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The collection MT(d) = {Th(U7,)} isa “spectrum”. Its associated

=

infinite loop space i3

Q°MT(d) = dir lgn Q" Th(UZ,).

Theorem (Madsen-Weiss) The map e : Zx )" — Q¥MT(2) induces
isomorphism on integral cohomology in degrees k < %

Corollary (i) Ex H*(BTy)= H'(QQ*MT(2))
(i)  HY(Q"MT(2)) ® Q2 Symme(H*(Grass:(R™))) = Qlky, £z, ... ].



Il Cobordism Categories (d > 0)

Two closed, criented (d — 1)-manifolds My, My are cobordant if there
exist a compact, criented d-manifold W with
W= M L(—M) (—Ms= Mg with cpposite orlentation),

57, = set of equivalence classes (Pentryagin, Thom, Wall).

Category ¥z replace abstract manifolds by embedded ones, 1.2

object ¥ = {(a, M) | a € B, M*' C RF™ closed, orlented}
=R x| | B Diff (M) (union over diffeomorphism classes).

Mor({ap, My), (a1, M:))
= {W*  [ag, @] x B&1° | OW = a1 % M1 U ag = (—Mg) + collar}
— R xR, «| | BDif(W* awe,



%E » pE—L4od
ffll

Composition 1o ¥; = union of submanifelds.

To each (amall] category ¥ one can associate a classifying space B,
B : Categories —+ Spaces

#—i® 10 F +—— l-simoplex in 5%,

!,
;}k‘-ﬁ. in ¥ = J-pimplex in B%, stc.



Examples

(1) ob%¥ = {s}, mor¥ = & (group). Then B¥ = B, the classifying
space for principal G-bundles.

(2) For the cobordiem category ¥y, mpB¥y =05,
Theorem A (GMTW) For all d > 0, Q8% = Q= MT(d).

The proof uses geometric interprefation of the homotopy groups mll ¥y
and m 1™ MT(d) via transversality and submersion theory.

e Inspiration to conslder ¥ comes frorn field theories. Ssgal's category
of Riemnann surfaces with parametrized boundaries haz the same clag-
aifying space as %,

s Conformal field theory is a functor F: %) —+ {Hilbert spaces}



Theorem A potentially gives information abeout diffecomorphism groups
and moduli spaces:

Each morphism W : (ag, M) = (a;, M#) in % defines a 1-simplex
(a path) in B%¥; The endpoints lie in the component determined by
[Mp] = [My] in ©3°,. Connecting these pointz to a base point gives

7 : Mot ( (a0, M), (01, M1)) — Q1.B%;.

The morphism space is a union of BDHT(WY; &). We seek "large” WY,
g0 that

7 : BDiff(W% 8) — NB%,
induces cohomology 1zomerphizsm onto a compenent in a range of di-

mensions.

For d = 2 Harer's stability thecrem provides such a manifold.
For d > 2 nothing similar iz known.



Let Fyy be a surface of genus g with 8F,), = LEfJEl.

Diff( Fp3;8) = orient. presv. diffecs that fixes 8F,p pointwise. The
components are contractible, so B Diff(Fyp; ) — BT is a homotopy
equivalence, where 'y p = mo Diff (F4; @). Consider the maps

Diff(Fys; 8) +— Diff(Fy4:8) —+ Diff(Fyy15:)
] a1

Theorem ( Harer 18986) For 2k < g — 2 there are isomorphisms

HY( BT, p—1) —+ H¥(BT,p) +— H*(BT;.13).



Preitive boundary subcategory ‘i}’]’ _ ¥y same objects, less morphismas:

2 memps AR
\J,

Theorem B (GMTW) B¥Y =~ B¥; (d=1).
¢ Theorem A + Theotem B = QB9 = ("MT(2).

A new proof of the Madsen-Weiss Thecrem now follows from:

Theorem There is a homology iscmorphism £ x Bl s — ﬂB%‘:‘f.



