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Abstract
On the occasion of Elliott Lieb being awarded the Gauss Prize 2022, we give a non-
technical overview over some of his seminal works in mathematical physics. We empha-
size, in particular, his work on Coulomb many-body systems and functional inequalities.
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Elliott Lieb is awarded the Gauss Prize 2022 “for deep mathematical contributions of
exceptional breadth which have shaped the fields of quantum mechanics, statistical mechan-
ics, computational chemistry, and quantum information theory".

It is my great pleasure to congratulate Elliott on this honor. In the following pages I
will try to give a non-technical overview over some of his seminal works.

Lieb is a mathematical physicist. This is a field that lies at the boundary between
physics and mathematics and that Freeman Dyson [From Eros to Gaia, pp. 164–165] has
described as follows:

“Mathematical physics is the discipline of people who try to reach a deep under-
standing of physical phenomena by following the rigorous style and method of
mathematics."

As mentioned in the citation, Lieb has made ground-breaking contributions to both math-
ematics and physics. In this connection it is worthwhile to mention that about half a year
ago, Lieb was awarded the 2022 APS Medal for Exceptional Achievement in Research, the
highest honor of the American Physical Society.

A distinctive feature of Lieb’s work is its timelessness. Independently of fashions
and trends, he has worked, and continues to work, on problems that he considers deep and
fundamental. Sometimes it is decades later that the full potential of his ideas is understood.
Prime examples are the Lieb–Robinson bounds, proved in 1972, and the strong subadditivity
of entropy, proved in 1973, that have both come to play a key role in quantum information
theory in the 21st century.

Lieb’s publication list contains, at the time of this writing, 404 items with the first
one dating back to 1955 and the most recent one just about to appear. Four volumes of his
selected works have been published so far [26–29] and, on the occasion of his 90th birthday,
a 1300+ page collection of articles was edited [8], where the contributors explain the content
and the ramifications of Lieb’s work.

It is impossible to give an overview over this monumental body of work. I have cho-
sen here two main areas of Lieb’s research, namely quantum many-body Coulomb systems
and functional inequalities, and omitted all others, except for a brief mention of some in the
last section. This selection is influenced by my predilections and my ignorance, and I ask the
readers’ indulgence for all the omissions.

1. Quantum Coulomb Systems
One of the recurring themes in Lieb’s research since the early 1970s is the analysis of

continuous quantum many-body systems and, in particular, of systems of particles interacting
through Coulomb forces. Here one neglects other forces, but this description is appropriate for
ordinary matter and much of the world relevant to everyday life. As a very readable account
of Lieb’s research program in this area we recommend his Gibbs lecture in 1989 [25], which
contains a much more detailed description than what we provide here.
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We consider a system consisting of 𝑁 quantum electrons and 𝐾 classical nuclei in
R3. The latter are fixed at positions 𝑅1, . . . , 𝑅𝐾 ∈ R3 and have charges 𝑍1, . . . , 𝑍𝐾 ∈ (0,∞)
(in units where the electron charge is −1). The properties of such a system are described by
the Hamiltonian

𝐻 :=
𝑁∑︁
𝑛=1

(−Δ𝑛) −
𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

𝑍𝑘

|𝑥𝑛 − 𝑅𝑘 |
+

∑︁
1≤𝑛<𝑚≤𝑁

1
|𝑥𝑛 − 𝑥𝑚 |

+
∑︁

1≤𝑘<ℓ≤𝐾

𝑍𝑘𝑍ℓ

|𝑅𝑘 − 𝑅ℓ |
, (1.1)

acting on functions in R3𝑁 . Here we use coordinates 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) ∈ R3𝑁 . The four sums
in the definition of 𝐻 correspond, respectively, to the kinetic energy of the electrons, the
electron-nucleus attraction, the electron-electron repulsion and the nucleus-nucleus repul-
sion.

This Hamiltonian can be realized as an unbounded, selfadjoint operator in the Hilbert
space consisting of all antisymmetric functions in 𝐿2 (R3𝑁 ), that is, square-integrable func-
tions 𝜓 satisfying 𝜓(. . . , 𝑥𝑛, . . . , 𝑥𝑚, . . .) = −𝜓(. . . , 𝑥𝑚, . . . , 𝑥𝑛, . . .) for all 𝑛 ≠ 𝑚. The
antisymmetry reflects the Pauli exclusion principle. One should also take the electron spin
into account, but mathematically this only leads to minor changes and will be ignored in what
follows.

The ground state energy is, by definition,

inf spec𝐻 .

It is the infimum of ⟨𝜓, 𝐻𝜓⟩ with respect to all normalized, antisymmetric 𝜓.
The fundamental feature of the problem of analyzing the ground state energy of 𝐻

(and of quantum many-body systems in general) is the huge number of dimensions of the
underlying Hilbert space. This makes a numerical computation virtually impossible and for
quantitative results one typically has to rely on approximate theories that are numerically
more tractable. This situation underlines the importance of analytical studies about the full
Schrödinger problem and also about its relation to approximate theories. Lieb has made
fundamental contributions to this problem, as we will review in the remainder of this section.

