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Key insight: upper bound on coarsening rate is universal.

Key approach: two ways to measure length scale: a neg norm
(L} and perimeter (E); linked by interpolation and energy ineqs.

Generalizes: to multiple phases, Mullins-Sekerka dynamics,
Ostwald ripening, epitaxial growth

Open questions: similar results have not been shown for motion
by curvature, grain growth, or Ginzburg-Landau vortices,

Enssngy-Orbeery Fattern For madlon



(1) Bounds on coarsening rates
(2) Structure of a cross-tie wall

tools Optimal lower bound via inspired
integration by parts
work by Alouges, Riviére, & Serfaty, COCV 2002
version here DeSimone, Kohn, Miller & Otto 2005

(3) Pathways of thermally-activated switching
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Cross-tie wall

This is a special type of domain wall seen in “soft,” thin
ferromagnets (not too thin!)

Question: Why this particular pattern?

Answer: It minimizes the total enargy.

Main steps:

@ |dentify an appropriate class of patterns

@ Learn how to calculate the energy of a pattern

@ Linderstand what pattern corresponds to the experiments
@ Prove a lower bound that's sharp for this pattern
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Elaborating on the question
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The magnetization m = (mq, m2)( X1, X2) Is plecewise smooth &
divergence-free (even across discontinuities). Also im| = 1.
This permits a "simple” 180-deg wall, L

where m jJumps across the axis, -—

Instead the film chooses a mixture of lower-angle walls. Why?

Mote: the pattern is fully-determined (constant in some regions,
circles in others) except for its internal length scale.
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Magnetization patterns and their energies

A magnetization pattern is a

plecewise smooth vector field e il i
m = {my, mz){xy, X2) such that PR P

. Co A T &
divm = 0 (weakly, even across 5" "6 ")

L B I |
[

discontinuities) and |m| = 1. We call
the discontinuities walls,

The energy of a pattern is the sum of the energies of its walls,

For a wall with total angle 24, R

= | e i j’ﬁ' G
energy = (sin# — #cos#) = length. @ <Z__%E
Remark: A more primitive starting point is micromagnetics. Our
framework corresponds to “thick-film Néel walls”. Comes from
micromagnetics when film thickness == exchange length.
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Refining the question

Energy density siné — #cos f is very

i nonlinear. Small angles are much cheaper
than large.
— The proposed pattern achieves
e T, ey energy/length v2 — 1. Much better than a
e 180-deg wall, for which energy/length = 1.
SO I
s s P But to know this is optimal, we must prove a
g ol i E - geometry-independent lower bound,
showing no other pattern can do better.
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Strategy of the lower bound

Consider rectangular domain, with periodic b at sides and
m= (+1,0) at top/bottom:

When all else fails, integrate by parts! Look for an entropy
(m) = (L4(m), La(m)) such that

@ for m smooth, |m| =1 anddivim =0 imply divi{m) =0
@ at a wall with half-angle &, |[[X(n?) . ]| < sind — fcosf

Every such ¥ gives a lower bound, since

/ RS [( divy| < total wall energy
J by

S 1L

bdry data =
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Finding the good entropy

First pass (wrong but informative):
y(m)=1(#m+ m") when m=g"
First condition: divm = 0 = divE(m) = 0 for # smooth, since
divE(m) = 36 divm.

Second condition: ||E - v]| < siné — #cos 8. Holds with equality!

R v =(1,0), m= (cosf, =sind) =
e‘.':'@r b [E.¢v] =L -X5=sind —-8cos4.

Froblem: # isn't well-defined, |
because the walls contain vortices.
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Finding the good entropy — continued

Successful cholce is similar in each quadrant:

am+ m* +(0,—2) for —w/d<d<u/4
(m/2—m—m-+(=v2,0) for w/4<8<3n/4
(8 —mym+ mt 4+ (0,v2) for 3rjd <@ <5n/4
(3rf2 —8ym—m* + (v2,0) for Sm/d <8 <7r/d

This gives a continuous ¥ : 81 — R? satisfying both our
requirements. In particular: at a div-free discontinuity,

[5(m) - v]

< wall energy density

with equality when total angle is < 90 deg.

Qur pattern achieves the bound because It uses only
discontinuities < 90 deg. (No arthmetic needed!)
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Comments

Internal length scale is set by higher-order effects. Can be
explained using micromagnetics:

@ anisotropy prefers the far-field
values of m, so favors small
length scale;

@ finite thickness/exchange ratio
gives walls tails that repel,
favoring large length scale
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Is our cross-tie pattern unigue? (Defining feature: achieves net
180-deg wall, using discontinuities of angle < 90 deg.)

There's a cross-tie pattern for each wall angle = 90 deg
(A simple discontinuity is optimal for wall-angles < 80 deg)
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What is energy-driven pattern formation? Hard to define, but
“you know it when you see it So l'll discuss three examples:

(1} Bounds on coarsening rates
(2) Structure of a cross-tie wall
(3) Pathways of thermally-activated switching

Unifying theme: challenges to nonlinear PDE and cale of varns,
coming from physics and materials sclence.
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Key achievement: Explain the cross-tie wall by proving an
optimal lower bound for the associated variational problem.

