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Revealing Structure: Conic Form of a Convex Problem
¢ When passing from a Linear Programming program

min {¢'z : b— Az <0}

sl ¢
to convex ones, the traditional way is to replace linear objective Tz
and linear left hand sides of the constraints with convex functions.
* A much more productive way is to *make nonlinear” the coordi-
nate-wise vector inequality u < v & v—au € R} in b— Ax < 0 by
replacing it with a more general vector inequality

UKy & ¥I—uER

[K C R™ convex pointed closed cone, int K « @

thus arriving at convex programs in the conie form:

. e y
min 1€ % b= Ar < 0}
R

o (c, A b): data e K: structure



e Conic problem: min.gn {¢7z : Ar — b >, 0}

¢ Every convex problem can be reformulated equivalently as a conic

one. However: a general convex cone has no more structure than a
general convex function. So what is the point?

Fact: “Nearly all” interesting for applications convex problems are
covered by just I generic conic problems:

¢ Linear Programming: K is a direct product R of rays R,:
mjn-{crzc:d:::—b >0} (LP)

s Conic Quadratic Programming: K iz a direct product of Lorentz
cones L"={zeR™: 1, > (Tﬂ ¥ 2'1} e }:
min{e: T "A.,‘.‘I:—b-,”gE-:“1-I—I:L,_1-=1,_...,m} ({CQP)

¢ SemilDefinite Programming: K iz a direct product of semidefinite
cones St ={X =XT e R¥™*. X = Olez 27Xz > Wz}

min {J:T*s C A+ Z? 1I,}L - -EI} (SDP)
Note: LP  OQP < SDP



¢ Good news about Conic Programming, especially LP/CQP /SDP:

e Fully symmetric and *algorithmic” duality allowing for instrue-
tive processing of conic programs “on paper” and heavily utilized
by solution algorithms

e Existence of theoretically and practically powerful algorithms —
Polynomial Time Interior Point Methods

o Extremely powerful “expressive abilities” of CQF/SDP
= huge spectrum of applications



Clonic Duality

¢ Duality in MP is about building [owar bounds on the optimal value
In an optimization program, i.e., about certifving negative statements
“theare iz no feasible sclution with the value of the objective < .. 7

¢ For conic problems, Fenchel-Lagrange duality becomes fully sym-

metric and “algorithmic™:

I:P} Qpt( ) = hllrl{c - A — » =i ) = rrljrl -lﬁ*f £ €L —-'-.'|| |Ii |
|€ Afeme L = lmr‘ll
§ [F.~L. Duality]
(D) : Opt(D) = masx {7) : ATA = &) 2,0} 49 max {87 : A & [£4 +e] 1K,

[I{ _ {}: N2> 0¥ € K}]




Opt(E) =min. {1 Az —b>g 0} (P
Opb{ D) = maac, {(B74 ATAh =, A 24 O} (D)

Conie Duality Theorem:

o [Symmetry] Conic duality is fully symmetric: the dual problem is
conic, and its dual is (equivalent to) the primal problem

o [Weak Duality] Opt(D) < Opt(F)

o [Strong Duality] Let one of the problems (F), (D) be strictly feasible
and bounded. Then the other problem is solvable, and

"T.-':_Z--‘.l::l:' = G‘P‘t.i_P_:'-

In particular, if both (F), (D) are strictly feaszible, then both are
zolvable with equal optimal values, and a primal-dual feasible
pair (r, A} is primal-dual optimal if

elx—h A= = Az — 8 A =0



o Clonic Duality
Opt(P) = min, {ez: Az —b>g 0} (P
Opt(D) = masc, {6* A : A"h =, A =g 0} (D)
iz a special case of Lagrange Duality: If convex problem
Opt{Pr} = ming { fiz) : glz) =0,1 £ 1 <m}
iz strictly feazible and bounded, then its Lagrange dual
OpH(DI) = mesan LY, L(A) = inf, { £(z) + T Aenl(s))
ig solvable, and Cpt{Pr) = Cpt(Dl).
In contrast to the general Lagrange Duality, Conic Duality i=
o fully svmmetric — () “remembers” (F).

