Moduli Spaces
from a Topological viewpoint

discussing work of primarily

Søren Galatius
Ib Madsen
Ulrike Tillmann
Michael Weiss

— in various combinations.
The collection $MT(d) = \{\text{Th}(U_{d,n})\}_n$ is a “spectrum”. Its associated infinite loop space is

$$\Omega^\infty MT(d) = \lim_{n \to \infty} \Omega^{n+d} \text{Th}(U_{d,n}).$$

Theorem (Madsen-Weiss) The map $\alpha_g : \mathbb{Z} \times M_g^{\text{top}} \to \Omega^\infty MT(2)$ induces an isomorphism on integral cohomology in degrees $k < \frac{g-2}{2}$.

Corollary (i) $\mathbb{Z} \times H^*(BT_\infty) \cong H^*(\Omega^\infty MT(2))$

(ii) $H^*(\Omega^\infty MT(2)) \otimes \mathbb{Q} \cong \text{Symm}_\mathbb{Q}(\tilde{H}^*(\text{Grass}_2(\mathbb{R}^\infty))) = \mathbb{Q}[\kappa_1, \kappa_2, \ldots]$.
III Cobordism Categories \((d \geq 0)\)

Two closed, oriented \((d - 1)\)-manifolds \(M_0, M_1\) are cobordant if there exist a compact, oriented \(d\)-manifold \(W^d\) with

\[
\partial W^d = M_1 \sqcup (-M_0) \quad (-M_0 = M_0 \text{ with opposite orientation}).
\]

\(\Omega_{d-1}^{SO}\) = set of equivalence classes (Pontryagin, Thom, Wall).

Category \(\mathcal{C}_d\): replace abstract manifolds by embedded ones, i.e.

object \(\mathcal{C}_d = \{(a, M^{d-1}) \mid a \in \mathbb{R}, M^{d-1} \subset \mathbb{R}^{d-1 + \infty} \text{ closed, oriented}\}
\]

\[= \mathbb{R} \times \bigsqcup B \text{Diff}(M)\] (union over diffeomorphism classes).

\(\text{Mor}((a_0, M_0), (a_1, M_1))\)

\[= \{W^d \subset [a_0, a_1] \times \mathbb{R}^{d-1 + \infty} \mid \partial W = a_1 \times M_1 \sqcup a_0 \times (-M_0) + \text{collar}\}
\]

\[= \mathbb{R} \times \mathbb{R}_+ \times \bigsqcup B \text{Diff}(W^d; \partial W^d).\]
Composition in $\mathcal{C}_d = \text{union of submanifolds}$.

To each (small) category \mathcal{C} one can associate a classifying space $B\mathcal{C}$,

$B : \text{Categories} \rightarrow \text{Spaces}$

- in $\mathcal{C} \leftrightarrow 1$-simplex in $B\mathcal{C}$,
- in $\mathcal{C} \leftrightarrow 2$-simplex in $B\mathcal{C}$, etc.
Examples

(1) \(\text{ob} \mathcal{G} = \{ * \}, \text{mor} \mathcal{G} = G \) (group). Then \(B\mathcal{G} = BG \), the classifying space for principal \(G \)-bundles.

(2) For the cobordism category \(\mathcal{C}_d \), \(\pi_0 B\mathcal{C}_d = \Omega^\infty_{d-1} \).

Theorem A (GMTW) For all \(d \geq 0 \), \(\Omega B\mathcal{C}_d \simeq \Omega^\infty MT(d) \).

The proof uses geometric interpretation of the homotopy groups \(\pi_0 \Omega B\mathcal{C}_d \) and \(\pi_0 \Omega^\infty MT(d) \) via transversality and submersion theory.

- Inspiration to consider \(\mathcal{C}_d \) comes from field theories. Segal's category of Riemann surfaces with parametrized boundaries has the same classifying space as \(\mathcal{C}_2 \).

