Moduli Spaces from a Topological viewpoint

discussing work of primarily

Søren Galatius

Ib Madsen

Ulrike Tillmann

Michael Weiss

in various combinations.

The collection $MT(d) = \{ Th(U_{d,n}^{\perp}) \}_n$ is a "spectrum". Its associated infinite loop space is

 $\Omega^{\infty}MT(d)= \dim_{n o \infty} \Omega^{n+d} \operatorname{Th}(U_{d,n}^{\perp}).$

Theorem (Madsen-Weiss) The map $\alpha_g: \mathbb{Z} \times \mathscr{M}_g^{\text{top}} \to \Omega^{\infty} MT(2)$ induces isomorphism on integral cohomology in degrees $k < \frac{g-2}{2}$.

Corollary (i)
$$\mathbb{Z} \times H^*(B\Gamma_{\infty}) \cong H^*(\Omega^{\infty}MT(2))$$

(ii) $H^*(\Omega^{\infty}MT(2)) \otimes \mathbb{Q} \cong \operatorname{Symm}_{\mathbb{Q}}(\tilde{H}^*(\operatorname{Grass}_2(\mathbb{R}^{\infty}))) = \mathbb{Q}[\kappa_1, \kappa_2, \dots].$

III Cobordism Categories (d > 0)

Two closed, oriented (d-1)-manifolds M_0, M_1 are cobordant if there exist a compact, oriented d-manifold W^d with

$$\partial W^d = M_1 \sqcup (-M_0)$$
 $(-M_0 = M_0 \text{ with opposite orientation}).$

$$\Omega_{d-1}^{SO} = \text{set of equivalence classes (Pontryagin, Thom, Wall)}.$$

Category &: replace abstract manifolds by embedded ones, i.e.

object
$$\mathscr{C}_d = \{(a, M^{d-1}) \mid a \in \mathbb{R}, M^{d-1} \subset \mathbb{R}^{d-1+\infty} \text{ closed, oriented}\}$$

= $\mathbb{R} \times | B \text{ Diff}(M)$ (union over diffeomorphism classes).

$$\operatorname{Mor}((a_0, M_0), (a_1, M_1))$$

= $\{W^d \subset [a_0, a_1] \times \mathbb{R}^{d-1+\infty} \mid \partial W = a_1 \times M_1 \sqcup a_0 \times (-M_0) + \operatorname{collar}\}$
= $\mathbb{R} \times \mathbb{R}_+ \times \| \|B\operatorname{Diff}(W^d; \partial W^d).$

Composition in $\mathscr{C}_d = union$ of submanifolds.

To each (small) category $\mathscr C$ one can associate a classifying space $B\mathscr C$,

B: Categories - → Spaces

Examples

- ob \$\mathscr{C} = \{*}\}\$, mor \$\mathscr{C} = G\$ (group). Then \$B\mathscr{C} = BG\$, the classifying space for principal \$G\$-bundles.
- (2) For the cobordism category \mathscr{C}_d , $\pi_0 B \mathscr{C}_d = \Omega_{d-1}^{\infty}$.

Theorem A (GMTW) For all $d \ge 0$, $\Omega B \mathcal{C}_d \simeq \Omega^{\infty} MT(d)$.

The proof uses geometric interpretation of the homotopy groups $\pi_k\Omega B\mathscr{C}_d$ and $\pi_k\Omega^\infty MT(d)$ via transversality and submersion theory.

- Inspiration to consider \$\mathscr{C}_d\$ comes from field theories. Segal's category
 of Riemann surfaces with parametrized boundaries has the same classifying space as \$\mathscr{C}_2\$.
- Conformal field theory is a functor F: S_d → {Hilbert spaces}

Theorem A potentially gives information about diffeomorphism groups and moduli spaces:

Each morphism $W^d: (a_0, M_0^{d-1}) \to (a_1, M_1^{d-1})$ in \mathcal{C}_d defines a 1-simplex (a path) in $B\mathcal{C}_d$. The endpoints lie in the component determined by $[M_0] = [M_1]$ in Ω_{d-1}^{SO} . Connecting these points to a base point gives

$$\gamma: \operatorname{Mor}_{\mathscr{C}_d}((a_0, M_0), (a_1, M_1)) o \Omega B\mathscr{C}_d.$$

The morphism space is a union of $B \operatorname{Diff}(W^d; \partial)$. We seek "large" W^d , so that

$$\gamma: B \operatorname{Diff}(W^d; \partial) \to \Omega B \mathscr{C}_d$$

induces cohomology isomorphism onto a component in a range of dimensions.

