The Work of Terence Tao



Breakthroughs of the 1990's

s Besicovitch sets of small fractal dimension have
geometric structure. {They contain “bouquets”
and “hairbrushes” .} - 1, Bourgain, T. Waolff,

e [he Kakeya problem is related to Gowers' improve-
ment of the Balog-Szemeradi T heoram from

combinatorics. - J. Bourgain,

e [he subject arew deep and forbidding!
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Deep Theorem:

(Bourgain, following Gowers' ideas on Balog-Szemerédi)
Let 4, B be subsets of an abelian group.

let & C A X B.

Assume #A,#£B, #e + b (a,b) 2 G} = N,

Then #{a—b: (a,b) € G} < ON2-TT,

whera O is a universal constant.



Little Lemma (MNets Katz and Terence Tao 1999}):
Same Assumptions as the Deep T heorem

imply
{a—b: (a,b) € G} < ON2E,

where C is a universal constant.

Corollary: 3{n)} = d—”ﬁ.

sharpest result then known for o > 8.
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Further progress ...

Tour de Force by

MNets Katz, [zabella Laba, Terence Tao

The subject is still deep and forbidding.

Complete solution seems far away.

14



Interaction | i

Brought to us by the

[- Team:

J. Colliander,
G, Staffilani,
and

T, Tao

M. Keel,

H. Takaoka,




Mon-Linear Schrodinger (NLS)
| iGu + Agu = +|ulPlu

ult—p = wup given.

Here, u(x,t) is a complex-valued function of
sceR3and t € R

Minus sign == Focussing

Flus sign == Defocussing

16



Obhvious Conserved QQuantities

¢ MASS = [ |u(x,t)|?da
R.?

¢ ENERGY = 3 [ |Vazu(z,t)|’dx
]E.’-!

1
—7 [ lu(@ 0Pt d
B3
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Morawetz Estimate (Defocussing NLS, p = 3)

[ ] Mn{x.ﬁ <
EIEE |3—|
~ - 4
Cosup Il (~A2)Tul,1) lIEaps) -

¢ Rules Out: |u(z,t)| ~ 1 for |z| <1, all t.

e Doesn't Rule Out: |u(x,t)| ~ 1 for [z—zo(t)|<1,
all t.
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T —

e Sel My(t) =Im J|" (e, t) [lm—l Wz ulx, £)
ok
E :

» Check [Mo(t)| < € || (~A2)" P ul, ) [|F2gay

s Compute (using NLS) that £pl)  —

w{z, )|
c1 {0, t}| + cgf|?ﬂu{:c E::l| @ |+ |'r| {l:;lf'ﬂ dr

];-_E,

(Vo = angular part of the gradient.)
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The Problem: Taking

. Faulet)| de

Mo(t) = Im [ @(x.t) - |—
w3 ||
picks out the origin. Maybe u lives far away

from the origin, so Mp(t) is irrelevant.

The Solution: Move Mgy(t) to wherever u lives.



Math at its Highest Level Can Make us Think:

e VWhat Amazing Technical Power!

e What a Grand Synthesisl

e How Could Anyone Not Have Seen T his Before?

e Where on Earth Did This Idea Come From?



The [-Team defined

M(t) = [ My(t) - |u(y,t)|?dy, where
B3

My(t) = Im [ a(a,t) - |— . Vyu(x,t)| da.
g3 lx — y|

Rerunning the proof, using M(¢) instead of
Mq(t) (and doing a little extra work),
one obtains .....
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The Interaction Morawetz Estimate (IME)

i i
[ [ lule, )| dadt <
OR3

C || u(-,0) ”i:.:]azj IGEL;ET | (—5z)Pu (., ) |5%2{gi}

Rules Out |u(z,t)| ~ 1

for e — ot} <1.




IME (for p=23)

|

[ a0 ds,db < C a0 122 - sup_ || (~A a0 |2,
Be 0<ge<T

Note (- Ax)1/%u takes only 1/2 an z-derivative.
Energy = 5/ | Vau(z, t)|?dx + - -

takes a full z-derivative.

