Nonlinear Diffusion.
The Porous Medium Equation.
From Analysis to Physics and
Geometry

Juan Lus Vasquer

Depantamento de Matematcas
Liniversickac] Avkdnoma oe Madnid

hitod waw vam_esipersonal _ pa¥ciencia slhiva 2gue s

Jugn L. VaEEques - Monlinear Difusion Porous Medum and Fasl DTusien EQuations -



_

Jugn L, VEEquer - Menlinear Cifusion Porous Medum 2nd Fas! Difusion Equations =p, &7



Regularity results
|7 # The universal estimate holds (Aronson-Bénilan, 79): _I

Av > —Cft.

w o~ uw ! s the pressure.

# (Caffarelli-Friedman, 1982) O reqularity: there is an o = (0, 1}
such that a bounded solution detined in a cube 15 &*
continuous.
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w o~ uw ! s the pressure.

(Caffarelli-Friedman, 1982) O reqularity: there is an o = (0, 1)
such that a bounded solution detined in a cube 15 &*
continuous.

If there is an interface I, it is also O continuous in space time,

How far can you go? Free boundaries are stationary (metastable) if
initial profile is quadratic near 80: w,(x) = Q(d*). Thisis called
waiting time, Characterized by V. in 1983, Visually inferesfing a1 thin ilms
spreadng on & fable. Existence of corner points possible when
metastable, — ne O Aronson-Caffareli-v, Regularity stops here in n = 1
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I'ree Boundaries in several dimensions

N . B

P e Jautem TR0 .'-. i .-"r.F

1
! ! /
D \_- d I-.'
s f w Ly
bt s

A complex free boundary in 1-D A ragular free boundary in n-0

# (Caffarelli-Vazquez-Wolanski, 1987} If uy has compact support,
then after some time T the interface and the solutions are 'L,
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A complex free boundary in 1-0 A ragular free boundary in -0

# (Caffarelli-Vazquez-Wolanski, 1987} If uy has compact support,
then after some time T the interface and the solutions are 'L,

# [(Koch, thesis, 1997) If vy is transversal then FB 1s O after T'.
Pressure is “laterally” O i is a broken profile always when # moves.
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Free Boundaries 11. Holes
|7 # A free boundary with a hole in 20, 30 is the way of showing _I
that focusing accelerates the viscous fluid so that the speed
becomes infinite. This is blow-up for v ~ V™1,
The setup is a viscous fluid on a table occupying an annulus of
radii », and »y. As time passes r:(¢) grows and r;(t) goes to
the origin. As £ — T, the time the hole disappears, the speead

r{ (t}) — —co.
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—

|7 # A free boundary with a hole in 20, 30 is the way of showing
that focusing accelerates the viscous fluid so that the speed
becomes infinite. This is blow-up for v ~ V™1,
The setup is a viscous fluid on a table occupying an annulus of
radii », and »y. As time passes r:(¢) grows and r;(t) goes to
the origin. As ¢ — T, the time the hole disappears, the speed

r{ (t}) — —co.

# There is a semi-explicit sclution displaying that behaviour
wlz,t) = (T —)* F{=(T — £)%),

The interface is then v {t} = a{T' — ¢)°. It is proved that & < 1.
Aronson and Graveleau, 1993, later Angenent, Aronson,...,
Vazquez,
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Linear heat flows

|7 # From 1822 until 1850 the heat equation has motivated
(i} Fourier analysis decomposition of functions (and set theory),
(i} development of other linear equations
—= Theory of Parabolic Equations

Uy = 15__: {:-f_-,:aff}_fﬂ+ E ﬁ:,:'ﬂé'ﬂ- + o+ ..f
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lIl. Asymptotics
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Asymptotic behaviour

Nonlinear Central Limit Theorem ]
B Choice of demain: 7 Chace of data wolz) € LA™ We can wriks

e = Afju|™ " )+ f
Letusput f € LE, Lot M = [ug(e) do+ [f f dedt
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Asymptotic behaviour

Nonlinear Central Limit Theorem ]

B Choice of demain: 7 Chace of data wolz) € LA™ We can wriks

e = Afju|™ " )+ f
Letusput f € L2, Lol M = [ ug(e) de+ ([ 7 dedt

» Asymptotic Theorem [kamin and Friedman, 1980, v 2001] Let

B{x,t; M) be the Barenblatt with the asymptotic mass M ;u
converges to B after renormalization

t*[w{z, t) — Bz, )| —= 0
For every p > 1 we have
lu(t) — Bt)lp = oft™/7), p'=p/(p-1).

Mote. acand 3 = a/n = 1/(2 + n(m — 1)) are the zooming
exponents as in B{x, t).
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Nonlinear Central Limit Theorem ]

B Choice of demain: 7 Chace of data wolz) € LA™ We can wriks

e = Afju|™ " )+ f
Letusput f € L2, Lol M = [ ug(e) de+ ([ 7 dedt

» Asymptotic Theorem [kamin and Friedman, 1980, v 2001] Let
B{x,t; M) be the Barenblatt with the asymptotic mass M ;u
converges to B after renormalization

t*[w{z, t) — Bz, )| —= 0

For every p > 1 we have

lu(t) — Bt)lp = oft™/7), p'=p/(p-1).

Mote. acand 3 = a/n = 1/(2 + n(m — 1)) are the zooming
exponents as in B{x, t).

B  Slarling result by FK takes ap > 0, compact support and £ =0 J
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Asymptotic behaviour. Picture

|7+ The rals cannal b improved withioul mans nfeemation on wg

+ e Also less than 1 but supercritical (— with even better convergencs called relative amor
COrmwargenos)
i R |:"-'. ':II."& niaE DIg aurpnsas;

=10 — we=Aloge — Ficol fow wilk slrangs proparlies,

Proal works ior p-Laplacian flow

. ST FE T |
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Asymptotic behaviour. I1

Ii.i The rates. Carrillo-Toscani 2000. Using entropy functional _|
with enfropy dissipation control you can prove decay rates
when [uplz)|z|* de < oo (finite variance):

lu(t) — B(t)]1 = OE™),

We would ik tohave & = 1, This problem is sl open form = 2 Hew resulls by JA

Carrilia, McCann, Del Firg, Dolbeaull, Vazques &l &l includs s <
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Eventual geometry, concavity and convexity Result by
Lee and Vazquez (2003). Here we assume compact support There exists

lame after which the presaure 15 concave e domain cormdar, Lhe leved 2als cormes and
g
(D*(, &) — kD)oo — 0

unifgrmly in the supporl The solubon has only ons mazimum. Inner ComeEargenc: in
_:‘:."h:l'?
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Linear heat flows

|7 # From 1822 until 1850 the heat equation has motivated
(i} Fourier analysis decomposition of functions (and set theory),
(i} development of other linear equations
—= Theory of Parabolic Equations

Uy = 15__: {:-f_-,:aff}_fﬂ+ E ﬁ:,:'ﬂé'ﬂ- + o+ ..f

# Main inventions in Parabolic Theory:
(1) a5, be, e, f regular = Maximum Principles, Schauder
estimates, Harnack inequalities; ' spaces (Holder); potential

theory: generation of semigroups.
(2) coefficients only continuous or bounded = W=7 estimates,
Calderén-Zygmund theory, weak solutions; Sobolev spaces.
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Calculations of the entropy rates

|7 » We resc-ala the funclion as  w(z,t) = r{$)" plyrt),s) _I
where r(t] is the Barenblatt radius at ¢ + 1, and “new time" is
s = logil + ). Equation becomes

pe = div (p(Vp™ ! + ZVy?)).
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Calculations of the entropy rates

# ‘We rescale the funclion as  w(z, i) = r{§)" ply (i), s) _I
where r(t] is the Barenblatt radius at ¢ + 1, and “new time" is
s = logil + ). Equation becomes

pe = div (p(Vp™ ! + ZVy?)).

