2)2
∫ ∞

0
𝜓(𝑖𝑡)𝑒−𝜋𝑡 |𝑥 |2 𝑑𝑡

as in the single-root case. If 𝜓(𝑖𝑡) = 𝑎2𝑒
2𝜋𝑡 + 𝑎1𝑒

𝜋𝑡 + 𝑎0 + · · · as 𝑡 → ∞, then

𝑓− (𝑥) =
4𝑎2 sin(𝜋 |𝑥 |2/2)2

𝜋( |𝑥 |2 − 2)
− 4𝑎1 sin(𝜋 |𝑥 |2/2)2

𝜋( |𝑥 |2 − 1)
− 4𝑎0 sin(𝜋 |𝑥 |2/2)2

𝜋 |𝑥 |2

+ 4 sin(𝜋 |𝑥 |2/2)2
∫ ∞

0
(𝜓(𝑖𝑡) − 𝑎2𝑒

2𝜋𝑡 − 𝑎1𝑒
𝜋𝑡 − 𝑎0)𝑒−𝜋𝑡 |𝑥 |2 𝑑𝑡.

Here the 𝑎1 term has a pole unless 𝑎1 = 0. For our choice of 𝜓, (𝑎2, 𝑎1, 𝑎0) = (2, 0, 288), and
thus 𝑓− has a single root at

√
2 and double roots at

√
2𝑛 for 𝑛 ≥ 2. One can also check that

𝜓(𝑖𝑡) vanishes as 𝑡 → 0+ (equivalently, 𝜓 |−2𝑆 vanishes at infinity), which is enough for 𝑓−
to be a Schwartz function and to justify all our integral manipulations.

We have therefore obtained a magic eigenfunction 𝑓− as

𝑓− (𝑥) = 4 sin(𝜋 |𝑥 |2/2)2
∫ ∞

0
𝜓(𝑖𝑡)𝑒−𝜋𝑡 |𝑥 |2 𝑑𝑡

for |𝑥 |2 > 2, where

𝜓 =
𝑊3 (5𝑈2 − 5𝑈𝑊 + 2𝑊2)

Δ
. (5.1)

Our scaling here does not yet match the magic function for sphere packing, but aside from
that we have exactly what we need.

Equation (5.1) implies that 𝜓(𝑖𝑡) > 0 for all 𝑡 ∈ (0,∞). (Specifically, Δ(𝑖𝑡) > 0
thanks to its product formula, 𝑊 (𝑖𝑡) > 0 since it is the fourth power of a real quantity, and
5𝑈 (𝑖𝑡)2 − 5𝑈 (𝑖𝑡)𝑊 (𝑖𝑡) + 2𝑊 (𝑖𝑡)2 > 0 since it is a positive-definite quadratic form.) It follows
that 𝑓− never changes sign beyond radius

√
2, in accordance with our expectations. However,

note that our eigenfunction is positive beyond radius
√

2, and so we will have to correct its
sign later to match the magic function.

All that remains is to construct a magic eigenfunction 𝑓+ and take a suitable linear
combination of 𝑓+ and 𝑓− to obtain 𝑓 . Constructing 𝑓+ is very much like constructing 𝑓− . If
we define 𝑓+ for |𝑥 | sufficiently large by

𝑓+ (𝑥) = −4𝑖 sin(𝜋 |𝑥 |2/2)2
∫ 𝑖∞

0
𝜙(𝑧)𝑒𝜋𝑖𝑧 |𝑥 |2 𝑑𝑧
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for some holomorphic function 𝜙 : H → C, then the eigenfunction equation �̂�+ = 𝑓+ will
follow from the functional equations

𝜙|−2𝑇𝑆 = 𝜙|−2𝑇
−1

and

2𝜙|−2𝑆 = −2𝜙 + 𝜙|−2𝑇 + 𝜙|−2𝑇
−1.

These are the same functional equations as we required for 𝜓, except for a factor of −1.
A little manipulation using (𝑆𝑇)3 = 𝐼 shows that the first functional equation is

equivalent to 𝜙|−2𝑆𝑇 = 𝜙|−2𝑆. Thus, if we set 𝜒 := 𝜙|−2𝑆, then 𝜒 must be invariant under
𝑇 . However, the second functional equation is more subtle. A short calculation shows that
if 𝜒 |0𝑆 = 𝜒 (equivalently, (𝜒 |−2𝑆) (𝑧) = 𝑧2𝜒(𝑧)), then the second functional equation holds.
In other words, it is enough for 𝜒 to be weakly modular of weight 0 for SL2 (Z). However,
such functions turn out not to be sufficient to obtain 𝑓+. If one tries to solve for undetermined
coefficients to construct 𝑓+, as in the 𝑓− case, one finds that there is no solution with the
needed properties.