For d = 2 Harer's stability theorem provides such a manifold. For d > 2 nothing similar is known. components are contractible, so $B \operatorname{Diff}(F_{g,b}; \partial) \to B\Gamma_{g,b}$ is a homotopy equivalence, where $\Gamma_{g,b} = \pi_0 \operatorname{Diff}(F_{g,b}; \partial)$. Consider the maps

 $Diff(F_{q,b}; \partial) = orient.$ presv. diffeos that fixes $\partial F_{q,b}$ pointwise. The

$$\operatorname{Diff}(F_{g,b-1};\partial) \longleftarrow \operatorname{Diff}(F_{g,b};\partial) \longrightarrow \operatorname{Diff}(F_{g+1,b};\partial)$$

Let $F_{g,b}$ be a surface of genus g with $\partial F_{g,b} = \overset{b}{\sqcup} S^1$.

Theorem (Harer 1986) For
$$2k < g-2$$
 there are isomorphisms

 $H^k(B\Gamma_{g,b-1}) \xrightarrow{\cong} H^k(B\Gamma_{g,b}) \xleftarrow{\cong} H^k(B\Gamma_{g+1,b}).$

Positive boundary subcategory \mathscr{C}_d : same objects, less morphisms:

Theorem B (GMTW) $B\mathscr{C}_d^0 \simeq B\mathscr{C}_d \quad (d \neq 1)$.

• Theorem A + Theorem B \Rightarrow $\Omega B \mathscr{C}_2^{\theta} \simeq \Omega^{\infty} MT(2)$.

A new proof of the Madsen-Weiss Theorem now follows from:

Theorem There is a homology isomorphism $\mathbb{Z} \times B\Gamma_{\infty,b} \to \Omega B \mathscr{C}_2^{\mathfrak{H}}$.

One constructs a space ${\mathscr X}$ with a map $\pi:{\mathscr X}\to B{\mathscr C}$ such that

- (i) $\pi^{-1}(\hat{\Pi} S^1) \simeq B\Gamma_{\infty,c+1}$
- (ii) X is contractible (deforms to a point).

Harer + (i) \Rightarrow all fibers of π are homology equivalent, McDuff-Segal + (ii) $\Rightarrow \pi^{-1}(\mathring{\square} S^1) \rightarrow \Omega B \mathscr{C}^3$ homology isomorphism.

Remark There are similar theorems for Riemann surfaces with marked points, but stably one just gets a decomposition of cohomology

$$H^*(B\Gamma_{\infty,k}^s) = H^*(B\Gamma_{\infty,k+s}) \otimes \mathbb{Z}[\lambda_{1_1} \dots, \lambda_s]_s^s \quad \lambda_i = c_1(L_s).$$

IV Auxiliary results

Variations of \mathscr{C}_d : One can consider spin manifolds, unoriented manifolds, manifolds with a map to a background space X, graphs, etc.

• Versions of Theorems A and B remain valid, but stability theorems must be proved in each case ($\Rightarrow d=2$). This is done by T. Bauer

and N. Wahl for spin and unoriented manifolds, respectively.

- (1) $\mathscr{M}_g^{\mathrm{top}}(X) = \{(\Sigma, f) \mid \Sigma \subset \mathbb{R}^{\infty+2}, \text{ genus } g, f : \Sigma \to X \text{ cont. map } \}$
- "Topological Gromov-Witten space"

Theorem (Cohen-Madsen) If X is simply connected, then

(ii)
$$\mathbb{Z} \times H^*(\mathscr{M}_g^{top}(X)) \cong H^*(\Omega^{\infty}(MT(2) \wedge X_+)).$$

Corollary $\pi_0 \mathscr{M}_q^{\text{top}}(X) = H_2(X)$, and for each component we have

$$H^*(\mathscr{M}^{\mathrm{top}}_g(X)_c) \otimes \mathbb{Q} = \text{Free Comm. Alg.} \left(H^{*>2}(\mathbb{C}\mathrm{P}^{\mathrm{co}} \times X)[-2] \otimes \mathbb{Q} \right).$$

Theorem (Galatius) There is a homology isomorphism

$$\gamma: \mathbb{Z} \times B \operatorname{Aut}_{\infty} \to \Omega^{\infty} S^{\infty}$$
.

