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1. Introduction
The goal of this paper give a new construction of a closed discrete Fourier uniqueness

set in R𝑑 . Let us start with a definition of Fourier uniqueness. For a Schwartz function 𝑓 :
R𝑑 → C its Fourier transform is defined as

�̂� (𝑦) :=
∫
R𝑑

𝑓 (𝑥) 𝑒−2𝜋𝑖𝑥𝑦 𝑑𝑥, 𝑦 ∈ R𝑑 .

Definition 1.1. A set 𝑋 ⊂ R𝑑 is a Fourier uniqueness set if for a Schwartz function 𝑓 the
conditions

𝑓 |𝑋≡ 0 �̂� |𝑋≡ 0

imply 𝑓 ≡ 0.

In [3] we have shown that the set 𝑋 = {sign(𝑛)
√︁
|𝑛|}𝑛∈Z is essentially a uniqueness

set in R. More precisely, we have proven that the conditions 𝑓 |𝑋≡ 0, �̃� |𝑋≡ 0 together with
one more linear constrain 𝑓 ′ (0) = 0 imply the vanishing of 𝑓 on the whole real line. M.
Stoller [4] has extended this result to R𝑑 in the following way. For a positive real number 𝑟
let 𝑆(𝑟) denote the sphere in R𝑑 with center at the origin and radius 𝑟 . Stoller has proven that
the set 𝑋 :=

⋃∞
𝑛=1 𝑆(

√
𝑛) is a Fourier uniqueness set in R𝑑 for 𝑑 ≥ 5. The following theorem

is proven in [4]

Theorem 1.2. Let 𝑑 ≥ 5 be an integer. Suppose that 𝑓 : R𝑑 → C is a Schwartz function such
that 𝑓 |𝑆 (√𝑛)≡ 0 and �̂� |𝑆 (√𝑛)≡ 0 for all 𝑛 ∈ Z≥1. Then 𝑓 is identically zero.

Moreover, recently Stoller and J. P. G. Ramos have shown the existence of a closed
discrete Fourier uniqueness set in R𝑑 [5, Theorem 2, Remark 1.1].

A natural question is: how “big” is this discrete Fourier uniqueness set? More pre-
cisely, for a closed discrete subset 𝑋 ⊂ R𝑑 we would like to analyse the function 𝑀𝑋 (𝑟),
𝑟 ∈ R>0, that counts the number of elements of 𝑋 inside of the ball of radius 𝑟 about the
origin. For the Fourier uniqueness set 𝑋 constructed in [5, Theorem 2, Remark 1.1] the function
𝑀𝑋 (𝑟) grows superexponentially in 𝑟 .

The goal of this paper is to construct a closed discrete Fourier uniqueness set 𝑋 such
that the function 𝑀𝑋 (𝑟) grows at most polynomially in 𝑟 .

1.1. Construction of a discrete Fourier uniqueness set
In this paper we will show that for a family of sufficiently uniformly distributed finite

subsets 𝑋𝑛 ⊂ 𝑆(1), 𝑛 ∈ Z≥1, the union

𝑋 :=
⋃
𝑛≥1

√
𝑛 𝑋𝑛 (1.1)

is a Fourier uniqueness set. Let us give one possible quantitative description of the term
“uniformly distributed”.

Definition 1.3. A finite subset 𝑋 ⊂ 𝑆(1) is a spherical design of strength 𝑠 if for all polyno-
mials 𝑝 in 𝑑 variables and total degree at most 𝑠 the following holds:∫

𝑆 (1)
𝑝(𝜁) 𝑑𝜁 =

1
|𝑋 |

∑︁
𝑥∈𝑋

𝑝(𝑥).
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Here 𝑑𝜁 denotes the Lebesgue measure on 𝑆(1) normalized so that
∫
𝑆 (1) 1 𝑑𝜁 = 1.

The main result of this paper is

Theorem 1.4. For each dimension 𝑑 there exist positive constants 𝐴 = 𝐴(𝑑) and 𝐵 = 𝐵(𝑑)
with the following property. If (𝑋𝑛)∞𝑛=1 is a collection of finite subsets of 𝑆(1) such that each
set 𝑋𝑛 is a spherical design of strength 𝐵𝑛𝐴 then the set

𝑋 :=
⋃
𝑛≥1

√
𝑛 𝑋𝑛

is a Fourier uniqueness set.

It is known [?] that for a dimension 𝑑 there exists a constant 𝑐𝑑 such that for all
nonnegative integers 𝑠 there exists a spherical design of strength 𝑠 with at most 𝑐𝑑 𝑠𝑑 points.
Therefore, the above theorem implies the existence of a closed discrete Fourier uniqueness
set with polynomially bounded function 𝑀𝑋 (𝑟).

2. Auxiliary results from Fourier analysis
Our proof of Theorem (1.1) relies on several facts from Fourier analysis and the

theory of modular forms. First, we will use the following statements about the decomposition
of a Schwartz function in R𝑑 . Let H𝑚 = H𝑚 (R𝑑) be the space of homogenous harmonic
polynomials of total degree 𝑚 on R𝑑 . Let B𝑚 be an orthonormal basis of H𝑚 with respect to
the standard 𝐿2 product on the unit sphere 𝑆(1). Set B :=

⋃
𝑚≥0 B𝑚. Each Schwartz function

𝑓 : R𝑑 → C has the unique decomposition

𝑓 (𝑥) =
∑︁
𝑝∈B

𝑝(𝑥) 𝑔𝑝 (∥𝑥∥),

where 𝑔𝑝 are radial Schwartz functions. For 𝑝 ∈ B we denote

𝑓𝑝 (𝑥) := 𝑝(𝑥) 𝑔𝑝 (∥𝑥∥). (2.1)

Theorem 2.1. Let 𝑓 : R𝑑 → C be a Schwartz function. For 𝑝 ∈ B and 𝑛 ∈ Z≥1 we set

𝜙𝑝,𝑛 = 𝜙𝑝,𝑛 ( 𝑓 ) := sup
𝑥∈𝑆 (

√
𝑛)
| 𝑓𝑝 (𝑥) |.