Stability of Matter
The problem of stability of matter consists in showing that for every 𝑧 > 0 there is

a constant 𝐶 such that, for all 𝑁, 𝐾 ∈ N, 𝑅1, . . . , 𝑅𝐾 ∈ R3 and 𝑍1, . . . , 𝑍𝐾 ∈ [0, 𝑧], one has

inf spec𝐻 ≥ −𝐶 (𝑁 + 𝐾) . (1.2)

This inequality says that, despite the fact that the number of interactions grows quadrati-
cally in the total number of particles, the ground state energy only behaves linearly. This is
fundamental for the existence of matter as we know it.

We emphasize that the stability of matter depends on the fact that electrons are
fermions, that is, on the fact that 𝐻 is considered only on the subspace of antisymmetric
functions in 𝐿2 (R3𝑁 ) and not on the full space 𝐿2 (R3𝑁 ). It is, in fact, wrong on the latter,
bigger space, as we shall see.

The first proof of stability of matter was achieved by Dyson and Lenard in 1967.
Lieb and Thirring gave a new proof in 1975 [44]. The latter proof gives a much more realistic
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value for the constant𝐶 in (1.2), namely about𝐶 ≈ 5 instead of Dyson and Lenard’s𝐶 ≈ 1014.
It also helps to clarify the reason for the validity of stability of matter on a conceptual level.
Here is what Dyson writes in the preface of the Selecta of Elliott Lieb [29]:

“Our proof was so complicated and so unilluminating that it stimulated Lieb and
Thirring to find the first decent proof [...]. Why was our proof so bad and why
was theirs so good? The reason is simple. Lenard and I began with mathematical
tricks and hacked our way through a forest of inequalities without any physical
understanding. Lieb and Thirring began with physical understanding and went
on to find the appropriate mathematical language to make their understanding
rigorous. Our proof was a dead end. Theirs was a gateway to the new world of
ideas [...].”

The fundamental mechanism of the Lieb–Thirring proof of stability of matter is the
fact that atoms do not bind in an approximate model of a Coulomb system known as Thomas–
Fermi theory. (Here “no binding" means, mathematically, that the ground state energy of a
molecule is simply the sum of the energies of the individual atoms.) Therefore the goal of
Lieb and Thirring was to show that this approximate theory provides, after an appropriate
adjustment of constants, a rigorous lower bound to the Schrödinger ground state energy. Later
in this section we will discuss both this Thomas–Fermi theory and a functional inequality
(known as Lieb–Thirring inequality) that leads to the claimed lower bound.

The above mentioned work by Lieb and Thirring from 1975 was the starting point
of Lieb’s thorough investigation of the problem of stability of matter, a topic to which he
would return repeatedly for several decades and with many coworkers. Notable are, among
other things, a proof of stability of matter in the presence of magnetic fields that covers the
physical value of the fine structure constant [33]. An introduction to this area is provided in
his book with Seiringer “The Stability of Matter in Quantum Mechanics” [37].

Existence of the thermodynamic limit for real Matter with Coulomb forces
Lieb’s first result on Coulomb many-body systems, even before his work on stability

of matter, settled an open problem in the foundations of statistical mechanics. Namely, in
1969 he and Lebowitz proved the existence of the thermodynamic limit for real matter with
Coulomb forces [30].

Here one considers a large number of particles (electrons and nuclei, for instance)
confined to an open set Ω in R3. One considers the limit where Ω tends to R3 (in a sense
to be made precise) and where the densities of the different particles (that is, the number of
particles divided by the volume of Ω) tend to given constants. The particles interact through
Coulomb forces, as in (1.1). Moreover, one typically discusses this question at a given positive
temperature. The theorem of Lieb and Lebowitz states that the limit of the corresponding
free energy exists, is independent of the shape of the approximating domains Ω and has
appropriate convexity and concavity properties.
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The Lieb–Lebowitz theorem uses the stability of matter theorem as an ingredient.
In the proof of the existence of the thermodynamic limit the main concern is the slow decay
of |𝑥 |−1 as |𝑥 | → ∞. Indeed, the existence of the thermodynamic limit had been known in the
case of short-range interactions. In the long range case charge neutrality is an essential input.
Lieb and Lebowitz exploit the electrostatic screening very originally via Newton’s theorem.
In this way they are led to the geometric problem of how to efficiently pack large balls by
smaller balls, which they solve by their “Cheese Theorem”.

