Aim of the talk

 Explain "localization formulae". A "localization formula" is a "compressed" formula for sums over a large set (integral points inside a convex polytope) or for some special integrals on manifolds. These special integrals are related to action of a symmetry group, like rotation group on the manifold

or gauge transformations.

Relation between continuous and discrete versions

Local Euler Maclaurin formula (Berline-Vergne 2005)

 $P \subset \mathbb{R}^d$ convex polytope with rational vertices, F face of P

 D_F local differential operators of infinite order with constant coefficients, such that h a polynomial function:

$$\sum_{a \in P \cap \mathbb{Z}^d} h(a) = \int_P h + \sum_{F: \dim(F) < d} \int_F D_F h$$

 D_F computed in polynomial time (d, degree h) fixed.

$$\sum_{i=0}^{N} 1 = N + \frac{1}{2} + \frac{1}{2}.$$

-pt

Work in progress: implement this formula

Example: sums of polynomial functions over points in \mathbb{Z}^2 inside polygons in \mathbb{R}^2 ;

with parameters: Sum of $x_1^{48}x_2^{48}$ on $T \cap \mathbb{Z}^2$ dilated by the factor N.

 $N=11^5$; result with 604 digits (expected number of digits).

Proof: prove on basic examples

Cone decompositions in convex geometry

$$\sum_{i=A}^{B} q^i = \frac{q^A}{1-q} + \frac{q^B}{1-q^{-1}} = -\frac{q^{A-1}}{1-q^{-1}} - \frac{q^{B+1}}{1-q}$$

$$\chi([A, B]) = \chi([A, \infty[) + \chi(] - \infty, B]) - \chi(\mathbb{R})$$

= $\chi(\mathbb{R}) - \chi(] - \infty, A[) - \chi(]B, \infty[).$

$$\frac{1}{A} = \frac{1}{B} = \frac{1}{A} = \frac{1}{B} = \frac{1}{A} = \frac{1}{B} = \frac{1}$$

$$\sum_{n=-\infty}^{\infty} q^n = 0$$

Cone decompositions

Use of Brion theorem and of Barvinok algorithm

Brion: Prove formulae for cones and exponentials.

Barvinok: Signed decomposition of cones;

 \mapsto Theoretical result: $\sum_{P \cap \mathbb{Z}^d} h$

Polynomial time in the data of P,h

when (d, order) fixed.

Cones:=Basic examples.

The geometric analogue will be tubular neighborhoods of a critical set.

Move on Geometry: Stationary phase

M a compact manifold of dimension n, f smooth function on M, dm smooth density.

$$F(t) := \int_M e^{itf(m)} dm$$

finite number of non-degenerate critical points: When $t \to \infty$

$$F(t) \sim \sum_{p \in C} e^{itf(p)} \sum_{k>0}^{\infty} a_{p,k} t^{-rac{n}{2}+k}.$$

Asymptotically, the integral "localizes" at a finite number of critical points p.

Example

f := x two critical points projecting on A and -A.

-pt

Duistermaat-Heckman :Exact stationary phase

$$F(t) := \int_{M} e^{itx} dm =$$

$$\int_{-A}^{A} e^{itx} dx = \frac{e^{iAt}}{it} + \frac{e^{-iAt}}{-it}$$

Here F(t) is exactly equal to the first term of the local expression.

-p1

Duistermaat-Heckman theorem

M compact symplectic manifold, dimension n, with circle action, f Hamiltonian vector field dm Liouville measure.

$$\int_M e^{itf}dm = \sum_{p \in C} e^{itf(p)} a_{p,0} t^{-\frac{n}{2}}.$$

Reason: equivariant cohomology.

Definitions

K compact Lie group acting on manifold M. \mathfrak{k} Lie algebra of K. $\phi \in \mathfrak{k}$, vector field $V\phi$: For $\phi \in \mathfrak{k}$,

$$V_x \phi := \frac{d}{d\epsilon} \exp(-\epsilon \phi) \cdot x|_{\epsilon=0}.$$

Method

 Use of equivariant cohomology as modified de Rham complex (Witten, Berline-Vergne, ~ 1982) using the symmetry group. Localization is a generalization of the fundamental theorem of calculus.

Equivariant complex

Let $\mathcal{A}(M)$ be the algebra of differential forms on M. d the exterior derivative. $\iota(V)$ the contraction by a vector field V. Equivariant form: $\alpha:\mathfrak{k}\to\mathcal{A}(M)$ α commutes with action of K. The equivariant de Rham operator D (Witten (82), Berline-Vergne (82))

$$D(\alpha)(\phi) := d(\alpha(\phi)) - \iota(V\phi)\alpha(\phi).$$

Then $D^2 = 0$.