Key approach: Integration by parts, using an “entropy” X{m).

Helated ideas: Argument resembles (a) use of null-Lagrangians
to estimate relaxed energies, and (b) use of “calibrations” to
study minimal surfaces.

Opean questions: Were we lucky? Or did there haveto be an
integration-by-parts-based argument?
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(1) Bounds on coarsening rates

(2) Structure of a cross-tie wall
(3) Pathways of thermally-activated switching

tools Action minimization, sharp-interface limit
framework Kohn, Otto, Reznikoff, & Vanden-Eijnden,
CPAM 2006
1D analysis Kohn, Reznikoff, & Tonegawa, Calc. Var. PDE
2006
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Thermal switching

Focus on the functional
£ " 1 ]
E= | =|Vul]Z2 + —(U% —1)2.
_,{; 2 | 45{ )

Its only local minima are 4 =1 and v = —1 (for {2 convex, or
periodic boundary conditions),

Cluestion: What are the pathways of thermally-activated
switching?

Answer (1D periodic): N = 1 "seeds” nucleate; walls propagate
at constant velocity, then annihilate.

b o

Start by explaining the question . ..
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Importance of thermal fluctuations

Nature finds local not glebal minima

@ water can be heated = 100 deg C
@ most foams are metastable (e.g. beer)

Systems escape from local minima via thermal fluctuations
W @ dz = —VE(z)dt + noise
@ small noise = escape Is rare
Events can be rare and yet very important

@ reliability of complex systems
@ failure of a computer's hard drive
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Action minimization

Think, for examp_-le, of
E(2)=(2F - 1)° + 25 —E&%
dz = —VEdt + /2v dw
Transitions are rare, yet also predictable via

Large deviation principle: Given that transition takes time < T,

it occurs (with very high probability) by approx the pathway that
minimizes the action;

min
2(0)=(1,0)
Z{ I )=(—1,U)

1 fF g
E_f,j iz + VEP b,

Note: the integrand is equation error.
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Large vs small switching times

As time allowed for switching T — oo, action-min path is simple:

@ go uphill to lowest mtn pass
\/\/ @ go downhill from there

1 I,=.- ; -I T o Z".
— |1z + VE|* — zy —VE|- (Z;, VE)
d-m,u'll;. |2t + VE| a J_J |2t +J;‘ Is )

= nonnegative 4 (E(7) — E(0)).

-
Fil

Assertion follows, using 7 = time of arrival at ridge. Therefore
“classical nucleation theory” is all about saddle points.

Situation is different when T is fixed:
@ The optimal pathway need not go through a saddle.

@ Note that fixing T is natural — early failures, though
axtremely rare, may be the ones we care about most.
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Simplest infinite-dimensional case

Ginzburg-Landau E= | 5IVul" + =(v" —1)°

SDE becomes a stochastic PDE. Hard to interpret except in 1D,
Focusing on action minimimization avoids this issue.

Steepest descent is suf = —VE = sAu — =~ (u* — ), after
scaling t so velocity has order 1. Sharp interface limit is motion

by curvature.

Action functional (suitably scaled) is
EilarT 0 7
& / 1120y + == V2V E|2 d ot
4 /o Ja

Goal Is to minimize action subjecttou= 1 att=0and u=1
at t = T, inthe sharp-interface limit = — 0.
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The sharp-interface limit

1D (periodic) case (rigorous)

Optimal pathway nucleates 2N walls (N equispaced seeds)
then propagates them at constant velocity.

s e

2D case (still only formal)

Similar; but nucleation can be cost-free {if seeds are points),
and propagation can be cost-free (motion by curvature).

L
[ )
min [nucl cost, if any] - f lfflr:v k)2
/J

trajectones
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Discussion

. ; | . I I
J L J I_I'. IZ. L LI'.

(1) Nucleation events involve appearance of new walls or
seeds. Not associated with saddle point or “critical
nucleus.”

(2) Heart of rigorous 1D analysis is a structure theorem: as
= — 0, action integrand converges for a.e. 10 a measure
with point masses (at walls), varying continuously in £.

(3) Action minimization is closely related to:

s steepest descent: sty = =AU — =~ (UF — U)
« DeGiorgi's conjecture; = [ | Aw — (1 — u))*
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Hints toward the analysis

(1) Action controls the energy, .9, jumps in energy cost action:

v [: r la

/ 2 ||" 140 . ..-_,?_Eq 5 140 ~.--._"l._-E*:| 4 Ir "'.,TEI
J2 Pl W — e I SR T (L, VM E)
nd 80 e | ',f f i ra .;'Ilr._ -‘II ; '

= pos + 4(E(t:) - E(f))

(2) Action controls wall profile and velocity: arguing as above,
and using that £ = O when u = +1:

I s 2 il . . ¥t
[[leuserivep= [ [etre\vep

SO 0 J

(3) Propagation cost is of order 1: f[ cuf is bounded below via

£

U - 2

%m: _[T/ b1 — v?) < | .I'II(EU:?;} | Hﬂf w® - 1}‘2?;}1I

|
0 W .
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(1) Bounds on coarsening rates

tools Interpolation and energy inequalities
work by Kohn & Otto, CMP 2002

(2) Structure of a cross-tie wall
(3) Pathways of thermally-activated switching
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FPhysical idea: Focus on thermally-activated switching in fixed
time T. Though rare, such events may navertheless be very

important.