# Then define the entropy
g | s
Efu)(t) = [I.;Pm+ EPPEH‘H

The mummum of enfropy is wdentited as fhe Barenblalf profle,
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2 Calculate
i 1 i
Moreover,
et}
— - R AL,
K.

We conclude exponential decay of I} and E 1 new frme s, which & potenfial i real
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Asymptotics IV. Concavity

The eventual concavity results of Lee and Vazquez _I

Eventual concavity for HE Eventual concavity for FDE
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Linear heat flows

|7 # From 1822 until 1850 the heat equation has motivated
(i} Fourier analysis decomposition of functions (and set theory),
(i} development of other linear equations
—= Theory of Parabolic Equations

g =3 aiGi@u+ D bibut cu+ f

# Main inventions in Parabolic Theory:
(1) a5, be, e, f regular = Maximum Principles, Schauder
estimates, Harnack inequalities; ' spaces (Holder); potential

theory: generation of semigroups.
(2) coefficients only continuous or bounded = W=7 estimates,
Calderén-Zygmund theory, weak solutions; Sobolev spaces.

# The probabilistic approach: Diffusion as an stochastic
process: Bachelier, Einstain, Smoluchowski, Wiener, Lavy, lto,...
dX = bat + ogdW
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Probabilities. Wasserstein

—

B Definition of Wasserstein distance. _I

Let P{R") be the set of probability measures. Letp = 0, uy, po
probability measures.

(dplps1, )" = nf jﬁnmﬂ

|'T B ylff-' dﬂ-[.'r":- '?_J},

T = IT{ gy, o) is the set of all transport plans that move the
measure gy into po. This is a distance.

Technically, this means that = is a probability measure on the
product space K" x K" that has marginals ; and pg. It can
be proved that we may use transport functions y = T'(x)
instead of transport plans (this is Monge's version of the
ransportation problem).
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Wasserstein 11

| N

# [n principle, for any two probability measures, the infimum may
be infinite. But when 1 < p < o, d, defines a metric on the set
F., of probability measures with finite p-moments,
I |=|Pdu < oo, A convenient reference for this topic is Villani's
book, "Topics in Optimal Transportation™, 2003.
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# [n principle, for any two probability measures, the infimum may

Wasserstein 11

—

be infinite. But when 1 < p < o, d, defines a metric on the set
F., of probability measures with finite p-moments,

I |=|Pdu < oo, A convenient reference for this topic is Villani's
book, "Topics in Cptimal Transportation™, 2003.

The mefric d.. plays an important role in confrolling the location
of free boundaries. Definition d..(gy, p2) = infrem dy oo, pa),
with

dn ool pi1, pi2) = sup{|e — y| : (z,y) € support{r}}.
In other words, dy oo{1, 2} 15 the maximal distance incurrad
by the transport plan =, i.e., the supremum of the distances

|z — y| such that ={A) = 0 on all small neighbourhoods A of
{x,¢). We call this metric the maximal transport distance.
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Wasserstein 111

|7 # The contraction propertiesinn = 1
Theorem (Vazquez, 1983, 2004) Let gy and py be finde nonnegative
Radon measures on the line and assume that 1 (R} = pa{R) and

el 51, o2 ) is finite. Let us(x, ) the continuous weak solution of the PME
with initial data oy Then, for everyts > ¢ > 0

ool (-, g}, un( o)) € doolu (- 8 hounl, £1)) < doalpn, pg).
Theoram (Carrillo, 2004) Contraction holds in dy, foraifp € [1,00).
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Theorem (Vazquez, 1983, 2004) Let gy and py be finde nonnegative
Radon measures on the line and assume that 1 (R} = pa{R) and
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ool (-, g}, un( o)) € doolu (- 8 hounl, £1)) < doalpn, pg).
Theoram (Carrillo, 2004) Contraction holds in dy, foraifp € [1,00).

# Contraction propertiesinn = 1
Theorem {(McCann, 2003) For the heat equation contraction hoids for
allp andn > 1. (Carrillo, McCann, Villani 2004) For the PME
Contrachon holds in do foralin = 1
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|7 # The contraction propertiesinn = 1
Theorem (Vazquez, 1983, 2004) Let gy and py be finde nonnegative
Radon measures on the line and assume that 1 (R} = pa{R) and
el 51, o2 ) is finite. Let us(x, ) the continuous weak solution of the PME
with initial data oy Then, for everyts > ¢ > 0

ool (-, g}, un( o)) € doolu (- 8 hounl, £1)) < doalpn, pg).
Theoram (Carrillo, 2004) Contraction holds in dy, foraifp € [1,00).

# Contraction propertiesinn = 1
Theorem {(McCann, 2003) For the heat equation contraction hoids for
allp andn > 1. (Carrillo, McCann, Villani 2004) For the PME
Contrachon holds in do foralin = 1

Theoram (Vazquez, 2004) For the PME, contraction does not hold in
dee for any n > 1. It does not in dy, forp > p{n) > 2.
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New fields

B Fast diffusion (m < 1)
ik . ]
=V -(u Uy =N =)

Geometrical applications: Yamabe flow, m = (i — 2} /n. Extinclion.

see our book Srmoothing

- |
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New fields

B Fast diffusion (m < 1)
ug =V - (u Uy =N =)

Geometrical applications: Yamabe flow, m = (i — 2} /n. Extinclion.

see our book Srmoothing

& Systems. The chemotaxis system leads to the formation of
singularities in finite time through aggregation/concen ration
Work by Harraro and Yelazguez, Doibeault and Parfframe
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|7 B Fast diffusion (m < 1)
w=V. {tzm'"ivu} =V -{ﬁ—1I

Geometrical applications: Yamabe flow, m = (n — 2] /n. Extinction.

=
see our book Srmoothing

& Systems. The chemotaxis system leads to the formation of
singularities in finite time through aggregation/concen ration
Work by Harraro and Yelazguez, Doibeault and Parfframe

B CGeneral parabolic-hyperbolic equations and systems. Enfropy
solutions, renormelized solutions, shocks; limited diffusion

Waork by J Carniio, Bamian, Witthola
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Geometrical applications: Yamabe flow, m = (n — 2] /n. Extinction.

see our book Stnocthing

systems. The chemotaxis system leads to the formation of
singularities in finite time through aggregation/concen ration

Weor ke by Havraro and Yelarguez, Doibeaclt andd Parfhrane

General parabolic-hyperbolic equations and systems. Enfropy
solutions, renormelized solutions, shocks; limited diffusion

Waork by J Carniio, Bamian, Witthola

MNonlinear diffusion in image processing. Gradient dependent
diffusion. Work on total variation models.

Andrey, Caselles, Waron,

—
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Nonlinear heat tflows
|7 # [n the last 50 years emphasis has shifted towards the Nunlinaar_l
World. Maths more difficult, more complex and more realistic,
My group works in the areas of Nonlinear Diffusion and
Reaction Diffusion.
| will present an overview and recent results in the theory
mathematically called Nonlinear Parabolic PDEs. General
formula

w = 3 Gdi(u, Vu) + ¥ Bz, u, Vu)
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Logarithmic Diffusion I

B Special case; the limit case m = [ of the PME/FDE in two space _I
dimensions

Hw = div (w1 Wu) = Aloglu).
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Logarithmic Diffusion I

B Special case; the limit case m = [ of the PME/FDE in two space _I
dimensions

Hw = div (w1 Wu) = Aloglu).