[-Team proved global existence for p = 3 NLS
in Sobolev spaces in which the energy may be
infinite,
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Quintic Defocussing NLS (p = 5)

PO + Azu = +u/*u, u|;—g = ug given
Critical for the Energy:
# Short-Time Solutons for finite energy

¢ Cilebal Selutions for small energy.
i
Energy =3 [ [Vou(x,0)?da +Z [ |u(z. t)[® da.

B3 B3
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The Challenge:

Frove Global Existence

for

Large Finite Energy



« Done by J. Bourgain for the radial case,

ulz,t) = flz,t).

BIG, HARD, FOREIDDING!

¢ The general case is MUCH HARDER than the radial case.
Radial == Singularities of w{x, ) can form only at =10

Ganeral == Singularties may form anywhere

The [-Team solved the general case, by proving ...
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Theorem: For finite-energy initial data ug,
the Defocussing Quintic NLS has a global
solution. If the initial data ug belong to H5(E?),
(2 > 1), then so does the solution «(.,t) at any
time {.

Moreover, there exist solutions uy, u_ of the
free Schrodinger equation (id; + Az)usr = 0,
such that

f IV z{ul(x,t) —'H-j:(I,fa}HEdI —+Dast — +oo.
E



Ideas of Proof

¢ INTERACTION MORAWETZ ESTIMATE

(with cutoffs, that make life much harder)

¢ Many ideas from Bourgain

(especially INDUCTION on the ENERGY)

+ Many ideas [ can't begin to describe here.
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Arithmetic of Progressions of Primes

(B. Green and T. Tao)



Theorem (B. Green - T. Tao):

Given k = 3, there exist & primes in arithmetic
progression,

More precisely, given k& > 3, there exist c(&),
No(k) > 0 s.t. for any N > Np(k) we have

#{k-term arithmetic progressions among the
primes < N} is at least

e(k) N?
(log N)&'



Three Topics Among Many

+» Kakeya needle problem

¢ Non-linear Schradinger equations

« Arithmetic progressions of primes



Szemerédi's Theorem (Sets):

Given k,d, there exist c(k,d), Ng(k,0) s.t. for
any N > Ngp(k,d), the following holds; Let
E C Zy, with &E > 4.

Then E contains a k-term arithmetic
progression. In fact,

#£{k-term arithmetic progressions in E}

> e(k, 6) N2.



Szemerédi's Theorem (Functions):

Given k,4d, there exist <(k.d), Np(k,d) s.t. for
any N > Ng(k,d), the following holds:

Let f: Exy — R, with

o0 < flz) <1 (all z € Zpr), and
® Avpez., flz) = 4.

Then
Avp,r cEn{fla) - flz47) ... flz+ (=13} = ek, 5)



Three Completely Different Proofs of
Szemeredi's T heorem

¢ Szemeredi (Combinatorics)

¢ Furstenberg (Ergodic Theory)

¢ Gowers (Non-linear Fourier Analysis)



The proof of Green and Tao synthesizes all
the previous work on Szemeredi's T heorem.

More precisely, it quotes Szemeredi's
T heorem, and it uses ideas from the proofs
of Furstenberg and Gowers.,



IDEA; Try applying S5zemerédi, with § = 1/2, to the function

%Iﬂg:l: ifxisaprime < N
) = on Ly .

0 Gtherwise

Note Aw..z, Fl{z) ~ & for large N;
Conclusion of Szemerédi says
Ave s L) flz 7)o fle4 (-1} = elk, 4), ie,
: : . RO
F{k-tarm arithmetic prog. among primes < N} > ﬁ_a%;

{exactly the desired result).
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Crops!

[%IGQ + if 2 is a prime < NI
f(z) = I

| otherwise J
fails to satisfy the hypothesis
D< fiz} <1 {(all ze Zyn)

To get around this, .
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Green & Tao prove an extension of Szemerédi's
T heorem, in which the hypothesis

0< f(x) <1

Is replaced by

0 < flz) < viz)

for a suitable function v(z), called a “pseudo-

random measure”" by Green & Tao.