Equivariant cohomology

Equivariant cohomology algebra

$$\mathcal{H}^{\infty}(\mathfrak{k}, M) = \operatorname{Ker}(D)/\operatorname{Im}(D).$$

If $\alpha(\phi)$ polynomial in ϕ , obtain $\mathcal{H}^{\mathrm{pol}}(\mathfrak{k},M)$:= topological equivariant cohomology (Henri Cartan, Atiyah-Bott)
But need to integrate $e^{i\alpha(\phi)}$ for M non compact: First application: Fourier transform of the measure on $x^2 + y^2 - z^2 = 1$. (Harish-Chandra character formulae for non compact reductive groups)

Equivariant integration

 $\int_M \alpha(\phi)$ well defined if M compact oriented. (integration top degree term $\alpha(\phi)[\dim M]$). This is a function on £. may be defined as a generalized function on \mathfrak{k} , when M is not compact: $F(\phi)$ a test function on \mathfrak{k} ; $\int_{\mathbf{P}} \alpha(\phi) F(\phi) d\phi$: differential form on M. If this differential form is integrable on M, then $\int_M \alpha$ is defined

$$\langle \int_{M} \alpha, F d\phi \rangle := \int_{M} \int_{\mathbf{R}} \alpha(\phi) F(\phi) d\phi.$$

Importance of integration on $M \times \mathfrak{k}$ of $\alpha(\phi)$.

Hamiltonian spaces

Examples of equivariantly closed forms arise in Hamiltonian geometry. M symplectic manifold, symplectic form Ω . Hamiltonian action of K on M: Moment map $\mu:M\to \mathfrak{k}^*$ for every $\phi\in\mathfrak{k}$,

$$d(\langle \phi, \mu \rangle) = \iota(V\phi) \cdot \Omega.$$

Noether's theorem: $\langle \phi, \mu \rangle$ constant on the orbit of $V\phi$. Atiyah-Guillemin-Sternberg theorem: K abelian, M compact. The image of M by μ is a convex polytope. (Kirwan polytope if K connected compact)

Example $M := P_2(\mathbb{C})$.

$$|z_1|^2 + |z_2|^2 + |z_3|^2 = 1$$

 $[z_1, z_2, z_3] \sim [e^{i\theta}z_1, e^{i\theta}z_2, e^{i\theta}z_3]$

Action $(e^{i\theta_1}z_1, e^{i\theta_2}z_2, z_3)$.

Moment map $(|z_1|^2, |z_2|^2)$: Image Homogeneous polynomials of degree n:

$$z_1^i z_2^j z_3^{n-(i+j)}$$

Basis: integral points in $t_1 \ge 0, t_2 \ge 0, t_1 + t_2 \le n$.

Equivariant symplectic form

M Hamiltonian manifold.

$$\Omega(\phi) := \langle \phi, \mu \rangle + \Omega$$

is a closed equivariant form.

$$\frac{1}{(2i\pi)^{\dim M/2}} \int_M e^{i\Omega(\phi)}$$

Fourier transform of the pushforward of the Liouville measure under the moment map.

Basic Example 1: \mathbb{R}^2 with action of S^1

Coordinates (x, y).

$$\Omega := dx \wedge dy.$$

$$V\phi := \phi(y\partial_x - x\partial_y).$$

$$\mu := \frac{x^2 + y^2}{2}$$

Equivariant symplectic form is

$$\Omega(\phi) = \phi(\frac{x^2 + y^2}{2}) + dx \wedge dy.$$

The moment map $\mu(x,y) = \frac{x^2+y^2}{2}$

Image of dxdy under the moment map μ :

More generally \mathbb{R}^{2n} with diagonal action Then image of \mathbb{R}^{2n} : Cone, and image of measure a multivariate spline function.

Multivariate spline functions.

Example:

$$(Z_1,Z_2,Z_3)\in\mathbb{C}^3\oplus\mathbb{C}^3\oplus\mathbb{C}^3$$

$$e^{i\theta_1}Z_1$$
, $e^{i(\theta_1+\theta_2)}Z_2$, $e^{i\theta_2}Z_3$

Moment map $(a = |Z_1|^2 + |Z_2|^2, b = |Z_2|^2 + |Z_3|^2)$:

$$G(a,b) = b^{5} \frac{(7a^{2} - 7ab + 2b^{2})}{14 \cdot 5!}$$

Basic Example 2: The cotangent bundle T^*S^1

Free action of S^1

$$M := T^*S^1 = S^1 \times \mathbb{R}.$$

Coordinates (θ, t) .

$$\Omega := dt \wedge d\theta.$$

$$V\phi = -\phi\partial_{\theta}.$$

$$\mu = t.$$

Inverse problem

 "Decompress" the short formulae to obtain back the wanted information:
 Witten formula for integrals over reduced spaces ~ 1992.
 Compute it by residue methods.