For all 𝛼, 𝛽 > 0 we have

sup
𝑝∈B,𝑛∈Z≥1

(
deg(𝑝)𝛼 𝑛𝛽 𝜙𝑝,𝑛

)
< ∞.

Proof. We have

𝜙𝑝,𝑛 = sup
𝑥∈𝑆 (

√
𝑛)
| 𝑓𝑝 (𝑥) | = 𝑛

deg(𝑝)
2 |𝑔𝑝 (

√
𝑛) | sup

𝜁 ∈𝑆 (1)
|𝑝(𝜁) |.
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The number 𝑔𝑝 (
√
𝑛) can be computed as follows∫

𝑆 (1)
𝑓 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁 (2.2)

=

∫
𝑆 (1)

𝑔𝑝 (
√
𝑛) 𝑝(

√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁

= 𝑛
deg(𝑝)

2 𝑔𝑝 (
√
𝑛).

Therefore

𝜙𝑝,𝑛 =

����∫
𝑆 (1)

𝑓 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁

���� · sup
𝜁 ∈𝑆 (1)

|𝑝(𝜁) | (2.3)

≤ sup
𝑥∈𝑆 (

√
𝑛)
| 𝑓 (𝑥) | sup

𝜁 ∈𝑆 (1)
|𝑝(𝜁) |2.

Note that there exist positive constants 𝐶1 and 𝐶2 depending only on dimension 𝑑 such that
sup𝜁 ∈𝑆 (1) |𝑝(𝜁) | ≤ 𝐶1 deg(𝑝)𝐶2𝑑 for all 𝑝 ∈ B. This gives us an estimate

𝜙𝑝,𝑛 ≤ 𝐶1 deg(𝑝)2𝐶2 sup
𝑥∈𝑆 (

√
𝑛)
| 𝑓 (𝑥) |. (2.4)

Let 𝛽 be a fixed positive number. Since 𝑓 is a Schwartz function, we have

sup
𝑥∈R𝑑

∥𝑥∥𝛽 | 𝑓 (𝑥) | < ∞. (2.5)

Estimates (2.4) and (2.5) imply

sup
𝑝∈B,𝑛∈Z≥1

(
deg(𝑝)−2𝐶2 𝑛𝛽 𝜙𝑝,𝑛

)
< ∞. (2.6)

Our next goal is to replace −2𝐶2 with an arbitrary positive constant 𝛼. Let Δ =
𝜕2

𝜕𝑥2
1
+ . . . + 𝜕2

𝜕𝑥2
1

be the Laplace operator on R𝑑 . For a point 𝑥 ∈ R𝑑 \ {0} we define its polar
coordinates 𝑟 = ∥𝑥∥ and 𝜁 = 𝑥

∥𝑥 ∥ . Consider the following differential operator

Δ𝑆𝑑−1 𝑓 := 𝑟2 Δ 𝑓 − (𝑑 − 1) 𝑟 𝜕

𝜕𝑟
𝑓 − 𝑟2 𝜕2

𝜕𝑟2 𝑓 .

An important property of this operator is that it maps Schwartz functions to the Schwartz
functions. Indeed, we compute in polar coordinates 𝑥 = 𝑟 𝜁

𝑟
𝜕

𝜕𝑟
𝑓 (𝑟𝜁1, . . . , 𝑟𝜁𝑑) = 𝑟 𝜁1

𝜕

𝜕𝑥1
𝑓 + . . . + 𝑟 𝜁𝑑

𝜕

𝜕𝑥𝑑
𝑓

= 𝑥1
𝜕

𝜕𝑥1
𝑓 + . . . + 𝑥𝑑

𝜕

𝜕𝑥𝑑
𝑓

and analogously

𝑟2 𝜕2

𝜕𝑟2 𝑓 (𝑟𝜁1, . . . , 𝑟𝜁𝑑) = 𝑟2 𝜁2
1

𝜕2

𝜕𝑥2
1
𝑓 + . . . + 𝑟2 𝜁2

𝑑

𝜕2

𝜕𝑥2
𝑑

𝑓

= 𝑥2
1
𝜕2

𝜕𝑥2
1
𝑓 + . . . + 𝑥2

𝑑

𝜕2

𝜕𝑥2
𝑑

𝑓 .
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Thus, if 𝑓 is a Schwartz function so is Δ𝑆𝑑−1 𝑓 . Suppose that 𝑔 is a radial Schwartz func-
tion and 𝑝 is a homogenous harmonic polynomial on R𝑑 of total degree deg(𝑝). Then a
straightforward computation shows that

Δ𝑆𝑑 (𝑔(𝑟) 𝑝(𝑥)) = − deg(𝑝) (deg(𝑝) + 𝑑 − 2) 𝑔(𝑟) 𝑝(𝑥). (2.7)

We define 𝜆𝑚 := −𝑚(𝑚 + 𝑑 − 2). Clearly, |𝜆𝑚 | ∼ 𝑚2 as 𝑚 goes to infinity.
Now let 𝛼 be a positive integer. Given a Schwartz function 𝑓 we define a new

Schwartz function �̃� := Δ𝛼

𝑆𝑑−1 𝑓 . Suppose that 𝑓 has decomposition 𝑓 =
∑

𝑝∈B 𝑓𝑝 , then by
equation (2.7) the new function �̃� has decomposition �̃� =

∑
𝑝∈B �̃�𝑝 where �̃�𝑝 = 𝜆𝛼

deg(𝑝) 𝑓𝑝 .
Also the numbers 𝜙𝑝,𝑛 := max𝑥∈𝑆 (

√
𝑛) | �̃�𝑝 (𝑥) | satisfy

𝜙𝑝,𝑛 = |𝜆deg(𝑝) |𝛼 𝜙𝑝,𝑛.