Thomas–Fermi theory and density functional theory
In our discussion of the Lieb–Thirring proof of stability of matter we have already

mentioned the Thomas–Fermi model of a Coulomb system. This was proposed independently
by Thomas and Fermi in 1927, remarkably soon after Schrödinger had introduced his theory.
In the variational approach to Thomas–Fermi theory one starts from the energy functional,
defined for nonnegative function 𝜌 on R3 by

E[𝜌] = 𝛾TF
∫
R3
𝜌(𝑥) 5

3 𝑑𝑥 −
𝐾∑︁
𝑘=1

∫
R3

𝑍𝑘 𝜌(𝑥)
|𝑥 − 𝑅𝑘 |

𝑑𝑥 + 𝐷 [𝜌] +
∑︁

1≤𝑘<ℓ≤𝐾

𝑍𝑘𝑍ℓ

|𝑅𝑘 − 𝑅ℓ |

with
𝐷 [𝜌] :=

1
2

∬
R3×R3

𝜌(𝑥) 𝜌(𝑦)
|𝑥 − 𝑦 | 𝑑𝑥 𝑑𝑦 .

The function 𝜌 describes the distribution of electrons and its integral has the meaning of
the total number of electrons. The four terms in the definition of E correspond, respectively,
to the kinetic energy of the electrons, the electron-nucleus attraction, the electron-electron
repulsion and the nucleus-nucleus repulsion. In the next subsection we will briefly describe
how one can arrive at the 𝜌 5

3 approximation to the kinetic energy. This approximation also
leads to a certain value for the constant 𝛾TF > 0.

The ground state energy in Thomas–Fermi theory is

inf
{
E[𝜌] : 𝜌 ≥ 0 ,

∫
R3
𝜌 𝑑𝑥 = 𝑁

}
.

We emphasize that, in contrast to Schrödinger theory, Thomas–Fermi theory is a
nonlinear theory. The important simplifying feature is that in Thomas–Fermi theory one
optimizes over functions of only three variables, as opposed to functions of 3𝑁 variables in
Schrödinger theory.

While Thomas–Fermi theory had been around and had been used for a long time, it
was only in the 1970s that Lieb and Simon rigorously established its mathematical founda-
tions [40]. They answer, among other things, questions about the existence and uniqueness of
solutions, their regularity and decay. Later, Lieb and collaborators investigated systematically
density functional theories that are refinements of Thomas–Fermi theory. These findings are
summarized in the review [17].

Another fundamental result that Lieb and Simon prove in their Thomas–Fermi paper
is a rigorous relation between the ground state energy of the Hamiltonian 𝐻 in (1.1) and the
minimal Thomas–Fermi energy in the joint limit 𝑁→∞ and 𝑍→∞with 𝑁/𝑍→ 𝜆 ∈ (0,∞).
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(Here we consider, for simplicity, the atomic case 𝐾 = 1 and set 𝑍 = 𝑍1. The most important
case is 𝑁 = 𝑍 , that is, the case of a neutral atom.) It is shown that

lim
inf spec𝐻

inf E = 1 .

This convergence of energies is supplemented by convergence results of the one-particle
densities of (approximate) ground states of the Schrödinger Hamiltonian. Technically, this
result is related to semiclassical analysis, but outside of the typical regularity assumptions in
this theory. The Lieb–Simon result has become a blueprint for other derivations of effective
theories in scaling limits.

As an aside, we also mention the first proof, given by Lieb and Simon, of the existence
of solutions to the Hartree–Fock equations for atoms and molecules [39]. Hartree–Fock theory
is a more precise approximation to Schrödinger theory than Thomas–Fermi theory and used
in the computation of atomic and molecular energies. In contrast to Thomas–Fermi theory,
which is a density functional theory, where the unknown is a scalar function, Hartree–Fock
is a density matrix theory, where the unknown is an operator. The Lieb–Simon paper is a
foundational paper in the noncommutative calculus of variations.

In Thomas–Fermi theory, the Coulomb repulsion between the electrons is approx-
imated by the quantity 𝐷 [𝜌]. In 1981, Lieb and Oxford [34] proved a lower bound on the
difference between these two quantities, which became known as the Lieb–Oxford bound
for the exchange energy. This bound is well known to quantum chemists and guides their
thinking about the exchange correlation energy in molecules.

In 1983, Lieb published the paper “Density Functionals for Coulomb Systems” [20],
which laid out the theoretic foundations of density functional theory and is widely cited. It
introduced a universal functional, known as the Levy–Lieb functional, which gives the lowest
energy that can be reached with all possible quantum states having a given density function.
This functional yields, by definition, the ground state energy of interacting quantum Coulomb
systems (even if it is not known explicitly). This point of view has played a very important
role. Density functional theory has exploded in the 1990s and is widely used in industry. It
is now the method of choice to compute the quantum state of molecules and solids

Among Lieb’s more recent works in this direction are a mathematically rigorous
justification of the Local Density Approximation in density functional theory, and a proof
of the equivalence in the thermodynamic limit of three different definitions of the minimum
energy of a homogeneous electron gas. These are joint works with Lewin and Seiringer [12,13].