Relate discrete and continuous pictures.
Classical mechanics versus quantum mechanics.
Volume versus number of integral points
in convex polytopes.

The moment map of $\mu[t,\theta]=t$

Image of the measure $dt \wedge d\theta$ under μ :

$$rac{1}{2i\pi}\int_{T^*S^1}e^{i\Omega(\phi)}=\delta_0(\phi).$$

Fourier transform of the pushforward of the Liouville measure under the moment map.

Example 3: The sphere

$$\Omega := \frac{dy \wedge dz}{x}, \quad V\phi := \phi(y\partial_z - z\partial_y).$$

 $\mu := x.$

Relation with Duistermaat-Heckman

$$\Omega(\phi) = \phi \, x + \Omega.$$

$$\frac{1}{2i\pi}\int_{M}e^{i\Omega(\phi)}=\int_{M}e^{i\phi\,x}dm.$$

$$\frac{1}{2i\pi} \int_M e^{i\Omega(\phi)} = \left(\frac{e^{iA\phi}}{i\phi} + \frac{e^{-iA\phi}}{-i\phi}\right).$$

Push-forward of Liouville measure

K abelian:

Duistermaat-Heckman proved exact stationary phase formula by showing that if

 $M_{red}(\xi) = \mu^{-1}(\xi)/K$ symplectic reduction, then

$$\int_{M\times \mathfrak{k}} e^{-i\langle \xi, \phi \rangle} e^{i\Omega(\phi)} d\phi = \operatorname{vol}(M_{red}(\xi)).$$

Reduced spaces for \mathbb{R}^2 and T^*S^1 are points, so $\operatorname{vol}(M_{red}(\xi))=1$ or 0, if ξ belong to $\mu(M)$ or not. G(a,b) symplectic volume of a Kahler manifold of complex dimension 7.

Kahler cone of dimension 2:

Two generalizations

Abelian and "non abelian" localization formulae. Abelian localization (Berline-Vergne, Witten, Atiyah-Bott \sim 1982) S^1 acting on compact M isolated fixed points. $\alpha(\phi)$ closed equivariant form:

$$(2\pi)^{-\frac{\dim M}{2}} \int_{M} \alpha(\phi) = \sum_{p \in \{\text{fixed points}\}} \frac{i_p^* \alpha(\phi)}{\sqrt{\det_{T_p M} L_p(\phi)}}.$$

Will explain the reason later.

Witten "non abelian" localization formula ~ 1992

K compact group, M Hamiltonian:

 $\mu: M \rightarrow \mathfrak{k}^*$.

 $M_{red} = \mu^{-1}(0)/K$ symplectic reduction with symplectic form Ω_{red} .

 $\alpha(\phi)$ closed equivariant form with polynomial coefficients gives a cohomology class α_{red} on M_{red} Then

$$\int_{M\times \mathbf{e}} e^{i\Omega(\phi)} \alpha(\phi) d\phi = c * \int_{\mu^{-1}(0)/K} e^{i\Omega_{red}} \alpha_{red}$$

If $\alpha = 1$, Duistermaat theorem.

Equivariant cohomology with generalized coefficients

 $\alpha(\phi)$ distribution with value forms on M:

$$\int_{\mathbf{p}} \alpha(\phi) F(\phi) d\phi$$

is a differential form on N.

The operator D is well defined: (Duflo-Kumar-Vergne (1993));

Parallel theory to equivariant index theorem for Atiyah-Singer transversally elliptic operators Equivariant index: a distribution on the group.

Localization or 1=0

Basic observation (Paradan \sim 2000) K compact Lie group acting on M: κ a K-invariant vector field tangent to the orbits of K and never vanishing:

1 = 0

in equivariant cohomology with generalized coefficients. That is 1=DB with B defined with generalized coefficients.

Example

Example \mathbb{C}^* with coordinates $[r, \theta]$.

$$1 = D(iY^+(\phi)d\theta)$$

Indeed:

$$D(iY^{+}(\phi)d\theta)$$

$$= iY^{+}(\phi)d(d\theta)) - i\phi Y^{+}(\phi)\iota(\partial_{\theta})d\theta = 1$$

Applications

M manifold with action of K: κ a K-invariant vector field tangent to the orbits of K:

$$C = \cup_F C_F$$

the set of zeroes of κ , divided in connected components;

$$1 = 0$$

on M-C:

Reduces the computation on a neighborhood of the zeroes of κ .

