Computation

# Most scientific problems do not have a closed form
solution

» To solve them we must resort to computation and
create an approximate solution

- » To do this we create a numerical algorithm
~ » There are lypically a myriad of algorithms

~ & Is there a way to tell whether algorithm is optimal or
- near optimal?

i How do we define optimai?




Discrete Sensing

. & < R with \V large
. » We are able to ask » non-adaptive questions about -

. » Question means inner product . -« with v € I - called
~ sample

# Any such sampling is given by is an » =« \" matrix ¢ : the
wigsm y = b are the answers to our questions
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Optimal Matrices

& We have only built Optimal Matnces using probabilistic
methods
. » What can deterministic constructions give?
| » Needs a precise formulation
. _» We can not prove high performance for deterministic
~ constructions
# Deterministic constructions based on coding/finite fields
~ ele. give k < Cy\/n

aaa
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~ the sparsity level L, (ii) number of computations to
- decode, (jii) stability
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Computational Issues

» We have seen three competing issues: (i) optimality of

the sparsity level &, (i) number of computations to
decode, (iii) stability

- & ltis not yet clear exactly how these demands play
' against one another

_ » Theoretical Computer Science: Gilbert, Muthukrishnan,
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Analog Systems

. » How lo sense analog signals?
IL"!'_ ~ » Discrete to ﬂﬂilﬁg

Bo. » Can we build it: circuit implementation?

~ » Incertain contexts there are already impressive results:
_ Tomography (Candes)




Discrete Sensing

& < R with \ large
» We are able to ask » non-adaptive questions about
» Question means inner product - - » with » = 2" - called
. sample
' : .--k:ysmhsanmling is given by is an n = N\ matrix & : the
~_entries in ; = < are the answers to our questions

3 W&m‘a interested in the good / best matrices &, i.e.
e ﬂlﬂtm the best questions to ask??




Analog Systems

| » How to sense analog signals?
~ » Discrete to Analog
~» Canwe buid it: circuit implementation?
~ » Incertain contexts there are already impressive resuits:
i imography: (Candes)
+ Web site on Compressed Sensing: Rice ECE




Discrete Sensing

#» ¢ IR with \ large

» We are able to ask » non-adaptive questions about -

» Question means inner product - - r with ¢ = 7' - called
sample

~» Any such sampling is given by is an » x \" matrix & : the
. entries in y = ‘br are the answers to our quﬂshnns

~ what are the best questions to ask??

| » Here good roughly means that the samples y — .
~ contain enough information to approximate - well



Discrete Sensing

» rc I with \ large

» We are able to ask » non-adaptive questions about .

» Question means inner product . - + with » = I?" - called
sample

» Any such sampling is given by is an » =« \" matrix 4 : the
b entries in y = - are the answers to our questons

-4' l We are interested in the good / best matrices ¢, i.e.
~ what are the best questions o ask??
» Here good roughly means that the samples ; = $r
i mmmnunmmmmte:wen
- Two issues (n} Enough information in y; (i) How to







What is going on?

- measurements y
~ & N = {y: Py = 0} the null space of b dim(\N') = X.—n









What is going on?

» Since ¢ : 1Y — 1" many r are encoded with same y
& N := |y : Iy =0} the null space of

._:'. > Fly) ={z:Px=y} =20+ N forany ry £ Fly)

The hyperplanes #(y) with y < " stratify "

# Decoder is any (possibly nonlinear) mapping A from
.H“ — RN




What is going on?

| # Since ¢ R — R" many r are encoded with same 4
L & \ = [y: Py =0} the null space of ¢+

# Decoder is any (possibly nonlinear) mapping A from
. R — R"
'.':-._ - = A(d(r)) is our approximation to » from the




Many Settings

Numerical PDEs

Data Filling

Statistical Estimation

Encoding/Compression
Compressed Sensing



What is going on?