Finally, we apply estimate (2.6) to the function �̃� and derive

sup
𝑝∈B,𝑛∈Z≥1

(
deg(𝑝)2𝛼−2𝐶2 𝑛𝛽 𝜙𝑝,𝑛

)
< ∞

for arbitrary positive 𝛼 and 𝛽. This finishes the proof of the theorem.

3. Auxiliary results from the theory of modular forms
Let 𝑘 be a half integer. We denote by 𝑆𝑘 (Γ(2), 𝜒𝑘) the space of holomorphic cusp

forms ℎ satisfying the transformation rule
ℎ(𝜏 + 2) = ℎ(𝜏)
ℎ̃ := (−𝑖𝜏)𝑘 ℎ̃(𝜏)
ℎ̃(𝜏 + 2) = ℎ̃(𝜏).

The following statement is known as Voronoi summation formula.

Theorem 3.1. Let ℎ be a cusp form in 𝑆𝑑/2 (Γ(2), 𝜒𝑑) and let ℎ̃(𝜏) := (−𝑖𝜏)−𝑑/2 ℎ( −1
𝜏
). Then

for a radial Schwartz function 𝑓 : R𝑑 → C the following summation formula holds
∞∑︁
𝑛=1

𝑓 (
√
𝑛) 𝑐ℎ (𝑛) =

∞∑︁
𝑛=1

�̂� (
√
𝑛) 𝑐

ℎ̃
(𝑛).

For a half integer 𝑘 and a positive number 𝜖 we define

𝑁 (𝑘, 𝜖) :=
(

𝜖 Γ(𝑘 − 1/2)
(2𝜋)𝑘−1 𝜁 (𝑘 − 2) 4𝜋

)1/𝑘
.

A straight forward consequence of the Stirling formula is that

𝑁 (𝑘, 𝜖) ∼ 𝑘

2𝜋𝑒
as 𝑘 → ∞.

The main technical tool in our proof of Theorem 1.4 is the following statement about the
space of modular forms 𝑆𝑘 (Γ(2), 𝜒𝑘).
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Theorem 3.2. Fix a number 𝜖 ∈ (0, 1/2) and for a half-integer 𝑘 set 𝑁 (𝑘) := ⌊𝑁 (𝑘, 𝜖)⌋. For
each half-integral weight 𝑘 ≥ 5/2 there exist elements (ℎ𝑚)𝑁 (𝑘 )−1

𝑚=1 in the space 𝑆𝑘 (Γ(2), 𝜒𝑑)
such that:

(1) the function ℎ𝑚 has the Fourier expansion

ℎ𝑚 (𝜏) = 𝑒𝜋𝑖𝑚𝜏 +
∑︁
𝑛∈Z

𝑛≥𝑁 (𝑘 )

𝑐ℎ𝑚 (𝑛) 𝑒𝜋𝑖𝑛𝜏

(2) the function ℎ̃𝑚 := (−𝑖𝜏)−𝑘 ℎ𝑚 ( −1
𝜏
) has the Fourier expansion

ℎ̃𝑚 (𝜏) =
∑︁
𝑛∈Z

𝑛≥𝑁 (𝑘 )

𝑐
ℎ̃𝑚

(𝑛) 𝑒𝜋𝑖𝑛𝜏

(3) the Fourier coefficients 𝑐ℎ𝑚 (𝑛) and 𝑐
ℎ̃𝑚

(𝑛) satisfy the following estimates

|𝑐ℎ𝑚 (𝑛) | ≤ 𝐶 𝑚−𝑘/2+𝛼 𝑛𝑘/2+𝛼

|𝑐
ℎ̃𝑚

(𝑛) | ≤ 𝐶 𝑚−𝑘/2+𝛼 𝑛𝑘/2+𝛼 .

Here 𝐶 and 𝛼 are positive constants independent of 𝑘 , 𝑚, and 𝑛 and depending
on 𝜖 .

4. Proof of Theorem 3.2
Let 𝑃𝑘,𝜒,𝑚 be the Poincare series for the group Γ(2) and multiplier system 𝜒𝑘 (see [2,

p. 47, equation (3.2)]). The Fourier coefficients of the Poincare series can be explicitly computed
by the Petersson formula:

𝑐𝑃𝑘,𝜒,𝑚
(𝑛) = 𝛿𝑚,𝑛 +

∑︁
𝑐>0

𝑆(𝑚, 𝑛, 𝑐) J𝑐 (𝑚, 𝑛). (4.1)

Here J𝑐 (𝑚, 𝑛) is the following sum

J𝑐 (𝑚, 𝑛) = 2𝜋
𝑖𝑘𝑐

( 𝑛
𝑚

) 𝑘−1
2

𝐽𝑘−1

(
4𝜋

√
𝑚𝑛

𝑐

)
,

the function 𝐽𝜈 is the Bessel J-function is given by the power series

𝐽𝜈 (𝑥) =
∞∑︁
ℓ=0

(−1)ℓ
ℓ! Γ(ℓ + 1 + 𝜈)

( 𝑥
2

)𝜈+2ℓ
.