Instead, we can use quasimodular forms, not just modular forms. Recall that the
Eisenstein series 𝐸2 was not a modular form of weight 2, because conditional convergence
interfered with the series manipulations needed to prove modularity. If we let

𝐸2 (𝑧) = 1 − 24
∑︁
𝑛≥1

𝜎1 (𝑛)𝑞𝑛,

then 𝐸2 turns out to satisfy

𝑧−2𝐸2 (−1/𝑧) = 𝐸2 (𝑧) −
6𝑖
𝜋𝑧

,

with the 6𝑖/(𝜋𝑧) term amounting to the deviation from modularity. A quasimodular form of
weight 𝑘 and depth ℓ for SL2 (Z) is a sum 𝑓𝑘 + 𝑓𝑘−2𝐸2 + · · · + 𝑓𝑘−ℓ𝐸ℓ

2 , where each 𝑓 𝑗 is a
modular form of weight 𝑘 − 2 𝑗 .

Instead of just a weakly modular form of weight 0, one can check that the function
𝜒 can be a weakly quasimodular form of weight 0 and depth 2 for SL2 (Z). Now we have
enough flexibility to construct 𝑓+, and calculations much like those in the 𝑓− case lead to

𝜒 =
(𝐸2𝐸4 − 𝐸6)2

Δ
,

up to scaling. See Figure 8 for plots of the quasimodular forms that yield 𝑓− and 𝑓+.
Now that we have obtained both magic eigenfunctions, we can construct the magic

function 𝑓 as a linear combination of them. First, we rescale 𝜙 so that 𝑓+ (0) = 1, and then we
rescale 𝜓 so that 𝑓 ′−

(√
2
)
= 𝑓 ′+

(√
2
)
, to obtain a double root at

√
2 for �̂� . Using these scalings,

the eight-dimensional magic function is given by

𝑓 (𝑥) = 4 sin(𝜋 |𝑥 |2/2)2
∫ ∞

0
(𝜙(𝑖𝑡) + 𝜓(𝑖𝑡))𝑒−𝜋𝑡 |𝑥 |2 𝑑𝑡

for |𝑥 |2 > 2, and the eigenfunction property implies that

�̂� (𝑦) = 4 sin(𝜋 |𝑦 |2/2)2
∫ ∞

0
(𝜙(𝑖𝑡) − 𝜓(𝑖𝑡))𝑒−𝜋𝑡 |𝑦 |2 𝑑𝑡
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Figure 8
Plots of 𝜓 (𝑧)Δ(𝑧) (above) and (𝜑 |−2𝑆) (𝑧)Δ(𝑧) (below) for −1 ≤ Re 𝑧 ≤ 1 and 0 < Im 𝑧 ≤ 1.

for all 𝑦 ≠ 0 (this integral turns out to converge whenever |𝑦 | > 0, because the exponential
growth in 𝜙(𝑖𝑡) and 𝜓(𝑖𝑡) as 𝑡 → ∞ cancels).

The final step in the proof of Theorem 1.1 is to check the inequalities that are needed
for Theorem 2.1, namely 𝑓 (𝑥) ≤ 0 for |𝑥 | ≥ 2 and �̂� (𝑦) ≥ 0 for all 𝑦, to make sure there are
no unexpected sign changes between the roots

√
2𝑛. In principle that might seem difficult,

because integral transforms of quasimodular forms could be complicated. However, these
inequalities hold for the simplest reason one could hope for:

𝜙(𝑖𝑡) + 𝜓(𝑖𝑡) < 0 and 𝜙(𝑖𝑡) − 𝜓(𝑖𝑡) > 0

for all 𝑡 > 0. In other words, the desired inequalities hold directly at the level of the quasimod-
ular forms themselves. This can be checked rigorously in any of several ways. For example,
one can use asymptotics to check the inequalities as 𝑡 → 0 or 𝑡 → ∞, and then use interval
arithmetic to verify them on the remaining bounded interval.
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Overall, this proof feels like a miracle. Everything falls beautifully into place, with
Viazovska’s constructions having just enough flexibility to complete the proof in a unique
way. What I find most impressive is the number of ingenious ideas required for the full proof.
The single-root construction is itself remarkable, generalizing it to 𝑓− is even more so, and
still more ideas are required for 𝑓+. Viazovska is a master of special functions, whose work
would surely have excited Jacobi and Ramanujan.