B Application to Differential Geomelry: it describes he avalution of &
confor mally fal metric g given by da? = «dr? by means of ils Ricd curvalure

EE‘L: = —ZRlGy = —HR g,
where Ric is the Ricsi tenaor and B the scalar curvatang,
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Logarithmic Diffusion I

B Special case; the limit case m = [ of the PME/FDE in two space _I

dimensions

G = div (uw"1WVu) = Aloglu),

Application to Differential Geomefry: it describes he evolution of a
confor mally fal metric g given by da? = «dr? by means of ils Ricd curvalure

a

Eﬂﬂ = —ZRlGy = —HR g,

where Ric is the Ricsi tenaor and B the scalar curvatang,

This fliow, proposed by B Hamillon 1928, ia the equivaient of the Yamabe flow in two
dimensiona, Remark: whal we usually call the mass of the sciufion {ihinking in

diffusion terms) becomes here the iolal area of the surface, A = [« deydes

]
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Logarithmic Diffusion I

B Special case; the limit case m = [ of the PME/FDE in two space _I
dimensions

Hw = div (w1 Wu) = Aloglu).

B Application to Differential Geomelry: it describes he avalution of &
confor mally fal metric g given by da? = «dr? by means of ils Ricd curvalure

a

= SRy = =g

where Ric is the Ricsi tenaor and B the scalar curvatang,

This fliow, proposed by B Hamillon 1928, ia the equivaient of the Yamabe flow in two
dimensiona, Remark: whal we usually call the mass of the sciufion {ihinking in

diffusion terms) becomes here the iolal area of the surface, A = [« deydes
2 Main feature: the 41 mass loss law. The maximal solution of the
Cauchy problem with L' data safisfies
" .
| ulz, tidr = j wol @ hdx — 4w,
4
and lives for the time 0 < ¢ < T = [, ug(z) dz/dn. —
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Logarithmic Diffusion I

B Special case; the limit case m = [ of the PME/FDE in two space _I
dimensions

Hw = div (w1 Wu) = Aloglu).

B Application to Differential Geomelry: it describes he avalution of &
confor mally fal metric g given by da? = «dr? by means of ils Ricd curvalure

a

= SRy = =g

where Ric is the Ricsi tenaor and B the scalar curvatang,

This fliow, proposed by B Hamillon 1928, ia the equivaient of the Yamabe flow in two
dimensiona, Remark: whal we usually call the mass of the sciufion {ihinking in

diffusion terms) becomes here the iolal area of the surface, A = [« deydes
2 Main feature: the 41 mass loss law. The maximal solution of the
Cauchy problem with L' data safisfies
" .
| ulz, tidr = j wol @ hdx — 4w,
4
and lives for the time 0 < ¢ < T = [, ug(z) dz/dn. —
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Log Diffusion II. Measures

|7 B '‘We consider in d = 2 the log-diffusion aquation _I

e = N logu

W assume an initial mass astibution of he form
duo(x) = fladde+ > Mz —24)

where f > iz anintegrable funclion in B2, the 24, §= 1,. .- , 7. are a finits collection
of (different) poinks on the planea, and we ara given masses

0= Mo << Mz < M The lolal mazsis
M=M+3% M, wih M.;.:ffdm

- |
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Log Diffusion II. Measures

|7 B '‘We consider in d = 2 the log-diffusion aquation _I

e = N logu

W assume an initial mass dstibubon of he form
duo(x) = flade+ > Mz — o)
where f = (is anintegrable funclion in B2, the @y, i= 1, -, %, are a finils collection

of (different) poinks on the planea, and we ara given masses
0= Mo << Mz < M The lolal mazsis

M=M+5 M, wih M= J,"' fdz
# 'We construct a solution for this problem as the limit of natural

approximate problems with smooth data. The measure shrinks but
only gradually:
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Log Diffusion II. Measures

|7 B '‘We consider in d = 2 the log-diffusion aquation _I

e = N logu

Wa assume an inibal mass dstibution of he form
duo(x) = fimide+ 3 | Mz —2y)

where f > (is anintegrable funclion in B2, the @y, §= 1, .- ,n. are a finite collection
of (different) poinks on the planea, and we ara given masses

0= Mo << Mz < M The lolal mazsis
"
M=M+3% M, wih M.:.=J fdz

# 'We construct a solution for this problem as the limit of natural
approximate problems with smooth data. The measure shrinks but
only gradually:

J. L. Vazquez, Evoiution of point masses by planar fogarithmic
diffusion. Finite-time blow-clowrt, Preprint, 2008,
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Nonlinear heat flows

—

# |n the last 50 years emphasis has shifted towards the Nonlinear
World. Maths more difficult, more complex and more realistic,
My group works in the areas of Nonlinear Diffusion and
Reaction Diffusion.
| will present an overview and recent results in the theory
mathematically called Nonlinear Parabolic PDEs. General
formula

—

w = 3 Gdi(u, Vu) + ¥ Bz, u, Vu)

# Typical nonlinear diffusion; w, = Au™

Typical reaction diffusion: =, = Anu + o
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Pictures

Iiﬁuhc:ut fast diffusion in the limit

H
-
|
il |
=
7 ¥

:
" as [ [T 1 1 ol [ as 1

Jusn L VERQUET - Panlinear DiMfusion Parous Madiom and Fasl Difesian Equalions = po 707



Pictures

Iiﬁubﬂut fast diffusion in the limit _I

- =
b =
=

il

a7

o e e . T F B

B Evoiution of the ZKB solutions; dimension noe 2
. Left: inlermediate fast diffusion exponent Right, exponent near s s _]
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Pictures

Iiﬁubﬂut fast diffusion in the limit _I

- =
b =
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o e e . T F B

B Evoiution of the ZKB solutions; dimension noe 2
. Left: inlermediate fast diffusion exponent Right, exponent near s s _]
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Log Diffusion ITI

|7 B Theorem Under the stated condiions, there exists & fimit sofution of the iﬂgdﬁu:srm_l
Cauvcfry problem posed it the whote piane with mitial data pu. It exists i the time
intervai 0 < ¢ < T with T' = M /2w it satisfies the conditions of maximality at
ity (— vitigueness). The solufion & confinuows fo the space of Radon
measures, u € C([0,T] : M{IR")), and it has two components, singular and
regutar.

- ]
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Log Diffusion ITI

|7 B Theorem Under the stated condiions, there exists & fimit sofution of the iﬂgdﬂ?usrm_l
Cauvcfry problem posed it the whote piane with mitial data pu. It exists i the time
intervai 0 < ¢ < T with T' = M /2w it satisfies the conditions of maximality at
ity (— vitigueness). The solufion & confinuows fo the space of Radon
measures, u € C([0,T] : M{IR")), and it has two components, singular and
regutar.

B  The smgular part amounts fo a collechon of (shrinking @ fime) pont masses
concentrated af T = T4

Ueing = 3 (M — dmt)  5(z — ).
The regular part can be described as follows:

- ]
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Log Diffusion ITI

| B Theorem Under the stated condiions, there exists & fimit sofution of the fog-diffusion |

Cauvcfry problem posed it the whote piane with mitial data pu. It exists i the time
intervai 0 < ¢ < T with T' = M /2w it satisfies the conditions of maximality at
ity (— vitigueness). The solufion & confinuows fo the space of Radon
measures, u € C([0,T] : M{IR")), and it has two components, singular and
regutar.