And 𝑆(𝑚, 𝑛, 𝑐) is the Kloosterman sum defined in [2, p. 51, equation (3.13)]. The following
estimate can be found in [4].

Lemma 4.1. For a half-integer weight 𝑘 ≥ 5/2 and positive integers 𝑚, 𝑛 the Fourier coef-
ficients of Poincare series satisfy:��𝑐𝑃𝑘,𝑛

(𝑚) − 𝛿𝑚,𝑛

�� ≤ (𝑚
𝑛

) 𝑘−1
2

𝜀−2 𝑛1+𝜀 𝑚1+𝜀 𝐶���𝑐𝑃𝑘,𝑛
(𝑚)

��� ≤ (𝑚
𝑛

) 𝑘−1
2

𝜀−2 𝑛1+𝜀 𝑚1+𝜀 𝐶.
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Here 𝐶 is an absolute constant and 𝜀 is any number in the interval (0, 1
8 ].

Lemma 4.2. For a half-integer weight 𝑘 ≥ 5/2 and positive integers𝑚,𝑛 lying in the interval
[1, 𝑁 (𝑘, 𝜖)] the Fourier coefficients of Poincare series satisfy:

(1) ��𝑐𝑃𝑘,𝑛
(𝑚) − 𝛿𝑚,𝑛

�� ( 𝑛
𝑚

) 𝑘−1
2 ≤ 𝜖

𝑁 (𝑘, 𝜖) ;

(2) ���𝑐𝑃𝑘,𝑛
(𝑚)

��� ( 𝑛
𝑚

) 𝑘−1
2 ≤ 𝜖

𝑁 (𝑘, 𝜖) .

Proof. Part (1) of the lemma in an immediate consequence of Stirling’s formula.
The Mehler-Sonine formula [1] gives the following integral representation of the

Bessel 𝐽-function

𝐽𝜈 (𝑧) =
(𝑧/2)𝜈

Γ(𝜈 + 1/2)
√
𝜋

∫ 1

−1
𝑒𝑖𝑧𝑠 (1 − 𝑠2)𝜈− 1

2 𝑑𝑠, 𝜈 >
−1
2
, 𝑧 ∈ C.

This integral representation implies an estimate

|𝐽𝜈 (𝑧) | ≤
(𝑧/2)𝜈 2

Γ(𝜈 + 1/2)
√
𝜋
.

Also we use the trivial estimate for the Klostermann sums (see [2][eq. 3.13])

|𝑆(𝑚, 𝑛, 𝑐) | < 𝑐2.

We combine these two estimates with the Petersson formula (4.1) for the Fourier coefficients
of the Poincare series and obtain��𝑐𝑃𝑘,𝑛

(𝑚) − 𝛿𝑚,𝑛

�� ( 𝑛
𝑚

) 𝑘−1
2

≤ 2𝜋
∑︁
𝑐>0

𝑐

����𝐽𝑘−1

(
4𝜋

√
𝑚𝑛

𝑐

)����
≤ 4𝜋

∑︁
𝑐>0

𝑐

���� (2𝜋/𝑐)𝑘−1

Γ(𝜈 + 1/2)

���� (𝑚𝑛) 𝑘−1
2

≤ 4𝜋
𝜁 (𝑘 − 2) (2𝜋)𝑘−1

Γ(𝑘 − 1/2) (𝑚𝑛) 𝑘−1
2 . (4.2)

Note that
√
𝑚𝑛 ≤ 𝑁 (𝑘, 𝜖), therefore inequality (4.2) and our choise of the function 𝑁 (𝑘, 𝜖)

imply part (2) of the lemma. Proof of part (3) is analogous.

Proof of Theorem 3.2.
Fix a half integral weight 𝑘 and 𝜖 ∈ (0, 1/2) and set 𝑁 := ⌊𝑁 (𝑘, 𝜖)⌋. Consider a matrix
𝐴 = (𝑎𝑚,𝑛)2𝑁

𝑚,𝑛=1 with entries defined by the coefficients of the Poincare series P𝑚 := P𝑘,𝑚

as

𝑎𝑚,𝑛 =



𝑐P𝑚 (𝑛)
(
𝑚
𝑛

) 𝑘−1
2 if 𝑚, 𝑛 ∈ [1, 𝑁]

𝑐P̃𝑚 (𝑛 − 𝑁)
(

𝑚
𝑛−𝑁

) 𝑘−1
2 if 𝑚 ∈ [1, 𝑁], 𝑛 ∈ [𝑁 + 1, 2𝑁]

𝑐P̃𝑚−𝑁 (𝑛)
(
𝑚−𝑁
𝑛

) 𝑘−1
2 if 𝑚 ∈ [𝑁 + 1, 2𝑁], 𝑛 ∈ [1, 𝑁]

𝑐P̃𝑚−𝑁 (𝑛 − 𝑁)
(
𝑚−𝑁
𝑛−𝑁

) 𝑘−1
2 if 𝑚, 𝑛 ∈ [𝑁 + 1, 2𝑁] .
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From Lemma 4.2 we know that 𝐴 is diagonally dominated and therefore invertible. Moreover,
the inverse matrix 𝐵 = (𝑏𝑚,𝑛)2𝑁

𝑚,𝑛=1 := 𝐴−1 satisfies

|𝑏𝑚,𝑛 − 𝛿𝑚,𝑛 | <
∞∑︁
𝑘=1

(2𝜖)𝑘 =
2𝜖

1 − 2𝜖
. (4.3)

Consider modular forms

ℎℓ := ℓ
1−𝑘

2

𝑁∑︁
𝑛=1

(
𝑏ℓ,𝑛 𝑃𝑛 + 𝑏ℓ,𝑛+𝑁 𝑃𝑛

)
𝑛

𝑘−1
2 , ℓ = 1, . . . , 𝑁. (4.4)

From the definition of coefficients 𝑏ℓ,𝑛 we see

𝑐ℎℓ (𝑚) = 𝛿ℓ,𝑚 for ℓ, 𝑚 = 1, . . . 𝑁.

