

Kähler manifolds and transcendental techniques in algebraic geometry

Jean-Pierre Demailly

Institut Fourier, Université de Grenoble I, France

August 29 / ICM 2006, Madrid

Sheaf / De Rham / Dolbeault / cohomology

- Sheaf cohomology $H^q(X, \mathcal{F})$ especially when \mathcal{F} is a coherent analytic sheaf.
- Special case : cohomology groups $H^q(X,R)$ with values in constant coefficient sheaves $R=\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C},\ldots$
 - De Rham cohomology groups.

Sheaf / De Rham / Dolbeault / cohomology

- Sheaf cohomology $H^q(X, \mathcal{F})$ especially when \mathcal{F} is a coherent analytic sheaf.
- Special case: cohomology groups H^q(X, R) with values in constant coefficient sheaves R = Z, Q, R, C, ...
 De Rham cohomology groups.
- $\Omega_X^p = \mathcal{O}(\Lambda^p T_X^*) = \text{ sheaf of holomorphic } p\text{-forms on } X.$
- Cohomology classes [forms / currents yield same groups]

$$\alpha$$
 d-closed k-form/current to $\mathbb{C} \longmapsto \{\alpha\} \in H^{p+q}(X, \mathbb{C})$
 α $\overline{\partial}$ -closed (p, q) -form/current to $F \longmapsto \{\alpha\} \in H^{p,q}(X, F)$

Dolbeault isomorphism (Dolbeault - Grothendieck 1953)

$$H^{0,q}(X,F) \simeq H^{0,q}(X,\mathcal{O}(F)),$$

 $H^{p,q}(X,F) \simeq H^{0,q}(X,\Omega_X^p \otimes \mathcal{O}(F))$

Sheaf / De Rham / Dolbeault / cohomology

- Sheaf cohomology $H^q(X, \mathcal{F})$ especially when \mathcal{F} is a coherent analytic sheaf.
- Special case: cohomology groups H^q(X, R) with values in constant coefficient sheaves R = Z, Q, R, C, ...
 De Rham cohomology groups.
- $\Omega_X^p = \mathcal{O}(\Lambda^p T_X^*) = \text{sheaf of holomorphic } p\text{-forms on } X.$
- Cohomology classes [forms / currents yield same groups]

$$\alpha$$
 d-closed k-form/current to $\mathbb{C} \longmapsto \{\alpha\} \in H^{p+q}(X, \mathbb{C})$
 α $\overline{\partial}$ -closed (p, q) -form/current to $F \longmapsto \{\alpha\} \in H^{p,q}(X, F)$

Dolbeault isomorphism (Dolbeault - Grothendieck 1953)

$$H^{0,q}(X,F) \simeq H^{0,q}(X,\mathcal{O}(F)),$$

 $H^{p,q}(X,F) \simeq H^{0,q}(X,\Omega_X^p \otimes \mathcal{O}(F))$

Hodge decomposition theorem

Theorem. If (X.ω) is compact Kähler, then

$$H^k(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X,\mathbb{C}).$$

- Each group $H^{p,q}(X, \mathbb{C})$ is isomorphic to the space of (p,q) harmonic forms α with respect to ω , i.e. $\Delta_{\omega}\alpha = 0$.
- Hodge Conjecture [a millenium problem!].
 If X is a projective algebraic manifold,
 Hodge (p, p)-classes = H^{p,p}(X, C) ∩ H^{2p}(X, Q)
 are generated by classes of algebraic cycles of codimension p with Q-coefficients.
- (Claire Voisin, 2001) ∃ 4-dimensional complex torus X possessing a non trivial Hodge class of type (2.2), such that every coherent analytic sheaf F on X satisfies c₂(F) = 0.

Idea of proof of Claire Voisin's counterexample

The idea is to show the existence of a 4-dimensional complex torus $X = \mathbb{C}^4/\Lambda$ which does not contain any analytic subset of positive dimension, and such that the Hodge classes of degree 4 are perpendicular to ω^{n-2} for a suitable choice of the Kähler metric ω .

The lattice Λ is explicitly found via a number theoretic construction of Weil based on the number field $\mathbb{Q}[i]$, also considered by S. Zucker.

The theorem of existence of Hermitian Yang-Mills connections for stable bundles combined with Lübke's inequality then implies $c_2(\mathcal{F}) = 0$ for every coherent sheaf \mathcal{F} on the torus.

Kodaira embedding theorem

Theorem. X a compact complex n-dimensional manifold. Then the following properties are equivalent.

- X can be embedded in some projective space P^N_c as a closed analytic submanifold (and such a submanifold is automatically algebraic by Chow's thorem).
- X carries a hermitian holomorphic line bundle (L, h) with positive definite smooth curvature form iΘ_{L,h} > 0.
 For ξ ∈ L_x ≃ C, ||ξ||²_h = |ξ|²e^{-φ(x)},

$$i\Theta_{L,h} = i\partial\overline{\partial}\varphi = -i\partial\overline{\partial}\log h,$$

$$c_1(L) = \left\{\frac{i}{2\pi}\Theta_{L,h}\right\}.$$

 X possesses a Hodge metric, i.e., a Kähler metric ω such that {ω} ∈ H²(X, Z).

Positive cones

Definition. Let X be a compact Kähler manifold.