Lieb–Thirring inequalities
Arguably the least obvious part in the approximation of the Schrödinger energy

functional by the Thomas–Fermi functional is that the correct kinetic energy∫
R3

· · ·
∫
R3

𝑁∑︁
𝑛=1

|∇𝑛𝜓 |2 𝑑𝑥1 . . . 𝑑𝑥𝑁

is replaced by the term
𝛾TF

∫
R3
𝜌(𝑥) 5

3 𝑑𝑥
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for a certain explicit constant 𝛾TF > 0. It is in this step (and only in this step) of the approx-
imation that the fermionic nature of the wave function 𝜓 enters. Behind this approximation
is the observation that the kinetic energy per unit volume of a noninteracting Fermi gas in its
ground state with constant density 𝜌 is 𝛾TF𝜌

5
3 . Imagining that particles described by a wave

function 𝜓 with low energy are locally essentially in the ground state of the Fermi gas with
the corresponding local density one arrives at the Thomas–Fermi expression for the kinetic
energy.

The question arises whether this approximation can be substantiated by rigorous
bounds. This is accomplished by the famous Lieb–Thirring inequality, which was a cru-
cial ingredient in their proof of stability of matter [43]. This inequality states that for any
antisymmetric, normalized 𝜓 on R3𝑁 , one has∫

R3
· · ·

∫
R3

𝑁∑︁
𝑛=1

|∇𝑛𝜓 |2 𝑑𝑥1 . . . 𝑑𝑥𝑁 ≥ 𝐾

∫
R3
𝜌𝜓 (𝑥)

5
3 𝑑𝑥 (1.3)

with

𝜌𝜓 (𝑥) =
𝑁∑︁
𝑛=1

∫
R3

· · ·
∫
R3

|𝜓(𝑥1, . . . , 𝑥𝑛−1, 𝑥, 𝑥𝑛+1, . . . , 𝑥𝑁 ) |2 𝑑𝑥1 · · · 𝑑𝑥𝑛−1 𝑑𝑥𝑛+1 · · · 𝑑𝑥𝑁 .

The important point here is that the constant 𝐾 is independent of 𝑁 .
The Lieb–Thirring inequality (1.3) can be viewed as a mathematical expression of

both the exclusion and the uncertainty principles in quantum mechanics. The connection with
the exclusion principle is that the constant 𝐾 is independent of 𝑁 – if symmetric functions
𝜓 (describing a bosonic system) would be allowed, the constant 𝐾 in (1.3) would have to
deteriorate with 𝑁 . (As an example, take 𝜓 as a product function 𝜑(𝑥1) · · · 𝜑(𝑥𝑁 ).) For
𝑁 = 1 the Lieb–Thirring inequality reduces to a certain Sobolev interpolation inequality and
for 𝑁 ≥ 2 it can be considered as a generalization thereof. The conclusion of Sobolev-type
inequalities, namely that an 𝐿 𝑝 with a “large" 𝑝 can be controlled, is a non-concentration
result and therefore quantifies the uncertainty principle in quantum mechanics.

The constant 𝐾 in (1.3) that Lieb and Thirring obtained was smaller than 𝛾TF, but it
retained the important feature of being independent of 𝑁 (and of 𝜓, of course). The famous
Lieb–Thirring conjecture states that the inequality should be valid with constant equal to 𝛾TF.
This would mean that the Thomas–Fermi approximation for the kinetic energy is a universal
lower bound to its Schrödinger expression. There has been a lot of work on this constant,
leading to the currently best bound of (1.456)−2/3𝛾TF.

Lieb and Thirring did not prove inequality (1.3) directly, but first showed that
it is equivalent to a certain inequality about sums of negative eigenvalues of one-body
Schrödinger operators, and then verified the latter inequality. In their follow-up paper [44]

they extended this latter inequality to arbitrary dimensions and arbitrary powers of eigenval-
ues. They proved that the negative eigenvalues (𝐸 𝑗 ) of the Schrödinger operator −Δ + 𝑉 in
𝐿2 (R𝑑) satisfy ∑︁

𝑗

|𝐸 𝑗 |𝛾 ≤ 𝐿𝛾,𝑑

∫
R𝑑
𝑉 (𝑥)𝛾+𝑑/2− 𝑑𝑥
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for all 𝛾 > 1/2 if 𝑑 = 1 and 𝛾 > 0 if 𝑑 ≥ 2. For 𝛾 = 1 and 𝑑 = 3, this inequality is equivalent
to (1.3). Soon afterwards, Lieb [16] proved the corresponding inequality in the endpoint case,
known as Cwikel–Lieb–Rozenblum inequality, namely