# completely algorithmic — passing from (F) to (D) is a purely
mechanical process,



s Algorithmic nature of Convex Duality makes it a powerbul tool for
instructive analyvtical — “on paper” — processing conic programs.

E:h:amEle: Truss Topology Design. A frussis a mechanical construc-
tion, like electric mast, railroad bridge, or Eifel Tower, comprised
of thin elastic bars linked to each other at nodes,

In a TTD problem, one is given
e a 2D/3D nodal set,
s a set of fentzfive bars — allowed pair connections of nodes,

o a set of loading scenarics — collections of forces acting at the
nodes,

and loocks for a construction of a given weight which iz the most
stifest w.r.t. the scenario loads.

¢ Stifness of a truss w.r.t. a load iz quantified by compliance — the po-
tential energy capacitated by the truss as a result of its deformation
under the load (the less is compliance, the better).
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s #;: bar volumes
o fi e R*: loads {(M: total # of nodal degrees of freedom)

e 1: upper bound on the worst-case, w.ort, loads f,, 1 < f < K|
compliance

o In TTD, one starts with a “dense” nodal grid and allows for all
air connections of nodes by bars. At the optimum, most of the bars
get zero volume, thus revealing the optimal topology:
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s In order to capture topology design, one should work with dense
grids (M of order of few thousands)
= The design dimension N = CO(M*®) of the TTD is in the range of

millions...

s Cure: Semidefinite Duality. In the dual of TTD, most of the vari-

ables can be eliminated analytically, which results in the problem
of dimension == MK << N = O(M):




o Taking dual to the (processed!) dual of TTD, we end up with

instructive {and unexpected) equivalent bsr-siress reformulation of
the TTD problem:

i T
rglru{.*: [_TI ff'f ] ?;D?f,tf'lz..té‘_:w}

g L] T
__1"{ I L?—-l t,-b-rﬁ
i ¥ 1By LT,
B | o |
- y L | 1 - :I"'.Tj
=> Milgey$ 23 o fioet Wy, | !
'.-"_:: 'n'.-'_;::" E K
:',}_ g = J.
i

L E% =T thﬂl'&“’:’i == .-FE""":.I'-'?:- t =0, Zt WE i ]

1l
=
w3 0
o,



Convex Programming — “solvable case” in Optimization
Revealing structure of convex programs: Conic Programming

Exploiting structure of convex programs: Interior Point polvno-
mial time algorithms

Conic Quadratic and Semidefinite Programming: expressive abil-
itiez and applications



Convex Programming — “zolvable case” in Optimization
Revealing structure of convex programs: Conic Programming

Exploiting structure of convex programs: Interior Point polyno-
mial time algorithms

Conic Quadratic and Semidefinite Programming: expressive abil-
itiez and applications



18749: polvnomial time solvability of LP {Khachivan) via the
Ellipsoid Method
1084: the first IPM for LP (Karmarkar): theoretical efficiency
+ practical parformance competitive with the one of the
Simplex Mathod
1086: frst polynomial path-following IPMs for LP (Renegar,
Gonzaga): improvad complaxty bounds + fransparant
construction with potential for nonlinesr extensions
“Interior Point Revolution” (mid-1980"z — late 1090°z):
o developing new [PMs
* nonlinear extensions: general theory of [PMs in
Convex Programming
s advanced theory {Nesterov & Todd, 1007-08) of

IPMz= for conic problems on homoganeous salf-dual
conas (LP/CQP /SDP)



Polvonomial Time IPMs: Path-Following Scheme
¢ Path-Following Scheme (Fiacco & MeCormic, 1968) for solving
convex program

: T
tnin {: T T
- 4

)