- The Kähler cone is the set K ⊂ H^{1,1}(X, ℝ) of cohomology classes {ω} of Kähler forms. This is an open convex cone.
- The pseudo-effective cone is the set E ⊂ H^{1.1}(X, R) of cohomology classes {T} of closed positive (1, 1) currents. This is a closed convex cone.
 (by weak compactness of bounded sets of currents).
- Always true: $\overline{\mathcal{K}} \subset \mathcal{E}$.
- One can have: K ⊆ E: if X is the surface obtained by blowing-up P² in one point, then the exceptional divisor E ≃ P¹ has a cohomology class {α} such that ∫_E α = E² = −1, hence {α} ∉ K, although {α} = {[E]} ∈ E.

Kähler (red) cone and pseudoeffective (blue) cone

Neron Severi parts of the cones

In case X is projective, it is interesting to consider the "algebraic part" of our "transcendental cones" K and \mathcal{E} , which consist of suitable integral divisor classes. Since the cohomology classes of such divisors live in $H^2(X,\mathbb{Z})$, we are led to introduce the Neron-Severi lattice and the associated Neron-Severi space

$$\begin{array}{rcl} \operatorname{NS}(X) &:= & H^{1,1}(X,\mathbb{R}) \cap \big(H^2(X,\mathbb{Z})/\{\operatorname{torsion}\}\big), \\ \operatorname{NS}_{\mathbb{R}}(X) &:= & \operatorname{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R}, \\ \mathcal{K}_{\operatorname{NS}} &:= & \mathcal{K} \cap \operatorname{NS}_{\mathbb{R}}(X), \\ \mathcal{E}_{\operatorname{NS}} &:= & \mathcal{E} \cap \operatorname{NS}_{\mathbb{R}}(X). \end{array}$$

Neron Severi parts of the cones

Complex manifolds /(p,q)-forms

- Goal: study the geometric / topological / cohomological properties of compact Kähler manifolds
- A complex n-dimensional manifold is given by coordinate charts equipped with local holomorphic coordinates (z₁, z₂,...,z_n).
- A differential form u of type (p, q) can be written as a sum

$$u(z) = \sum_{|J|=\rho, |K|=q} u_{JK}(z) dz_J \wedge d\overline{z}_K$$

where
$$J = (j_1, ..., j_p)$$
, $K = (k_1, ..., k_q)$.

$$dz_j = dz_{j_1} \wedge \ldots \wedge dz_{j_p}, \quad d\overline{z}_K = d\overline{z}_{k_1} \wedge \ldots \wedge d\overline{z}_{k_q}.$$

ample / nef / effective / big divisors

Theorem (Kodaira+successors, D90). Assume X projective.

- K_{NS} is the open cone generated by ample (or very ample)
 divisors A (Recall that a divisor A is said to be very ample
 if the linear system H⁰(X, O(A)) provides an embedding
 of X in projective space).
- The closed cone K_{NS} consists of the closure of the cone of nef divisors D (or nef line bundles L), namely effective integral divisors D such that D · C ≥ 0 for every curve C.
- \mathcal{E}_{NS} is the closure of the cone of effective divisors, i.e. divisors $D = \sum c_j D_j$, $c_j \in \mathbb{R}_+$.
- The interior \mathcal{E}_{NS}° is the cone of big divisors, namely divisors D such that $h^0(X, \mathcal{O}(kD)) \geq c k^{\dim X}$ for k large.

Proof: L2 estimates for \(\partial \) Bochner-Kodaira technique

ample / nef / effective / big divisors

Approximation of currents, Zariski decomposition

Definition. On X compact Kähler, a Kähler current T is a closed positive (1,1)-current T such that $T \ge \delta \omega$ for some smooth hermitian metric ω and a constant $\delta \ll 1$.

Approximation of currents, Zariski decomposition

- **Definition.** On X compact Kähler, a Kähler current T is a closed positive (1,1)-current T such that $T \ge \delta \omega$ for some smooth hermitian metric ω and a constant $\delta \ll 1$.
- Theorem. $\alpha \in \mathcal{E}^{\circ} \Leftrightarrow \alpha = \{T\}$, T = a Kähler current. We say that \mathcal{E}° is the cone of big (1,1) classes.

Approximation of currents, Zariski decomposition

- a Closed positive (1.1)-current T such that $T \geq \delta \omega$ for some smooth hermitian metric ω and a constant $\delta \ll 1$.
- Theorem. $\alpha \in \mathcal{E}^{\circ} \Leftrightarrow \alpha = \{T\}$, T = a Kähler current. We say that \mathcal{E}° is the cone of big (1.1)-classes.
- Theorem (D92). Any Kähler current T can be written

$$T = \lim T_m$$

where $T_m \in \alpha = \{T\}$ has logarithmic poles, i.e.

 \exists a modification $\mu_m: X_m \to X$ such that

$$\mu_m^* T_m = [E_m] + \beta_m$$

where E_m is an effective \mathbb{Q} -divisor on \widetilde{X}_m with coefficients in $\frac{1}{m}\mathbb{Z}$ and β_m is a Kähler form on \widetilde{X}_m .

Idea of proof of analytic Zariski decomposition (1)

Locally one can write $T=i\partial\overline{\partial}\varphi$ for some strictly plurisubharmonic potential φ on X. The approximating potentials φ_m of φ are defined as

$$\varphi_m(z) = \frac{1}{2m} \log \sum_{\ell} |g_{\ell,m}(z)|^2$$

where $(g_{\ell,m})$ is a Hilbert basis of the space

$$\mathcal{H}(\Omega, m\varphi) = \big\{ f \in \mathcal{O}(\Omega) \colon \int_{\Omega} |f|^2 e^{-2m\varphi} dV < +\infty \big\}.$$

The Ohsawa-Takegoshi L^2 extension theorem (applied to extension from a single isolated point) implies that there are enough such holomorphic functions, and thus $\varphi_m \ge \varphi - C/m$. On the other hand $\varphi = \lim_{m \to +\infty} \varphi_m$ by a Bergman kernel trick and by the mean value inequality.