The smgular part amounts fo a collechion of (shrmiong @ fime) pomf masses
concentrated af T = T4

Ueing = 3 (M — dmt)  5(z — ).
The regular part can be described as follows:

(i} Whan resticted to the perforated domain (), = (IR° —| | {=.}) % (0,T), u is
a smooth solufon of the equahon, if lakes Fre indial data f(t] for ae. T 5 T, and
vamishes alt = T
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Log Diffusion ITI

| B Theorem Under the stated condiions, there exists & fimit sofution of the fog-diffusion |

Cauvcfry problem posed it the whote piane with mitial data pu. It exists i the time
intervai 0 < ¢ < T with T' = M /2w it satisfies the conditions of maximality at
ity (— vitigueness). The solufion & confinuows fo the space of Radon
measures, u € C([0,T] : M{IR")), and it has two components, singular and
regutar.

The smgular part amounts fo a collechion of (shrmking m fime ) pomnt masses
concentrated af T = T4

Ueing = 3 (M — dmt)  5(z — ).
The regular part can be described as follows:
(i} Whan resticted to the perforated domain (), = (IR° —| | {=.}) % (0,T), u is
a smooth solufon of the equahon, if lakes Fre indial data f(t] for ae. T 5 T, and
vamishes alt = T

(i) At svery time ¢ < (0, ') the total mass of the reguiar part is the result of adding

to My the inflow coming from the poitt masses and sublracting the outflow af infinity:
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Log Diffusion ITI

| B Theorem Under the stated condiions, there exists & fimit sofution of the fog-diffusion |

Cauvcfry problem posed it the whote piane with mitial data pu. It exists i the time
intervai 0 < ¢ < T with T' = M /2w it satisfies the conditions of maximality at
ity (— vitigueness). The solufion & confinuows fo the space of Radon
measures, u € C([0,T] : M{IR")), and it has two components, singular and
regutar.

The smgular part amounts fo a collechion of (shrmking m fime ) pomnt masses
concentrated af T = T4

Ueing = 3 (M — dmt)  5(z — ).
The regular part can be described as follows:
(i} Whan resticted to the perforated domain (), = (IR° —| | {=.}) % (0,T), u is
a smooth solufon of the equahon, if lakes Fre indial data f(t] for ae. T 5 T, and
vamishes alt = T

(i) At svery time ¢ < (0, ') the total mass of the reguiar part is the result of adding

to My the inflow coming from the poitt masses and sublracting the outflow af infinity:
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Log Diffusion IV

(1} [Eﬂd of T}FEDFEFF'II Before each pomi mass disappears, we gef 8
srrcquilar behavour near the mass locafon as n the radial caze, white fater on the
solufion 15 reqular around that ponf
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Log Diffusion IV

(1} [Eﬂd of Theorem] Befoe sadh point mass disappears, we gef a
srrcquilar behavour near the mass locafon as n the radial caze, white fater on the

solufion 15 reqular around that ponf

The theory of measure-valued solutions of diffusion equalions is still
in its beginning.
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Log Diffusion IV

(1} [Eﬂd of Theorem] Befoe sadh point mass disappears, we gef a
srrcquilar behavour near the mass locafon as n the radial caze, white fater on the

solufion 15 reqular around that ponf

The theory of measure-valued solutions of diffusion equalions is still
in its beginning.

A large number of open problems are posed for subcrtical fast
diffusion.
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Log Diffusion IV

(1} [Eﬂd of Theorem] Befoe sadh point mass disappears, we gef a
srrcquilar behavour near the mass locafon as n the radial caze, white fater on the
solufion 15 reqular around that ponf

The theory of measure-valued solutions of diffusion equalions is still
in its beginning.

A large number of open problems are posed for subcrtical fast
diffusion.

Related to singularities in elliptic theory by Brezis, Marcus, Ponce
and the author.

0wy = Ad{n), ifk—ii'f-i — A%(w,) =0
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Log Diffusion IV

(1} [Eﬂd of Theorem] Befoe sadh point mass disappears, we gef a
srrcquilar behavour near the mass locafon as n the radial caze, white fater on the
solufion 15 reqular around that ponf

The theory of measure-valued solutions of diffusion equalions is still
in its beginning.

A large number of open problems are posed for subcrtical fast
diffusion.

Related to singularities in elliptic theory by Brezis, Marcus, Ponce
and the author.

" U ™ Wi
s =
w = Ad(u), o e

MNow put f :=w, g, @ = ug, and v = &{u), u = Blv):

— AB(ug) =0
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Log Diffusion IV

(1} [Eﬂd of Theorem] Befoe sadh point mass disappears, we gef a
srrcquilar behavour near the mass locafon as n the radial caze, white fater on the
solufion 15 reqular around that ponf

The theory of measure-valued solutions of diffusion equalions is still
in its beginning.

A large number of open problems are posed for subcrtical fast
diffusion.

Related to singularities in elliptic theory by Brezis, Marcus, Ponce
and the author.

F U ™ Wi
iy = ﬁ.@ti-l-:l, '-""'—F_'""'""'
+

MNow put f :=w, g, @ = ug, and v = &{u), u = Blv):

— AB(ug) =0

—hAD{u)+u=f, —hAv+ Blv) = f.|
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Open problems

|7 # Extend theory to anisofropic equations of the general form _I

Biupk = Z Az, L u, Du)

o . i
anfropy and kvtehc solutions are used. Cvans, Perthame, Karlzen, .,
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The Nonlinear Diffusion Models

|7 # The Stefan Problem (Lame and Clapeyron, 1833; Stefan 18&[3']_|

SE:IHT:;EE&H for w = 0, ez =,
l th = ko for « < (. V= Jr,.-llrﬁi‘.{?u] - Fi:g"'?ug}-

Main feature: the free boundary or moving boundary where
u = 0. TC= Transmission conditions at = = 0.
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Open problems

|7 # Extend theory to anisofropic equations of the general form _I

Biupk = E Az, L u, Du)
anfromy and kvtehc solutions are u&mf.l' Evanz, Perthame, Karlzen,

# Do complete theory for fast diffusion equations, m < 1.
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Open problems

Extend theory to anisofropic equations of the general form _I

Biupk = E Az, L u, Du)
anfromy and kvtehc solutions are u&mf.l' Evanz, Perthame, Karlzen,
Do complete theory for fast diffusion equations, m < 1.

Do the theory on Riemannian manifolds (ongoing project with
Bonforte and Grillo)
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Open problems

Extend theory to anisofropic equations of the general form _I
Biupk = Z e Aglx, £, 1, Du)

anfromy and kvtehc solutions are u&m'g.l' Evanz, Perthame, Karlzen,

Do complete theory for fast diffusion equations, m < 1.

Do the theory on Riemannian manifolds (ongoing project with
Bonforte and Grillo)

Get complete set of decay estimates for asymptotic
convergence to Barenblatt profiles or anomalous profiles.
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Ii.l

Open problems

Extend theory to anisofropic equations of the general form

Biupk = E Az, L u, Du)
anfromy and kvtehc solutions are u&m'g.l' Evanz, Perthame, Karlzen,
Do complete theory for fast diffusion equations, m < 1.

Do the theory on Riemannian manifolds (ongoing project with
Bonforte and Grillo)

Get complete set of decay estimates for asymptotic
convergence to Barenblatt profiles or anomalous profiles.

Get whole series of asymptotic decomposition

ulx, ) ~ Bl t; M) + 75 @ {x)+ ¢ =Ps(x) + - -
it is done i o = 1 (Barenbiatt and Zeidovich, Angenent

—
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Ii.l

Open problems

Extend theory to anisofropic equations of the general form

Biupk = E Az, L u, Du)
anfromy and kvtehc solutions are u&m'g.l' Evanz, Perthame, Karlzen,
Do complete theory for fast diffusion equations, m < 1.