#{ 𝑗 : 𝐸 𝑗 < 0} ≤ 𝐿0,𝑑

∫
R𝑑
𝑉 (𝑥)𝑑/2− 𝑑𝑥

for 𝑑 ≥ 3.
The general form of the famous Lieb–Thirring conjecture concerns the optimal val-

ues of the constants 𝐿𝛾,𝑑 . Apart from the obvious relevance of the values of these constants
in applications, the conjecture addresses on a conceptual level the strength of the exclusion
principle in different dimensions. Lieb, together with Hundertmark and Thomas, have proved
the only known case of an optimal inequality where the constant is not given by that aris-
ing from a semiclassical (or Thomas–Fermi-like) approximation. Also, after more than four
decades, Lieb’s value of the constant 𝐿0,3 is still the smallest one that is known.

The Lieb–Thirring and Cwikel–Lieb–Rozenblum inequalities and their generaliza-
tions are of great importance in the study of large fermionic systems. Apart from that, they
have found applications in the context of nonlinear evolution equations like the Navier–Stokes
equation [22]. Moreover, they have attracted great interest from a purely mathematical point
of view and the fact that orthogonality of functions leads to an improved dependence on the
number of functions has been verified in a number of other functional inequalities as well,
including [9,18].

The ionization problem
Let us return to the quantum many-body Hamiltonian 𝐻 in (1.1). The infimum of its

spectrum may or may not be an eigenvalue. If it is, we interpret the corresponding eigenfunc-
tion as describing the ground state of the system and we think of the 𝑁 electrons as bound to
the nuclei. Physical intuition suggests that given nuclei with given charges can only bound a
finite number of electrons, but even this is not quite obvious mathematically. The quantitative
version of this question, namely how many electrons an atom (or a molecule) can bind, is
still not settled, despite serious efforts.

For simplicity, let us restrict our attention to the atomic case, that is, 𝐾 = 1 in (1.1).
Experimental data and numerical estimates suggest that a nucleus of charge 𝑍 can bind at
most 𝑍 + 1, or possibly 𝑍 + 2 electrons. To prove (or disprove) this rigorously in the above
Schrödinger model is a famous open problem.

One of the few nonasymptotic results in this direction is due to Lieb [23] and states
that an atomic nucleus can not bind 2𝑍 + 1 or more electrons. The factor 2 in front of 𝑍 looks
“too large" for large 𝑍 , but, for instance, for 𝑍 = 1, the bound is optimal. Only three decades
later was Lieb’s result improved for large 𝑍 .

A striking discovery by Benguria and Lieb [2] is that the purported bound on
the excess charge would not be true if the electrons were bosons, that is, if the antisym-
metry requirement on admissible functions was replaced by the symmetry requirement
𝜓(. . . , 𝑥𝑛, . . . , 𝑥𝑚, . . .) = 𝜓(. . . , 𝑥𝑚, . . . , 𝑥𝑛, . . .) for 𝑛 ≠ 𝑚. They showed that there is a num-
ber 𝜆 > 1 (numerically, 𝜆 ≈ 1.21) such that a “bosonic atom" can bind at least (𝜆 + 𝑜(1))𝑍
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electrons as 𝑍 → ∞. As a consequence of the Benguria–Lieb result, the Pauli principle (i.e.
the antisymmetry requirement) needs to enter any possible proof. This excludes, in particular,
any naive, purely electrostatic argument.

Returning to the original, fermionic case, one can ask whether there is at least asymp-
totic neutrality in the sense that, as 𝑍 → ∞, the number of electrons that can be bound is
𝑍 + 𝑜(𝑍). That this is indeed the case was proved by Lieb together with Sigal, Simon and
Thirring [38]. Other researchers obtained later quantitative bounds on the 𝑜(𝑍) remainder,
but showing that it is bounded seems to be out of reach of current techniques.

Bosonic Systems
While our focus in this section was mostly on fermionic systems, Lieb has also

made many fundamental contributions to the study of bosonic systems. Among those are the
following:

(a) The construction, with Liniger, of a model of a one-dimensional interacting Bose
gas [31]. This model has served as a prototype for later theoretical developments,
and it is also realized experimentally.

(b) Together with Yngvason, Lieb proved an asymptotic formula, conjectured
58 years earlier, for the ground state energy of a dilute Bose gas [45]. Sub-
sequently, together with Seiringer and Yngvason, he rigorously derived the
Gross–Pitaevskii equation for the ground state energy of dilute bosons in a
trap, starting with many-body quantum mechanics [36]. This result has had a
tremendous impact on the development of mathematical physics in the past two
decades.

(c) Together with Conlon and Yau and later with Solovej [41, 42], Lieb proved the
𝑁7/5 law for charged bosons. This means, roughly, that the energy does not obey
a linear bound as in (1.2), but rather decreases like −𝐶𝑁7/5. This was the first
rigorous validation of Bogolubov’s pairing theory of the Bose gas and paved
the way for many current developments.

