Energy-Driven Pattern Formation

Robert V. Kohn

Courant Institute, NYU

ICM2006, Madrid

Robert V. Kohn Energy-Driven Pattern Formation

Key insight: upper bound on coarsening rate is universal.

Key approach: two ways to measure length scale: a neg norm (L) and perimeter (E); linked by interpolation and energy ineqs.

Generalizes: to multiple phases, Mullins-Sekerka dynamics, Ostwald ripening, epitaxial growth

Open questions: similar results have *not* been shown for motion by curvature, grain growth, or Ginzburg-Landau vortices.

 Bounds on coarsening rates
 Structure of a cross-tie wall tools Optimal lower bound via inspired integration by parts work by Alouges, Rivière, & Serfaty, COCV 2002 version here DeSimone, Kohn, Müller & Otto 2005
 Pathways of thermally-activated switching This is a special type of domain wall seen in "soft," thin ferromagnets (not too thin!)

Question: Why this particular pattern? Answer: It minimizes the total energy.

Main steps:

- Identify an appropriate class of patterns
- Learn how to calculate the energy of a pattern
- Understand what pattern corresponds to the experiments
- Prove a lower bound that's sharp for this pattern

Elaborating on the question

The magnetization $m = (m_1, m_2)(x_1, x_2)$ is piecewise smooth & divergence-free (even across discontinuities). Also |m| = 1.

This permits a "simple" 180-deg wall, where *m* jumps across the axis.

Instead the film chooses a mixture of lower-angle walls. Why?

Note: the pattern is fully-determined (constant in some regions, circles in others) except for its internal length scale.

Magnetization patterns and their energies

A magnetization pattern is a piecewise smooth vector field $m = (m_1, m_2)(x_1, x_2)$ such that div m = 0 (weakly, even across discontinuities) and |m| = 1. We call the discontinuities walls.

The energy of a pattern is the sum of the energies of its walls.

For a wall with total angle 2θ , energy = $(\sin \theta - \theta \cos \theta) \times \text{length}$.

Remark: A more primitive starting point is micromagnetics. Our framework corresponds to "thick-film Néel walls". Comes from micromagnetics when film thickness >> exchange length.

Refining the question

Energy density $\sin \theta - \theta \cos \theta$ is very nonlinear. Small angles are much cheaper than large.

The proposed pattern achieves energy/length $\sqrt{2} - 1$. Much better than a 180-deg wall, for which energy/length = 1.

But to know this is optimal, we must prove a geometry-independent lower bound, showing no other pattern can do better.

Strategy of the lower bound

Consider rectangular domain, with periodic bc at sides and $m = (\pm 1, 0)$ at top/bottom:

When all else fails, integrate by parts! Look for an entropy $\Sigma(m) = (\Sigma_1(m), \Sigma_2(m))$ such that

- for m smooth, |m| = 1 and div m = 0 imply div Σ(m) = 0
- at a wall with half-angle θ , $|[\Sigma(m) \cdot \nu]| \le \sin \theta \theta \cos \theta$

Every such Σ gives a lower bound, since

$$\mathsf{bdry} \, \mathsf{data} = \left| \int_{\mathsf{bdry}} \Sigma \cdot n \right| \leq \int_{\mathsf{interior}} |\mathsf{div} \, \Sigma| \leq \mathsf{total} \, \mathsf{wall} \, \mathsf{energy}$$

Finding the good entropy

First pass (wrong but informative):

$$\Sigma(m) = \frac{1}{2}(\theta m + m^{\perp})$$
 when $m = e^{i\theta}$

First condition: div $m = 0 \Rightarrow \text{div } \Sigma(m) = 0$ for θ smooth, since

$$\operatorname{div}\Sigma(m)=\tfrac{1}{2}\theta\operatorname{div} m.$$

Second condition: $|[\Sigma \cdot \nu]| \le \sin \theta - \theta \cos \theta$. Holds with equality!

$$\begin{array}{c|c}
 & \nu = (1,0), m = (\cos \theta, \pm \sin \theta) \Rightarrow \\
\hline \theta & [\Sigma \cdot \nu] = \Sigma_1^R - \Sigma_1^L = \sin \theta - \theta \cos \theta.
\end{array}$$

Problem: θ isn't well-defined, because the walls contain vortices.