M

e Equip & with a barrier — a C* function F : int G — R with F(-} = 0
and closed level sets {r ¢ int @ Fir) <a}s
e Trace the path z.(t) = argmin Fi(z), Filz) =tc'z 4+ Flz)

st &

as the penalty parameter £ — oo

Given (r,t) with = close to z,(f),

e replace { with £ = §;

¢ minimize Fo(| by Newton method,
1 being the starting point, until a
point = close to z,(t7) is built;

e replace (1,£) = (z*,¢t") and loop




s [t was discoveraed in late 1980°'s that the path-following scheme
becomes polvnomial when specific selfconcordant barriers are used:

Lat 7 ¢ B™ be a convex domain. A C* convex function F
inky — R is called a #welfconcordant barrier for &, IfF F is a
barrier for & and ¥(r = int G, h £ K"

A. [zelf-concordance] | D F(x)[h, b, ]| < 2 {DFF(x)[k, b)) /2

B. [s.~c.b. quantification] |DF(1)[h]| < ﬁlil'?' |_f:- Fiz)[h, A])

Interpretation: D¢F (r) defines a local Euclidean metrics
IRl = (D*F(z)[h, )"

A, B mean that D*F(-) and F{-} are Lipschitz continuous w.r.t. this
local metrics with constants 2 and &%, respectivelyv.




Theorem. Let & < K" be a closed convex domain not containing lines,
¢ € R* be such that the level sets {r ¢ & : 't < a} are bounded, and
F be a Ps.-c.b, for &, Then
(i) The path z,(t) = argminfteTz + Fiz)], £ > 0, iz well-defined
inta
(i) Let us =ay that (1) is cloze to the path, if ¢ > 0 and

1,2

Fm) T [VIF(z) 'V Ei(z)) < 01 [Fi(z) = te¥z + F(z)]

Given (1, t;) close to the path, consider the recurrence

b1 i = axpf0.1/vBHi_y
e | Ly = Ty—1 —M[?EE,[L_N‘1?17}1.';3:,_1}

Mzt = [

Then all (x;,t,) are well-delined and close to the path, and

. - . 28 24
Vi:cls —mine's € — = —ep{—0.1i ,-".,ft‘}}
{: f'hl $|:|

Thus, every O[1)v'0 steps add an accuracy digit.



o Conclusion: When we are smart enough to equip the feasible do-
main & of a convex problem minc’ T with an efficiently computable

ey

P-g.~c.b. F with not too large &, we get a polynomial time IPM for
solving the problem.

MNote: Every convex domain & C B* admits C{n)-s.~c.b.. E.g., when
(= 1&g a pointed cone, we can set

Flr) = (1) log Iri exp{ —1 T £}dE
&y
s “Good" — efficiently computable — g.-c.b.’s are known for a wide
variety of “basic” convex domains

s All standard convexity-preserving operations can be eqguipped
with simple rules to combine good s.-c.b.'s for the operands into
a good s.-c.b. for the result.,

= Essentially, the entire Convex Programming is within the grasp

of polynomial time IPMs.



s The Interior Point constructions become maximally Hexible as
applied to conie problems on cones with many symmetries, most

notably on homegeneous self-dual conas, which covers LP/SDP/CQP.
The related theory is intrinsically linked to the theory of Euclidean
Jordan Algebras.

In LP/CQP/SDP, one uses the self-concordant barriers as follows:

K Fie 5
K, lnlx) | i
L™ In(zs =55 %0 | '
S —Indet X . r
Ky .« KplFg o)+ +1 1-.,ﬁll“ﬁh f“ "Lfl-._ﬂ

and solves simultanecusly the problem of interest and its dual { “pri-
mal-dual IPMs").



¢ Primal-dual LP/CQP/SDP IPMs underly the best known so far
polynomial time complexity bounds for these generic problems and,
in addition, allow for

¢ on-line adjustable *long step” path-tracing policies

= in practice, much faster convergence than for the “off-
line” worst-case-oriented penalty updating rule, with no
risk to violate the G{v@} complexity bound

o elegant way ( “self-dual embedding™ ) to initialize path-tracing

# building infeasibility /unboundedness certificates,...

¢ Practical performance of primal-dual IPM' for LP/CQP/SDP
1= usually much better than the one predicted by the worst-case-
oriented theoretical complexity analysis.

