Symplectic Field Theory (SFT)

s a large, yet unfimished project which was imiated a few years
ago by Alexander Givental, Helmut Hofer and the author
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Thanks to the master equation |H.FH) — U, we can define on VW

2 differential Dywy(A) — [A.H]. A= W, wh tishes O, — 0. In

many cases the homology H.(W. Dy ) provides us with a powerful

EEI}!I'I'IE[HL invariant.

& In the Floer case, this gives a far-going generalization of the
Floer homology theory, by bringing to it new invarant
algebraic structures

@ In the contact case this leads to the contact homology theory,

which, for contact manifolds of dimension > 3, is essentially
the only known source of invanants

Alternatively, one may use H to define a differential dy on the
Fock space Fock = {g = ¥ gu(q)h*)

k>0

du(g) = HE:
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with | X.,w, J) a Lagrangian submamitold Ly © 5 generated by a

function (). such that the Hamiltoman hi g. p) vanishes on L




Let (X, .0 ) be a symplectic cobordism which bounds |
I a Hamiltoman structure H (. X)) on ¥ X and

J' a .|'-a|r}|.al||||:' .JII'II-:I"-.T |.-.|II'|}.‘1|-'|-. structure aon r

As it was explained above, the - | associates
with (X, J) a Lagrangian submanitold Lj S generated by a
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In a little bit more advanced version of Rational SFT, in a way
similar to how this was done above for the Hamiltoman, we
S50 iate ','.:'I'I_h a4 SEqQuence =% { iFy e aof diltere !|:|,|i OIS O
X a function

F?(T.q.p) € P C[T]

where C| T] is a graded polynomial algebra generated by graded
variables T = (1;).i=1..... k:j=>0.

If & — 0 then similarly to the “naive case”, h®¥ vanishes on Ly
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where D = 5 ;- and 5 — (s;) are vanables associated to
ade | (Téfy ity )
Take forinstance. ¥ = 5. X is a 4-hall & = (#) where # is a
3-form which restricts to the standard volume form on 57, Then,
by differentiating (8) with respect to t — fyp and setting T = 0

3

{and denoting F = f~, 5 = 51p), we get




T,]h_.- nosa = owith 6 . 0 1 hen v B
h ' |
where D = Y t;, - and S = (s;) are vaniables associated to

= [ ity cfitfs )

Take, for instance, ¥ = 53, X is a 4-ball, © = (#) where # is a
3-form which restricts to the standard volume form on 5°. Then
by differentiating (8) with respect to r — g and setting T = 0
(and dencting F — 2, s — 515), we get
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which s the Hamilton-Jacobn equation for the evolution of the
l_dﬂlﬂ-]’lt.i._lll manifold L;, s s10. under the tlow of the
Hamiltonian by = “™.\" ' (0)
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A Symplectic manifold (X. . ) (unlike its symmetnc counterpart
Riemannian manifold) has a huge inhimite-dimensional group

i) D(.X..) of symmetnes, called symplectomorphisms

For instance, for n = 1 a symplectic form is just an area form, and
thus symplectomorphisms are

However, for n > 1, the group of symplectomorphisms is a proper
CY-closed subgroup of the n of IME PTESEIVIng

transiormaltionsy
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A Symplectic manifold (X..) (unlike its symmetnc counterpart
Riemanman mamiold) has a huge infimte- dimensional group

D = D[ X..) of symmetries, called symplectomarphisms

For instance, for n = 1 a symplectic form s just an area form, and
thus symplectomorphisms are g 1

However, for n > 1, the group of symplectomorphisms is a proper
C¥-closed subgroup of the group of volume preserving

transformations
The Lie algebra D of 2 consists of symplectic vector fields, i e

tangent vector fields v € TM such that the form a = i(v)w s
closed. If o is exact, o = dH. then the vector field v = spradH 15
called Hamiltonian, and the function H its Hamiltoman function.




A Symplectic manifold (X. ) (unlike its symmetnc counterpart
Riemannian manifold) has a huge infinite dlllli"rmulmi Eroup

D = D(X.<) of symmetnes, called symplectomorphisms

For instance, for n = 1 a symplectic form s just an area form, and
thus symplectomorphisms are area preserving transformations
However, for n > 1, the bruup of symplectomorphisms s a proper
Y closed l;n.‘:lgrnup of the group of velume preservinge
transformations

The Lie algebra 0 of © consists of symplectic vector fields. ie

tangent vector fields v € TM such that the form a = i(v)w &
" closed. If o s exact, o = dH, then the vector held v = sogradH is
. galled Hamiltonian, and the function H its H.'Jmlltuni.m function.
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For any compatible symplectic form o and almost complex

structure J. and any H we have
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Lagrangian, i.e half-dimensional isotropic submanifolds L © X,
wip = 0, play a very lmpmtam role in wmplﬂrm geometry
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For any Hn.n]rhlllhh- -.1..rr'|'|.|.'|.|{'~fT:[ torm w and almost COMphex

structure J, and any H we have

Lagrangian, i.e half-dimensional isotropic submanifolds L © X,
wip = 0, play a very important role in symplectic geometry
T [

Given a compatible J, L is Lagranman JITL 1 |
Here are two important examples of Lagrangian submanifolds:

® Asection s . M — T*M s Lagrangiesn if and only if it 15 a
closed 1-form,
~ » Given a symplectic mamifold (X.c)amap F- X — X is
:g symplectic, i.e. f*w =w, if and only if its graph 'y C X x X
i is Lagrangian with respect to the symplectic form
b Q=wx(—w)on X x X.