Finding the good entropy – continued

Successful choice is similar in each quadrant:

$$\begin{array}{ll} \theta m + m^{\perp} + (0, -\sqrt{2}) & \text{for} & -\pi/4 \le \theta \le \pi/4 \\ (\pi/2 - \theta)m - m^{\perp} + (-\sqrt{2}, 0) & \text{for} & \pi/4 \le \theta \le 3\pi/4 \\ (\theta - \pi)m + m^{\perp} + (0, \sqrt{2}) & \text{for} & 3\pi/4 \le \theta \le 5\pi/4 \\ (3\pi/2 - \theta)m - m^{\perp} + (\sqrt{2}, 0) & \text{for} & 5\pi/4 \le \theta \le 7\pi/4 \end{array}$$

This gives a continuous $\Sigma : S^1 \rightarrow R^2$ satisfying both our requirements. In particular: at a div-free discontinuity,

 $|[\Sigma(m) \cdot \nu]| \le$ wall energy density

with equality when total angle is \leq 90 deg.

Our pattern achieves the bound because it uses only discontinuities \leq 90 deg. (No arithmetic needed!)

Internal length scale is set by higher-order effects. Can be explained using micromagnetics:

- anisotropy prefers the far-field values of m, so favors small length scale;
- finite thickness/exchange ratio gives walls tails that repel, favoring large length scale

Is our cross-tie pattern unique? (Defining feature: achieves net 180-deg wall, using discontinuities of angle \leq 90 deg.)

There's a cross-tie pattern for each wall angle > 90 deg (A simple discontinuity is optimal for wall-angles < 90 deg) What is energy-driven pattern formation? Hard to define, but "you know it when you see it." So I'll discuss three examples:

- (1) Bounds on coarsening rates
- (2) Structure of a cross-tie wall
- (3) Pathways of thermally-activated switching

Unifying theme: challenges to nonlinear PDE and calc of varns, coming from physics and materials science.

Key achievement: Explain the cross-tie wall by proving an optimal lower bound for the associated variational problem.

Key approach: Integration by parts, using an "entropy" $\Sigma(m)$.

Related ideas: Argument resembles (a) use of null-Lagrangians to estimate relaxed energies, and (b) use of "calibrations" to study minimal surfaces.

Open questions: Were we lucky? Or did there have to be an integration-by-parts-based argument?

- (1) Bounds on coarsening rates
- (2) Structure of a cross-tie wall
- (3) Pathways of thermally-activated switching

tools Action minimization, sharp-interface limit framework Kohn, Otto, Reznikoff, & Vanden-Eijnden, CPAM 2006

1D analysis Kohn, Reznikoff, & Tonegawa, Calc. Var. PDE 2006 Focus on the functional

$$E = \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{4\varepsilon} (u^2 - 1)^2.$$

Its only local minima are $u \equiv 1$ and $u \equiv -1$ (for Ω convex, or periodic boundary conditions).

Question: What are the pathways of thermally-activated switching?

Answer (1D periodic): $N \ge 1$ "seeds" nucleate; walls propagate at constant velocity, then annihilate.

Start by explaining the question

Importance of thermal fluctuations

Nature finds local not global minima

- water can be heated > 100 deg C
- most foams are metastable (e.g. beer)

Systems escape from local minima via thermal fluctuations

 \sim

• $dz = -\nabla E(z) dt + \text{noise}$

• small noise \Rightarrow escape is rare

Events can be rare and yet very important

- reliability of complex systems
- failure of a computer's hard drive

Action minimization

Think, for example, of
$$E(z) = (z_1^2 - 1)^2 + z_2^2$$

$$dz = -\nabla E \, dt + \sqrt{2\gamma} \, dw$$

Transitions are rare, yet also predictable via

Large deviation principle: Given that transition takes time $\leq T$, it occurs (with very high probability) by approx the pathway that minimizes the action:

$$\min_{\substack{z(0)=(1,0)\\z(T)=(-1,0)}} \frac{1}{4} \int_0^T |z_t + \nabla E|^2 dt.$$

Note: the integrand is equation error.

Large vs small switching times

As time allowed for switching $T \rightarrow \infty$, action-min path is simple:

$$\sim$$

- go uphill to lowest mtn pass
- go downhill from there

$$\frac{1}{4}\int_0^\tau |z_t + \nabla E|^2 = \frac{1}{4}\int_0^\tau |z_t - \nabla E|^2 + \int_0^\tau \langle z_t, \nabla E \rangle$$

= nonnegative + $(E(\tau) - E(0)).$

Assertion follows, using τ = time of arrival at ridge. Therefore "classical nucleation theory" is all about saddle points.