For the functions ℎ̃ℓ (𝜏) := (−𝑖𝜏)−𝑘 ℎℓ (−1/𝜏) we find

ℎ̃ℓ := ℓ
1−𝑘

2

𝑁∑︁
𝑛=1

(
𝑏ℓ,𝑛 𝑃𝑛 + 𝑏ℓ,𝑛+𝑁 𝑃𝑛

)
𝑛

𝑘−1
2 , ℓ = 1, . . . , 𝑁. (4.5)

The matrix 𝐴 has symmetries 𝑎𝑚,𝑛 = 𝑎𝑚+𝑁,𝑛+𝑁 and 𝑎𝑚+𝑁,𝑛 = 𝑎𝑚,𝑛+𝑁 for 𝑚, 𝑛 = 1, . . . 𝑁 .
Same symmetries are inherited by 𝐵, namely 𝑏𝑚,𝑛 = 𝑏𝑚+𝑁,𝑛+𝑁 , 𝑏𝑚+𝑁,𝑛 = 𝑏𝑚,𝑛+𝑁 under
same assumptions on indices 𝑚 and 𝑛. Hence, we can rewrite (4.5) as

ℎ̃ℓ := ℓ
1−𝑘

2

𝑁∑︁
𝑛=1

(
𝑏ℓ+𝑁,𝑛 𝑃𝑛 + 𝑏ℓ+𝑁,𝑛+𝑁 𝑃𝑛

)
𝑛

𝑘−1
2 , ℓ = 1, . . . , 𝑁.

Thus, we see that
𝑐
ℎ̃ℓ
(𝑚) = 𝛿ℓ,𝑚+𝑁 = 0 for ℓ, 𝑚 = 1, . . . 𝑁.

Finally, we prove part (3) of the theorem. Let ℓ and 𝑚 be integers such that ℓ ∈ [1, 𝑁]
and 𝑚 ∈ (𝑁,∞). We apply definition (4.4) and estimate the 𝑚-th Fourier coefficient of ℎℓ��𝑐ℎℓ (𝑚)

�� ℓ 𝑘−1
2 𝑚

1−𝑘
2 ≤

𝑁∑︁
𝑛=1

(
|𝑏ℓ,𝑛 | |𝑐𝑃𝑛 (𝑚) | 𝑛 𝑘−1

2 𝑚
1−𝑘

2 + |𝑏ℓ,𝑛+𝑁 | |𝑐𝑃𝑛 (𝑚) | 𝑛 𝑘−1
2 𝑚

1−𝑘
2

)
.

Now we apply Lemma 4.1 and estimate (4.3) in order to obtain��𝑐ℎℓ (𝑚)
�� ℓ 𝑘−1

2 𝑚
1−𝑘

2 ≤ 2
1 − 2𝜖

𝑁∑︁
𝑛=1

𝜀−2 𝑛1+𝜀 𝑚1+𝜀 𝐶 ≤ 2𝐶
(1 − 2𝜖)𝜀2 𝑁2+𝜀 𝑚1+𝜀 .

Analogosly, we show that

|𝑐
ℎ̃ℓ
(𝑚) | ℓ 𝑘−1

2 𝑚
1−𝑘

2 ≤ 2𝐶
(1 − 2𝜖)𝜀2 𝑁2+𝜀 𝑚1+𝜀 .

This finishes the proof of Theorem 3.2.
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5. Proof of Theorem 1.4
Lemma 5.1. Let (𝑋𝑛)∞𝑛=1 be a sequence of subsets of 𝑆(1) such that 𝑋𝑛 is a spherical design
of strength 𝐷 (𝑛) and let 𝑋 :=

⋃∞
𝑛=1

√
𝑛𝑋𝑛. Suppose that 𝑓 is a Schwartz function such that

𝑓 |𝑋= 0. There exist an absolute positive constant 𝐶 independent of 𝑓 and 𝑋 and a positive
number 𝛽, which depends linearly on dimension 𝑑, such that for all 𝑝 ∈ B and 𝑛 ∈ Z≥1

𝜙𝑝,𝑛 ≤ 𝐶 deg(𝑝)𝛽
∑︁
𝑞∈B

deg(𝑞)>𝐷 (𝑛)−deg(𝑝)

𝜙𝑞,𝑛.

Proof. By (2.3) we have

𝜙𝑝,𝑛 =

����∫
𝑆 (1)

𝑓 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁

���� · sup
𝜁 ∈𝑆 (1)

|𝑝(𝜁) |.

For 𝑀 ∈ Z≥0 we define the “head” of 𝑓 as

ℎ𝑀 :=
∑︁
𝑝∈B

deg(𝑝)≤𝑀

𝑓𝑝

and the “tail” as
𝑡𝑀 :=

∑︁
𝑝∈B

deg(𝑝)>𝑀

𝑓𝑝 .

The integral in (2.3) can be written as∫
𝑆 (1)

𝑓 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁 =∫

𝑆 (1)
(ℎ𝑀 (

√
𝑛𝜁) + 𝑡𝑀 (

√
𝑛𝜁)) 𝑝(𝜁) 𝑑𝜁 .

For a finite set 𝑍 ⊂ 𝑆(1) and a function 𝑔 : 𝑆(1) → C we will use the notation∫
𝑌

𝑔(𝜁) 𝑑𝜁 :=
1
|𝑌 |

∑︁
𝑦∈𝑌

𝑔(𝑦).