Corollary For k > 0, $H^k(B \operatorname{Aut}_{\infty}) \otimes \mathbb{Q} = 0$.

 Differentiable orientable, connected surfaces are classified (up to diffeomorphism) by their genus: The moduli space is the set of non-

 Riemann Surfaces (= complex structures on F_q), in contrast, depend on 6g-6 real parameters: The moduli space \mathcal{M}_g is a variety of real dimension 6g-6. $\mathcal{M}_0=\{*\}$, $\mathcal{M}_1=\mathbb{R}^2$: Take $g\geq 2$ from now on.

Steps in Galatius' proof:

Replace \(\mathscr{C}_d\) by cobordism category \(\mathscr{G}\) of embedded graphs:

- Stability theorem of Hatcher-Vogtmann-Wahl ⇒
 Homology isomorphism Z × B Aut_∞ → ΩBG[∂].
- Homotopy equivalence BG[∂] ≃ BG.
- Homology isomorphism $\Omega B\mathscr{G} \to \Omega^{\infty} S^{\infty}$. This uses "scaning", i.e. Gromov's theory of flexible sheaves + a hard calculation.

V On the Deligne-Mumford compactification A

Study of Mo involved two maps

(a)
$$\theta: B \operatorname{Diff}(F_g) \to \mathscr{M}_g$$
 $(\mathscr{M}_g^{top} \simeq B \operatorname{Diff}(F_g) \simeq B\Gamma_g)$

(b)
$$\alpha : B \operatorname{Diff}(F_{\theta}) \rightarrow \Omega^{\infty} MT(2)$$
.

Eliashberg-Galatius have given analogous constructions for Mg:

- Replace B Diff(F_o) by classifying space BLF_o of Lefschetz fibrations.
- Replace $\Omega^{\infty}MT(2)$ by similar space $\Omega^{\infty}MLF(2)$.

(a)
$$\bar{\theta}$$
: $BLF_g \rightarrow \bar{M}_g$, $\bar{\theta}^*$: $H^*(\bar{M}_g) \otimes \mathbb{Q} \xrightarrow{\cong} H^*(BLF_g) \otimes \mathbb{Q}$.

$$(\overline{b})$$
 $\overline{\alpha} : BLF_a \rightarrow \Omega^{\infty}MLF(2)$.

A Lefschetz fibration is a proper smooth $\pi: E^{n+2} \to X^n$ such that

- Locally in $E, \pi(x, 1, \ldots, x_{n-2}, z_1, z_2) = (x_1, \ldots, x_{n-2}, z_1, z_2)$

 $(x_i \in \mathbb{R}, z_i \in \mathbb{C})$

- Singular set $\Sigma^{n-2} \subset E^{n+2}$ submanifold with \mathbb{C}^2 normal bundle U

The restriction π|Σ is an immersion with C normal bundle L.

 $\lambda_{ij} := (\pi|_{\Sigma})_! (c_1(U)^i c_2(U)^j).$

 $\overline{\mathcal{M}}_g$ is a projective variety with fundamental class $[\overline{\mathcal{M}}_g] \in H_{6g-6}(\overline{\mathcal{M}}_g) \otimes \mathbb{Q}$.

 $(\bar{\alpha}_g)_* \circ (\bar{\theta}_g^*)^{-1} : H_*(\bar{\mathcal{M}}_g) \otimes \mathbb{Q} \to H_*(\Omega^{\infty} MLF(2) \otimes \mathbb{Q}.$

Problem Calculate the image of $[\overline{M}_g]$ under

Similar question for the Gromov-Witten moduli space of pseudo holomorphic curves in a symplectic background.

Tautological ring:

invariance theory.

$$R^*(\mathscr{M}_g) = \operatorname{Image}(\mathbb{Q}[\kappa_1, \kappa_2, \dots]) o H^*(\mathscr{M}_g) \otimes \mathbb{Q}).$$

Faber's conjecture: $R^*(\mathcal{M}_g)$ satisfies Poincaré duality in real degree 2g-4,

(i)
$$R^{2g-4}(\mathscr{M}_g) = \mathbb{Q}\langle \kappa_{g-2} \rangle$$
 (proved by Looijenga)

S. Morita proved that $\kappa_1, \ldots, \kappa_{[g/3]}$ generates $R^*(\mathcal{M}_g)$. The argument uses the action of Γ_g on the lower central series for $\pi_1(F_g) + \operatorname{Sp}_{2g}(\mathbb{Z})$

(ii) $R^k(\mathcal{M}_q) \otimes R^{2g-4-k}(\mathcal{M}_q) \to R^{2g-4}(\mathcal{M}_q)$ perfect paring.