Challenge: On axtremely large-scals CQP/SDP problams 108 — 10F dasign
varmbles), [PMs bacome too time-consuming. What to do?
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s The initial form of a convex program usually 1=

T ”'l
min,jﬁ*t::r.fé}i = [ K¢

LRI (%)

[Xi={z: a(z) <0} with convex &)
= How to recognize that (%) can be reformulated as a CQP/SDP
program 7
¢ Definition: Let F be a family of cones. A set X C R" iz called
F-reprasentable, if there exists a F-reprasentation of X:
Ne={x:Jdu: Ar+ Bu+d >y C'}, kel

A function f R® — R {+oa)} is called F-representable, if so is its
epigraph Epi{f} = {(t.z) : ¢ = f(=)}.



s Mathematical Programming is about sclving optimization prob-
lems of the form

Opt = min {fiz) : qlz) =< 0,1 <: <m}
=B

with “good enough” (usually CY) abjective f(-) and constraints g.(-).

o MP is primarily operational: while the descriptive issues (ex-
iztence/ unigqueness/characterization of a solution) are of definite

importance, the major goal iz to approximate an optimal =solution
numerically

= The primary role in MP Theory iz played by investigating com-
plexity of generic MFP problems and developing efficient solution
algorithms.



¢ Facts:
o F-representations of functions 4 can be straightforwardly
converted into F-representations of the sets X; = [z : a(z) <0}

o F-representations of sets X, can be straightforwardly con-
Lied

verted into an F-representation of the set X =[] X;

ia=]
* Given a F-representation X = {r Ju: Ar+ Fu+d e K} of X,
a program _
riin e'x

can be reformulated equivalently as the F-conic program

min -:-?TI Az + Bu+d >2g 0},

= The question
“What can be expressed via CQF/SDP™
can be posed as
“What are CQP/SDP-reprasentable sets/functions?™



o Fact: Let F be a family of cones closed w.r.t. taking (finite) di-
rect products and passing from a cone to its dual. There existz a
simple *calculus"” which shows that the family of F-representable
sets/ functions iz closed w.r.t. all basic convexity-preserving opera-
tions.

The caleulus is “fully algorithmic” — an F-representation of the
result 1s readily given by F-representations of the operands.

The convexity-preserving operations in question include:

¢ For seis: taking Anite intersections, arithmetic sums, direct prad-
ucts, images/inverse images under affine mappings, conic hulls,
convex hulls of finite unions, polars,...

e For functions: taking combinations with nonnegative coefficients,
affine substitutions of argunments, partial minimization, superpo-
sitions with monotone outer functions, Legendre transforms,...

¢ To recognize F-representability of a convex problem, one applies
the outlined caleulus to “raw materials” — basic F-representable
sets and lunctions. "Expressive abilitias” of the generic F-conic problem
depend on how rich iz the collection of the masociated basic sets/functions
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can be converted, in 3 systematic way, into SDP

EH!EJ{-&T.; c g+ Eizl-;{, > 0},

» Remaoving constraints (¢), the problem becomes a CQP

min {-“' o

=
and can be approximated, in a2 polynomial time fashion, by LP.

s S@wtr,l <i<m)



Expressive Ahilities of CQP

min {cz ; |4z bl sz —d, i=1,..,m] (CQP)
.
» Sample of CQP-representable functions/sets:
. |- ”F! reQ

= Approximation i || - |lp
* convex guadratic forms
= Convex Quadratic Programming
e power monomials —'zf’. 28, 2 20 (€ Qa3 m = 1),

power monomials ©;7 1, ™ 1P 1 >0 (g € Q)
= (reometric Programming in power form

o f(z,t) =27 (B Dieg{t} B) !z, t e RY,
= Truss Topology/Electric Circuit Dasignp



s “Whether COP does exist?"