Suppose that the integer 𝑀 is chosen so that 𝑀 + deg(𝑝) ≤ 𝐷 (𝑛). Then our assump-
tion that the set 𝑋𝑛 is a spherical design of strength 𝐷 (𝑛) implies that∫

𝑆 (1)
ℎ𝑀 (

√
𝑛𝜁)) 𝑝(𝜁) 𝑑𝜁 =∫

𝑋𝑛

ℎ𝑀 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁 .

Thus, we can write the integral (2.2) as∫
𝑋𝑛

ℎ𝑀 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁 +

∫
𝑆 (1)

𝑡𝑀 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁 =∫

𝑋𝑛

( 𝑓 − 𝑡𝑀 ) (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁 +

∫
𝑆 (1)

𝑡𝑀 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁 =∫

𝑋𝑛

𝑓 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁 +

(∫
𝑆 (1)

−
∫
𝑋𝑛

)
𝑡𝑀 (

√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁 (5.1)
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The first summand in the above line vanishes by assumption that 𝑓 |𝑋𝑛
= 0. Therefore, we

can estimate the integral (2.2) in the following way����∫
𝑆 (1)

𝑓 (
√
𝑛𝜁) 𝑝(𝜁) 𝑑𝜁

���� ≤ 2 sup
𝜁 ∈𝑆 (1)

|𝑝(𝜁) | sup
𝑥∈𝑆 (

√
𝑛)
|𝑡𝑀 (𝑥) |. (5.2)

We observe that
sup

𝑥∈𝑆 (
√
𝑛)
|𝑡𝑀 (𝑥) | ≤

∑︁
𝑞∈B

deg(𝑞)>𝑀

𝜙𝑞,𝑛.

This finishes the proof of Lemma 5.1.

Theorems 3.1 and 3.2 give us other inequalities between the numbers (𝜙𝑝,𝑛)𝑝∈B,𝑛∈Z≥1 .

Lemma 5.2. Fix 𝜖 ∈ (0, 1/2) and set 𝑁 (𝑘) := ⌊𝑁 (𝑘, 𝜖)⌋. Suppose that a Schwartz function
𝑓 is an eigenfunction of the Fourier transform. There exists an absolute positive constant 𝐶
big enough such that for all 𝑝 ∈ B and all positive integers 𝑚 ≤ 𝑁 (deg(𝑝) + 𝑑/2) we have

𝜙𝑝,𝑚 ≤ 𝐶 𝑚𝛼− 𝑑
4

∑︁
𝑛∈Z

𝑛>𝑁 (deg(𝑝)+𝑑/2)

𝑛𝛼+
𝑑
4 𝜙𝑝,𝑛.

Proof. Let 𝑓 be a Schwartz function in R𝑑 . As described in Section 2 this function has
decomposition

𝑓 (𝑥) =
∑︁
𝑝∈B

𝑓𝑝 (𝑥), 𝑓𝑝 (𝑥) = 𝑝(𝑥) 𝑔𝑝 ( |𝑥 |).

Here for each homogenous harmonic polynomial 𝑝 ∈ B the function 𝑔𝑝 : R≥0 → C is such
that the function 𝑥 ↦→ 𝑔𝑝 ( |𝑥 |) on R𝑑 is a radial Schwartz function. A known result in analysis
implies that 𝑥 ↦→ 𝑔𝑝 ( |𝑥 |) is a Schwartz function on any Euclidean space R𝑠 . We denote by
F𝑠 the 𝑠-dimensional Fourier transform. We have

F𝑑 ( 𝑓𝑝) (𝑥) = F𝑑 (𝑝(𝑥) 𝑔𝑝 ( |𝑥 |)) = (−𝑖)deg(𝑝) 𝑝(𝑦) F𝑑+2 deg(𝑝) (𝑔𝑝) ( |𝑦 |).

Let {ℎ𝑚}𝑁 (𝑑/2+deg(𝑝) )
𝑚=1 ⊂ 𝑆𝑑/2+deg(𝑝) (Γ(2), 𝜒) be the modular forms constructed in

Theorem 3.2. By Theorem 3.1 for each integer 𝑚 on the interval [1, . . . , 𝑁 (𝑑/2 + deg(𝑝))]
we have the following linear relation between values of 𝑔𝑝:

∞∑︁
𝑛=1

𝑔𝑝 (
√
𝑛) 𝑐ℎ𝑚 (𝑛) =

∞∑︁
𝑛=1

F𝑑+2 deg(𝑝) (𝑔𝑝) (
√
𝑛) 𝑐

ℎ̃𝑚
(𝑛).

Therefore for each point 𝜁 on the sphere 𝑆(1) we have
∞∑︁
𝑛=1

𝑔𝑝 (
√
𝑛) 𝑝(

√
𝑛 𝜁) 𝑛

− deg(𝑝)
2 𝑐ℎ𝑚 (𝑛) =

(−𝑖)deg(𝑝)
∞∑︁
𝑛=1

F𝑑+2 deg(𝑝) (𝑔𝑝) (
√
𝑛) 𝑝(

√
𝑛 𝜁) 𝑛

− deg(𝑝)
2 𝑐

ℎ̃𝑚
(𝑛).