Situation is different when T is fixed:

- The optimal pathway need not go through a saddle.
- Note that fixing T is natural early failures, though extremely rare, may be the ones we care about most.

Simplest infinite-dimensional case

Ginzburg-Landau
$$E = \int \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{4\varepsilon} (u^2 - 1)^2$$

SDE becomes a stochastic PDE. Hard to interpret except in 1D. Focusing on action minimization avoids this issue.

Steepest descent is $\varepsilon u_t = -\nabla E = \varepsilon \Delta u - \varepsilon^{-1}(u^3 - u)$, after scaling *t* so velocity has order 1. Sharp interface limit is motion by curvature.

Action functional (suitably scaled) is

$$\frac{1}{4}\int_0^T\int_{\Omega}|\varepsilon^{1/2}u_t+\varepsilon^{-1/2}\nabla E|^2\,dx\,dt$$

Goal is to minimize action subject to $u \equiv -1$ at t = 0 and $u \equiv 1$ at t = T, in the sharp-interface limit $\varepsilon \rightarrow 0$.

The sharp-interface limit

1D (periodic) case (rigorous)

Optimal pathway nucleates 2N walls (N equispaced seeds) then propagates them at constant velocity.

2D case (still only formal)

Similar; but nucleation can be cost-free (if seeds are points), and propagation can be cost-free (motion by curvature).

- Nucleation events involve appearance of new walls or seeds. Not associated with saddle point or "critical nucleus."
- (2) Heart of rigorous 1D analysis is a structure theorem: as $\varepsilon \rightarrow 0$, action integrand converges for a.e. t to a measure with point masses (at walls), varying continuously in t.
- (3) Action minimization is closely related to:
 - steepest descent: εu_t = εΔu ε⁻¹(u³ u)
 DeGiorgi's conjecture: ε⁻¹ ∫ |εΔu ε⁻¹(u³ u)|²

Hints toward the analysis

(1) Action controls the energy, e.g. jumps in energy cost action:

$$\int_{t_1}^{t_2} \int |\varepsilon^{1/2} u_t + \varepsilon^{-1/2} \nabla E|^2 = \int_{t_1}^{t_2} \int |\varepsilon^{1/2} u_t - \varepsilon^{-1/2} \nabla E|^2 + 4 \int_{t_1}^{t_2} \int \langle u_t, \nabla E \rangle$$

= pos + 4(E(t_2) - E(t_1))

(2) Action controls wall profile and velocity: arguing as above, and using that E = 0 when $u \equiv \pm 1$:

$$\int_0^T \int |\varepsilon^{1/2} u_t + \varepsilon^{-1/2} \nabla E|^2 = \int_0^T \int \varepsilon u_t^2 + \varepsilon^{-1} |\nabla E|^2$$

(3) Propagation cost is of order 1: $\iint \varepsilon u_t^2$ is bounded below via

$$\frac{4}{3}|\Omega| = \int_0^T \int u_t(1-u^2) \leq \left(\int \int \varepsilon u_t^2\right)^{1/2} \left(\int \int \varepsilon^{-1} (u^2-1)^2\right)^{1/2}$$

(1) Bounds on coarsening rates

tools Interpolation and energy inequalities work by Kohn & Otto, CMP 2002

- (2) Structure of a cross-tie wall
- (3) Pathways of thermally-activated switching

Physical idea: Focus on thermally-activated switching in fixed time *T*. Though rare, such events may nevertheless be very important.

Mathematical idea: Action minimization offers a new challenge in the analysis of sharp-interface limits.

Wide open: Rigorous analysis complete only for 1D Ginzburg-Landau. How about more complex models from condensed matter physics (e.g. magnetic switching)?

What is energy-driven pattern formation?

Today's examples were:

- Bounds on coarsening rates via energy & interpoln ineqs
- Cross-tie wall structure via optimal geometry-indep bound
- Thermal switching via sharp-interface limit, action min

Other areas of recent progress include: twinning due to martensitic transformation; domain patterns in ferromagnets; vortex patterns in type-II superconductors.