Theorem. The Lorentz cones admit fast polyhedral approximation.
Specifically, for every ¢ € ((L0.1) and every n, one can point out

¢ a polvhedral cone P — R/™M0 given by an explicit system
of |Ealn(l/¢)| homogeneous linear inequalities, and
# an explicit linear mapping A4 - RI**00/49L  gn

such that AM(P) is in-between L™ and the “{1 + ¢)-extension”™ of L™

¥ Pt o MP) ¢ LY
{"'i”-*?“fﬂ“ }, 2 = (v,6) cB®:
Iol: 5 ¢ { folz < (1 + ¢ }

= CQP can be reduced, ip a polynomial tima fashicn, to LP.



Expressive Abilities of SDP

mingfc’ s ¥ md, = B} (SDP)
¢ Sample of SDP-representable functions/ sets:
e All CQP-representable functions/sets

¢ Symmetric functions of eigenvalues of symmetric matrices/singular

values of rectangular matrices
Theorem. Let f(z) : R — R U {—|-|::-::-} be symmetric and SDP-

i Tr

representable. Then F{X) = F{A(X), ., A(X)) 5" = RU{4o0} is
SDP-representable as well.

* The cones of {coethicients of ) umvariate algebraic/trigonometric
polynomials of a given degree nonnegative on a given segment
Theorem. For a segment & R, the sets

PRA) m {(Ag, ., Ag) € (M9 Ao+ 14+ .. + 54, = 0VE € A}
are SDP-er:'EtiEntﬂblE with explicit SDP representations.

= Minimization of a univariate algebraic /trigonometric polyno-
mial over a segment i1s an SDP program.



o Challenge: Complete description of SDP-reprasentable sets,
Is it true that
— a convex semialgebraic set is SDP-representable?

— the epigraph of a convex algebraic polynomial
ig SDP-representable?

(true in the univariate case)



s Due to its tremendous expressive abilities, SDP has a wide variety
of applications, including those in

Relaxations of difficult combinatorial problems
Ellipsoidal approximations of convex sets
Statistics

Robust Control

Structural Design

Communications

Signal Processing,...

Permanent t::l'iallengﬁ Extending the scope of applications — building
SDP models for various problems of Engineering and Management




s Example: Semidefinite Relaxations of Difficult problems
A (nonconvex) quadratically constrained quadratic problem

Opt = max A{‘II.A._-.I +o2pr4ep T Ar+ T4+ <01<i< i (%
can be NP-hard. E.g., quadratic constraints can model Boolaan

restrictions on variables: % =z, & ¢, € {0, 1},

}
sl i (%) becomes

e Paszsing to the matrix variable X =

|.1. ca am o IrLAGK) €0 1S5 €m, | g B
oo 4 TeEpX) 0 T o . il - = :
) " X ¥ 0,Xy =1, Rank(X) =1 | i | 0¥ 3

Eliminating the *troublemaking” rank constraint, we arrive at the
SDP ralaxation of ()

[Opt <] SDP = max{Tr(AeX) : TH{AX) €0 1 €3 5m, X 20, Xy =1}

¢ lnterpretation: In the relaxation, we maximize the axpectad walus
of the original objective over random solutions =atisfving at aversgs
the original constraints.




o In good cases, SDP relaxations yvield prowably tight bounds.
Example: It 1z NP-hard to compute

Opt = r‘Jus-_:::{:.Tl,*i]Z g ||||¢_.,D < ]-‘! = Iax -='1'T,‘1|J ; 1'1:f 1. 1=<+= ."L}

< SDP = e {Tr(AX) : X <l,1<i<n X =0}
aven when 4%-accuracy iz sought. However:

¢ A is diagonal-dominated with nonpositive off-diagonal entries
= Cpt < SDP <1.1382 Opt [Goemans & Williamson, *05]

e A 0= Opt < EDP < 0pt [Nestercv, '08]
= Tight appreximations of matrix norms: When p > 2 > 17 > 1,
SDP vields a computable upper bound on the (computationally in-
tractable!) matrix norm |4 = maxd |[Az|, @ ||z|p = 1} tight within
factor €(p,7) < —i— = 2.2036.. (cf. the Grothendieck inequality

finf =0

('53) dealing with p = oo, 7 = 1; here the constant can be improved
to L 7 1,7822...)
2 In(1+4/2)

® %A: Opt < SDP < &) In(n + 130pt (valid with the unit box in R®
replaced by intersection of n centered at the origin ellipscids in R™).