- Conformal field theory is a functor \(F : \mathcal{C}_d \to \{ \text{Hilbert spaces} \} \).
Theorem A potentially gives information about diffeomorphism groups and moduli spaces:

Each morphism \(W^d : (a_0, M_0^{d-1}) \rightarrow (a_1, M_1^{d-1}) \) in \(\mathcal{C}_d \) defines a 1-simplex (a path) in \(B\mathcal{C}_d \). The endpoints lie in the component determined by \([M_0] = [M_1]\) in \(\Omega_{d-1}^{SO} \). Connecting these points to a base point gives

\[
\gamma: \text{Mor}_{\mathcal{C}_d}((a_0, M_0), (a_1, M_1)) \rightarrow \Omega B\mathcal{C}_d.
\]

The morphism space is a union of \(B\text{Diff}(W^d; \partial) \). We seek "large" \(W^d \), so that

\[
\gamma: B\text{Diff}(W^d; \partial) \rightarrow \Omega B\mathcal{C}_d
\]

induces cohomology isomorphism onto a component in a range of dimensions.

For \(d = 2 \) Harer's stability theorem provides such a manifold. For \(d > 2 \) nothing similar is known.
Let $F_{g,b}$ be a surface of genus g with $\partial F_{g,b} = \bigsqcup S^1$.

$\text{Diff}(F_{g,b}; \partial) = \text{orient. presv. diffeos that fixes } \partial F_{g,b} \text{ pointwise}$. The components are contractible, so $B \text{Diff}(F_{g,b}; \partial) \to B\Gamma_{g,b}$ is a homotopy equivalence, where $\Gamma_{g,b} = \pi_0 \text{Diff}(F_{g,b}; \partial)$. Consider the maps

$$
\text{Diff}(F_{g,b-1}; \partial) \hookrightarrow \text{Diff}(F_{g,b}; \partial) \twoheadrightarrow \text{Diff}(F_{g+1,b}; \partial)
$$

Theorem (Harer 1986)

For $2k < g - 2$ there are isomorphisms

$$
H^k(B\Gamma_{g,b-1}) \xrightarrow{\cong} H^k(B\Gamma_{g,b}) \xleftarrow{\cong} H^k(B\Gamma_{g+1,b}).
$$
Positive boundary subcategory $\mathcal{C}_d^0 \subset \mathcal{C}_d$: same objects, less morphisms:

\[\mathcal{C}_d^0 \]

Theorem B (GMTW) $B\mathcal{C}_d^0 \simeq B\mathcal{C}_d$ ($d \neq 1$).

- Theorem A + Theorem B $\implies \Omega B\mathcal{C}_d^0 \simeq \Omega^\infty MT(2)$.

A new proof of the Madsen-Weiss Theorem now follows from:

Theorem There is a homology isomorphism $\mathbb{Z} \times B\Gamma_{\infty,0} \to \Omega B\mathcal{C}_2^0$.
One constructs a space \mathcal{X} with a map $\pi : \mathcal{X} \to B\Theta^3_2$ such that

(i) $\pi^{-1}(\sqcup S^1) \simeq BT_{\infty,\rho+1}$

(ii) \mathcal{X} is contractible (deforms to a point).

Harer + (i) \Rightarrow all fibers of π are homology equivalent,
McDuff-Segal + (ii) \Rightarrow $\pi^{-1}(\sqcup S^1) \to \Omega B\Theta^3_2$ homology isomorphism.

Remark There are similar theorems for Riemann surfaces with marked points, but stably one just gets a decomposition of cohomology

$$H^*(BT^3_{\infty, \rho}) = H^*(BT_{\infty, \rho+\delta}) \oplus \mathbb{Z}[\lambda_1, \ldots, \lambda_\rho]; \quad \lambda_i = c_2(L_i).$$
IV Auxiliary results

Variations of \mathcal{C}_d: One can consider spin manifolds, unoriented manifolds, manifolds with a map to a background space X, graphs, etc.