For any |.u!|'||':i|l_||;1.l1~ -.wnph-: tic form & and 2imost complex

structure J, and any H we have

Lagrangian, i.e half-dimensional isotropic submanifolds L © X,
wip = 0, play a very |mpmam role in symplectic geometry

Given a compatible J, L s Lagrangian ITL L L
Here are two important Fx‘tmplﬁ of Lagrangian submanifolds:

@ Asection s : M — T"M s Lagrangisn if and only if it is a
closed 1-form.

@ Given a symplectic manifold (X.w)amap f - X — X is
symplectic, ie fw=w. ifandonly ifitsgraph N'r C X x X
s Lagrangian with respect to the symplectic form

0 = x(—w)on X x X.




It is difhcult to hnd any symplectic invanants bevond the obvious
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e the total volume (i.e. | ");
X




it is difficult to hnd any symplectic invanants beyond the obvious
ones

e the total volume (ie. | ™),
X
& the homotopy class ol a compatible almost complex structure
I, and

o

@ the cohomology class || € H-(X). in the case of a closed
manifold X

It was great Gromov s insight. when he introduced holomorphic
curves as a tool for finding more subtle, specifically symplectic

Nvarianis.




Symplectic Field Theory (SFT)

i a large, yet unfimished project which was initiated a few years 5
ago by Alexander Givental, Helmut Holer and the author '

Several other mathematicians contributed and keep contnbuting a |
lot of work towards the foundations and applications of SFT

L. Abbas. | Bourgeois, K. Cieliehak, T. Coates, T. Ekholm.

i Etnyre. R. Hind, A. lven, D. McDuff, E. Katz. 5.-5. Kim

J Latchev, L. Ng. K. Mohnke, K. Wysocki, B. Parker, R. Siefring,
4 Sabloff, M. Sullivan, M.-L. Yau. |. Ustfovsky, E. Zehnder,.
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Given two almost complex manifolds (5, f5) and (X, Jx ) it makes sense

to talk aboul holimorpiae maps, 1.8 maps I . o2 — A Wwhich salisty

& W dim 5

S RO NS

& When dm S = 2, i.e. when (5. J5) 5 a Riemann surface then the
system (1) s determined, and regardless ot integrabulity ot Jx. the
local theory of holomorphic maps 5 — X, or as they called in this
case. holomorphic (also J-holomorphic, pseudo-holomorphic) curves,
5 as nch as in the integrable case =




Given Dwo almost complex mandolds (5. Js) and (X, Jx ) it makes sense

1o talk about holomorphie maps, 1 maps F - 5 — X which satisfy

Iy o df = df o Jg (1)

CHULEONS, eveem WoCall

® When dim 5 — 2, .e. when L, Jz) 5 a Hiemann surface then the
system (1) 5 determined, and regardless of integrability of Jy,. the
local theory of holomorphic maps S5 — X, or as they called in thes
case, holomorphic (also J-holomorphic, pseudo-holomorphic) curves
rs as rich as in the integrable case n.

o Moreover, if 5 s closed, or with appropnate boundary conditions,
the system (1) is elliptic whose principal symbol is the standard
{-operator.




Given two almost complex manitolds (5. Js) and (X, Jx ) it makes sense

1o L]Ih ,th_l:]l |||_-|-'|.|||-|;I|‘|I- maps, L& maps 3 - X which satisfy
I o df alf o Js (1)
o fdim5
sodubomns, even hocall

& When dm S = 2, i.e. when (5. J5) 5 a Riemann surface then the
system (1) = determined, and regardless of integrabality of Jx. the
local theory of holomorphic maps 5 — X, or as they called in this
case, holomorphic (also J-holomorphic. psendo-holomorphic) cornves,
15 as rich as in the integrable case -~

& Moreover, if 5 s closed, or with appropnate boundary conditions,
the system (1) is elliptic whose principal symbol is the standard

"h under certain transversality assumptions the moduli spaces of
~ holomeorphic curves form finite dimensional manifolds. or at least
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Gromov compactness theorem for holomorphic curves provides a
compactification of the moduli spaces of holomorphic curves
mmlar to 'Lhe Knudsen-Deligne Ml:rnrc*rﬂ r‘l:rmpattlfl::ﬂtrﬂn M
th‘ MC | SPDALCE ! 1 T i Tzl ir i nus g rh
rnﬂrhv-.1 points, provided that the area of Il.e:i::u'n:-rﬁhlr' curves is
uniformiy bounded. Let us recall that according to the
undformization theorem, the moduli space M, , of Riemann
surfaces, i.e. the space of equivalence classes

. of

(Sgods Xpye o)

F

of conformal structures on 3 closed surface g with n marked points. can
i- be identified for 2g + n > 3, with the moduli space of complete
&Iqbarbdlc metrics of finite area on S5g \ {x1..... Xn}-




Gromov compactness theorem for holomorphic curves provides a
compactification of the moduli spaces of holomorphic curves,
similar to the F"'-..nudsfn Deligne-Mumford compactification A4
thf modul Dace iy el f Feni + with
marked points, p:rn‘.l'ltll‘ﬂ that the arca of !|:|i-;:||'r4'.r1_*'rhr CLMNES 15
uniformily bounded. Let us recall that according to the
untformuzation theorem, the moduli space M, , of Riemann
surfaces, iLe. the space of equivalence classes

of

H.'r

(g fs Xpy e e 2y)

F_

of conformal structures on 3 closed surface g with n marked points. can
be identified for 2g -+ n > 3, with the moduli space of complete
hyberbolic metrics of finite area on 5; \ {x..... Xa).




