The work of Grigory Perelman



Theorem (Hamilton 1982)

If a simply-connected compact
three-dimensional manifold has a
Riemannian metric with positive
Ricci curvature then it is
diffeomorphic to the 3-sphere.



Unnormalized Ricci flow

Normalized Ricei flow
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Hamilton’'s 3-D nonsingular flows theorem

Theorem (Hamilton 1999) :

Suppose that the normalized Ricci flow on a
compact orientable 3-manifold M has a smooth
solution that exists for all positive time and has
uniformly bounded sectional curvature. Then
M satisfies the geometrization conjecture.

Remaining issues :
1. How to deal with singularities
2. How to remove the curvature assumption




Neckpinch singularity

A two-sphere pinches



surgery idea (Hamilton 1995)
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What are the possible sinqularities?

Fact : Singularities come from a
sectional curvature blowup.

Rescaling method to analyze singularities (Hamilton)






Blowup analysis

|dea : take a convergent subsequence of

the rescaled solutions, to get a limiting
Ricci flow solution. This will model the

singularity formation.

Does such a limit exist?

If so, it will be very special :
1. It lives for all negative time (ancient seclution)
2. It has nonnegative curvature (Hamilton-lvey)




Hamilton's compactness theorem
gives sufficient conditions to extract a convergent
subseguence,

In the rescaled solutions, one needs :

1. Uniform curvature bounds on balls.

2. A uniform lower bound on the injectivity radius at
the basepoint.

By carefully selecting the blowup points, one
gets the curvature bounds.

Two obstacles :
1. How to get the injectivity radius bound?
2. What are the possible blowup limits?




Three themes of Perelman’s work

1 No local collapsing theorem
1 Ricci flow with surgery

1 Long time behavior
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No local collapsing theorem
(Perelman1)

Curvature bounds imply injectivity radius bounds.
(Gives blowup limits.)

Let M be a compact n-dimensional manitold.

If g{-) is a Ricci flow solution on M that exists for £ € [0, T), with T <

then for every p = 0 there is a & = [} with the following property.

I

Suppose that r € (0, g) and let By{z, r) be a metric r-ball in a time-t slice.
[f the sectional curvatures on By(x. r) are bounded in absolute value by = then

the volume of By(x.r) is bounded below by &r™.




Method of proof

Mew monotonic guantities for Ricci flow :
W-entropy, reduced volume

Wi(a) /_//

time local
= +— collapsing




Classification of 3D blowup limits
(Perelman1, Perelman2)

2 Finite quotient of the round shrinking 3-sphere

1 Diffeomorphic to 3-sphere or real projective
space

% Round shrinking cylinder or its (Z/2Z)-quotient

1 Diffeomorphic to Euclidean 3-space and, after
rescaling, each time slice is necklike at infinity



Canonical neighborhood theorem
(Perelman 1)

Any region of high scalar curvature
in a 3D Ricci flow is modeled, after
rescaling, by the corresponding
region in a blowup limit.



Ricci flow with surgery for
three-manifolds

1 Find 2-spheres to cut along

1 Show that the surgery times do not
accumulate



First singularity time




Perelman’s surgery procedure




Main problem

At later singularity times, one still needs to
find 2-spheres along which to cut.

Still need : ""canonical neighborhood theorem™
and "no local collapsing theorem™".

But earlier surgeries could invalidate these.



One ingredient of the solution

Perform surgery deep in the epsilon-necks.

End up doing surgery on long thin tubes.




Surgery theorem
(Perelman2)

One can choose the surgery parameters so
that there is a well defined Ricci-flow-with-
surgery, that exists for all time.

In particular, there is only a finite number of
surgeries on each finite time interval.

(Note : There could be an infinite number of
total surgeries.)



Soul Conjecture

Conjectured by Cheeger-Gromoll, 1972
Proved by Perelman, 1994

If M is a complete noncompact Riemannian manifold
with nonnegative sectional curvature, and there is
one point where all of the sectional curvatures are
positive, then M is diffeomorphic to Euclidean space.



Long time behavior

Special case : M simply-connected

Finite extinction time theorem
(Perelman3, Colding-Minicozzi)

If M is simply-connected then after a finite time,
the remaining manifold is the empty set.

Consequence : M is a connected sum of standard
pieces (quotients of the round three-sphere and circle
x 2-sphere factors). From the simple-connectivity, it
is diffeomorphic to a three-sphere.




Long time behavior

General case : M may not be simply-connected

To see the limiting behavior, rescale

the metric to il

X a connected component of the time-t manifold.



Desired picture

graph

hyperbolic hyperbolic



Perelman’s thick-thin decomposition

Thick part of X :

1 Locally volume-noncollapsed

1 Local two-sided sectional curvature
bound

Thin part of X :

1 Locally volume-collapsed
1 Local lower sectional curvature bound



The thick part becomes hyperbolic

Theorem (Perelman2) :

For large time, the thick part of X
approaches the thick part of a finite-volume
manifold of constant sectional curvature
-1/4.

Furthermore, the cuspidal 2-tori (if any)
are incompressible in X,

Based partly on arguments from Hamilton (1999).




The thin part

Theorem

(Perelman2, Shioya-Yamaguchi)

For large time, the thin part of X
Is a graph manifold.




Upshot

The original manifold M
IS @ connected sum of
pieces X, each with a

hyperbolic/graph
decomposition.
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Poincare Conjecture (1904)

A simply-connected compact three-dimensional
manifold is diffeormorphic to the three-sphere.

Geometrization Conjecture
(Thurston, 1970°s)

A compact orientable three-dimensional manifold can be
cancnically cut aleng two-dimensional spheres and
two-dimensional tori into " geometnc peces”



Ricci flow approach to the Poincare
and Geometrization Conjectures

Ricci flow equation introduced by
Hamilton (1982)

Program to prove the conjectures using
Ricci flow ;: Hamilton and Yau



Perelman’s Ricci flow papers

(November, 2002)
The entropy formula for the Ricci flow
and its geometric applications

(March, 2003)
Ricei flow with surgery on three-manifolds

(July, 2003)
Finite extinction time for the solutions to

the Ricci flow on certain three-manifolds




Detailed expositions of Perelman’s work

1 Cao-Zhu
1 Kleiner-Lott
1 Morgan-Tian



Perelman’s Ricci flow papers

(November, 2002)
The entropy formula for the Ricci flow
and its geometric applications

(March, 2003)
Ricei flow with surgery on three-manifolds

(July, 2003)
Finite extinction time for the solutions to

the Ricci flow on certain three-manifolds




Hamilton's Ricci flow equation

g(t) is a 1-parameter family of Riemannian metrics
on a manifold M

Ric = the Ricci tensor of g(t)

(Assume that M is three-dimensional, compact
and orientable.)



