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For more than six decades Elliott Lieb has been among the most influential figures
in mathematical physics. From his first work in the late 1950s through research that
continues to the present day, he has displayed an uncanny ability to perceive the
mathematical structures that lie at the heart of physical systems. In elucidating
these structures, he has enriched both mathematics and physics.

Different Fields, Different Goals

The two fields have always had a symbiotic relationship: Mathematics supplies a
rigorous basis for expressing physical intuitions, and physics supplies rich inspiration
for new mathematics. Nevertheless the two fields are very different in their goals,
outlook, and culture. Lieb is nearly unique in having repeatedly made profound and
ground-breaking contributions to both fields. Both have awarded him top honors; in
this year alone, he receives not only the Gauss Prize, but also the 2022 APS Medal
for Exceptional Achievement in Research, the highest honor of the American Physical
Society.

Lieb is very much a mathematician in the way he applies the utmost rigor to prob-
lems from physics. He has produced mathematical results about classical questions
that, at the time he addressed them, were not fashionable in physics but that later
turned out to have an impact in that field. One example is Lieb’s 1973 work with
Mary Beth Ruskai, which proved a key result about relations among certain charac-
teristics of quantum mechanical systems. That result, known as “strong subadditivity
of the entropy,” is today one of the cornerstones of the burgeoning field of quantum
information theory.

At the same time, Lieb works like a physicist in that his main aim is to understand
physical reality. His physical intuition has identified many ideas in physics that
subsequently had a significant impact in mathematics. For example, in 1976 Lieb and
Herm Jan Brascamp were led by their work in statistical mechanics to develop a new
tool now called the Brascamp-Lieb inequalities. Thirty years later, these inequalities
had a major impact in the branch of mathematics known as harmonic analysis, and
they and their relatives appear in some of the work that earned Terence Tao a Fields
Medal in 2006. Even more recently, the Brascamp-Lieb inequalities have had an
impact in theoretical computer science.

Comprising over 400 publications across a variety of subjects, Lieb’s opus is im-
possible to summarize in a short space. Instead we provide here a closer look at three
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examples of his work that convey a sense of his taste in problems and his approach
to solving them.

Square Ice

In the late 1950s, mathematical physics was concerned largely with classical mechanics
and dynamics. Lieb and others forged a completely new line of research by using tools
from mathematical analysis to attack problems in quantum and statistical mechanics.
A signal example of this is Lieb’s 1967 solution to the “square ice” problem from
physical chemistry.

In landmark experiments in the 1930s, researchers were able to bring ice to ex-
tremely low temperatures and measure its “residual entropy.” This quantity captures
the amount of entropy, or disorder, that remains despite the low temperature and
that cannot be accounted for by vibrations within the crystalline lattice of the water
molecules.

Abstractly, one can picture frozen H2O as a three-dimensional lattice, in which
the oxygen atoms lie on the nodes of the lattice and the hydrogen atoms lie on lines
connecting the nodes. A 1935 paper by Linus Pauling proposed what came to be
known as the “ice rule.” In the abstract lattice, the bonds between H and O atoms
can be represented by arrows pointing inward towards the O atoms. The ice rule says
that each node in the lattice has exactly two inward-pointing arrows.

The number of possible lattice configurations abiding by the ice rule grows enor-
mously as the size of the lattice grows. It is this proliferation of configurations that
produces the disorder, and thus the residual entropy, in ice. The two quantities—
the number of configurations and the residual entropy—ought to be related by a
simple mathematical expression. So if one knew the number of configurations and
plugged it into that expression, would it match the residual entropy measured in the
experiments?

This was the question Pauling asked. An exact calculation of the number of
configurations was out of reach. Instead, Pauling made a careful estimate and found
that it accorded very well with the experimental value. This has been hailed as one
of the most successful confirmations of the validity of statistical mechanics.

But because the result relied on an estimate, its potential was unfulfilled. In
the mid-1960s Lieb took up the two-dimensional version of the ice problem, which is
called “square ice.” In the square ice model, one has a two-dimensional lattice where
the nodes in the lattice are connected by arrows that obey the ice rule: Each node
has exactly two incoming arrows.

In 1967, Lieb used insights from mathematical combinatorics, together with con-
cepts imported from a different part of physics, to calculate the exact number of
configurations of square ice. This “magic number,” as Freeman Dyson once called it,
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also aligned closely to the experimental value and confirmed the validity of the ice
rule.

Immediately recognized as a turning point, this result ushered in the flourishing
field of what is now known as exactly soluble models, which lies at the border of
mathematics and physics. Lieb continued to make decisive contributions to this field,
some of which subsequently had wide impact within mathematics. One example is
a construct known as the Temperley-Lieb algebra, which Lieb invented with Neville
Temperley and which played a key role in the revolutionary work in knot theory that
earned Vaughan Jones a Fields Medal in 1990.

Stability of Matter

Lieb’s square-ice result exemplifies a theme that has pervaded his work ever since:
the quest to understand matter in the lowest energy states. It is in such states that
one can hope to perceive the most fundamental structures of matter and investigate
them mathematically. This was the motivation behind another facet of Lieb’s work
that we will now consider, his work on the stability of matter.

