Conformally invariant scaling limits
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Percolation

each hexagon = white (open) wath probablity p,

independently. The connected components of the white regions are ctudied
Various similar models include bond p-percolation on 29,

i'l In Bernoulls( ;) percolation.




Critical Percolation

here is some number p. & (0. 1) such that there is an infinite component
Iu probability 1 if p > p. and with probability 0 if p < g

| :_-_:_:. zale behaviour changes drastically when p increases past .. Thas
perhaps the simplest model for a phase transition.

orom: (Harris 1960). At p = 1/2 there are no inifinite clusters as
sfore, p. 2 1/2
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Percolation

each hexagon s white (open) with probabshity p.

‘mdependently. The connected components of the white regions are studied.

' In Bernowili{js) percolation,




A large critical cluster

AL p. there are no infinite clusters. |t we condition on the event that the
cluster of the origin has more than 1000 vertices. then here's what it looks
(T




Percolation exponents

M{ﬂh’l Nips, Nienhws, Cardy,. ) have predicted some exponents
escril mufmnnlpﬂmhunnmqﬂ

!:1_‘_'..- example, they conjectured that the probability that the origin is in 2
cluster of diameter > [T 15
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critical percolation’

Cardy's formula

What = the probability of a white left-nght crossing of
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; ula
‘s version of Cardy's form
Carleson’s
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Uniform SPannIng tree
Loop-erased random walk
Peano path (Hamiltoman path
the Manhatten lattice)




" Richard Kenvon proved that some properties of UST and LERW are
ni-mur wvanant in the scaling limit.

BFor exampie. he showed that the asymptotic distribution of the meeting
nt of three vertices adjacent to the boundary of a simply connected

an i conformally invariant.
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Critical percolation interface
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Stochastic Loewner evolution (SLE) motivation
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A{*h‘ 3 ._'nn.1n|'r|1.1| mag i l:||r whitted half 1:i.|.:|r' IO map hack ta the half plane

:'l”__l:_*lll'_ -.:_1_'1-

hulﬂmtrul invanance, the image under [y of the continuation of the path
an the = = :pp'nxirn.'ltrly equal to the N1EII‘L‘-‘I| distnbution of the path,
except that it = translated to the image of the tip under f;




m that uwy s the image of the tip. I hen we may conlinue the path a
bit fusther. In the next step we map by

{'.'I = f:-' f]_. _||r: ;'.: r-_:; .rl I- ]

“_q continue inductively, letting «; be the image of the tip in the j-th

Gn_ .frl"'..fn-'l = ..rll

T--; o f5a10 H,E.rl
h:humdutdmﬂqnup. So we may artempt to think of this as




Apply a conformal map in the shitted halt-plane to map back to the half-plane




Suppose that uy is the image of the tip. [hen we may continue the path a
bit further. In the next step we map by

{ra= fao fi. -r.f::rw; fioT .,

.““mlm letting u; be the image of the tip in the j-th

{_..Fl = !ll-'..fl'l-ri i f'l-

T--'j e fjuaeT, w) = It




To understand the flow, let's look again at f,

Nilz) == +apz~ 4+

- We may choose a) = 2¢. Then scaling implies
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filz) = = + 227V OS2, fisrlz) = s +— =

!

we armve at Loewner's equation:
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Closely related talks




To understand the flow, let's look again at f,
fhilz)=z+a:z""' +

. We may choose a; = 2+, Then scaling implies

+ O3

L N(E) ==+ 2657 +O(eV?), fraalz) =z +




SLE definition

CFaex > 0. Let wy = [{w t), where [1 is standard one dimensional Brownian
" mation. Define g, in the upper half plane by solving | cswner's ODE

| a

thgy(z) = golz) ="=.

: ME e
& chordal SLE(x).
path is (t) = g; " (wy).




What now!




The frontier of Brownian motion

BM = 4/3.

iamnl conjectured that the dimension of the outer boundary of planar
I




BM frantier is that of SLE(t)

Theorem (Lawler-Schramm-Wemer). [ he outer boundary of 2D EM =
the same as that of SLE(6). It has Hausdorff dimenson 4,3 (as conpectured
by Mandelbrot). The set of cut points has Hausdortf dimension 3/4
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Percolation interface is SLE(1))

Sowmow's Theorem (2001). The above model of
satishes Lardy-Larleson and = contormally invarant
intertace scaling limit s SLE(G).