Mathematical idea: Action minimization offers a new challenge
in the analysis of sharp-interface limits.

Wide open: Rigorous analysis complete only for 1D
Ginzburg-Landau. How about more complex models from
condensed matter physics (e.g. magnetic switching)?
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What is energy-driven pattern formation?

Today's examples wera:

@ Bounds on coarsening rates via energy & interpoln inegs
@ Cross-tie wall structure via optimal geometry-indep bound
@ Thermal switching via sharp-interface limit, action min

Cther areas of recent progress include: twinning due to
martensitic transformation; domain patterns in ferromagnets;
vortex patterns in type-ll superconductors.

Some common theames:

@ Cuestions from physics, answers from analysis
@ Energy-driven, but not necessarily at equilibrium
@ Focus on examples; unity will emerge in due course
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References and credits

Bounds on coarsening rates

Presented here Kohn and Otto, CMP 2002
Closely related Kohn-Yan; Pego-Dai, Conti, Niethammer & Otto
Mumerical fige Pun, Bray, Lebowitz, FRE 56 (1997}

Gross-tie wall structure

More general Alouges, Riviére & Serfaty, COCV 2002
Version here DeSimone, Kohn, Mller & Otto, review article, 2005
Expenmental fig Nakatani et al, Jap. J. Appl. Phys. 28 {1989)

Thermal switching
Framework Kohn, Otto, Reznikoff & Vanden-Eijnden, CPAM 2006
1D analysis  Kohn, Reznikoff & Tonegawa, Calc Var PDE 2006

For more detail and a 4th example (branching of domains) see
my ICM Proceedings article (on my web page).

Thanks to NSF for its generous support of this work
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B B &

=10
Focus for simplicity on motion by surface diffusion

Vier = Ars  T{t) = evolving curve

Common belief, for random initial data;
@ length scale coarsens, £(t) ~ t'/4
@ solution is statistically self-similar

Evolution is energy-driven:

o : : 2
— Panmeler = f( K Whor = I |-.:_.-l_h_|r
ot Ir r
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@ Conjectured self-similarity might be wrong.

Mot even clear what it means!

e Assertion that £(f) ~ '/ says

(1) Solution never stops coarsening.
False e.9. for spheres. Therefore subtie.

{2} Solution doesn’t coarsen faster,
True without exception. Therefore accessible.

Recent progress: A weak version of (2), showing (very roughly)

gty < e’
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Getting started

Two very different methods for defining local length scale #{t):
Represent spatial structure by y(x) = +=1. Assume:

@ spatially periodic (so averaging is easy)
@ equal vol fractions {for simplicity only})

Method 1: Perimeter per unit volume
y
E=4 Vx| scaleslike 1/£ft)
R,
Method 2: A negative Sobolev norm

L= max 7[ ax scales like £(1)
|Va|=1.

Morm defining L is dual to W™, Hence we write {heuristically)

L=+ V"X
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Thinking about £ and L

.' 'Y 1 Consider 2D system of size R, with
2000 inclusions on length scale £. Number
2000 of inclusions is N ~ (R/¢)*. Take

i. 290 v = 1 inblack phase, v = —1 in white.

Clearly E = perimeter/area = ~ NE/Ni= ~ 1/,

To see why L = max;yg -1 fxg ~ {, argue that

@ optimal g ~ £ at inclusion centers
@ optimal g ~ —¢ far from inclusions

so vg ~ £, whence L ~ £
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Key observation

E and L are related by

@ interpalation inequality: We always have

EL > const.

Proof makes no use of evolution law. Essentially:
o 4 W 1/72 . 102
Fixl <C(FIvx)) " (F1V"xl)

@ energy inequality; Solutions of the evolution law satisfy
dE/dt <0 and (dL/dt)’ < 2E|dE/d!|

Intuition why dE /dt controls dL/at; coarsening requires
motion, which dissipates energy. Proof is simple (like most
anargy inequalities).
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These are sufficient (sort of)!

The available information
EL>C, dE/dt<0, (dL/dt)* <2E|dE/dt|
does not imply
L(t) < ctV* or E(f)=Ct~Y4

but it does imply a time-averaged version of the latter:
T

7

provided T = £%(0) = 1 3 E(0). Proof iz an ODE argument
(like Gronwall's inequality).

o

, 1 e as
E(t) ot > ‘f (t7174) ot
T :I LS I
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