P, NP and Mathematics
A computational complexity perspective

Avi Wigderson
Institute for Advanced Study
http://www.math.ias.edu/~avi
Algebra: Polynomial Identities

Is \(\det(V(x_1, x_2, \ldots, x_n)) - \prod_{i<k} (x_i - x_k) \equiv 0 \)?

Theorem [Vandermonde]: YES

Given (implicitly, e.g. as a formula) a polynomial \(p \) of degree \(d \). Is \(p(x_1, x_2, \ldots, x_n) \equiv 0 \)?

Algorithm [Schwartz-Zippel]:
Pick \(r_i \) indep at random in \(\{1, 2, \ldots, 100d\} \)

\(p = 0 \Rightarrow \Pr[p(r_1, r_2, \ldots, r_n) = 0] = 1 \)
\(p \neq 0 \Rightarrow \Pr[p(r_1, r_2, \ldots, r_n) \neq 0] > .99 \)

Comments: Over small finite fields it is coNP-complete

[Kaltofen] Over large finite fields one can even factor \(p \)
Analysis: Fourier coefficients

Given (implicitly) a function \(f: (\mathbb{Z}_2)^n \rightarrow \{-1, 1\} \) (e.g. as a formula), and \(\varepsilon > 0 \),

Find all characters \(\chi \) such that \(|\langle f, \chi \rangle| \geq \varepsilon \)

Comment: At most \(1/\varepsilon^2 \) such \(\chi \)

Algorithm [Goldreich-Levin] :

...adaptive sampling... \(\Pr[\text{success}] > 0.99 \)

[AGS] : Extension to other Abelian groups.

Applications: Coding Theory, Complexity Theory
Geometry: Estimating Volumes

Given (implicitly) a convex body K in \mathbb{R}^d (d large!) (e.g. by a set of linear inequalities)

Estimate volume (K)

Comment: Computing volume(K) exactly is $\#P$-complete

Algorithm [Dyer-Frieze-Kannan, ...] :
Approx counting \approx random sampling
Random walk inside K.
Rapidly mixing Markov chain.

Analysis:
Spectral gap \approx isoperimetric inequality

Applications:
Statistical Mechanics, Group Theory
Fundamental question #2
Does randomness help?
Are there problems with probabilistic polytime algorithm but no deterministic one?
Conjecture 2: YES

Fundamental question #1
Does NP require exponential time/size?
Conjecture 1: YES

Theorem: One of these conjectures is false!
Hardness vs. Randomness

Theorem [Blum–Micali, Yao, Nisan–Wigderson, Impagliazzo–Wigderson, ...] :

If there are natural hard problems
Then randomness can be efficiently eliminated.

Theorem [Impagliazzo–Wigderson]
NP requires exponential size \Rightarrow
BPP=P (every probabilistic polynomial algorithm has a deterministic counterpart)

Theorem [IKW, Impagliazzo–Kabanets...] :
Partial converse! Derandomization \Rightarrow Hardness
Computational Pseudo-Randomness

- Many unbiased independent coins
- Pseudorandom if for every efficient algorithm, for every input, \(\text{output} \approx \text{output} \)
- \(k \approx c \log n \)
- Few, none
Hardness \Rightarrow \text{Pseudorandomness}

Need: \(G : \{0,1\}^k \rightarrow \{0,1\}^n \)

NW generator

Show: \(G : \{0,1\}^k \rightarrow \{0,1\}^{k+1} \)

Need: \(\Pr[C(x) = f(x)] < \frac{1}{2} + \exp(-k) \)

for every computation \(C \), size(\(C \)) < \(s \)

Average-case hardness

Hardness amplification

Have: \(\Pr[C'(x) = f'(x)] < 1 \)

for every computation \(C' \), size(\(C' \)) < \(s' \)

Worst-case hardness
Derandomization

Deterministic algorithm:
- Try all possible $2^k = n^c$ "seeds"
- Take majority vote

Pseudorandomness paradigm:
Can derandomize specific algorithms without assumptions!
E.g. Primality Testing & Maze exploration
The Power of Randomness

In other settings...
Getting out of mazes (when your memory is weak)

n-vertex maze/graph

Only a local view (logspace)

Theorem [Aleliunas-Karp-Lipton-Lovasz-Rackoff]: A random walk will visit every vertex in n^2 steps (with probability $>99\%$)

Theorem [Reingold]: A deterministic walk, computable in logspace, will visit every vertex. Uses ZigZag expanders [Reingold-Vadhan-Wigderson]
The Power and Weakness of Randomness
(when you are short on time)

Avi Wigderson
Institute for Advanced Study
Probabilistic Proof System

[Goldwasser-Micali-Rackoff, Babai]

Is a mathematical statement claim true? E.g.

claim: “No integers x, y, z, n>2 satisfy \(x^n + y^n = z^n \)"
claim: “The Riemann Hypothesis has a 200 page proof”

The probabilistic Prover

An efficient Verifier \(V(\text{claim}, \text{argument}) \) satisfies:

*) If claim is true then \(V(\text{claim}, \text{argument}) = \text{TRUE} \) for some argument always (in which case \(\text{claim} = \text{theorem}, \text{argument} = \text{proof} \))

**) If claim is false then \(V(\text{claim}, \text{argument}) = \text{FALSE} \) for every argument with probability > 99%
Remarkable properties of Probabilistic Proof Systems

- Probabilistically Checkable Proofs (PCPs)
- Zero-Knowledge (ZK) proofs
Probabilistically Checkable Proofs (PCPs)

claim: The Riemann Hypothesis

Prover: (argument)

Verifier: (editor/referee/amateur)

Verifier's concern: Is the argument correct?