» Since ¢ : Y — I many r are encoded with same y
& N := {n: Py =0} the null space of P
P Fly) = {x: bx =y} = o+ N forany o € Fly)
# The hyperplanes F(y) with y = I stratify 12"

+ Decoder is any (possibly nonlinear) mapping A from
e R — R
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#» With no additional information about + it is doubtful we
_ can say anything

. » Fortunately the » we are interested in have structure
&= » Typically - can be well represented by sparse linear
combination of certain building blocks - for our

- purposes these building blocks are a basis

. -hm{mar}ﬂ problems we do not necessarily know




Structure

#» With no additional information about : it is doubtful we
can say anything

- » Fortunately the » we are interested in have structure

» Typically r can be well represented by sparse linear

~eombination of certain building blocks - for our
- purposes these building blocks are a basis

;-. _ In some(many) problems we do not necessarily know
~ theright basis
:IFﬂrﬂ'ﬁ maost part we shall assume the basis is known




First Measure of Optimality

» To begin with we shall assume : is sparse with respect
to the canonical basis on 2"
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» To begin with we shall assume - is sparse with respect
. tothe canonical basis on "
~» Any other basis could be handled by transformation (if
’ the basis is known)

~ ® The support of r is supp(x) = {i: x; = 0}




Viany Settings

Numerical PDEs

Data Filling

Statistical Estimation
Encoding/Compression

Compressed Sensing



First Measure of Optimality

» To begin with we shall assume - is sparse with respect
to the canonical basis on "

# Any other basis could be handled by transformation (if
2 the basis is known)

- The support of « is supp(x) := {i: x; £ 0}
s = {x : Fsupp(x) <k}




First Measure of Optimality

» To begin with we shall assume : is sparse with respect
to the canonical basis on It

. » Any other basis could be handled by transformation (if
the basis is known)

! :~" - The support of x is supp(x) ;= {i: x £ 0}
o ¥, = {x: #supp(x) < k)

that X, is a union of /- dimensional subspaces:
= Uy r)=&X7 Where Xy = {x : supp(x) C T}




First Measure of Optimality

» To begin with we shall assume  is sparse with respect
to the canonical basis on #¢"

~» Any other basis could be handled by transformation (if
the basis is known)

» Tha support of = is supp(x) := {i: x; £ 0}
g .:_i : = {x: #supp(x) < k}
| -.jf ' Note that X is a union of & dlmnmmalsuhspam

h there is iﬁ_r_\j sur:h each vector in £, is captured
( exaclly A(P(r)) =x. reX




First Measure of Optimality

» To begin with we shall assume - is sparse with respect
: to the canonical basis on #i"

# Any other basis could be handled by transformation (if
the basis is known)

~ » The supportof r is supp(x) := {i: x; £ 0}

- k= {x : #supp(x) < kj

k- .F Note that ;. is a union of i dimensional subspaces:
B ¥ = U om— X Where X = {r : supp(x) C T}

:'.'_. Hmtuuashm Given k, \ what is the smallest » for
.lisummmm . is captured




What matrices do the job?

- r‘ P = [r| B :"\'L G- - vy columns of &
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What matrices do the job?

.. » P = [r| ...r'w;i- o P _:'_r_.l:_'.‘-U'I..II'I'II'I‘Eﬂ'I'
# If T is a set of column indices

By = [v5,..... 0] iISthe n x #(T) submatrix of ¢
' mmmmmam "'ﬂ“ T= {.I;I....-Jm}



What matrices do the job?

. d=[v,.... o], ©.....vx columnsof &
~ # If T is a set of column indices




o

What matrices do the job?

» $= | el v, v columns of &
» If T is a set of column indices

> Py = v, inl I5the #£(T) x n submatrix of
E formed from the columns with index 7 = {iy.... .1}

B B2by = (v 05))s e OF size #(T) x #(T)

)
-

i

1

* If & is any n = N matrix and 2k < n, then the
g are equivalent:

eisa A suchthat A(P(r)) = o, forall r = &4,
nH{*l—{ﬂl

altTwIi'l#I‘ 2k, the matrix & has rank 2L
at 1" with £1" = 2k, the 2k xzkm-ﬁ;d-ris

v
e 1

L







Many Settings

Numerical PDEs

Data Fitting

Slatistical Estimation
Encoding/Compression

Compressed Sensing

Signal Processing: Searching for better ways to sample
signals than Shannon-Nyquist Theory




Optimal Matrices

Ql Given I can we construct matrices I of size 2/ - \ with
.~ the properties of the theorem?