2. Functional Inequalities
Lieb’s name is inseparably connected with the subject of inequalities and a whole

700 page volume of his Selecta is dedicated to this topic [26]. In the previous section, in
the discussion of the Lieb–Thirring inequality, we have already seen one instance of a func-
tional inequality. In this section we will review three more examples, namely the entropy
inequalities in matrix analysis, the Brascamp–Lieb inequalities and the sharp form of the
Hardy–Littlewood–Sobolev inequality.
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Lieb’s concavity theorem and the strong subadditivity
In 1973, Lieb and Ruskai proved the strong subadditivity of the quantum-mechanical

entropy [35]. This theorem has many equivalent formulations, such as the concavity of the
conditional entropy, the joint convexity of the relative entropy or the monotonicity of the
relative entropy. Strong subadditivity, or one of its equivalents, has come to play an essential
role in the modern and very active area of quantum information and quantum computation.

Let us state this theorem in its monotonicity formulation, originally derived by Lind-
blad in 1974 from a result of Lieb. A density matrix is a Hermitian, positive semi-definite
matrix of trace one. The relative entropy (or Kullbach–Leibler divergence) of two density
matrices 𝜌 and 𝜎 is defined to be

𝐷 (𝜌∥𝜎) = Tr 𝜌 ln 𝜌 − Tr 𝜌 ln𝜎 .

This quantity is nonnegative and vanishes if and only if 𝜌 = 𝜎. Roughly speaking, it measures
how distinguishable 𝜌 and𝜎 are, even though the quantity is not symmetric in 𝜌 and𝜎. Quan-
tum operations are described by completely positive, trace preserving maps, and the theorem
of monotonicity of the relative entropy (also known as the data processing inequality) states
that for any such operation E, one has

𝐷 (E𝜌∥E𝜎) ≤ 𝐷 (𝜌∥𝜎) .

Thus, applying a quantum operation can only make the states harder to distinguish. This
makes it clear that the monotonicity of the relative entropy lies at the very foundation of
quantum information theory.

Both the Lieb–Ruskai proof of the strong subadditivity of the entropy and the Lind-
blad proof of monotonicity of the relative entropy rest on a deep theorem that Lieb proved
in his 1973 paper “Convex trace functions and the Wigner–Yanase–Dyson conjecture" [14].
This theorem states that, for 𝑝, 𝑞 ≥ 0 with 𝑝 + 𝑞 ≤ 1, the map (𝐴, 𝐵) ↦→ Tr 𝐴𝑝𝐵𝑞 , defined
on nonnegative Hermitian matrices, is jointly concave.

Lieb’s paper has generated considerable further work containing alternative proofs,
generalizations and applications. He himself, often jointly with Carlen, has also returned
several times to this circle of ideas and deepend our understanding of matrix analysis; see,
e.g., [1,6].

The Brascamp–Lieb inequalities
In 1976 Brascamp and Lieb published the paper “Best Constants in Young’s Inequal-

ity, Its Converse and Its Generalization to More Than Three Functions" [3]. As the title
suggests, this paper treats three related, but different topics and it is famous for all three.

The first one concerns a basic inequality in real analysis, namely the Young inequality����∬
R𝑑×R𝑑

𝑓 (𝑥)𝑔(𝑥 − 𝑦)ℎ(𝑦) 𝑑𝑥 𝑑𝑦
���� ≤ 𝐶𝑝,𝑞,𝑟 ,𝑑 ∥ 𝑓 ∥𝐿𝑝 (R𝑑 ) ∥𝑔∥𝐿𝑞 (R𝑑 ) ∥ℎ∥𝐿𝑟 (R𝑑 ) (2.1)

for three functions 𝑓 , 𝑔, ℎ on R𝑑 and parameters 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞ satisfying 1
𝑝
+ 1
𝑞
+ 1
𝑟
= 2.

This inequality appears frequently in theory and applications, since convolution is a basic
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operation in mathematical analysis and the Young inequality bounds its effect in Lebesgue
spaces.

The question is to find the optimal (that is, smallest possible) constant 𝐶𝑝,𝑞,𝑟 ,𝑑 in
(2.1) and to characterize all cases of equality. The first task was solved by Beckner around the
same time as [3]. Brascamp and Lieb give an alternative proof and solve the second task. Their
proof combines in an original way the technique of symmetric decreasing rearrangement with
the operation of taking tensor products, leading to a convergence result in the spirit of the
central limit theorem. It follows that the optimal constant is determined by Gaussian functions
and attained only for those.

The second topic of the Brascamp–Lieb paper is that Young’s inequality holds, with
the inequality sign reversed, if 0 < 𝑝, 𝑞 ≤ 1 and 𝑓 , 𝑔, ℎ are nonnegative. Again the authors are
able to compute the optimal constant. This reverse Young’s inequality contains, as a limiting
case, the Prékopa–Leindler theorem.