Some common themes:

- Questions from physics, answers from analysis
- Energy-driven, but not necessarily at equilibrium
- Focus on examples; unity will emerge in due course

References and credits

Bounds on coarsening rates

Presented here Kohn and Otto, CMP 2002 Closely related Kohn-Yan; Pego-Dai; Conti, Niethammer & Otto Numerical figs Puri, Bray, Lebowitz, PRE 56 (1997)

Cross-tie wall structure

More general Alouges, Rivière & Serfaty, COCV 2002 Version here De Simone, Kohn, Müller & Otto, review article, 2005 Experimental fig Nakatani et al, Jap. J. Appl. Phys. 28 (1989)

Thermal switching

Framework Kohn, Otto, Reznikoff & Vanden-Eijnden, CPAM 2006 1D analysis Kohn, Reznikoff & Tonegawa, Calc Var PDE 2006

For more detail and a 4th example (branching of domains) see my ICM Proceedings article (on my web page).

Thanks to NSF for its generous support of this work

Focus for simplicity on motion by surface diffusion

 $v_{nor} = \Delta_{\Gamma} \kappa$ $\Gamma(t) = evolving curve$

Common belief, for random initial data:

- length scale coarsens, ℓ(t) ∼ t^{1/4}
- solution is statistically self-similar

Evolution is energy-driven:

$$\frac{d}{dt} \text{Perimeter} = \int_{\Gamma} \kappa v_{\text{nor}} = -\int_{\Gamma} |\nabla_{\Gamma} \kappa|^2$$

Why is this difficult?

- Conjectured self-similarity might be wrong. Not even clear what it means!
- Assertion that ℓ(t) ∼ t^{1/4} says
 - Solution never stops coarsening.
 False e.g. for spheres. Therefore subtle.
 - (2) Solution doesn't coarsen faster. True without exception. Therefore accessible.

Recent progress: A weak version of (2), showing (very roughly)

 $\ell(t) \leq C t^{1/4}$

Getting started

Two very different methods for defining local length scale $\ell(t)$: Represent spatial structure by $\chi(x) = \pm 1$. Assume:

- spatially periodic (so averaging is easy)
- equal vol fractions (for simplicity only)

Method 1: Perimeter per unit volume

$${m E}= \oint |
abla \chi|$$
 scales like 1/ $\ell(t)$

Method 2: A negative Sobolev norm

$$L = \max_{|
abla g| \leq 1} \oint g\chi$$
 scales like $\ell(t)$

Norm defining L is dual to $W^{1,\infty}$. Hence we write (heuristically)

$$L = \oint |\nabla^{-1}\chi|$$

Thinking about E and L

Consider 2D system of size R, with inclusions on length scale ℓ . Number of inclusions is $N \sim (R/\ell)^2$. Take $\chi = 1$ in black phase, $\chi = -1$ in white.

Clearly E = perimeter/area = $\sim N\ell/N\ell^2 \sim 1/\ell$.

To see why $L = \max_{|\nabla g| \le 1} f \chi g \sim \ell$, argue that

- optimal g ∼ ℓ at inclusion centers
- optimal $g \sim -\ell$ far from inclusions

so $\chi g \sim \ell$, whence $L \sim \ell$.

E and L are related by

interpolation inequality: We always have

 $EL \ge const.$

Proof makes no use of evolution law. Essentially: $f |\chi| \le C (f |\nabla \chi|)^{1/2} (f |\nabla^{-1} \chi|)^{1/2}$

energy inequality: Solutions of the evolution law satisfy

 $dE/dt \leq 0$ and $(dL/dt)^2 \leq 2E|dE/dt|$

Intuition why dE/dt controls dL/dt: coarsening requires motion, which dissipates energy. Proof is simple (like most energy inequalities). The available information

$$EL \ge C$$
, $dE/dt \le 0$, $(dL/dt)^2 \le 2E|dE/dt|$

does not imply

$$L(t) \le Ct^{1/4}$$
 or $E(t) \ge Ct^{-1/4}$,

but it does imply a time-averaged version of the latter:

$$\frac{1}{T}\int_0^T E^3(t) dt \geq \frac{1}{T}\int_0^T \left(t^{-1/4}\right)^3 dt$$

provided $T \gg L^4(0) \gg 1 \gg E(0)$. Proof is an ODE argument (like Gronwall's inequality).