'.l- We need \ vectors in [I7°* such that any 2/ of them are
Iﬂﬂ}r independent




Optimal Matrices

it

;""_ » Given i can we construct matrices & of size 2/ « \ with
i the properties of the theorem?

ar We need \ vectors in 7** such that any 2/ of them are
._ linearly independent
. » Vandermonde matrix. Choose «; < ry < -+ < xy

S R eI




Naive Decoding

Aly) ;= Argmin |y — Pz I.*'i.e?
Xy

Xp = {=: supp(z) C T}
\wp = Argwin |y — b=l —ar = [Ppbr] " By

2Ny

= Argmingpy—i [ly — Pler)leg
S0 N S i
S

B L
fLEh

—
=
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Trouble in Madnd

» Have we solved our first problem?
. _» None of us will be alive when the decoding is finished
| » Moreover, the decoding is also unstable
E The first problem has an easy fix. We can take the first

i 2k rows of the discrete Fourier matrix and build a
- decoder which uses only O\ + 4”) operations:
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Trouble in Madnd

» Have we solved our first problem?
» None of us will be alive when the decoding is fimshed
» Moreover, the decoding is also unstable

~_» The first problem has an easy fix. We can take the first
- 2k rows of the discrete Fourier matrix and build a
. decoder which uses only ()| \' + 4") operations:

_-:f,::- : However the stability problem is more substantial - no

se we had any matrix < and we knew the support




Trouble in Madnid

» Have we solved our first problem?
» None of us will be alive when the decoding is fimshed
» Moreover, the decoding is also unstable

L. # The first problem has an easy fix. We can take the first
- 2k rows of the discrete Fourier matrix and build a
.~ decoder which uses only (( \' + /) operations:

- However the stability problem is more substantial - no







Many Settings

" » Numerical PDEs

. & Data Filting

~ » Statistical Estimation
*"'_, Encoding/Compression
':"j. - Compressed Sensing

» Signal Processing: Searching for better ways to sample
~ signals than Shannon-Nyquist Theory







O]jtimal Stable Systems

' » Candes-Romberg-Tao; Donoho: Compressed Sensing
. » Two important discoveries: good matrices, decoding

~ exists ) < § = 4, < | such that the eigenvalues of &4
. arein |l —4.1+d) whenever #(1') =k

-
P
ol



Optimal Stable Systems

 » Candes-Romberg-Tao; Donoho: Compressed Sensing
» Two important discovenes: good matrices, decoding
Restricted Isnmetry Property (RIP) of order i: There

~ exists 0 < 4 = ;. < 1 such that the eugawnhusuﬂifh
llrh[l-.-i 1 + o] whenever #(T) =k =

nnnnnnn



Optimal Stable Systems

: ,J Restricted Isometry F'mperly (RIP) of order i.: There
- exists 0 < 4 = o, < 1 such that the eigenvalues of &4
. arein |1 - 4.1+ d] whenever #(T) =k

= )=lify < 1B()1F; < (1+6)]=lify



- Optimal Stable Systems

» Candes-Romberg-Tao; Donoho: Compressed Sensing
3 ~ » Two important discovernies: good matrices, decoding

‘.:-:'. » Restricted Isometry Property (RIP) of order /. There
. exists 0 < 4 = 4 < 1 such that the eigenvalues of &4
S arein II -, 1 -'I'--r'll whenever =(] ) =k

& (-l < 191 < (1+0)lalfy, =€




Optimal Stable Systems

#» Candes-Romberg-Tao, Donoho: Compressed Sensing

. » Two important discoveries: good matrices, decoding

| » Restricted Isometry Property (RIP) of order k: There
. exists 0 < 4 = o, < 1 such that the eigenvalues of &4
are in “ -, 1 + i‘l] whenever =(] ) =k

> Equivalently

B0 =)l < 19()1E < (1+9)lly, =€

_r-!:: Jecode ﬁ!‘ £y minimization
i Bily) = inb. E2llay




{, ball meets the set F(y)




Optimal Stable Systems

# Candes-Romberg-Tao; Donoho: Compressed Sensing
» Two important discoveries: good matrices, decoding

» Rastricted Isometry Property (RIP) of order /. There
.~ @Mists 0 < 4 = d; < 1 such that

{1—8)l=llfy < I¥ls < (1 +d)l2llfy. r€Z,

& Equivalently the eigenvalues of ;4 are in [1 — 4. 1 + 4]
» Ehmdu by /, minimization
=Ay) = inf [l

Candes-Tao: If ¢ satisfies the RIP of order 3/ then
_Lnemumm-ﬂ:}}—:ﬁﬂnr.




