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2, Structure theorem: Every object is a superposi-

tion of a structured object and a psendorandom error.

o Spectral decomposition: Objects decompose mto aliost
periodic (discrete spectrum) and mixing (continuous spectrum)

COMpPOonents,

e Littlewood-Paley dec lJII|?u.‘-‘11 i Objects TII.‘I'H]IJlI'll"'I"' into
low-frequency (coarse-scale ) and high-frequency (fine-scale )
COLNPONenLS,

o Szemercd regularity lemnma: Graphs decompose into
low-complexity partitions and regular graphs between partition
classes,

Structure theorems are often established via a stoppimg thme

argument based on iterating a dichotomy. They combine well

with the negligibility of the pseudorandom error,




3. Rigidity: If an ohject i approximately structured,
then it 1s close to an object which i1s perfectly struc-

tured,

e Additive inverse theorems: If a set A is approximately closed
under addition, then it is close to a group, convex hody, an

arithmetic progression. or a commbination thereof. (Frennan. ...)

o Compactness of minimising sequences: Approximate
minimisers of a functional tend to be close to exact winmsers,

( Palais-Simale. ...}

e Property testing: If random samples of a graph or function
satisly certain types of properties locally, then it is likely to be
close to a graph or function which satishies the property

elobally.

Rigidity theorems are often quite deep; for instanee strueture

theorems are often used m the proof,




. Classification: Perfectly structured objects can be

deseribed explicitly and algebraieally / geometrically.

o Simple examples: the classification of Hnitely generated abelian
cronps, linear transformations, or quadratic forms via suitable

li'lJl lil'l'*—- 111 ] IHHE]H.

e A more advanced example: the algebro-geometrice deseription
of soliton or multisohton solutions to 1'4r1||j|]1'1|'|}.' integrable

equations (such as the Korteweg-de Vreies equation).

o A recent example: description of the minmmal characteristic
[actor for multiple recurrence via nilsystems, (Host-lKea 2002,
Liegler 2004)

ClassiHeation results tend to rely more on algebra and geometry

than on analysis. and can be very difficult to establish.




Model example: Szemerédi’s theorem

Every subset A of the integers of positive (upper) den-

s1ky -'I-|-1.| - 1) containg arbitrarily long anthmetie pro-

'_'_I'I ""-\."‘-i_l s,

¢ Many deep and important proofs: Szemerddi (1975).
Furstenberg (1977}, Gowers ( 1998), ...

¢ Mam diffienlty: A could be very structured, very
psendorandom. or a hivbrid of both. The set 4 always has long

aritlnnetie progressions, but for different reasons m each ease,




What does structure mean here? Some examples:
e Periodic sets: A :]“”‘.I‘J:n'r-.E::
’ i i i
- LEH.I-\.._|]||-|]-||1||.- w5 .'l | :||]~||I'|~ _|' . aal W'I'

L] [_3I‘.'|||].‘|'-|l':||_|‘.' ||1|_'-.-.E||u-||_|u'|i.- o il

A = {n: dist{v2n?,

The precise defimtion of structure 1[!'[!!'"1!5 on the length of the
progression one 18 secking,

Key obeervation: If many terms m an arithmetic progression lie in
a structured set A, then the next term in the progression is very
||]\II"| to lie in A (e strougs [HJ?--I1i\'l' correlation ).

Thus |Inl'n'.,:l'l"-*-iu|!*- are created m this case l'."' alzebrale structures,

such as periodicity.




What does psendorandomness mean here? Some examples:

e Handom sets: Pin e A) for each n. ndependently at

Leiny

randcdonm.

e [Discorrelated sets: Sets with sinall correlations, ez,

HAN(A +E)) =3A (A + k) for most k.

The precise defimition of psendorandomness depends on the length

of the progression one i= secking.

Probability theory lets one place long progressions in A with
postbIve pr shabi it ¥ [H'-.ﬁ.'ilh'-| one has sufficient Iy strong cont rol on
correlations (Gowers uniformity). Thus progressions are ereated in

this case |r_1.' discorrelation.




What does hvbrd mean here? Some examples:

e Psendorandom subsets of structured sets: -;1-; of the even

mnmbers, chosen ndependently at random.

e Pseudorandom subsets of structured partitions: Pin € A) = m
when n is even and Pin £ A) = pa when n is odd, for some

|11'|-|-:1|Ji]ilil = U< m,.p2 1.

Sinee structured sets are already known to have progressions, a
psendorandom subset of such zets will have a proportional manber
of such progressions, Thus progressions are created i this case by

a combimation of alrebraie structure and ddscorrelation.,




How to generalise the above arguments to arbitrary sets? This

Pecires

Structure theorem: An arbitrary dense set A will

always contain a large component which 1s a psendo-

random subset of a structured set,

Thiz in turn follows from

Dichotomy: I a set does not behave pseudoran-
domly. then it correlates with a nontrivial stroctured

--|rj---t (o, b has inerensed 1|1-|:,=-i,1_'|.‘ o a long sub-

progi CEE0T I




A variant: the Green-Tao theorem { 2000])

The primes contain arbitrarily long progressions.

o The primes are conjectured to behave psendorandomly after
acconnting for local obstructions (Hardy-Littlewood prime
tuples conjecture). This conjecture would imply the above
theorem (a8 well as many other conjectures concerning the

Pries ),

It = known that the prumes behave Fourer-psendorandomly
atber acconmting for local obstructions Vin (HL R T lov's method).
This already gives infinitely many progressions of primes of

length 3 { Har |.1..'-|-'I| tlewood cirele method ). Unfortunately, it

does not say mnch about higher length progressions,




The prunes are too sparse for Szemerédl's theorem to apply

directly.