 $\mathcal{M}_{g}^{s}(X)$ moduli space with s marked points (or punctures) + map to the manifold X.

Restricting to neighborhoods of marked points gives a map:

Res:
$$\mathcal{M}^s_s(X) \to (LX//\operatorname{Diff}(S^1))^s$$
.

LX =space of parameterized loops in X; // indicates the Borel orbit space.

Divide marked points into incoming and outgoing ones:

$$[LX//\operatorname{Diff}(S^1)]^{\delta_{loc}} \xrightarrow{\mathcal{M}_{\mathcal{S}}^{\mathfrak{s}}(X)} \longrightarrow (LX//\operatorname{Diff}(S^1))^{\delta_{loc}}$$

D. Sullivan: $H_*(\mathscr{M}^s_{\sigma}(X)) \otimes \mathbb{R}$ acts as operations

$$H_*(LX//\operatorname{Diff}(S^1)^{s_{\infty}}) \otimes \mathbb{R} \to H_*(LX//\operatorname{Diff}(S^1)^{s_{\mathrm{cyt}}}) \otimes \mathbb{R}.$$

The action even extends to $H_*(\overline{\mathcal{M}}_*(X); \mathbb{R})$.

V On the Deligne-Mumford compactification Ao

Our results on \mathcal{M}_{σ} and $B\Gamma_{\sigma}$ involve two basic maps, namely

(a)
$$\theta: B \operatorname{Diff}(F_g) \to \mathscr{M}_g$$
, $(\mathscr{M}_g^{\operatorname{top}} \simeq B \operatorname{Diff}(F_g) \simeq B\Gamma_g)$

(b)
$$\alpha : B \operatorname{Diff}(F_{\sigma}) \rightarrow \Omega^{\infty} MT(2)$$
.

 $B\operatorname{Diff}(F_g)$ classifies genus g surface bundles. The space $\Omega^\infty MT(2)$ classifies "formal surface bundles": Triples (f, L, ϕ) where

-
$$f: E^{n+2} o X^n$$
 smooth, proper; L complex line bundle over E

$$\phi$$
 : $TE ⊕ ℝ $\xrightarrow{\cong}$ $f^*TX ⊕ L ⊕ ℝ$.$

An orient, surface bundle $\pi: E \to X$ induces a *formal* surface bundle with $f = \pi$, $L = T^{\pi}E$ and ϕ induced from the isomorphism $TE \cong T^{\pi}E \oplus f^{*}TX$.

Eliashberg-Galatius has given analogous constructions for $\overline{\mathcal{M}}_g$:

A Lafachetz Shrotian is promove amounth = 2 PN+2 . Whench that

A Lefschetz fibration is proper smooth $\pi: E^{n+2} \to X^n$ such that - locally in $E, \pi(x_1, ..., x_{n-2}, z_1, z_2) = (x_1, ..., x_{n-3}, z_1z_2)$

– singular set $\Sigma^{n-2}\subset E^{n+2}$ submanifold with \mathbb{C}^2 normal bundle U

The restriction $\pi_{\mathbb{Z}}$ is an immersion with \mathbb{C} normal bundle L.

Lefschetz fibrations of genus g are classified by a space BLF_g . There is the notion of a formal Lefschetz fibration. They are classified by a space $\Omega^{\infty}MLF(2)$, similar in spirit to $\Omega^{\infty}MT(2)$. There are maps

- (5) $\bar{\theta} : BL_g \rightarrow \bar{\mathcal{M}}_g$; $\bar{\theta}^* : H^*(\bar{\mathcal{M}}_g) \otimes \mathbb{Q} \xrightarrow{\cong} H^*(BLF_g) \otimes \mathbb{Q}$. (5_g) $\bar{\alpha} : BLF_g \rightarrow \Omega^{\infty} MLF(2)$.