Idea of proof of analytic Zariski decomposition (2)

The Hilbert basis $(g_{\ell,m})$ is a family of local generators of the multiplier ideal sheaf $\mathcal{I}(mT) = \mathcal{I}(m\varphi)$. The modification $\mu_m : \tilde{X}_m \to X$ is obtained by blowing-up this ideal sheaf, with

$$\mu_m^* \mathcal{I}(mT) = \mathcal{O}(-mE_m).$$

for some effective Q-divisor E_m with normal crossings on X_m . Now, we set $T_m = i\partial\overline{\partial}\varphi_m$ and $\beta_m = \mu_m^*T_m - [E_m]$. Then $\beta_m = i\partial\overline{\partial}\psi_m$ where

$$\psi_m = \frac{1}{2m} \log \sum_{\ell} |g_{\ell,m} \circ \mu_m/h|^2 \quad \text{locally on } \widetilde{X}_m$$

and h is a generator of $\mathcal{O}(-mE_m)$, and we see that β_m is a smooth semi-positive form on \widetilde{X}_m . The construction can be made global by using a gluing technique, e.g. via partitions of unity, and β_m can be made Kähler by a perturbation argument.

Algebraic analogue

The more familiar algebraic analogue would be to take $\alpha = c_1(L)$ with a big line bundle L and to blow-up the base locus of |mL|, $m \gg 1$, to get a \mathbb{Q} -divisor decomposition

$$\mu_m^* L \sim E_m + D_m$$
, E_m effective, D_m free.

Such a blow-up is usually referred to as a "log resolution" of the linear system $\lfloor mL \rfloor$, and we say that $E_m + D_m$ is an approximate Zariski decomposition of L. We will also use this terminology for Kähler currents with logarithmic poles.

Analytic Zariski decomposition

Characterization of the Fujiki class C

Theorem (Demailly-Paun 2004). A compact complex manifold X is bimeromorphic to a Kähler manifold \widetilde{X} (or equivalently, dominated by a Kähler manifold \widetilde{X}) if and only if it carries a Kähler current T.

Proof. If $\mu: X \to X$ is a modification and $\widetilde{\omega}$ is a Kähler metric on \widetilde{X} , then $T = \mu_* \widetilde{\omega}$ is a Kähler current on X.

Conversely, if T is a Kähler current, we take $X = X_m$ and $\widetilde{\omega} = \beta_m$ for m large enough.

Definition. The class of compact complex manifolds X bimeromorphic to some Kähler manifold \widetilde{X} is called the Fujiki class C.

Hodge decomposition still holds true in C.

Complex manifolds / Currents

 A current is a differential form with distribution coefficients

$$T(z) = i^{pq} \sum_{|J|=p, |K|=q} T_{JK}(z) dz_J \wedge d\overline{z}_K$$

Characterization of the Fujiki class C

Theorem (Demailly-Paun 2004). A compact complex manifold X is bimeromorphic to a Kähler manifold \widetilde{X} (or equivalently, dominated by a Kähler manifold \widetilde{X}) if and only if it carries a Kähler current T.

Proof. If $\mu: X \to X$ is a modification and $\widetilde{\omega}$ is a Kähler metric on X, then $T = \mu_* \widetilde{\omega}$ is a Kähler current on X.

Conversely, if T is a Kähler current, we take $\widetilde{X} = \widetilde{X}_m$ and $\widetilde{\omega} = \beta_m$ for m large enough.

Definition. The class of compact complex manifolds X bimeromorphic to some Kähler manifold \widetilde{X} is called the Fujiki class C.

Hodge decomposition still holds true in C.

Numerical characterization of the Kähler cone

Theorem (Demailly-Paun 2004). Let X be a compact Kähler manifold. Let

$$\mathcal{P} = \big\{ \alpha \in H^{1,1}(X,\mathbb{R}) \colon \int_Y \alpha^p > 0, \ \forall Y \subset X, \ \dim Y = p \big\}.$$

"cone of numerically positive classes".

Then the Kähler cone K is one of the connected components of P.

Numerical characterization of the Kähler cone

Theorem (Demailly-Paun 2004). Let X be a compact Kähler manifold. Let

$$\mathcal{P} = \{\alpha \in H^{1,1}(X,\mathbb{R}) \colon \int_Y \alpha^\rho > 0, \ \forall Y \subset X, \ \dim Y = \rho\}.$$

"cone of numerically positive classes".

Then the Kähler cone K is one of the connected components of P.

Numerical characterization of the Kähler cone

Theorem (Demailly-Paun 2004). Let X be a compact Kähler manifold. Let

$$\mathcal{P} = \big\{ \alpha \in H^{1,1}(X,\mathbb{R}) \, ; \, \int_Y \alpha^p > 0, \, \forall Y \subset X, \, \dim Y = p \big\}.$$

"cone of numerically positive classes".

Then the Kähler cone K is one of the connected components of P.

Corollary (Projective case). If X is projective algebraic, then K = P.

Note: this is a "transcendental version" of the Nakai-Moishezon criterion.

Example (non projective) for which $\mathcal{K} \subsetneq \mathcal{P}$.

Take X = generic complex torus $X = \mathbb{C}^n/\Lambda$.

Then X does not possess any analytic subset except finite subsets and X itself.