- Versions of Theorems A and B remain valid, but stability theorems must be proved in each case ($\Rightarrow d = 2$). This is done by T. Bauer and N. Wahl for spin and unoriented manifolds, respectively.

\[\mathcal{M}_g^{\text{top}}(X) = \{(\Sigma, f) \mid \Sigma \subset \mathbb{R}^{\infty+2}, \text{ genus } g, f : \Sigma \to X \text{ cont. map} \} \]

"Topological Gromov-Witten space"
Theorem (Cohen-Madsen) If X is simply connected, then

(i) $H^*(\mathcal{M}_g^{\text{top}}(X))$ is independent of g for $2^* < g - 4$,
(ii) $\mathbb{Z} \times H^*(\mathcal{M}_g^{\text{top}}(X)) \cong H^*(\Omega^\infty(\mathcal{M}T(2) \wedge X_+))$.

Corollary $\pi_0\mathcal{M}_g^{\text{top}}(X) = H_2(X)$, and for each component we have

$$H^*(\mathcal{M}_g^{\text{top}}(X)_c) \otimes \mathbb{Q} = \text{Free Comm. Alg. } (H^{*+2}(\mathbb{C}P^\infty \times X)[-2] \otimes \mathbb{Q}).$$

(2) $\text{Aut}_n = \{\text{automorphisms of free group on } n \text{ letters}\}$,

$\Omega^n S^n = \{\text{maps } f : S^n \to S^n \text{ with } f(\infty) = \infty\}$.

Theorem (Galatius) There is a homology isomorphism

$$\gamma : \mathbb{Z} \times B\text{Aut}_\infty \to \Omega^\infty S^\infty.$$

Corollary For $k > 0$, $H^k(B\text{Aut}_\infty) \otimes \mathbb{Q} = 0$.
- Differentiable orientable, connected surfaces are classified (up to diffeomorphism) by their genus: The moduli space is the set of non-negative integers.

\[F_g : \]

- Riemann Surfaces (= complex structures on \(F_g \)), in contrast, depend on \(6g - 6 \) real parameters: The moduli space \(\mathcal{M}_g \) is a variety of real dimension \(6g - 6 \). \(\mathcal{M}_0 = \{ * \}, \mathcal{M}_1 = \mathbb{R}^2 \): Take \(g \geq 2 \) from now on.
Steps in Galatius' proof:

- Replace \mathcal{C}_d by cobordism category \mathcal{G} of embedded graphs:

- Stability theorem of Hatcher-Vogtmann-Wahl \Rightarrow
 Homology isomorphism $\mathbb{Z} \times B \text{Aut}_\infty \to \Omega B\mathcal{G}^\partial$.

- Homotopy equivalence $B\mathcal{G}^\partial \simeq B\mathcal{G}$.

- Homology isomorphism $\Omega B\mathcal{G} \to \Omega^\infty S^\infty$. This uses "scanning", i.e. Gromov's theory of flexible sheaves + a hard calculation.
V On the Deligne-Mumford compactification \overline{M}_g

Study of \overline{M}_g involved two maps

(a) $\vartheta : B\text{Diff}(F_g) \to \overline{M}_g$ \quad ($\overline{M}_g^{\text{top}} \simeq B\text{Diff}(F_g) \simeq BG_2$)

(b) $\alpha : B\text{Diff}(F_g) \to \Omega^\infty MT(2)$.

Eliashberg-Galatius have given analogous constructions for \overline{M}_g:

- Replace $B\text{Diff}(F_g)$ by classifying space BLF_g of Lefschetz fibrations.
- Replace $\Omega^\infty MT(2)$ by similar space $\Omega^\infty MLF(2)$.

(a) $\overline{\vartheta} : BLF_g \to \overline{M}_g$, $\overline{\vartheta}^* : H^*(\overline{M}_g) \otimes \mathbb{Q} \xrightarrow{\cong} H^*(BLF_g) \otimes \mathbb{Q}$

(b) $\overline{\alpha} : BLF_g \to \Omega^\infty MLF(2)$.