The Knudsen [ ligne Mumitord
compactification Mg , is obtained
by adding nodal surfaces. Nodes, or
double points are, in the hyperb
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The Knudsen Deligne Mumford
compactification M, , is obtained
by adding nodal surfaces. Nodes. or < .
double pninh are, in the hyperbol

mterpretation, umons of 2 cusps,

and the degeneration means

shrinking a closed geodesics to a Tl Ty
point.
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in particular one may

The compactihcation ol | l have a phenomenon of
space of | rph ' provided bubbling off of
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Kontsevich's interpretation) differs
only in the stability condition: it needs
to be satished only tor

components of nodal curves (which are
sometimes called ¢hosts)




Symplectic Field ThEﬂ'F‘_u' ESFT]

is a large, vet unfinished project which was initiated a few vears
ago by Alexander Givental, Helmut Hoter and the author

Several other mathematicians contributed and keep contributing a
lot of work towards the foundations and applications of SFT.

L. Abbas, F. Bourgeors, K. Cielicbak, |. Coates, |. Ekholm

J Etnyre, R. Hind, A. lveii, D. McDuff, E. Katz, 5.-5. Kim

d Iatchev, | Np, K. Mohnke, K Wysocki, B. Parker, R. Siefring.
4 Sabloff. M. Sullivan, M.-L. Yau, |. Ustiovsky, E. Zehnder.. . .

We also benefited a lot from discussions and collaboration with the
people working on tightly related subjects, (e.g. relative
‘Gromov-Witten theory, Cluster Homology, String Topology etc ).




In particular one maw

The compactification of | udu have a phenomenon of
space ol holomorph provided bubbling oft of
by Gromov compactness theorem (in holomorphic spheres

Kontsevich's interpretation) differs
only in the stability condition: it needs

to be satishied only for constant
components of nodal curves (which are

sometimes called phosts)

The role of a compatible with J symplectic form w is to ensure the
area bounds for J-holomorphic curves. Indeed, the area of any

" holomorphic curve f : 5 — X coincides with its symplectic area

i { f*.2, and hence for a closed S the area of a holomorphic curve

8 F .S — X depends only on its homology class in Ha(X).




Glﬂm{'l‘-' s scheme of -:'h'-i”"nlp-_

holomorphic curve theory was the following

@ [hen. the compactifhed moduli space \ I:f\" 1) of

J-holomorphic curves of genus g in a fixed homology class
.-'“ = FI‘?{:{} orm & t

X f all smooth maps f ; X




Gromov s scheme of :'h"“l':mﬂ wmplect M aArTal
hodoumor ph urve theory was the Eulh.u.lmg_

@ Hick

@ Then, the compactified moduli space M’ {X J) of
J-holomorphic curves ol genus g in a ilxc{} homology class
A € Ha(X) form a cycle in the similarly enriched moduli space

A :
_J-: [X ) of all smooth maps | -

#» The compactness theorem ensures that the homology class of
this cycle remains unchanged when dhe vanies J. while Keeping
it compatible with .-

@ But all J, which are compatible with a fixed ., are homotopic,

and hence the homology class of A\ Ej[;"{' I) in _.1__':{.'{ ), called
- Gromov invariant, depends only on .
i:_ -}




BlkeR'={p»=0} CR* Let B be
the unit ball

g + G + ¢ < 1) CR? and set
H=R\B. leths : B*(R)— B} |
be two orthogonal embeddings of the
d-ball of radius R > 1 into the
upper- and lower-half spaces

B =, }u; and B* = {py < 0}
r%hhu and 4re not

wﬂw in &\ H

b




heorem [ Gromov)

Take R} = {p, =0} C R*. Let B be |
the unit ball '
B +@ +@ < 1} CR? and set
H=R'\B. leth; - B*(R) - RL

 be two orthogonal embeddings of the
4-ball of radius R > 1 into the
upper- and lower-half spaces
E={m > 0} and B = {p < 0O},

e h_ and h, are not
s ically isotopic in R* \ H




rem | Gromov)

fake R = {p, = 0) CR*. Let B be|
the unit ball _
{p%+q¥-1-q:,: < 1} C B? and set

H=R*\B lethy - B*(R)—R:

be two orthogonal embeddings of the
4-ball of radius R > 1 into the
upper- and lower-half spaces
RS = (p2 > 0} and RE = {p; < 0},
= h_ and h, are not

ically isotopic in R* \ H




Suppose there exists a symplectic isotopy h, B*(RY —R*\H

connecting g — h. and by = h_. For each t € [0, 1}, choose an

almost complex structure J, on B*. such that

-

» b = } is the standard structure on BR* = C°
@ J;y = J at infinity and near L for all ¢ = [0. 1];
@& J; is compatible with .: = dp » dg;

& Jelmietry) = (M) Jo.