This is equivalent to
∞∑︁
𝑛=1

𝑓𝑝 (
√
𝑛𝜁) 𝑛

− deg(𝑝)
2 𝑐ℎ𝑚 (𝑛) = (−𝑖)deg(𝑝)

∞∑︁
𝑛=1

�̂�𝑝 (
√
𝑛𝜁) 𝑛

− deg(𝑝)
2 𝑐

ℎ̃𝑚
(𝑛).
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Conditions (1) and (2) of Theorem 3.2 imply that for an integer 𝑚 in the interval [1, 𝑁 (𝑑/2 +
deg(𝑝))] and a point 𝜁 on the sphere 𝑆(1)

𝑓𝑝 (
√
𝑚 𝜁) 𝑚

− deg(𝑝)
2 =

∞∑︁
𝑛=1

(
𝑓𝑝 (

√
𝑛 𝜁) 𝑐ℎ𝑚 (𝑛) + (−𝑖)deg(𝑝) �̂�𝑝 (

√
𝑛 𝜁) 𝑐

ℎ̃𝑚
(𝑛)

)
𝑛

− deg(𝑝)
2 .

Now condition (3) of Theorem 3.2 and the assumption that 𝑓 is an eigenfunction of the
Fourier transform implies that��� 𝑓𝑝 (√𝑚 𝜁) 𝑚

− deg(𝑝)
2

��� ≤ 𝐶

∞∑︁
𝑛=𝑁 (𝑑/2+deg(𝑝) )+1

�� 𝑓𝑝 (√𝑛 𝜁)�� 𝑛 − deg(𝑝)
2 𝑛

𝑑
4 +

deg(𝑝)
2 +𝛼 𝑚− 𝑑

4 −
deg(𝑝)

2 +𝛼 .

We set �̃� := 𝛼 + 𝑑/4. For all 𝑝 ∈ B and all positive integers 𝑚 ≤ 𝑁 (deg(𝑝) + 𝑑/2)
we have

𝜙𝑝,𝑚 ≤ 𝐶 𝑚𝛼
∑︁
𝑛∈Z

𝑛>𝑁 (deg(𝑝)+𝑑/2)

𝑛𝛼 𝜙𝑝,𝑛.

Now we are ready for the final step in the proof of Theorem 1.4. In particular, we will
define the function 𝐷 : Z≥1 → 𝑅≥0. We will show that for a suitable choice of 𝐷 the growth
condition of Theorem 2.1 combined with the inequalities of Lemmas 5.1 and 5.2 implies the
vanishing of the numbers (𝜙𝑝,𝑛)𝑝∈B,𝑛∈Z≥0 . We search for the function 𝐷 in the form

𝐷 (𝑛) = 𝐵 𝑛𝐴,

where 𝐴 and 𝐵 are positive numbers. For each 𝜖 ∈ (0, 1/2) there exists a sufficiently small
positive number 𝑏 such that

𝑁 (𝑘, 𝜖) ≥ 𝑏𝑘, 𝑘 ∈ 1
2
Z≥1

For a polynomial 𝑝 ∈ B we set

N(𝑝) := 𝑏 deg(𝑝).

Note that
N(𝑝) ≤ 𝑁 (deg(𝑝) + 𝑑/2).

Let 𝐶′ and 𝛾 be positive numbers (depending on dimension 𝑑) such that dimH𝑚 ≤ 𝐶′ 𝑛𝛾 .

We will need the following technical statement.

Lemma 5.3. For each dimension 𝑑 we consider 𝐷 (𝑛) := 2𝐵 𝑛𝐴, where

𝐵 > 2 max(𝑏 + 1
𝑏
,
𝐶 𝐶′

𝑏𝛽+𝛾+1 ), 𝐴 = 2�̃� + 𝛽 + 𝛾 + 2.

Then

(1) for 𝑝, 𝑞 ∈ B and 𝑛 ∈ Z≥1 the conditions 𝑛 ≥ N(𝑝) and deg(𝑞) ≥ 𝐷 (𝑛) − deg(𝑝)
imply 𝑛 ≤ N(𝑞).
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(2) for all positive integers 𝑚 and all 𝑞 ∈ B with 𝑚 ≥ N(𝑞) we have∑︁
𝑛∈Z≥1 , 𝑝∈B:
𝑛≥N(𝑝)

𝐷 (𝑛)−deg(𝑝)≤deg(𝑞)

𝐶 · deg(𝑝)𝛽 · 𝑛2𝛼+1 < 𝑚.

Proof. Part (1) of the lemma follows immediately from our choice of 𝐴 and 𝐵. We rewrite
the sum in the part (2) in the following way∑︁

𝑛∈Z≥1 , 𝑝∈B:
𝑛≥N(𝑝)

𝐷 (𝑛)−deg(𝑝)≤deg(𝑞)

𝐶 · deg(𝑝)𝛽 · 𝑛2𝛼+1 ≤

∑︁
𝑛∈Z≥1

𝐷 (𝑛)− 𝑛
𝑏
≤deg(𝑞)

∑︁
𝑝∈B:

deg(𝑝)≤ 𝑛
𝑏

deg(𝑝)≥𝐷 (𝑛)−deg(𝑞)

𝐶 · deg(𝑝)𝛽 · 𝑛2𝛼+1.

Now we use that 𝐷 (𝑛) − 𝑛
𝑏
≥ 𝐵 𝑛𝐴 and estimate the above expression by∑︁

𝑛∈Z≥1

𝐵 𝑛𝐴≤deg(𝑞)

∑︁
𝑝∈B:

deg(𝑝)≤ 𝑛
𝑏

deg(𝑝)≥𝐷 (𝑛)−deg(𝑞)

𝐶 · deg(𝑝)𝛽 · 𝑛2𝛼+1.

Next we use the fact that the dimension of Hdeg(𝑝) is bounded by 𝐶′ deg(𝑝)𝛾 and bound the
sum in part (2) by

≤
∑︁

𝑛∈Z≥1

𝐵 𝑛𝐴≤ 𝑚
𝑏

∑︁
𝑠∈Z≥1:

𝐷 (𝑛)− 𝑚
𝑏
≤𝑠≤ 𝑛

𝑏

𝐶 𝐶′ 𝑠𝛽+𝛾 · 𝑛2𝛼+1.