Some Applications

Conjecture of Guillemin-Sternberg on Quantization of compact classical spaces Meinrenken-Sjamaar, ~ 1999, and Generalization by Paradan ~ 2003.

Conjecture on Geometric quantization and transversally elliptic operators

Abelian localization

For an action of S^1 , use $\kappa = V\phi$: Zeroes of κ : Fixed points of the action. Integration of closed equivariant form reduced to the basic case \mathbb{R}^2 (Tangent space to fixed points is a sum of \mathbb{R}^2). Abelian localization formula

Witten non abelian localization

 $M \to \mathfrak{k}^*$ Hamiltonian manifold. $\mathfrak{k} \sim \mathfrak{k}^*$

$$\kappa_m = \frac{d}{d\epsilon} \exp(\epsilon \mu(m)) * m|_{\epsilon=0}$$

Zeroes of κ : Critical set of $|\mu|^2$. $\mu = 0$ one connected component of the zeroes of κ . Witten idea: use Kirwan vector field: → non abelian localization formula: reduces essentially double integration on $M \times \mathfrak{k}$ to integration on $T^*S^1 \times \mathbb{R}$ by considering N neighborhood of $\mu = 0$

Tubular neighborhoods of the critical set of $\|\mu\|^2$

Computations

Interest: Use both localization formulae: abelian+non abelian;→ to obtain computations of intersection pairings on some reduced spaces (as toric varieties, moduli spaces of flat bundles); Residue computation theoretical: Jeffrey-Kirwan, Brion-Vergne, Szenes-Vergne, de Concini-Procesi;

Efficient algorithms for Computations

Volume V(a,b) of the reduced fiber $\mu : \mathbb{C}^9 \to \mathbb{R}^2$

$$V(a,b) = \operatorname{res}_{x_1=0} \left(\operatorname{res}_{x_2=0} \frac{e^{ax_1} e^{bx_2} \, dx_1 \, dx_2}{(x_1)^3 (x_2)^3 (x_1 + x_2)^3} \right).$$

That is integration on

$$|x_1|=\epsilon_1$$
, $|x_2|=\epsilon_2$ with $\epsilon_1<\epsilon_2$.

Reverse the order if a < b.

Efficient (exact) computation of number of points in Network polytopes (Baldoni-de Loera-Vergne) of Kostant partition functions

(Beck-Baldoni-Cochet-Vergne)

Multiplicities for tensor products for representations of compact groups (Cochet).

Equivariant integration on non compact spaces

K compact Lie group acting on M: κ a K-invariant vector field tangent to the orbits of K. assume C= zeroes of κ compact : then as 1=0 on M-C, there exists a canonical class $P_{\kappa} \in \mathcal{H}^{-\infty}(\mathfrak{k}, M)$ with compact support (neighborhood of C) and equal to 1 (without support condition). Equivariant integration defined on $\mathcal{H}^{\infty}(\mathfrak{k}, M)$ by

$$\int_{M} \alpha(\phi) P_{\kappa}(\phi).$$

The result is well defined as a generalized function: (depending possibly on κ if M is non compact). Non degenerate pairing.

The equivariant volume and its quantized version

Basic example: T^*S^1 Equivariant volume:

$$rac{1}{2i\pi}\int_{T^{ullet}S^1}e^{i\Omega(\phi)}=\int_{\mathbb{R}}e^{it\phi}dt=\delta_0(\phi).$$

Quantized version of $T^*S^1 = L^2(S^1)$.

$$L^{2}(S^{1}) = \bigoplus_{n=-\infty}^{\infty} \mathbb{C}e^{in\theta}.$$

$$\mathrm{Tr}_{L^2(S^1)}(e^{i\phi}) = \sum_{n=-\infty}^\infty e^{in\phi} = \delta_1(e^{i\phi}).$$

Basic example \mathbb{R}^2

Equivariant volume:

$$\frac{1}{2i\pi} \int_{\mathbb{R}^2} e^{i\Omega(\phi)} = \int_0^{\infty} e^{ir\phi} dr = \frac{1}{-i\phi}.$$

Quantization of \mathbb{R}^2 :