Suppose there exists a symplectic sotopy b B R) R4\ H
connecting o — hy and by — h_. For each t £ [0. 1], choose an
almost « |,1|1-|1r:|inr1 structure Jr[ on B* siich that

e J = Uy is the standard structure on R* — C*:

e J. = Jy at inhinity and near L for all ¢ € |0. 1]

e J. s compatible with « = dp A dq.

& Jeln g iry = (M) o

Take a Lagrangian cylinder | = A py=e A

i +@ =1 p=0} CRICRL




5|,|p|;u,m'- there exists a symplectic sotopy B i) '\ H
connecting o — he and Iy h_. Foreach t € ED. l|. choose an

almost complex structure J; on B*, such that
e Jy = J; is the standard structure on R* — C=:
@ J; = Jy at infinity and near L for all ¢ < [0.1];

@ J, is compatible with .. = dp N dg:
L Jl:hﬁl{ﬂ"ﬁ]} [h;_}‘-‘lﬁ.

Take a Lagrangian cylinder | =

B +qg =1 p =0} CRICR
lﬂ_,-H.- be lhl_ HIm.HJII 1pu| ol
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S lied i I is the geometry of a non-degenerate

skew-symmetnc bilinear form
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hit L, at a certain moment |

& Area (hz'(Dg))

Nt by, (B4 RY)Dy,

Dy

On the other hand,




Gromov-Witten potential s a certain, motivated by Physics way to

package algebrawc information contamed in the Gromov mvanant




Gromov-Witten potential is a certain. motivated by Fhysics wav to

package algebraic mlvrmation contamned in the Gromov invarnamt

Let (X... J) be a symplectic manifold with a compatible almost
complex structure J. Given cchomology classes
B.....0 c H*(X) we define their correlator
H‘ 8.2, = ovy (H \evy (fy) (2)
1 o gk = L 1} vy k |
Moux.0
where




Gromowv-\Witten potential is a certain, motivated by Fhysics wav to
package algebraic mformation contamed in the Gromov invanamt
Let (X... J) be a symplectic manifold with a compatible almost
complex structure J. Given cohomology classes

B.....0 € H*(X) we define their correlator
.4 ] ] K- . 5
ot Thigh = / evy () - A ev (B ), (2)
ﬁ:‘:u: 1
where

» ;H:J{I. 1) is the compactified moduli space of
J-holomorphic curves of genus g with k marked paints
Xi.---. Xk € Sg in a given homology class A € Hh(X):

® e M (X, J) — X is the evaluation map at the point x,
—— .




let us fix a basis th..... .0y H*{X) and a basis

Ay . MK H'Iﬁ:":] Let (t;. ty ) be the coordinates n
H*(X) in the chosen basis. We will also identify a homology class
A H}i.x} with its L-‘l'glrn' d= I:_:'.f'|, R | T, ]. L& coordinates in

the basis A, A,... Let us also introduce (even graded) vanables
2. ...k and fi, and wnite 2% = _‘F‘ .+




Let us fix a basis thy =€ H*(X) and a basis

Ay ... . Ax € HA(X). Let (4, iy ) be the graded coordinates in
H*(X) in the chosen basis We will also identify a homology class
A e Hy(X) with its degree d — (d..... di ). 1.e. coordinates in
the basis Ay.....A,. Let us also introduce {even graded) vanables
2, .- 2x and hi, and write z¢ =z . z2*
Then the Gromov-Witten potential F(tg.. ... y.2) is defined by
the formula

O S % ... )t ey (3)

E.d.K

where t — tyfly +--- + tpybiy.




t:}.ﬁut; By + -+ tyliy.

Let us fix a basis ¢, iy = H*'(X) and a basis

-‘1[. d ..Ju., = ”'xﬁx] Let L L1s---s i) be the iwded coordinates in
H*([X) in the chosen basis. We will also identify a homology class
A € Hy(X) with its degree d — (d,.....dk). i.e. coordinates in
the basis Ay.....A,. Let us also introduce (even graded) variables
2y, ...zx and fi, and write z* tf"' 2 .:;.:"
Then the Gromov-Witten potential F(tg.....ty.Z) is defined by
the formula

F{fﬂ.....fﬂ.fi—- E ;];_r E. iiﬁ I-jﬁ.t—l {3}

.




One can further upgrade the Gromoy-Witten potential to the

so-called ent tential and make it dependent on inhmitely
many vanables [ = (15), i = 1. k., j =0L
~ 1 d. i | i
F(Tz)=Y —(T...,T)g 2" (4)
g.d.k :
where

Fnt= [ A o s~ie)a@ey

m=1 \ic(l...k}j20

where L, is the tautological line bundle over Mg ,(X.J) formed
by cotangent lines at the marked point x...