Do the theory on Riemannian manifolds (ongoing project with
Bonforte and Grillo)

Get complete set of decay estimates for asymptotic
convergence to Barenblatt profiles or anomalous profiles.

Get whole series of asymptotic decomposition

ulx, ) ~ Bl t; M) + 75 @ {x)+ ¢ =Ps(x) + - -
it is done i o = 1 (Barenbiatt and Zeidovich, Angenent

Get local universal estimate: Av > —C{(t).

—
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The Nonlinear Diffusion Models

|7 # The Stefan Problem (Lame and Clapeyron, 1833; Stefan 18&[3']_|

SE:IHT:;EE&H for w = 0, ez =,
l th = ko for « < (. V= Jr,.-llrﬁi‘.{?u] - Fi:g"'?ug}-

Main feature: the free boundary or moving boundary where
u = 0. TC= Transmission conditions at = = 0.

# The Hele-Shaw cell (Hele-Shaw, 1898; Saffman-Taylor, 1958)

uw>0, Au=0 in Q) uw=0 v=Ldu on 90t
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Introduction

| » Main topic: Nonlinear Diffusion ]
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The Nonlinear Diffusion Models

|7 # The Stefan Problem (Lame and Clapeyron, 1833; Stefan 18&[3']_|

SE:IHT:;EE&H for w = 0, ez =,
l th = ko for « < (. V= Jr,.-llrﬁi‘.{"?u] - F:Q"'?H.E}-

Main feature: the free boundary or moving boundary where
u = 0. TC= Transmission conditions at = = 0.

# The Hele-Shaw cell (Hele-Shaw, 1898; Saffman-Taylor, 1958)
w>0, Au=0 in Qt); =0 v=Ldu on ).

# The Porous Medium Equation —fhidden free boundary

w=Au", m>L
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The Nonlinear Diffusion Models

The Stefan Problem (Lame and Clapeyron, 1833; Stefan 18&[3']_|
SE:IHT:;EE&H for w = 0, ez =,
l th = ko for « < (. V= Jr,.-llrﬁi‘.{"?u] - F:Q"'?H.E}-

Main feature: the free boundary or moving boundary where
u = 0. TC= Transmission conditions at = = 0.

The Hele-Shaw cell (Hele-Shaw, 1898; Saffman-Taylor, 1958)
w>0, Au=0 in Qt); =0 v=Ldu on ).

The Porous Medium Equation —hidgden free boundary)
w=Au", m>L

The p-Laplacian Equation, w; = div {|Vu/?*Vu).
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The Reaction Diffusion Models

|7 # The Standard Blow-Up model {(Kaplan, 1963, Fujita, 1966) _I

| U = .*l'-.'u-l—*up|

Main feature: If p = 1 the norm |u{-.#}||.. of the solutions goes
to infinity in finite time. Hint: Integrate w; = u*,
Problem: what is the influence of diffusion { migration?
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The Reaction Diffusion Models

| ® The Standard Blow-Up model (Kaplan, 1963; Fujita, 1966) |

| U = .*l'-.'u-l—*up|

Main feature: If p = 1 the norm |u{-.#}||.. of the solutions goes
to infinity in finite time. Hint: Integrate w = u?,
Problem: what is the influence of diffusion { migration?

# General scalar model

w = A(u) + flu) |
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The Reaction Diffusion Models

| ® The Standard Blow-Up model (Kaplan, 1963; Fujita, 1966) |

| U = .*l'-.'u-l—*up|

Main feature: If p = 1 the norm |u{-.#}||.. of the solutions goes
to infinity in finite time. Hint: Integrate w = u?,
Problem: what is the influence of diffusion { migration?

# General scalar model

w = A(u) + flu) |

# The system model: 0 = (v, -- ,u,,) — chemotaxis.

Jumn L VERQUET - Panlinear Difusion Parous Madiom and Fasl Difesian Equalions = po 127



The Reaction Diffusion Models

The Standard Blow-Up model (Kaplan, 1963; Fujita, 1966) |

| U = .*l'-.'u-l—*up|

Main feature: If p = 1 the norm |u{-.#}||.. of the solutions goes
to infinity in finite time. Hint: Integrate w; = u*,
Problem: what is the influence of diffusion { migration?

Gseneral scalar model

w = Alu) + flu)|

The system model: W = (uy, - ,u,,) — chemotaxis.

The fluid flow models: Navier-Stokes or Euler equation
systems for incompressible flow. Any snqulanfies?
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The Reaction Diffusion Models

The Standard Blow-Up model (Kaplan, 1963; Fujita, 1966) |

| uc:—._“"-.u-l—qu|

Main feature: If p = 1 the norm |u{-.#}||.. of the solutions goes
to infinity in finite time. Hint: Integrate ; = w?,
Problem: what is the influence of diffusion { migration?

Gseneral scalar model

w = Alu) + flu)|

The system model: W = (uy, - ,u,,) — chemotaxis.

The fluid flow models: Navier-Stokes or Euler equation
systems for incompressible flow. Any snqulanfies?

The geometrical models: the Ricci flow: & g = — Ry,
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|7An apimion of John Mash, 1858;

The open problems in the area of nonlinear p.d.e. are
very relevant to applied mathematics and science as a
whole, perhaps more so that the open problems in any
other area of mathematics, and the field seems poised for
rapid development. It seems clear, however, that fresh
methods must be employed...

Little is known about the existence, uniquenass and
smoothness of solutions of the general equations of flow for
a viscous, compressible, and heat conducting fluid...

‘Continuty of solutions of elliptic and parabolic equations”,
paper published in Amer. J. Math, 80, no 4 (1958), 937-954
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Introduction

Ii.l Main topic: Nonlinear Diffusion _I

# PFarticular topics: Porous Medium and Fast Diffusion flows
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Porous Medium Diffusion

up = Au™ =V (elu)Vu)
density-dependent diffusivity

rn—l[z |m—!.]

e(u} = mu m|u

dagansralez alu =0im 2 1
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Applied motivation for the PME

|7 # Flow of gas in a porous medium (Leibenzon, 1930; Muskat _I
1933 m=14++v>2

o+ div{pv) = 0,
v=—5¥p. p=plo)
Second line leftis the Darcy law for flows in porous media (Darcy,

1856). Porous media fiows are potential flows due to averaging of Nawer-Stokes

o fhe pore scales
To the right, put p = p, o7, with ¥ = 1 {isothermal), v > 1 {adiabatic
flow).

;i: k o a2 A 3
pr = div (=0Vp) = d (o (pop")) = AT,
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Applied motivation for the PME

|7 # Flow of gas in a porous medium (Leibenzon, 1930; Muskat _I
1933 m=14++v>2

o+ div{pv) = 0,
v=—5¥p. p=plo)

Second line leftis the Darcy law for flows in porous media (Darcy,
1856). Porous media fiows are potential flows due to averaging of Nawer-Stokes

o fhe pore scales
To the right, put p = p, o7, with ¥ = 1 {isothermal), v > 1 {adiabatic
flow).

;i: k o a2 A 3
pr = div (=0Vp) = d (o (pop")) = AT,

#» Underground water infiltration (Boussinesq, 1903) m = 2
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Applied motivation 11

| Plasma radiation i > 4 (Zeldovich-Raizer, < 1950) ]
Experimental fact diffusivity at high temperatures is not constant as
in Fourier's law, due to radiation.

i cpl dx = EDVT - ndS,
dt fo Joit

Put (7)) = &, 17, apply Gauss law and you get

cpi—f = div(k(T)VT) = e, AT,

— When kis not a power we get |1, = AT (T) (with &'(T) = &({T).
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| Plasma radiation i > 4 (Zeldovich-Raizer, < 1950) ]
Experimental fact diffusivity at high temperatures is not constant as
in Fourier's law, due to radiation.

d .
— { epl' dx = EDVT - ndS,
dt J'{a Joit

Put (7)) = &, 17, apply Gauss law and you get

cp%—f = div(k(T)VT) = e, AT,

— When kis not a power we get |1, = AT (T) (with &'(T) = &({T).