PCPs: Verifier reads 100 (random) bits of the argument.

Thm [Arora-Safra, Arora-Lund-Motwani-Sudan-Szegedy]:
Every proof can be efficiently transformed to a PCP
Refereeing (even by amateurs) in a jiffy!

Major application - approximation algorithms
Zero-Knowledge (ZK) proofs

Goldwasser-Micali-Rackoff

claim: The Riemann Hypothesis
Prover: (argument)
Verifier: (editor/referee/amateur)

Prover's concern: Will Verifier publish first?
ZK proofs: argument reveals only correctness!

Theorem [Goldreich-Micali-Wigderson]:
Every proof can be efficiently transformed to ZK proof assuming Factoring is HARD
Major application - cryptography
Conclusions & Problems

When resources are limited, basic notions get new meanings (randomness, learning, knowledge, proof, ...).

- Randomness is in the eye of the beholder.
- Hardness can generate (good enough) randomness.
- Probabilistic algs seem powerful but probably are not.
- Sometimes this can be proven! (Mazes, Primality)
- Randomness is essential in some settings.

Is Factoring HARD? Is electronic commerce secure?
Is Theorem Proving Hard? Is $P \neq NP$? Can creativity be automated
How to prove $P \neq \text{NP}$

F field, $\text{char}(F) \neq 2$.

$X \in M_k(F)$ \hspace{1cm} $\text{Det}_k(X) = \sum_{\sigma \in S_k} sgn(\sigma) \prod_{i \in [k]} X_{i\sigma(i)}$

$Y \in M_n(F)$ \hspace{1cm} $\text{Per}_n(Y) = \sum_{\sigma \in S_n} \prod_{i \in [n]} Y_{i\sigma(i)}$

Affine map $L: M_n(F) \to M_k(F)$ is good if $\text{Per}_n = \text{Det}_k \circ L$

$k(n)$: the smallest k for which there is a good map?

Thm [Valiant] \hspace{1cm} $\forall F \hspace{0.5cm} k(n) < \exp(n)$

Thm [Mignon-Ressayre] \hspace{1cm} $\forall F \hspace{0.5cm} k(n) > n^2$

Thm [Valiant] \hspace{1cm} $k(n) \neq \text{poly}(n) \Leftrightarrow "P \neq \text{NP}"$
Plan of the talk

- Computational complexity
 -- efficient algorithms, hard and easy problems, P vs. NP
- The power of randomness
 -- in saving time
- The weakness of randomness
 -- what is randomness?
 -- the hardness vs. randomness paradigm
- The power of randomness
 -- in saving space
 -- to strengthen proofs
Easy and Hard Problems
asymptotic complexity of functions

Turing: Formal definition of an algorithm

Multiplication
\[\text{mult}(23, 67) = 1541 \]

grade school algorithm:
\(n^2 \) steps on \(n \) digit inputs

Factoring
\[\text{factor}(1541) = (23, 67) \]

best known algorithm:
\(\exp(\sqrt{n}) \) steps on \(n \) digits

EASY
P - Polynomial time algorithm

HARD?
-- we don't know!
-- the whole world thinks so!
Theorem Proving and \(P \) vs. \(NP \)

Theorem proving:
Input: a mathematical statement \(S \) (e.g., Riemann’s hypothesis) and an integer \(n \)
Task: Find a proof of \(S \) (e.g., in ZF) of length \(\leq n \) (if exists)

Theorem: If Theorem proving is Easy
then Factoring is Easy

Theorem [Cook-Levin]: Theorem proving is NP-complete
... Numerous equally hard problems in all sciences

\(P \) vs. \(NP \) problem: Formal: Is Theorem proving Easy?
Informal: Can creativity be automated?
Fundamental question #1

Is $\text{NP} \neq \text{P}$? More generally, consider

- Factoring integers
- Theorem proving
- Computing the Permanent of a matrix
- Deciding knottedness of a knot
- Solving a system of polynomial equations over $\text{GF}(2)$
-

Best algorithms: exponential time.
Does any require exponential time?
Conjecture 1: YES
The Power of Randomness

Host of problems for which:

- We have **probabilistic** polynomial time algorithms
- We have **no deterministic** algorithms of subexponential time.
Coin Flips and Errors

Algorithms will make decisions using coin flips
011101100001000111010101010111...
(flips are independent and unbiased)

When using coin flips, we'll guarantee:
"task will be achieved, with probability >99%"

- We tolerate uncertainty in life
- Here we can reduce error arbitrarily $\exp(-n)$
- To compensate - we can do much more...
Number Theory: Primes

Problem 1 [Gauss]: Given $x \in [2^n, 2^{n+1}]$, is x prime?

Algorithm [Solovey-Strassen]: Probabilistic

NEW [Agrawal-Kayal-Saxena]: Deterministic !!

Problem 2: Given n, find a prime in $[2^n, 2^{n+1}]$
Algorithm: Pick at random $x_1, x_2, ..., x_{1000n}$
For each x_i apply primality test.
Prime Number Theorem $\Rightarrow \Pr [\exists i \ x_i \text{ prime}] > .99$