Jymplect ; try 1s the geometry of a non-degenerate
skew-symmetnic bilinear form. Such form exists only on an
even-dimensional space, and is umque up to an isomorpl

Viewed as a differentia

R:"ﬂ 'b:m 5 [..i] ..... ,_U”- ';:I" :' a

form. it can be wntten in
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The genus 0 part F1%(1g ty.z) of | Y. FiElpE=1 s called

the rational Gromov-Witten potential
For instance. for X “F
thy 1. 8, H*“(CPF=).¢ H*(CF*) and choose [T/

generator of H CF.). Consider the function

flt.z) = F90.0.e.2) =% S N




The genus 0 part FWY (1 tn. 2) of | 5 FlEIpE-1 s called

the rational Gromov-Witten potential
For instance, for X "P< let us choose the standard basis
= 1.0y € H5(CP*).8 € H*(CTP~) and choose [CP;] as a

s 3

generator of H.(CF,). Consider the function

f(t,2) = FO0,0,6,2) =S 5 Nyur*z

The coefhcients Ny i have a simple enumerative meaning: these are the
numbers of ratwnal curves of a wiven degree & in the complex proective
plane. which pass through k points in general position.




The genus U part f"ml_ i tn. Z) of F 1"'_ Flelpe -1 s called

the rational Gromov-Witten potential
Fgr instance. Tor I"-. -|r" lat we .'1.' me the stancarm :"'.'.‘:.!:.

HE‘ = iy ||!'.|__L'||”' Vs |rlll': _h-,r.' and cnoose __-u'll .l 45 J
generator of Ho(CP;)  Consider the function

fit.z) = FO0.0..2) =% Y A

il il

The coefhcients Ny, have a ssmple enumerative meaning: these are the
numbers ol rational curves ol a given degree & in Lhe complex projective
plane, which pass through k points in general position.

Mis=1.MNs =1, Nyg= 12 Nyyy — 620..... In general, k — 3d — 1 if

Ngs # 0




The genus 0 part F1%(1g tn. Z) of F Y. FlslpE-1 s called
g =i
the rational Gromov-Witten potental

For instance, for X = CP=< let us choose the standard basis
g = 1.8y : H<(CP<=), i & H*(TP*) and choose l._.lr} s 4
generator of H.(CF.).  Consider the function

flt.z2) = F0.0,6.2) = 5§ Ny,

The coefficients Ny i have a simple enumerative meaning: these are the
numbers of rational curves of a griven degiree & in the complex projective
. plane, which pass through k points in general position.
:'-,‘ LNs =1 . MNag= 12 Ngqy =620..... Ingeneral, k = 3d — 1 if
N, i.‘.—ll Today several recursion relations (beginning with

antsevich's) are known for computing Ny &
descnibe here a2 more geometnc recipe for computing the function

 {£.2), which is provided by Symplectic Field | heory




Lonsidern thie

where P,

space S of C-valued formal Founer senes

(Pm.0. Pm1). Om = (Gm.0. Gm.1)
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Consider the space S of C*-valued formal Founer senes

-

S

Wh'E’E [_Pm 0: Pm E] {Jm =5 l'f'.'m 0- Q.1 ] HE’UIE Endm 5 'l"ﬂth
a h‘j'mﬂh_'t[m form 2 =} ‘:1 (dDma N dQm.1 + 0Pm1 N dGma). It
corresponds to a Poisson tensor

P(alU. V) %/ﬂmv**n‘x.

where (-. <) is the inner product with the matnx (T ';) , Le
{A.B) = aghy + ayby for A= (20.2).B= (bo.by) €C




="
Consider the space S of C -valued formal Founer seres

‘-

Wh"El"E' Prn — ['Pm 0. Pm I.}- {JITI s [I'.'mu. Jm i] ka“r'E En’dm 5 'I'ﬂth
a symplectic form {2 =3’ ‘:_r (dDma N dQm.y + UDma N dGma). It
corresponds to a Poisson tensor

I . g
P(U.6V) = — [.n'u. SV" ) dx.
=T _

]

~ where (-, -) is the inner product with the matrix ([; [I]) . Le

" (AB) = auby + by for A= (a,2). B = (b, by) € C2




Consider a Hamiltonian function H on S defined by the formula

| s x 1 £
H L) f l'. ' e | dx. where U = (ug. u

I'he flow ®° of this Hamiltoman s given by differential equations




Consider a Hamiltonian function H on S defined by the formula
I:;I. |:.'I.| .Ii l { L =1 } o f | rE -.uh,.a.rp E.,l [‘.? )

The flow ®° of this Hamiltonian s given by differential equations

..l\‘

Note that this i1s a dispersionless Toda equation which can be
rewritten as

iy =—(e""7%)

(I learned this from B Dubrovin )

o




pte by L, the image ©°(L)
‘of the Lagrangian subspace
L= | @ = 0} under the
Hamiltonian flow ¢ If L, is 4
graphical with respect to the I+ 2) = &

::w (P.Q)— P (and =
mn the world of formal power o

series everything is graphical!) ~— e

¥ = e L =




Symplectic Geometry 1s the geometry of a non-degenerate

skew-symmetnc bilinear form. Such form exists only on an

even-cdimensional space, and i1s umique up to an Isomorphism
Viewed as a differential form, it can be wnitten in
Prs c.'fl:' a5

T:J’p; \dg; = dp N\ dg

1

;. = {21 = p1 + if1..... Pn+ i, }. then for any two vectors
8 H,v: | = Rzﬂ we have w{'.l{ Vi. V5) = (V4. iV5), where (-.-) is the

; mhd inner pn:ndmt on E‘“




The Gromov-Witten potential #

|,|E-pt-|1{|:x on w. and not J and

made above

ther

v al

yartic

Ml




T'hp Gromov-Witten q:mll'h'[l.d F isa ] |
depends on «, and not J and other additional choices which we
made above. Symplectic | - allows us to compule
Gromow-Witten invariants by splitting manifolds into pieces

3 3 manimsia




The Gromov-Witten potential F s a L, e i
depends on w:, and not J and other additional choices which we
made above. Svi bic allows us 1o compute
Gromov-Witten invariants by splitting manifolds into pieces

Splitting of the moduli

spaces




ndrical almost complex manifolds.