LInt = '|'|_-| { il:'ll 1" 1] X |"r_--:. oL [] _ P r_\-|_1
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e In late 107T0% it was understood that

— Convex Programming (f and & are convex) iz “computation-
ally tractable": under mild computability and boundedness assump-
tions, generic Convex Programming problems admit efficient solu-
tion algorithms.

— In contrast to this, typical generic nonconvex problems seem
to be intractable: no efficient algorithms for these problems are
known, and, unless P=NP, no such algorithms exist.



s A generic convex problem: a Family 7 of instances

Qptlg) = min {.’NJI 5.1,,“;“'" < [0 1 f < rh-’.:;.'}} I:p}

P
such that

¢ within P, an instance p can be identified by itz data vector
Datalp) € RNE

¢ all instances p £ P are convex.

Example: Linear Programming. The objective and the constraints
in are athne Functions of ©, and

Data(p) = Lml[p} n(p), coefficients of fp, g1p,.. ,gm[,;.]lp]



- {f}p’r.l;_uj = min {flz)  aglz) €0, 1 i <m(p} }

:E“.'.[p_l
¢ A solution algorithm for a generic problem F: a code 5 for an
idealized Real Arithmetic computer which, given on input

¢ the data Datalp) of an instance pe P,
® a required accuracy £ > [,

produces in Bnitely many operations of precise Heal Arithmetics

¢ either an esolution T, to p: filz) < Opt+ ¢ & gz < eV,
e or a correct claim that pis infeasible/below unbounded.

¢ A solution algorithm is efficisnt (=polynomial time), if the # of op-

erations is bounded by

s { Size(p) + [|Datale) l|as

Foly( dim Datal o), log | | ) e )
"'h—.v.-—l.-'-'} L

= o
Hxze(p) E - -
Crigits(s, £)




s Theorem,. Let F be a generic convex problem with instances

Opt(p) = il {felz) : aplz) €0 Smiph ||zle <1} (2}
normalized by the requirement

V(z € R, |lzllo < 1) : | fl(T)] <1, |osplz)] <1, 1 <i < mi(p).

There exists an explicit algorithm {Ellipsoid Method) which finds an
e-solution to (p), 0 < ¢ < 1, or detects correctly that (p) is infeasible,
by computing (m)-accurate approximations to the values and the
subgradients of f;, g, along %=%(p) ln (2n(p) /<) successively generated
search points, with additional O(ln{pl(n(p) + mip)] operations per

search point.
o Corollary. Under

Computability Assumption: Given the data Datalp) of an instance
p P, atolarance § € (0,1}, and ¢ € R |||l < 1, the values and
subgradients of fp, & p 8t T can be computed within accuracy 4 in
Poly(Size(p), Digits(p, &)
opsarations
P admits a polynomial time solution algorithm.



o A convex problem always has a lot of structure (otherwise, how
could we know that the problem is convex?)

s “Universal” polynomial time algorithms, like the Ellipscid meth-
od, are black box oriented: they utilize detailed a priori knowladge
of the structure and the data of a convex problem for the only
purpose to compute the objective and the constrains at a point.

= Poor (although polynomial time) performance: the arithmetic
cost of accuracy digit is st lssst O(n'), which makes impossible to
solve in realistic time problems with just few hundreds of variables...

o How to reveal and to utilize the structure?

An answer i1s given by conie reformulations of Clonvex Programming
problems.
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