 $(x_i \in \mathbb{R}, z_i \in \mathbb{C})$

- $H^*(\Omega^{\infty}MFL_j) \otimes \mathbb{Q} = \mathbb{Q}[\dots, \kappa_i, \dots] \otimes \mathbb{Q}[\dots, \lambda_{ij}, \dots],$ $\deg \lambda_{ij} = 2i + 4j + 2.$
- Given Lefschetz fibration π : E → X, λ_{ij} = (π|_Σ)_i(c₁(U)ⁱc₂(U)^j).

Cohomology Groups,

- of abelian groups $H^{k}(X)$, becomes
- · f x-4 continue = f H(x)-H(x).
 - . If x can be cont defermed to Y (xor), then HY(x) = HY(Y) for all be, (Further converse due to 3.40 Whitehous),
 - · Product: H'(x) & H'(x) -> H'*(x), so

- of abelian groups HY(X), knows, 2,...
 - - If X can be cont deformed to Y (XxY),
 then H'(X) or H'(Y) for all to
 (Partial converse one to J.H.C. Whilehead)
 - · module H'(x) & H'(x) -> H''(x), so H'(x) is a groubed ring.
 - * H'(S) measures high-dimensional holds = $X_i \in S$. $H'(F_3) = \mathbb{Z}^{2g}$

Mo is a meeting place for many areas of mathematics, e.g.

- Complex Analysis: Teichmüller Theory
- Algebraic Geometry: M_g quasi-projective variety with compactification M̄_g (Deligne-Mumford), Mumford's conjecture.
- Geometry and Physics: Pseudo-holomorphic curves in symplectic background; conformal field theories; Intersection theory in Mg.
- Group theory: Mapping Class Group.

I Moduli space and Mapping Class Group

 $\mathscr{S}_{\mathbb{C}}(TF_g)=\{ \text{complex structures on tangent bundle } TF_g\}.$

$$TF_g \xrightarrow{J} TF_g \ ; \quad J^2 = -\operatorname{id}; \{v, Tv\} \text{ oriented basis for } v \neq 0.$$

 $Diff(F_o)$ topological group of orient, preserving diffeomorphisms.

 $\operatorname{Diff}_1(F_a) \lhd \operatorname{Diff}(F_a)$ connected component of the identity.

$$\Gamma_g = \text{Diff}(F_g) / \text{Diff}_1(F_g) = \pi_0 \text{Diff}(F_g)$$
 (Mapping Class Group)

Teichmüller space:
$$\mathscr{T}_g = \mathscr{S}_{\mathbb{C}}(TF_g) / \operatorname{Diff}_1(F_g) \cong \mathbb{R}^{6g-6}$$

Moduli space: $\mathscr{M}_g = \mathscr{T}_g / \Gamma_g = \mathscr{S}_{\mathbb{C}}(TF_g) / \operatorname{Diff}(F_g)$

Distant goal: Compute the cohomology ring $H^*(\mathcal{M}_g)$.

 \mathcal{M}_g is singular (not a manifold) because Γ_g acts on \mathcal{I}_g with finite stabilizers. The mapping class group provides is a non-singular cover,

$$\theta_0: B\Gamma_g \to \mathcal{M}_g, \quad \theta_0^*: H^*(\mathcal{M}_g) \otimes \mathbb{Q} \xrightarrow{\cong} H^*(B\Gamma_g) \otimes \mathbb{Q}.$$

$$\{\Gamma_{\theta}$$
-covering space over $X\}/\text{Isom.} = \{\text{maps } X \to B\Gamma_{\theta}\}/\text{Homotopy.}$

J. Harer (1986): $H^k(B\Gamma_g)$ independent of g when g > 2k + 2, Stable cohomology: $H^k(B\Gamma_{\infty}) := H^k(B\Gamma_{\alpha}), g > 2k + 2$.

Mumford's Conjecture: The stable rational cohomology ring is

$$H^*(B\Gamma_{\infty}) \otimes \mathbb{Q} = \mathbb{Q}[\kappa_1, \kappa_2, ...], \operatorname{deg} \kappa_i = 2i.$$

We need a different model for $B\Gamma_{\sigma}$:

$$\mathscr{M}_g^{\text{top}}(n) = \{ \text{orient. surfaces } \Sigma \subset \mathbb{R}^{n+2}, \ \Sigma \text{ diffeo. to } F_g \}$$

$$= \text{Emb}(F_\sigma, \mathbb{R}^{n+2}) / \text{Diff}(F_g) \qquad (\text{orbit space}).$$