6. Interpolation and consequences
Along the way to proving the optimality of 𝐸8, Viazovska made the bold conjecture

that the magic function is uniquely determined by its required roots, and that more generally
a radial Schwartz function on R8 is uniquely determined by its values and radial derivatives
at the radii

√
2𝑛 and those of its Fourier transform. It is far from obvious that it is possible in

principle to reconstruct a radial Schwartz function from discrete data of this sort.
Radchenko and Viazovska took a major step in this direction by proving a one-

dimensional analogue for first-order interpolation, and the second-order theorem was proved
by Cohn, Kumar, Miller, Radchenko, and Viazovska.

Theorem 6.1 (Radchenko and Viazovska [23]). There exist Schwartz functions 𝑎𝑛 : R→ R
such that for every Schwartz function 𝑓 : R→ R and 𝑥 ∈ R,

𝑓 (𝑥) =
∑︁
𝑛∈Z

𝑓
(√

𝑛
)
𝑎𝑛 (𝑥) +

∑︁
𝑛∈Z

�̂�
(√

𝑛
)
�̂�𝑛 (𝑥).

Theorem 6.2 (Cohn, Kumar, Miller, Radchenko, and Viazovska [11]). Let (𝑑, 𝑛0) be (8, 1)
or (24, 2). Then every radial Schwartz function 𝑓 : R𝑑 → R is uniquely determined by the
values 𝑓

(√
2𝑛

)
, 𝑓 ′

(√
2𝑛

)
, �̂�

(√
2𝑛

)
, and �̂� ′ (√2𝑛

)
for integers 𝑛 ≥ 𝑛0. Specifically, there exists

an interpolation basis 𝑎𝑛, 𝑏𝑛 for 𝑛 ≥ 𝑛0 such that for every radial Schwartz function 𝑓 and
𝑥 ∈ R𝑑 ,

𝑓 (𝑥) =
∞∑︁

𝑛=𝑛0

𝑓
(√

2𝑛
)
𝑎𝑛 (𝑥) +

∞∑︁
𝑛=𝑛0

𝑓 ′
(√

2𝑛
)
𝑏𝑛 (𝑥)

+
∞∑︁

𝑛=𝑛0

�̂�
(√

2𝑛
)
�̂�𝑛 (𝑥) +

∞∑︁
𝑛=𝑛0

�̂� ′ (√2𝑛
)
�̂�𝑛 (𝑥).

The proofs construct the interpolation bases explicitly, by combining Viazovska’s
integral transform techniques with broader classes of special functions.

One consequence of radial Fourier interpolation is a stronger optimality theorem
for 𝐸8 and the Leech lattice. Instead of just taking into account local interactions between
particles, as in the sphere packing problem, one can study optimization problems with long-
range interactions. For example, one could ask for the ground state of particles interacting
via an inverse power law. Cohn and Kumar [9] formulated a broad notion of optimality, called
universal optimality, and radial Fourier interpolation yields corresponding magic functions:

Theorem 6.3 (Cohn, Kumar, Miller, Radchenko, and Viazovska [11]). The 𝐸8 root lattice
and the Leech lattice are universally optimal in R8 and R24, respectively.
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7. The future
Although Viazovska’s work has settled several major questions, much remains to be

understood. For example, the theory of interpolation for radial Schwartz functions is rapidly
developing, with noteworthy connections to uniqueness theory for the Klein-Gordon equation
[2].

One puzzling issue is two dimensions. While the two-dimensional sphere packing
problem can be settled by elementary geometry, universal optimality remains a tantalizing
conjecture. There seems to be a magic function for 𝑑 = 2 in Theorem 2.1, with 𝑟 = (4/3)1/4;
no proof is known, but numerical computations agree with the optimal packing density in
R2 to over one thousand decimal places. Furthermore, analogous magic functions seem to
exist for universal optimality in R2. However, it is unclear what sort of function space might
allow a suitable interpolation theory (see Section 7 in [11]).

There are also remarkable connections with conformal field theory and quantum
gravity [18]. When 𝑑 is even, the linear programming bound for the sphere packing density in
R𝑑 turns out to be equivalent to the spinless modular bootstrap bound for the spectral gap in
a theory of 𝑑/2 free bosons, and the conformal bootstrap program generalizes it to a family
of related bounds. How these more general bounds might relate to discrete geometry remains
a mystery.
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