Stone Von-Neumann theorem (1930):

$$Fock(\mathbb{C})=\{f\in\mathcal{O}(\mathbb{C});\int_{\mathbb{C}}|f(z)|^{2}e^{-|z|^{2}}dxdy<\infty\}.$$

$$Fock = \bigoplus_{n=0}^{\infty} \mathbb{C}z^n$$

$$\operatorname{Tr}_{Fock}(e^{i\phi}) = \sum_{n=0}^{\infty} e^{in\phi} = \frac{1}{1 - e^{i\phi}}.$$

Formula for the character of the quantized space

M symplectic manifold : classical space. H(M) Hilbert space with a representation Still mysterious (Kirillov for homogeneous Hamiltonian spaces: The orbit method) I reinterpreted Kirillov's formula for the character as an equivariant cohomology formula. Works for more general cases. In general ?? I conjecture an equivariant cohomology formula in some cases

Quantization and transversally elliptic operators

Let M be a Hamiltonian manifold. Symplectic form ω integral.

K compact acting on M in a Hamiltonian way.

 $\mu:M o \mathfrak{k}^*$ moment map.

κ Kirwan Vector field:

assume zeroes of κ compact.

Theorem: Paradan-Berline-Vergne

There exists a (virtual) Hilbert space H(M) (the index of a transversally elliptic operator), and a representation of K in H(M)

$$\operatorname{Tr}_{H(M)}(e^{i\phi}) = \int_{M} e^{i\Omega(\phi)} Todd(\phi, M) P_{\kappa}(\phi)$$

 $Todd(\phi, M)$ is an equivariant cohomology class called the Todd class.

Beautiful mathematical formulae

→ algorithmic computations
First some examples of what we can compute related to convex polytopes.

Then: geometry, equivariant cohomology, elliptic operators.

But ideas occurred in the reverse order:

We: many collaborators
Welleda Baldoni, Matthias Beck, Nicole Berline, Michel
Brion, Charles Cochet, Michel Duflo, Shrawan Kumar,
Jesus de Loera, Paul-Emile Paradan, Andras Szenes.

Quantization and reduction

When M is compact, H(M) constructed as the index of an elliptic operator: Guillemin-Sternberg conjecture.

Theorem: Meinrenken-Sjamaar:

The multiplicities of the representations of K in H(M) are related to the moment map

$$(\dim H(M)^K = \dim H(M_{red})).$$

Qualitative statement:

The irreducible representations of K are classified by integral orbits of K in \mathfrak{k}^* (orbits of highest weight).

Any representation arising in H(M)is associated to an orbit contained in $\mu(M) \subset \mathfrak{k}^*$.

Quantitative statement also.

Proper moment map.

M non compact: H(M) computed as the index of a transversally elliptic operator if zeroes of Kirwan vector field is compact.

Conjecture

The conjecture of Guillemin-Sternberg should be true; That is H(M) reflects well the geometry of M.

Levels of energy

True for $M = T^*K$, M = V symplectic space.

The spectrum of $i\phi$ in H(M) is composed of the discrete values of the energy.

Discrete series

True for discrete series (Paradan);

A beautiful formula.

$$\sum_{i=0}^{10000} q^i = \frac{1}{1-q} + \frac{q^{10000}}{1-q^{-1}}.$$

depends only of the end points.

$$\sum_{i=0}^{N} 1 = (N+1).$$

Left hand side exponentially larger than the right hand side .

(see Barvinok's talk at this ICM)

Atiyah-Bott fixed point formula.

$$\sum_{i=-A}^{A} q^{i} = \frac{q^{-A}}{1-q} + \frac{q^{A}}{1-q^{-1}}$$

Simple case of Atiyah-Bott fixed point formula.

Inverse problem: Decompression

Given a short expression for a sum, compute an individual term of the sum. Understand its geometric meaning, if it comes from geometry. In the preceding example, knowing left hand side, want right hand side

$$\frac{q^{-A}}{1-q} + \frac{q^A}{1-q^{-1}} = \sum_i c_i q^i$$

that is, find the coefficients of q^i .

 Answer c_i := 1, if -A ≤ i ≤ A: geometric meaning from Atiyah-Bott theorem: non zero if and only if parallel circle with coordinate i.

The continuous version: Integrals

Continuous version of sums; $\sum_{i=A}^{B} q^i = \frac{q^B}{1-q^{-1}} + \frac{q^A}{1-q}$

$$\int_{A}^{B} e^{xt} dx$$

the fundamental theorem of calculus gives a compressed expression for the integral

$$\int_{A}^{B} e^{xt} dx = \frac{e^{Bt}}{t} + \frac{e^{At}}{-t}$$

 $e^{xt} = rac{d}{dx}(e^{xt}/t)$: apply fundamental theorem of calculus.