# Spreading of populations (self-avoiding diffusion) o ~ 2.
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| Plasma radiation i > 4 (Zeldovich-Raizer, < 1950) ]
Experimental fact diffusivity at high temperatures is not constant as
in Fourier's law, due to radiation.

d .
— { epl' dx = [ EDVT - ndS,
dt J'{a Joit

Put (7)) = &, 17, apply Gauss law and you get

C‘p%—i = div(k(T)VT) = e, AT,

— When kis not a power we get |1, = AT (T) (with &'(T) = &({T).

# Spreading of populations (self-avoiding diffusion) o ~ 2.

# Thin films under gravity (no surface tension) m = 4.
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Applied motivation 11

| Plasma radiation i > 4 (Zeldovich-Raizer, < 1950) ]
Experimental fact diffusivity at high temperatures is not constant as
in Fourier's law, due to radiation.

d .
— { epl' dx = [ EDVT - ndS,
dt J'{a Joit

Put (7)) = &, 17, apply Gauss law and you get

C‘p%—i = div(k(T)VT) = e, AT,

— When kis not a power we get |1, = AT (T) (with &'(T) = &({T).

# Spreading of populations (self-avoiding diffusion) o ~ 2.
# Thin films under gravity (no surface tension) m = 4.

# Kinetic limits (Carleman models, McKean, PL Lions and Toscani ef al )
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Applied motivation 11

Plasma radiation m > 4 {Zeldovich-Raizer, < 1950) _|
Experimental fact diffusivity at high temperatures is not constant as
in Fourier's law, due to radiation.

d .
— { epl' dx = [ EDVT - ndS,
dt J'{a Joit

Put (7)) = &, 17, apply Gauss law and you get

C‘p%—i = div(k(T)VT) = e, AT,

— When kis not a power we get |1, = AT (T) (with &'(T) = &({T).

Spreading of populations (self-avoiding diffusion) m ~ 2.
Thin films under gravity (no surface tension) m = 4.

Kinetic limits (Carleman models, McKean, PL Lions and Toscani ef al )

Many more (boundary layers, geometry).
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Introduction

Ii.l Main topic: Menlinear Diffusion _I

# PFarticular topics: Porous Medium and Fast Diffusion flows

# Aim: to develop a complete mathematical theory with sound
physical basis

The resulling theory mvolves PDEs, Functional Analysis, inf. Dim. Dyn
aystems. DIt Geomefry and Probabiity
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The basics

|7 # The equation is re-written for m: = 2 as _I

s = udu + |Vl
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The basics

|7 # The equation is re-written for m: = 2 as _I

s = udu + |Vl

# and you can see that for u» ~ 0 it looks like the eikonal equation

g = |"G'u-;’2

This 1s not parabolic, but hyperbolic {propagation along characleristcs).
fdced type, mixed properies.
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The basics

|7 # The equation is re-written for m: = 2 as _I

s = udu + |Vl

# and you can see that for u» ~ 0 it looks like the eikonal equation

g = |"G'u-;’2

This 1s not parabolic, but hyperbolic {propagation along characleristcs).
fdced type, mixed properies.

# No big problem whenm > 1, m # 2. The pressure
transfor mation gives:

v = {m — 1wl +4 |‘E1,||'3

where |v = cu™ " | is the pressure; normalizaton ¢ = m/f(m - 1)

This separatezm > 1| PME - from-ms = 1 FDE
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Planning of the Theory
B

# The precise meaning of solution.

—

hese are the main topics of mathematical analysis { 1958-2006):
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hese are the main topics of mathematical analysis { 1958-2006):

# The nonlinear approach: estimates; functional spaces.
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# The nonlinear approach: estimates; functional spaces.

#» Existence, non-existence. Unigqueness, nen-uniqueness,
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Planning of the Theory
B

# The precise meaning of solution.

—

hese are the main topics of mathematical analysis { 1958-2006):
The nonlinear approach: estimates; functional spaces.

»
#» Existence, non-existence. Unigqueness, nen-uniqueness,
-

Regqularity of solutions: is there a fmi? C'* for some k7
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Planning of the Theory

| N

# The precise meaning of solution.

hese are the main topics of mathematical analysis { 1958-2006):

The nonlinear approach: estimates; functional spaces.
Existence, non-existence. Uniqueness, non-uniqueness,

Regqularity of solutions: is there a fmi? C'* for some k7

" o b @

Regularity and movement of interfaces: C* for some k2.

Jusmn L VERQUET - Ranlinear Difusion Parous Madiom and Fasl Difesian Equalions = p 207



Introduction

|7.i Main topic: Menlinear Diffusion _I

# PFarticular topics: Porous Medium and Fast Diffusion flows

# Aim: to develop a complete mathematical theory with sound
physical basis
The resulfing theory mvolves PDEs Functional Analysis, Inf. Dim, Dyn
aystems. DIt Geomefry and Probabiity

#» H. Brezis, Ph. Bénilan
D. G. Aronson, L. A. Caffarelli
L. A Pelatier, 5. Kamin, G. Barenblatt, V. A. Galaktionov
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Planning of the Theory

| N

# The precise meaning of solution.

hese are the main topics of mathematical analysis { 1958-2006):

The nonlinear approach: estimates; functional spaces.
Existence, non-existence. Uniqueness, non-uniqueness,
Regqularity of solutions: is there a fmi? C'* for some k7

Regularity and movement of interfaces: C* for some k2.

" o @ @ @

Asymptotic behaviour: pattems and rates? universai?
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Planning of the Theory

| N

# The precise meaning of solution.

hese are the main topics of mathematical analysis { 1958-2006):

The nonlinear approach: estimates; functional spaces.
Existence, non-existence. Uniqueness, non-uniqueness,
Regqularity of solutions: is there a fmi? C'* for some k7
Regularity and movement of interfaces: C* for some k2.

Asymptotic behaviour: pattems and rates? universai?

o o & @ @ @

The probabilistic approach. Nonlinear process Wasserstein estimates

Jusmn L VERQUET - Ranlinear Difusion Parous Madiom and Fasl Difesian Equalions = p 207



Planning of the Theory

| N

# The precise meaning of solution.

hese are the main topics of mathematical analysis { 1958-2006):

The nonlinear approach: estimates; functional spaces.
Existence, non-existence. Uniqueness, non-uniqueness,
Regqularity of solutions: is there a fmi? C'* for some k7
Regularity and movement of interfaces: C* for some k2.
Asymptotic behaviour: pattems and rates? universai?

The probabilistic approach. Nonlinear process Wasserstein estimates

" o @ @ @ @

Generalization: fast models, inhomogeneous media,
anisotropic media, applications to geometry or image
processing; other effects.
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Planning of the Theory

| N

# The precise meaning of solution.

hese are the main topics of mathematical analysis { 1958-2006):

The nonlinear approach: estimates; functional spaces.
Existence, non-existence. Uniqueness, non-uniqueness,
Regqularity of solutions: is there a fmi? C'* for some k7
Regularity and movement of interfaces: C* for some k2.
Asymptotic behaviour: pattems and rates? universai?