Optimal Stable Systems

» Candes-Romberg-Tao; Donoho: Compressed Sensing
L » Two important discovenes: good maltnces, decoding

| » Restricted Isometry Property (RIP) of order : There
3 exists (0 < 4 = 4, < 1 such that

- L (1= d)lilEy < 1) < (1+0)]allfy. + €T,
» Equivalently the eigenvalues of ;.4 are in [1 — 4.1 + 4]
-'m by ¢, minimization

3 M= _inf el

andes-Tao: If ¢ satisfies the RIP of order 3/ then
h v ,“'Eﬂﬁﬂﬂm&{'l'[r}j = r forthe
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Many Settings

#» Numerical PDEs
#» Data Fitting
» Slalistical Estimation
#» Encoding/Compression
| 3-;- Compressed Sensing
.f; :-r Signal Processing: Searching for better ways to sample
~ signals than Shannon-Nyquist Theory
. Mlarm Friendly: Easy to digest

. Interfaces mwamsufmammm Funcl:iumt




Building matrices

;‘f_.lr How can we build matrices that satisfy RIP for the
~largest value of i
- » Given ». \' we can construct such matrices for any

= k< amn/log(N/n)

)
W
= A



Building matrices

- » How can we build matrices that satisfy RIF for the

| largest value of 4

| » Given ». V' we can construct such matrices for any

- k < egn/ log{N/n)

~ » The additional loz( .V, n) is the price we pay for stability
#» How can we construct such &7



Building matrices

» How can we build matrices that satisfy RIF for the
largest value of

» Given »n. \' we can construct such matrices for any

- k < egn/ log(N/n)

. & The additional loz(V/n) is the price we pay for stability
~» How can we construct such $?

We want to create a lot of vectors ;... .. vy In 7" such
~ that any choice of 4 of them are far from being linearly




Building matrices

» How can we build matrices that satisfy RIP for the
largest value of A

» Given n. \ we can construct such matrices for any
k < egn log( N/ n)

.: The additional los( \ /1) is the price we pay for stability
~ » How can we construct such $7?

_» We want to create a lot of vectors ;. ... vy in /" such
Intanychumaﬂ of them are far from being linearly
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R" and use these as the columns of ¢
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. » We choose at random .\ vectors from the unit sphere in

| " and use these as the columns of &

. » We choose each entry of ¢ independently and at

. random from the Gaussian distribution with mean 0 and
variance »




Three constructions

» We choose at random \ vectors from the unit sphere in
- " and use these as the columns of
| » We choose each entry of ¢ independently and at
: random from the Gaussian distribution with mean () and
= variance '

_» We use Bernouli process and create a matrix with
-~ entries —1.1 (or0.1)




Three constructions

» We choose at random \ vectors from the unit sphere in
R" and use these as the columns of

#» We choose each entry of ¢ independently and at
random from the Gaussian distribution with mean () and
variance |

' » We use Bernouli process and create a matrix with

- entries —1.1 (oro. 1)
:mwmtlwmmmﬁm

| matrix & with RIP of order i for




Three constructions

» We choose at random .\ vectors from the unit sphere in
- 1" and use these as the columns of
. » We choose each entry of ¢ independently and at
|8 random from the Gaussian distribution with mean 0 and
variance »n '
~#» We use Bernouli process and create a matrix with
. entries —1.1 (or0.1)

o=l

~& With high probability each of these random







Three constructions

» We choose at random \ vectors from the unit sphere in
R and use these as the columns of 4

| We choose each entry of  independently and at
b random from the Gaussian distribution with mean () and
: variance :

» We use Bernouli process and create a matrix with

. entries —1.1 (or o, 1)
m high probability each of these random

s yields a matrix & with RIP of order i for
k < cun/ log(N/n)

Algorithm is constructive (not probabilistic) once we find

&. Probability is only used to prove existence of &



Three constructions

» We choose at random .\ vectors from the unit sphere in
iR and use these as the columns of @