By the mid-1960s, the 40-year-old theory of quantum mechanics had been widely
confirmed. But at its heart lay a basic unanswered question: Why is matter stable?
Quantum mechanics says that the basic components of matter are electrons and
positively charged nuclei. These oppositely charged particles ought to simply implode
and collapse. But they don’t. Instead, all matter around us—rocks, people, trees—
remains stable. Can quantum mechanics account for this?

The first proof that the answer is yes came in 1967-68, in long papers by Freeman
Dyson and Andrew Lenard. The goal is to show that the minimal energy of N particles
scales not like N2—that is, the number of interactions among the particles—but rather
like N . Dyson and Lenard reached this goal, showing that the minimal energy is less
than a constant times N . However, due to an accumulation of inefficient estimates,
that constant was so huge, on the order of −1015, that it was physically meaningless.

Together with Walter Thirring, Lieb came up with a completely new and greatly
improved proof of the stability of matter. Just four pages long, their 1976 paper
was not only far simpler mathematically but also shed new light on the physics. In
particular, they greatly sharpened the constant that Dyson and Lenard had groped
for. This epitomizes a major theme in Lieb’s work, which is to optimize constants to
elucidate their physical meaning.

Together with Thirring and others, Lieb went on to investigate in a mathemati-
cally precise way how stability of matter is governed by two basic tenets of quantum
mechanics, the Pauli exclusion principle and the Heisenberg uncertainty principle.
They showed how both principles can most usefully be captured in what became
known as the Lieb-Thirring inequality, which is a vast generalization of the classic
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mathematical result called the Sobolev inequality. The Lieb-Thirring inequality has
also found applications beyond the problem of stability of matter.

This work fed back into mathematics, as Lieb and his collaborators worked on gen-
eralizing and sharpening related inequalities, such as the Hardy-Littlewood-Sobolev
inequality. In the process, they uncovered symmetries that brought new meaning and
usefulness to these tools. This work has had a major impact within mathematics,
especially in the fields of analysis and geometry.

Bose-Einstein Condensate

Our third example from Lieb’s work concerns a state of matter called the Bose-
Einstein condensate, a state that can be reached only at extremely low temperatures
close to absolute zero. In this extraordinary state, quantum mechanical effects, which
normally operate only at the microscopic level, emerge at the macroscopic level. Many
of the properties of this state come from quantum mechanical dynamics having no
classical analog.

The phenomenon was predicted in the mid-1920s by Albert Einstein, following
ideas of Satyendra Nath Bose. However, the technical capability of bringing matter
to such low temperatures took another 70 years to develop. The physicists who
produced the first Bose-Einstein condensate in 1995 received the Nobel Prize for
their achievement. That landmark work set off a burst of new research.

It was in the early 1960s that Lieb first took up this problem. Earlier work had
resulted in a formula for the ground-state energy in a Bose-Einstein condensate. While
correct physically, the formula lacked a rigorous mathematical basis. Lieb hoped to
supply that basis by proving the validity of the formula. In 1963 he managed to
re-derive the formula in a new way, providing additional confirmation of its basic
correctness. However, he was not able to prove its validity.

In a tour de force that exemplifies Lieb’s persistence and long-term view, he finally
produced the proof 40 years later, in a 1998 paper with Jakob Yngvason. Coming
on the heels of the 1995 experiments, the Lieb-Yngvason paper added to the surge of
interest in Bose-Einstein. The topic has since become one of the most active areas of
research in mathematical physics.

In related work, Lieb, together with Ian Affleck, Tom Kennedy, and Hal Tasaki,
invented and solved what is now known as the AKLT quantum spin system. Carried
out in 1987, this work provides an early example of a system exhibiting what is today
referred to as a topological state of matter, a subject of great current interest.
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Shaping Decades of Research

Over his long career, Lieb has had more than 100 co-authors. Many of these collabo-
rations have had an intense, exhilarating quality, due to Lieb’s prodigious intellectual
energy, immense powers of concentration, and exacting work ethic. These traits have
also marked his interactions with young researchers, including his ten doctoral stu-
dents, all of whom have gone on to flourishing careers of their own. Some of them
appear on the stellar list of speakers for a conference honoring Lieb’s 90th birthday,
held 30 July to 1 August this year.

Lieb has also made notable contributions to support the professions of mathe-
matics and of physics. He twice served as president of the International Association
of Mathematical Physics (1982-1984 and 1997-1999). During 1992-1995, he served
as a Member-at-Large of the Council of the American Mathematical Society. His
exceptional probity and integrity led in 1994 to his appointment to a committee that
formulated the Society’s first-ever ethical guidelines.

In shaping decades of research in mathematics and in physics, Elliott Lieb has
reached to the very roots of these twin trees of human knowledge. He stands out as
one of the great thinkers of our time.

Curriculum vitae of Elliott Lieb:
https://web.math.princeton.edu/~lieb/vita-short.html
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