
 
 

David Donoho 
 
Citation: “The Gauss Prize is awarded for his fundamental contributions to the 
mathematical, statistical and computational analysis of signal processing.” 
 
Magnetic Resonance Imaging scans (MRIs) are crucial to high-tech medical care: Their 
three-dimensional view inside your body allows doctors to spot an aneurysm on the edge 
of bursting, to fly through your brain to plan a surgery, or to pinpoint a hairline crack in a 
bone — all with nary a scalpel or dose of radiation. However, when you are the patient 
getting scanned, MRI scans impose very low-tech demands.  You are asked to lie 
perfectly still for as much as an hour, inside a cramped tube that clangs and thumps. 
 
But now the seemingly endless scanning process is about to go by ten times faster, thanks 
to a new generation of MRI scanners now entering clinical use. The new technology can 
save time and money on the 80 million MRIs performed each year globally, and will 
make MRIs practical for fidgety children who can’t stay still for long scans. The speed-
up also enables ambitious 3D scans and MRI “movies” of the beating heart.  
 
The engineers and doctors who brought these new devices to market were inspired by 
insights crystallized in mathematics journals in 2006.  Those insights today go by the 
name “compressed sensing,” a term coined by the 2018 Gauss Prize winner David 
Donoho.  The Gauss Prize recognizes mathematical work with impacts beyond 
mathematics.   
 
Along with Emmanuel Candès, Terence Tao and other mathematicians, Donoho 
published mathematical analyses in the mid-2000’s showing that compressed sensing 
(CS) might work practically, and proposed algorithms that were successful enough to 
inspire further research. A massive outpouring of mathematical and experimental work 
soon followed, with applied mathematicians, harmonic analysts, and information theorists 
pushing the theory;  numerical analysts and computer scientists creating fast algorithms 
to enable computation;  and MRI researchers adding their own profound understanding of 
MR physics and many additional creative insights.  
 
FDA approval of new medical devices sets a high bar for any would-be innovation. Yet 
FDA approvals for compressed-sensing devices were reached in 2017, barely a decade 
after initial appearance of CS articles in mathematics journals.  That’s impact! 
 

I. Sparsity. 
 

The 2018 Gauss Prize winner Donoho was one of the first researchers to develop math 
describing signals that are sparse.  Such signals are zero most of the time, with occasional 
non-zero wiggles. Examples are all around you. Think of the night sky: an occasional star 
(represented, say, by a very lonely “1”) punctuates the vast blackness (represented by a sea 
of “0”).  Think of the human genome:  two people differ only once every 300 nucleotides.  



 
Donoho first encountered sparsity just after university, while working in oil exploration. 
To find oil deep underground, geophysicists would set off explosions, sending seismic 
waves into the earth. Each time the wave hit a new rock layer, it sent back an echo; from 
the echo signal, the scientists could reconstruct an image of the layers below. The seismic 
echo series was sparse because layer changes were relatively rare. 
 

II. L1-norm 
 
At age 21, Donoho stumbled on a puzzle that marked his career. In those days, raw 
seismic measurements only offered a vague, blurry sense of where the rock layers were. 
But geophysicists had developed methods that seemed amazingly effective at 
“deblurring” the signal and identifying the layer changes precisely.  
 
Those methods measured distance in a nontraditional way. Ever since foundational work 
by the mathematical giant C.F. Gauss – as in Gauss Prize -- scientists traditionally use the 
so-called L2 distance in data processing. This distance is also called the crow’s-flight or 
Euclidean distance because it measures the length of a path that goes straight between 
two points, like in high school geometry.  However, the surprising new methods used 
instead the “L1 norm”, also called the Manhattan distance, because it measures how many 
city blocks you would walk if you have to travel between two points on a rectangular grid 
of city streets (diagonals like Broadway not allowed!).  
 
There was something mysteriously effective in this combination of sparse signals with L1 
norm — but no one knew why. When Donoho returned to graduate school for his Ph.D., 
he was determined to solve the puzzle. In the coming years, he developed mathematical 
theory showing the unreasonable effectiveness of the L1 norm with sparse signals.  
 