Cine constracts a space & with a map w: & — B such that
y 41 -

(i) il l:t-BTw.ﬂl

(i) & iz contractible (daforms to a point].

Harer + (i) = all fibers of ¥ are homology eguivalent,
McDuff-Segal + (i) = ?r"l:lj 54 < B¥Y homology isomocphism.

Remark There zre zsimilar theorerns for Rismann sarfaces with marked
points, bat stably ooe just gebs a decomposition of cobomalogy

H(Bloy) = H (BTopi) @ Hha- - ALl A =all,)




IV Auxiliary results

Variations of ¥ Une can consider apin manifolds, unoriented mani-
folds, manifolds with a map t¢ a background space X, graphs, etc.

o Versions of Theorema A and B remain valid, but atability theorema
must be proved in each case (= d = 2). This ia done by T. Bauer
and N. Wahl for apin and unoriented manifolds, reapectively.

(1) #P(X)={(Z,f)| Z C R, genus g, f: 2 — X cont. map }

“Topological Gromov-Witten space”



Theorem (Cohen-Madsen) If X s simply connected, then
(i)  H'(.#}"(X)) is independent of g for 2¢ < g — 4,
(i) ExH(47PX)) 2 H(Q°(MT(2) A X.)).

Corollary r.;..fﬁ.’;@(xj = Ha(X), and for each cornponent we have

H'(#¥P(X):) ® @ = Pree Comm. Alg. (H™*CP™ x X)[-2]@ Q).

(2)  Aut, = {automorphisms of free group on n letters},
§i"5" = {maps f: 5" — 5" with fo0) = co}.

Theoram (Galatius] There s 2 homology isomorphism
¥: 4= B Aut, = Q%5™.

Corollary For k = 0, H% B Aut,) @0 = 0.



e Differentiable crientable, connected surfaces are classified (up to dif-

feomorphism) by their genus: The moduli space is the set of non-

e Riemann Surfaces (= complex structures on F), in contrast, depend
on 6g — 6 real parameters: The moduli space .4, is a variety cf real
dimension 6g — 6. .#g = {*}, .#, = B%: Take g >> 2 from now on.

negative integers.



Steps in Galatius® proof:

e Heplace ¥, by cobordism category % of embedded graphs:

a; » R°
V @ (a2 morphism in %)

ayg = BT

e Stability theorem of Hatcher-Vogtmann-Wahl =
Homology isomorphism Z x B Aut,, — §1B¥°,

e Homotopy equivalence B¥? ~ BY.

¢ Homology isomorphism QB¥ — Q%5 This uses “scaning”, i.e.
Gromov's theory of flexible sheaves + a hard calculation.



V  On the Deligne-Mumford compactification .,

Stody. of &, involved two maps
(2) @:BDIf(F) —+ .

(b)  «:BDiff(F) —+ 0*MT(2)

Eliashbarg-Calating havs given analogous constructions for .4:

(€37 = BDif(F;) = BT,)

« Heplace 5 Diff(F,) by classifying space BLF, of Lefachetz fibrationa.

» Replace 1% MT(2) by similar space (M LF(2)
(@ &:BLF, = ., & H*(.F,)®8Q —+ HYBLF)&Q
% &:BLF, —+*MLF(2)

o H'OEMLF2)@TQ=Ql... 4 ... @ Q.. Aj...]

deg(h) =20+ 47+ 2



A Lefschetz fibration is a proper smooth « : E™*2 — X™ auch that

- Locally in B, m(2, 1,000, &n-2, 21, %2) = (L1y0 e 02 Tn-2, 21, 22)
(2: €R, 2,€C)

~ Singular set 2  F**2 snbmanifold with C* normal bundle U

— The restriction 7|p is an immersion with € normal bundle L.

Aij = (e (e(U) e (UY).