Hence
$$\mathcal{P} = \{\alpha \in H^{1,1}(X,\mathbb{R}): \int_X \alpha^n > 0\}.$$

Since $H^{1,1}(X,\mathbb{R})$ is in one-to-one correspondence with constant hermitian forms, \mathcal{P} is the set of hermitian forms on \mathbb{C}^n such that $\det(\alpha) > 0$, i.e. possessing an even number of negative eigenvalues.

K is the component with all eigenvalues > 0.

Proof of the theorem : use Monge-Ampère

Fix $\alpha \in \overline{\mathcal{K}}$ so that $\int_X \alpha^n > 0$.

If ω is Kähler, then $\{\alpha + \varepsilon \omega\}$ is a Kähler class $\forall \varepsilon > 0$.

Use the Calabi-Yau theorem (Yau 1978) to solve the Monge-Ampère equation

$$(\alpha + \varepsilon\omega + i\partial\overline{\partial}\varphi_{\varepsilon})^n = f_{\varepsilon}$$

where $f_c > 0$ is a suitably chosen volume form.

Necessary and sufficient condition:

$$\int_X f_\varepsilon = (\alpha + \varepsilon \omega)^n \quad \text{in } H^{n,n}(X, \mathbb{R}).$$

Otherwise, the volume form of the Kähler metric $\alpha_s = \alpha + \varepsilon \omega + i \partial \overline{\partial} \varphi_s$ can be spread randomly.

Proof of the theorem : concentration of mass

In particular, the mass of the right hand side f_{ε} can be spread in an ε -neighborhood U_{ε} of any given subvariety $Y \subset X$.

If $\operatorname{codim} Y = p$, on can show that

$$(\alpha + \varepsilon\omega + i\partial\overline{\partial}\varphi_{\varepsilon})^{p} \to \Theta$$
 weakly

where Θ positive (p, p)-current and $\Theta \ge \delta[Y]$ for some $\delta > 0$.

Now, "diagonal trick": apply the above result to

$$\widetilde{X} = X \times X$$
, $\widetilde{Y} = \text{diagonal} \subset \widetilde{X}$, $\widetilde{\alpha} = \text{pr}_1^* \alpha + \text{pr}_2^* \alpha$.

As $\widetilde{\alpha}$ is nef on \widetilde{X} and $\int_{\widetilde{X}} (\widetilde{\alpha})^{2n} > 0$, it follows by the above that the class $\{\widetilde{\alpha}\}^n$ contains a Kähler current Θ such that $\Theta \geq \delta[\widetilde{Y}]$ for some $\delta > 0$. Therefore

$$T := (\operatorname{pr}_1)_*(\Theta \wedge \operatorname{pr}_2^* \omega)$$

is numerically equivalent to a multiple of α and dominates $\delta \omega$, and we see that T is a Kähler current.

Proof of the theorem: concentration of mass

In particular, the mass of the right hand side f_{ε} can be spread in an ε -neighborhood U_{ε} of any given subvariety $Y \subset X$.

If $\operatorname{codim} Y = p$, on can show that

$$(\alpha + \varepsilon \omega + i \partial \overline{\partial} \varphi_{\varepsilon})^{\rho} \to \Theta$$
 weakly

where Θ positive (p, p)-current and $\Theta \ge \delta[Y]$ for some $\delta > 0$.

Now. "diagonal trick": apply the above result to

$$\widetilde{X} = X \times X$$
, $\widetilde{Y} = \text{diagonal} \subset \widetilde{X}$, $\widetilde{\alpha} = \text{pr}_1^* \alpha + \text{pr}_2^* \alpha$.

As $\widetilde{\alpha}$ is nef on \widetilde{X} and $\int_{\widetilde{X}} (\widetilde{\alpha})^{2n} > 0$, it follows by the above that the class $\{\widetilde{\alpha}\}^n$ contains a Kähler current Θ such that $\Theta \geq \delta[\widetilde{Y}]$ for some $\delta > 0$. Therefore

$$T := (\operatorname{pr}_1)_*(\Theta \wedge \operatorname{pr}_2^* \omega)$$

is numerically equivalent to a multiple of α and dominates $\delta\omega$, and we see that T is a Kähler current.

Proof of the theorem: concentration of mass

In particular, the mass of the right hand side f_c can be spread in an ε -neighborhood U_c of any given subvariety $Y \subset X$.

If $\operatorname{codim} Y = p$, on can show that

$$(\alpha + \varepsilon \omega + i \partial \overline{\partial} \varphi_{\varepsilon})^{\rho} \to \Theta$$
 weakly

where Θ positive (p, p)-current and $\Theta \ge \delta[Y]$ for some $\delta > 0$.

Now, "diagonal trick": apply the above result to

$$\widetilde{X} = X \times X$$
, $\widetilde{Y} = \text{diagonal} \subset \widetilde{X}$, $\widetilde{\alpha} = \text{pr}_1^* \alpha + \text{pr}_2^* \alpha$.

As $\widetilde{\alpha}$ is nef on X and $\int_{\widetilde{X}} (\widetilde{\alpha})^{2n} > 0$, it follows by the above that the class $\{\widetilde{\alpha}\}^n$ contains a Kähler current Θ such that $\Theta \geq \delta[\widetilde{Y}]$ for some $\delta > 0$. Therefore

$$T := (\operatorname{pr}_1)_*(\Theta \wedge \operatorname{pr}_2^* \omega)$$

is numerically equivalent to a multiple of α and dominates $\delta\omega$, and we see that T is a Kähler current.

Generalized Grauert-Riemenschneider result

Main conclusion (Demailly-Paun 2004).