However, the primes are a dense subset of the almost prunes
(nmmbers with few prime [actors), which were known to be
very psetidorandomly distribated alter accounting for local

il st |'1||'I,:i.1||:-. -|-.i|;='l.'|' [|||_'||I':'|.':I_ We can ":‘:EJI' |i_1 1 |'J i-. ||I".' 1t'-.'[||!__"

Relative Szemerédi theorem: Every subset of
a psencdorandom set o imtegers of positive relative

density contains arbitrarily lomg arithmetic progres-

S1O1S,

o This lets us finesse the question of whether the primes are
psendorandom or not; they merely need to be a dense subset of

a peendorandom set.




A basic problemn that oceurs in many areas of analysis,

combinatorics, PDE, and applied mathematics is the following:

The space of all objects in a given class i= usually very

hizh (or mfinite) dimmensional.

Examples: subsets of N points; graphs on N vertices; functions on

A wvalues; systems with N desrees of freedom.

e The “curse of dimensionality™ (large data is expensive to

analyse)

e Failure of compactuess (local control does not mmply global

:'ut'll;ll:l: ].'Il']-{ rl[ l'-r]t‘.'l'l'gl'llf :*-.I'lhm':ll:lq'lli'l'--:l

e lnequivalence of norms (control in norm X does not unply

control i norm Y)

¢ Ulnbounded e -'|j|,|1|r_"-:il_i‘ { ol -_5|i-q'1=- have uo vsable striet FTEY




To prove the relative Szemerédi theorem. we need to combine

the ordinary Szemerdcdi theorem with two facts:

Structure theorem: Dense subsets of sparse pseu-

dorandom sets contain a large component which is a

sparse |l--l'Illlul'.'lli:]llll.l sithset of a dense set.

Negligibility: Sparse peeudorandom subsets of a set
will contain a proportional number of anthmetic pro-

T ESsIOS,

The Structure theorem m turn follows from terating

Dichotomy: Il a dense subsets of psendorandom sets
15 not psendorandom, it correlates with a dense stric-

tured set.




More precise asymptotics

e Szemerddi’s theorem and the Green-Tao theorem show

that certain sets contain many progressions of any given lengtl

But they do not quantify exactly how many progressions there

are, for mstanee:

Question: How many progressions of length k are
there among the prime munbers less than N, as

N — 0?7

o The precise nmunber of progressions depends on the exact
decomposition of the set into structured and pseudorandom
cotnponents. No matter what the decomposition. one always
has some progressions, but ditferent decompositions can lead to

ditferent numbers of progressions.




To answer the above gquestion (and when counting more

ceperal types of additive patterns within the primes), 1t is not

enough to know abstractly that the primes decompose into

trnetured and psendorandom components; one needs to know

precisely what these components are.

-I-q.l liii lili.,*-'- pae |:||.'E'ii=-i Ly W= sdafppet lil""l'lll'l' t..'ll'l:‘-- illrllll'l AT A TN
and psendorandommess. such as the classification of perfectly

at ruet ured l.lil_-ll'l"'--,




van der Corput’s theorem (1927} The munber ol

progressions of length 3 in the primes less than N s

1 Boo W i N?
=il == 1*+oll)| —5—.
2 H I!*.rll n | II i I I:13 N

pd

e To prove this, it suflices by the Hardyv-Littlewood cirele method
tor show that the primes are Fourier-pseudorandom alter
accounting for local obstructions {(major arcs); this allows us to

neglect the contribution of the minor arcs,

In the Fourier-analvtie ease, the structured objects are

cotnpletely classified: they are characters.

By the dichotomy, we thus need to show that the primes do
not correlate with minor arc characters, This can be done by

Vinogradov's met hod.




More recently, asyvmptotics have become available for other additive

patterns in the primes, such as avithmetic progressions of length 4.

o For these more complex patterns, Fourler-psendorandommness is
not enough; one needs to establish Gowers uniformity of the
primes (alter accounting for local obstructions) m order to

neglect all non-local effects.

L] T|!|L' COr 'h]nr[u“tl'.', structured ol -_1- e E|:|1.'1' |n'|=|:| el |I‘|.'
classified as nilsequences arising from Hows on a quotient of a
nilpotent Lie group.

e Byv the dichotomy. we thus need to show that the primes do
not correlate with “minor arc”™ nilzequences, This ean be done

by a refined version of Vinogradov's method.