An almost complex structure J on B < Y s called ovlindrical if it s |
imvanant under translations

(t,x)—(t+c.¥y).t,ceER, yY |

and the vector fielld R = J | is honzontal, i.c.. tangent to levels
tx Y. tcR

ds with cvliindncal ands

A non-compact almost complex manifold (X. /) is said to have
‘eylindrical ends if it is cylindrical outside a compact set.
—




Given a real hypersurface Y in an almost complex manifeld (X, J)
ane can split it into two manifolds with cylindncal (over Y ends)
by a stretching of the neck procedure

t
i




hl'i‘_-r' cvlindncal structure on X ¥ is determined by the
CH-struct [ £ ITY Y. L fle) and the vector held
Re TY (which s transversal 1o £)




Any cylindrical structure on X x ¥ 1s determined by the
CRH-stru e (£ ITY Y. J | 3 and the vector feld
Re TY (which is transversal to £)

The distribution £ and the vector field R
umquely determine a 1-form A = Ajon Y
which satishes the conditions A\(R) = 1 and
Ale =0




Any cylindrical structure on B =< Y is determined by the
CR-structure (£ ITY r'Y. L Jlz) and the vector hedd
Re TY [(which is transversal 10 £)

The distribution £ and the vector field R
umiquely determine a 1-form A = Ajon Y
which satisfies the conditions A(R) =1 and
Ale =0

Generically, all the periodic trajectories of the vector field R are
non-degenerate, and thus there are hnitely many of them of

~ bounded period. We will call this case generic

~ The set of simple periodic orbits will be denoted by P




Any cylindrical structure on K < Y is determined by the
CR-structure (£ ITY TY. J: N | £) and the vector held
R £ TY (which is transversal 1o £)

The distribution £ and the vector field R
uniquely determine a l-form A = Ajon Y
which satishies the conditions A(R) = 1 and
Ale = 0.

Generically. all the periodic trajectories of the vector field R are
non-degenerate, and thus there are fimtely many of them ol
 bounded period. We will call this case genernic.
. The set of simple periodic orbits will be denoted by P.
}‘hh useful to allow the, so-called Morse Hott case when penodic
 orbits are organized in finite-dimensional manifolds, while the
- condition for the flow of R is met in the ransversal




As in the case of general almost complex mamifolds, ta ensure the

compactness results, it i1s necessary that

CErtai . : lata. We will assume that




A symplect . (X..) is a manifold, locally modeled on
(R=".dp A dg). Equivalently, according to the
(X,«) is just a manifold with a non-degenerate closed differential

2-form




As in the case ol general almost complex mamifolds, to ensure the
compactness results, it is necessary that

certaimn symplectic data, We will assume that
@ there exists a closed 2-form & of maximal rank on Y such
that /(R )

@ the 1-form A\ s preserved by the flow of R, 1.e. the Lie
derivative Lg\ vanishes. This is equivalent to the condition
i(R)dA = 0.

The pair H = (w. A) is called in this case (stable) Hamiltonian
.~ structure, and the cylindrical almost complex structure J s called
. compatible with H.




There are 3 mosl important for us cases of Hamiltoman structures

@ [he Floer case

& | he contact case

@ [ he circle bundle
Case
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There are 3 most important for us cases of Hamiltomian structures

a The Floer case
@ |he contact case

» [he arcle bundle

Case

Y = M =< 5! is the mapping torus of
a Hamiltoman symplectomorphism
f: M— M, generated by a
1-penodic time-dependant
Hamiltonian H,; R = 5
£ is tangent bundle to the slices

M xt, £ & 5'. The periadic orbits of

R are in 1-1 comespondence with the

+ sgradH,,

I'H".I!::i:! i'll.'lIII'I‘- ol f ..Hr = '.'1-"




Fhere are 3 most important for us cases of Hamitoman Structunes

SR Y
@ The Floer case —--——"I""'_jf

@ [ he contact case

@ The circle bundle
case




& | he Floer case

& | he contact case

@ The circle bundle
Case

There are 3 most important tor us cases of Hamiltomian structures

p:Y M is an S*-bundie over a
symplectic manifold (M. 2),

= p"(«w), A is an S'-connection
form, R is the vector held which

generates the Siaction In this case
1! rhits are P dic and thus
P=M




Notice that tor our choice of J the oylinder

R x - R = Y over a trajectory 7 of the vector

field R is always a J-holomorphic curve




tegory GEOMser Category ALGger
& ORIEC 1= e (MIECT

Hamiltoman structure
wWith compatink
® MORPHISMS: : ¢ MORPHISMS:
Symplectic cobordisms
with compatible J