The third topic of the Brascamp–Lieb paper is a far-reaching generalization of
Young’s inequality to an arbitrary number of functions, together with a replacement of the
linear functions 𝑥, 𝑦 and 𝑥 − 𝑦 on R2𝑑 , appearing in (2.1), by a much larger class of linear
functions. The resulting family of inequalities is now known as Brascamp–Lieb inequalities.
It contains not only Young’s inequality, but also those of Hölder and of Loomis and Whitney
as special cases. Brascamp and Lieb show that for given linear maps the inequality holds with
a finite constant if and only if it holds for Gaussian functions, and in this case the optimal
constant can be computed using the latter class of functions. Their argument is again based
on a central limit theorem.

Besides the original application to statistical mechanics, the Brascamp–Lieb inequal-
ities have come to play an important role in convexity theory, harmonic analysis and other
parts of mathematics.

In his 1990 paper with the title “Gaussian Kernels Have Only Gaussian Maximizers"
[24] Lieb revisits the topic of Young and Brascamp–Lieb inequalities. He proves a general
theorem about the norm of a large class of integral operators. Among other things, he charac-
terizes the cases of equality in the Hausdorff–Young inequality with optimal constant. Again,
they are given by Gaussian functions.

We finally mention that there is yet another celebrated inequality known as Bras-
camp–Lieb inequality. This is a Poincaré (or spectral gap) inequality for log-concave proba-
bility distributions [4].

The sharp Hardy–Littlewood–Sobolev inequality
A fundamental result of real analysis, known as the Hardy–Littlewood–Sobolev

inequality, the weak Young inequality or the theorem of fractional integration, states that,
for 0 < 𝜆 < 𝑑 and 1 < 𝑝, 𝑟 < ∞ with 1

𝑝
+ 𝜆
𝑑
+ 1
𝑟
= 2, one has����∬

R𝑑×R𝑑

𝑓 (𝑥) ℎ(𝑦)
|𝑥 − 𝑦 |𝜆 𝑑𝑥 𝑑𝑦

���� ≤ 𝐶𝜆,𝑝,𝑟 ∥ 𝑓 ∥𝐿𝑝 (R𝑑 ) ∥ℎ∥𝐿𝑟 (R𝑑 ) . (2.2)
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This inequality has many applications in pure and applied mathematics. For instance, in the
case 𝜆 = 𝑑 − 2, 𝑑 ≥ 3, the kernel in this inequality is the Coulomb kernel and the quantity on
the left side represents the Coulomb interaction of two charge densities 𝑓 and ℎ. For 𝜆 = 𝑑 − 2
and 𝑝 = 𝑞, inequality (2.2) is equivalent to the Sobolev inequality.

Lieb’s 1983 paper “Sharp constants in the Hardy–Littlewood–Sobolev and related
inequalities” [19] had a profound impact on the field of Calculus of Variations. Indeed, this
paper and his related 1983 paper “A relation between pointwise convergence of functions and
convergence of functionals” [5] with Brezis are Lieb’s most cited pure mathematics papers.

The “Sharp constants" paper is remarkable for at least two distinct aspects, namely
for the development of a rather general compactness argument and for an ingenious obser-
vation concerning the problem at hand. We briefly discuss these two points.

The compactness aspect of Lieb’s HLS paper concerns the question whether there
is a nontrivial pair ( 𝑓 , ℎ) such that equality holds in (2.2) with𝐶𝜆,𝑝,𝑟 taken to be the minimal
constant. Lieb had worked earlier on questions about existence of optimizers for certain vari-
ational problems. In contrast to classical variational problems, these problems were often
translation-invariant and so Lieb had to find methods to deal with the corresponding loss
of compactness (for instance, by symmetric decreasing rearrangement [15] or by an original
“running-after argument” [21]). The optimization problem for the HLS inequality, however,
features another potential loss of compactness, namely through dilations. In order to deal
with these problems, Lieb found a strengthening of Fatou’s lemma, which says that, if func-
tions 𝑓 𝑗 on a measure space 𝑋 are bounded in 𝐿 𝑝 and converge pointwise a.e. to a function
𝑓 , then

lim
𝑗→∞

∫
𝑋

��| 𝑓 𝑗 |𝑝 − | 𝑓 |𝑝 − | 𝑓 𝑗 − 𝑓 |𝑝
�� 𝑑𝑥 = 0 . (2.3)

In particular, ∫
𝑋

| 𝑓 𝑗 |𝑝 𝑑𝑥 =
∫
𝑋

| 𝑓 |𝑝 𝑑𝑥 +
∫
𝑋

| 𝑓 𝑗 − 𝑓 |𝑝 𝑑𝑥 + 𝑜(1) .