Let X be a compact Kähler manifold and let $\{\alpha\} \in \overline{\mathcal{K}}$ such that $\int_X \alpha^n > 0$.

Then $\{\alpha\}$ contains a Kähler current T, i.e. $\{\alpha\} \in \mathcal{E}^{\circ}$.

Complex manifolds / Currents

A current is a differential form with distribution coefficients

$$T(z) = \sum_{|J|=p, |K|=q} T_{JK}(z) dz_J \wedge d\overline{z}_K$$

- The current T is said to be positive if the distribution $\sum \lambda_j \overline{\lambda}_k T_{JK}$ is a positive real measure for all $(\lambda_J) \in \mathbb{C}^N$ (so that $T_{KJ} = \overline{T}_{JK}$, hence $\overline{T} = T$).
- The coefficients T_{JK} are then complex measures and the diagonal ones T_{JJ} are positive real measures.

Generalized Grauert-Riemenschneider result

Main conclusion (Demailly-Paun 2004).

Let X be a compact Kähler manifold and let $\{\alpha\} \in \overline{\mathcal{K}}$ such that $\int_X \alpha^n > 0$.

Then $\{\alpha\}$ contains a Kähler current T, i.e. $\{\alpha\} \in \mathcal{E}^{\circ}$.

Final step of proof

Clearly the open cone $\mathcal K$ is contained in $\mathcal P$, hence in order to show that $\mathcal K$ is one of the connected components of $\mathcal P$, we need only show that $\mathcal K$ is closed in $\mathcal P$, i.e. that $\overline{\mathcal K} \cap \mathcal P \subset \mathcal K$. Pick a class $\{\alpha\} \in \overline{\mathcal K} \cap \mathcal P$. In particular $\{\alpha\}$ is nef and satisfies $\int_X \alpha^n > 0$. Hence $\{\alpha\}$ contains a Kähler current T.

Now, an induction on dimension using the assumption $\int_Y \alpha^p > 0$ for all analytic subsets Y (we also use resolution of singularities for Y at this step) shows that the restriction $\{\alpha\}_{Y}$ is the class of a Kähler current on Y.

We conclude that $\{\alpha\}$ is a Kähler class by results of Paun (PhD 1997), therefore $\{\alpha\} \in \mathcal{K}$.

Variants of the main theorem

Corollary 1 (DP2004). Let X be a compact Kähler manifold.

$$\{\alpha\} \in H^{1,1}(X,\mathbb{R}) \text{ is K\"{a}hler} \Leftrightarrow \exists \omega \text{ K\"{a}hler s.t. } \int_{Y} \alpha^k \wedge \omega^{\rho-k} > 0$$

for all $Y \subset X$ irreducible and all $k = 1, 2, ..., p = \dim Y$.

Proof. Argue with $(1-t)\alpha + t\omega$, $t \in [0,1]$.

Corollary 2 (DP2004). Let X be a compact Kähler manifold.

$$\{\alpha\} \in H^{1,1}(X,\mathbb{R}) \text{ is nef}(\alpha \in \overline{\mathcal{K}}) \Leftrightarrow \forall \omega \text{ K\"{a}hler} \int_{Y} \alpha \wedge \omega^{p-1} \geq 0$$

for all $Y \subset X$ irreducible and all $k = 1, 2, ..., p = \dim Y$.

Consequence. the dual of the nef cone $\overline{\mathcal{K}}$ is the closed convex cone in $H^{n-1,n-1}_{\mathbb{R}}(X)$ generated by cohomology classes of currents of the form $[Y] \wedge \omega^{p-1}$ in $H^{n-1,n-1}(X,\mathbb{R})$.

Variants of the main theorem

Corollary 1 (DP2004). Let X be a compact Kähler manifold.

$$\{\alpha\} \in H^{1,1}(X,\mathbb{R}) \text{ is K\"{a}hler} \Leftrightarrow \exists \omega \text{ K\"{a}hler s.t. } \int_{Y} \alpha^k \wedge \omega^{p-k} > 0$$

for all $Y \subset X$ irreducible and all $k = 1, 2, ..., p = \dim Y$.

Proof. Argue with $(1-t)\alpha + t\omega$, $t \in [0,1]$.

Corollary 2 (DP2004). Let X be a compact Kähler manifold.

$$\{\alpha\} \in H^{1,1}(X,\mathbb{R}) \text{ is nef}(\alpha \in \overline{\mathcal{K}}) \Leftrightarrow \forall \omega \text{ K\"{a}hler} \int_{Y} \alpha \wedge \omega^{\rho-1} \geq 0$$

for all $Y \subset X$ irreducible and all $k = 1, 2, ..., p = \dim Y$.

Consequence. the dual of the nef cone K is the closed convex cone in $H^{n-1,n-1}_{\mathbb{R}}(X)$ generated by cohomology classes of currents of the form $[Y] \wedge \omega^{p-1}$ in $H^{n-1,n-1}(X,\mathbb{R})$.

Deformations of compact Kähler manifolds

A deformation of compact complex manifolds is a proper holomorphic map

$$\pi: \mathcal{X} \to S$$
 with smooth fibers $X_t = \pi^{-1}(t)$.

Basic question (Kodaira ~ 1960). Is every compact Kähler manifold X a limit of projective manifolds:

$$X \simeq X_0 = \lim X_{t_\nu}, t_\nu \to 0, X_{t_\nu}$$
 projective ?

Recent results by Claire Voisin (2004)

- In any dimension ≥ 4, ∃X compact Kähler manifold which does not have the homotopy type (or even the homology ring) of a complex projective manifold.
- In any dimension ≥ 8, ∃X compact Kähler manifold such that no compact bimeromorphic model X' of X has the homotopy type of a projective manifold.