Percolation exponents

(Lawler-Schramm-Wemer). The probability that the ongin s
ged to distance [T is =31 36 |} — ~.

mits and properties too (Kesten, Smirmov-Werner),



LERW, UST, Peano

Theorem (Lawler-Schramm-Wermner 2002). The LERW scaling himut s
" SLE{2). The UST Peano path scaling limit is SLE(8)

Pl

The UST. LERW and UST Peano path are conformally invanant.
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Phases of SLE

Theorem (Hohde-5chramm 2001). The SLE{x) trace s a2 ssmple path
i< 4 Ik Space FI“Il‘Ii,_I: iff w =8

gwi

w € [0,4] Kk £ (4,8) x € [8,)

! In the phase « = [4.8), the SLE path makes loops “swallowang™ parts of
. the domain. However. it never crosses itself.




Dimension

(Rohde-S).
llimm{l:-.lh]=t+§. 0 kg &
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One dimensional Brownian motion

way to describe Brownian motion 15 as a scaling limit of simple
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Discrete GFF

Th&rﬂeﬁuﬂnﬁﬂﬁﬂdnmndnmarulwhﬂifumhm
*mﬁthgnd.iu:hlhatlhhi v £ V) s a multi-dimensional

'-Ii-"(- z (h{e) _.-,.M ld]‘r:] 1

wvalues of h are fced.

emyon has shown that the Gaussian free field is the scaling limit of



Discrete GFF

The discrete Gaussian free field s random o resl valued function /1 on
the vertices of the gnd. such that (A{r) : ¢ = V') s a muiti-dimensional
‘Gasssian. The probability density of i is proportional to

"-""-‘:P( i E {(h{r) —l-‘hl,ufll".]
{w.v]




DGFF interface
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Gaussian free bield interface 15 SLE(4)

T a1 ‘EL'I‘".IIIIIH shetheld). | he interiace of the (HCreTe) {saarssian
free field [scaling limit] s SLE(4)




DGFF interface
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Gaussian free held interface 1s SLE(4)

Theorem (Schramm-Sheffield). The interface of the [discretsl Gaussian
free held [scaling limmt| = SLE(4)




Critical Ising model interface is SLE(3) (conj)




Self-avoiding walk

The hali-plane SAW scaling limit s SLE(8/3) (Con Supported
expenumentally by
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Self-avoiding walk

The hali-plane SAW scaling limit s SLE(8/3) (Con Supported
expenumentally by
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SLE gives (conj)

= other critical percolation (6)

 * king (3.6)

FK duster boundanies (g = 2 + 2 cos{87 k), » = [4.8])

models (n = =2 cos(dx/k), Kager-Nienhus)




Elementary properties of Brownian mation

a3 continuous path.

the Markov property — all the relevant information in B0, 1] to
B[t.a:}hﬂ{t}_

 Brownian scaling — o [}{t) has the same law as B(5%¢).




SLE does not give

| & DLA (nat conformally invariant)
| T Loewner analysis by Carleson.Makarov, Hastings- Levitow

- Simulations by Weiland-Witson

."1-:;' ation in high dimensions (1 ara-5lade)

Existence of LERW scaling limit in B (Kozma)

TR




Two dimensional Brownian maotion as a scaling limit

Two dimensional Brownian motion can be obtaned as the scaling limir of
the simple random walk on the Z° grid (as well as other gnds). The nght
" sealing 1o take is Si(t) ;=4 S5(t077).




Léwvy's theorem: conformal invariance of Brownian
maotion

hﬂm&manmwnﬂnppedwhmutmuam DcC.
f: D — Cis analytic, then [([,) is umechanged Brownian







Lévy's theorem: conformal invariance of Brownian
motion

ﬁhﬁﬂﬂmnmﬂuwndwhcnﬂmam DccC
P f : D — C is analytic, then [(B,) is timechanged Brownian




