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How long does it take to solve a problem on a computer? This seemingly
innocuous question, unanswerable in general, lies at the heart of computa-
tional complexity theory. With deep roots in mathematics and logic, this
area of research seeks to understand the boundary between which problems
are efficiently solvable by computer and which are not.

Computational complexity theory is one of the most vibrant and inven-
tive branches of computer science, and Constantinos Daskalakis stands out
as one of its brightest young lights. His work has transformed understand-
ing about the computational complexity of a host of fundamental problems
in game theory, markets, auctions, and other economic structures. A wide-
ranging curiosity, technical ingenuity, and deep theoretical insight have en-
abled Daskalakis to bring profound new perspectives on these problems.

His first outstanding achievement grew out of his doctoral dissertation
and lies at the border of game theory and computer science. Game the-
ory models interactions of rational agents—these could be individual people,
businesses, governments, etc.—in situations of conflict, competition, or coop-
eration. A foundational concept in game theory is that of Nash equilibrium.
A game reaches a Nash equilibrium if each agent adopts the best strategy
possible, taking into account the strategies of the other agents, so that there
is no incentive for any agent to change strategy. The concept is named after
mathematician John F. Nash, who proved in 1950 that all games have Nash
equilibria. This result had a profound effect on economics and earned Nash
the Nobel Prize in Economic Sciences in 1994.

Game theory is widely applicable, not only in economics but even in such
areas as international relations and biology. Clearly it would be useful to
have a way to calculate Nash equilibria efficiently, in order to predict what
strategic agents might do. Thus a long line of research began, soon after Nash
proved his theorem, in which researchers developed algorithms to calculate
Nash equilibria. By the early 2000s, however, none of those algorithms was
known to be efficient, and some had been shown to be inefficient. Suspicions
arose that the problem of computing a Nash equilibrium might be intractable.
And if it is intractable, there would be no reason to expect equilibria would
always be discovered by strategic agents, that is, by human beings with
limited brains. Such a conclusion would reduce expectations for how well
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Nash equilibrium can predict human behavior.
Questions of computational tractability are often viewed in the context

of the well known “P versus NP” paradigm, which arose in the 1970s and
soon became a central theme of computational complexity theory. Loosely
speaking, P stands for the class of problems that are easy to solve by com-
puter, meaning that an efficient algorithm for their solution is known. The
class NP by contrast contains problems that are believed to be hard to solve,
meaning that, if one is given a proposed solution, there is an efficient way to
check it, but no efficient algorithm is known to produce solutions.

Problems in NP derive their hardness from the possibility that a solution
might not exist. By contrast, for the problem of computing a Nash equi-
librium, Nash’s proof guarantees that a solution exists. For this reason, the
Nash equilibrium problem does not fit into the P versus NP paradigm. In
1994, Christos Papadimitriou defined a new complexity class called PPAD,
suited to problems like the Nash equilibrium problem, for which solutions
always exist and for which no efficient algorithm is known to compute solu-
tions. PPAD stands for “polynomial parity argument for directed graphs”
and refers to a certain standard argument used to prove existence results
in combinatorics. The argument is a directed version of a result known as
the handshaking lemma. PPAD contains all computational problems whose
solution can be shown to exist by using this lemma.

One of the most important problems in PPAD is a computational version
of a result from pure mathematics called the Brouwer fixed point theorem.
It says that a continuous mapping from a ball to itself cannot displace all
points; at least one point must remain fixed under the map. Proved by
L.E.J. Brouwer in 1911, this fundamental result is the basis for countless
proofs in mathematics—including Nash’s proof of the existence of equilibria.
Brouwer’s proof is nonconstructive, meaning that it guarantees the existence
of fixed points but does not show you how to find them. The computational
version of the Brouwer fixed point theorem asks for an algorithm for finding
fixed points. In his 1994 paper, Papadimitriou showed that this computa-
tional version is “PPAD-complete,” meaning that it is in PPAD and any
problem in PPAD can be reduced to it, or, in other words, it is exactly as
hard as PPAD.

Ten years later, Daskalakis became a PhD student of Papadimitriou and
began working on the Nash equilibrium problem. He made a big advance
when, together with Papadimitriou and Paul Goldberg, he proved that the
Nash equilibrium problem is computationally equivalent to the problem of
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finding Brouwer fixed points and therefore is also PPAD-complete. In show-
ing that the Nash equilibrium problem is intractable, the work of Daskalakis
et al breaks the universality of Nash equilibria: One cannot expect Nash equi-
libria to always result from interactions among strategic agents, because those
agents cannot perform intractable computations. In this practical sense,
Nash equilibria do not always exist.