Defining Conditions
for a
— Pseudo-Random Measire

. A'{"':EEE-N ”(T} =1

» Upper Bounds on certain averages
T a2
Avg (1, me) e(Ep)t { _H] ”':f"‘a'{l‘)}%
=
for certain affine functions

M, oy Am s (Za)t — 2y
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Given k. 4§ there exist efk,d), Np(k, §)
s.t. for all N = Nolk, &) the following holds.
Let i be a pseudo-random measure on Ly
Let f:Zy — R, with

e 0 < f{x) < {x) (all &€ )

o Avoez, flr) > 8

Thien

Avg reZy I} f(ztr) - flz4 k—21)r)} = ok, §).

ig



First Discuss Proof of

“Green-Tao-5zemeredi T heorem',

Then Come Back & Apply it to Primes
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Kakeya Needle Problem (Classic Version)

Let £ ¢ RB?

Suppose we can turn a needle of length 1 by
a full 360 degrees, keeping it inside E at all
times.

Guestion; How small can we take the area
of £7

Answer: Arbitrarily small - (Besicovitch, Pal)
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_Proof of Green-Tao-Szemeredi
e Split f = fp+ fryo (Muniform” 4 “anti-uniform’ )

o Write Avg ez, {f(=) flz+r) - fla+ (k- 1))}
as a sum of terms

(*) Av{fo(=) ilz+7) -+ fro1(z+ (k- 1)r)},

with each f; = fp or -fUl'
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e Any term {*} in which at least one f; = fir is
negllaibly small, thanks to ideas that go back to
Gowers' proof of Szemerédi's T heoram,

e [his leaves us with 2 single "MAIN TERM",

namely

"""L'x,r.:;EN {f{;l{i}ftﬂ.{x —|—'i‘:! LA fUJ.{E + {'r‘: = l}f}}



To handle the main term, Green and Tao
partition Z into subsets Eq, E5,--  E4, and
replace f;;1 by its average over each of the
Ea.

Call this averaged function fU_.

e Replacing f;1 by f;. in the MAIN TERM
makes a negligibly small difference.

. fj_rr.J satisfies the hypotheses of the classic
Szemerédi T heorem.
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The above results on f{;l follow from ideas
that go back to Furstenberg's proof of
Szemeredi's T hecrem.

MNow the Green-Tao-Szemerédi T heorem
follows at once, by simply applying the classic
Szemerédi Theorem to fi;..
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How Green- Tao-Szemerédi applies to the primes.
“Just” need to find »(x) s.t.

e f(z) < v{z), where

(%Ingm if ¢ < Nis nrirme[
flz) = l

0 otherwise [

and

e {x) is a2 pseudo-random measure,

Such 2 » comes from waork of Goldston-Yildirim using

not-so-hard analytic number theory.
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Much More First-Rate Work, including ...

¢ Program to study wave maps via harmonic
maps

¢ Solution of Saturation Conjecture from rep-
resentation theory.
(Joint with Knutsen) ALGEBRA

o WHAT NEXT?
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Kakeya Needle Problem (Modern Version)

Let E C B™ Assume E contains unit line
segments in all directions, ( “Besicovitch set" )

VWhat can we say about the fractal dimension
of E7



ik T 1 L

Fix ECREY 3 > 0.

ASK: For small enough é > 0, can we
cover E by 67 balls of radius § 7

dimE = inf{all 3 > 0| Answer is YES}



The Kakeya Problem is Related To

¢ Fourier Analysis

¢ Partial Differential Equations

« Combinatorics



T heorems on Kakeya:

Any Besicovich set £ C ™ has Minkowski di-
mension at least 3(n).

Try for the best 3(n).

Maybe, ultimately, F(n) = n?



#3(2) = 2 Davies;
See also A. Cordoba.

Bin) > %1 forr n > 3 Drury,

See also Christ-Duoandikoetxa-Rubio de la Francia
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