This sum does not exceed ∑︁
𝑛∈Z≥1

𝑛≤
(

𝑚

𝑏 𝐵

)1/𝐴

𝐶 𝐶′
(
1
𝑏

) (
1
𝑏

)𝛽+𝛾
𝑛2𝛼+1.

Finally, we crudely estimate each term of this sum by substituting 𝑛 ↦→
(

𝑚

𝑏 𝐵

)1/𝐴
and bounding

the number of terms by
(

𝑚

𝑏 𝐵

)1/𝐴
. This gives us an upper bound

𝐶 𝐶′

𝑏𝛽+𝛾

(
𝑚

𝑏 𝐵

) 2𝛼+𝛽+𝛾+2
𝐴

.

Now our choice of 𝐴 and 𝐵 guarantees that the sum in the part (2) of the lemma is less then
𝑚.

Suppose that 𝑓 : R𝑑 → C is a Schwartz function that satisfies

𝑓 |𝑋≡ 0 and �̂� |𝑋≡ 0. (5.3)

Then for each 𝑛 ∈ Z≥1 we have

𝑓 |√𝑛𝑋𝑛
= �̂� |√𝑛𝑋𝑛

= 0.
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Without loss of generality we assume that 𝑓 is an eigenfunction of the Fourier transform.
Consider the sum ∑︁

𝑝∈B, 𝑛∈Z:
𝑛≥N(𝑝)

𝜙𝑝,𝑛 𝑛
𝛼+1. (5.4)

By Theorem 2.1 this sum of non-negative numbers converges to a finite limit.
Suppose that a Schwartz function 𝑓 satisfies vanishing conditions (5.3) and is an

eigenfunction of the Fourier transform. Then by Lemma 5.1 we can estimate the sum (5.4)∑︁
𝑝∈B,𝑛∈Z:
𝑛≥N(𝑝)

𝜙𝑝,𝑛 𝑛
𝛼+1 ≤

∑︁
𝑝∈B,𝑛∈Z:
𝑛≥N(𝑝)

𝑛𝛼+1 𝐶 deg(𝑝)𝛽 ·
∑︁
𝑞∈B:

deg(𝑞)>𝐷 (𝑛)−deg(𝑝)

𝜙𝑞,𝑛.

We have chosen the numbers 𝐴 and 𝐵 so that the conditions 𝑛 ≥ N(𝑝) and deg(𝑞) ≥ 𝐷 (𝑛) −
deg(𝑝) imply 𝑛 ≤ N(𝑞). We apply Lemma 5.2 and estimate∑︁
𝑝∈B,𝑛∈Z:
𝑛≥N(𝑝)

𝜙𝑝,𝑛 𝑛
𝛼+1 ≤

∑︁
𝑝∈B,𝑛∈Z:
𝑛≥N(𝑝)

𝑛𝛼+1 𝐶 deg(𝑝)𝛽 ·
∑︁
𝑞∈B:

deg(𝑞)>𝐷 (𝑛)−deg(𝑝)

∑︁
𝑚∈Z:

𝑚≥N(𝑞) )

𝑚𝛼 𝑛𝛼 𝜙𝑞,𝑚.

Here 𝐶 is a new constant and it is equal to the product of the constant 𝐶 from Lemma 5.1
and the constant 𝐶 from Lemma 5.2. We change the order of summation and arrive at∑︁

𝑝∈B,𝑛∈Z:
𝑛≥N(𝑝)

𝜙𝑝,𝑛 𝑛
𝛼+1 ≤

∑︁
𝑚∈Z,𝑞∈B:
𝑚≥N(𝑞) )

𝑚𝛼 𝜙𝑞,𝑚

∑︁
𝑝∈B,𝑛∈Z:
𝑛≥N(𝑝)

𝐷 (𝑛)−deg(𝑝)≤deg(𝑞)

𝐶 𝑛2𝛼+1 deg(𝑝)𝛽 .

By Lemma 5.3 the inner sum on the right side of this inequality satisfies∑︁
𝑝∈B,𝑛∈Z:
𝑛≥N(𝑝)

𝐷 (𝑛)−deg(𝑝)≤deg(𝑞)

𝐶 𝑛2𝛼+1 deg(𝑝)𝛽 < 𝑚.

This inequality is guaranteed by our choice of function 𝐷. Suppose that the non-negative
numbers (𝜙𝑞,𝑚)𝑚∈Z,𝑞∈B

𝑚≥N(𝑞)
are not all zero. Then∑︁
𝑝∈B,𝑛∈Z:
𝑛≥N(𝑝)

𝜙𝑝,𝑛 𝑛
𝛼+1 <

∑︁
𝑞∈B,𝑚∈Z:
𝑚≥N(𝑞)

𝜙𝑞,𝑚 𝑚𝛼+1.

This is a contradiction. Therefore, our assumptions on the Schwartz function 𝑓 imply that
𝜙𝑞,𝑚 = 0 whenever 𝑚 ≥ N(𝑞). Moreover, Lemma 5.2 implies that 𝜙𝑞,𝑛 = 0 for all 𝑞 ∈ B
and 𝑛 ∈ Z ≥ 0. Finally, we deduce from Theorem 1.2 that for all harmonic polynomials 𝑝 in
the basis B the functions 𝑓𝑝 in the decomposition (2.1) of the Schwartz function 𝑓 vanish.
Therefore, 𝑓 is also identically zero. This finishes the proof of Theorem 1.4. □.
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