The work also sheds light on why an efficient algorithm for the Nash
equilibrium problem had been so elusive. If one looks at the guts of the
algorithms people had developed to compute Nash equilibria, one sees the
hallmark structure of the PPAD class lurking in the background. The work
of Daskalakis et al showed that this structure is unavoidable.

While contributing new conceptual and technical insights, their work also
emphasized the need for practical algorithms for efficiently computing equi-
libria for important subclasses of games. In later work, Daskalakis produced
significant results on approximation of Nash equilibria, which have in turn
provided inspiration for further developments by other researchers.

The second main area where Daskalakis has made outstanding contribu-
tions is connected to a branch of economics called mechanism design. Here a
“mechanism” is a set of incentives that are offered in order to induce agents
to behave in a certain way. Mechanism design is in some sense the reverse of
game theory, in that game theory tries to analyze how agents will behave in
a game, whereas mechanism design aims at designing a game that provides
the right incentives for the agents to reach a desirable outcome.

The most basic model of a mechanism is an auction, and the simplest
example is an auction with only one item for sale. How should one design the
auction rules to maximize profit? In 1981 economist Roger Myerson provided
a complete and elegant answer to this question for a single-item auction as
well as for other auction settings in which each bidder’s preferences for the
outcome can be summarized in a single number. Such auction settings are
called “single-dimensional.”

Myerson’s work had a major impact in economics and stimulated a great
deal of subsequent research. Its insights have been applied in a host of
enterprises, such as auctions for drilling rights, telecommunications spectra
auctions, and online auctions. The 2007 Nobel Prize in Economic Sciences
honored the area of mechanism design and was awarded jointly to Myerson,
Leonid Hurwicz, and Eric Maskin.

There are other kinds of auction settings, in which more than one item
is offered for sale and the items might be bundled, and in which the value
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the bidders put on the bundles cannot be expressed by a single number.
In contrast to our thorough knowledge of single-dimensional auctions, such
multi-dimensional auctions have remained poorly understood. In fact, it is
not known how to optimally sell even two items to one buyer. As the number
of buyers and items increases, the number of possible auction designs quickly
proliferates into a highly complicated set. The optimal designs, when they
can be found, often exhibit counter-intuitive properties and can be highly
sensitive to details of the bidders’ preferences.

Daskalakis delved into this dauntingly complex subject starting around
2011. One of the biggest challenges was to develop insight into the set of
all possible auction designs. Daskalakis, together with his students at the
time, Yang Cai and Matt Weinberg, developed ingenious ways to exploit lin-
ear programming to uncover structure in this set. Using this structure, they
developed a method for translating a mechanism design problem into a prob-
lem in algorithm design. They could then construct computationally efficient
algorithms to produce optimal mechanisms. The balance this work strikes
between the structural and the computational viewpoints proved especially
fruitful and yielded powerful results.

The new insights developed in this work led to further advances by
Daskalakis, Alan Deckelbaum, and Christos Tzamos. They obtained new
results in an area of mathematics known as optimal transport theory and
used those results to characterize mathematically the structure of optimal
multi-item mechanisms in the single-buyer setting.

The most valuable aspect of the work of Daskalakis in mechanism de-
sign has been to crack open a problem that had previously been seen as
unapproachable. Because they are theoretical, the results would need to be
simplified before they could be applied directly to concrete problems. Re-
searchers, including Daskalakis, have already begun to explore ways to adapt
his structural and algorithmic results to exchange optimality for simplicity
and robustness.

In addition to his work on the Nash equilibrium problem and mechanism
design, Daskalakis has made contributions to several other areas, includ-
ing machine learning, statistics and probability theory, and computational
biology. In the latter realm, a major task is the reconstruction of phylo-
genetic trees from molecular data. In 2011, together with Elchanan Mossel
and Sebastien Roch, Daskalakis published a proof of a central conjecture
in mathematical phylogeny concerning the specific conditions under which
evolutionary trees can be reconstructed. His more recent work focuses on
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high-dimensional statistics and the theoretical foundations of machine learn-
ing.

The work of Constantinos Daskalakis exhibits fearlessness in tackling dif-
ficult, complex, and longstanding problems. He engages deeply with their
concrete details and uses the intuition thereby gained to synthesize struc-
tural and technical insights that provide the key to theoretical advances. His
brilliance as a researcher combines with his lively curiosity and infectious
enthusiasm to make him a natural leader in the field. Now just 37 years old,
Daskalakis is sure to remain in this role in the decades to come.
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