T T




Category ALGger

& (DHIFi=1=": & (YE

Hamaltonmas

with coompatil

e MORPHISAMS:

& MORPHISMS!
Symplecti
with compatible

il Thauary sl ®e Al S0asiy




sory GEOMset Category Rational ALGss7

e UBIECTS: - e CIHIECTT
Hamiltonian structure S Differentia
with compatibb , — lgebra

& MORPHISMS: | e MORPHISMS:
Symplectic cobordisms Lagrangman
with compatible J correspondences

A symplectic cobordism between two Hamiltonian structures

M = (Y..wo)and H_ = (H_.«_) is a symplectic manifold

(X.o) such that 9X = Y. U (—Y_) and |y, = wi. Note that

“symplectic cobordism” is a partial order, and not an equivalence

relation, because it is not symmetric. We will complete cobordisms
- by attaching cylindrical ends.




Aﬁ."‘illmllt_i'l t‘ll' T Ih.'r'.-l Merale Casl® Wi i .lll I I” T”'lfl‘ll E.F!”: 1 ll H
even, or odd depending on the sign of the Leschetz number

det{ld — F. ), where F. is the lineanzed F
the R-flow along
Let us as=ociale witl pCh simple

(2

vanabies p; .
They can be orgamized in a formal Founer series

u_{}:j— Zyi_u!'-‘-h 1 q..‘ e 'i:i-
|




A svinyg ' t (X.<) 5 3 manitold, locally modeled on
(R=". dp A dg). Equivalently, according to the
I:,.'-!:,r &) IS just a3 manifold with a I1uri-t]wgutl+—t.ite closed differential

2-form

An almost complex structure J : TX — TX, J¢ = —Id. is called
compatible with . if wch tangent s T Hr
other as the standard symplect o aOp y and the standard
complex structure do on 5 In other words. if

..._'{J.l"'rl, li-"'I-_'_r} .I'..._'{ 1"’1"”‘:}

5 2 positive detinite Hermitian form on TX.




TR

Assuming the non-degenerate case we call a pernodic orbit - of R
geven, or odd depending on the sign of the Leschetz number
detf{ld — F.). where P. is the lineanzed Poincaré return map of
the R-flow along

Let us ass ite with each simple

variables p, s -

They can be orgamized in a formal Founer series

)"
uy(X) =Y prre™ + quae™™.
1

In 2 hrst approamation SFT assocates with (M. J), where
H = (w. A) is a Hamiltonian structure and J a compatible almost
complex structure, the following algebraic objects




bjects in the Rational (g = 0)

Objects in the Full SFT

@ A graded | n algebra P .
over T generated by py - !
Qe ~ with the lollowing
commutation relations: o
plements 0 el pa—

Lin the gradea Sense )

that (- . Q- = K

gepote by 5 the

CONTEsponding symplect

space with coordinates

P T - and a symplectic
| form 2 = ) :df-'h-- \ diqu.~

k3

il Fabd Ty and oe Apeia ot astv



ts in the Raticnal (g = 0)

@ A graded 1 algebra P
over C generated by ps - .
gu .~ wath the following
Commutatwon relatwons
glements Pomsson
[im the graded sen
that {Px.+. Qe | = K
denote by 5 th
oITESsponding symplect
space with
PR T, and a symplecti
foom 1=} :dpi.« \ digy.~

e .y
B A clesnent: s € P. called
&b} =0

mimiait

Ccordimnales |

Objects in the Full SFT

dlgetea W
generated by graded
and an

a An associatve Weyl
over L

vamables py - . Qs -

additional even graded clement A,

with the fu”uwrng Commuiation
relations; all glement i

|Par- Qun ]| = ke

@ An element H < %‘I-"u’_ called
Hamiltoman, which satishies
[H.H] =0.

I'he Weyl algebra ;'IR"..: can be
represented by differential operators
acting on the “Fock space

Fock = ':Eﬂ,ﬂi_{f”llm:' on the left

Foalid Thosewy swl dy Ll of o




A morpl e tween l.l"' h™)anad (¢ h ) s a ftunction
Flg .p" ) such that

hlg".p")4+h (g .p '-II 1) (5)
I

where

i f Y]
'!f : {"rﬂ . k [ K N 1

idp . T




The function f(q .p")

generates a Lagrangian
submamfold

ST x (—57), and (5)
means that the Hamiltoman
Wt(g".p")+h(g.p7)
vanishes on [




The function f{g .p")
generates a Lagrangian
submanifold

L S" x (-5). and (5)
means that the Hamiltonian
ht(a,p7) +h(a.p")
vanishes on L

Y =@ then L, s a Lagrangian submanifold in S = S7




The function f(q .p")
generates a Lagrangian
submanifold

fpC S x(=57). and (5)
means that the Hamiltonian
W(g".p")+h (g .p7)

IF Y = @ then L; is a Lagrangian submanifold in S = S7
Compos of morphisms is the composition of Lagrangian




The above algebra describes the structur

moduli spaces of holomorphi

consasts of split curves, or

CLines with

The DOUnaary

T Tha

wtnch




The above algebra descnbes the

modull spaces of holomorphi

consists of split curves, or

£ £ £ =2

-
L] q
!Il
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F
il

CLINres

SLrucCture
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F tha b

inancal
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The above algebra describes the structure of the boundary of the
moduhl spaces of holomorphic curves with cylindncal ends which

consists of spht curves, or | norpl A
c.2 | R R —— I he codimension of a boundary
e - i stratum in the cylindrical case is

equal to the number of

— components different from trivial
cyvlinders. For mamfolds with
cylindrical ends it is equal to the