 $\operatorname{Emb}(F_g, \mathbb{R}^{n+2})$ is the space of smooth embeddings with the Whitney topology of uniform convergence of all derivatives.

$$\mathscr{M}_{\sigma}^{\mathrm{top}}(n) \subset \mathscr{M}_{\sigma}^{\mathrm{top}}(n+1) \subset \cdots; \quad \mathscr{M}_{\sigma}^{\mathrm{top}} = \bigcup \mathscr{M}_{\sigma}^{\mathrm{top}}(n).$$

$$\Sigma \subset \mathbb{R}^{n+2} \Rightarrow \text{inner product on } T_x\Sigma + \text{orient.} \Rightarrow \text{complex structure.}$$

This implies a map

$$heta: \mathscr{M}^{ ext{top}}_{s} o \mathscr{M}_{s}.$$

The space $\text{Emb}(F_a, \mathbb{R}^{\infty+2})$ is contractible (Whitney), and

$$\operatorname{Emb}(F_{\sigma_2}\mathbb{R}^{\infty+2}) \times_{\operatorname{Diff}(F_{\sigma_2})} F_{\sigma} \xrightarrow{\pi} \mathscr{M}_{\sigma}^{\operatorname{top}}$$

is the universal smooth F_{σ} bundle:

 $\{F_g$ -bundles over $X\}$ /Isomorphism = $\{\text{maps } X \to \mathscr{M}_g^{\text{top}}\}$ /Homotopy.

Summary There are homotopy equivalences

(i) $\mathscr{M}_q^{\text{top}} \simeq B \operatorname{Diff}(F_q)$ and $B \operatorname{Diff}(F_q) \simeq B\Gamma_q$ (Earle-Eells), and

(ii) $\theta^* : H^*(\mathcal{M}_q) \otimes \mathbb{Q} \xrightarrow{\cong} H^*(\mathcal{M}_q^{top}) \otimes \mathbb{Q}$.

The classes κ : $\pi: E^{m+2} o X^m$ smooth F_{σ} -bundle; $T^{\pi}E$ tangents along the fibers

 $\pi_!:H^{k+2}(E) o H^k(X)$ "integration along the fibers" $\pi_!(c_1(T^\pi E)^{i+1}) = \kappa_i \in H^{2i}(X) \ \Rightarrow \ \kappa_i \in H^{2i}(B\Gamma_\sigma)$

II Pontryagin-Thom theory and Motor

Let E be an n-dim. orient. vector bundle over compact manifold M^d . Thom space: Th(E) = one point compactification of <math>E,

Three important facts:

- The complement of M in Th(E) deforms to oo.
- (2) Thom isomorphism: Hⁱ(M) ≅ Hⁱ⁺ⁿ(Th(E)).
- (3) $M^d \subset \mathbb{R}^{n+d}$ orient, submanifold; $E \subset \mathbb{R}^{n+d}$ open normal tube

Collapsing the complement of E in \mathbb{R}^{n+d} to one point gives

$$c_M: S^{m+d} \to \operatorname{Th}(E)$$
 (Pontryagin-Thom collapse map).

We can collect the tangential and normal structure of (3) by combining the collapse map c_M with the Grassmanians:

$$\operatorname{Grass}_d(\mathbb{R}^{n+d}) = \{ d \text{-dim. lin. subspace } V \subset \mathbb{R}^{n+d} + \text{ orientation } \},$$

 $U_{dn}^{\perp} = \{(u, V) \mid u \perp V\}, \text{ an } n \text{-dim. vector bundle on } \operatorname{Grass}_d(\mathbb{R}^{n+d}).$

For $x \in M^d$, the tangent fiber $T_xM \in Grass_d(\mathbb{R}^{n+d})$, and each $u \in E_x$ is orthogonal to T_xM so belongs to $U_{d,n}^{\perp}$. This gives the map

$$\alpha(M^d): S^{n+d} \xrightarrow{c} \operatorname{Th}(E) \longrightarrow \operatorname{Th}(U_{dn}^{\perp}),$$

and hence an element of the (n+d) fold loop space,

$$\alpha(M^d) \in \Omega^{n+d} \operatorname{Th}(U_{d,n}^{\perp}) = \operatorname{Map}((S^{n+d}, \infty), (\operatorname{Th}(U_{d,n}), \infty)).$$