» We choose each entry of ¢ independently and at
random from the Gaussian distribution with mean () and
variance n '
We use Bernouli process and create a matrix with
. entries —1.1 (or0,1)
& With high probability each of these random
- constructions yields a matrix < with RIP of order i for
mk{muflug[\fnj
b Algorithm is constructive (not probabilistic) once we find
~a &. Probability is only used to prove existence of ¢






Lazy man verification of RIP

- & Let Bu) = (0 ,(w)), « £ 2, be random matrices
. » Here each entry , , is an independent realization of

some fixed random vanable » with mean zero and
m .I..I'I.H



-Laz}* man verification of RIP

» Let M) = (o, lw)), « = 12, be random matrnces

# Here each entry ., | is an independent realization of
" some fixed mru:lum vanable ~ with mean zero and
variance |«

& Trivially we have E(|b(w)zl|7,) = -l



L.azy man veritfication of RIP

2 let b = (o ,lw)), w = 12, be random matnces

| » Here each entry .., is an independent realization of
. some fixed random variable - with mean zero and

. m I.,."'H

i 'llivially we have E| ﬂ'l'i.-.‘],t'ﬂ;": ) = “J'";'Ii,-



Lazv man Proof

~ Theorem (Baraniuk, Davenport, DeVore, Wakin)

| Given « there is a «; ~ () such that with probability | -« ",
| the matrix b(.) satisfies RIP of order  for all

:;._.. k< an/log(N/n)

~ » We find a net of points 7 which cover the unit sphere in
.. E& mmm a4

p Using the concentration inequality, we see that with
~high probability the draw of ¢ = ¢(..) satisfies

(= 5/2)lally < ¥l < (1 +0/2)laley. <P
.-:.--.'.' mlﬁlq = | find 4 such H’Itl.t —qller < /4

(e "-_ﬁ Ht—ﬂlq»-t—lﬂqllq < Méjd+1+ m ._




Lazy man Proof

Theorem (Baraniuk, Davenport, DeVore, Wakin)
~ Given « there is a «; ~ 0 such that with probability 1 -« ',
| the matrix (. satisfies RIP of order /. for all

~» We find a net of points ™ which cover the unit sphere in
.-:__, ¥4 to accuracy o/ 4

_# Using the concentration inequality, we see that with
'tﬂt probability the draw of b = ¢(.) satisfies
(1=5/2)llqlley < 1P(@lleg < (1 +0/2)lglley. aEP

his to all » ¢ ¥, by a boot strapping estimate:
en = with |z 5 = 1 find g such that [x — ¢ll,y < 6/4

lﬂl“ﬂ‘"* fl-"lﬂ"!"l‘l' < Méj4+1 ﬁf

1
S




Universality

# Suppose we have a collection of basis 5 = | V]
= _.- #{Hll . L™

3 & These probability arguments give the existence of a
. matnx <& which satisfies RIP of order /- simultaneously

. forall Be Band k < con/ log(N/n)
~» This means this one ¢ will capture sparsity with respect
4 ﬁﬂnr and all of these bases
aver to decode we need to know the basis
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» Suppose we have a collection of basis 5 .= | /)
e LB < (™

# These probability arguments give the existence of a
matrix & which satisfies RIP of order i simultaneously

. forallBeBandk < con/ log(N/n)
~» This means this one & will capture sparsity with respect
- loany and all of these bases

» However to decode we need to know the basis







Universality

#» Suppose we have a collection of basis 5 = | 1]
| . - #[H'I < [".- i
# These probability arguments give the existence of a
matrix ¢ which salisfies RIP of order I simultaneously
forall B Bamd k < con/ log{N/n)

- & This means this one & will capture sparsity with respect
~toany and all of these bases
» However to decode we need to know the basis




Model I1: Compressible Signals

~» The sparse signal classes do not represent real signals:
b signals will typically have all entries nonzero but most

will be small

| » Acompressible signal  is one that can be
approximated well by elements from ¥,
op(x)x = inf |l= = z|x

| 'Epi:ﬂi signal classes are ['(/,) | and typical X =/}
& el = (T i)
. : U(lf) then oy (x)y < k4717, p<yg

e -,2. P' 1): ”i["""}t‘," < =172

o ikt




Model 1I: Compressible Signals

~» The sparse signal classes do not represent real signals:
signals will typically have all entries nonzero but most
will be small