T S e number of non-trivial components
\ _ in the cylindrical stories of the
W - §= - .
- ! building. Thus in all cases the
¥ ‘t\—-' e o ™ - "
e " | " — codimension 1 strata of the
lu N e i :
7 e S ] ‘ boundary consist only of 2-story
i [ |

—i - bunldings




A svmuolect ifold (X, ) is a2 manifold, locally modeled on
(R=" dp A dg). Equivalently, according 1o the |
(X.) is just a manifold with a non-degenerate closed differential

2-form

An almost complex structure J : TX — TX, J© = =Id. is called
compatible with w if on each tangent sp s and J relate ach
other a5 the standard sympiectic form ap 17, and the standard
{gﬂ]p!ﬁ-n stricture oo o y In other words. it

w(dW, V2) — iw(VinVa)

5 a positive definite Hermitian form on TX. Given ., one can
- always find a compatible J (but not the other way around).
. Moreover, this choice is unique up to homotopy.




I here are 4 different way to
glue the two surfaces along
their matching ends, ie. the
ends denoted by p's and g's
with the same index. | hese 4
rrespond to 4 terms in
impoStion ormola (o

litterential operators

(A 'ppapa) o (A 'quqepy) =

%

::m:*_{i “qiGp; P2 +
- tqupips + W lgappaps

e




An appearance of the
coethowent & in the
commutator

[pi. Gk~] = kh (and
the Foisson bracket
{P8~. Gk~ } = K in the
rational case)

corresponds to the fact
that there are k distinct

ways of gluing
k-multiple orbits




Liven any set & — (I

dhifferential forms on Y

dehine their

g | of | NOL NecCessary

and sets |

it penodi

Closeo

oroits

i W owe
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diiffferential forms on Y . and sets | [ of penodic orbits

defime thor

then organize them into an element of _Ei‘n.".-'-

i owe




Given two sets of forms & — (#, ) and T | e
have HT (e 0) H"(t). where t [ [ ty ). In particuiar
H0) = HY - H




Given two sets of forms 8 — (#, g ) and T ) we
have H= ' (L. U) HY(t). where t [ Iy
H®(0) - H" - H

."j I particular

“MasTER EQUATIONT:

HOUS  gOudS _ ppeude D - (6)
e il
: i1
where the vanables s = (s, .. .. 5 ) correspond to forms
de = (db,..... dity ).




Gl'hfl"n two sels of lorms © { iy . L) and T
have H™=" (¢.0) = H"(t), where t = (1,
H8(0) - H® H

L I PartiCuLar

*MASTER EQUATION

[OUde | Bude  neude \;'L"

A

where the variables s = (5. . 5 | correspond to forms
de = (db,,.... dify). In particular, if d8© = 0 then we have

H7(t) o H®(t) = 0.

| e

1 | e

(7)




Given two sets of forms © — (8, ... .0 ) and T {27 U] R
have H=" (¢.0) = H®(t), where t = (1, ti). In particular
H®(0) = H" - H

*MASTER EQUATION :

QUde _ 1 Oude oLde -
H H DH ol E e (6)
where the variables s = (5. .... 5 ) correspond to forms
de = (dh,.. ... dify). In particular, if d© = 0 then we have
HE(t) c H®(t) = 0. (7)

In many interesting examples (e.g. in presence of an

F—spmnﬂw} H{0) = 0. Hence, hy diffe-rﬁnti:ﬂ'ing (7) in

mvﬂlﬂtfﬂi.ﬂﬂ 0, where H; = 5 M (0). e all H; are
[ ing differential operators.




Symplectic Field Theory can be further upgraded to include
descendent vanables, in a similar vein, as 1t
Gromov-Witten theory. In particular, H¥ becomes a function of
infinitely many vanables T = (t;).7 = 1, k.j >0
Differentiating the identity H2(T) - H2( T) = 0. we observe

exsstence of inhinitely many commuting ditferential operators

For istance, for ¥ — 5 C d.}, one gets a
of commuting integrals H for the que inh.w-d Hurper':
hierarchy
du 1 ,du
= —U . k=U.1,

on the space of functions on 5!




Symplectic Field Theory can be further upgraded to include

descendent vanables, in a simular vemn, as it s done n the
Gromov-Witten theory. In particular, H® becomes a function of
inhinitely many vanables T = (t;).1=1,.... k. =0

Differentiating the identity H2{T) c H®(T) = 0. we observe
existence of infinitely many commuting differential operators.

For instance, for ¥ = 5 € d.}, one gets an infinite sequence
of commuting integrals H;. | ] for the quantized Burgers

hierarchy

du x du
—_— = , k=0,1,..
diy .2 .” dx k :

: _ om the space of functions on 5!

i EI ¥ = 5° and © = { harmonic volume form}, one gets
b m integrals of the quantized dispersionless Toda hierarchy
- which includes the equation v = —(e" *),., already appeared
in the problem of enumerating rational curves in CP?.