The probabilistic approach. Nonlinear process Wasserstein estimates

" o @ @ @ @

Generalization: fast models, inhomogeneous media,
anisotropic media, applications to geometry or image
processing; other effects.
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Barenblatt profiles (ZKB)

|7 # These profiles are the alternative to the Gaussian profiles. _I
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Barenblatt profiles (ZKB)

|7 # These profiles are the alternative to the Gaussian profiles. _I

# They are source solutions. Source means that u({z, 1) — M d{x) as
t—0
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Barenblatt profiles (ZKB)

|7 # These profiles are the alternative to the Gaussian profiles. _I

# They are source solutions. Source means that u({z, 1) — M d{x) as
t—0

# Explicit formulas (1950): (o = srfimry = sy < 112)

Bz, t; M) = t *F(z/t"), F(g)= (C - klg‘d}_l'_e"tm—lfl

Jusmn L VERQUET - Panlinear Difusion Parous Madiom and Fasl Difesian Equalions = po 2507



Barenblatt profiles (ZKB)

|7 # These profiles are the alternative to the Gaussian profiles. _I

# They are source solutions. Source means that u({z, 1) — M d{x) as
t—0

# Explicit formulas (1950): (o = srfimry = sy < 112)

Bz, t; M) = t *F(z/t"), F(g)= (C - klg‘d}_l'_e"tm—lfl

Jusmn L VERQUET - Panlinear Difusion Parous Madiom and Fasl Difesian Equalions = po 2507



Barenblatt profiles (ZKB)

|7 # These profiles are the alternative to the Gaussian profiles. _I

# They are source solutions. Source means that u({z, 1) — M d{x) as
t—0

# Explicit formulas (1950); (o= ofr = oy < 1,*2}

Bix,t;, M) = f_ﬂ'F{_:l:l,-"i"'Q:], Fi¢) = [C £y klgﬂjfl.fﬂ—lj

os

Height v = 0t ~* Free boundary at distance |o| = ot®

Scaling taw, anomalous diflision versus BrownEn mobon
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Introduction

Main topic: Nonlinear Diffusion _I

Farticular topics: Porous Medium and Fast Diffusion flows
Aim: to develop a complete mathematical theory with sound
physical basis

The resulfing theory mvolves PDEs Functional Analysis, Inf. Dim, Dyn
aystems. DIt Geomefry and Probabiity

H. Brezis, Ph. Bénilan
D. G. Aronson, L. A. Caffarelli
L. A, Pelatier, 5. Kamin, G. Baranblatt, V. A. Galaktionov

+ M. Crandall, L. Evans, A. Friedman, C. Kenig,...

Jugn L. VERques - Monlinear Diffusion Porous Medum and Fas DifTusion EQuations =p. 207



Barenblatt profiles (ZKB)

|7 # These profiles are the alternative to the Gaussian profiles. _I

# They are source solutions. Source means that u({z, 1) — M d{x) as
t—0

# Explicit formulas (1950); (o= ofr = oy < 1,*2}

Bix,t;, M) = f_ﬂ'F{_:l:l,-"i"'Q:], Fi¢) = [C £y klgﬂjfl.fﬂ—lj

os

Height v = 0t ~* Free boundary at distance |o| = ot®

Scaling taw, anomalous diflision versus BrownEn mobon

Jusmn L VERQUET - Panlinear Difusion Parous Madiom and Fasl Difesian Equalions = po 2507



Barenblatt profiles (ZKB)

|7 # These profiles are the alternative to the Gaussian profiles. _I

# They are source solutions. Source means that u({z, 1) — M d{x) as
t—0

# Explicit formulas (1950); (o= ofr = oy < 1,*2}

Bix,t;, M) = f_ﬂ'F{_:l:l,-"i"'Q:], Fi¢) = [C £y klgﬂjfl.fﬂ—lj

os

Height v = 0t ~* Free boundary at distance |o| = ot®

Scaling taw, anomalous diflision versus BrownEn mobon

Jusmn L VERQUET - Panlinear Difusion Parous Madiom and Fasl Difesian Equalions = po 2507
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|7 # These profiles are the alternative to the Gaussian profiles. _I

# They are source solutions. Source means that u({z, 1) — M d{x) as
t—0

# Explicit formulas (1950); (o= ofr = oy < 1,*2}
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FDE profiles

|7 # We again have explicit formulas for 1 = m > (n — 2)/n _I

1

B(z,t; M) =t *F(z/t"), F(§)= (C + ke2)1/0-m)

Salulans fof s = L wilh 5l Bils [polynomial decay, anamaslous dislibulions)
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FDE profiles

|7 # We again have explicit formulas for 1 = m > (n — 2)/n _I

: 1
&)= T

Bz, t; M) =t *F(z/#),

Salulans fof s = L wilh 5l Bils [polynomial decay, anamaslous dislibulions)

# Big problem: What happens for = < {n — 2} /n? Most sclive trarch
of PMEFDE. Mew asymplolics, elinchion, new Linclonal properies, new geomelry
and physics
Mary aulbors J King, geamelers, | — my book "Smcafing”

L |
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Concept of solution

| N

# Classical solution: only in nondegenerate situations, « > 0.

here are many concepts of generalized solution of the PME:
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Concept of solution
B

# Classical solution: only in nondegenerate situations, « > 0.

—

here are many concepts of generalized solution of the PME:

& Limit solution: physical, but depends on the approximation (7).
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|. Diffusion

populkatons difiuse, substances (like parficles in a solvent) diffuse, heat propagates,
glecirons and ions diffise, the momenium of & viscous {Mewtonian) fivd dfuses (inearby),
there is diffusion in the markels,

o what is diffusion anyway?
e how fo explain it with mathematics?
e is it a linear process?

]
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Concept of solution

| N

# Classical solution: only in nondegenerate situations, « > 0.

here are many concepts of generalized solution of the PME:

& Limit solution: physical, but depends on the approximation {7).

# Weak solution Test against smooth funcions and eliminate

derivatives on the unknown function; itis the mainstream; {Olainik,
1958)

-
[ [wm—vum nyasdt + [ uofe)nie, 0z = .
Very weak

f ,r‘{u-m + u™ An) dedt + j ugix) piz,0) de = 0.

J
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More on concepts of solution
|_5cnlutinn5 are not always weak: _I

# Strong solution. More reqular than weak but not classical: weak
derivatives are L* functions. Big benefit: usual calculus is possible.
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More on concepts of solution
|_Scnlutinn3 are not always weak: _|

# Strong solution. More reqular than weak but not classical: weak
derivatives are L* functions. Big benefit: usual calculus is possible.

» Semigroup solution / mild solution. The typical product of tunctional

discrelizalion schemes o = {un bn, un = u(. 1),

thsy =g

ue = Ad(u), z L o Ad{un)=0
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More on concepts of solution
|_Scnlutinn5 are not always weak: _|

# Strong solution. More reqular than weak but not classical: weak
derivatives are L* functions. Big benefit: usual calculus is possible.

» Semigroup solution / mild solution. The typical product of tunctional

discrelizalion schemes o = {un bn, un = u(. 1),

thsy =g

ue = Ad(u), z Lo ABua)=0

Moy pub e tigaq, 1 i pty, 8nd oo P, wo= S0

—hAP(u) + u=1, hiw+ Sv)={.

"Nonlinear elliptic equations”; Crandall-Liggett
Theorems Ambrasio, Saveard, Mochello
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More on concepts of solution 11
s

# \Viscosity solution Two ideas: (1) add artificial viscosity and pass to
the limit; {2} viscosity concept of Crandall-Evans-Lions (1984);
adapted to PME by Caffarelli-Vazquez (1999).

—

olutions of more complicated equations need new concepts:
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# \Viscosity solution Two ideas: (1) add artificial viscosity and pass to
the limit; {2} viscosity concept of Crandall-Evans-Lions (1984);
adapted to PME by Caffarelli-Vazquez (1999).