For comparison, in Fatou’s lemma, the second term on the right side is omitted, thus leading
to an inequality rather than an equality. The statement (2.3), with | · |𝑝 replaced by more
general functions, is known as the Brezis–Lieb lemma and constitutes a fundamental tool in
functional analysis and the calculus of variations.

Lieb’s compactness method, sometimes called the method of the missing mass,
tracks carefully the remainder term 𝑓 𝑗 − 𝑓 in (2.3). This technique is quite robust and has
found various applications to different settings, including [11]. Also other compactness meth-
ods use the Brezis–Lieb lemma as a fundamental ingredient.

The second remarkable aspect of Lieb’s HLS paper concerns the special case 𝑝 = 𝑟

(but 0 < 𝜆 < 𝑑 is arbitrary). Lieb managed to compute the smallest possible constant 𝐶𝜆,𝑝,𝑟
explicitly and to characterize all pairs ( 𝑓 , ℎ) of functions for which equality is attained. The
crucial observation in Lieb’s proof was a “hidden" symmetry, namely the conformal invari-
ance of (2.2) for 𝑝 = 𝑟. Lieb’s paper has spawn a field of variational problems with conformal
invariance. Among these developments is also the sharp form of the HLS inequality on the
Heisenberg group [10].
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3. Topics not covered
In the previous sections we have discussed two topics of Lieb’s work, namely quan-

tum Coulomb systems and functional inequalities. Those make up just a fraction of the body
of Lieb’s work and it is not unlikely that other writers would have picked completely different
topics. We would be remiss if we would not at least briefly mention a few more.

We have completely ignored the important chapter of exactly soluble models in
Lieb’s work in the 1960s. This field was revolutionized by Lieb’s solutions of the ice problem,
the Fierz–Rys F-model and Slater’s KDP model, as well as the already mentioned Lieb–
Liniger model. In connection with ice type models, Lieb and Temperley constructed what
became known as the Temperley–Lieb algebra, which has applications in several areas of
mathematics, e.g., knot theory, and in physics. Lieb’s work lies at the foundations of modern
statistical mechanics and has a long-lasting influence on integrable probability and combi-
natorics, to name just a few.

Concerning Lieb’s contributions to condensed matter physics Nachtergaele, Solovej
and Yngvason write in the preface of the third volume of Lieb’s selected works [28]:

“The impact of Lieb’s work in mathematical condensed matter physics is unri-
valed. It is fair to say that if one were to name a founding father of the field, Elliott
Lieb would be the only candidate to claim this singular position."

This area includes, in particular, Lieb’s seminal work on the Hubbard model, including its
solution in the one-dimensional case with Wu and the discovery of Lieb ferromagnetism
and the Lieb lattice, as well as the highly cited joint works with Schultz and Mattis on two
soluble models of an antiferromagnetic chain and with Mattis on the Luttinger model and
the discovery of bosonization.

Already in the introduction we mentioned the “Lieb–Robinson bounds”, which
establish the deep fact that there is a finite group velocity for information propagation in
quantum spin systems. This turned out to be quite important for ideas about quantum com-
putation and condensed matter physics.

Moreover, together with Affleck, Kennedy and Tasaki, Lieb developed what came
to be known as the AKLT model of a spin-one spin chain. This has proved to be an important
prototype of a class of models and eigenstates known as matrix product states.

From the area of statistical mechanics we mention Lieb’s proof of the existence
of phase transitions in classical and quantum spin systems, obtained jointly with Fröhlich,
Israel and Simon and with Dyson and Simon. The proofs are based on the method of reflection
positivity, which Lieb has masterfully used in several situations.

Another famous result is Lieb’s work with Heilman on the zeros of the partition
function of the monomer-dimer problem, which is related to the matching problem in com-
binatorics. This is also of importance in computer science.

A notable mention is a new approach to the physics and mathematics of the second
law of thermodynamics, developed jointly with Yngvason.
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The list of topics in this section has so far focused on the more physics-oriented work
of Lieb. From the more mathematics-oriented work let us just mention his fundamental con-
tributions to the theory of symmetric decreasing rearrangement. This includes, among other
things, a general rearrangement inequality for many functions, obtained with Brascamp and
Luttinger, as well as the proof that symmetric decreasing rearrangement can be discontinuous
in Sobolev spaces, obtained with Almgren.

Finally, we would like to highlight the book by Lieb and Loss [32], which has become
a standard textbook for graduate courses in mathematical analysis and which eloquently and
concisely promotes the philosophy of rigorous mathematics with a view towards applications.

We hope that these pages may serve as an invitation to look at Lieb’s original research
papers. Only in this way can the reader feel the clarity, vitality and beauty of Lieb’s work, a
work that has, and continues to, inspire generations.

Congratulations on receiving the Gauss Prize, Elliott!
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