Deformations of compact Kähler manifolds

A deformation of compact complex manifolds is a proper holomorphic map

$$\pi: \mathcal{X} \to S$$
 with smooth fibers $X_t = \pi^{-1}(t)$.

Basic question (Kodaira ~ 1960). Is every compact Kähler manifold X a limit of projective manifolds:

$$X \simeq X_0 = \lim X_{t_\nu}, t_\nu \to 0, X_{t_\nu}$$
 projective ?

Recent results by Claire Voisin (2004)

- In any dimension ≥ 4, ∃X compact Kähler manifold which does not have the homotopy type (or even the homology ring) of a complex projective manifold.
- In any dimension ≥ 8, ∃X compact Kähler manifold such that no compact bimeromorphic model X' of X has the homotopy type of a projective manifold.

Conjecture on deformation stability of the Kähler property

Theorem (Kodaira and Spencer 1960).

The Kähler property is open with respect to deformation: if X_{t_0} is Kähler for some $t_0 \in S$, then the nearby fibers X_t are also Kähler (where "nearby" is in metric topology).

We expect much more.

Conjecture. Let $X \to S$ be a deformation with irreducible base space S such that some fiber X_{t_0} is Kähler. Then there should exist a countable union of analytic strata $S_{\nu} \subset S$, $S_{\nu} \neq S$, such that

- X_t is Kähler for $t \in S \setminus \bigcup S_{\nu}$.
- X_t is bimeromorphic to a Kähler manifold (i.e. has a Kähler current) for t ∈ ∪ S_v.

Theorem on deformation stability of Kähler cones

Theorem (Demailly-Paun 2004). Let $\pi: \mathcal{X} \to S$ be a deformation of compact Kähler manifolds over an irreducible base S. Then there exists a countable union $S' = \bigcup S_v$ of analytic subsets $S_v \subsetneq S$, such that the Kähler cones $K_t \subset H^{1,1}(X_t, \mathbb{C})$ of the fibers $X_t = \pi^{-1}(t)$ are $\nabla^{1,1}$ -invariant over $S \setminus S'$ under parallel transport with respect to the (1,1)-projection $\nabla^{1,1}$ of the Gauss-Manin connection ∇ in the decomposition of

$$\nabla = \begin{pmatrix} \nabla^{2,0} & * & 0 \\ * & \nabla^{1,1} & * \\ 0 & * & \nabla^{0,2} \end{pmatrix}$$

on the Hodge bundle $H^2 = H^{2,0} \oplus H^{1,1} \oplus H^{0,2}$.

Positive cones in $H^{n-1,n-1}(X)$ and Serre duality

Definition. Let X be a compact Kähler manifold.

- Cone of (n-1, n-1) positive currents $\mathcal{N} = \overline{\operatorname{cone}}\{\{T\} \in H^{n-1, n-1}(X, \mathbb{R}); T \operatorname{closed} \geq 0\}.$
- · Cone of effective curves

$$\mathcal{N}_{NS} = \mathcal{N} \cap NS_{\mathbb{R}}^{n-1,n-1}(X),$$

= $\overline{cone}\{\{C\} \in H^{n-1,n-1}(X,\mathbb{R}); C \text{ effective curve}\}.$

- Cone of movable curves : with $\mu: X \to X$, let $M_{NS} = \overline{cone}\{\{C\} \in H^{n-1,n-1}(X,\mathbb{R}): [C] = \mu_*(H_1 \cdots H_{n-1})\}$ where $H_j = \text{ample hyperplane section of } \tilde{X}$.
- Cone of movable currents: with $\mu: X \to X$, let $\mathcal{M} = \overline{\operatorname{cone}}\{\{T\} \in H^{n-1,n-1}(X,\mathbb{R}); T = \mu_*(\widetilde{\omega}_1 \wedge \ldots \wedge \widetilde{\omega}_{n-1})\}$ where $\widetilde{\omega}_j = K \overline{a}hler\ metric\ on\ \widetilde{X}$.

Main duality theorem

 $H^{1,1}(X,\mathbb{R}) \leftarrow \text{Serre duality} \rightarrow H^{n-1,n-1}(X,\mathbb{R})$

Complex manifolds / Basic examples of Currents

• The current of integration over a codimension p analytic cycle $A = \sum c_j A_j$ is defined by duality as $[A] = \sum c_j [A_j]$ with

$$\langle [A_j], u \rangle = \int_{A_j} u_{[A_j]}$$

for every (n-p, n-p) test form u on X.

Hessian forms of plurisubharmonic functions:

$$\varphi$$
 plurisubharmonic $\Leftrightarrow \left(\frac{\partial^2 \varphi}{\partial z_i \partial \overline{z}_k}\right) \geq 0$

then

$$T = i\partial \overline{\partial} \varphi$$
 is a closed positive (1, 1)-current.

Recall that the Serre duality pairing is

$$(\alpha^{(p,q)}, \beta^{(n-p,n-q)}) \longmapsto \int_X \alpha \wedge \beta.$$

Recall that the Serre duality pairing is

$$(\alpha^{(p,q)}, \beta^{(n-p,n-q)}) \longmapsto \int_X \alpha \wedge \beta.$$

Theorem (Demailly-Pāum 2001)

If X is compact Kähler, then

K and N are dual cones.