$H^*(\Omega^\infty MLF(2)) \otimes \mathbb{Q} = \mathbb{Q}[[\ldots, \kappa_i, \ldots]] \otimes \mathbb{Q}[[\ldots, \lambda_{ij}, \ldots]]$

$\deg(\lambda_{ij}) = 2i + 4j + 2$.
A Lefschetz fibration is a proper smooth $\pi : E^{n+2} \to X^n$ such that

- Locally in E, $\pi(x_1, \ldots, x_{n-2}, z_1, z_2) = (x_1, \ldots, x_{n-2}, z_1, z_2)$
 $(x_i \in \mathbb{R}, \ z_i \in \mathbb{C})$

- Singular set $\Sigma^{n-2} \subset E^{n+2}$ submanifold with C^2 normal bundle U

- The restriction $\pi|_\Sigma$ is an immersion with C normal bundle L

$\lambda_{ij} := (\pi|_\Sigma)_!(c_1(U)^i c_2(U)^j)$.
\(\bar{M}_g \) is a projective variety with fundamental class \([\bar{M}_g] \in H_{6g-6}(\bar{M}_g) \otimes \mathbb{Q} \).

Problem Calculate the image of \([\bar{M}_g]\) under

\[
(\bar{\alpha}_g)_+ \circ (\bar{\theta}_+)^{-1} : H_+(\bar{M}_g) \otimes \mathbb{Q} \rightarrow H_+(\Omega^\infty \text{MLF}(2) \otimes \mathbb{Q}).
\]

Similar question for the Gromov-Witten moduli space of pseudo holomorphic curves in a symplectic background.
Tautological ring:

\[R^*(\mathcal{M}_g) = \text{Image}(\mathbb{Q}[\kappa_1, \kappa_2, \ldots]) \to H^*(\mathcal{M}_g) \otimes \mathbb{Q}). \]

Faber’s conjecture: \(R^*(\mathcal{M}_g) \) satisfies Poincaré duality in real degree \(2g - 4 \),

(i) \(R^{2g-4}(\mathcal{M}_g) = \mathbb{Q}\langle \kappa_{g-2} \rangle \) (proved by Looijenga)

(ii) \(R^k(\mathcal{M}_g) \otimes R^{2g-4-k}(\mathcal{M}_g) \to R^{2g-4}(\mathcal{M}_g) \) perfect paring.

S. Morita proved that \(\kappa_1, \ldots, \kappa_{[g/3]} \) generates \(R^*(\mathcal{M}_g) \). The argument uses the action of \(\Gamma_g \) on the lower central series for \(\pi_1(F_g) + \text{Sp}_{2g}(\mathbb{Z}) \) invariance theory.
$\mathcal{M}^s_g(X)$ moduli space with s marked points (or punctures) + map to the manifold X.

Restricting to neighborhoods of marked points gives a map:

$$\text{Res} : \mathcal{M}^s_g(X) \to (LX // \text{Diff}(S^1))^s.$$

$LX =$ space of parameterized loops in X; $//$ indicates the Borel orbit space.

Divide marked points into incoming and outgoing ones:

$$[LX // \text{Diff}(S^1)]^{s_{\text{in}}} \leftrightarrow \mathcal{M}^s_g(X) \rightarrow (LX // \text{Diff}(S^1))^{s_{\text{out}}}$$

D. Sullivan: $H_\ast(\mathcal{M}^s_g(X)) \otimes \mathbb{R}$ acts as operations

$$H_\ast(LX // \text{Diff}(S^1)^{s_{\text{in}}}) \otimes \mathbb{R} \rightarrow H_\ast(LX // \text{Diff}(S^1)^{s_{\text{out}}}) \otimes \mathbb{R}.$$

The action even extends to $H_\ast(\mathcal{M}^s_g(X); \mathbb{R})$.