—

olutions of more complicated equations need new concepts:

# Enfropy solution {Kruzhkoy, 1968). Invented for conservation laws;
it identifies unigue physical solution from spurious weak solutions. It
s useful for general models degenearate diffusion-convection modals;
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# \Viscosity solution Two ideas: (1) add artificial viscosity and pass to
the limit; {2} viscosity concept of Crandall-Evans-Lions (1984);
adapted to PME by Caffarelli-Vazquez (1999).

—

olutions of more complicated equations need new concepts:

# Enfropy solution {Kruzhkoy, 1968). Invented for conservation laws;
it identifies unigue physical solution from spurious weak solutions. It
s useful for general models degenearate diffusion-convection modals;

# Kenormalized solution (D1 Perna - Lions).
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The heat equation origins

|7 2 We begin our presentation with the Haat Equation _|
w = Awuland the analysis proposed by Fourier, 1807, 1822
(Fourier decomposition, spectrum). The mathematical models

of heat propagation and diffusion have made great progress

both in theory and application. They have had a strong

influence on the 5 areas of Mathematics already mentioned.
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More on concepts of solution 11
s

# \Viscosity solution Two ideas: (1) add artificial viscosity and pass to
the limit; {2} viscosity concept of Crandall-Evans-Lions (1984);
adapted to PME by Caffarelli-Vazquez (1999).

—

olutions of more complicated equations need new concepts:

# Enfropy solution {Kruzhkoy, 1968). Invented for conservation laws;
it identifies unigue physical solution from spurious weak solutions. It
s useful for general models degenearate diffusion-convection modals;

# Kenormalized solution (D1 Perna - Lions).

# BV solution (Volpert-Hudjasew).
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More on concepts of solution 11
s

# \Viscosity solution Two ideas: (1) add artificial viscosity and pass to
the limit; {2} viscosity concept of Crandall-Evans-Lions (1984);
adapted to PME by Caffarelli-Vazquez (1999).

—

olutions of more complicated equations need new concepts:

# Enfropy solution {Kruzhkoy, 1968). Invented for conservation laws;
it identifies unigue physical solution from spurious weak solutions. It
s useful for general models degenearate diffusion-convection modals;

# Kenormalized solution (D1 Perna - Lions).

# BV solution (Volpert-Hudjasew).

# Kinetic solutions {Parthame,...).
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The main estimates

|7 #» Boundedness estimates: for every p» = 1 _|

L(t) = [ w?(z,8)dz < 1,{0)
Fin
and goes down with time
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The main estimates
|7 #» Boundedness estimates: for every p» = 1 _|

L(t) = [ w?(z,8)dz < 1,{0)
Fin
and goes down with time

# Derivative estimates for compactness: The basic 1. space
estimate

m+1f | W™

foleas mufmiw Bu™

|m--|-1m [ |m|“3+1d1
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The main estimates
|7 #» Boundedness estimates: for every p» = 1 _|

L(t) = [ w?(z,8)dz < 1,{0)
H_n
and goes down with time

# Derivative estimates for compactness: The basic 1. space
estimate

m+1ff|%

foleas mufmiw Bu™

= f o™+ de

B The time dervalive astimate.

Cf/ |{.u£'i'ﬁ+1ll'“2;||'3 e _Ij |?iﬂ[$,f}m|2dﬂ: _ f |?¢ﬂ]{¢}m 3
Qr a1 iy
| fdea rruifiolier I.‘:i‘ll_'u:'ﬁ'l' |
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The L' estimate. Contraction. Existence

N N

# Problem: They are not stability estimates for differences.
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The heat equation origins

|7 2 We begin our presentation with the Haat Equation _|
w = Awuland the analysis proposed by Fourier, 1807, 1822

(Fourier decomposition, spectrum). The mathematical models

of heat propagation and diffusion have made great progress

both in theory and application. They have had a strong

influence on the 5 areas of Mathematics already mentioned.

# The heat flow analysis is based on two main techniques:
integral representation {convolution with a Gaussian kernel)
and mode separation:

w, t) = Z'H{t]ﬁ’f{ﬂ‘ﬁ
whera the X;(x) form the spectral sequence

—AX; =M X
This is the famous linear eigenvalue problem
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The L' estimate. Contraction. Existence

N N

# Problem: They are not stability estimates for differences.

# The main stability estimate (L' contraction):

%fp jug (2, ) — un(a, t)|de <0
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The L' estimate. Contraction. Existence

|7 # Problem: They are not stability estimates for differences. _I

# The main stability estimate (L' contraction):
- Y ; .
Ef (e, f) —ualz, t)|de <0
n

B Proof Mulliply he difference of the eguations for v and v by £ = he{w), where k. is

a smaath verson of Heavisida's sep unction, and w =« —ul*, @ = uy — uz. Than

/m!&l{w}dm = [&.w!::l[-w]l dy = — [hj{mﬂ‘i"dea* <0

Mowe 18l by — h = sign T Observe hal eign ey — wp) = sign(a™ — «T*). Then

&
Ej{m—ughdﬂf: /mh{ujffﬂ-‘iﬂ'
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The L' estimate. Contraction. Existence

|7 # Problem: They are not stability estimates for differences. _I

# The main stability estimate (L' contraction):
d g
% | btet) - wa(a )] de <0
dt o

B Proof Mulliply he difference of the eguations for v and v by £ = he{w), where k. is

a smaath verson of Heavisida's sep unction, and w =« —ul*, @ = uy — uz. Than

/t&iﬁb{w}dm = [ﬁwkl{w] dy = — [hj{mﬂ‘i"dea* < 0.

Mowe 18l by — h = sign T Observe hal eign ey — wp) = sign(a™ — «T*). Then

-;j?j{u1—ﬂ£}+dﬂ‘-: /mh{u]fﬁ:ﬁﬂﬂ

|_. B Conbacion iz alsa lnue in HF~F and in the Wasssssiein W5 space
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The standard solutions

—

|7LEI'£ (1 = R"™ or bounded set with zero Dirichlet boundary data,
n=10<T < oo Letus consider the PME with m > 1.

& For every ug = L' (), ug = 0, there exists a weak solution such
that u,w™ < L2 , and Vo™ € L2 ,.
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The standard solutions

—

|7LEI'£ (1 = R"™ or bounded set with zero Dirichlet boundary data,
n=10<T < oo Letus consider the PME with m > 1.

& For every ug = L' (), ug = 0, there exists a weak solution such
that u,w™ < L2 , and Vo™ € L2 ,.

# The weak solution is a strong solution in the following sense:
W v e LYr 00 : Hi(Q)) for every 7 = 0
() w and Au™ e L (0,00 : L1)) and w; = Au™ a.e. in @,
i} w £ C([0,T) : L1{2)) and u(0) = uy.
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The standard solutions

—

|7LEI'£ (1 = R"™ or bounded set with zero Dirichlet boundary data,
n=10<T < oo Letus consider the PME with m > 1.

& For every ug = L' (), ug = 0, there exists a weak solution such
that u,w™ < L2 , and Vo™ € L2 ,.

# The weak solution is a strong solution in the following sense:
W v e LYr 00 : Hi(Q)) for every 7 = 0
() w and Au™ e L (0,00 : L1)) and w; = Au™ a.e. in @,
i} w £ C([0,T) : L1{2)) and u(0) = uy.

# ‘We also have bounded solutions that decay in time

0 < wfx, t) < Clug| 3¢
ulfra-contractndy generalized fo nonlinear cases
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Regularity results
|7 # The universal estimate holds (Aronson-Bénilan, 79): _I

Av > —Cft.

w o~ uw ! s the pressure.
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