(well known since a long time : K_{NS} and N_{NS} are dual)

Recall that the Serre duality pairing is

$$(\alpha^{(p,q)}, \beta^{(n-p,n-q)}) \longmapsto \int_X \alpha \wedge \beta.$$

Theorem (Demailly-Paum 2001)

If X is compact Kähler, then

K and N are dual cones.

(well known since a long time : K_{NS} and N_{NS} are dual)

Theorem (Boucksom-Demailly-Paun-Peternell 2004)

If X is projective algebraic, then

Ens and Mns are dual cones.

Recall that the Serre duality pairing is

$$(\alpha^{(p,q)}, \beta^{(n-p,n-q)}) \longmapsto \int_X \alpha \wedge \beta.$$

Theorem (Demailly-Paum 2001)

If X is compact Kähler, then

K and N are dual cones.

(well known since a long time : K_{NS} and N_{NS} are dual)

Theorem (Boucksom-Demailly-Paun-Peternell 2004)

If X is projective algebraic, then

ENS and MNS are dual cones.

Conjecture (Boucksom-Demailly-Paun-Peternell 2004)

If X is Kähler, then

E and M should be dual cones.

Concept of volume (very important !)

Definition (Boucksom 2002).

The volume (movable self-intersection) of a big class $\alpha \in \mathcal{E}^{\circ}$ is

$$\operatorname{Vol}(\alpha) = \sup_{T \in \alpha} \int_{\widetilde{X}} \beta^n > 0$$

where the supremum is taken over all Kähler currents $T \in \alpha$ with logarithmic poles, and $\mu^*T = [E] + \beta$ with respect to some modification $\mu: \widetilde{X} \to X$.

If $\alpha \in \mathcal{K}$, then $\operatorname{Vol}(\alpha) = \alpha^n = \int_X \alpha^n$.

Theorem. (Boucksom 2002). If L is a big line bundle and $\mu_m^*(mL) = [E_m] + [D_m]$ (where $E_m =$ fixed part, $D_m =$ moving part), then

$$\operatorname{Vol}(c_1(L)) = \lim_{m \to +\infty} \frac{n!}{m^n} h^0(X, mL) = \lim_{m \to +\infty} D_m^n.$$

Movable intersection theory

Theorem (Boucksom 2002) Let X be a compact Kähler manifold and

$$H^{k,k}_{\geq 0}(X) = \{ \{T\} \in H^{k,k}(X,\mathbb{R}); T \ closed \geq 0 \}.$$

• $\forall k = 1, 2, ..., n, \exists$ canonical "movable intersection product"

$$\mathcal{E} \times \cdots \times \mathcal{E} \to H^{k,k}_{\geq 0}(X), \quad (\alpha_1, \dots, \alpha_k) \mapsto (\alpha_1 \cdot \alpha_2 \cdot \cdots \cdot \alpha_{k-1} \cdot \alpha_k)$$

such that $Vol(\alpha) = \langle \alpha^n \rangle$ whenever α is a big class.

 The product is increasing, homogeneous of degree 1 and superadditive in each argument, i.e.

$$\langle \alpha_1 \cdots (\alpha'_j + \alpha''_j) \cdots \alpha_k \rangle \ge \langle \alpha_1 \cdots \alpha'_j \cdots \alpha_k \rangle + \langle \alpha_1 \cdots \alpha''_j \cdots \alpha_k \rangle.$$

It coincides with the ordinary intersection product when the $\alpha_j \in \overline{\mathcal{K}}$ are nef classes.

Movable intersection theory

Theorem (Boucksom 2002) Let X be a compact Kähler manifold and

$$H^{k,k}_{\geq 0}(X) = \{ \{T\} \in H^{k,k}(X,\mathbb{R}); T \ closed \geq 0 \}.$$

• $\forall k = 1, 2, \dots, n$, \exists canonical "movable intersection" product"

$$\mathcal{E} \times \cdots \times \mathcal{E} \to H^{k,k}_{\geq 0}(X), \quad (\alpha_1, \dots, \alpha_k) \mapsto \langle \alpha_1, \alpha_2, \dots, \alpha_{k-1}, \alpha_k \rangle$$
such that $\operatorname{Vol}(\alpha) = \langle \alpha^n \rangle$ whenever α is a big class

such that $Vol(\alpha) = \langle \alpha^n \rangle$ whenever α is a big class.

 The product is increasing, homogeneous of degree 1 and superadditive in each argument, i.e.

$$\langle \alpha_1 \cdots (\alpha'_j + \alpha''_j) \cdots \alpha_k \rangle \geq \langle \alpha_1 \cdots \alpha'_j \cdots \alpha_k \rangle + \langle \alpha_1 \cdots \alpha''_j \cdots \alpha_k \rangle.$$

It coincides with the ordinary intersection product when the $\alpha_i \in K$ are nef classes.

Construction of the movable intersection product

First assume that all classes α_j are big, i.e. $\alpha_j \in \mathcal{E}^{\circ}$. Fix a smooth closed (n-k,n-k) semi-positive form u on X. We select Kähler currents $T_j \in \alpha_j$ with logarithmic poles, and simultaneous more and more accurate log-resolutions $\mu_m : \widetilde{X}_m \to X$ such that

$$\mu_m^* T_j = [E_{j,m}] + \beta_{j,m}.$$

We define

$$\langle \alpha_1 \cdot \alpha_2 \cdots \alpha_k \rangle = \lim_{m \to +\infty} \{ (\mu_m)_* (\beta_{1,m} \wedge \beta_{2,m} \wedge \ldots \wedge \beta_{k,m}) \}$$

as a weakly convergent subsequence. The main point is to show that there is actually convergence and that the limit is unique in cohomology; this is based on "monotonicity properties" of the Zariski decomposition.