Some of the phenomena seemed miraculous. He first used L1 + sparsity techniques to 
recover a sparse signal that has been blurred in an unknown, arbitrary way (today called 
`blind deconvolution’).  He next used them to recover totally missing data. Often in 
signal processing, some part of a signal can go missing – think of an old acoustic 
recording with no highs or lows. Donoho, Philip Stark and Ben Logan showed that for 
certain special signals — sparse ones —  L1 + sparsity techniques could perfectly recover 
missing low-frequency signal. In other work, Donoho and collaborators Jeffrey Hoch and 
Alan Stern developed L1 + sparsity techniques to recover missing high-frequencies – in 
acoustic terms, missing `high notes’.  
 
L1 + sparsity also allowed `de-noising’ of signals: if you add noise to a sparse signal and 
then look at the plot, you will see `daisies’ -- signal -- sticking up above `weeds’ – noise;  
L1 minimization gives a way of chopping out the weeds while keeping the daisies. 
Donoho and Iain Johnstone showed that for sparse signals this was essentially optimal. 
 
 

III. Harmonic Analysis 
 



The 80’s/90’s `wavelet revolution’ in applied mathematics further transformed Donoho’s 
thinking. At the time, computational harmonic analysts such as 2014 Gauss Prize Winner 
Yves Meyer and collaborators Ronald Coifman, Ingrid Daubechies, and Stephane Mallat 
were building many new tools for mapping digital signals into more useful forms. Their 
new wavelet transforms literally blew Donoho’s mind. Transforming digital data using 
these new tools revealed that sparsity was everywhere -- in images and other media we 
now use daily. To Donoho’s mind, this dramatically expanded the stage for applications 
of L1+Sparsity.  
 
Donoho’s mathematical results placed a premium on being as sparse as possible. They 
drove him to `sparsify’ even better than wavelets could – where possible.   He searched 
for systems `beyond wavelets’ that would expose the hidden sparsity of geometric 
phenomena such as edges, sheets, and filaments in images. His collaborators Emmanuel 
Candès and Jean-Luc Starck  were soon also aiming beyond wavelets, for “curvelets”, 
“beamlets”, and other `X’-lets. 
 
Donoho worked to sparsify signals even more by combining several different systems of 
harmonic analysis.  For example, a sine wave contaminated with several spikes would not 
be sparse under traditional Fourier analysis, but it could be sparsely synthesized using 
both Fourier analysis and wavelets together. With collaborators Michael Saunders and 
Scott Chen, he developed an algorithm called Basis Pursuit to solve the synthesis 
problem by minimizing the L1 norm. Its success seemed miraculous because the task -- 
solving a system of underdetermined equations, and algorithmically getting the sparsest 
possible answer – seemed forbiddingly complex. With collaborators Xiaoming Huo, 
Michael Elad and Vladimir Temlyakov, Donoho gave a series of foundational 
mathematical results showing that the L1 norm could truly find the sparsest possible such 
synthesis.  
 

IV. Compressed Sensing 
 

The 3 strands of research described in Sections I-III above converged in the mid-2000’s 
to produce Compressed Sensing, the mathematical theory that inspired those fast MRI’s 
that are now coming to market. The sparsity of images when viewed in the wavelet basis; 
the use of the L1 norm; the use of underdetermined equations – all three ingredients came 
together in work by Donoho and by Candès, Romberg, and Tao, mentioned earlier. Their 
mathematical analyses showed clearly why all three ingredients must be present to allow 
speed ups, and how, under certain assumptions, this combination is guaranteed to work. 
Such clear mathematical understanding was transformational, and inspired rapid 
progress, in MRI research, and elsewhere.  
 

V. Unreasonable Effectiveness 
 
Since his university days, Donoho has believed that mathematicians would contribute 
during the information era by providing new models for data, new processing algorithms, 
and subtle but powerful theoretical insights. And he himself has done all three.   
 



What Donoho did not know as a youngster, and could not have known, is that the 
continuing growth of pure mathematics would be so important.  For example, in his own 
work on compressed sensing, Donoho found that essential roles were played by the 
theories of random matrices, of high-dimensional Banach spaces, of random convex 
polytopes, and of mathematical spin glasses – in all cases, pure mathematics unrelated to 
signal processing and much younger than Donoho himself!   
 
50 years ago, Eugene Wigner coined the phrase `unreasonable effectiveness of 
mathematics’ to refer to the surprising tendency of pure mathematics to inspire practical 
applications.  
 
If, some day, you enjoy a fast MRI scan, you may perhaps also remember Wigner’s 
dictum! 
 