.y 18 a projective variety with fundamental class [.#;] € Hess(-#;)@Q.
Problem Calculate the image of [.#] under
(Gg)e 0 (8)7 : Hi( ) @ Q — H(Q®MLF(2) @ Q.

Similar guestion for the Gromov-Witten moduli space of pseudo holo-
morphic curvea in a symplectic backpground.



Tautological ring:
R*{“’ﬁ.ﬂ"] - Iﬂl&g&l:@{ﬁ-l,ﬂg,.. ]:I — H*["'ﬁ:'?}@ @)'

Faber’s conjecture: R*(.#;) satisfies Poincaré duality in real degree
2; B 4!
(i) R¥*(.#y) = QKg—2)  (proved by Looijenga)
(i) R¥(.#,) ® R¥F(.,) — R¥*(.#,) perfect paring.
8. Morita proved that xy,...,&[g/5 generates B'(.#;). The argument

uses the action of [; on the lower central series for m(F) + Spy(Z)
invariance theory.



AJ(X) modoli space with 5 marked polnts (or panctures) + map to
the manifold X.
Restricting to neighborhoods of marked poiots gives a map:

Res : #NX) — (LX// Diff(54))".

LX = smpace of parameterized Joops in X, // indicates the Borel arbit
spacs,

Divide marked points into incoming and outgoing onea:

[LX ) Dff(S4)] ™" —— ) —— (LX/ Diff(5°))"
g =¥

D. Sullivan: Hif_vﬁ;{.h'}l:l @ ® acts as operations
H, (LX//Diff(3")=) @ R -+ H, (LX// Diff(5'y) @ K

The action even extends to H,(G(X); E).



V On the Deligne-Mumford compactification .,

Our results on ., and BT, involve two basic maps, namely
(a) @: BDiff(F;) — .#;, Ifuﬁ’;‘“':' ~ B Diff(F,) ~ BT,)
(b} «:BDiff(F,) - G*MT(2).
B Diff(F;) classifies genus g surface bundles. The space (0% MT(2) claz-
sifies * formal surface bundles™ Triples (f, L, ¢) where
— f:E™? o X smooth, proper; L complex line bundle over E
¢: TEOR—+ PFTX®LOR

An orient. surface bundle w : £ — X induces a formal surface bundle
with f = v, L = T"FE and ¢ induced from the isomorphism TE =
T'Ed f'TX.



Eliashberg-3alatios has grven analogous constroctions for vﬁ:

A Lefachetz fikeation is proper smocth & 1 BV — X guch that

- locally in B, #{%1, . ey &n-2, F15.8) = (E1y. 0 0y In-2, 2082)
(HEeER&e0)
= gingolar set 2 ¢ B submanifold with ® pormal bundle &F

— The mestriction rh: iz an immeraion with O normal bondla L.

Lefschets Ghrations of genus g are classified by a space BLF,. There
i5 the mobion of a formal Lefschets Shration. They are classified by a
space (I MLF(2), similar in spirit to (I°MTY(2). There are maps

(2) §:BL;—+ .4 PF.H(F)et—=+BLF)aT
(B;) &:BLF, — (" MLF(2).

L H‘{ﬂ“mﬂ@’l=ﬁm.muuiﬂ u‘***‘lhjll‘lﬁzl
deg Ay = 245 +2
¢ Given Lefschets Bbration w1 B < X, A = (w]chici(U e UF¥ ).



3 ey, '"F""-"-"- :







+#, 12 a meeting place for many areas of mathematics, e.g,

¢ Complex Analysis: Teichmiiller Theory

+ Algebraic Geometry: €, quasi-projective variety with compactifica-
tion hﬁ_} {Dﬂlig:nc-Mum_t'card], Mumford's conjecture.