Construction of the movable intersection product

First assume that all classes α_j are big, i.e. $\alpha_j \in \mathcal{E}^{\circ}$. Fix a smooth closed (n-k,n-k) semi-positive form u on X. We select Kähler currents $T_j \in \alpha_j$ with logarithmic poles, and simultaneous more and more accurate log-resolutions $\mu_m : \widetilde{X}_m \to X$ such that

$$\mu_m^* T_j = [E_{j,m}] + \beta_{j,m}.$$

We define

$$\langle \alpha_1 \cdot \alpha_2 \cdots \alpha_k \rangle = \lim_{m \to +\infty} \{ (\mu_m)_* (\beta_{1,m} \wedge \beta_{2,m} \wedge \ldots \wedge \beta_{k,m}) \}$$

as a weakly convergent subsequence. The main point is to show that there is actually convergence and that the limit is unique in cohomology; this is based on "monotonicity properties" of the Zariski decomposition.

Generalized abundance conjecture

Definition. For a class $\alpha \in H^{1,1}(X,\mathbb{R})$, the numerical dimension $v(\alpha)$ is

- $\nu(\alpha) = -\infty$ if α is not pseudo-effective,
- $\nu(\alpha) = \max\{p \in \mathbb{N} : \langle \alpha^p \rangle \neq 0\} \in \{0, 1, ..., n\}$ if α is pseudo-effective.

Conjecture ("generalized abundance conjecture"). For an arbitrary compact Kähler manifold X, the Kodaira dimension should be equal to the numerical dimension:

$$\kappa(X) = \nu(c_1(K_X)).$$

Remark. The generalized abundance conjecture holds true when $\nu(c_1(K_X)) = -\infty$, 0, n (cases $-\infty$ and n being easy).

Complex manifolds / Basic examples of Currents

• The current of integration over a codimension p analytic cycle $A = \sum c_j A_j$ is defined by duality as $[A] = \sum c_j [A_j]$ with

$$\langle [A_j], u \rangle = \int_{A_j} u_{[A_j]}$$

for every (n-p, n-p) test form u on X.

Hessian forms of plurisubharmonic functions :

$$\varphi$$
 plurisubharmonic $\Leftrightarrow \left(\frac{\partial^2 \varphi}{\partial z_i \partial \overline{z}_k}\right) \geq 0$

then

$$T = i\partial \overline{\partial} \varphi$$
 is a closed positive (1, 1)-current.

Proof of duality between $\mathcal{E}_{\mathrm{NS}}$ and $\mathcal{M}_{\mathrm{NS}}$

Theorem (Boucksom-Demailly-Paun-Peternell 2004). For X projective, a class α is in \mathcal{E}_{NS} (pseudo-effective) if and only if it is dual to the cone \mathcal{M}_{NS} of moving curves.

Proof of the theorem. We want to show that $\mathcal{E}_{NS} = \mathcal{M}_{NS}^{\vee}$. By obvious positivity of the integral pairing, one has in any case

$$\mathcal{E}_{NS} \subset (\mathcal{M}_{NS})^{\vee}$$
.

If the inclusion is strict, there is an element $\alpha \in \partial \mathcal{E}_{NS}$ on the boundary of \mathcal{E}_{NS} which is in the interior of \mathcal{N}_{NS} . Hence

(*)
$$\alpha \cdot \Gamma \geq \varepsilon \omega \cdot \Gamma$$

for every moving curve Γ , while $\langle \alpha^n \rangle = \operatorname{Vol}(\alpha) = 0$.

Characterization of uniruled varieties

Recall that a projective variety is called uniruled if it can be covered by a family of rational curves $C_r \simeq \mathbb{P}^1_{\mathbb{C}}$.

Theorem (Boucksom-Demailly-Paun-Peternell 2004) A projective manifold X is not uniruled if and only if K_X is pseudo-effective, i.e. $K_X \in \mathcal{E}_{NS}$.

Proof (of the non trivial implication). If $K_X \notin \mathcal{E}_{\mathrm{NS}}$, the duality pairing shows that there is a moving curve C_t such that $K_X \cdot C_t < 0$. The standard "bend-and-break" lemma of Mori then implies that there is family Γ_t of rational curves with $K_X \cdot \Gamma_t < 0$, so X is uniruled.

Complex manifolds / Kähler metrics

A Kähler metric is a smooth positive definite (1,1)-form

$$\omega(z) = i \sum_{1 \le j,k \le n} \omega_{jk}(z) dz_j \wedge d\overline{z}_k$$
 such that $d\omega = 0$.

- The manifold X is said to be Kähler (or of Kähler type) if it possesses at least one Kähler metric ω [Kähler 1933]
- Every complex analytic and locally closed submanifold X ⊂ P^N_C in projective space is Kähler when equipped with the restriction of the Fubini-Study metric

$$\omega_{FS} = \frac{i}{2\pi} \log(|z_0|^2 + |z_1|^2 + \ldots + |z_N|^2).$$

Especially projective algebraic varieties are Kähler.

Sheaf / De Rham / Dolbeault / cohomology

• Sheaf cohomology $H^q(X, \mathcal{F})$ especially when \mathcal{F} is a coherent analytic sheaf.

Sheaf / De Rham / Dolbeault / cohomology

- Sheaf cohomology H^q(X, F)
 especially when F is a coherent analytic sheaf.
- Special case : cohomology groups $H^q(X,R)$ with values in constant coefficient sheaves $R=\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C},\ldots$
 - De Rham cohomology groups.

->-