V On the Deligne-Mumford compactification \overline{M}_g

Our results on M_g and $B\Gamma_g$ involve two basic maps, namely

(a) $\theta : B\text{Diff}(F_g) \to M_g$, \quad ($M_g^{\text{top}} \simeq B\text{Diff}(F_g) \simeq B\Gamma_g$)

(b) $\alpha : B\text{Diff}(F_g) \to \Omega^\infty MT(2)$.

$B\text{Diff}(F_g)$ classifies genus g surface bundles. The space $\Omega^\infty MT(2)$ classifies "formal surface bundles": Triples (f, L, ϕ) where

- $f : E^{n+2} \to X^n$ smooth, proper; L complex line bundle over E

- $\phi : T_E \oplus \mathbb{R} \xrightarrow{\cong} f^*TX \oplus L \oplus \mathbb{R}$.

An orient. surface bundle $\pi : E \to X$ induces a formal surface bundle with $f = \pi$, $L = T^\pi E$ and ϕ induced from the isomorphism $T_E \cong T^\pi E \oplus f^*TX$.
Eliashberg-Galatius has given analogous constructions for \mathcal{M}_g:

A Lefschetz fibration is proper smooth $\pi : E^{n+2} \rightarrow X^n$ such that

- locally in E, $\pi(x_1, \ldots, x_{n-2}, z_1, z_2) = (x_1, \ldots, x_{n-2}, z_1 z_2)$ ($x_i \in \mathbb{R}, z_i \in \mathbb{C}$)
- singular set $\Sigma^{n-2} \subset E^{n+2}$ submanifold with C^0 normal bundle U
- The restriction $\pi|_E$ is an immersion with C normal bundle L.

Lefschetz fibrations of genus g are classified by a space BLF_g. There is the notion of a formal Lefschetz fibration. They are classified by a space $\Omega^MMLF(2)$, similar in spirit to $\Omega^MMT(2)$. There are maps

\[(\Theta) \quad \Theta : BL_g \rightarrow \mathcal{M}_g; \quad \Theta : H^*(\mathcal{M}_g) \otimes \mathbb{Q} \xrightarrow{\cong} H^*(BLF_g) \otimes \mathbb{Q}. \]

\[(\delta_g) \quad \delta : BLF_g \rightarrow \Omega^MMLF(2). \]

- $H^*(\Omega^MMLF_g) \otimes \mathbb{Q} = \mathbb{Q}[[\ldots, \kappa_i, \ldots]] \otimes \mathbb{Q}[[\ldots, \lambda_{ij}, \ldots]]$, \quad $\deg \lambda_{ij} = 2i + 4j + 2$.
- Given Lefschetz fibration $\pi : E \rightarrow X$, $\lambda_{ij} = (\pi|_E)_*(c_1(U)^i c_2(U)^j)$.
Cohomology Groups:

- Associates to a space X a sequence of abelian groups $H^k(X)$, $k=0,1,2,\ldots$
 - $f: X \to Y$ cont. map $\Rightarrow f^*: H^k(Y) \to H^k(X)$.
- If X can be cont. deformed to Y ($X \simeq Y$),
 then $H^k(X) \cong H^k(Y)$ for all k.
 (Partial converse due to J.H.C. Whitehead).
- Product: $H^k(X) \otimes H^l(X) \to H^{k+l}(X)$, so
 $H^*(X)$ is a graded ring.
p-dimensional \(H^p(X) \) is a quotient
of Abelian groups \(H^q(X) \), \(q=0,1,2, \ldots \).

- \(f : X \to Y \) cont. map \(\Rightarrow f^* : H^q(Y) \to H^q(X) \).
- If \(X \) can be cont. deformed to \(Y \) (XorY), then \(H^q(X) \cong H^q(Y) \) for all \(q \).
 (Partial converse due to J.H.C. Whitehead).
- Product: \(H^q(X) \otimes H^q(X) \to H^{q+q}(X) \), so \(H^{\bullet}(X) \) is a graded ring.
- \(H^q(X) \) measures "high-dimensional holes" in \(X \), e.g.
 \(H^q(F_3) = \mathbb{Z}_3^2 \).
\(\mathcal{M}_g \) is a meeting place for many areas of mathematics, e.g.