¢ CGepmetry and Physics: Peeudo-holomorphic curves in symplectic
background; conformal field theories; Intersection theory in ..

e Group theory: Mapping Class Group.



| Modulispace and Mapping Class Group

Fo{TF,;) = {complex structures on tangent bundle TF}.
TF—LTF, ; J'= —id;{v, T} oriented basis for v # 0.
s
Diff( Fy) topological group of orient. preserving diffeornorphismes.
Diff1( F;) <t Diff(F;) connected cormponent of the identity.
I'y = Dif(Fy)/ DIy (Fy) = v Dif(F,)  (Mapping Class Group)

Teickmiiller space: = F(TF,)/ Diff;(Fy) = B¥*
Moduli space: .8, = 3’;,.'_-"Il"lil = FclTF,) l..-'r Diff{ 7 )

Distant goal: Compute the cobomology ring H*(.#;).



-#y 12 singular (not a manifold) because [, acts on &, with finite sta-

bilizera. The mapping class groop provides 18 & non-singular cover,
B : By — &y & H'(A)@Q— H'(B,) @@
{Cycovering space over ;‘:}I,-"Ial:-m = {maps X —+ E'l"_,]-,r"H-Jmatupjr.
1. Har=y (1986): HE(.ET"F} independent of g when g > 2k + 2,
Stable cobomelogy: H*(BT.) i= HY{(ET;), ¢ > 2k + 2.
Mumford's Conjecture: The stable rational cobomalogy ring is

H' (BT ) @ Q =0k, kg0, dega; =24

We need a different model for BT,

A3P(n) = {orlet. surfaces B C R, D diffec. to Fy}
= Bmb(F,, R"*?)/ Diff(F,) (orbit space).



Emb(F,, B"*2) is the space of smooth embeddings with the Whitney
topology of uniform convergence of all derivatives,

q_ﬁ}bnp{“) C vﬁr;ﬂp{ﬂ 4 _}_} Coaee Fﬁ-’;ﬂp =J vﬁ}hpl:ﬂ]-

D C B2 = inner product on T2E + orient. = complex structure.

This implies a map

The space Emb{F,, B®*%) is contractible {Whitney), and
Emb(Fy, R™*) xpigip,) Fy — 2

is the universal smocth Fp bundle:

{Fy-bundles over X} /Tsomorphism = {maps X — ./} Homotopy.



Summary There are homotopy equivalences
(i)  .#;F ~ BDiff(F;) and BDiff(F;) ~ BT, (Earle-Eells), and
(il) 6 : H'(#4,)@Q = H(#!") @ Q.

The classes x;

7 E™2 4 X™ smooth Fy-bundle; T"E tangents along the fibers
m: H*3(E) — H*(X) “integration along the fibers”
m(cl(T"E)*) = k € H*(X) = k: € H*(BT,)



Il Pontryagin-Thom theory and .« }°°

Let E be an n-dim. orlent. vector bandle over compact manifold M<.
Thom space: Th(E) = one point compactification of B,

E: T . ThiE): r"_.—_ o

Three important facts;
(1) The complement of M in Th{E) deforms to .
(2) Thom isomorphism: HF(M) 2 fﬁ'“li’I‘h[E}'].

(3) M9 C B orient. submanifold; F C ®** gpen normal tube

E & Normal bondle of M¥ ¢ B*H,




Collapsing the complement of B In B™ to cne point gives
PPNl JEEY Th{E) (Pentryagm-Thom callapss map ).

We can collect the tangential and normal structure of (3) by combining
the collapse map €y with the Grassmanians:

Grassy(R"'¥) = { d-dim. lin. subspace ¥V C B"'¥ 4 orientation },
Uz ={(w,V) | uLlV}, an n-dim. vectar bundle on Grass(R"").

For 2 € M%, the tangent fber T M € Gramy(R"*Y), and each u € E; is
crthogenal to T M so belongs to U, This gives the map

aM") : 577 <4 Th(E) — Th(Uz,),

and hence an element of the (n + d) fold loop space,

ol M®) & s YThiDE ) = Mapl (57 a0), (Th(T .., o) ).