» A compressible signal » is one that can be
. approximated well by elements from %,
B oa(F)x = mi flx = =lix

. W signal classes are ['(/)) ) and typical X =/}
I ’ qr (Zl:l-l i"rl IF) -
Hre ) toman (o)p < /e




Optimality on Models 11

» Lel K be a compact set in /7"
"';.- Best performance on the class /i innorm | - ||y

E K}y == inf sup|lr=A(d{e)ly
(P AEAs sk

fHere A, = {(P.A): Pisn x N}
The pair (. A) is near optimal if

g lz = A(R(x))llx < CoEn(K)x



Optimality on Models 11

» Lel K be a compact set in /7"
"';.- Best performance on the class /i innorm | - ||y

E K}y == inf sup|lr=A(d{e)ly
(P AEAs sk

fHere A, = {(P.A): Pisn x N}
The pair (. A) is near optimal if

g lz = A(R(x))llx < CoEn(K)x



Optimality on /| classes

#» The asymptotic behavior of /-, i | is known for all
K = f-li'l:' Cinall X f_;'

» Solved in 1970's and 1980's in Approximation Theory
and Finite Dimensional Geometry

: ~» Kashin, Gluskin main players
ks Ehmph.lp; 1. r;:'.u

ﬂumlmslmuﬁ:ﬁlFH. minimization
ptimal performance for ¢ = 2. p < 1




Instance-Optimal

» We say (0. A) is Instance-Optimal of order & for X if for
an absolute constant (' - 0 (independent of L ». \)

lr = A(P(x) )l y < Coaplx)y

~ » We will be interested in \ =/

_» Problem: for a given X and size  «  find the largest
- values of i for which we have instance-optimality and
- the m—mmder pairs (‘b. A) which admit these

FL TS




Instance-Optimal

» We say (. A) is Instance-Optimal of order & for X if for
an absolute constant (' - 0 (independent of L. ». \)

Ex—A(P(x))lx < Coplr)x

~®» We will be interested in \' = /'
# Problem: for a given X and size n « \ find the largest
~ wvalues of i for which we have instance-optimality and
hm-damue;paimm- A) which admit these




Instance-Optimal

» We say (b, A) is Instance-Optimal of order & for .\ if for
an absolute constant (' - 0 (independent of L. »_ \)

lle = A(P)) Ly < Copla)x

L » We will be interested in \ = /-

# Problem: for a given \' and size » ~ \ find the largest
~ values of  for which we have instance-optimality and
hnnmd&r-damdar pairs ({I. A) which admit these
nﬂ;

en-Dahmen-DeVore solve the instance-optimal




Good News

# Let X — /) and let & satisfy RIP for 3k, i.e. 4y < 1 then
there is a decoder such that (<, \ ) is instance optimal
for i:

e = A(bi ;-~]|LI~.- < .;*ﬂ.uuh_l.ﬁ.

:,- . Given » we can have instance optimality if
- k= oo/ lowe( N/ n)

. » Bonus: Decoding can be done by /; Minimization

not explicitly stated there this result is easily
d from the work of Candes-Tao

. N

< -g




Discrete Sensing

B » re IR with \ large
We are able to ask » non-adaptive questions about -




Bad News

» Let \ . then in cm:ler lo have instance optimality for
k= 1we need r 2 epN

;'_:- » Here ., depends on the instance optimality constant ¢
;;;l- OOPS: Instance Optimality is not a Viable Concept in




' is not viable

~» We saw that Instance-Optimality for /




" Instance-Optimality in Probability
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» We saw that Instance-Optimality for /. is not viable
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» We saw that Instance-Optimality for /' is not viable
» Suppose I is a collection of random matrices

# We say this family satisfies RIF of order / with
probability 1| — « if a random draw { (.} will satisfy RIP
~ of order i with probability 1 — .
& We say (#(.)) is bounded with probability 1 — « if given
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Theorem: Cohen-Dahmen-DeVore

» If { i)} satisfies RIP of order 34 and boundedness
M each with probability | — « then there are decoders A (.|
such that given any r = /,; we have with probability
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_» Instance-optimality in probability
s Ranae ofkisk < con/ logl N/n)
r is the least squares minimization



Optimal Matrices

..;;' » We have only built Optimal Matrices using probabilistic