- **Complex Analysis**: Teichmüller Theory
- **Algebraic Geometry**: \(\mathcal{M}_g \) quasi-projective variety with compactification \(\overline{\mathcal{M}}_g \) (Deligne-Mumford), Mumford's conjecture.
- **Geometry and Physics**: Pseudo-holomorphic curves in symplectic background; conformal field theories; Intersection theory in \(\mathcal{M}_g \).
- **Group theory**: Mapping Class Group.
1 Moduli space and Mapping Class Group

$\mathcal{S}_c(TF_g) = \{\text{complex structures on tangent bundle } TF_g\}.$

$\xymatrix{ TF_g \ar[r]^J \ar@/_/[rd]_\pi & TF_g \ar@/_/[ld]_\pi \\
& F_g }$

$J^2 = -\text{id}; \{v, T v\} \text{ oriented basis for } v \neq 0.$

$\text{Diff}(F_g)$ topological group of orient. preserving diffeomorphisms.

$\text{Diff}_1(F_g) \triangleleft \text{Diff}(F_g)$ connected component of the identity.

$\Gamma_g = \text{Diff}(F_g)/\text{Diff}_1(F_g) = \pi_0 \text{Diff}(F_g)$ (Mapping Class Group)

Teichmüller space: $\mathcal{T}_g = \mathcal{S}_c(TF_g)/\text{Diff}_1(F_g) \cong \mathbb{R}^{6g-6}$

Moduli space: $\mathcal{M}_g = \mathcal{T}_g/\Gamma_g = \mathcal{S}_c(TF_g)/\text{Diff}(F_g)$

Distant goal: Compute the cohomology ring $H^*(\mathcal{M}_g)$.
\mathcal{M}_g is singular (not a manifold) because \Gamma_g acts on \mathcal{D}_g with finite stabilizers. The mapping class group provides is a non-singular cover,

\begin{align*}
\theta_0 & : B\Gamma_g \to \mathcal{M}_g, \\
\theta_0^* & : H^*(\mathcal{M}_g) \otimes \mathbb{Q} \xrightarrow{\cong} H^*(B\Gamma_g) \otimes \mathbb{Q}.
\end{align*}

\{\Gamma_g\text{-covering space over }X\}/\text{Isom.} = \{\text{maps } X \to B\Gamma_g\}/\text{Homotopy}.

J. Harer (1986): \(H^k(B\Gamma_g)\) independent of \(g\) when \(g > 2k + 2\).

Stable cohomology: \(H^k(B\Gamma_\infty) := H^k(B\Gamma_g), \ g > 2k + 2\).

Mumford's Conjecture: The stable rational cohomology ring is

\[H^*(B\Gamma_\infty) \otimes \mathbb{Q} = \mathbb{Q}[\kappa_1, \kappa_2, \ldots], \quad \deg \kappa_i = 2i.\]

We need a different model for \(B\Gamma_g\):

\[\mathcal{M}_g^{CP}(n) = \{\text{orient. surfaces } \Sigma \subset \mathbb{R}^{n+2}, \ \Sigma \text{ diffeo. to } F_g\}\]

\[= \text{Emb}(F_g, \mathbb{R}^{n+2})/\text{Diff}(F_g) \quad \text{(orbit space)}.\]
\text{Emb}(F_g, \mathbb{R}^{n+2}) \text{ is the space of smooth embeddings with the Whitney topology of uniform convergence of all derivatives.}

\mathcal{M}_g^{\text{top}}(n) \subset \mathcal{M}_g^{\text{top}}(n+1) \subset \cdots; \quad \mathcal{M}_g^{\text{top}} = \bigcup \mathcal{M}_g^{\text{top}}(n).