( For details, see the lecture of Ben Green, )




[P ————————
But in many cases, this basic problem can be resolved by the

following phenomenon:

One ean often reduce the :|||_:|]}‘=1-|;a' to the Apace of ef-

fective 'llI.Ijl"l.'l.‘ m a given class, which is l,"-'|1i*'-'ll],‘-' low-

dimensional, compact, or classifiable.

Examples:
¢ Parabolic [III'lII':'.' [ '-L>I!|L|'l.'|-": ALTTaCToOrs, I-iltlt"..‘.'mu|-1".‘1t|'_1.'.

Hamilton / Perelman., ...}
o Concentration-compactness {(Lions, ...}
o Ciraph structure theorems (Szemerddi, .. .)
¢ Ereodie structure theorems (von Nemmann, Furstenberg, ...

e Additive structure theorems (Freiman,

Balog-Szemerédi-Gowers., Gowers, .. .)

Siemal |:|I'Lu'l“-=-ni.:|m {compression, denoising. homorensation. ...)




Structure vs. randomness

To understand this phenomenon one must consider two opposing
tvpes of mathematieal objects, which are analyvsed by very different

II_II_I]H'

o Structured objects (e.g. periodic or low-frequency functions or
sets: low-complexity graphs; compact dynamieal systems;

solitary waves): and

e Pzendorandom objects (e.g. random or high-frequeney

functions. sets, or '.'_I'il'|l'|l"-'. IS 'll._‘l.'iILiI'.IIIi.l'iIl sysiems, radiating

WAVES ),

[L-tinill; tlhie=e classes |Il'l'l.'i.:--'|'l_".' 1= Al i];|!'h-l'1:+t1r ancd nontrivial

challenge, and depends heavily on the context.




Structured

Psendorandom

{ 'Hll||'a:|1 I

Periodie (self=corr Ii”"'“

I_- 1 | I-I_j|'|!-{-.':'-,' Ir_'L' 11l |l-|'|‘.'

Coarse-scaled (smooth)
Prodictable (siznal)
Moasurable I'IE'_F ) _.’”J
Concentrated (solitons)
hscrete spectrim

Major are (rational)
Eigenfunctions (elliptic)
Algebra (=)

i |'||_jr'r.'_'-.

Cheneric

Mixing (dscorrelated)
High complexity fentropy
Fine-scaled (rongh)
II]li'II'I."I.[il-'t.'lI.III‘ {noise)
Martingale (E{ f|5) = 0)
Dispersed (radiation)
Clontinuons spectrim
Minor are (Diophantine)
Spectral gap (dynamic)
Analvsis (<)

Probabality




), Negligibility: For the purposes of statistics (e.z.
averages, integrals, sums). the psewdorandom compo-

nepts of an object are asymptotically neghigible,

e Creneralised von Nenmann theorems: Functions which are
suthiciently mixing have no impact on asvinptotic multiple
averages. (Furstenberg, .. .)

e Poerturbation theory: Perturbations which are sulliciently
chizpersed have negligible nimpact on nonlinear PDE.

e Counting levmmas: Graphs which are suthciently regular have
statistics which are a [Propi tional fraction of the statistics ol

the complete graplh.

These negligibility results are typically proven using harmonic

analyvsis methods. ranging from the lmmble Canchyv-Sehware

iequality to more advanced estimates,




Becanse of this negligibility, we would ke to bhe able to easily

locate the structured and psendorandom components of a given
uhiject.

Typical conjecture: “Natural” objects heliave pseu-

II':F['.'I]lIlII-]lII_'I.' :Ij.tl"l' O Elll‘._'h |-| L8 .'Ill |_I|I' l!II'I.'il!I 15 S5LIIeC-

Lnres,

These conjectures can be extremely hard to prove!

e The primes should behave randomly after acconnting for

“local” |:_|IIHI-1 il olstretions, ‘._”.'Li'll].'-]-lltl1lﬁﬁ'lual| pl'I']m' tl]iﬂh"-u
cotjecture; Riemann hypothesis: ... )

Solutions to highly nonlinear systems should behave randomly
alter accounting for conservation laws ete, (Rirorons statistical
mechanics: ?Navier-Stokes global regularity™; .. .)

There should exist “deseribable” algorithms which behave

“unpredictably”. (P = BPP; TP+ NP7; ...)




e With current technology, we often cannot distinguish structure

from psendorandomness directly.

o However, we are often lortunate to possess four weaker. but

still very useful, principles concerming strocture and

orandomness, ..

LRI




. Dichotomy: An object is not psendorandom if

and only if correlates with a structured object (or viee

Vs ).

e Lack of uniform distribution ean often be traced to a large
Fourter coefficient. { Wevl, Erdos-Turdan., Hardyv-Littlewood.

Roth. Gowers, ...)

e Lack of mixing ecan often be traced to an eizeninnetion.

{ Koopman-von Neuwmann, .. .)

e Lack of |]-E'=|rl‘t':--l.lsll can often be traced to a boud state or ].'ll'_'g'

wavelot coetlicient.

Such dichotomies are often established via some kind of spectral

theory or Fourier analvsis (or generalsation thereot ).