\Sigma \subset \mathbb{R}^{n+2} \Rightarrow \text{inner product on } T_\Sigma \Sigma + \text{orient.} \Rightarrow \text{complex structure.}

This implies a map

\theta: \mathcal{M}_g^{\text{top}} \to \mathcal{M}_g.

The space \text{Emb}(F_g, \mathbb{R}^{\infty+2}) \text{ is contractible (Whitney), and}

\text{Emb}(F_g, \mathbb{R}^{\infty+2}) \times \text{Diff}(F_g) F_g \xrightarrow{\pi} \mathcal{M}_g^{\text{top}}

is the universal smooth \(F_g\) bundle:

\{F_g\text{-bundles over } X\}/\text{Isomorphism} = \{\text{maps } X \to \mathcal{M}_g^{\text{top}}\}/\text{Homotopy.}
Summary There are homotopy equivalences

(i) \(M^\text{top}_g \simeq B\text{Diff}(F_g) \) and \(B\text{Diff}(F_g) \simeq B\Gamma_g \) (Earle-Eells), and

(ii) \(\theta^*: H^*(M_g) \otimes \mathbb{Q} \xrightarrow{\cong} H^*(M^\text{top}_g) \otimes \mathbb{Q} \).

The classes \(\kappa_i \)

\(\pi: E^{m+2} \to X^m \) smooth \(F_g \)-bundle; \(T^\pi E \) tangents along the fibers

\(\pi_1: H^{k+2}(E) \to H^k(X) \) “integration along the fibers”

\(\pi_1(c_1(T^\pi E)^{i+1}) = \kappa_i \in H^{2i}(X) \Rightarrow \kappa_i \in H^{2i}(B\Gamma_g) \)
II Pontryagin-Thom theory and $\mathcal{M}_g^{\text{top}}$

Let E be an n-dim. orient. vector bundle over compact manifold M^d. Thom space: $\text{Th}(E) = \text{one point compactification of } E,$

Three important facts:

(1) The complement of M in $\text{Th}(E)$ deforms to ∞.

(2) Thom isomorphism: $H^i(M) \cong H^{i+n}(\text{Th}(E))$.

(3) $M^d \subset \mathbb{R}^{n+d}$ orient. submanifold; $E \subset \mathbb{R}^{n+d}$ open normal tube $E \cong \text{Normal bundle of } M^d \subset \mathbb{R}^{n+d}$.
Collapsing the complement of \(E \) in \(\mathbb{R}^{n+d} \) to one point gives

\[c_M : S^{n+d} \to \text{Th}(E) \]
(Pontryagin-Thom collapse map).

We can collect the tangential and normal structure of (3) by combining the collapse map \(c_M \) with the Grassmanians:

\[\text{Grass}_d(\mathbb{R}^{n+d}) = \{ \text{d-dim. lin. subspace } V \subset \mathbb{R}^{n+d} + \text{orientation} \}, \]

\[U_{d,n}^\perp = \{(u, V) \mid u \perp V\}, \text{ an } n\text{-dim. vector bundle on Grass}_d(\mathbb{R}^{n+d}). \]

For \(x \in M^d \), the tangent fiber \(T_x M \in \text{Grass}_d(\mathbb{R}^{n+d}) \), and each \(u \in E_x \) is orthogonal to \(T_x M \) so belongs to \(U_{d,n}^\perp \). This gives the map

\[\alpha(M^d) : S^{n+d} \xrightarrow{c} \text{Th}(E) \to \text{Th}(U_{d,n}^\perp), \]

and hence an element of the \((n+d)\) fold loop space,

\[\alpha(M^d) \in \Omega^{n+d} \text{Th}(U_{d,n}^\perp) = \text{Map}((S^{n+d}, \infty), (\text{Th}(U_{d,n}), \infty)). \]